
A Compositional Semantics for Explicit Naming

SKY WILSHAW, School of Computer Science, University of Nottingham, UK

GRAHAM HUTTON, School of Computer Science, University of Nottingham, UK

Naming enables values to be shared between different parts of a computation. We study a notion of explicit

naming, where names are first-class citizens, and explicit primitives are provided for creating, using and

freeing names. Operationally, such primitives provide a form of manual memory management using pointers.

Using this interpretation, we can define a simple semantics for explicit naming by threading through a heap

that maps names to values. However, this leads to a non-compositional semantics, which complicates inductive

reasoning. To address this, we introduce a lambda calculus with explicit naming, and develop a compositional

semantics for it that is provably equivalent to its non-compositional counterpart.

1 Introduction
One of the most basic operations in programming is to bind a value to a name. Often, no distinction

is made between a name and its value. For example, in the body of the term

let 𝑥 = 1 + 2 in print (𝑥 + 𝑥)
we might understand the name 𝑥 as being the value 3, but outside the body of the term the name

loses this meaning as it is out of scope. In this article, we consider a notion of explicit naming, where

names are first-class citizens in a language, and explicit operations are provided by the language to

bind a value to a name, to look up the value bound to a name, and to free a name when it is no

longer needed. For example, in this paradigm, in the body of

bind 𝑥 to 1 + 2 in print (read 𝑥 + read 𝑥); free 𝑥
the name 𝑥 might be understood as a reference to the value 3, and we use explicit operations to

read the value of 𝑥 , and to free the name when the scope of the body ends. We focus on immutable

bindings, where once a value is assigned to a name it cannot be changed.

A key aspect of explicit naming is that a name can escape its scope of definition, as it can be

treated just like any other first-class citizen. In particular, names can be returned as results, passed

as arguments, and stored in data structures. Because of this, the operation of freeing a name can

affect other parts of the program that later use it. For example, attempting to use a name that has

been freed may lead to a program crashing or having undefined behaviour. This kind of ‘action at a

distance’ is a primary source of complexity when reasoning about explicit naming.

Explicit naming can naturally be viewed as a form of manual memory management, where names

correspond to pointers. In particular, binding a value to a name corresponds to allocating memory,

reading the value associated to a name corresponds to dereferencing a pointer, and freeing a name

corresponds to deallocating memory. This analogy motivates a direct way to give a semantics for

explicit naming, by threading through a heap that maps names to values, with the heap being

updated whenever a fresh name is introduced or an unwanted name is freed.

With a threaded-heap semantics, it is important that the operations on the heap are executed in

a particular sequence. This means that the semantics is not compositional at the level of heaps,

as the result of evaluating a complex term with a given heap is not determined by the results

of evaluating its subterms with the same heap. For example, to evaluate 𝑒1 + 𝑒2, we might first

evaluate 𝑒1 with the current heap, then evaluate 𝑒2 with the heap obtained after evaluating 𝑒1. This

lack of compositionality complicates inductive reasoning about such a semantics.
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However, this non-compositionality is not inherent. In this article, we show how to define a

compositional semantics for explicit naming. In particular, we present a lambda calculus with explicit

naming, and give a new semantics based on tracking effects. This new semantics is compositional at

the level of heaps, in the sense that the heap is not threaded through each computation. This means

that subexpressions in a larger program can now be analysed independently. For example, when

evaluating 𝑒1 + 𝑒2, the subexpressions 𝑒1 and 𝑒2 are now evaluated in the same context. Crucially,

this semantics is equivalent to the non-compositional heap-based semantics, and we can transfer

useful properties across this equivalence. Our choice to use a minimal language such as the lambda

calculus is inessential, but was chosen in order to focus on the essence of explicit naming. The

most important property of the lambda calculus that we use is that values are immutable, and our

ideas are more generally applicable in other languages with this property.

Concretely, we make the following contributions:

• We introduce a lambda calculus with explicit naming, define a heap-based semantics for

the language, and provide examples of reasoning using this semantics (section 2);

• We present another semantics for the same language, which exploits effect tracking to

ensure the semantics is compositional at the level of heaps (section 3);

• We state the equivalence of the two semantics, and show how to transfer results across the

equivalence, including specific examples and general transformations (section 4);

• We present a proof of this equivalence, by showing that both semantics are equivalent to

an intermediate semantics based on a ‘clairvoyant heap’ (section 5).

We discuss related work in section 6 and future work in section 7. To make the article accessible to a

broad audience, we assume only a basic knowledge of programming language semantics (evaluation

semantics, big-step operational semantics, rule induction), lambda calculus (call-by-value semantics,

closures), and order theory (partial orders, semilattices).

2 A Lambda Calculus with Explicit Naming
In this section, we introduce a lambda calculus with explicit naming. In this language, a name can

be thought of as a pointer to a value, with explicit operations being provided for creating, using

and freeing names. The section concludes with some examples of reasoning to demonstrate various

properties of the heap-based semantics we define for the language.

2.1 Heap-Based Semantics
Let us begin with a simple call-by-value lambda calculus without explicit naming, whose syntax is

specified by the following grammar, where 𝑥 ranges over an infinite set of (variable) names:

𝑒 ≔ 𝑥 | 𝜆𝑥 .𝑒 | 𝑒 𝑒

To define the semantics for the language, we use an approach and notation inspired by Launchbury

[1993]. In particular, we use a heap to keep track of the assignments to names, which is given by a

partial function from names to values. For now, an expression is a value if it is a lambda abstraction.

We write {} for the empty heap, and (𝐻, 𝑥 ↦→ 𝑣) for the extension of a heap with a new binding;

for ease of identification, heaps are grey and bindings are red.

Judgments in our semantics are of the form 𝐻1 : 𝑒 ⇓ 𝐻2 : 𝑣 , where 𝐻1 and 𝐻2 are heaps, 𝑒 is

an expression, and 𝑣 is a value. This can be read as ‘the expression 𝑒 can be evaluated with ini-

tial heap𝐻1 to produce the value 𝑣 and final heap𝐻2’. The semantics is defined by the following rules:
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(𝐻, 𝑥 ↦→ 𝑣) : 𝑥 ⇓ (𝐻, 𝑥 ↦→ 𝑣) : 𝑣
Var

𝐻 : 𝜆𝑥 . 𝑒 ⇓ 𝐻 : 𝜆𝑥 . 𝑒
Lam

𝐻1 : 𝑒1 ⇓ 𝐻2 : 𝜆𝑥. 𝑒 𝐻2 : 𝑒2 ⇓ 𝐻3 : 𝑣 (𝐻3, 𝑥 ↦→ 𝑣) : 𝑒 ⇓ 𝐻4 : 𝑣
′

𝐻1 : 𝑒1 𝑒2 ⇓ 𝐻4 : 𝑣
′ App

The variable rule Var specifies that a name 𝑥 evaluates to the value 𝑣 bound to it in the heap. The

Lam rule specifies that a lambda abstraction 𝜆𝑥. 𝑒 is already fully evaluated. The App rule states

that an application 𝑒1 𝑒2 proceeds by first evaluating 𝑒1 to an abstraction 𝜆𝑥 . 𝑒 , then evaluating 𝑒2
to a value 𝑣 , and finally evaluating the body 𝑒 of the abstraction with a new binding 𝑥 ↦→ 𝑣 on the

heap. This new binding will persist even after the expression has finished being evaluated, as we

have not yet introduced a mechanism for freeing names. Note that the heap is threaded sequentially

through this rule, with the final heap in each premise being used as the initial heap in the next.

We adopt the convention that the name 𝑥 in the App rule is chosen to be different from all names

used so far, to avoid unintended name collisions on the heap. As such, we can think of the App rule

as a mechanism for creating fresh names. We discuss fresh names in more detail in section 5.

2.2 First-Class Names
The above version of the Var rule means that every mention of a name is a use of it, preventing us

from using names as first-class citizens. Therefore, to make a language with explicit naming, we

split the variable rule into two rules, to distinguish a name from its value:

𝐻 : 𝑥 ⇓ 𝐻 : 𝑥
Var

𝐻1 : 𝑒 ⇓ (𝐻2, 𝑥 ↦→ 𝑣) : 𝑥
𝐻1 : ∗𝑒 ⇓ (𝐻2, 𝑥 ↦→ 𝑣) : 𝑣

Read

The new Var rule has a transparent reading, ‘names are values’, and we extend the notion of values

accordingly. Given this rule, names are now first-class citizens that can be passed as arguments,

returned as results, and stored in the bodies of abstractions for later use. The Read rule introduces a

new operator, written ‘∗’, for reading the value bound to a name. This rule operates on an arbitrary

expression that evaluates to a name, not just an expression that is syntactically a name.

Example 2.1 (reading variables). In our new semantics, the expression ∗𝑥 (‘read the value bound

to 𝑥 ’) has the same behaviour as 𝑥 does in the usual lambda calculus. More explicitly, in the heap

(𝐻, 𝑥 ↦→ 𝑣), we can show that ∗𝑥 evaluates to 𝑣 without altering the heap:

(𝐻, 𝑥 ↦→ 𝑣) : 𝑥 ⇓ (𝐻, 𝑥 ↦→ 𝑣) : 𝑥
Var

(𝐻, 𝑥 ↦→ 𝑣) : ∗𝑥 ⇓ (𝐻, 𝑥 ↦→ 𝑣) : 𝑣
Read

⋄

Example 2.2 (identity function). In this semantics, the expression 𝜆𝑥. 𝑥 is no longer the identity

function. Consider the expression (𝜆𝑥 . 𝑥) (1+2), assuming that we have incorporated numbers into

our language. We will describe the evaluation of this expression using an informal ‘computation

trace’, underlining the expression under reduction.

heap expression

{} (𝜆𝑥. 𝑥) (1 + 2)
⇝ {} (𝜆𝑥. 𝑥) 3
⇝ {𝑥 ↦→ 3} 𝑥
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The result is that 3 is bound in the heap to the variable 𝑥 , and the name 𝑥 itself is returned. This

shows that 𝜆𝑥 . 𝑥 is not the identity function. However, 𝜆𝑥. ∗𝑥 does behave as the identity:

{} (𝜆𝑥 . ∗𝑥) (1 + 2)
⇝ {} (𝜆𝑥 . ∗𝑥) 3
⇝ {𝑥 ↦→ 3} ∗𝑥
⇝ {𝑥 ↦→ 3} 3

In general, regular lambda terms can be converted for this semantics by replacing every occurrence

of a variable 𝑥 with ∗𝑥 where this is syntactically valid. For example, the Church numeral 2, which

usually takes the form 𝜆𝑥 . 𝜆𝑦. 𝑥 (𝑥 𝑦), would be written as 𝜆𝑥. 𝜆𝑦. ∗𝑥 (∗𝑥 ∗𝑦). ⋄

2.3 Freeing Names
To free a name when it is no longer needed, we would ideally like to have an expression ‘free 𝑥 ’

that simply frees the name 𝑥 from the heap. However, we must also decide what value such an

expression should produce. Returning some form of dummy value would be rather cumbersome,

so instead, we use an operator of form ‘𝑒1; free 𝑒2’. This expression first evaluates 𝑒1 to a value 𝑣 ,

then frees the name that 𝑒2 evaluates to, and finally returns 𝑣 :

𝐻1 : 𝑒1 ⇓ 𝐻2 : 𝑣 𝐻2 : 𝑒2 ⇓ (𝐻3, 𝑥 ↦→ 𝑣 ′) : 𝑥
𝐻1 : 𝑒1; free 𝑒2 ⇓ 𝐻3 : 𝑣

Free

Note that this rule can only be applied if the heap contains a binding for the name being freed.

