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Linear types are useful for writing safe resource-sensitive programs, but a strict linearity discipline is too

burdensome to uphold in practice. To make linearity practical, languages often add extra typing features such

as borrowing, but such features complicate the semantics and can be challenging to use. In this paper, we

introduce flow typing as an alternative approach. Flow typing allows us to write linear code in a natural and

familiar style, but has a simple semantics via a translation into a linear lambda calculus. We introduce and

implement our ideas using a Haskell-like language that is compiled down to Linear Haskell.

1 Introduction
Linear types can be used to write resource-sensitive programs [33]. A type is called linear if its
values cannot be freely duplicated or discarded, corresponding to the fact that these operations

may not always be applicable to real-world resources. Linearity is beneficial because it allows us to

write safer and more efficient programs. For example, it can be used to control access to shared

resources and to permit in-place updates. In addition, linearity allows for more granular tracking

of permissions and state, enabling concepts such as typestate [30] and session types [15].

One key feature of linear types is that any operation that uses a resource must consume it or

return it. Unfortunately, this is true even for non-destructive operations. For example, the following

Haskell-like pseudocode computes the length of a list of linear values, but must simultaneously

rebuild and return the list so that the underlying resources are not discarded:

length :: [a] -> (Int, [a])
length [] = (0, [])
length (x:xs) = let (n, ys) = length xs in (n+1, x:ys)

This code is much less clear than an equivalent non-linear program that simply returns the length,

and manually rebuilding data structures in this way is tedious and error-prone. How can we retain

the benefits of linear types without incurring this additional complexity?

One natural approach to try to simplify the above code is to wrap the computation in a state

monad, where the list forms the state. However, the usual state monad operations get and put are

not linear, so they cannot be written in a linear type theory. For example, get duplicates the state,

returning one copy and keeping the other. There are workarounds for this problem, such as using

custom combinators that manipulate state transformers in a linear manner. However, the use of

such combinators requires writing programs in a rather unnatural style.

A second approach is to add a nonlinear type of references to the type system. This would allow

us to compute the length of a list by reference, without actually consuming the underlying resources.

In Rust, for example, values can be temporarily borrowed to obtain a reference, and after the borrow

has ended, the original value can be used again [21]. Other proposals for adding references into

linear languages include fractional uniqueness types [20], implemented in the Granule language,

which allow for a functional presentation of borrowing. These ideas use sophisticated type system

features to ensure that linearity is not violated, but this adds significant complexity. Indeed, the

study of Zhu et al. [36] found that “[Rust’s] complex safety rules pose unique difficulties” for

programmers, which reflects the well-known experience of ‘fighting the borrow checker’.
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In this article, we present an alternative approach, introducing a linear type theory that allows

functions to be defined in a natural and familiar style while retaining the benefits of linear types. To

achieve this, we treat the typing context that records the type of each variable as a state parameter,
threading it through the type checking process. We call this paradigm flow typing. The key point

of flow typing is that it supports a way to use variables ‘by reference’. In a conventional linear

programming language, referring to a variable removes it from the context, so other parts of the

program cannot use it. With flow typing, however, we can temporarily remove a variable from the

context, use it, and then return it to the context. We use the phrase ‘by reference’ to describe such

temporary uses of variables. The slogan is:

Values are taken from the context, references are borrowed from the context.

Because flow typing treats the context as a state parameter, we can compile away our flow typing

machinery by performing the state-passing explicitly. In this way, flow typing can be seen as a

clean syntax for working with state in a linear type theory. More specifically, programs in our

language can be translated into a suitable linear lambda calculus [5].
To make our theory concrete, we have implemented a lightweight, Haskell-like programming

language with flow typing. We use this language for examples in the paper, and write code in a

teletype font to emphasise that it is real, executable code rather than pseudocode. Our compiler

uses the explicit state-passing translation to convert this language to Linear Haskell [6], without

using any unsafe features to bypass the linearity checker.

The article itself makes the following contributions:

• We introduce the basic idea of flow typing by example, demonstrating how flow typing

references work and how they can be compiled away (section 2);

• We formalise the idea by defining flow typing rules for a simple linear language (section 3)

and then extend the language to handle references (section 4);

• We show how to translate flow-typed terms into linear lambda calculus terms (section 5),

then show that this translation is semantics-preserving (section 6);

• Finally, we discuss our compiler and its extensions to the language (section 7), and conclude

with an extended example to compare flow typing to other systems (section 8).

We discuss related work in section 9 and future work in section 10. Most of the article assumes

only a basic knowledge of type systems and some intuition about linearity. We use a graphical

notation (string diagrams) in section 6 to reason about our semantics, but our presentation does

not assume experience with the underlying categorical formalisation of string diagrams. Our flow

typing compiler and a set of example programs are freely available as supplementary material.

2 The Basic Idea
In this section we introduce the basic idea of flow typing. For example, in our language we can

compute the length of a list using flow typing as follows:

length :: [a] &> Int
length &[] = 0
length &(x:xs) = length &xs + 1

This definition looks similar to the traditional recursive definition in a Haskell-like language, but

the additional flow typing machinery ensures that it is linear. We explain how to interpret the new

syntax in this section, but the general intuition is that the operator & means by reference, and is

read as ‘ref’, and the arrow &> is a type of functions taking their argument by reference, and is read

as ‘ref to’. This syntax was chosen to mirror the symbols used for references in languages like C,

although here they refer to state-passing rather than pointers.
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The flow typing definition for the length function is linear even though some variables are not

used, in particular x in the second clause. Moreover, when our compiler translates this code into

Linear Haskell, it emits precisely the more complicated definition from the introduction, including

rebuilding the input list. How does this translation process work?

In flow typing, the typing context is a state parameter, and evaluating each expressionmanipulates

the context in some way. To show how our compiler understands this code, we will traverse each

expression in the definition and describe how it updates the context. For clarity, we will work with

a desugared form of this program in which pattern matching is replaced by explicit case analysis:

length :: [a] &> Int
length = \&ys -> case &ys of

&[] -> 0
&(x:xs) -> length &xs + 1

2.1 Calling by Reference
At the start of type checking the above definition, the typing context is empty. The compiler

encounters the abstraction \&ys -> ..., which is an abstraction taking its argument by reference.
Its type is [a] &> Int, which means essentially the same thing as [a] -> (Int, [a]).

Crucially, there is no type of references. Calling by reference here simply means that the value is

returned to the caller after the function has been executed. This is implemented using explicit value-

passing, so there are no actual pointers being used, but our syntax hides this internal plumbing. In

particular, the type a &> b does not mean ‘&a -> b’, which would amount to adding a type of

references to the language; instead, it is just a different kind of arrow.

To interpret this &-abstraction in flow typing, we add ys :: [a] to the context now, and at the

end of the abstraction, we expect that ys :: [a] is back in the context. Internally, we will return

this new value of ys along with the usual return value of the abstraction.

2.2 Pattern-Matching by Reference
The next expression the compiler encounters is case &ys of ..., called a pattern-match by
reference. The idea is that the argument ys :: [a] is temporarily removed from the context to be

used for pattern-matching, and is put back at the end of the case expression. The compiler splits

into two paths, one for each case. In each branch, the state of the context is manipulated differently,

but the two paths must rejoin at the end of the case expression.

In the first branch, the variable ys :: [a] is removed from the context, then the expression 0 is

evaluated, which does not change the context. Now that the compiler has reached the end of the

branch, it tries to reconstruct the variable ys. Since we are in the branch where ys was the empty

list, we simply rebuild ys in the context as a new copy of the empty list.

The second branch is slightly more complicated. Here, ys is removed from the context, but

x :: a and xs :: [a] are both added. To evaluate the branch, in particular we need to evaluate

length &xs. This is done by temporarily removing xs from the context, calling length on it, and

then adding the returned list back into the context as xs. At the end of the branch, therefore, the

two variables x :: a and xs :: [a] are back in the context, so we rebuild ys as (x:xs). In
particular, this removes x and xs from the context and adds ys. Therefore, both branches return

integers and conclude with the same context ys :: [a], so the pattern-match is accepted.

2.3 Finishing Up
Now that the body of the abstraction has been evaluated, the compiler encounters the end of the

\&ys -> ... abstraction. A variable ys :: [a] is present in the current context, so we remove it
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and use it as the list returned from the abstraction. We now make a final check to ensure that the

context is now empty, guaranteeing that we cannot discard any resources.

Once the state-passing described in this section has been unwound, we arrive at precisely the

same linear definition for length as given in the introduction. This example illustrates how flow

typing works as a natural syntax for stateful programming in a linear type theory. We could

also consider more sophisticated implementations of flow typing, for instance a translation that

implements our notion of references as pointers to improve efficiency. However, in this article

we focus on the core translation to explicit state passing, as this shows that no complex language

features are needed to implement flow typing. In the following sections, we will introduce flow

typing more formally, and explain its relation to other linear languages.

3 Flow Typing Rules
This section is the start of the formal development of flow typing. We begin by introducing a simple

form of flow typing as an alternative presentation of a linear lambda calculus. Then in section 4 we

will show how to extend this language to add references.

3.1 Linear Type Systems
In conventional linear type systems, the typing judgements are of the form Γ ⊢ 𝑒 : 𝐴. Such a

judgement means that the list of assumptions in the typing context Γ can be used by the expression 𝑒
to produce a value of type 𝐴. For convenience, we will assume that the context Γ contains no

duplicate variable names. The typing rules are restricted to guarantee that each variable is used

exactly once. For instance, the variable rule is as follows:

𝑥 : 𝐴 ⊢ 𝑥 : 𝐴
Lin-Var

Since this rule can only be applied when the context is a single variable, no resources can be

discarded. Essentially all of the inference rules need to be slightly modified to align with this

linearity constraint. As another example, the application rule is as follows, where we use the syntax

‘𝐴 ⊸ 𝐵’ (read ‘𝐴 wand 𝐵’) for the type of linear functions from 𝐴 to 𝐵 to emphasise the difference

between it and the usual non-linear function type 𝐴 → 𝐵:

Γ1 ⊢ 𝑒1 : 𝐴 ⊸ 𝐵 Γ2 ⊢ 𝑒2 : 𝐴
Γ1, Γ2 ⊢ 𝑒1 𝑒2 : 𝐵

Lin-⊸-E

To apply this rule, the context must be split into two parts, Γ1 and Γ2. This ensures that a variable
cannot be used both in the function and in the argument of an application. For instance, the double

application 𝑓 (𝑓 𝑥) is not well-typed in this linear lambda calculus, because 𝑓 is used twice.

In fig. 1, we expand the linear lambda calculus with rules for linear pair types𝐴 ⊗ 𝐵, a unit type 𝐼 ,

sum types 𝐴 ⊕ 𝐵, and an empty type which we write f (pronounced ‘false’). We also add rules for

some of the connectives unique to linear logic, namely the additive product 𝐴 & 𝐵 (‘𝐴 with 𝐵’) and

its unit t (‘true’), as well as the exponential type !𝐴 (‘bang 𝐴’). The additive product is not to be

confused with the reference operator &; they can be disambiguated by noting that the additive

product is a binary operator and references are unary, but regardless, the two symbols will never

appear close to each other in this article.

