Flow Typing for Lightweight Linearity (Appendix)

SKY WILSHAW, University of Nottingham, United Kingdom
GRAHAM HUTTON, University of Nottingham, United Kingdom

A Translation Rules

In this section, we enumerate the translation rules from the flow typing system to the linear lambda
calculus.

Var — (x,packT
FxiArxiAaT r > (epackD)

I,x:Ay:BL+re:CHI;
I,y:Bx:AL+re:CHI;

ExcH-L — é

re: A4, x:By:CI;
re:A4Lh,y:Cx:BT;
— unpack éasz, (I, x : B,y : C,T3) in (z, pack (I, y : C,x : B, T3))

ExcH-R

e :AAT, I,x:Are:BA4I;
I+ (letx =ejiney) : B4 T3

LET

— unpack é; asx, I in é,

INre: A4,
t
I F true(e) : t4 1,

— unpack é as x, I in (true(x), pack I3)

Tite:f4T
I + falseg(e) : B4 I}

— unpack é as x, I in (falseg(x), pack I;)

In,x:Are:B4o
rl,rz F (Ax:A.e) A —o B4F1
— ((Ax:A.unpack éasy, oiny), packI})

-1

INFeg:A—o B4 e :AAT;

INrFeey:BAI3

—-E

> unpack é; as x, I; in unpack é; as y, I3 in (x y, pack I3)

——— I ¥ (%,packT
T'r*x:14T (p)

Authors’ Contact Information: Sky Wilshaw, School of Computer Science, University of Nottingham, United Kingdom,
sky.wilshaw@nottingham.ac.uk; Graham Hutton, School of Computer Science, University of Nottingham, United Kingdom,
graham.hutton@nottingham.ac.uk.

https://orcid.org/0009-0004-2439-3459
https://orcid.org/0000-0001-9584-5150
https://orcid.org/0009-0004-2439-3459
https://orcid.org/0000-0001-9584-5150

Sky Wilshaw and Graham Hutton

INNre : 141 e :AAT;
Fll—(let*zelinez):A—in

— unpack é; asx, [inlet* = x in é;

INre A4, l"zl—ez:B—|I“3
Fll—(el,ez):A®B4T3

— unpack é; as x, I; in unpack é; as y, I3 in ((x, y), pack I's)

®-1

INre:A®BAHI, I“z,x:A,y:BFeZ:C4F3
I+ (let(x,y) =ejiney) : CHI;

®-E
— unpack é; asz, [y inlet (x,y) = zin é;
e :A4d0 Ibrey;:BH4o

I, |-<81,62> cA&BATI

— (((unpack é; as x, ¢ in x), (unpack é, as y, ¢ in y)), pack I'})

&-1

lre:A&BADL
I Ffst(e) : AT,

— unpack é as x, I3 in (fst(x), pack I3)

&-EL

ITre:A&BA41}
I +snd(e) : B4,

— unpack é as x, I3 in (snd(x), pack I;)

&-ER

Ire:A4T,
I I—inlA@B(e) tA®BAHT,

— unpack é as x, I in (inlygp(x), pack I;)

©-IL

INre:B4ALL
@-IR
Il Finragp(e) :A®BAD

> unpack é as x, I in (inragp(x), pack I3)

INre:A@BAHI, l"z,x:Al—eZ:C—|F3 rz,yIBF€3IC-|F3

I + (casee; of inl(x) — ey | inr(y) — e3) : CH I}

®-E

— unpack é; as I, zin case z of inl(x) — é; | inr(y) — é3

e 1A 4T ILrke,: A, 4T x1: 1AL, xp Ay re:BH4o
Prom

Il + promoteey, ..., e, forxy, ..., x,ine : !B 4 T}y
— unpack é; asy;, [, in .. . unpack é, as y,, [j;+1 in

((promoteyy, ..., y, forxy, ..., x, in (unpack é as z, ¢ in z)), pack I};+1)

Flow Typing for Lightweight Linearity (Appendix)

e A4 Ihkrey,: B4I5

T} + discarde;ine, : B4 T3

Disc

— unpack é; as x, I; in discard x in é,

I’ll—elz!A—|I“2 Fz,x:!A,y:!Al—ezzB4T3

Ii Fcopyejasx,yine, : B4 I3

Cory

— unpack é; asz, I in copy zas x, y in é;

F1 Fe:!AH Fz
I} + derelicte : A4 Ty

DEr

> unpack é as x, I; in (derelict x, pack I;)

I,x:Ay:Bre:CHIp,x:Ay:B
&
I,z: A®BF (let&(x,y) = &zine) : C4I,,z: A®B
— let (x,y) = zinunpack éast, (I, x : A,y : B)inletz = (x,y) in (¢, pack (I}, z : A ® B))

