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A Translation Rules
In this section, we enumerate the translation rules from the flow typing system to the linear lambda

calculus.

Γ, 𝑥 : 𝐴 ⊢ 𝑥 : 𝐴 ⊣ Γ
Var ↦→ (𝑥, pack Γ)

Γ1, 𝑥 : 𝐴,𝑦 : 𝐵, Γ2 ⊢ 𝑒 : 𝐶 ⊣ Γ3

Γ1, 𝑦 : 𝐵, 𝑥 : 𝐴, Γ2 ⊢ 𝑒 : 𝐶 ⊣ Γ3
Exch-L ↦→ 𝑒

Γ1 ⊢ 𝑒 : 𝐴 ⊣ Γ2, 𝑥 : 𝐵,𝑦 : 𝐶, Γ3

Γ1 ⊢ 𝑒 : 𝐴 ⊣ Γ2, 𝑦 : 𝐶, 𝑥 : 𝐵, Γ3
Exch-R

↦→ unpack 𝑒 as 𝑧, (Γ2, 𝑥 : 𝐵,𝑦 : 𝐶, Γ3) in (𝑧, pack (Γ2, 𝑦 : 𝐶, 𝑥 : 𝐵, Γ3))

Γ1 ⊢ 𝑒1 : 𝐴 ⊣ Γ2 Γ2, 𝑥 : 𝐴 ⊢ 𝑒2 : 𝐵 ⊣ Γ3

Γ1 ⊢ (let𝑥 = 𝑒1 in 𝑒2) : 𝐵 ⊣ Γ3
Let

↦→ unpack 𝑒1 as𝑥, Γ2 in 𝑒2

Γ1 ⊢ 𝑒 : 𝐴 ⊣ Γ2

Γ1 ⊢ true(𝑒) : t ⊣ Γ2
t-I

↦→ unpack 𝑒 as𝑥, Γ2 in (true(𝑥), pack Γ2)

Γ1 ⊢ 𝑒 : f ⊣ Γ2

Γ1 ⊢ false𝐵 (𝑒) : 𝐵 ⊣ Γ2
f-E

↦→ unpack 𝑒 as𝑥, Γ2 in (false𝐵 (𝑥), pack Γ2)

Γ2, 𝑥 : 𝐴 ⊢ 𝑒 : 𝐵 ⊣ ⋄
Γ1, Γ2 ⊢ (𝜆𝑥 :𝐴. 𝑒) : 𝐴 ⊸ 𝐵 ⊣ Γ1

⊸-I

↦→ ((𝜆𝑥 :𝐴. unpack 𝑒 as𝑦,⋄ in𝑦), pack Γ1)

Γ1 ⊢ 𝑒1 : 𝐴 ⊸ 𝐵 ⊣ Γ2 Γ2 ⊢ 𝑒2 : 𝐴 ⊣ Γ3

Γ1 ⊢ 𝑒1 𝑒2 : 𝐵 ⊣ Γ3
⊸-E

↦→ unpack 𝑒1 as𝑥, Γ2 in unpack 𝑒2 as𝑦, Γ3 in (𝑥 𝑦, pack Γ3)

Γ ⊢ ∗ : 𝐼 ⊣ Γ
𝐼 -I ↦→ (∗, pack Γ)
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Γ1 ⊢ 𝑒1 : 𝐼 ⊣ Γ2 Γ2 ⊢ 𝑒2 : 𝐴 ⊣ Γ3

Γ1 ⊢ (let ∗ = 𝑒1 in 𝑒2) : 𝐴 ⊣ Γ3
𝐼 -E

↦→ unpack 𝑒1 as𝑥, Γ2 in let ∗ = 𝑥 in 𝑒2

Γ1 ⊢ 𝑒1 : 𝐴 ⊣ Γ2 Γ2 ⊢ 𝑒2 : 𝐵 ⊣ Γ3

Γ1 ⊢ (𝑒1, 𝑒2) : 𝐴 ⊗ 𝐵 ⊣ Γ3
⊗-I

↦→ unpack 𝑒1 as𝑥, Γ2 in unpack 𝑒2 as𝑦, Γ3 in ((𝑥,𝑦), pack Γ3)