These extra connectives are not particularly important for this work, but we include them for

completeness and to show that flow typing works with them. Intuitively, the additive product𝐴&𝐵

is a closure that can be invoked to produce either an 𝐴 or a 𝐵, but is used up after being executed;

the unit t represents a closure that can never be executed; and the type !𝐴 represents a closure that

can be invoked arbitrarily many times (including none at all) to produce values of type 𝐴.
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𝑥 : 𝐴 ⊢ 𝑥 : 𝐴
Var

Γ1 ⊢ 𝑒1 : 𝐴 Γ2, 𝑥 : 𝐴 ⊢ 𝑒2 : 𝐵
Γ1, Γ2 ⊢ (let𝑥 = 𝑒1 in 𝑒2) : 𝐵

Let

Γ ⊢ 𝑒 : 𝐴
Γ ⊢ true(𝑒) : t

t-I

Γ ⊢ 𝑒 : f
Γ ⊢ false𝐵 (𝑒) : 𝐵

f-E
Γ, 𝑥 : 𝐴 ⊢ 𝑒 : 𝐵

Γ ⊢ (𝜆𝑥 :𝐴. 𝑒) : 𝐴 ⊸ 𝐵
⊸-I

Γ1 ⊢ 𝑒1 : 𝐴 ⊸ 𝐵 Γ2 ⊢ 𝑒2 : 𝐴
Γ1, Γ2 ⊢ 𝑒1 𝑒2 : 𝐵

⊸-E

⊢ ∗ : 𝐼
𝐼 -I

Γ1 ⊢ 𝑒1 : 𝐼 Γ2 ⊢ 𝑒2 : 𝐴
Γ1, Γ2 ⊢ (let ∗ = 𝑒1 in 𝑒2) : 𝐴

𝐼 -E

Γ1 ⊢ 𝑒1 : 𝐴 Γ2 ⊢ 𝑒2 : 𝐵
Γ1, Γ2 ⊢ (𝑒1, 𝑒2) : 𝐴 ⊗ 𝐵

⊗-I
Γ1 ⊢ 𝑒1 : 𝐴 ⊗ 𝐵 Γ2, 𝑥 : 𝐴,𝑦 : 𝐵 ⊢ 𝑒2 : 𝐶

Γ1, Γ2 ⊢ (let (𝑥,𝑦) = 𝑒1 in 𝑒2) : 𝐶
⊗-E

Γ ⊢ 𝑒1 : 𝐴 Γ ⊢ 𝑒2 : 𝐵
Γ ⊢ ⟨𝑒1, 𝑒2⟩ : 𝐴 & 𝐵

&-I

Γ ⊢ 𝑒 : 𝐴 & 𝐵

Γ ⊢ fst(𝑒) : 𝐴
&-EL

Γ ⊢ 𝑒 : 𝐴 & 𝐵

Γ ⊢ snd(𝑒) : 𝐵
&-ER

Γ ⊢ 𝑒 : 𝐴
Γ ⊢ inl𝐴⊕𝐵 (𝑒) : 𝐴 ⊕ 𝐵

⊕-IL
Γ ⊢ 𝑒 : 𝐵

Γ ⊢ inr𝐴⊕𝐵 (𝑒) : 𝐴 ⊕ 𝐵
⊕-IR

Γ1 ⊢ 𝑒1 : 𝐴 ⊕ 𝐵 Γ2, 𝑥 : 𝐴 ⊢ 𝑒2 : 𝐶 Γ2, 𝑦 : 𝐵 ⊢ 𝑒3 : 𝐶
Γ1, Γ2 ⊢ (case 𝑒1 of inl(𝑥) → 𝑒2 | inr(𝑦) → 𝑒3) : 𝐶

⊕-E

Γ1 ⊢ 𝑒1 : !𝐴1 · · · Γ𝑛 ⊢ 𝑒𝑛 : !𝐴𝑛 𝑥1 : !𝐴1, , 𝑥𝑛 : !𝐴𝑛 ⊢ 𝑒 : 𝐵
Γ1, . . . , Γ𝑛 ⊢ promote 𝑒1, . . . , 𝑒𝑛 for𝑥1, . . . , 𝑥𝑛 in 𝑒 : !𝐵

Prom

Γ1 ⊢ 𝑒1 : !𝐴 Γ2 ⊢ 𝑒2 : 𝐵
Γ1, Γ2 ⊢ discard 𝑒1 in 𝑒2

Disc

Γ1 ⊢ 𝑒1 : !𝐴 Γ2, 𝑥 : !𝐴,𝑦 : !𝐴 ⊢ 𝑒2 : 𝐵
Γ1, Γ2 ⊢ copy 𝑒1 as𝑥,𝑦 in 𝑒2

Copy

Γ ⊢ 𝑒 : !𝐴
Γ ⊢ derelict 𝑒 : 𝐴

Der

Fig. 1. Conventional presentation of linear lambda calculus

Remark. The phrase ‘linear lambda calculus’ has a few different meanings; we use it to mean the

system with rules defined in fig. 1. This presentation of a linear lambda calculus was inspired by

Bierman [7]. A more proof-theoretic introduction to this kind of system can be found in [4, 5]. ⋄

3.2 Flow Typing
In contrast to conventional linear type systems, flow typing judgements have the form Γ1 ⊢ 𝑒 : 𝐴 ⊣ Γ2.
This judgement means that the context Γ1 can be used by the expression 𝑒 to produce a value of

type 𝐴, and that the context that remains after evaluating 𝑒 is Γ2. This leftover context Γ2 contains
every variable that was not used by 𝑒 , as well as variables that were merely borrowed in 𝑒 and then
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put back into the context. As an example, the flow typing variable rule is:

Γ, 𝑥 : 𝐴 ⊢ 𝑥 : 𝐴 ⊣ Γ
Flow-Var

This rule states that if the context contains the binding 𝑥 : 𝐴, we can remove it and yield a result of

type 𝐴. The output context is exactly the same as the input context, except that the binding for 𝑥

has been used up. Similarly, we can introduce a unit type 𝐼 , with the following introduction rule

that does not access or manipulate the context:

Γ ⊢ ∗ : 𝐼 ⊣ Γ
Flow-𝐼 -I

In more complicated expressions, the context is a state parameter, threaded through each subex-

pression to be evaluated. For example, the application rule is as follows:

Γ1 ⊢ 𝑒1 : 𝐴 ⊸ 𝐵 ⊣ Γ2 Γ2 ⊢ 𝑒2 : 𝐴 ⊣ Γ3

Γ1 ⊢ 𝑒1 𝑒2 : 𝐵 ⊣ Γ3
Flow-⊸-E

Here, the two subexpressions 𝑒1 and 𝑒2 are evaluated sequentially, with the output context from 𝑒1
being used as the input context for 𝑒2. Note that the linear logic rule for application forces us to

split the context into two parts to apply the rule, but the flow typing rule avoids this by instead

stipulating an evaluation order for the subexpressions. The rule for pairing is similar, using the

syntax 𝐴 ⊗ 𝐵 for the type of pairs of 𝐴 and 𝐵:

Γ1 ⊢ 𝑒1 : 𝐴 ⊣ Γ2 Γ2 ⊢ 𝑒2 : 𝐵 ⊣ Γ3

Γ1 ⊢ (𝑒1, 𝑒2) : 𝐴 ⊗ 𝐵 ⊣ Γ3
Flow-⊗-I

Example 1. Suppose we want to type check the double application 𝑓 (𝑓 𝑥). Let Γ be the initial

context 𝑓 : (𝐴 ⊸ 𝐵), 𝑥 : 𝐴. The type derivation must begin as follows:

Γ ⊢ 𝑓 : 𝐴 ⊸ 𝐵 ⊣ 𝑥 : 𝐴 𝑥 : 𝐴 ⊢ (𝑓 𝑥) : ? ⊣ ?
Γ ⊢ (𝑓 (𝑓 𝑥)) : ? ⊣ ?

We must now type check the subexpression 𝑓 𝑥 in a context that contains no variable 𝑓 , which is

impossible. This is the way that linearity is enforced in flow typing: once a variable is used, it is

permanently removed from the context, so cannot be used again. ⋄

3.3 Let Expressions
Compare the typing rules for ‘let’ expressions in our linear lambda calculus and in flow typing:

Γ1 ⊢ 𝑒1 : 𝐴 Γ2, 𝑥 : 𝐴 ⊢ 𝑒2 : 𝐵
Γ1, Γ2 ⊢ (let𝑥 = 𝑒1 in 𝑒2) : 𝐵

Lin-Let

Γ1 ⊢ 𝑒1 : 𝐴 ⊣ Γ2 Γ2, 𝑥 : 𝐴 ⊢ 𝑒2 : 𝐵 ⊣ Γ3

Γ1 ⊢ (let𝑥 = 𝑒1 in 𝑒2) : 𝐵 ⊣ Γ3
Flow-Let

At first, the flow typing rule looks like a simple restatement of the linear rule, but there is a crucial

difference: we do not restrict the scope of 𝑥 in the flow typing rule. This means that let-bound

variables can escape their scope of definition. For example, the expression ‘let𝑥 = 𝑒 in ∗’ is valid
using flow typing, and the output context has an additional binding for 𝑥 . In section 5, we show how

this scope-escaping behaviour is compiled away by our translation into a linear lambda calculus.

Example 2. Consider the expression ‘let𝑦 = 𝑥 in ∗’. This has the following typing derivation:

Γ, 𝑥 : 𝐴 ⊢ 𝑥 : 𝐴 ⊣ Γ Γ, 𝑦 : 𝐴 ⊢ ∗ : 𝐼 ⊣ Γ, 𝑦 : 𝐴

Γ, 𝑥 : 𝐴 ⊢ (let𝑦 = 𝑥 in ∗) : 𝐼 ⊣ Γ, 𝑦 : 𝐴



Flow Typing for Lightweight Linearity 7

Therefore, the expression ‘let𝑦 = 𝑥 in ∗’ simply renames 𝑥 to 𝑦 in the context. We can then consider

the following larger expression:

𝑒 ≔ let ∗ = (let𝑦 = 𝑥 in ∗) in𝑦

The use of 𝑦 does not occur within the scope of its definition. Despite this, the expression above is

well-typed, assuming the input context has the binding 𝑥 : 𝐴. Indeed, we can derive:

Γ, 𝑥 : 𝐴 ⊢ (let𝑦 = 𝑥 in ∗) : 𝐼 ⊣ Γ, 𝑦 : 𝐴 Γ, 𝑦 : 𝐴 ⊢ 𝑦 : 𝐴 ⊣ Γ

Γ, 𝑥 : 𝐴 ⊢ 𝑒 : 𝐴 ⊣ Γ

So this expression is well-typed in the context Γ, 𝑥 : 𝐴, and the output context is Γ. This example

suggests that a more natural ‘let’ construct in flow typing might be a let statement, namely ‘let𝑥 = 𝑒’,

declaring a variable 𝑥 that can be used in later statements. We can then execute statements in

sequence by using a sequencing operator ‘𝑒1; 𝑒2’, defined to be equivalent to ‘let ∗ = 𝑒1 in 𝑒2’. ⋄

3.4 Abstractions
The linear and flow typing rules for abstraction are as follows:

Γ, 𝑥 : 𝐴 ⊢ 𝑒 : 𝐵
Γ ⊢ (𝜆𝑥 :𝐴. 𝑒) : 𝐴 ⊸ 𝐵

Lin-⊸-I

Γ1, 𝑥 : 𝐴 ⊢ 𝑒 : 𝐵 ⊣
Γ1, Γ2 ⊢ (𝜆𝑥 :𝐴. 𝑒) : 𝐴 ⊸ 𝐵 ⊣ Γ2

Flow-⊸-I

The linear rule passes the entire context into the abstraction to avoid discarding resources. However,

the flow typing rule requires a context split: it allows the abstraction to capture the Γ1 part of the
environment, while preserving the Γ2 part for later expressions to use. To ensure that resources are

never discarded, we additionally assume that after evaluating 𝑒 , the context is empty.