In particular, we cannot free a name that has not been allocated on the heap, and we cannot free

a name multiple times. These two cases are usually considered undefined behaviour in manual

memory management systems, which we reflect here by disallowing such behaviour. Our choice

for the form of the freeing operator is motivated by the following example.

Example 2.3 (self-cleaning identity). Previously, we saw that evaluating (𝜆𝑥. ∗𝑥) (1 + 2) with the

empty heap resulted in the value 3, but had the side effect of ‘polluting’ the heap with the binding

𝑥 ↦→ 3. To avoid this, we can free 𝑥 before returning from the function:

{} (𝜆𝑥. (∗𝑥 ; free 𝑥)) (1 + 2)
⇝ {} (𝜆𝑥. (∗𝑥 ; free 𝑥)) 3
⇝ {𝑥 ↦→ 3} ∗𝑥 ; free 𝑥
⇝ {𝑥 ↦→ 3} 3; free 𝑥

⇝ {} 3

In this manner, 𝜆𝑥. (∗𝑥 ; free 𝑥) is the identity function that ‘cleans up after itself’ by freeing the

name 𝑥 once it is no longer needed, returning the heap to its original state. This example shows

how ‘−; free 𝑥 ’ adds a freeing operation to a function without altering its returned value. ⋄

The resulting lambda calculus, with rules Var, Lam, App, Read and Free, has explicit naming.

This is a minimally complete set of rules, in the sense that none of the rules can be removed while

preserving the desired naming features. This minimality was our motivation for choosing this

particular language, in order to focus on the essence of explicit naming.

2.4 Reasoning
Wenow show some examples of reasoning using our language.We assumewhenever it is convenient

that bound variables have never been used before. Our first example is straightforward using the

threaded-heap semantics, but the second example shows something that is difficult to prove.
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Example 2.4 (immutability). Bindings in our language are immutable: once a value is assigned to

a name, the value cannot be changed. This property holds because the only way to assign a value

to a name is to bind that value to a fresh name in the App rule. To see how immutability can help

with reasoning, consider the following example, where 𝑒 is an unknown expression:

(𝜆𝑦. ∗𝑥) 𝑒
Evaluating this example in a heap where 𝑥 has the value 4 proceeds as follows:

{𝑥 ↦→ 4} (𝜆𝑦. ∗𝑥) 𝑒
⇝ · · ·
⇝ 𝐻 (𝜆𝑦. ∗𝑥) 𝑣
⇝ 𝐻,𝑦 ↦→ 𝑣 ∗𝑥

Here 𝐻 is the heap obtained after evaluating 𝑒 to the value 𝑣 . If 𝑥 is not in the domain of 𝐻 , then

we cannot complete the derivation. This occurs if 𝑥 is freed by 𝑒 . However, if 𝑥 does occur in the

domain of 𝐻 , then we know by immutability of bindings that the value bound to 𝑥 must be 4. So

regardless of what 𝑒 actually is, the example either evaluates to 4, or does not evaluate. ⋄

Example 2.5 (reordering computations). Consider the expressions

𝑒1 + 𝑒2 and 𝑒2 + 𝑒1

Under the normal left-to-right evaluation order for addition, the first expression will evaluate 𝑒1
before 𝑒2, while the second expression will evaluate 𝑒2 before 𝑒1. As a result, in general the two

expressions do not have the same behaviour. For example, consider:

∗𝑥 + (1; free 𝑥) and (1; free 𝑥) + ∗𝑥
The first expression will produce a value if 𝑥 is bound to a number in the heap, but the second

expression can never evaluate because it frees 𝑥 and then attempts to read from it. However, it can

be shown that if the two expressions 𝑒1 + 𝑒2 and 𝑒2 + 𝑒1 both evaluate in some initial heap, then in

fact they evaluate to the same value. A simple example is given by the following expressions:

(∗𝑥 ; free 𝑥) + (∗𝑦; free 𝑦) and (∗𝑦; free 𝑦) + (∗𝑥 ; free 𝑥)
Using an initial heap that binds 𝑥 and 𝑦 to numbers, the first expression evaluates as follows:

{𝑥 ↦→ 1, 𝑦 ↦→ 2} (∗𝑥 ; free 𝑥) + (∗𝑦; free 𝑦)
⇝ {𝑥 ↦→ 1, 𝑦 ↦→ 2} (1; free 𝑥) + (∗𝑦; free 𝑦)
⇝ {𝑦 ↦→ 2} 1 + (∗𝑦; free 𝑦)
⇝ {𝑦 ↦→ 2} 1 + (2; free 𝑦)
⇝ {} 1 + 2

⇝ {} 3

Using the same initial heap, the second expression evaluates to the same final heap and value, but

the derivations have no common intermediate states:

{𝑥 ↦→ 1, 𝑦 ↦→ 2} (∗𝑦; free 𝑦) + (∗𝑥 ; free 𝑥)
⇝ {𝑥 ↦→ 1, 𝑦 ↦→ 2} (2; free 𝑦) + (∗𝑥 ; free 𝑥)
⇝ {𝑥 ↦→ 1} 2 + (∗𝑥 ; free 𝑥)
⇝ {𝑥 ↦→ 1} 2 + (1; free 𝑥)
⇝ {} 2 + 1

⇝ {} 3

We might like to show this commutativity property holds for any choice of expressions 𝑒1 and

𝑒2, but it is hard to prove. Indeed, these examples demonstrate that reordering subexpressions
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can drastically change the way a derivation looks, and so even stating the required induction

hypothesis is difficult. To address this, in section 3 we will introduce a compositional semantics for

our language with explicit naming that allows us to present a simple proof of this fact. ⋄

2.5 Reflection
In this section, we reflect on our design decisions for explicit naming.

Choice of primitives. Our decision to use a lambda calculus to present our ideas was motivated

by the desire to keep the semantics as simple as possible. It is notable that the App rule performs

two roles: creating new names, and providing a notion of computation. We could instead have

introduced a ‘let’ expression to create new names, which would simplify some of the presentation,

but we would still need another operation to give our language expressive power. However, our

ideas are not tied to this lambda calculus, and it is simple to create variants or extensions of this

language with new constructs as desired. For example, one could introduce a primitive to compare

two names for equality, which corresponds to testing equality of pointers. We could also introduce

a ‘mutual let’ construction to introduce cycles onto a heap.

Generality of primitives. One goal of our work is to produce a language that can be used to

investigate type systems for safe memory management. In light of this, it is important that our

primitives are as permissive as possible, so that the language can be applied in a range of settings.

For example, even though many such type systems forbid freeing aliased pointers, we permit this

behaviour, since there are some situations in which this might be allowed.

Immutable bindings. The restriction to immutable bindings is the default for pure functional

languages such asHaskell.When translated into the language ofmemorymanagement, immutability

means that we forbid manipulation of values behind pointers. Pointers with this restriction are

used in practice: for example, Rust has a notion of immutable borrows [Matsakis and Klock 2014], a

kind of pointer whose data cannot be modified, and Haskell has stable pointers [Peyton Jones et al.

2000; Reid 1994], which are pointers to (immutable) Haskell objects that may be passed to foreign

functions, behaving similarly to explicit names. We note that many of the challenges of manual

memory management are present even in the absence of mutation, most notably use-after-free

errors, one of the key issues encountered when programming with pointers.

3 A Compositional Semantics
The semantics defined in the previous section simultaneously handles two tasks: performing a

computation, and tracking when names are freed. In this section, we show how to separate these

two tasks, factoring our heap-based semantics into two simpler parts. The resulting semantics that

we obtain is equivalent to the heap-based semantics of section 2.

First of all, we give an evaluation semantics for our lambda calculus with explicit naming. This

semantics fully captures the denotational behaviour of an expression, but does not model the

operational aspect of freeing names. Next, we describe a system of effects to track the way that

evaluating an expression interacts with a heap. Crucially, this is done in a way that maintains

compositionality at the level of heaps: we do not need to thread the heap through our calculations

in order to determine the effect of a complicated expression. And finally, we define a partial order on

effects, which can be used to reason about effects in a compositional manner, even in the presence

of uncertainty; this feature has no direct counterpart in the heap-based semantics.
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3.1 Denotations of Expressions
In this section, we give an evaluation semantics for our language, which tracks only the meaning

of expressions and not their effects on the heap. Our partial denotation function ⟦−⟧(−) maps

an expression 𝑒 and a context Γ to a denotational value 𝑤 . Here, a context is a partial mapping

from names to denotational values, and we will shortly define what a denotational value is. To

distinguish such values from the notion of values defined in section 2, we will sometimes refer to

the latter as operational values. Unlike heaps, the contexts used in our evaluation semantics will

not be threaded sequentially through our semantic rules. For example, in an application 𝑒1 𝑒2, the

same context will be used to evaluate both subexpressions 𝑒1 and 𝑒2.

Recall that the value assigned to a given name, if it exists, will never change (example 2.4). This

suggests that we might be able to track the value assigned to a name within the denotation of the

name itself, rather than in an external heap. To this end, we define the following rules:

Γ(𝑥) = 𝑤

⟦𝑥⟧Γ = (𝑥 ↦→ 𝑤)
D-Var

⟦𝑒⟧Γ = (𝑥 ↦→ 𝑤)
⟦∗𝑒⟧Γ = 𝑤

D-Read

Here, (𝑥 ↦→ 𝑤) is the denotational value corresponding to a name 𝑥 that is bound to the denotational

value𝑤 . Thus, the D-Var rule states that a name evaluates to itself, but that we additionally store

the value it is bound to. In contrast to the Var rule, this means that a name that does not appear in

the domain of its context has no denotation. The D-Read rule does not access the context to read

from a name, but instead retrieves the stored value directly from its argument. Therefore, as this

rule does not access a heap, it can never fail if its argument evaluates to a name.