Γ1 ⊢ 𝑒1 : 𝐴 ⊗ 𝐵 ⊣ Γ2 Γ2, 𝑥 : 𝐴,𝑦 : 𝐵 ⊢ 𝑒2 : 𝐶 ⊣ Γ3

Γ1 ⊢ (let (𝑥,𝑦) = 𝑒1 in 𝑒2) : 𝐶 ⊣ Γ3
⊗-E

↦→ unpack 𝑒1 as 𝑧, Γ2 in let (𝑥,𝑦) = 𝑧 in 𝑒2

Γ2 ⊢ 𝑒1 : 𝐴 ⊣ ⋄ Γ2 ⊢ 𝑒2 : 𝐵 ⊣ ⋄
Γ1, Γ2 ⊢ ⟨𝑒1, 𝑒2⟩ : 𝐴 & 𝐵 ⊣ Γ1

&-I

↦→ (⟨(unpack 𝑒1 as𝑥,⋄ in𝑥), (unpack 𝑒2 as𝑦,⋄ in𝑦)⟩, pack Γ1)

Γ1 ⊢ 𝑒 : 𝐴 & 𝐵 ⊣ Γ2

Γ1 ⊢ fst(𝑒) : 𝐴 ⊣ Γ2
&-EL

↦→ unpack 𝑒 as𝑥, Γ2 in (fst(𝑥), pack Γ2)

Γ1 ⊢ 𝑒 : 𝐴 & 𝐵 ⊣ Γ2

Γ1 ⊢ snd(𝑒) : 𝐵 ⊣ Γ2
&-ER

↦→ unpack 𝑒 as𝑥, Γ2 in (snd(𝑥), pack Γ2)

Γ1 ⊢ 𝑒 : 𝐴 ⊣ Γ2

Γ1 ⊢ inl𝐴⊕𝐵 (𝑒) : 𝐴 ⊕ 𝐵 ⊣ Γ2
⊕-IL

↦→ unpack 𝑒 as𝑥, Γ2 in (inl𝐴⊕𝐵 (𝑥), pack Γ2)

Γ1 ⊢ 𝑒 : 𝐵 ⊣ Γ2

Γ1 ⊢ inr𝐴⊕𝐵 (𝑒) : 𝐴 ⊕ 𝐵 ⊣ Γ2
⊕-IR

↦→ unpack 𝑒 as𝑥, Γ2 in (inr𝐴⊕𝐵 (𝑥), pack Γ2)

Γ1 ⊢ 𝑒1 : 𝐴 ⊕ 𝐵 ⊣ Γ2 Γ2, 𝑥 : 𝐴 ⊢ 𝑒2 : 𝐶 ⊣ Γ3 Γ2, 𝑦 : 𝐵 ⊢ 𝑒3 : 𝐶 ⊣ Γ3

Γ1 ⊢ (case 𝑒1 of inl(𝑥) → 𝑒2 | inr(𝑦) → 𝑒3) : 𝐶 ⊣ Γ3
⊕-E

↦→ unpack 𝑒1 as Γ2, 𝑧 in case 𝑧 of inl(𝑥) → 𝑒2 | inr(𝑦) → 𝑒3

Γ1 ⊢ 𝑒1 : !𝐴1 ⊣ Γ2 · · · Γ𝑛 ⊢ 𝑒𝑛 : !𝐴𝑛 ⊣ Γ𝑛+1 𝑥1 : !𝐴1, . . . , 𝑥𝑛 : !𝐴𝑛 ⊢ 𝑒 : 𝐵 ⊣ ⋄
Γ1 ⊢ promote 𝑒1, . . . , 𝑒𝑛 for𝑥1, . . . , 𝑥𝑛 in 𝑒 : !𝐵 ⊣ Γ𝑛+1