Remark. Consider the following alternative rule for abstraction.

Γ1, 𝑥 : 𝐴 ⊢ 𝑒 : 𝐵 ⊣ Γ2

Γ1 ⊢ (𝜆𝑥 :𝐴. 𝑒) : 𝐴 ⊸ 𝐵 ⊣ Γ2
Flow-⊸-I

′

With this rule, the context is not split: it flows directly into the abstraction body and then out for

later expressions to use. While this rule is simpler, it has the wrong computational interpretation.

Consider the following expression, assuming that we have added integers to our language:

𝜆𝑥 : Int . (let𝑦 = 𝑥 + 1 in ∗)

With the Flow-⊸-I
′
rule, this is type-correct. We can type check it as follows:

𝑥 : Int ⊢ (let𝑦 = 𝑥 + 1 in ∗) : 𝐼 ⊣ 𝑦 : Int

⊢ (𝜆𝑥 : Int . (let𝑦 = 𝑥 + 1 in ∗)) : (Int ⊸ 𝐼 ) ⊣ 𝑦 : Int

Such a derivation seems to imply that the abstraction puts 𝑦 : Int in the context, even without

having invoked the abstraction. But this does not make sense: the value of 𝑦 depends on the value

of 𝑥 that has not yet been supplied to the closure. For this reason, we forbid abstractions from

‘leaking’ their variables to the outer scope, as achieved by the form of the Flow-⊸-I rule. ⋄
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3.5 Case Expressions
As another example, consider a case expression (writing ⊕ for the sum type):

Γ1 ⊢ 𝑒1 : 𝐴 ⊕ 𝐵 Γ2, 𝑥 : 𝐴 ⊢ 𝑒2 : 𝐶 Γ2, 𝑦 : 𝐵 ⊢ 𝑒3 : 𝐶
Γ1, Γ2 ⊢ (case 𝑒1 of inl(𝑥) → 𝑒2 | inr(𝑦) → 𝑒3) : 𝐶

Lin-⊕-E

Γ1 ⊢ 𝑒1 : 𝐴 ⊕ 𝐵 ⊣ Γ2 Γ2, 𝑥 : 𝐴 ⊢ 𝑒2 : 𝐶 ⊣ Γ3 Γ2, 𝑦 : 𝐵 ⊢ 𝑒3 : 𝐶 ⊣ Γ3

Γ1 ⊢ (case 𝑒1 of inl(𝑥) → 𝑒2 | inr(𝑦) → 𝑒3) : 𝐶 ⊣ Γ3
Flow-⊕-E

First, the linear rule is easy to interpret: it splits the context, using Γ1 to evaluate the scrutinee and

Γ2 to evaluate each branch, ensuring that the result of each branch has the same type𝐶 . In contrast,

the flow typing rule needs to check slightly more. Like the linear rule, it checks that the branches

𝑒2 and 𝑒3 yield the same type 𝐶 , but it must also check that the two output contexts match, and

uses this as the output context for the overall expression.

Example 3. Consider the following expression:

𝑒 ≔ case𝑥 of inl(𝑦) → (inl(𝑦), 0)
| inr(𝑧) → (inr(𝑧), 1)

The branches have the following derivations:

· · ·
𝑦 : 𝐴 ⊢ (inl(𝑦), 0) : (𝐴 ⊕ 𝐵) ⊗ Int ⊣

· · ·
𝑧 : 𝐵 ⊢ (inr(𝑧), 1) : (𝐴 ⊕ 𝐵) ⊗ Int ⊣

Formally, we should add type annotations to inl(𝑦) and inr(𝑧) so that their type derivations are

uniquely determined, as we do in the rules in fig. 2, but for clarity we suppress these annotations

where possible. Note that the two output types and contexts match, so the overall expression 𝑒 is

type-correct: its type is (𝐴 ⊕ 𝐵) ⊗ Int and the output context is empty. Now consider the following

expression which swaps the variants in a sum type, leaving its result in the context:

𝑒′ ≔ case𝑥 of inl(𝑦) → (let𝑥 = inr(𝑦) in ∗)
| inr(𝑧) → (let𝑥 = inl(𝑧) in ∗)

The two branches have the following type derivations:

· · ·
𝑦 : 𝐴 ⊢ (let𝑥 = inr(𝑦) in ∗) : 𝐼 ⊣ 𝑥 : 𝐵 ⊕ 𝐴

· · ·
𝑧 : 𝐴 ⊢ (let𝑥 = inl(𝑧) in ∗) : 𝐼 ⊣ 𝑥 : 𝐵 ⊕ 𝐴

Similarly, both branches have the same type and output context, so 𝑒′ is type-correct.

· · ·
𝑥 : 𝐴 ⊕ 𝐵 ⊢ 𝑒′ : 𝐼 ⊣ 𝑥 : 𝐵 ⊕ 𝐴

⋄

The full listing of rules, including the extra linear logic connectives, can be found in fig. 2. In the

remainder of this section, we will establish some basic, metatheoretic results about our current

flow typing system, showing how our language is related to the linear lambda calculus. Afterwards,

in section 4, we will extend our language to add references.

Remark. We allow ourselves to use the structural rule of exchange to permute both input and

output contexts. It is possible to bypass this extra rule by regarding contexts as multisets rather than

lists; however, as this complicates some of the proofs later on, we will not do so in this article. ⋄
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Γ, 𝑥 : 𝐴 ⊢ 𝑥 : 𝐴 ⊣ Γ
Var

Γ1 ⊢ 𝑒1 : 𝐴 ⊣ Γ2 Γ2, 𝑥 : 𝐴 ⊢ 𝑒2 : 𝐵 ⊣ Γ3

Γ1 ⊢ (let𝑥 = 𝑒1 in 𝑒2) : 𝐵 ⊣ Γ3
Let

Γ1 ⊢ 𝑒 : 𝐴 ⊣ Γ2

Γ1 ⊢ true(𝑒) : t ⊣ Γ2
t-I

Γ1 ⊢ 𝑒 : f ⊣ Γ2

Γ1 ⊢ false𝐵 (𝑒) : 𝐵 ⊣ Γ2
f-E

Γ2, 𝑥 : 𝐴 ⊢ 𝑒 : 𝐵 ⊣
Γ1, Γ2 ⊢ (𝜆𝑥 :𝐴. 𝑒) : 𝐴 ⊸ 𝐵 ⊣ Γ1

⊸-I

Γ1 ⊢ 𝑒1 : 𝐴 ⊸ 𝐵 ⊣ Γ2 Γ2 ⊢ 𝑒2 : 𝐴 ⊣ Γ3

Γ1 ⊢ 𝑒1 𝑒2 : 𝐵 ⊣ Γ3
⊸-E

Γ ⊢ ∗ : 𝐼 ⊣ Γ
𝐼 -I

Γ1 ⊢ 𝑒1 : 𝐼 ⊣ Γ2 Γ2 ⊢ 𝑒2 : 𝐴 ⊣ Γ3

Γ1 ⊢ (let ∗ = 𝑒1 in 𝑒2) : 𝐴 ⊣ Γ3
𝐼 -E

Γ1 ⊢ 𝑒1 : 𝐴 ⊣ Γ2 Γ2 ⊢ 𝑒2 : 𝐵 ⊣ Γ3

Γ1 ⊢ (𝑒1, 𝑒2) : 𝐴 ⊗ 𝐵 ⊣ Γ3
⊗-I

Γ1 ⊢ 𝑒1 : 𝐴 ⊗ 𝐵 ⊣ Γ2 Γ2, 𝑥 : 𝐴,𝑦 : 𝐵 ⊢ 𝑒2 : 𝐶 ⊣ Γ3

Γ1 ⊢ (let (𝑥,𝑦) = 𝑒1 in 𝑒2) : 𝐶 ⊣ Γ3
⊗-E

Γ2 ⊢ 𝑒1 : 𝐴 ⊣ Γ2 ⊢ 𝑒2 : 𝐵 ⊣
Γ1, Γ2 ⊢ ⟨𝑒1, 𝑒2⟩ : 𝐴 & 𝐵 ⊣ Γ1

&-I

Γ1 ⊢ 𝑒 : 𝐴 & 𝐵 ⊣ Γ2

Γ1 ⊢ fst(𝑒) : 𝐴 ⊣ Γ2
&-EL

Γ1 ⊢ 𝑒 : 𝐴 & 𝐵 ⊣ Γ2

Γ1 ⊢ snd(𝑒) : 𝐵 ⊣ Γ2
&-ER

Γ1 ⊢ 𝑒 : 𝐴 ⊣ Γ2

Γ1 ⊢ inl𝐴⊕𝐵 (𝑒) : 𝐴 ⊕ 𝐵 ⊣ Γ2
⊕-IL

Γ1 ⊢ 𝑒 : 𝐵 ⊣ Γ2

Γ1 ⊢ inr𝐴⊕𝐵 (𝑒) : 𝐴 ⊕ 𝐵 ⊣ Γ2
⊕-IR

Γ1 ⊢ 𝑒1 : 𝐴 ⊕ 𝐵 ⊣ Γ2 Γ2, 𝑥 : 𝐴 ⊢ 𝑒2 : 𝐶 ⊣ Γ3 Γ2, 𝑦 : 𝐵 ⊢ 𝑒3 : 𝐶 ⊣ Γ3

Γ1 ⊢ (case 𝑒1 of inl(𝑥) → 𝑒2 | inr(𝑦) → 𝑒3) : 𝐶 ⊣ Γ3
⊕-E

Γ1 ⊢ 𝑒1 : !𝐴1 ⊣ Γ2 · · · Γ𝑛 ⊢ 𝑒𝑛 : !𝐴𝑛 ⊣ Γ𝑛+1 𝑥1 : !𝐴1, . . . , 𝑥𝑛 : !𝐴𝑛 ⊢ 𝑒 : 𝐵 ⊣
Γ1 ⊢ promote 𝑒1, . . . , 𝑒𝑛 for𝑥1, . . . , 𝑥𝑛 in 𝑒 : !𝐵 ⊣ Γ𝑛+1