Example 3.1 (evaluating variables). The denotation of ∗𝑥 in a context Γ is precisely Γ(𝑥). We

may directly calculate the following: ⟦∗𝑥⟧Γ = 𝑤 ⇐⇒ ∃𝑦. ⟦𝑥⟧Γ = (𝑦 ↦→ 𝑤) ⇐⇒ Γ(𝑥) = 𝑤 . ⋄

Because this semantics does not model name freeing, we also define the following rule, which

states that the operation of freeing a name has no effect on denotations:

⟦𝑒; free 𝑒′⟧Γ = ⟦𝑒⟧Γ
D-Free

Finally, we add rules for abstraction and application. Because we are now using a context in place

of a heap, abstractions denote closures, storing the context in which they were defined:

⟦𝜆𝑥 . 𝑒⟧Γ = 𝜆Γ𝑥 . 𝑒
D-Lam

⟦𝑒1⟧Γ = 𝜆Γ
′
𝑥 . 𝑒

⟦𝑒1 𝑒2⟧Γ = ⟦𝑒⟧Γ′,𝑥 ↦→⟦𝑒2⟧Γ
D-App

The D-Lam rule states that an abstraction evaluates to itself, additionally remembering the context

in which it is evaluated. The D-App rule describes the usual way to evaluate applications, where the

body 𝑒 of the closure is evaluated in its stored context Γ′, extended by binding the bound variable

𝑥 to the result of evaluating 𝑒2. In a similar way to the App rule, the D-App rule should be viewed

as choosing a fresh name 𝑥 for the bound variable.

Example 3.2 (identity function). In the previous section we saw that evaluating the expression

(𝜆𝑥. ∗𝑥) (1 + 2) with the empty heap resulted in the value 3 and the heap with the binding 𝑥 ↦→ 3.

The denotation of the same expression in a context Γ gives the same value:

⟦(𝜆𝑥 . ∗𝑥) (1 + 2)⟧Γ = ⟦∗𝑥⟧Γ,𝑥 ↦→⟦1+2⟧Γ
= ⟦∗𝑥⟧Γ,𝑥 ↦→3

= 3 ⋄
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We are now in a place to define that a denotational value is either a closure (𝜆Γ𝑥 . 𝑒), where Γ is a

context, or a name bound to a denotational value (𝑥 ↦→ 𝑤). Importantly, while expressions and

operational values are defined inductively, we define denotational values coinductively. This means

that we allow for infinite chains of bindings such as:

(𝑥 ↦→ (𝑦 ↦→ (𝑥 ↦→ (𝑦 ↦→ · · ·))))

and we allow bindings in a context Γ to refer to Γ itself, as in:

Γ(𝑥) = 𝜆Γ𝑦. 𝑒

Example 3.3 (contexts with cycles). Consider the heap with a cycle mapping 𝑥 to 𝑦 and 𝑦 to 𝑥 .

Given such a heap, we can show that dereferencing 𝑥 twice gives 𝑥 itself:

{𝑥 ↦→ 𝑦,𝑦 ↦→ 𝑥} ∗∗𝑥
⇝ {𝑥 ↦→ 𝑦,𝑦 ↦→ 𝑥} ∗𝑦
⇝ {𝑥 ↦→ 𝑦,𝑦 ↦→ 𝑥} 𝑥

Similar behaviour can be expressed in this evaluation semantics. Consider the context Γ defined by

Γ(𝑥) = (𝑦 ↦→ Γ(𝑦)) and Γ(𝑦) = (𝑥 ↦→ Γ(𝑥)). Then we can calculate the following:

⟦𝑥⟧Γ = (𝑥 ↦→ Γ(𝑥))
⟦∗𝑥⟧Γ = Γ(𝑥) = (𝑦 ↦→ Γ(𝑦))
⟦∗∗𝑥⟧Γ = Γ(𝑦) = (𝑥 ↦→ Γ(𝑥)) = ⟦𝑥⟧Γ ⋄

3.2 Tracking Effects
The evaluation semantics captures the denotational meaning of expressions, but does not model

name freeing. For example, consider the following expression:

∗((𝜆𝑥. (𝑥 ; free 𝑥)) 4)

It has denotation 4, but does not evaluate in the heap-based semantics. In particular, evaluation

gets stuck at the end as dereferencing 𝑥 requires a binding for 𝑥 in the heap:

𝐻 ∗((𝜆𝑥 . (𝑥 ; free 𝑥)) 4)
⇝ 𝐻, 𝑥 ↦→ 4 ∗(𝑥 ; free 𝑥)
⇝ 𝐻 ∗𝑥

To model this kind of behaviour, we describe a way to abstractly track the effect that evaluating an

expression has on the heap. The idea is that the effect of an expression behaves like a log, tracking

which names have been read from and freed, and in what order. We can then call a computation

valid if its log contains no instance of a name being used after it is freed. In a sense to be defined in

section 4, valid computations have equal behaviour in both semantics.

We formalise this idea as follows. A name effect is an element 𝑞 of the set

{1, read, free}

A name effect describes what happens to a given name over the course of a computation:

• 1 means that the name was not read from or freed;

• read means that the name was read one or more times;

• free means that the name was read zero or more times, and then freed.
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Note that we only track reading and freeing, not assignment to a name, and using the notation 𝑞

for name effects reflects the fact that they form an ‘effect quantale’, as we shall see later on in

this section. We can compose two name effects using the partial binary operator (−) (−) called
sequential composition and pronounced ‘then’, which is defined as follows:

1 read free

1 1 read free

read read read free

free free ⊥ ⊥
Here,⊥ denotes that a particular combination is left undefined. The fact that is partial encapsulates

our notion of validity: if 𝑞1 𝑞2 is undefined, it is not valid to compose the two name effects. For

example, free read is undefined, because it is not valid to use a name after freeing it. Note that

composition with an undefined value is left undefined:

𝑞 ⊥ = ⊥ 𝑞 = ⊥

It is easy to check that composition of name effects is associative. That is, when either side in the

following equation is defined, so is the other, and they are equal:

𝑞1 (𝑞2 𝑞3) = (𝑞1 𝑞2) 𝑞3

Moreover, 1 is the identity for composition, so name effects form a partial monoid:

1 𝑞 = 𝑞 = 𝑞 1

Example 3.4 (composing name effects). Intuitively, the name effect of 𝑥 in the expression ∗𝑥 ; free 𝑥
is given by read free, which simplifies to free. This is formalised by the semantics given below. ⋄

We now define an effect to be a total function mapping each name to its name effect. This means

that we track the effect on each name separately: reading or freeing 𝑥 has no impact on the validity

of reading or freeing any other name 𝑦. We use the letter 𝑞 for both name effects and effects; in

practice, it will be clear which kind of effect is meant. We define a partial monoid structure on

effects by (𝑞 𝑞′) (𝑥) = 𝑞(𝑥) 𝑞′ (𝑥) and 1(𝑥) = 1. We will also find it useful to define basic effects

that read and free a given name 𝑥 , and have no effect on any other names:

(read 𝑥) (𝑦) =

{
read if 𝑥 = 𝑦

1 otherwise

(free 𝑥) (𝑦) =

{
free if 𝑥 = 𝑦

1 otherwise

Using the above ideas, we can now define an effectful semantics that simultaneously computes the

denotation and effect of an expression. Judgments are of the form Γ ⊢ 𝑒 ⇓ 𝑞 :𝑤 , which can be read

as ‘in context Γ, the expression 𝑒 has effect 𝑞 and denotes𝑤 ’. This can be seen as an instrumentation

of the evaluation semantics, with the rules for the effectful semantics having similar form to the

corresponding rules for the evaluation semantics, but tracking extra information. Indeed, our rules

satisfy the following implication, up to choice of fresh names:

Γ ⊢ 𝑒 ⇓ 𝑞 :𝑤 =⇒ ⟦𝑒⟧Γ = 𝑤
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We will use the convention that whenever a composition 𝑞1 𝑞2 occurs in a rule, we assume that

this composition is in fact defined. The rules themselves are defined as follows:

Γ(𝑥) = 𝑤

Γ ⊢ 𝑥 ⇓ 1 : (𝑥 ↦→ 𝑤)
E-Var

Γ ⊢ 𝜆𝑥. 𝑒 ⇓ 1 : 𝜆Γ𝑥 . 𝑒
E-Lam

Γ ⊢ 𝑒1 ⇓ 𝑞1 : 𝜆
Γ′𝑥 . 𝑒 Γ ⊢ 𝑒2 ⇓ 𝑞2 :𝑤 (Γ′, 𝑥 ↦→ 𝑤) ⊢ 𝑒 ⇓ 𝑞3 :𝑤

′

Γ ⊢ 𝑒1 𝑒2 ⇓ 𝑞1 𝑞2 𝑞3 :𝑤
′ E-App

Γ ⊢ 𝑒 ⇓ 𝑞 : (𝑥 ↦→ 𝑤)
Γ ⊢ ∗𝑒 ⇓ 𝑞 read 𝑥 :𝑤

E-Read

Γ ⊢ 𝑒1 ⇓ 𝑞1 :𝑤 Γ ⊢ 𝑒2 ⇓ 𝑞2 : (𝑥 ↦→ 𝑤 ′)
Γ ⊢ 𝑒1; free 𝑒2 ⇓ 𝑞1 𝑞2 free 𝑥 :𝑤

E-Free

There are a number of points to note about these rules. First of all, the rules E-Var and E-Lam

for names and lambda abstractions always yield the ‘do-nothing’ effect 1. This corresponds to the

fact that the heap-based Var and Lam rules do not read from or modify the heap. The other rules

(E-App, E-Read, E-Free) similarly correspond to rules from the heap-based semantics (App, Read,

Free), describing the order of operations carried out on the heap.

Secondly, the effects of intermediate expressions are never analysed, but are only used to compute

the overall effect via sequential composition. In turn, while we track effects that capture how

evaluation interacts with the heap, the context used to evaluate each effect is not threaded through

the rules, with the same context being used for each subexpression in a compound term. The only

rule that modifies the context is E-App, which updates the captured context Γ′ with a new binding

for 𝑥 . And finally, specifying both the denotation and effect in a single rule set, rather using separate

rules for each part, avoids side conditions about the choice of fresh names in the two parts.

We conclude by returning to our initial example, ∗((𝜆𝑥 . (𝑥 ; free 𝑥)) 4). Using our effectful se-

mantics gives the following derivation, in which uses of E-Var and E-Lam are elided for simplicity:

Γ, 𝑥 ↦→ 4 ⊢ 𝑥 ; free 𝑥 ⇓ free 𝑥 : (𝑥 ↦→ 4)
Γ ⊢ (𝜆𝑥 . (𝑥 ; free 𝑥)) 4 ⇓ free 𝑥 : (𝑥 ↦→ 4)

Γ ⊢ ∗((𝜆𝑥. (𝑥 ; free 𝑥)) 4) ⇓ free 𝑥 read 𝑥 : 4

However, the final composition of effects, free 𝑥 read 𝑥 , is undefined as it involves a read of a

name after it is freed. Hence, the above derivation is not actually valid, which corresponds to the

fact that the expression fails to evaluate in our heap-based semantics.

3.3 Reasoning
In this section, we present some examples of how our new semantics can be used to reason about

the denotational and effectful behaviour of expressions.