®-E

IL,x:Are :CHIL,x: A I,y:Bre;:CHIhy: B
&
I,z: A® B+ (case &z of &inl(x) — e; | &inr(y) > e2) :CH4,z: A®B
> case z of

| inl(x) — unpacké; ast, (Iz,x : A) inletz = inl(x) in (¢, pack (I3, z : A @ B))

®-E

| inr(y) — unpack é; ast, (I, y : B) inletz = inr(y) in (¢, pack (I, z : A & B))

f-E

&
I',x:f+falseg(&x) : B4T,x: f
> let (¢, x) = false(ger) (x) in (¢, pack (I3, x : f))

Ire:AA4L
&
I,x: I+ (let&*=&xine): A4, x: 1
— unpack é ast, I, in (¢, pack (I, x : I))

I-E

IL,x:Are:B4x: A
I, F (A&x:A.e): A% BTy
— ((Ax:A. (unpack éasy, (x : A)in (y,x))), packI})

&1

~0-

Tite: A% BATpx:A
INNre&x:B4Ih),x: A
— unpack éasy, (I, x : A) inlet (z,x) = y x in (2, pack (I, x : A))

4 Sky Wilshaw and Graham Hutton

B String Diagram Semantics

In this section, we describe the semantics of all of the linear lambda calculus rules and the flow
typing rules in terms of string diagrams. A comprehensive introduction to string diagrams can be
found in [2], and an introduction to their use specifically for functional computation can be found
in [1]. The latter article, as well as [4], has inspired much of our notation.

Let (¥, ®, 1, —) be a symmetric monoidal closed category (e.g. [3]). We assume without loss of
generality that ¢ is strict monoidal so that we can avoid explicit use of associators and unitors.
One way to do this is described in [4]. We also assume any number of the following:

e binary coproducts A + B with coprojections 11, t5;

e an initial object 0 with morphisms ?4 : 0 — A;

e binary products A X B with projections s, 73;

e aterminal object T with morphisms !4 : A — T;

e acomonad G = (G, ¢, §) where € : G — 1 is the counit and 6 : G — G? is the comultipli-
cation, together with the following designated morphisms (subject to no laws):

wkg:GA — I, ctr:GA— GA®GA; join,:I — GI; join,: GA® GB — G(A® B)

For abstraction and application we introduce the following additional string diagram notation:

— r
. e:I' > (A — B) B
T = e
abstraction wheree : T ® A — B — Q_Df_A_o B
lication ¢:(A~B)®A— B, — A_OB:D_B
apphicatio the counitof (-) @ A4 A — (-) A

For the comonad G, we extend join, and join, to arbitrary n by iteration, assuming that (for
concreteness) the applications of join are associated to the left:

join, : GA1® - ®GA, - G(A1® - ®A,)

We additionally use boxes to signify application of functors. If e : A — B, we write Ge : GA — GB
using the following notation:

A— B
GA— I ——1—GB

[G]

We translate types into the string diagram semantics as follows:

pairs A ® B are translated using the tensor product A ® B;

the unit type I is translated as the monoidal unit I;

sum types A @ B are translated as the coproduct A + B;

the empty type f is translated as the initial object 0;

additive product types A & B are translated as the product A X B;
the additive product unit t is translated as the terminal object T;
the exponential type !A is translated as GA.

identity/variable

Flow Typing for Lightweight Linearity (Appendix)

x:Arx:A

I'x:Arx:AA4T

>
_/
2

exchange

I,x:Ay:BIhire:C
I,y:Bx:AL+re:C

>
o
|
O

—
[sS}

-7

I,x:Ay:Bhhre:CHI} B><e
— T,

Tl,y:B,x:A,nge:C4T3
Te

b

FZ

Iire:AATyx:By:CT; C
= e [>

ire:AATy,y:Cx:BT; B

I3

let

Iire A In,x:Arey:B
I, + (letx =ejiney) : B

IHre A4 Ih,x:Are:B4TI3

I+ (letx =ejiney) : B41I3

true

I're: A

I+ true(e) : t FT

Sky Wilshaw and Graham Hutton

INre: A4
I; - true(e) : t4 13

false

F'te:f
I+ falseyq(e) : A

Fl Fe:fH Fz
I, + falses(e) : A4 DL

implication

I''x:Are:B T

r — B
I'r(Ax:A.e):A—o B _?E';—A—OB

I, x:Are:BH+
I“I,le—(/lx:A.e):A—OB4F1

Ii're:A—oB ke :A
Fl,rgkel ele

INre:A—o B4, e :AA4T;
INteey:BAI3

unit

Flow Typing for Lightweight Linearity (Appendix)