Prom

Γ1 ⊢ 𝑒1 : !𝐴 ⊣ Γ2 Γ2 ⊢ 𝑒2 : 𝐵 ⊣ Γ3

Γ1 ⊢ discard 𝑒1 in 𝑒2 : 𝐵 ⊣ Γ3
Disc

Γ1 ⊢ 𝑒1 : !𝐴 ⊣ Γ2 Γ2, 𝑥 : !𝐴,𝑦 : !𝐴 ⊢ 𝑒2 : 𝐵 ⊣ Γ3

Γ1 ⊢ copy 𝑒1 as𝑥,𝑦 in 𝑒2 : 𝐵 ⊣ Γ3
Copy

Γ1 ⊢ 𝑒 : !𝐴 ⊣ Γ2

Γ1 ⊢ derelict 𝑒 : 𝐴 ⊣ Γ2
Der

Fig. 2. Flow typing rules for linear lambda calculus

Remark. Unlike in the presentation of linear logic in fig. 1, flow typing requires a context split

in only two places, namely, the introduction rules for implication ⊸ and additive product &. The

computational meaning of these splits is that these connectives are interpreted as closures, and
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so they represent places where computation ‘forks’: some calculation happens now and some is

suspended for later. The other connectives that are interpreted as closures, namely t and !𝐴, are

given rules that avoid context splits by construction. Concretely, the introduction rule for t is
explicitly given the data it captures as its argument; this is required in order to have uniqueness of

derivations. Similarly, the introduction (‘promotion’) rule for !𝐴 has an explicit list of the variables

that the closure can use; this decision calls back to Benton et al. [4, 5] who chose this to ensure

that the derivations in their linear lambda calculus were closed under substitution. ⋄

3.6 Linear Terms are Flow Typed Terms
It is straightforward to show that the current flow typing rules are a slight generalisation of the

usual linear rules. Formally, we have the following theorem:

Theorem 3.1. If Γ ⊢ 𝑒 : 𝐴, then Γ ⊢ 𝑒 : 𝐴 ⊣ (with empty output context).

Remark. The reverse direction does not hold, because let-bound variables can escape their scope

of definition in flow typing, but cannot in the linear lambda calculus. ⋄

The proof makes use of a simple lemma:

Lemma 3.2 (Frame rule). We can temporarily remove variables from the context while performing
a derivation. That is, the following rule is admissible (can be proven valid using our current rules):

Γ1 ⊢ 𝑒 : 𝐴 ⊣ Γ2 𝑥 does not appear in Γ1, Γ2, 𝑒

Γ1, 𝑥 : 𝐵 ⊢ 𝑒 : 𝐴 ⊣ Γ2, 𝑥 : 𝐵
Frame

Remark. The name of this lemma echoes the frame rule from separation logic [24, 26]. The frame

rule is normally presented in terms of Hoare triples, assertions of the form {𝑃} 𝑆 {𝑄}, where 𝑃 is a

precondition that we assume holds before execution, 𝑆 is a statement to be executed, and 𝑄 is the

postcondition that holds after execution. The usual statement is that a suitably ‘separate’ assumption

𝑅 can always be added to both 𝑃 and 𝑄 while preserving validity of the assertion. The similarity

of this rule to our flow typing frame rule indicates that we can think of flow typing judgements

themselves as Hoare triples: the input context Γ1 is the precondition required for the derivation, an

expression 𝑒 is a statement producing a value, and Γ2 is the postcondition. ⋄

3.7 Uniqueness of Derivations
We can also prove that typing derivations are essentially unique if they exist.

Theorem 3.3. An expression 𝑒 has at most one type and output context (up to permutation), given
a fixed input context Γ1.

(Γ1 ⊢ 𝑒 : 𝐴 ⊣ Γ2) ∧ (Γ1 ⊢ 𝑒 : 𝐴′ ⊣ Γ′
2
) =⇒ 𝐴 = 𝐴′ ∧ Γ2 is a permutation of Γ′

2

Proof. By structural induction on expressions, generalising over types and contexts (which are

understood to be identified up to permutation throughout this proof). Using the fact that typing is

syntax-directed, most cases are trivial. The only nontrivial cases are when the context splits, which

occurs only in ⊸-I and &-I. Suppose that we are comparing the following two occurrences of ⊸-I:

Γ2, 𝑥 : 𝐴 ⊢ 𝑒 : 𝐵 ⊣
Γ1, Γ2 ⊢ (𝜆𝑥 :𝐴. 𝑒) : 𝐴 ⊸ 𝐵 ⊣ Γ1

Γ′
2
, 𝑥 : 𝐴 ⊢ 𝑒 : 𝐵′ ⊣

Γ′
1
, Γ′

2
⊢ (𝜆𝑥 :𝐴. 𝑒) : 𝐴 ⊸ 𝐵′ ⊣ Γ′

1

We apply the frame rule (lemma 3.2) to the two assumptions to obtain:

Γ1, Γ2, 𝑥 : 𝐴 ⊢ 𝑒 : 𝐵 ⊣ Γ1 Γ′
1
, Γ′

2
, 𝑥 : 𝐴 ⊢ 𝑒 : 𝐵′ ⊣ Γ′

1
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But Γ1, Γ2 and Γ′
1
, Γ′

2
are equal up to permutation, so the inductive hypothesis now applies, giving

𝐵 = 𝐵′
and Γ1 = Γ′

1
up to permutation. We can thus conclude also that Γ2 = Γ′

2
up to permutation.

The same trick can be used to prove the inductive step for &-I, thus giving the result. □

This result also provides an easy proof of the following:

Corollary 3.4. A linear lambda calculus expression 𝑒 has at most one type in any context Γ.

(Γ ⊢ 𝑒 : 𝐴) ∧ (Γ ⊢ 𝑒 : 𝐴′) =⇒ 𝐴 = 𝐴′

Proof. Both assumptions can be translated by theorem 3.1 to flow typing derivations, for which

theorem 3.3 provides a proof that 𝐴 = 𝐴′
. □

We consider it interesting that this diversion through flow typing allows us to avoid reasoning

about the ubiquitous context splits in the linear lambda calculus, and instead reduces our focus to

the two context splits in the flow typing rules.

Remark. Benton et al. [4, 5, theorem 1] claim that if the expression 𝑒 and type 𝐴 are fixed, then

the context Γ is uniquely determined. Unfortunately, due to presence of weakening (the Disc rule),

that result holds neither in their system nor in ours. As a minimal example, in the expression

(discard𝑥 in𝑦) : 𝐵, the context Γ can be set to 𝑥 : !𝐴,𝑦 : 𝐵 for any choice of 𝐴. ⋄

4 References
In this section, we add a form of references to our flow typing language. Recall that manipulating

a variable ‘by reference’ in flow typing means to temporarily take the variable out of the typing

context and put it back later; in particular, there is no type of references. The two basic ingredients

we need to add are pattern-matching by reference and calling by reference. We crucially rely on

flow typing judgements to describe the semantics of these constructs.

4.1 Pattern-Matching by Reference
To begin, consider the flow typing rule for pattern-matching on a pair:

Γ1 ⊢ 𝑒1 : 𝐴 ⊗ 𝐵 ⊣ Γ2 Γ2, 𝑥 : 𝐴,𝑦 : 𝐵 ⊢ 𝑒2 : 𝐶 ⊣ Γ3

Γ1 ⊢ (let (𝑥,𝑦) = 𝑒1 in 𝑒2) : 𝐶 ⊣ Γ3
Flow-⊗-E

Here, the expression 𝑒1 is evaluated and then split apart into 𝑥 : 𝐴 and 𝑦 : 𝐵. We would like a similar

expression for pattern-matching on a pair by reference, leaving the pair in the context after the

body of the let-binding has finished. To do this, we first need to restrict this rule to act only on

variables, so that we have a name to use to put the pair back in the context at the end:

Γ1, 𝑥 : 𝐴,𝑦 : 𝐵 ⊢ 𝑒 : 𝐶 ⊣ Γ2

Γ1, 𝑧 : 𝐴 ⊗ 𝐵 ⊢ (let (𝑥,𝑦) = 𝑧 in 𝑒) : 𝐶 ⊣ Γ2

To make this rule into a pattern-match by reference, we need a way to reconstruct the value of

the pair after the body has been executed. The simplest way to do this is just to assume that the

variables 𝑥 and 𝑦 are still in the context, as follows:

Γ1, 𝑥 : 𝐴,𝑦 : 𝐵 ⊢ 𝑒 : 𝐶 ⊣ Γ2, 𝑥 : 𝐴,𝑦 : 𝐵

Γ1, 𝑧 : 𝐴 ⊗ 𝐵 ⊢ (let &(𝑥,𝑦) = &𝑧 in 𝑒) : 𝐶 ⊣ Γ2, 𝑧 : 𝐴 ⊗ 𝐵
&⊗-E

The new value of 𝑧 in the output context will be precisely (𝑥,𝑦).
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Example 4. Consider the following expression that uses pattern-matching by reference to incre-

ment the first element of a pair 𝑧 : Int ⊗ Int ‘in place’ (leaving its result in the context):

𝑒 ≔ let &(𝑥,𝑦) = &𝑧 in (let𝑥 = 𝑥 + 1 in ∗)
The inner let-expression has the following typing derivation in the context 𝑥 : Int, 𝑦 : Int:

· · ·
𝑥 : Int, 𝑦 : Int ⊢ 𝑥 + 1 : Int ⊣ 𝑦 : Int 𝑦 : Int, 𝑥 : Int ⊢ ∗ : 𝐼 ⊣ 𝑦 : Int, 𝑥 : Int

𝑥 : Int, 𝑦 : Int ⊢ (let𝑥 = 𝑥 + 1 in ∗) ⊣ 𝑦 : Int, 𝑥 : Int

Since the output context contains the integers 𝑥 and 𝑦, the overall expression 𝑒 is well-typed, and

its output context is 𝑧 : Int ⊗ Int. ⋄

We can make a similar ‘by reference’ form of the flow typing rule for the case expression. Recall

that the ‘by value’ flow typing rule for the case expression is as follows:

Γ1 ⊢ 𝑒1 : 𝐴 ⊕ 𝐵 ⊣ Γ2 Γ2, 𝑥 : 𝐴 ⊢ 𝑒2 : 𝐶 ⊣ Γ3 Γ2, 𝑦 : 𝐵 ⊢ 𝑒3 : 𝐶 ⊣ Γ3

Γ1 ⊢ (case 𝑒1 of inl(𝑥) → 𝑒2 | inr(𝑦) → 𝑒3) : 𝐶 ⊣ Γ3
Flow-⊕-E

Restricting to variables, we get:

Γ1, 𝑥 : 𝐴 ⊢ 𝑒1 : 𝐶 ⊣ Γ2 Γ1, 𝑦 : 𝐵 ⊢ 𝑒2 : 𝐶 ⊣ Γ2

Γ1, 𝑧 : 𝐴 ⊕ 𝐵 ⊢ (case 𝑧 of inl(𝑥) → 𝑒1 | inr(𝑦) → 𝑒2) : 𝐶 ⊣ Γ2

We need to reconstruct the sum type after each branch has finished. In the first branch, we need to

assume that 𝑥 is still in the context, allowing us to reconstruct 𝑧 as inl(𝑥). Similarly, in the right

branch we assume that 𝑦 is still in the context. The rule thus has the following form:

Γ1, 𝑥 : 𝐴 ⊢ 𝑒1 : 𝐶 ⊣ Γ2, 𝑥 : 𝐴 Γ1, 𝑦 : 𝐵 ⊢ 𝑒2 : 𝐶 ⊣ Γ2, 𝑦 : 𝐵

Γ1, 𝑧 : 𝐴 ⊕ 𝐵 ⊢ (case&𝑧 of &inl(𝑥) → 𝑒1 | &inr(𝑦) → 𝑒2) : 𝐶 ⊣ Γ2, 𝑧 : 𝐴 ⊕ 𝐵
&⊕-E

Note that the remainders of the two output contexts, written here as Γ2, must still match.