Prom

↦→ unpack 𝑒1 as𝑦1, Γ2 in . . . unpack 𝑒𝑛 as𝑦𝑛, Γ𝑛+1 in

((promote𝑦1, . . . , 𝑦𝑛 for𝑥1, . . . , 𝑥𝑛 in (unpack 𝑒 as 𝑧,⋄ in 𝑧)), pack Γ𝑛+1)
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Γ1 ⊢ 𝑒1 : !𝐴 ⊣ Γ2 Γ2 ⊢ 𝑒2 : 𝐵 ⊣ Γ3

Γ1 ⊢ discard 𝑒1 in 𝑒2 : 𝐵 ⊣ Γ3
Disc

↦→ unpack 𝑒1 as𝑥, Γ2 in discard𝑥 in 𝑒2

Γ1 ⊢ 𝑒1 : !𝐴 ⊣ Γ2 Γ2, 𝑥 : !𝐴,𝑦 : !𝐴 ⊢ 𝑒2 : 𝐵 ⊣ Γ3

Γ1 ⊢ copy 𝑒1 as𝑥,𝑦 in 𝑒2 : 𝐵 ⊣ Γ3
Copy

↦→ unpack 𝑒1 as 𝑧, Γ2 in copy 𝑧 as𝑥,𝑦 in 𝑒2

Γ1 ⊢ 𝑒 : !𝐴 ⊣ Γ2

Γ1 ⊢ derelict 𝑒 : 𝐴 ⊣ Γ2
Der

↦→ unpack 𝑒 as𝑥, Γ2 in (derelict𝑥, pack Γ2)

Γ1, 𝑥 : 𝐴,𝑦 : 𝐵 ⊢ 𝑒 : 𝐶 ⊣ Γ2, 𝑥 : 𝐴,𝑦 : 𝐵

Γ1, 𝑧 : 𝐴 ⊗ 𝐵 ⊢ (let &(𝑥,𝑦) = &𝑧 in 𝑒) : 𝐶 ⊣ Γ2, 𝑧 : 𝐴 ⊗ 𝐵
&⊗-E

↦→ let (𝑥,𝑦) = 𝑧 in unpack 𝑒 as 𝑡, (Γ2, 𝑥 : 𝐴,𝑦 : 𝐵) in let 𝑧 = (𝑥,𝑦) in (𝑡, pack (Γ2, 𝑧 : 𝐴 ⊗ 𝐵))

Γ1, 𝑥 : 𝐴 ⊢ 𝑒1 : 𝐶 ⊣ Γ2, 𝑥 : 𝐴 Γ1, 𝑦 : 𝐵 ⊢ 𝑒2 : 𝐶 ⊣ Γ2, 𝑦 : 𝐵

Γ1, 𝑧 : 𝐴 ⊕ 𝐵 ⊢ (case&𝑧 of &inl(𝑥) → 𝑒1 | &inr(𝑦) → 𝑒2) : 𝐶 ⊣ Γ2, 𝑧 : 𝐴 ⊕ 𝐵
&⊕-E

↦→ case 𝑧 of

| inl(𝑥) → unpack 𝑒1 as 𝑡, (Γ2, 𝑥 : 𝐴) in let 𝑧 = inl(𝑥) in (𝑡, pack (Γ2, 𝑧 : 𝐴 ⊕ 𝐵))
| inr(𝑦) → unpack 𝑒2 as 𝑡, (Γ2, 𝑦 : 𝐵) in let 𝑧 = inr(𝑦) in (𝑡, pack (Γ2, 𝑧 : 𝐴 ⊕ 𝐵))

Γ1, 𝑥 : f ⊢ false𝐵 (&𝑥) : 𝐵 ⊣ Γ1, 𝑥 : f
&f-E

↦→ let (𝑡, 𝑥) = false(𝐵⊗f ) (𝑥) in (𝑡, pack (Γ1, 𝑥 : f))