Example 3.5 (let expressions). We can define syntax for ‘let’ expressions as follows:

(let 𝑥 = 𝑒1 in 𝑒2) ≔ (𝜆𝑥 . 𝑒2; free 𝑥) 𝑒1

Their behaviour is then captured by the following derivation tree:

Γ ⊢ 𝑒1 ⇓ 𝑞1 :𝑤1

Γ, 𝑥 ↦→ 𝑤1 ⊢ 𝑒2 ⇓ 𝑞2 :𝑤2

Γ, 𝑥 ↦→ 𝑤1 ⊢ 𝑒2; free 𝑥 ⇓ 𝑞2 free 𝑥 :𝑤2

Γ ⊢ (𝜆𝑥 . 𝑒2; free 𝑥) 𝑒1 ⇓ 𝑞1 𝑞2 free 𝑥 :𝑤2
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This derivation shows that the denotation of let 𝑥 = 𝑒1 in 𝑒2 is given by the denotation of 𝑒2 in the

context extended by binding 𝑥 to the denotation of 𝑒1, and the effect is that of first evaluating 𝑒1,

then 𝑒2, and finally freeing 𝑥 . Hence, we have the following derivable rule:

Γ ⊢ 𝑒1 ⇓ 𝑞1 :𝑤1 Γ, 𝑥 ↦→ 𝑤1 ⊢ 𝑒2 ⇓ 𝑞2 :𝑤2

Γ ⊢ let 𝑥 = 𝑒1 in 𝑒2 ⇓ 𝑞1 𝑞2 free 𝑥 :𝑤2

For example, we can use this rule to obtain the semantics of the expression let 𝑥 = 𝑒 in ∗𝑥 :

Γ ⊢ 𝑒 ⇓ 𝑞 :𝑤 Γ, 𝑥 ↦→ 𝑤 ⊢ ∗𝑥 ⇓ read 𝑥 :𝑤

Γ ⊢ let 𝑥 = 𝑒 in ∗𝑥 ⇓ 𝑞 read 𝑥 free 𝑥 :𝑤

The overall effect simplifies to 𝑞 free 𝑥 , where 𝑞 is the effect of evaluating the expression 𝑒 , and

the overall denotation𝑤 is simply the result of this evaluation. This example shows how we can

reason about derived concepts such as ‘let’ expressions in a simple manner. ⋄

Example 3.6 (commuting effects). If 𝑞1 and 𝑞2 act on disjoint sets of names, then their composites

𝑞1 𝑞2 and 𝑞2 𝑞1 are always defined and are equal. This commutativity property allows us to

reorder computations without changing the overall effect. For example, the expressions

𝑒; free 𝑥 ; free 𝑦 and 𝑒; free 𝑦; free 𝑥

always have the same denotation and effect, because freeing names is commutative:

Γ ⊢ 𝑒 ⇓ 𝑞 :𝑤

Γ ⊢ 𝑒; free 𝑥 ⇓ 𝑞 free 𝑥 :𝑤

Γ ⊢ 𝑒; free 𝑥 ; free 𝑦 ⇓ 𝑞 free 𝑥 free 𝑦 :𝑤

Γ ⊢ 𝑒 ⇓ 𝑞 :𝑤

Γ ⊢ 𝑒; free 𝑦 ⇓ 𝑞 free 𝑦 :𝑤

Γ ⊢ 𝑒; free 𝑦; free 𝑥 ⇓ 𝑞 free 𝑦 free 𝑥 :𝑤

As another example, let us revisit the following expressions from example 2.5:

𝑒1 + 𝑒2 and 𝑒2 + 𝑒1

During evaluation of both expressions, the subexpressions 𝑒1 and 𝑒2 are evaluated in the same

context Γ. Concretely, the two expressions have the following derivations:

Γ ⊢ 𝑒1 ⇓ 𝑞1 :𝑤1 Γ ⊢ 𝑒2 ⇓ 𝑞2 :𝑤2

Γ ⊢ 𝑒1 + 𝑒2 ⇓ 𝑞1 𝑞2 :𝑤1 +𝑤2

Γ ⊢ 𝑒2 ⇓ 𝑞2 :𝑤2 Γ ⊢ 𝑒1 ⇓ 𝑞1 :𝑤1

Γ ⊢ 𝑒2 + 𝑒1 ⇓ 𝑞2 𝑞1 :𝑤2 +𝑤1

Whenever 𝑞1 𝑞2 and 𝑞2 𝑞1 are both defined, they are equal. Therefore, by commutativity of

addition, if both 𝑒1 + 𝑒2 and 𝑒2 + 𝑒1 evaluate in a given context, they behave identically. ⋄

3.4 Ordering Effects
Our notion of effects can naturally be given a partial order ≤ that respects the sequential composition

operation in a suitable sense. This allows us to reason compositionally by considering bounds on

effects, even in cases where we do not know the exact effect that evaluating an expression will

have. Concretely, we give name effects a linear order by setting

1 < read < free

If an expression might free a name (free) or do nothing to the heap (1), an upper bound for both

cases is free. Similarly, if it might read from a name but might do nothing, an upper bound for the

effect in either case is read. If we have no information about what an expression might do to a

name, other than that the effect is valid, the loosest possible bound on the effect is free.
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We write 𝑞1 ⊔ 𝑞2 for the least upper bound of name effects 𝑞1 and 𝑞2, and extend ≤ and ⊔ to

effects in a pointwise manner. The ordering respects sequential composition in the sense that:

𝑞 𝑞1 𝑞′ is defined ∧ 𝑞2 ≤ 𝑞1 =⇒ 𝑞 𝑞2 𝑞′ is defined ∧ 𝑞 𝑞2 𝑞′ ≤ 𝑞 𝑞1 𝑞′

Because the validity of a computation is determined by whether its effect is defined, upper bounds

on effects can be used to conservatively estimate whether computations will be valid even when

the effect of an intermediate expression is not known exactly.

Example 3.7 (joining effects). Consider an expression of the following form.

𝑒 = if ∗𝑥 then 𝑒1 else 𝑒2

Suppose we know that 𝑒1 and 𝑒2 evaluate as follows.

Γ ⊢ 𝑒1 ⇓ 𝑞1 :𝑤1 Γ ⊢ 𝑒2 ⇓ 𝑞2 :𝑤2

If we do not know whether 𝑥 is true or false in Γ, then we do not know the overall result of this

computation, but an upper bound for its effect in either case is read 𝑥 (𝑞1 ⊔ 𝑞2). We can use this

bound to reason about larger programs that include this as a subexpression without resorting to

case splitting on the truth value of 𝑥 in Γ. ⋄

These definitions make the set of effects into an effect quantale, a notion we will now define.

Definition 3.8 (effect quantale). An effect quantale [Gordon 2021] is a set 𝐸 of effects, together

with partial binary operations ⊔ and and an identity element 1 ∈ 𝐸, satisfying various laws:

• (𝐸,⊔) is a partial join-semilattice;

• (𝐸, , 1) is a partial monoid, which means that the identities 𝑎 1 = 1 𝑎 = 𝑎 always hold,

and associativity 𝑎 (𝑏 𝑐) = (𝑎 𝑏) 𝑐 holds when either side is defined;

• Sequencing distributes over joins in both directions, so both 𝑎 (𝑏 ⊔ 𝑐) = (𝑎 𝑏) ⊔ (𝑎 𝑐)
and (𝑎 ⊔ 𝑏) 𝑐 = (𝑎 𝑐) ⊔ (𝑏 𝑐) hold whenever either side is defined.

It is easy to check that name effects, and therefore effects, form an effect quantale.

3.5 Other Effect Systems
We used a particular partial monoid to track effects, but other choices are possible too. By way of

example, we present an alternative partial monoid based on ordinals, which allows us to capture

more information about the behaviour of computations. We begin by replacing the set of name

effects {1, read, free} with the collection of countable ordinals:

0, 1, 2, . . . , 𝜔, 𝜔 + 1, 𝜔 + 2, . . . , 𝜔 · 2, 𝜔 · 2 + 1, . . .

In this setting, we view the ordinal 0 as representing the ‘do-nothing’ effect, finite ordinals 1, 2, . . .

as corresponding to that number of reads, and the first infinite ordinal𝜔 as corresponding to freeing

a name. Ordinals above 𝜔 are considered to be invalid effects.

Sequential composition is given by ordinal addition. For example, the ordinal equation 2 + 3 = 5

means that ‘2 reads’ followed by ‘3 reads’ corresponds to ‘5 reads’. As 𝑛 + 𝜔 = 𝜔 for any finite

ordinal 𝑛, the effect of reading from a name any number of times and then freeing it is equal to the

effect of simply freeing the name. However, as 𝜔 + 1 > 𝜔 , it is invalid to read from a name after

freeing it. Similarly, 𝜔 + 𝜔 = 𝜔 · 2 > 𝜔 , so freeing a name twice is invalid. In this manner, ordinal

addition elegantly captures the notion of sequential composition for this form of effect.

Countable ordinals form an effect quantale where sequential composition is ordinal addition and

the join operator is given by 𝛼 ⊔ 𝛽 = max(𝛼, 𝛽). Therefore, total functions from names to countable

ordinals also form an effect quantale by pointwise definition, and we call such functions ordinal
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effects. Incidentally, this provides a quick proof that our original set of effects {1, read, free} is an
effect quantale, as we can translate proofs from countable ordinals to name effects.