Example 5. We can rewrite example 3 in a more concise way using references. Consider the

following expression, which returns 1 if the value 𝑥 is of the form inr(−):
𝑒 ≔ case&𝑥 of &inl(𝑦) → 0

|&inr(𝑧) → 1

It is easy to see that this is well-typed:

𝑦 : 𝐴 ⊢ 0 : Int ⊣ 𝑦 : 𝐴 𝑧 : 𝐵 ⊢ 1 : Int ⊣ 𝑧 : 𝐵

𝑥 : 𝐴 ⊕ 𝐵 ⊢ 𝑒 : Int ⊣ 𝑥 : 𝐴 ⊕ 𝐵

The output context contains 𝑥 , indicating it was not used up and can hence be used again later. ⋄

Our language has four data type constructors: ⊗ and ⊕, which we have already seen, as well as

the empty type f and the unit type 𝐼 . The flow typing elimination rule for f is:

Γ1 ⊢ 𝑒 : f ⊣ Γ2

Γ1 ⊢ false𝐵 (𝑒) : 𝐵 ⊣ Γ2
Flow-f-E

Following the pattern, this rule has the following reference form:

Γ1, 𝑥 : f ⊢ false𝐵 (&𝑥) : 𝐵 ⊣ Γ1, 𝑥 : f
&f-E
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This rule allows us to use a variable 𝑥 : f to produce new data of an arbitrary type without destroying

this capability in the process. In section 5, we will implement this rule using false(𝐵⊗f ) (𝑥), which
returns the desired value of type 𝐵 as well as a new value for 𝑥 : f . In comparison, the reference

rule for the unit type has no practical use, because its only behaviour is to temporarily remove a

variable 𝑥 : 𝐼 from the context, a feature already covered by the frame rule (lemma 3.2):

Γ1 ⊢ 𝑒 : 𝐴 ⊣ Γ2

Γ1, 𝑥 : 𝐼 ⊢ (let &∗ = &𝑥 in 𝑒) : 𝐴 ⊣ Γ2, 𝑥 : 𝐼
&𝐼 -E

Remark. These examples can be composed to give a pattern-match by reference rule for all

algebraic data types. Our compiler implements this strategy in order to allow pattern-matching by

reference on recursively defined data types such as lists and trees. ⋄

4.2 Calling by Reference
The final ingredient that we need to add to flow typing is a notion of function that takes its argument

by reference. Recall that the lambda abstraction typing rule is as follows:

Γ2, 𝑥 : 𝐴 ⊢ 𝑒 : 𝐵 ⊣
Γ1, Γ2 ⊢ (𝜆𝑥 :𝐴. 𝑒) : 𝐴 ⊸ 𝐵 ⊣ Γ1

Flow-⊸-I

The machinery for ref-functions will be implemented in a similar way to the pattern-matching by

reference constructions we have made so far. We design the rules for our new ‘
&⊸’ connective in

such a way that 𝐴 &⊸ 𝐵 means essentially the same thing as 𝐴 ⊸ 𝐵 ⊗ 𝐴. Concretely, a lambda-ref
abstraction puts its parameter in the context at the start, and once the body of the function is over,

it expects that its parameter is still in the context. Its typing rule is as follows:

Γ2, 𝑥 : 𝐴 ⊢ 𝑒 : 𝐵 ⊣ 𝑥 : 𝐴

Γ1, Γ2 ⊢ (𝜆&𝑥 :𝐴. 𝑒) : 𝐴 &⊸ 𝐵 ⊣ Γ1

&⊸-I

Example 6. The identity-by-reference function is written:

(𝜆&𝑥 :𝐴. ∗) : 𝐴 &⊸ 𝐼

This expression takes 𝑥 by reference, does nothing to it, and returns the unit ∗. Even though the

variable 𝑥 was never used, it is picked up by the ref-function machinery and returned implicitly,

thereby ensuring that linearity is preserved. ⋄

We also need an eliminator for such function types. It has the following form:

Γ1 ⊢ 𝑒 : 𝐴 &⊸ 𝐵 ⊣ Γ2, 𝑥 : 𝐴

Γ1 ⊢ 𝑒 &𝑥 : 𝐵 ⊣ Γ2, 𝑥 : 𝐴

&⊸-E

This modified function application syntax takes a variable out of the context, evaluates the function,

then returns the variable back to the context.

Example 7. We can apply a function 𝑓 : 𝐴 &⊸ 𝐼 to the first element of a pair 𝑧 : 𝐴 ⊗ 𝐵 in place,

using the following expression:

𝑒 ≔ let &(𝑥,𝑦) = &𝑧 in 𝑓 &𝑥

This pattern-matches on the pair by reference to put the variable 𝑥 in the context, then applies 𝑓 to

it, and puts the new value of 𝑥 back in the context. At the end of the pattern-match, the variables 𝑥

and 𝑦 are taken out of the context and used to reconstruct 𝑧 = (𝑥,𝑦). ⋄
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Example 8. Functions 𝐴 ⊸ 𝐴 correspond precisely to functions 𝐴 &⊸ 𝐼 . Concretely, we have the

following maps to convert between the two representations:

𝑃 ≔ 𝜆𝑓 : (𝐴 ⊸ 𝐴). 𝜆&𝑥 :𝐴. (let𝑥 = 𝑓 𝑥 in ∗) : (𝐴 ⊸ 𝐴) ⊸ (𝐴 &⊸ 𝐼 )
𝑄 ≔ 𝜆𝑓 : (𝐴 &⊸ 𝐼 ). 𝜆𝑥 :𝐴. (let ∗ = 𝑓 &𝑥 in𝑥) : (𝐴 &⊸ 𝐼 ) ⊸ (𝐴 ⊸ 𝐴)

More generally, there is an isomorphism between 𝐴 &⊸ 𝐵 and 𝐴 ⊸ 𝐵 ⊗ 𝐴. In practice, the two

forms have their own advantages and disadvantages, so it is useful to have these combinators to

convert between the two styles of function definition. Interestingly, this shows a way in which our

notion of references is more powerful than Rust’s mutable references, because the Rust language

has no safe way to define the 𝑃 combinator. However, there is an unsafe (not borrow-checked)
implementation of this function in the popular replace_with crate [22]. ⋄

Example 9. Ref-functions cannot be ‘curried’. More precisely, we do not have the bijection:

((𝐴 ⊗ 𝐵) &⊸ 𝐶) � (𝐴 &⊸ (𝐵 &⊸ 𝐶))

One reason for the lack of such a bijection is that a function 𝑓 : 𝐴 &⊸ (𝐴 &⊸ 𝐵) can be called

with the same argument twice, as in 𝑓 &𝑥 &𝑥 . This is because the first invocation returns 𝑥 to the

context before the second invocation occurs. However, a function 𝑔 : (𝐴 ⊗𝐴) &⊸ 𝐵 requires both of

its arguments at the same time, so cannot be evaluated with two instances of the same argument.

Therefore, the lack of currying is a fundamental restriction imposed by linearity, rather than a

limitation of flow typing. Despite this, we can always ‘uncurry’ nested ref-functions, as follows:

𝑅 ≔ 𝜆𝑓 : (𝐴 &⊸ (𝐵 &⊸ 𝐶)). 𝜆&𝑥 : (𝐴 ⊗ 𝐵). let &(𝑎, 𝑏) = &𝑥 in 𝑓 &𝑎 &𝑏

The absence of currying might seem like a limitation, but we will see how to work around this in

section 7 when we discuss our compiler for a more general flow typing language. ⋄

5 Translation to Linear Lambda Calculus
In this section, we prove that there is a translation from flow typed terms to linear lambda calculus

terms. We achieve this by encoding manipulations of the context using explicit state passing. This

will establish one of our main goals, which is that flow typing does not rely on any complicated

language features to implement. More precisely, we define the translation:

(Γ1 ⊢ 𝑒 : 𝐴 ⊣ Γ2) → (Γ1 ⊢ 𝑒 : 𝐴 ⊗ Γ◦
2
)

Here, Γ◦
2
is a type corresponding to a ‘packed’ version of the output context Γ2, defined recursively

as follows (where ⋄ denotes the empty context):

(⋄)◦ = 𝐼 ; (𝑥 : 𝐴, Γ)◦ = 𝐴 ⊗ Γ◦

Writing ‘𝑒 ’ here is a slight abuse of notation, since the translation is actually defined by recursion

on typing judgements, but it should be clear at all points which typing judgement for 𝑒 is meant

when this syntax is used. The full list of translation rules is given in a supplementary appendix, but

we describe the general technique here with specific examples.