I'k=*:14T

Fll—elzl ngezzA
I, F (letx =ejiney) : A

INre: 141 r2|-€22A-|r3
I I—(let*:elineg):A—|F3

pair

Iire A Ibke,: B
I, (61,62) :A®B

IHre A4 Ibkey:BAI3
l"li—(el,ez):A®B—|l"3

INre:A®B Lox:Ay:Bre:C
I,0 F (let(x,y) = e;iney) : C

INre:A®BAHI,
rz,XZA,yZBF62:C-|T3

I F (let(x,y) =eriney) : CH I3

additive pair

T're A IT're:B
Tt (e,e): A&B

e such that

€ A and

o~

€2

Sky Wilshaw and Graham Hutton

e :AA Ibre:BHA
rl,I‘gF<€1,€2>ZA&B4F1

L= e T,

[———T1, AxB . and

T A
2 such that
AXB I n L,
B

AXB IT
5
I're:A&B

T i) A Ny ECLLE oy N

T ke:A&BAT, —el"0
I““—fst(e):A—|I“2 AXB M
KW
Tre:A&B B
_— X
T+ snd(e) : B r—-el——=}-5
Tire:A&BAT, i—{e—T
I +snd(e) : B4 T, AXB Ty
2
sum
T're:A A
T rinlygp(e) : A® B r—el—{ul-a+s
Tike:AAT, —ep—="0
I+ il’llAQ;B(e) cA®BAT, A I
A+B
I'e:B B
T+ inrags(e) : A® B rel—ul-a+s
Tike:BAD ={e=T
I,k inrags(e) : A® B AL B

A+B

Flow Typing for Lightweight Linearity (Appendix)

INrte:ADB I,x:Arey:C I,y:Bres:C

I,T; + (case ey of inl(x) — e, | inr(y) — e3) : C

sl - e
_ €2
rl A+B C A = A and
‘H where
-
b

F1|—61:A69B4I‘2 Fz,XIAF82:C—|r3 rz,yZBF€31C—|F3

I

eIy

EX
O

I + (casee; of inl(x) — e; | inr(y) — e3) : CH I}

FZ . e — r3 FZ =e_2= r3
A 151 = A 1 and
c Tc
L L, —
2 e r3 2 es — 1"3
B - B
c Tc

These definitions by universal property make use of the fact that I ® (A + B) is the coproduct of
I, ® A and I, ® B. This is true because ® is a left adjoint and therefore commutes with coproducts.

where

exponential types

FlkelslAl Fnl—en:!An X11!A1,,xn2!An|—eiB

I,...,I, + promoteey,...,e, forxy,...,x,ine : !B

Q(GAl ®---®GA,)

GA1|—|G2A1
T e o)
r={a—s] <| | [cae eG4,
: : g B
F1F81:!A141"2 l"nl—en:!An—ll"nH X12!A1,...,XnZ!An|—€IB—|

I + promotees, ..., e, forxy,...,xpine : !B 4 T4

10 Sky Wilshaw and Graham Hutton
I T, T L
I,) B e n n+1
(:}(GAl ® - GA,)
S :
GA, L= . |GA ®---®GA,
EW GB
Iire 1A Ibke: B
I, I, + discard e; in ey
Tire :1A4T F2|-€22B4r3
I} + discarde; ine; : B4 I3
Tire 1A FQ,XZ!A,yZ!AFEZZB
I, I F copyejasx,yine;
Iy
r, Ty
I ke :!A4T L,x:!Ay:!'Are :BAT L
1Fé 2 2: X Y €2 3 t GA |e,
I Fcopyejasx,yiney : B4 I3 GA ctr
GA
B

F'te:'A
T + derelicte : A

INNre:!1AA4T,
I} + derelicte : A4 T

References

[1] Dan Ghica and Fabio Zanasi. 2024. String Diagrams for A-calculi and Functional Computation. arXiv:2305.18945 [cs.LO]

https://arxiv.org/abs/2305.18945

[2] Ralf Hinze and Dan Marsden. 2023. Introducing String Diagrams. Cambridge University Press, Cambridge, England.

[3] Saunders Mac Lane. 1978. Categories for the Working Mathematician. Graduate Texts in Mathematics, Vol. 5. Springer
New York, New York, NY. https://doi.org/10.1007/978-1-4757-4721-8

[4] Paul Wilson, Dan Ghica, and Fabio Zanasi. 2024. String Diagrams for Strictification and Coherence. Logical Methods in
Computer Science Volume 20, Issue 4 (Oct. 2024), 13982. https://doi.org/10.46298/Imcs-20(4:8)2024

https://arxiv.org/abs/2305.18945
https://arxiv.org/abs/2305.18945
https://doi.org/10.1007/978-1-4757-4721-8
https://doi.org/10.46298/lmcs-20(4:8)2024

	A Translation Rules
	B String Diagram Semantics
	References