We now describe how our effectful semantics is modified to use ordinal effects. Judgments have

the form Γ ⊢ 𝑒 ⇓𝑂 𝑞 :𝑤 , where 𝑞 is an ordinal effect; we write the judgment relation as ⇓𝑂 to

distinguish it from the original effectful semantics. The modified E-Read and E-Free rules are as

follows, where (𝑥 ↦→ 𝛼) is the ordinal effect mapping 𝑥 to the ordinal 𝛼 and all other names to 0:

Γ ⊢ 𝑒 ⇓𝑂 𝑞 : (𝑥 ↦→ 𝑤)
Γ ⊢ ∗𝑒 ⇓𝑂 𝑞 (𝑥 ↦→ 1) :𝑤

Γ ⊢ 𝑒1 ⇓𝑂 𝑞1 :𝑤 Γ ⊢ 𝑒2 ⇓𝑂 𝑞2 : (𝑥 ↦→ 𝑤 ′)
Γ ⊢ 𝑒1; free 𝑒2 ⇓𝑂 𝑞1 𝑞2 (𝑥 ↦→ 𝜔) :𝑤

The resulting semantics is a generalisation of our original semantics. To formalise this, we define a

partial function from countable ordinals to name effects by:

𝐸 (𝛼) =


1 if 𝛼 = 0

read if 1 ≤ 𝛼 < 𝜔

free if 𝛼 = 𝜔

It is then a simple rule induction in both directions to prove the following, which makes precise

that if we ‘forget’ the number of reads then the ordinal semantics reduces to the original:

Γ ⊢ 𝑒 ⇓ 𝑞 :𝑤 ⇐⇒ (∃𝑞′ . Γ ⊢ 𝑒 ⇓𝑂 𝑞′ :𝑤 ∧ ∀𝑥 . 𝐸 (𝑞′ (𝑥)) = 𝑞(𝑥))
Many familiar operations on ordinals correspond to transformations of effects. For example,

consider the operation 𝜔 · (−) on countable ordinals. The only way for 𝜔 · 𝑞 to be valid is if 𝑞 is 0

or 1. This corresponds to a name that can be read at most once. We can use this to easily construct

a new semantics with affine names that can only be read at most once. Let 𝐴 be a particular set of

names that we will call ‘affine’, and define aff (𝑞) to be the ordinal effect given by:

aff (𝑞) (𝑥) =

{
𝜔 · 𝑞(𝑥) if 𝑥 ∈ 𝐴

𝑞(𝑥) if 𝑥 ∉ 𝐴

Then:

Γ ⊢ 𝑒 ⇓𝑂 𝑞 :𝑤 ⇐⇒ Γ ⊢ 𝑒 ⇓𝐴 aff (𝑞) :𝑤
where the nontrivial rules for Γ ⊢ 𝑒 ⇓𝐴 𝑞 :𝑤 are given by:

Γ ⊢ 𝑒 ⇓𝐴 𝑞 : (𝑥 ↦→ 𝑤)
Γ ⊢ ∗𝑒 ⇓𝐴 𝑞 aff (𝑥 ↦→ 1) :𝑤

Γ ⊢ 𝑒1 ⇓𝐴 𝑞1 :𝑤 Γ ⊢ 𝑒2 ⇓𝐴 𝑞2 : (𝑥 ↦→ 𝑤 ′)
Γ ⊢ 𝑒1; free 𝑒2 ⇓𝐴 𝑞1 𝑞2 aff (𝑥 ↦→ 𝜔) :𝑤

Indeed, because ordinal multiplication distributes over addition, we have the following identity:

aff (𝑞1 𝑞2) = aff (𝑞1) aff (𝑞2)
This allows us to prove this equivalence by a simple rule induction in both directions.

Another common operation on ordinals is the natural or Hessenberg sum, written ⊕. This is
another notion of ordinal addition which is commutative (and associative and has unit 0). It is

defined on ordinals at most 𝜔 by the following equations:

𝑛 ⊕𝑚 = 𝑚 ⊕ 𝑛 = 𝑛 +𝑚 if 𝑛,𝑚 finite

𝑛 ⊕ 𝜔 = 𝜔 ⊕ 𝑛 = 𝜔 + 𝑛 if 𝑛 finite

𝜔 ⊕ 𝜔 = 𝜔 + 𝜔

This corresponds to the parallel composition of effects. For example, reading from a name twice,

while in parallel reading from that name three times, yields five reads from that name in total. It is
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not valid to read from a name and free it in parallel, since the behaviour of such a computation

depends on the order of execution. This corresponds to the fact that 1 ⊕ 𝜔 = 𝜔 ⊕ 1 = 𝜔 + 1 > 𝜔 .

In general, it can be shown that 𝛼 + 𝛽 ≤ 𝛼 ⊕ 𝛽 and so 𝛽 + 𝛼 ≤ 𝛼 ⊕ 𝛽 by commutativity of ⊕, and
hence the parallel composition of two effects is an upper bound for both possible orders of sequential

composition. In fact, for ordinals at most 𝜔 , it is easy to show that 𝛼 ⊕ 𝛽 = max(𝛼 + 𝛽, 𝛽 + 𝛼), so
it is the least upper bound of both orders of sequential composition. It is in this sense that the

analogy to parallel computation is made precise. This suggests a way to define a rule for a parallel

composition primitive, where ⊕ is defined pointwise on ordinal effects:

Γ ⊢ 𝑒1 ⇓𝑂 𝑞1 :𝑤1 Γ ⊢ 𝑒2 ⇓𝑂 𝑞2 :𝑤2 Γ, 𝑥 ↦→ 𝑤1, 𝑦 ↦→ 𝑤2 ⊢ 𝑒 ⇓𝑂 𝑞3 :𝑤

Γ ⊢ (let 𝑥 = 𝑒1 ∥ 𝑦 = 𝑒2 in 𝑒) ⇓𝑂 (𝑞1 ⊕ 𝑞2) 𝑞3 (free 𝑥 ⊕ free 𝑦) :𝑤
E-Par

This section demonstrates that variations to our effect-based semantics are easy to produce, and

they are sufficiently general to model a variety of problems.

4 Equivalence of the Semantics
In this section, we state the equivalence between the semantics of sections 2 and 3, and discuss

how we can transport useful results across the equivalence. Informally, the theorem says that if an

expression 𝑒 evaluates in the heap semantics using a given heap𝐻 , then the expression also evaluates

in the effectful semantics with a particular context derived from 𝐻 , and vice versa. Moreover, when

this holds, the two computations produce the same value. To make this equivalence precise, we

need to establish some conversions between the heaps and operational values of section 2 and the

contexts and denotational values of section 3.

First, we define a way to ‘forget’ the extra data held by a denotational value to convert it into an

operational value. This operation is written𝑤 ↦→ 𝑤 , and is defined by the following equations:

(𝑥 ↦→ 𝑤) = 𝑥 𝜆Γ𝑥 . 𝑒 = 𝜆𝑥 . 𝑒

Next, we define a translation from heaps to contexts. Given a heap 𝐻 , its translation is written

tr(𝐻 ), and is given by the following coinductive rules:

𝐻 (𝑥) = 𝑦 tr(𝐻 ) (𝑦) = 𝑤

tr(𝐻 ) (𝑥) = (𝑦 ↦→ 𝑤)
𝐻 (𝑥) = 𝜆𝑦. 𝑒

tr(𝐻 ) (𝑥) = 𝜆tr(𝐻 )𝑦. 𝑒

For example, consider the heap

𝐻 = {𝑥 ↦→ (𝜆𝑡 . 𝑒), 𝑦 ↦→ 𝑥, 𝑧 ↦→ 𝑡}
This has translation tr(𝐻 ) = Γ given by

Γ(𝑥) = 𝜆Γ𝑡 . 𝑒 Γ(𝑦) = (𝑥 ↦→ 𝜆Γ𝑡 . 𝑒)
Note that Γ(𝑧) is undefined because 𝐻 (𝑧) = 𝑡 is a dangling pointer : it is a name not in the domain

of 𝐻 . In general, we will say that a heap 𝐻 is closed if whenever 𝐻 (𝑥) is defined, the free variables
of 𝐻 (𝑥) are contained in the domain of 𝐻 . This should be viewed as a well-formedness constraint

on heaps, ensuring that translations to contexts are faithful. It is easy to expand any heap 𝐻 into a

closed heap 𝐻 ′ ⊇ 𝐻 , for example by setting 𝐻 ′ (𝑡) = 𝑡 whenever 𝑡 is a free variable of some 𝐻 (𝑥).
Using the above, we can now state the equivalence theorem:

Theorem 4.1 (eqivalence of semantics). Suppose𝐻 is a closed heap containing all free variables

of the expression 𝑒 in its domain. Then we have the equivalence

(∃𝐻 ′ . 𝐻 : 𝑒 ⇓ 𝐻 ′
: 𝑣) ⇐⇒ (∃𝑤 𝑞. 𝑤 = 𝑣 ∧ tr(𝐻 ) ⊢ 𝑒 ⇓ 𝑞 :𝑤)

where the same sequence of fresh names was chosen by each semantics.
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This theorem states that 𝑒 evaluates in the heap-based semantics using initial heap 𝐻 if and only

if it evaluates in the effect-based semantics using context tr(𝐻 ). Moreover, when this holds, the

two computations produce the same value: if the operational value produced by the heap-based

semantics is 𝑣 and the denotational value produced by the effect-based semantics is𝑤 , then 𝑣 = 𝑤 .

We will prove this theorem in section 5. In the remainder of this section, we explore some

examples to show different ways that this theorem can be used. In particular, we will demonstrate

that it is easier to reason about various program transformations in the effectful semantics, but

that we can use the equivalence theorem to transfer results to the heap semantics. We will assume

without comment that relevant heaps satisfy the hypotheses of the equivalence theorem.

Example 4.2 (commuting effects, revisited). In example 3.6, we exploited compositionality to show

that if 𝑒1 + 𝑒2 and 𝑒2 + 𝑒1 both evaluate in some context Γ, then they both evaluate to the same

result. We would like to prove the same about the heap semantics, but this would be difficult to

do directly because the derivations in this semantics for 𝑒1 + 𝑒2 and 𝑒2 + 𝑒1 may look completely

different. Instead, we will make use of our equivalence theorem. Suppose that

𝐻1 : 𝑒1 + 𝑒2 ⇓ 𝐻2 : 𝑣 𝐻1 : 𝑒2 + 𝑒1 ⇓ 𝐻 ′
2
: 𝑣 ′

By theorem 4.1, we obtain

tr(𝐻1) ⊢ 𝑒1 + 𝑒2 ⇓ 𝑞 :𝑤 tr(𝐻1) ⊢ 𝑒2 + 𝑒1 ⇓ 𝑞′ :𝑤 ′

where𝑤 = 𝑣 and𝑤 ′ = 𝑣 ′. But by example 3.6, we know that𝑤 = 𝑤 ′
, so 𝑣 = 𝑣 ′. ⋄

Example 4.3 (common subexpression elimination). Consider the expression 𝑒 + 𝑒 , which evaluates

the expression 𝑒 twice. We may want to transform this expression into let 𝑥 = 𝑒 in ∗𝑥 + ∗𝑥 , which
would only evaluate 𝑒 once. Suppose that we attempt to prove the validity of the transformation in

the heap semantics by computing the following derivations:

𝐻1 : 𝑒 ⇓ 𝐻2 : 𝑣1 𝐻2 : 𝑒 ⇓ 𝐻3 : 𝑣2

𝐻1 : 𝑒 + 𝑒 ⇓ 𝐻3 : 𝑣1 + 𝑣2

𝐻1 : 𝑒 ⇓ 𝐻2 : 𝑣1

𝐻1 : let 𝑥 = 𝑒 in ∗𝑥 + ∗𝑥 ⇓ 𝐻2 : 𝑣1 + 𝑣1

In this semantics, we would need to prove that 𝑣1 = 𝑣2 to show that the transformation is valid. We

would also need to check that the remainder of the program that follows the evaluation of 𝑒 + 𝑒

can be executed starting with 𝐻2 and not 𝐻3, which would require us to reason in detail about the

changes on the heap that could be caused by evaluating 𝑒 for a second time. This is significantly

easier in the effect semantics, in which we have the following derivations:

Γ ⊢ 𝑒 ⇓ 𝑞 :𝑤

Γ ⊢ 𝑒 + 𝑒 ⇓ 𝑞 𝑞 :𝑤 +𝑤
Γ ⊢ 𝑒 ⇓ 𝑞 :𝑤

Γ ⊢ let 𝑥 = 𝑒 in ∗𝑥 + ∗𝑥 ⇓ 𝑞 free 𝑥 :𝑤 +𝑤
Due to the compositional properties of this semantics, both evaluations of 𝑒 occur within the same

context Γ, and so must produce the same value𝑤 . This shows that both 𝑒 +𝑒 and let 𝑥 = 𝑒 in ∗𝑥 +∗𝑥
must produce the same value. Moreover, in this semantics it is easy to show that it is always valid

to replace the former with the latter inside any complicated expression. Indeed, as 𝑥 is fresh,

𝑞1 (𝑞 𝑞) 𝑞2 is defined =⇒ 𝑞1 (𝑞 free 𝑥) 𝑞2 is defined

where 𝑞1 and 𝑞2 encode the effect of the surrounding parts of the expression. Therefore, by making

use of our equivalence theorem, the same is true of the heap semantics: the expression 𝑒 + 𝑒 can be

replaced with let 𝑥 = 𝑒 in ∗𝑥 + ∗𝑥 without changing the behaviour of an overall program. ⋄

Example 4.4 (dead code elimination). Consider the expression

let 𝑥 = 𝑒1 in 𝑒2
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where 𝑥 does not appear free in 𝑒2. We want to show that

(𝐻1 : (let 𝑥 = 𝑒1 in 𝑒2) ⇓ 𝐻2 : 𝑣) =⇒ (∃𝐻 ′
2
. 𝐻1 : 𝑒2 ⇓ 𝐻 ′

2
: 𝑣)

under the assumption that the free variables of 𝑒1 and 𝑒2 are in the domain of the closed heap 𝐻1.

This is difficult to show in the heap semantics alone, because the heap used to evaluate 𝑒2 on the

left-hand side is not 𝐻1, and depends on the way that 𝑒1 interacts with the heap. However, by

translating to the effectful semantics, we are able to entirely ignore the behaviour of 𝑒1. Indeed, by

theorem 4.1, we obtain𝑤 and 𝑞 such that𝑤 = 𝑣 and

tr(𝐻1) ⊢ (let 𝑥 = 𝑒1 in 𝑒2) ⇓ 𝑞 :𝑤

Analysing the proof tree, we obtain

tr(𝐻1) ⊢ 𝑒1 ⇓ 𝑞1 :𝑤1 tr(𝐻1), 𝑥 ↦→ 𝑤1 ⊢ 𝑒2 ⇓ 𝑞2 :𝑤

As the name 𝑥 does not appear free in the expression 𝑒2, we can eliminate it from the context in the

derivation for 𝑒2. More precisely, we can show by a simple rule induction in the effectful semantics

that there exists𝑤 ′
with𝑤 ′ = 𝑤 = 𝑣 such that

tr(𝐻1) ⊢ 𝑒2 ⇓ 𝑞2 :𝑤
′

Note that it might be the case that𝑤 ≠ 𝑤 ′
; this can happen if𝑤 and𝑤 ′

contain closures, because

the context may or may not contain the binding 𝑥 ↦→ 𝑤1. Then, applying theorem 4.1 in the reverse

direction, we obtain the heap derivation for 𝑒2 as required.

∃𝐻 ′
2
. 𝐻1 : 𝑒2 ⇓ 𝐻 ′

2
: 𝑣

The initial heap for this derivation is 𝐻1, not an intermediate heap obtained after evaluating 𝑒1. ⋄

5 Proving the Equivalence
In this section, we prove the equivalence theorem from section 4. In order to do this, we first

we adjust our semantics to make the allocation of fresh names precise, allowing us to state our

equivalence theorem more formally. We then present the complete proof. The strategy for our

proof is to show that the semantics of sections 2 and 3 are both equivalent to a new ‘clairvoyant

semantics’, inspired by the approach of Hackett and Hutton [2019].

5.1 Handling Fresh Names
There are various approaches to handling fresh name generation in the literature. One approach

is to augment the semantics with a name supply list, in which a list of fresh names is threaded

through each judgment. To generate a fresh name in an inference rule, the first element of the

list can be removed, passing the tail of the list to later derivations. An alternative approach is to

augment each judgment with a single finite set to track which fresh names it created [Pitts and

Stark 1993]. When multiple judgments are combined in an inference rule, we typically assume that

the sets of fresh names contained in the hypotheses are disjoint, and take their union to find the

set of fresh names created by the derived judgment.

We have chosen a variant of the latter approach for our semantics in order to minimise the

amount of threading. Instead of a finite set of names, we use a list in order to emphasise the

sequential nature of computation. Lists of names are written 𝑙 , and list concatenation is written ⋄.
In order to simplify the presentation of our inference rules, we do not add a disjointness condition

into each rule; rather, we typically assume that the name lists in completed judgments contain

no duplicate names. Judgments in the heap semantics are now written 𝐻1 : 𝑒 ⇓ (𝑙) 𝐻2 : 𝑣 , and

judgments in the effectful semantics are now written Γ ⊢ 𝑒 ⇓ (𝑙) 𝑞 : 𝑤 . For instance, the heap

judgment can now be read as ‘we can evaluate expression 𝑒 in initial heap 𝐻1, using the sequence
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𝐻 : 𝑥 ⇓ ([]) 𝐻 : 𝑥 𝐻 : 𝜆𝑥 . 𝑒 ⇓ ([]) 𝐻 : 𝜆𝑥. 𝑒

𝐻1 : 𝑒1 ⇓ (𝑙1) 𝐻2 : 𝜆𝑥. 𝑒 𝐻2 : 𝑒2 ⇓ (𝑙2) 𝐻3 : 𝑣 (𝐻3, 𝑥 ↦→ 𝑣) : 𝑒 ⇓ (𝑙3) 𝐻4 : 𝑣
′

𝐻1 : 𝑒1 𝑒2 ⇓ (𝑙1 ⋄ 𝑙2 ⋄ [𝑥] ⋄ 𝑙3) 𝐻4 : 𝑣
′

𝐻1 : 𝑒 ⇓ (𝑙) (𝐻2, 𝑥 ↦→ 𝑣) : 𝑥
𝐻1 : ∗𝑒 ⇓ (𝑙) (𝐻2, 𝑥 ↦→ 𝑣) : 𝑣

𝐻1 : 𝑒1 ⇓ (𝑙1) 𝐻2 : 𝑣 𝐻2 : 𝑒2 ⇓ (𝑙2) (𝐻3, 𝑥 ↦→ 𝑣 ′) : 𝑥
𝐻1 : 𝑒1; free 𝑒2 ⇓ (𝑙1 ⋄ 𝑙2) 𝐻3 : 𝑣

Γ(𝑥) = 𝑤

Γ ⊢ 𝑥 ⇓ ([]) 1 : (𝑥 ↦→ 𝑤)
𝑥 ∉ dom Γ

Γ ⊢ 𝜆𝑥 . 𝑒 ⇓ ([]) 1 : 𝜆Γ𝑥 . 𝑒

Γ ⊢ 𝑒1 ⇓ (𝑙1) 𝑞1 : 𝜆Γ
′
𝑥 . 𝑒 Γ ⊢ 𝑒2 ⇓ (𝑙2) 𝑞2 :𝑤 (Γ′, 𝑥 ↦→ 𝑤) ⊢ 𝑒 ⇓ (𝑙3) 𝑞3 :𝑤 ′

Γ ⊢ 𝑒1 𝑒2 ⇓ (𝑙1 ⋄ 𝑙2 ⋄ [𝑥] ⋄ 𝑙3) 𝑞1 𝑞2 𝑞3 :𝑤
′

Γ ⊢ 𝑒 ⇓ (𝑙) 𝑞 : (𝑥 ↦→ 𝑤)
Γ ⊢ ∗𝑒 ⇓ (𝑙) 𝑞 read 𝑥 :𝑤

Γ ⊢ 𝑒1 ⇓ (𝑙1) 𝑞1 :𝑤 Γ ⊢ 𝑒2 ⇓ (𝑙2) 𝑞2 : (𝑥 ↦→ 𝑤 ′)
Γ ⊢ 𝑒1; free 𝑒2 ⇓ (𝑙1 ⋄ 𝑙2) 𝑞1 𝑞2 free 𝑥 :𝑤

Fig. 1. Heap-based and effect-based inference rules with name tracking

of fresh names 𝑙 , to obtain the value 𝑣 in final heap 𝐻2’. To illustrate the idea, the App rule is now

written as follows; the full list of rules is given in fig. 1.

𝐻1 : 𝑒1 ⇓ (𝑙1) 𝐻2 : 𝜆𝑥 . 𝑒 𝐻2 : 𝑒2 ⇓ (𝑙2) 𝐻3 : 𝑣 (𝐻3, 𝑥 ↦→ 𝑣) : 𝑒 ⇓ (𝑙3) 𝐻4 : 𝑣
′

𝐻1 : 𝑒1 𝑒2 ⇓ (𝑙1 ⋄ 𝑙2 ⋄ [𝑥] ⋄ 𝑙3) 𝐻4 : 𝑣
′

This rule defines that the fresh names needed in order to evaluate an application 𝑒1 𝑒2 are those

created by evaluating 𝑒1, then those created by evaluating 𝑒2, then a new name 𝑥 for the bound

variable, then the names created by evaluating the body of the abstraction.

When we say that a name 𝑥 is fresh for an object, we mean that it does not occur free in that

object. To use this definition with denotational values, heaps and contexts, we need to define what

it means for a name to appear free in these objects. The names appearing free in a heap 𝐻 are the

names in its domain, as well as the names that appear free in any values 𝐻 (𝑥). We define whether

a name 𝑥 appears free in a context or denotational value inductively, using the following rules:

• If 𝑥 appears free in𝑤 , or if 𝑥 = 𝑦, then 𝑥 appears free in (𝑦 ↦→ 𝑤);
• If 𝑥 appears free in Γ, or if 𝑥 ≠ 𝑦 and 𝑥 appears free in 𝑒 , then 𝑥 appears free in 𝜆Γ𝑦. 𝑒;

• If 𝑥 is in the domain of Γ or appears free in any Γ(𝑦), then 𝑥 appears free in Γ.

Unlike an informal description of freshness, this is a well-defined predicate, and has no depen-

dence on a global name state. For convenience, we allow ourselves to say that a list of names 𝑙 is

fresh for an object if each of its elements is fresh for that object. The idea of an object being ‘fresh

for’ another arbitrary object is explored further in the study of nominal sets [Pitts 2013].