To do this, we first introduce some packing and unpacking expressions that allow us to convert a

context Γ to and from its packed form Γ◦. Let ‘pack Γ’ be the expression given recursively by:

pack (⋄) = ∗; pack (𝑥 : 𝐴, Γ) = (𝑥, pack Γ)
Thus we have the linear lambda calculus judgement:

Γ ⊢ pack Γ : Γ◦
Pack
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Example 10. The flow typing variable rule is translated as follows:

Γ, 𝑥 : 𝐴 ⊢ 𝑥 : 𝐴 ⊣ Γ
Var ↦→ (𝑥, pack Γ)

That is, the translation of the variable 𝑥 in the context Γ, 𝑥 : 𝐴 is given by a pair that stores both

the result of the expression 𝑥 and the packed output context Γ. This translation has the following

linear lambda calculus typing judgement:

Γ, 𝑥 : 𝐴 ⊢ (𝑥, pack Γ) : 𝐴 ⊗ Γ◦ ⋄

To compose these translations, we also need a way to unpack contexts. Concretely, we recursively

define an unpacking operation as follows:

unpack
′ 𝛾 as⋄ in 𝑒 ≔ let ∗ = 𝛾 in 𝑒

unpack
′ 𝛾 as (𝑥 : 𝐴, Γ) in 𝑒 ≔ let (𝑥, 𝛿) = 𝛾 in (unpack′ 𝛿 as Γ in 𝑒)

We then obtain the following rule, which gives us a simple way to use a packed context:

Γ1 ⊢ 𝛾 : Γ◦ Γ, Γ2 ⊢ 𝑒 : 𝐴
Γ1, Γ2 ⊢ unpack′ 𝛾 as Γ in 𝑒 : 𝐴

Unpack
′

Because we are generally working with pairs of a value and a packed context, we also define a

version of ‘unpack’ that is more convenient for our use case:

unpack 𝑒1 as𝑥, Γ in 𝑒2 ≔ let (𝑥,𝛾) = 𝑒1 in (unpack′ 𝛾 as Γ in 𝑒2)

This has the following rule:

Γ1 ⊢ 𝑒1 : 𝐴 ⊗ Γ◦ 𝑥 : 𝐴, Γ, Γ2 ⊢ 𝑒2 : 𝐵
Γ1, Γ2 ⊢ unpack 𝑒1 as𝑥, Γ in 𝑒2 : 𝐵

Unpack

Example 11. Consider the flow typing rule for let expressions:

Γ1 ⊢ 𝑒1 : 𝐴 ⊣ Γ2 Γ2, 𝑥 : 𝐴 ⊢ 𝑒2 : 𝐵 ⊣ Γ3

Γ1 ⊢ (let𝑥 = 𝑒1 in 𝑒2) : 𝐵 ⊣ Γ3
Flow-Let

By recursion on judgements, we may assume that we already have translations:

Γ1 ⊢ 𝑒1 : 𝐴 ⊗ Γ◦
2

Γ2, 𝑥 : 𝐴 ⊢ 𝑒2 : 𝐵 ⊗ Γ◦
3

This allows us to write the following translation of the entire let expression:

Γ1 ⊢ (unpack 𝑒1 as𝑥, Γ2 in 𝑒2) : 𝐵 ⊗ Γ◦
3

This translation explains why let-bound variables are allowed to escape their scope in flow typing:

such a variable would be stored in Γ◦
3
, which the translated expression returns. Later, an expression

will unpack Γ◦
3
back into its context form Γ3, at which point this variable can be used. ⋄

Example 12. Many of the translation rules follow a straightforward pattern: unpack each argu-

ment in turn, apply the relevant linear lambda calculus operation, then pack up the rest of the
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context. For instance, the rules for application and pairing are translated as follows:

Γ1 ⊢ 𝑒1 : 𝐴 ⊸ 𝐵 ⊣ Γ2 Γ2 ⊢ 𝑒2 : 𝐴 ⊣ Γ3

Γ1 ⊢ 𝑒1 𝑒2 : 𝐵 ⊣ Γ3
Flow-⊸-E

↦→ unpack 𝑒1 as𝑥, Γ2 in unpack 𝑒2 as𝑦, Γ3 in (𝑥 𝑦, pack Γ3)
Γ1 ⊢ 𝑒1 : 𝐴 ⊣ Γ2 Γ2 ⊢ 𝑒2 : 𝐵 ⊣ Γ3

Γ1 ⊢ (𝑒1, 𝑒2) : 𝐴 ⊗ 𝐵 ⊣ Γ3
Flow-⊗-I

↦→ unpack 𝑒1 as𝑥, Γ2 in unpack 𝑒2 as𝑦, Γ3 in ((𝑥,𝑦), pack Γ3) ⋄

Example 13. Recall that we allow both the input and output contexts to be freely permuted, by

means of a structural rule called the exchange rule. Hence, we need to provide a way to interpret the
exchange rule under this translation. Concretely, if Γ′

1
is a permutation of Γ1 and Γ

′
2
is a permutation

of Γ2, we need to define a mapping of derivations:

(Γ1 ⊢ 𝑒 : 𝐴 ⊗ Γ2) → (Γ′
1
⊢ 𝑒 : 𝐴 ⊗ Γ′

2
)

Because the linear lambda calculus has the exchange rule for its (input) contexts, the permutation of

Γ1 presents no issues, and we do not need to change the form of 𝑒 . For the output context, however,

we need to perform the exchange manually using a pack-unpack pair:

𝑒 ≔ unpack 𝑒 as𝑥, Γ2 in (𝑥, pack Γ′
2
)

Here, the exchange happens implicitly in the Pack rule:

Γ2 ⊢ pack Γ′2 : (Γ′
2
)◦

This is a valid derivation because we can exchange the Γ2 (which now takes the position of an input

context in the linear lambda calculus) into Γ′
2
. ⋄

The rest of the expressions that came from the linear lambda calculus can be translated in a similar

manner. The full list of translation rules can be found in the appendix. We conclude this section by

discussing the rules for the parts of the language defined in section 4 relating to references.

Example 14. Consider the rule for pattern-matching by reference on a pair:

Γ1, 𝑥 : 𝐴,𝑦 : 𝐵 ⊢ 𝑒 : 𝐶 ⊣ Γ2, 𝑥 : 𝐴,𝑦 : 𝐵

Γ1, 𝑧 : 𝐴 ⊗ 𝐵 ⊢ (let &(𝑥,𝑦) = &𝑧 in 𝑒) : 𝐶 ⊣ Γ2, 𝑧 : 𝐴 ⊗ 𝐵
&⊗-E

We encode the behaviour of this rule by first using a normal pattern match, then reconstructing

the value of 𝑧 at the end. The expression translates as follows:

let (𝑥,𝑦) = 𝑧

in unpack 𝑒 as 𝑡, (Γ2, 𝑥 : 𝐴,𝑦 : 𝐵)
in let 𝑧 = (𝑥,𝑦)
in (𝑡, pack (Γ2, 𝑧 : 𝐴 ⊗ 𝐵))

This is a type-correct linear lambda calculus term. We define the translation of the rule for pattern-

matching by reference on a sum type in a similar way. Recall that the rule is as follows:

Γ1, 𝑥 : 𝐴 ⊢ 𝑒1 : 𝐶 ⊣ Γ2, 𝑥 : 𝐴 Γ1, 𝑦 : 𝐵 ⊢ 𝑒2 : 𝐶 ⊣ Γ2, 𝑦 : 𝐵

Γ1, 𝑧 : 𝐴 ⊕ 𝐵 ⊢ (case&𝑧 of &inl(𝑥) → 𝑒1 | &inr(𝑦) → 𝑒2) : 𝐶 ⊣ Γ2, 𝑧 : 𝐴 ⊕ 𝐵
&⊕-E
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It is translated to:

case 𝑧 of inl(𝑥) → unpack 𝑒1 as 𝑡, (Γ2, 𝑥 : 𝐴) in let 𝑧 = inl(𝑥) in (𝑡, pack (Γ2, 𝑧 : 𝐴 ⊕ 𝐵))
| inr(𝑦) → unpack 𝑒2 as 𝑡, (Γ2, 𝑦 : 𝐵) in let 𝑧 = inr(𝑦) in (𝑡, pack (Γ2, 𝑧 : 𝐴 ⊕ 𝐵))

The remaining pattern-matching by reference rules are translated as follows:

Γ1, 𝑥 : f ⊢ false𝐵 (&𝑥) : 𝐵 ⊣ Γ1, 𝑥 : f
&f-E

↦→ let (𝑡, 𝑥) = false(𝐵⊗f ) (𝑥) in (𝑡, pack (Γ1, 𝑥 : f))
Γ1 ⊢ 𝑒 : 𝐴 ⊣ Γ2

Γ1, 𝑥 : 𝐼 ⊢ (let &∗ = &𝑥 in 𝑒) : 𝐴 ⊣ Γ2, 𝑥 : 𝐼
&𝐼 -E

↦→ unpack 𝑒 as 𝑡, Γ2 in (𝑡, pack (Γ2, 𝑥 : 𝐼 )) ⋄

To translate the ref-functions defined in section 4.2, we need to define what happens to the type

𝐴 &⊸ 𝐵. As alluded to above, we translate this to the linear lambda calculus type 𝐴 ⊸ 𝐵 ⊗ 𝐴.

Example 15. We can now define the following translations for ref-functions:

Γ2, 𝑥 : 𝐴 ⊢ 𝑒 : 𝐵 ⊣ 𝑥 : 𝐴

Γ1, Γ2 ⊢ (𝜆&𝑥 :𝐴. 𝑒) : 𝐴 &⊸ 𝐵 ⊣ Γ1

&⊸-I

↦→ ((𝜆𝑥 :𝐴. (unpack 𝑒 as𝑦, (𝑥 : 𝐴) in (𝑦, 𝑥))), pack Γ1)
Γ1 ⊢ 𝑒 : 𝐴 &⊸ 𝐵 ⊣ Γ2, 𝑥 : 𝐴

Γ1 ⊢ 𝑒 &𝑥 : 𝐵 ⊣ Γ2, 𝑥 : 𝐴

&⊸-E

↦→ unpack 𝑒 as𝑦, (Γ2, 𝑥 : 𝐴) in let (𝑧, 𝑥) = 𝑦 𝑥 in (𝑧, pack (Γ2, 𝑥 : 𝐴))

These translations encode how the value of 𝑥 is retrieved from the context at the end of the function,

and how the argument passed to the function is returned to the context. ⋄

Therefore, we have established:

Theorem 5.1. If Γ1 ⊢ 𝑒 : 𝐴 ⊣ Γ2, then Γ1 ⊢ 𝑒 : 𝐴 ⊗ Γ◦
2
.

We have implemented this translation in our compiler, which we discuss in section 7.

6 Semantics
Once we have defined a semantics for the linear lambda calculus, we get a semantics for flow typing

for free via theorem 5.1: the semantics of a flow typing term 𝑒 can be defined as the semantics of 𝑒 .

In particular, we have a simple semantics for our notion of references.

However, there is a key unanswered question: if 𝑒 is already a term in the linear lambda calculus,

we can regard it as a flow typed term by theorem 3.1, and then convert to a new linear expression 𝑒 .

Do 𝑒 and 𝑒 have the same semantics? This is not just a theoretical question, it has practical

significance; if this is true, it shows that an optimising compiler can compile reference-free flow

typing programs as efficiently as linear programs. Fortunately, this is true: more precisely, we will

show in this section that 𝑒 is semantically equivalent to (𝑒, ∗).
To get this result, we define a semantics in terms of string diagrams [13], which we will give

an informal introduction to in this section. This is for two reasons: first, string diagrams provide

a convenient graphical notation to describe our technique. Secondly, and more importantly, this

semantics has a richer set of equalities than a simple 𝛽-reduction relation would have. These extra

equalities, called commuting conversions, are required for some of the inductive steps in our proofs.



18 Sky Wilshaw and Graham Hutton

A flow typing compiler can implement some of these equalities as rewrite rules, allowing it to

simplify away some of the explicit state passing involved in the translation in theorem 5.1. We will

describe the rewrite rules carried out by our compiler in section 7.

Example 16. A simple 𝛽-reduction relation is not sufficient to get the desired conclusion above.

