
Compositional memory management in the λ-calculus
Sky Wilshaw1 and Graham Hutton2

1 School of Computer Science, University of Nottingham
sky.wilshaw@nottingham.ac.uk

2 School of Computer Science, University of Nottingham
graham.hutton@nottingham.ac.uk

1 Motivation and overview

Type systems can be used in programming languages to guarantee memory safety. This idea
has been developed in many different directions, for example with borrowing from the Rust
language [6, 3], the reachability types of Bao et al. [1], and the fractional uniqueness types of
Marshall and Orchard [5]. In order to create new type systems of this form in a principled way,
we would like a simple untyped system that supports a basic form of memory management,
so that type systems can be built on top of it. However, existing untyped languages of this
kind typically suffer from two major problems. First, they often introduce many new primitives
for concepts such as memory cells, allocation, freeing, pointers, and stores, complicating the
semantics. Second, they are usually non-compositional, as we need to thread the state of the
memory store through all derivations; this is a particular weakness when our goal is to design
type systems.

In this work, we identify a fragment of manual memory management, which we call explicit
naming. Under this paradigm, names are first-class citizens in a language, with explicit primi-
tives for creating, using, and freeing names. These primitives correspond to simple operations
on memory, interpreting names as pointers to the values they are bound to. We will introduce
a lambda calculus with explicit naming, with a stateful semantics that keeps track of the value
assigned to each name. Then, to address the lack of compositionality, we will develop a compo-
sitional semantics for the same language, and show that it is equivalent to its non-compositional
counterpart. This language, with its two equivalent semantics, provides a framework that can
be used to develop type systems for explicit naming.

2 Modifying the lambda calculus

We will start with a simple call-by-value lambda calculus, with standard reduction rules and
notation inspired by Launchbury’s semantics for lazy evaluation [4]. We use the standard syntax
for lambda terms, writing expressions with the letter e and values with the letter v. Judgments
are of the form H1 : e ⇓ H2 : v, where H1 and H2 are heaps, finite partial functions from names
to values. This can be read as ‘expression e can be evaluated with heap H1 to produce a value
v and a resulting heap H2’.

Our initial rules are as follows. Problems relating to name collisions and α-equivalence will
not be discussed here in order to focus on the key ideas of this contribution. Colours are not
syntactically important.



Compositional memory management in the λ-calculus Wilshaw and Hutton

(H,x 7→ v) : x ⇓ (H,x 7→ v) : v
Var′

H : λx. e ⇓ H : λx. e
Lam

H1 : e1 ⇓ H2 : λx. e H2 : e2 ⇓ H3 : v (H3, x 7→ v) : e ⇓ H4 : v
′

H1 : e1 e2 ⇓ H4 : v
′ App

Here, the variable rule Var′ tells us that a name x evaluates to the value v bound to it in
the heap. This means that every mention of a name is a use of it, or alternatively, that we
cannot have a pointer without dereferencing it. This prevents us from using names as first-class
citizens. Therefore, to make a lambda calculus with explicit naming, we need to divide the
variable rule into the following two rules:

H : x ⇓ H : x
Var

H1 : e ⇓ (H2, x 7→ v) : x

H1 : !e ⇓ (H2, x 7→ v) : v
Read

We have introduced a new operator, written ‘!’, for looking up the value bound to a name.
With these new rules, names are already values, and do not reduce; a name must be explicitly
dereferenced using ‘!’ in order to access its value.

To model explicit naming, it remains to provide a method to free names. This allows us to
model one of the key challenges with memory management, namely, that dereferences might fail
after a deallocation. To do this, we add in a second new primitive, which evaluates an expression
and then frees a name (which itself may be the result of evaluating some other expression).

H1 : e1 ⇓ H2 : v H2 : e2 ⇓ (H3, x 7→ v′) : x

H1 : e1; free e2 ⇓ H3 : v
Free

3 Recovering compositionality
The main disadvantage of the presented semantics is its non-compositionality, as the heap
state must be threaded through each derivation. This prevents us from building type systems
on this language. To combat this, we will describe a new semantics which calculates the
denotation of an expression separately from computing the effect on the heap of evaluating this
expression. Crucially, we do not need to compute intermediate heap states in order to calculate
denotations or effects of compound expressions; it is in this sense that our effect-based semantics
is compositional.

In order to do this, we need to reduce our dependence on the heap state, by moving some
of the information from the heap into the values. In particular, abstractions now evaluate to
closures, and variables now keep track of their assigned values. These new values are called
denotational values and written with the letter w. Rather than in a heap, denotational values
are stored in a context Γ, a finite partial function from names to denotational values.

To be precise, a denotational value is either a closure of the form (λΓx. e) or a variable
binding (x 7→ w). Such a denotational value can be thought of as a value in the usual sense,
together with all of the data that it could ‘see’ in the heap at the time of its creation. We define
denotational values coinductively to allow for loops in variable bindings and stored contexts.