We can now restate our equivalence theorem more precisely:
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Theorem 5.1 (eqivalence of semantics). Let 𝑙 be a list of names without duplicates, fresh for

𝐻 and 𝑒 . Suppose additionally that 𝐻 is closed and contains all free variables of 𝑒 . Then:

(∃𝐻 ′ . 𝐻 : 𝑒 ⇓ (𝑙) 𝐻 ′
: 𝑣) ⇐⇒ (∃𝑤 𝑞. 𝑤 = 𝑣 ∧ tr(𝐻 ) ⊢ 𝑒 ⇓ (𝑙) 𝑞 :𝑤)

5.2 Clairvoyant Heaps
The main reason the two semantics of sections 2 and 3 are difficult to compare is because of their

differing viewpoints on the region in which a name is considered to be bound to a value. In the

heap semantics, bindings to names are created and destroyed sequentially, whereas in the effectful

semantics, a name can be bound to a value in a context only in a subtree of a derivation.

To reconcile these notions, we use the idea of a clairvoyant heap. Rather than updating as a

computation proceeds, a clairvoyant heap can ‘see the future’, and has already stored every binding

that will be made. For instance, the clairvoyant application rule has the following rough shape:

𝐶 : 𝑒1 ⇓ 𝜆𝑥. 𝑒 𝐶 : 𝑒2 ⇓ 𝐶 (𝑥) 𝐶 : 𝑒 ⇓ 𝑣

𝐶 : 𝑒1 𝑒2 ⇓ 𝑣

This rule asserts that the result of evaluating 𝑒2 has already been bound to the name 𝑥 in 𝐶 . This

means that we can use the same clairvoyant heap 𝐶 when evaluating the body of the abstraction.

In general, the same clairvoyant heap will be used for evaluating all parts of an expression.

The idea to create a semantics that can ‘see the future’ is inspired by the clairvoyant semantics of

Hackett and Hutton [2019], in which lazy evaluation is modelled by non-deterministically choosing

whether to evaluate an expression or not. In both their paper and ours, the semantics are given

some knowledge about future computations to make them easier to reason about.

Our proof strategy is to define a new semantics using clairvoyant heaps, and then show it is

equivalent to both the heap semantics and the effectful semantics. For this to be true, our clairvoyant

semantics needs to track some kind of extra data in order to correctly determine when computations

should fail. It turns out that a convenient sort of data to track is a list of instructions that the

computation would perform on a heap if it were to be evaluated using the heap semantics.

Definition 5.2. A heap transformation is a list of instructions of one of the following forms:

𝑥 ≔ 𝑣 rd 𝑥 fr 𝑥

Heap transformations form a monoid; the concatenation of lists 𝑡1 and 𝑡2 is written 𝑡1 ⋄ 𝑡2.

Heap transformations can be thought of in two ways. First of all, a heap transformation can

be viewed as a partial function from heaps to heaps. To describe this, we associate such a partial

function to each individual instruction as follows:

• 𝑥 ≔ 𝑣 corresponds to the partial function given by 𝐻 ↦→ (𝐻, 𝑥 ↦→ 𝑣), where 𝑥 is not in the

domain of 𝐻 ;

• rd 𝑥 corresponds to the partial function that is the identity on heaps that contain 𝑥 in their

domain, and undefined elsewhere;

• fr 𝑥 corresponds to the partial function that removes the entry with name 𝑥 from the heap

if present, and undefined elsewhere.

Then, the partial function associated to a heap transformation [𝑡1, . . . , 𝑡𝑛] is their composition:

[𝑡1, . . . , 𝑡𝑛] (𝐻 ) = 𝑡𝑛 (· · · 𝑡1 (𝐻 ) · · · )

Alternatively, a heap transformation 𝑡 can be thought of as a refinement of the data in an effect 𝑞.

We define an operation to convert a heap transformation into an effect, written 𝑡 ↦→ 𝑡 . Individual
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instructions are translated according to

𝑥 ≔ 𝑣 = 1 rd 𝑥 = read 𝑥 fr 𝑥 = free 𝑥

and the translation of a list of instructions is given by

[𝑡1, . . . , 𝑡𝑛] = 𝑡1 · · · 𝑡𝑛

This operation is partial in general, but if 𝑡1 ⋄ 𝑡2 is defined, then so are 𝑡1 and 𝑡2. These two

descriptions of heap transformations demonstrate how they subsume the notions of effect tracking

used by both the heap-based and effect-based semantics.

We can now present our clairvoyant semantics. Judgments are of the form 𝐶 : 𝑒 ⇓ (𝑙) 𝑡 : 𝑣 ,

where 𝐶 is a heap (named using the letter 𝐶 to emphasise its interpretation as a clairvoyant heap),

and 𝑡 is a heap transformation. The semantics is defined by the following rules:

𝐶 : 𝑥 ⇓ ([]) [] : 𝑥
C-Var

𝐶 : 𝜆𝑥 . 𝑒 ⇓ ([]) [] : 𝜆𝑥 . 𝑒
C-Lam

𝐶 : 𝑒1 ⇓ (𝑙1) 𝑡1 : 𝜆𝑥. 𝑒 𝐶 : 𝑒2 ⇓ (𝑙2) 𝑡2 :𝐶 (𝑥) 𝐶 : 𝑒 ⇓ (𝑙3) 𝑡3 : 𝑣
𝐶 : 𝑒1 𝑒2 ⇓ (𝑙1 ⋄ 𝑙2 ⋄ [𝑥] ⋄ 𝑙3) 𝑡1 ⋄ 𝑡2 ⋄ [𝑥 ≔ 𝐶 (𝑥)] ⋄ 𝑡3 : 𝑣

C-App

𝐶 : 𝑒 ⇓ (𝑙) 𝑡 : 𝑥
𝐶 : ∗𝑒 ⇓ (𝑙) 𝑡 ⋄ [rd 𝑥] :𝐶 (𝑥)

C-Read

𝐶 : 𝑒1 ⇓ (𝑙1) 𝑡1 : 𝑣 𝐶 : 𝑒2 ⇓ (𝑙2) 𝑡2 : 𝑥
𝐶 : 𝑒1; free 𝑒2 ⇓ (𝑙1 ⋄ 𝑙2) 𝑡1 ⋄ 𝑡2 ⋄ [fr 𝑥] : 𝑣

C-Free

5.3 Equivalence of Clairvoyant and Heap Semantics
In this subsection, we prove that every derivation in the heap semantics can be converted to

one in the clairvoyant semantics, and vice versa. This proof makes use of the fact that heap

transformations 𝑡 can be treated as partial functions on heaps, allowing us to exactly determine

what the final heap of a computation is. We will first prove some useful lemmas.

Lemma 5.3 (heap immutability). Suppose that 𝐻1 : 𝑒 ⇓ (𝑙) 𝐻2 : 𝑣 in the heap semantics, where 𝑙

has no duplicates and is disjoint from dom𝐻1. Then in all heaps occurring in the derivation tree for

𝐻1 : 𝑒 ⇓ (𝑙) 𝐻2 : 𝑣 , each variable 𝑥 is bound to at most one value 𝑣 ′.

This lemma is a more precise statement of example 2.4.

Proof. A straightforward rule induction: the only way to add a binding into a heap is for the

variable to be named in the list 𝑙 , but since 𝑙 has no duplicates and is disjoint from the domain of 𝐻1,

each such name can be bound at most once. □

We now give the key preservation property that makes the induction in one direction work.

Lemma 5.4. If 𝐶 : 𝑒 ⇓ (𝑙) 𝑡 : 𝑣 , and 𝐻 ⊆ 𝐶 is such that 𝑡 (𝐻 ) is defined, then also 𝑡 (𝐻 ) ⊆ 𝐶 .

Proof. The instructions in the heap transformation 𝑡 have the form 𝑥 ≔ 𝑣 , rd 𝑥 , or fr 𝑥 . By

inspection of the rules for the clairvoyant semantics, the only bindings 𝑥 ≔ 𝑣 contained in 𝑡 must

be of the form 𝑥 ≔ 𝐶 (𝑥). Therefore, applying any such instruction to a subheap of𝐶 yields another

subheap of 𝐶 . Finally, the rd 𝑥 and fr 𝑥 instructions do not disrupt this property, as required. □

Proposition 5.5 (eqivalence of clairvoyant and heap semantics). Let 𝑙 be a list of names

with no duplicates, fresh for 𝐻1 and 𝑒 . Then we have the following equivalence:

𝐻1 : 𝑒 ⇓ (𝑙) 𝐻2 : 𝑣 ⇐⇒ (∃𝐶 ⊇ 𝐻1. ∃𝑡 . 𝑡 (𝐻1) = 𝐻2 ∧ 𝐶 : 𝑒 ⇓ (𝑙) 𝑡 : 𝑣)
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Proof. In the forward direction, suppose that 𝐻1 : 𝑒 ⇓ (𝑙) 𝐻2 : 𝑣 . Let𝐶 be the union of all heaps

occurring in this derivation tree. By heap immutability (lemma 5.3), each name is assigned to at

most one value, and as there are only finitely many such names, 𝐶 is a heap.

It is then easy to show by rule induction that for any heap derivation 𝐻1 : 𝑒 ⇓ (𝑙) 𝐻2 : 𝑣 , if the

clairvoyant heap 𝐶 is a superset of all heaps occurring in the derivation tree, then there exists a

heap transformation 𝑡 such that 𝐶 : 𝑒 ⇓ (𝑙) 𝑡 : 𝑣 and 𝑡 (𝐻1) = 𝐻2. This weakening of the statement

is necessary in order to invoke the inductive hypothesis. To show the inductive step, the only

nontriviality is to observe that as 𝐶 contains all heaps occurring in the derivation tree, whenever a

binding (𝑥 ↦→ 𝑣) appears in the heap derivation, we know that 𝐶 (𝑥) = 𝑣 .

Conversely, in the backward direction, suppose that 𝐶 : 𝑒 ⇓ (𝑙) 𝑡 : 𝑣 , that 𝐶 ⊇ 𝐻1, and that 𝑡 (𝐻1)
is defined. We show by rule induction that under these assumptions, we have 𝐻1 : 𝑒 ⇓ (𝑙) 𝑡 (𝐻2) : 𝑣 .
Lemma 5.4 is the key preservation property that allows us to apply the inductive hypothesis, and

the remainder of the proof is purely mechanical. □

5.4 Equivalence of Clairvoyant and Effectful Semantics
In this section, we show that derivations in the effectful semantics correspond to derivations in

the clairvoyant semantics. To help with our proof in the previous section, we used a clairvoyant

heap as an upper bound for all heaps that appeared in a derivation. In order to apply the same idea

to the effectful semantics, we need to define an ordering on contexts. We define relations ≤ on

denotational values and contexts corecursively as follows:

• Γ1 ≤ Γ2 if, whenever Γ1 (𝑥) is defined, so is Γ2 (𝑥), and in this case, Γ1 (𝑥) ≤ Γ2 (𝑥);
• 𝜆Γ1𝑥 . 𝑒 ≤ 𝜆Γ2𝑥 . 𝑒 whenever Γ1 ≤ Γ2;

• (𝑥 ↦→ 𝑤1) ≤ (𝑥 ↦→ 𝑤2) whenever𝑤1 ≤ 𝑤2.