Γ1 ⊢ 𝑒 : 𝐴 ⊣ Γ2

Γ1, 𝑥 : 𝐼 ⊢ (let &∗ = &𝑥 in 𝑒) : 𝐴 ⊣ Γ2, 𝑥 : 𝐼
&𝐼 -E

↦→ unpack 𝑒 as 𝑡, Γ2 in (𝑡, pack (Γ2, 𝑥 : 𝐼 ))

Γ2, 𝑥 : 𝐴 ⊢ 𝑒 : 𝐵 ⊣ 𝑥 : 𝐴

Γ1, Γ2 ⊢ (𝜆&𝑥 :𝐴. 𝑒) : 𝐴 &⊸ 𝐵 ⊣ Γ1

&⊸-I

↦→ ((𝜆𝑥 :𝐴. (unpack 𝑒 as𝑦, (𝑥 : 𝐴) in (𝑦, 𝑥))), pack Γ1)

Γ1 ⊢ 𝑒 : 𝐴 &⊸ 𝐵 ⊣ Γ2, 𝑥 : 𝐴

Γ1 ⊢ 𝑒 &𝑥 : 𝐵 ⊣ Γ2, 𝑥 : 𝐴

&⊸-E

↦→ unpack 𝑒 as𝑦, (Γ2, 𝑥 : 𝐴) in let (𝑧, 𝑥) = 𝑦 𝑥 in (𝑧, pack (Γ2, 𝑥 : 𝐴))
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B String Diagram Semantics
In this section, we describe the semantics of all of the linear lambda calculus rules and the flow

typing rules in terms of string diagrams. A comprehensive introduction to string diagrams can be

found in [2], and an introduction to their use specifically for functional computation can be found

in [1]. The latter article, as well as [4], has inspired much of our notation.

Let (C , ⊗, 𝐼 ,⊸) be a symmetric monoidal closed category (e.g. [3]). We assume without loss of

generality that C is strict monoidal so that we can avoid explicit use of associators and unitors.

One way to do this is described in [4]. We also assume any number of the following:

• binary coproducts 𝐴 + 𝐵 with coprojections 𝜄1, 𝜄2;

• an initial object 0 with morphisms ?𝐴 : 0 → 𝐴;

• binary products 𝐴 × 𝐵 with projections 𝜋1, 𝜋2;

• a terminal object ⊤ with morphisms !𝐴 : 𝐴 → ⊤;
• a comonad G = (𝐺, 𝜖, 𝛿) where 𝜖 : 𝐺 → 1C is the counit and 𝛿 : 𝐺 → 𝐺2

is the comultipli-

cation, together with the following designated morphisms (subject to no laws):

wkg : 𝐺𝐴 → 𝐼 ; ctr : 𝐺𝐴 → 𝐺𝐴 ⊗ 𝐺𝐴; join
0
: 𝐼 → 𝐺𝐼 ; join

2
: 𝐺𝐴 ⊗ 𝐺𝐵 → 𝐺 (𝐴 ⊗ 𝐵)

For abstraction and application we introduce the following additional string diagram notation:

abstraction

𝑒̃ : Γ → (𝐴 ⊸ 𝐵)
where 𝑒 : Γ ⊗ 𝐴 → 𝐵

↦→

application

𝜀 : (𝐴 ⊸ 𝐵) ⊗ 𝐴 → 𝐵,

the counit of (−) ⊗ 𝐴 ⊣ 𝐴 ⊸ (−) ↦→

For the comonad G, we extend join
0
and join

2
to arbitrary 𝑛 by iteration, assuming that (for

concreteness) the applications of join are associated to the left:

join𝑛 : 𝐺𝐴1 ⊗ · · · ⊗ 𝐺𝐴𝑛 → 𝐺 (𝐴1 ⊗ · · · ⊗ 𝐴𝑛)
We additionally use boxes to signify application of functors. If 𝑒 : 𝐴 → 𝐵, we write 𝐺𝑒 : 𝐺𝐴 → 𝐺𝐵

using the following notation:

We translate types into the string diagram semantics as follows:

• pairs 𝐴 ⊗ 𝐵 are translated using the tensor product 𝐴 ⊗ 𝐵;

• the unit type 𝐼 is translated as the monoidal unit 𝐼 ;

• sum types 𝐴 ⊕ 𝐵 are translated as the coproduct 𝐴 + 𝐵;

• the empty type f is translated as the initial object 0;

• additive product types 𝐴 & 𝐵 are translated as the product 𝐴 × 𝐵;

• the additive product unit t is translated as the terminal object ⊤;
• the exponential type !𝐴 is translated as 𝐺𝐴.

identity/variable
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𝑥 : 𝐴 ⊢ 𝑥 : 𝐴

Γ, 𝑥 : 𝐴 ⊢ 𝑥 : 𝐴 ⊣ Γ

exchange

Γ1, 𝑥 : 𝐴,𝑦 : 𝐵, Γ2 ⊢ 𝑒 : 𝐶
Γ1, 𝑦 : 𝐵, 𝑥 : 𝐴, Γ2 ⊢ 𝑒 : 𝐶

Γ1, 𝑥 : 𝐴,𝑦 : 𝐵, Γ2 ⊢ 𝑒 : 𝐶 ⊣ Γ3

Γ1, 𝑦 : 𝐵, 𝑥 : 𝐴, Γ2 ⊢ 𝑒 : 𝐶 ⊣ Γ3

Γ1 ⊢ 𝑒 : 𝐴 ⊣ Γ2, 𝑥 : 𝐵,𝑦 : 𝐶, Γ3

Γ1 ⊢ 𝑒 : 𝐴 ⊣ Γ2, 𝑦 : 𝐶, 𝑥 : 𝐵, Γ3

let

Γ1 ⊢ 𝑒1 : 𝐴 Γ2, 𝑥 : 𝐴 ⊢ 𝑒2 : 𝐵
Γ1, Γ2 ⊢ (let𝑥 = 𝑒1 in 𝑒2) : 𝐵

Γ1 ⊢ 𝑒1 : 𝐴 ⊣ Γ2 Γ2, 𝑥 : 𝐴 ⊢ 𝑒2 : 𝐵 ⊣ Γ3

Γ1 ⊢ (let𝑥 = 𝑒1 in 𝑒2) : 𝐵 ⊣ Γ3

true

Γ ⊢ 𝑒 : 𝐴
Γ ⊢ true(𝑒) : t
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Γ1 ⊢ 𝑒 : 𝐴 ⊣ Γ2