Our big-step reduction relation will now have the form Γ ` e ⇓ f : w, where f is the effect,
a partial function from heaps to heaps, and w is a denotational value. We may view f as the
effect on the heap of evaluating Γ ` e ⇓ w. Such partial functions evidently form a monoid
under composition.

2



Compositional memory management in the λ-calculus Wilshaw and Hutton

(Γ, x 7→ w) ` x ⇓ id : (x 7→ w)
F-Var

Γ ` λx. e ⇓ id : λΓx. e
F-Lam

Γ ` e1 ⇓ f1 : λ
Γ′
x. e Γ ` e2 ⇓ f2 : w Γ′, x 7→ w ` e ⇓ f3 : w

′

Γ ` e1 e2 ⇓ f3 ◦ (x := w) ◦ f2 ◦ f1 : w′ F-App

Γ ` e ⇓ f : (x 7→ w)

Γ ` !e ⇓ readx ◦ f : w
F-Read

Γ ` e1 ⇓ f1 : w Γ ` e2 ⇓ f2 : (x 7→ w′)

Γ ` e1; free e2 ⇓ freex ◦ f2 ◦ f1 : w
F-Free

Here, (x := w), readx, freex denote partial functions that perform the given operation. For
instance, (x := w) adds the binding x 7→ w to any heap where x is not in its domain, and is
undefined elsewhere. Similarly, readx is the identity on heaps that contain x in their domain,
and undefined elsewhere. In these rules, effects of subexpressions are only used to compute
the composite effect of the expression, and are not applied to contexts or used serially between
subexpressions. We do not use the full flexibility of partial functions between heaps, and various
simpler presentations of our effects are possible, for example using effect quantales [2].

4 Equivalence
We can show that the two semantics are equivalent. To formalise this equivalence, we need to
set up some conversions between heaps and contexts. First, we can ‘forget’ the extra data of
a denotational value w to recover a value v = w. This operation is defined by (λΓx. e) = λx. e
and (x 7→ w) = x. In the other direction, we can translate a heap H into a context Γ = tr(H)
defined by the following coinductive rules.

H(x) = y tr(H)(y) = w

tr(H)(x) = (y 7→ w)

H(x) = λy. e

tr(H)(x) = λtr(H)y. e

We can then prove the following result.

Theorem. Let e be an expression and H be a heap. We define inductively that a variable x is
reachable from e in H if it is free in e or is reachable from H(y) where y is free in e. If all
variables reachable from e in H occur in the domain of H, then

H : e ⇓ H ′ : v ⇐⇒ (∃w f, w = v ∧ f(H) = H ′ ∧ tr(H) ` e ⇓ f : w)

where the derivations on the left and right sides of this equivalence pull from the same stream
of fresh names.

The hypothesis of this theorem is a minor generalisation of the usual notion of an ‘expression-
in-context’, ensuring that tr(H) contains all of the free variables of e.

This equivalence theorem allows for more compositional reasoning about memory-sensitive
computation. As an example, we can show that if two expressions e1 and e2 have disjoint sets of
reachable names in H, then they can be evaluated in either order without affecting the overall
computation. This is because the effects f1 and f2 of evaluating these expressions in tr(H)
operate on disjoint sets of names and therefore commute past one another: f1 ◦ f2 = f2 ◦ f1.

We hope that this compositional framework is suitable for developing interesting type the-
ories that are capable of encapsulating some of the challenges of memory management.

3



Compositional memory management in the λ-calculus Wilshaw and Hutton

References
[1] Yuyan Bao, Guannan Wei, Oliver Bračevac, Yuxuan Jiang, Qiyang He, and Tiark Rompf. Reach-

ability types: tracking aliasing and separation in higher-order functional programs. Proceedings of
the ACM on Programming Languages, 5(OOPSLA):1–32, 2021.

[2] Colin S. Gordon. Polymorphic iterable sequential effect systems. ACM Trans. Program. Lang. Syst.,
43(1), April 2021.

[3] Steve Klabnik and Carol Nichols. The Rust programming language. No Starch Press, 2023.
[4] John Launchbury. A natural semantics for lazy evaluation. In Proceedings of the 20th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’93, page 144–154,
New York, NY, USA, 1993. Association for Computing Machinery.

[5] Danielle Marshall and Dominic Orchard. Functional ownership through fractional uniqueness. Proc.
ACM Program. Lang., 8(OOPSLA1), April 2024.

[6] Nicholas D. Matsakis and Felix S. Klock. The rust language. Ada Lett., 34(3):103–104, October
2014.

4


	Motivation and overview
	Modifying the lambda calculus
	Recovering compositionality
	Equivalence