As an example, consider the expression:

𝑒 ≔ (case𝑥 of inl(𝑦) → 1 | inr(𝑧) → 2)

Regarding this as a flow typing term and applying the translation from section 5, we obtain:

𝑒
𝛽
−→ (case𝑥 of inl(𝑦) → (1, ∗) | inr(𝑧) → (2, ∗)) ̸

𝛽
−→ ((case𝑥 of inl(𝑦) → 1 | inr(𝑧) → 2), ∗)

This cannot be 𝛽-reduced any further since 𝑥 is a variable. Despite this, the string diagram semantic

interpretations of 𝑒 and (𝑒, ∗) agree. ⋄

Remark. The string diagrams and associated proofs that we describe below can all be formalised

in terms of a categorical semantics; see [12, 35] for examples on how this is achieved. However, in

this article, we will work only with an informal understanding of string diagrams, and defer our

technical comments to a remark at the end of this section. ⋄

6.1 Informal Introduction to String Diagrams
String diagrams are a convenient tool to write down expressions in linear type theories. Expressions

are written as boxes, with their inputs on the left and and their output on the right. For instance:

𝑥 : 𝐴,𝑦 : 𝐵 ⊢ 𝑒 : 𝐶 is written as

Each ‘string’ has a fixed type, and should be thought of as a wire carrying information from the

left of the diagram to the right. In general, an expression might have many input wires, one for

each variable in the context. We draw these lists of wires bundled together, as follows:

Γ ⊢ 𝑒 : 𝐴 is written as

Note that the way that diagrams are structured enforces linearity: the fact that a wire must go from

its origin to exactly one endpoint ensures that values cannot be duplicated or deleted.

Diagrams can be composed by joining up wires of matching types. For instance, we can write

the linear rule for let expressions as follows:

Γ1 ⊢ 𝑒1 : 𝐴 Γ2, 𝑥 : 𝐴 ⊢ 𝑒2 : 𝐵
Γ1, Γ2 ⊢ (let𝑥 = 𝑒1 in 𝑒2) : 𝐵

Let ↦→ (let𝑥 = 𝑒1 in 𝑒2) =

Here, the context is comprised of two bundles. The first bundle is provided to the expression 𝑒1,

and its result is passed alongside the other bundle to 𝑒2 to compute the result.

String diagrams are not only useful for drawing linear lambda calculus terms, but also for flow

typing terms. To do this, we write an expression 𝑒 as a box, where the input context is on the left,

the output context is on the right, and the result of the expression points below the box.

Γ1 ⊢ 𝑒 : 𝐴 ⊣ Γ2 ↦→
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This choice of graphical notation emphasises the fact that the context flows through expressions.

Here, the rule for let expressions is depicted as follows:

Γ1 ⊢ 𝑒1 : 𝐴 ⊣ Γ2 Γ2, 𝑥 : 𝐴 ⊢ 𝑒2 : 𝐵 ⊣ Γ3

Γ1 ⊢ (let𝑥 = 𝑒1 in 𝑒2) : 𝐵 ⊣ Γ3
Let ↦→ (let𝑥 = 𝑒1 in 𝑒2) =

The diagram for this rule clearly shows the sequential nature of computation in flow typing: the

context indeed flows directly through each expression to be evaluated in turn.

6.2 Diagrams for Connectives
To write the rules for the other connectives, we need operations to construct and deconstruct pairs,

the unit type, sum types, and so on. For instance, we define operators for ⊗ and 𝐼 as follows:

The connectors for 𝐼 , for example, allow us to freely create and delete objects of type 𝐼 . We can

now write the rules for pairing as follows:

linear flow

⊗-I

⊗-E

We also overload this notation for packing and unpacking contexts:

The full list of rules for both the linear lambda calculus and the flow typing calculus can be found

in our technical appendix, attached as supplementary material to this article.

6.3 Equivalence
Our equivalence results, which we will now state, concern equalities of string diagrams. We regard

two string diagrams as equal if they have the same categorical interpretation. In practice, this

means that we can slide wires and boxes around in the diagrams, including crossing wires over,

without changing the meaning of the diagram. We can also perform some simplifications, such as

cancelling adjacent packing and unpacking operations.
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Theorem 6.1 (translation to flow typing). Let Γ ⊢ 𝑒 : 𝐴, and write 𝑒 for the judgement
Γ ⊢ 𝑒 : 𝐴 ⊣ as defined in theorem 3.1. Then,

=

Theorem 6.2 (translation to linear lambda calculus). Let Γ1 ⊢ 𝑒 : 𝐴 ⊣ Γ2, and write 𝑒 for
the judgement Γ1 ⊢ 𝑒 : 𝐴 ⊗ Γ◦

2
as defined in theorem 5.1. Then,

=

Corollary 6.3. Let 𝑒 be a linear lambda calculus term. Regarding it as a flow typing term and
translating it back into a linear lambda calculus term, we obtain:

=

That is, 𝑒 is semantically equivalent to (𝑒, ∗).
Proof of both theorems. By induction on typing derivations, making use of some simple

lemmas that establish the semantics of the frame rule and the packing operations. □

Remark. To complete this proof, we made the following assumptions on the category C that our

string diagrams are constructed in:

• for tensor ⊗, we assume C is a symmetric monoidal category;

• for linear implication⊸, we assume each of the functors𝐴⊗(−) has a right adjoint𝐴 ⊸ (−),
making C a monoidal closed category;

• for additive disjunction ⊕ and unit f , we assume C has finite coproducts;

• for additive conjunction & and unit t, we assume C has finite products;

• for the exponential !(−), we assume that C is equipped with a comonad G, together with
designated morphisms of the following types:

wkg : 𝐺𝐴 → 𝐼 ; ctr : 𝐺𝐴 → 𝐺𝐴 ⊗ 𝐺𝐴; join
0
: 𝐼 → 𝐺𝐼 ; join

2
: 𝐺𝐴 ⊗ 𝐺𝐵 → 𝐺 (𝐴 ⊗ 𝐵)

These assumptions are a weakening of the definition of a linear category from [7]. We note that for

the additives & and ⊕, we really need products and coproducts; the weak products and coproducts

used by Benton et al. [4] do not suffice for our purposes. This assumption is needed in order to

appeal to extensionality when proving the inductive steps for these connectives. However, it turns

out that the proofs require no laws on the morphisms associated with the comonad G. ⋄

7 The Compiler
We have implemented the translation of section 5 in a compiler, which is available as supplementary

material for the article. This compiler translates our Haskell-like flow typing language into Linear

Haskell, which can then be run using any modern version of GHC. Crucially, because the compiler

uses the process described in section 5 to generate its output, Haskell can verify that the generated

code is linear, and so we do not need to use unsafe features to bypass the linearity checker.

The compiler itself is written in approximately 2500 lines of Haskell, including a custom parser

and error reporting system. The type checker consists of 600 lines of code, and the translation to a

linear language is implemented in 500 lines.
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We have tested our compiler on 6 kB of examples which are available as supplementary material.

These examples translate to 43 kB of Linear Haskell code, after formatting using Ormolu [19]. After

running a simple optimiser which we discuss below, the output is reduced to 13 kB.

7.1 Generalising to Irrefutable Patterns
Our compiler supports a slightly more general language than the one discussed so far, and in this

section we will discuss this generalisation. As noted in example 9, ref-functions cannot be curried,

as there is not a bijection of the form:

((𝐴 ⊗ 𝐵) &⊸ 𝐶) � (𝐴 &⊸ (𝐵 &⊸ 𝐶))

As discussed in that example, the inability to curry ref-functions is a fundamental restriction

imposed by linearity, not a limitation of flow typing.

This fact means that if a function needs to take multiple arguments by reference, these arguments

must be packaged into a tuple. However, the rules defined in section 4.2 stipulate that the argument

to such a function must be a single variable; in particular, the syntax 𝑓 &(𝑥,𝑦) is invalid. To address
this, our compiler allows an arbitrary irrefutable pattern to follow the & symbol in a pattern-match

by reference or call-by-reference expression. This makes the above syntax valid, as well as the

corresponding syntax for nested tuples and the unit type. This generalisation is simply syntax

sugar, as we can make transformations such as the following:

𝑓 &(𝑥,𝑦) ↦→ let 𝑧 = (𝑥,𝑦)
in let 𝑡 = 𝑓 &𝑧

in let (𝑥,𝑦) = 𝑧 in 𝑡

Any irrefutable pattern can be used in place of the pair (𝑥,𝑦), and the compiler will emit corre-

sponding code. In fact, we additionally permit integer and boolean literals, which are translated in

the following way, using the integer literal 2 as an example:

𝑓 &2 ↦→ let 𝑧 = 2

in let 𝑡 = 𝑓 &𝑧

in let _ = 𝑧 in 𝑡

This makes use of the fact that we are free to discard integers, as they contain no resources.

7.2 Optimisation
The translation from section 5 emits far from optimal code, because it systematically inserts ‘pack’

and ‘unpack’ operations, many of which are redundant and can be eliminated. Therefore, we apply

a small set of optimisations to the emitted Linear Haskell code, which also makes the output more

readable. The three optimisations are case-of-case, case-of-known constructor, and let-inlining, all

of which are local rewrite rules [25]. Because our type system is linear, let-inlining will never cause

work duplication as noted in [25], so we apply this transformation unconditionally.

In practice, these three simple transformations are enough to greatly simplify the output code.

When applied to our examples, the size of the output is reduced from 43 kB of Linear Haskell code

down to 13 kB. The reason for this is that the proofs in section 6 only rarely appeal to universal

properties. Instead, most of the work in the proofs came from cancelling ‘unpack’ and ‘pack’ pairs,

which case-of-known constructor achieves, as well as moving blocks around a string diagram,

which is achieved by case-of-case and let-inlining.
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8 Extended Example
In this section, we compare flow typing to the approach to linearity that is adopted in two other

languages, namely Linear Haskell [6] and Rust [21]. In particular, we present an implementation of

a binary search algorithm in each of the three languages. The input data is a (sorted) binary tree,

the structure of which is given by the following Haskell datatype:

data Tree a = Leaf | Node a (Tree a) (Tree a)

8.1 Flow Typing
One implementation of binary search using flow typing is as follows:

search :: Int -> Tree Int &> Bool
search x &Leaf = dsc x; False
search x &(Node y lhs rhs) =
if cpy &x < cpy &y then search x &lhs
else if cpy &x > cpy &y then search x &rhs
else dsc x; True

Here, cpy :: Int &> Int and dsc :: Int -> () are built-in functions which copy and discard

an integer respectively. The notation a; b abbreviates let () = a in b, which allows the

expression a to be executed purely for its effect on the context.

In the above implementation, the input tree is passed in by reference (section 4), and we use

pattern-match by reference to determine whether it is a leaf or a node. Crucially, we do not need to

rebuild the entire tree after traversing it, because this is handled automatically by pattern-matching

by reference. In particular, the branch that recursively searches the left-hand side of the tree does

not need to mention the right-hand side at all, and vice versa. This also helps to reduce the likelihood

of programming errors by confusing the two sides of the tree.