Γ1 ⊢ true(𝑒) : t ⊣ Γ2

false

Γ ⊢ 𝑒 : f
Γ ⊢ false𝐴 (𝑒) : 𝐴

Γ1 ⊢ 𝑒 : f ⊣ Γ2

Γ1 ⊢ false𝐴 (𝑒) : 𝐴 ⊣ Γ2

implication

Γ, 𝑥 : 𝐴 ⊢ 𝑒 : 𝐵
Γ ⊢ (𝜆𝑥 :𝐴. 𝑒) : 𝐴 ⊸ 𝐵

Γ2, 𝑥 : 𝐴 ⊢ 𝑒 : 𝐵 ⊣
Γ1, Γ2 ⊢ (𝜆𝑥 :𝐴. 𝑒) : 𝐴 ⊸ 𝐵 ⊣ Γ1

Γ1 ⊢ 𝑒1 : 𝐴 ⊸ 𝐵 Γ2 ⊢ 𝑒2 : 𝐴
Γ1, Γ2 ⊢ 𝑒1 𝑒2 : 𝐵

Γ1 ⊢ 𝑒1 : 𝐴 ⊸ 𝐵 ⊣ Γ2 Γ2 ⊢ 𝑒2 : 𝐴 ⊣ Γ3

Γ1 ⊢ 𝑒1 𝑒2 : 𝐵 ⊣ Γ3

unit

⊢ ∗ : 𝐼
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Γ ⊢ ∗ : 𝐼 ⊣ Γ

Γ1 ⊢ 𝑒1 : 𝐼 Γ2 ⊢ 𝑒2 : 𝐴
Γ1, Γ2 ⊢ (let ∗ = 𝑒1 in 𝑒2) : 𝐴

Γ1 ⊢ 𝑒1 : 𝐼 ⊣ Γ2 Γ2 ⊢ 𝑒2 : 𝐴 ⊣ Γ3

Γ1 ⊢ (let ∗ = 𝑒1 in 𝑒2) : 𝐴 ⊣ Γ3

pair

Γ1 ⊢ 𝑒1 : 𝐴 Γ2 ⊢ 𝑒2 : 𝐵
Γ1, Γ2 ⊢ (𝑒1, 𝑒2) : 𝐴 ⊗ 𝐵

Γ1 ⊢ 𝑒1 : 𝐴 ⊣ Γ2 Γ2 ⊢ 𝑒2 : 𝐵 ⊣ Γ3

Γ1 ⊢ (𝑒1, 𝑒2) : 𝐴 ⊗ 𝐵 ⊣ Γ3

Γ1 ⊢ 𝑒1 : 𝐴 ⊗ 𝐵 Γ2, 𝑥 : 𝐴,𝑦 : 𝐵 ⊢ 𝑒2 : 𝐶
Γ1, Γ2 ⊢ (let (𝑥,𝑦) = 𝑒1 in 𝑒2) : 𝐶

Γ1 ⊢ 𝑒1 : 𝐴 ⊗ 𝐵 ⊣ Γ2
Γ2, 𝑥 : 𝐴,𝑦 : 𝐵 ⊢ 𝑒2 : 𝐶 ⊣ Γ3

Γ1 ⊢ (let (𝑥,𝑦) = 𝑒1 in 𝑒2) : 𝐶 ⊣ Γ3

additive pair

Γ ⊢ 𝑒1 : 𝐴 Γ ⊢ 𝑒2 : 𝐵
Γ ⊢ ⟨𝑒1, 𝑒2⟩ : 𝐴 & 𝐵

𝑒 such that

= and

=
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Γ2 ⊢ 𝑒1 : 𝐴 ⊣ Γ2 ⊢ 𝑒2 : 𝐵 ⊣
Γ1, Γ2 ⊢ ⟨𝑒1, 𝑒2⟩ : 𝐴 & 𝐵 ⊣ Γ1

such that

= and

=

Γ ⊢ 𝑒 : 𝐴 & 𝐵

Γ ⊢ fst(𝑒) : 𝐴

Γ1 ⊢ 𝑒 : 𝐴 & 𝐵 ⊣ Γ2

Γ1 ⊢ fst(𝑒) : 𝐴 ⊣ Γ2

Γ ⊢ 𝑒 : 𝐴 & 𝐵

Γ ⊢ snd(𝑒) : 𝐵

Γ1 ⊢ 𝑒 : 𝐴 & 𝐵 ⊣ Γ2

Γ1 ⊢ snd(𝑒) : 𝐵 ⊣ Γ2

sum

Γ ⊢ 𝑒 : 𝐴
Γ ⊢ inl𝐴⊕𝐵 (𝑒) : 𝐴 ⊕ 𝐵

Γ1 ⊢ 𝑒 : 𝐴 ⊣ Γ2

Γ1 ⊢ inl𝐴⊕𝐵 (𝑒) : 𝐴 ⊕ 𝐵 ⊣ Γ2

Γ ⊢ 𝑒 : 𝐵
Γ ⊢ inr𝐴⊕𝐵 (𝑒) : 𝐴 ⊕ 𝐵

Γ1 ⊢ 𝑒 : 𝐵 ⊣ Γ2

Γ1 ⊢ inr𝐴⊕𝐵 (𝑒) : 𝐴 ⊕ 𝐵 ⊣ Γ2
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Γ1 ⊢ 𝑒1 : 𝐴 ⊕ 𝐵 Γ2, 𝑥 : 𝐴 ⊢ 𝑒2 : 𝐶 Γ2, 𝑦 : 𝐵 ⊢ 𝑒3 : 𝐶
Γ1, Γ2 ⊢ (case 𝑒1 of inl(𝑥) → 𝑒2 | inr(𝑦) → 𝑒3) : 𝐶

where

= and

=

Γ1 ⊢ 𝑒1 : 𝐴 ⊕ 𝐵 ⊣ Γ2 Γ2, 𝑥 : 𝐴 ⊢ 𝑒2 : 𝐶 ⊣ Γ3 Γ2, 𝑦 : 𝐵 ⊢ 𝑒3 : 𝐶 ⊣ Γ3

Γ1 ⊢ (case 𝑒1 of inl(𝑥) → 𝑒2 | inr(𝑦) → 𝑒3) : 𝐶 ⊣ Γ3

where

= and

=

These definitions by universal property make use of the fact that Γ2 ⊗ (𝐴 + 𝐵) is the coproduct of
Γ2 ⊗𝐴 and Γ2 ⊗𝐵. This is true because ⊗ is a left adjoint and therefore commutes with coproducts.

exponential types

Γ1 ⊢ 𝑒1 : !𝐴1 · · · Γ𝑛 ⊢ 𝑒𝑛 : !𝐴𝑛 𝑥1 : !𝐴1, , 𝑥𝑛 : !𝐴𝑛 ⊢ 𝑒 : 𝐵
Γ1, . . . , Γ𝑛 ⊢ promote 𝑒1, . . . , 𝑒𝑛 for𝑥1, . . . , 𝑥𝑛 in 𝑒 : !𝐵

Γ1 ⊢ 𝑒1 : !𝐴1 ⊣ Γ2 · · · Γ𝑛 ⊢ 𝑒𝑛 : !𝐴𝑛 ⊣ Γ𝑛+1 𝑥1 : !𝐴1, . . . , 𝑥𝑛 : !𝐴𝑛 ⊢ 𝑒 : 𝐵 ⊣
Γ1 ⊢ promote 𝑒1, . . . , 𝑒𝑛 for𝑥1, . . . , 𝑥𝑛 in 𝑒 : !𝐵 ⊣ Γ𝑛+1
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Γ1 ⊢ 𝑒1 : !𝐴 Γ2 ⊢ 𝑒2 : 𝐵
Γ1, Γ2 ⊢ discard 𝑒1 in 𝑒2

Γ1 ⊢ 𝑒1 : !𝐴 ⊣ Γ2 Γ2 ⊢ 𝑒2 : 𝐵 ⊣ Γ3

Γ1 ⊢ discard 𝑒1 in 𝑒2 : 𝐵 ⊣ Γ3

Γ1 ⊢ 𝑒1 : !𝐴 Γ2, 𝑥 : !𝐴,𝑦 : !𝐴 ⊢ 𝑒2 : 𝐵
Γ1, Γ2 ⊢ copy 𝑒1 as𝑥,𝑦 in 𝑒2

Γ1 ⊢ 𝑒1 : !𝐴 ⊣ Γ2 Γ2, 𝑥 : !𝐴,𝑦 : !𝐴 ⊢ 𝑒2 : 𝐵 ⊣ Γ3

Γ1 ⊢ copy 𝑒1 as𝑥,𝑦 in 𝑒2 : 𝐵 ⊣ Γ3

Γ ⊢ 𝑒 : !𝐴
Γ ⊢ derelict 𝑒 : 𝐴

Γ1 ⊢ 𝑒 : !𝐴 ⊣ Γ2

Γ1 ⊢ derelict 𝑒 : 𝐴 ⊣ Γ2
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