Remark. We are going to compare flow typing with Linear Haskell and with Rust, both of which

have a mechanism to use certain ‘unrestricted’ variables from the context more than once. In Linear

Haskell, individual variables in the context can be marked as unrestricted, and in Rust, some data

types are marked as Copy, which essentially makes all variables of those types unrestricted. Such a

generalisation of flow typing is beyond the scope of this article, but would let us omit the usages of

the cpy and dsc functions in this example, further simplifying the code. ⋄

8.2 Linear Haskell
We now compare this code to the equivalent Linear Haskell, using the new linear let bindings

introduced in GHC 9.10.1:

search :: Int -> Tree (Ur Int) %1 -> (Bool, Tree (Ur Int))
search x Leaf = (False, Leaf)
search x (Node (Ur y) lhs rhs) =
if x < y then
let !(r, t) = search x lhs in (r, Node (Ur y) t rhs)

else if x > y then
let !(r, t) = search x rhs in (r, Node (Ur y) lhs t)

else (True, Node (Ur y) lhs rhs)

In this code, the syntax ‘a %1 -> b’ denotes the type of arrows from a to b that use their argument

exactly once, whereas ‘a -> b’ denotes the type of functions from a to b that have unrestricted use

of their argument (that is, these are usual nonlinear Haskell functions). Additionally, note that the

strict pattern !(r, t) was used instead of the lazy pattern (r, t); this is because lazy patterns
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are not allowed in Haskell’s linear let-bindings. Finally, the type constructor Ur defines a type

of unrestricted values: a linear value of type Ur a is the same as an unrestricted value of type a.
Formally, it is given as the following GADT:

data Ur a where
Ur :: a -> Ur a -- unrestricted function type

Some of the bureaucracy of Ur can be alleviated using a library such as linear-base [28], which
in particular defines an isomorphism between Int and Ur Int.

In the Linear Haskell code, the search function outputs both the boolean result and a reconstructed

copy of the input tree, as required to preserve linearity. This makes the code more difficult to read

and write. Importantly, the above code could not have been significantly simplified by putting it

inside a monad.We could not use a state monad, for example, as the argument for the recursive call is

not the same as the input parameter. This example reflects a practicality issue with linear languages

without the ability to locally escape linearity (such as with references): functional programs often

look up information from recursive data structures, but linearity often requires that the structures

be destroyed and rebuilt in order to do so.

8.3 Rust
Finally, we compare our flow typing code with the equivalent Rust code. Rust has a type &T of safe,

borrow-checked references, which we will use in our implementation.

fn search(x: i32, t: &Tree<i32>) -> bool {
match t {

Tree::Leaf => false,
Tree::Node(y, lhs, rhs) => {

if x < *y { search(x, &lhs) }
else if x > *y { search(x, &rhs) }
else { true }

}
}

}

This code is much cleaner, and more closely resembles the flow typing version. The code works

because integers and borrows have unrestricted usage, and so can be used as many times as desired.

However, the underlying mechanics used to make these references work are more complicated

than the surface-level code makes them appear. In reality, the function signature is elaborated as

follows, where 'a is a lifetime variable, a tag used by the borrow checker:

fn search<'a>(x: i32, t: &'a Tree<i32>) -> bool { ... }

In particular, this function is polymorphic over the lifetime of the borrow of t. The extensive use
of lifetime polymorphism in Rust can make it harder to use, especially in higher-order cases.

Rust also has a notion of pattern-matching by reference (an inspiration for our approach in

section 4), which is used above to pattern match on t. Here, y has the type &'a i32, the type of refer-
ences with lifetime 'a to a 32-bit integer. Similarly, lhs and rhs are given the type &'a Tree<i32>.
The borrow checker uses these tags to ensure none of these borrows are retained past the end of

the lifetime 'a. Since lifetimes passed to Rust functions must always outlive the function scope, the

borrow checker decides that the rules of borrowing are satisfied, and accepts the program.

This reliance on a borrow checker is a disadvantage of the Rust-style approach. First, it presents

a significant implementation challenge to any designer wishing to add this notion of borrowing

to a new language, and it increases the surface area of a compiler that must be trusted by its



24 Sky Wilshaw and Graham Hutton

users. Additionally, the rules for what a borrow checker should allow are complex and are still not

completely determined; see [16, 32] for recent attempts to finalise them.

8.4 Conclusion
This example shows how flow typing can be used as a simple yet practical syntax for programming

with recursive data structures in a linear type theory. In comparison with Linear Haskell and Rust,

we believe that our system sits in a new part of the design space, and has the potential to improve

the readability and understanding of linear code.

9 Related Work
In this section, we survey related work and position the notion of flow typing within the literature.

There are three main areas that we will discuss: functional presentations of imperative phenomena

such as references, the interplay between references and linear types, and ways in which linearity

has been made more practical and production-ready.

9.1 Functional Presentations of References
Perhaps the most well-known example of modelling imperative phenomena in a functional setting is

by Swierstra and Altenkirch [31], who demonstrate how the ‘awkward squad’ of I/O, mutable state,

and concurrency can be modelled using free monads. More specifically for references, the most

widely-known functional presentation is the study of lenses, sometimes simply called ‘functional

references’, which were first introduced in [11]. A lens provides a way to view and update a

component part of a larger object. Historically, lenses were primarily used in nonlinear languages,

but recent work has shown how to extend these ideas to a linear setting [27]. The central connection

to our work is that a variable in a context can be seen as a lens, where the act of using a variable by

reference updates its value in the context. In this way, part of our work can be seen as a simple

syntax for constructing and using certain forms of lenses.

Lenses are not the only functional approach to references. For example, Kagawa [18] introduced

compositional references, language-level constructs that allow the state monad ST to work not

only on entire values, but also on component parts of values. Our references can be described in a

similar way, allowing us to statefully manipulate component parts of the context.

As another example, the Aeneas project of Ho and Protzenko [14] describes a functional semantics

for Rust, making use of a translation to a functional language. In the same way as our translation

in section 5, in this project mutability is encoded using as state-passing, making use of the fact

that mutable references cannot be duplicated. However, our goals are quite different: their result

was a tool that enables formal theorem proving about Rust programs, whereas our goal is to make

programming with linearity more lightweight and practical.

9.2 References with Linear Types
The interactions between references and linear types have been studied in various contexts. The

most well-known example (albeit with a form of affine types, not true linear types) is Rust-style

borrowing [21]. In this system, values can be temporarily ‘borrowed’, allowing them to be used by

reference. Through the use of lifetimes annotated by the programmer, a borrow checker is able to

determine a class of programs for which all references are guaranteed to point to living objects,

among other guarantees. Formal developments of the Rust language include [2, 14, 17, 34], and the

borrow checker itself has been developed in [16, 32].

An early example of Rust-style borrowing can be found in Wadler’s original article on linear

types [33]. In particular, Wadler’s let! construct allows temporary nonlinear access to linear values,

using a strict type-based analysis to ensure that references to the linear value cannot be held
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once the argument of the let! has been fully evaluated. This idea was refined by Odersky [23] to

introduce ‘observer’ variables, which behave more similarly to Rust’s immutable borrows. Similarly,

Fahndrich and DeLine [9] use guarded types and capabilities in a similar way to Rust-style lifetimes,

ensuring that references are discarded by the time that the referent is used again.

Another approach to combining references with linear types is to separate permissions from

data. This is the strategy used in the 𝐿3 language of Ahmed et al. [1], in which the (linear) capability

to access or mutate a pointer is separated from the (nonlinear) pointer itself. This allows for shared

mutable references and cyclic data structures, but without giving up semantic properties such as

termination. Notably, Ahmed et al. describe the explicit threading of capabilities through a program

as “too painful to contemplate”; a flow typing version of 𝐿3 might alleviate this problem as it would

allow capabilities to be passed by reference rather than being explicitly threaded.

9.3 Practical Linearity
This article is one of many attempts tomake linear types practical for use in real-world programming.

Onewell-known practical implementation of linear types is in Linear Haskell [6], which is a compiler

extension distributed with GHC, and is therefore easily available to all Haskell programmers. One

benefit of Linear Haskell is its implementation of multiplicity polymorphism, allowing programs to

be written polymorphically over linear and unrestricted arguments.

However, Linear Haskell provides no safe mechanism to temporarily escape linearity, such as with

references or flow typing, which means that objects often need to be threaded explicitly through safe

Linear Haskell code. To alleviate this, a significant amount of such code, such as in linear-base [28]
(a standard library for Linear Haskell), makes use of the ‘Unsafe.toLinear’ combinator, marking

a function as linear without compile-time checks. More recently, linear constraints have been

introduced by Spiwack et al. [29]. Linear constraints can be filled in automatically using a typeclass

solver, and can therefore reduce the syntactic overhead of explicit threading.

Another approach to practical linearity is the use of quantitative type theory [3], in which

variables in the context are annotated with a multiplicity, typically one of 0 (erased at runtime),

1 (linear), or 𝜔 (unrestricted). Simple algebraic rules describe how multiplicities of variables are

altered as contexts pass through expression constructors. This has been implemented in Idris 2 [8],

a dependently-typed functional programming language.

The Cyclone language, a type-safe dialect of C, uses a similar technique to the 𝐿3 language dis-

cussed above, making use of linear capabilities to encode dynamic regions and unique pointers [10].

To manage the bureaucracy of threading capabilities through a program, they provide a mechanism

to temporarily ‘open’ a capability, allowing it to be used easily.

10 Conclusions and Future Work
In this article, we introduced a new type theoretic tool called flow typing, based on the idea of

treating the typing context as a state parameter. We demonstrated that flow typing supports a simple

notion of references that avoids the use of a borrow checker or complicated type theory. Flow typing

provides a language that is easier to use than a linear lambda calculus, and we have demonstrated

how it can be used to simplify various linear programs. However, since all of its machinery can

be compiled away using explicit state passing, we retain the same powerful reasoning principles

that conventional linear programming languages enjoy. We have implemented this theory in a

programming language with a compiler that outputs Linear Haskell.

There are a number of possible directions for further work. First of all, it would be useful to

develop a GHC plugin for flow typing, allowing our techniques to be used directly in Linear Haskell

code. This would enable Linear Haskell programmers to write programs in a more natural style.

Secondly, we note that our ‘by reference’ rules currently only operate on values. We saw in section 7
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that these rules can be extended to work on irrefutable patterns, but it is possible to go further. One

possible generalisation is to treat a reference as a lens (e.g. [27]) over part of the context. From this

perspective, flow typing can be seen as a way to implement a language suitable for bidirectional

programming. Additionally, the current translation of flow typing into Linear Haskell compiles

references away into explicit value manipulation, so in particular, they do not have the runtime

efficiency usually associated with references. It would be an interesting future direction of research

to implement our references as real pointers in hardware.

And finally, while this article has focused on the use of flow typing to describe types of expressions,

it may also be more generally applicable, such as with permissions or capabilities. It would be

interesting to explore generalisations such as these in more detail, and see if our results about

‘compiling away’ references can be applied to these settings.
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