The fact that our definition is corecursive essentially means that a derivation tree used to prove

Γ1 ≤ Γ2 or𝑤1 ≤ 𝑤2 is allowed to be infinite. Now, we call a context Γ small if Γ ≤ tr(𝐻 ) for some

heap 𝐻 . This is a kind of finiteness condition on contexts: even though a context may be an infinite

structure, its behaviour can be imitated by a finite heap. Using this notion, we can state a kind of

immutability result for contexts analogously to lemma 5.3:

Lemma 5.6 (context immutability). Suppose that Γ ⊢ 𝑒 ⇓ (𝑙) 𝑞 :𝑤 , where 𝑙 has no duplicates

and is fresh for Γ, and Γ is small. Then there is a heap 𝐶 such that whenever a mapping (𝑥 ↦→ 𝑤)
occurs anywhere in the given derivation tree, we have 𝐶 (𝑥) = 𝑤 .

By a mapping (𝑥 ↦→ 𝑤) ‘occurring’, we mean that there is a context Γ′ somewhere in the

derivation tree such that Γ′ (𝑥) = 𝑤 , or that the denotational value (𝑥 ↦→ 𝑤) arises somewhere in

the derivation, even inside a context or another denotational value. In particular, the conclusion of

the lemma implies that Γ ≤ tr(𝐶).

Proof. We define 𝐶 by the given property: if (𝑥 ↦→ 𝑤) occurs anywhere, we define 𝐶 (𝑥) = 𝑤 ,

and otherwise 𝐶 (𝑥) is undefined. It remains to check that 𝐶 is a well-defined function and that its

domain is finite.

Suppose that the mappings (𝑥 ↦→ 𝑤) and (𝑥 ↦→ 𝑤 ′) both appear in the derivation tree. As Γ is

small and 𝑙 is fresh for it, we have Γ ≤ tr(𝐻 ) for some 𝐻 with domain disjoint from 𝑙 . Then, there

are two cases: either 𝑥 ∈ dom𝐻 or 𝑥 ∈ 𝑙 .

If 𝑥 ∈ dom𝐻 , then it is easy to see that 𝑤 = 𝑤 ′ = 𝐻 (𝑥). If 𝑥 ∈ 𝑙 , then the two bindings were

introduced in a branch of the derivation tree rooted at an application rule introducing the name 𝑥 ,

and since 𝑙 has no duplicates, these two roots coincide. So𝑤 = 𝑤 ′
.

Therefore, 𝐶 is well-defined. Finally, as the only names that can be domain elements of 𝐶 are

either in dom𝐻 or 𝑙 , the function 𝐶 has finite domain as required. □
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Proposition 5.7 (eqivalence of clairvoyant and effectful semantics). Suppose that Γ
is a small context defined on the free variables of 𝑒 , and that the contexts Γ′ in every closure 𝜆Γ

′
𝑥 . 𝑒′

appearing in Γ are defined on the free variables of 𝑒′ other than 𝑥 . Suppose further that 𝑙 is a list of
names without duplicates, fresh for Γ and 𝑒 . Then we have the following equivalence:

(∃𝑤. 𝑤 = 𝑣 ∧ Γ ⊢ 𝑒 ⇓ (𝑙) 𝑞 :𝑤) ⇐⇒ (∃𝐶 𝑡 . Γ ≤ tr(𝐶) ∧ 𝑡 = 𝑞 ∧ 𝐶 : 𝑒 ⇓ (𝑙) 𝑡 : 𝑣)

Proof. In the forward direction, suppose that Γ ⊢ 𝑒 ⇓ (𝑙) 𝑞 :𝑤 . Setting 𝐶 to be a clairvoyant

heap given by lemma 5.6, the right-hand side follows directly by rule induction.

In the backward direction, suppose that 𝐶 : 𝑒 ⇓ (𝑙) 𝑡 : 𝑣 , where Γ ≤ tr(𝐶) and 𝑡 = 𝑞. For this

direction, we prove by rule induction that Γ ⊢ 𝑒 ⇓ (𝑙) 𝑞 :𝑤 for some𝑤 with𝑤 = 𝑣 . Throughout this

induction, we maintain the invariant that whenever a binding (𝑥 ↦→ 𝑤) occurs, we have 𝐶 (𝑥) = 𝑤 .

Additionally, we ensure throughout this induction that every closure 𝜆Γ
′
𝑥 . 𝑒′ that appears has

the property that Γ′ is defined on the free variables of 𝑒′ other than 𝑥 . We show the case for the

application rule here; the cases for the other rules are trivial.

𝐶 : 𝑒1 ⇓ (𝑙1) 𝑡1 : 𝜆𝑥. 𝑒 𝐶 : 𝑒2 ⇓ (𝑙2) 𝑡2 :𝐶 (𝑥) 𝐶 : 𝑒 ⇓ (𝑙3) 𝑡3 : 𝑣
𝐶 : 𝑒1 𝑒2 ⇓ (𝑙1 ⋄ 𝑙2 ⋄ [𝑥] ⋄ 𝑙3) 𝑡1 𝑡2 (𝑥 ≔ 𝐶 (𝑥)) 𝑡3 : 𝑣

C-App

First, as Γ is defined on the free variables of 𝑒1 and 𝑒2, we can use the inductive hypothesis to obtain

the following judgments, where𝑤 = 𝐶 (𝑥):

Γ ⊢ 𝑒1 ⇓ (𝑙1) 𝑡1 : 𝜆Γ
′
𝑥 . 𝑒 Γ ⊢ 𝑒2 ⇓ (𝑙2) 𝑡2 :𝑤

Now, we know by our invariant and inductive hypothesis that Γ′, 𝑥 ↦→ 𝑤 ≤ tr(𝐶). This new context

is defined on the free variables of 𝑒 , so we may apply the inductive hypothesis again to yield

Γ′, 𝑥 ↦→ 𝑤 ⊢ 𝑒 ⇓ (𝑙3) 𝑡3 :𝑤 ′

where𝑤 ′ = 𝑣 , as required. □

5.5 Completing the Proof
We now have all of the tools needed to prove the equivalence theorem.

Theorem 5.1 (eqivalence of semantics). Let 𝑙 be a list of names without duplicates, fresh for

𝐻 and 𝑒 . Suppose additionally that 𝐻 is closed and contains all free variables of 𝑒 . Then:

(∃𝐻 ′ . 𝐻 : 𝑒 ⇓ (𝑙) 𝐻 ′
: 𝑣) ⇐⇒ (∃𝑤 𝑞. 𝑤 = 𝑣 ∧ tr(𝐻 ) ⊢ 𝑒 ⇓ (𝑙) 𝑞 :𝑤)

Proof. By assumption,𝐻 satisfies the hypotheses for proposition 5.5. Additionally, tr(𝐻 ) satisfies
the hypotheses for proposition 5.7 as 𝐻 is closed and contains the free variables of 𝑒 in its domain.

Therefore, we can apply propositions 5.5 and 5.7 to reduce the required result to

(∃𝐶 ⊇ 𝐻, ∃𝑡 . 𝑡 (𝐻 ) is defined ∧ 𝐶 : 𝑒 ⇓ (𝑙) 𝑡 : 𝑣)
⇐⇒ (∃𝐶. tr(𝐻 ) ≤ tr(𝐶) ∧ ∃𝑡 . 𝑡 is defined ∧ 𝐶 : 𝑒 ⇓ (𝑙) 𝑡 : 𝑣)

Since 𝐻 is closed, we have 𝐶 ⊇ 𝐻 ⇐⇒ tr(𝐻 ) ≤ tr(𝐶). It therefore suffices to show that in this

case, whenever 𝐶 : 𝑒 ⇓ (𝑙) 𝑡 : 𝑣 ,
𝑡 (𝐻 ) is defined ⇐⇒ 𝑡 is defined

In the forward direction, as 𝑡 (𝐻 ) is defined, it must contain no instance of a use of a name after it

is freed, so 𝑡 must be defined. Conversely, if 𝑡 is defined, there is no use after free of any name. Due

to our freshness conditions, all assignments appearing in 𝑡 are distinct and fresh for 𝐻 , and any

uses of variables not in dom𝐻 always occur after their assignment. Therefore, 𝑡 (𝐻 ) is defined. □
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6 Related Work
In this section we survey a selection of related work on explicit operations, first-class names,

immutable references, memory management, and effect structures.

Explicit operations in lambda calculi. In explicit naming, we move the action of reading from a

name from the metatheory into the language itself. The idea of moving metatheoretic operations

into the object language is not new. A key example is explicit substitutions [Abadi et al. 1989], in

which the substitutions generated by the 𝛽-rule in a lambda calculus are carried out explicitly in

evaluation steps, rather than all at once in the metatheory. Similarly, sharing is made explicit in the

atomic lambda calculus [Gundersen et al. 2013] by providing a new kind of expression that binds

the same term to multiple names. In both of these examples, a key goal is to bridge the theory of

the lambda calculus with practical implementations of functional languages, since the latter cannot

implement the usual lambda calculus semantics directly due to performance considerations.

Names as first-class citizens. The 𝜈-calculus [Pitts and Stark 1993] is a simply typed lambda

calculus that has both 𝜆-bound variables and a notion of 𝜈-bound local names. In this calculus, a

name is an opaque object that can be compared for equality, and nothing else. Similarly to explicit

naming, names are first-class citizens and evaluate to themselves. In contrast, however, names

in the 𝜈-calculus hold no information other than their identity; operationally, names behave as

pointers to the unit type, and can be compared for pointer equality. Another similar system is the

𝜆𝜈-calculus [Odersky 1994]. This has similar syntax to the 𝜈-calculus, but its semantics aims to

more closely resemble the usual 𝜆-calculus, as opposed to the operational behaviour of dynamic

name allocation. First-class names have also seen practical use in FreshML [Shinwell et al. 2003]. In

this system, names are a user-defined type, and the language provides the ability to define binding

operations over such names. These systems are discussed in more detail in [Pitts 2013].

Immutable shared references. Our proof that the heap-based semantics is equivalent to our

compositional effect-based semantics (theorem 4.1) crucially relies on the fact that shared references

are immutable. This assumption naturally holds for pure functional languages like Haskell, where

every value is immutable (outside of a stateful monad such as IO). However, it is also a common

theme in semantics research even for imperative languages, since it allows for powerful invariants

on the memory accessible by a program. Examples of this theme include [Huang et al. 2012;

Pechtchanski and Sarkar 2002; Tschantz and Ernst 2005], which collectively aim to introduce

reference immutability into object-oriented languages such as Java. In one application [Gordon

et al. 2012], immutable references are exploited to provide abstractions for safe parallelism in the

presence of aliasing. Immutability of shared references is a core part of the type system of Rust

[Klabnik and Nichols 2023; Matsakis and Klock 2014], where it is framed as aliasing xor mutability.

The invariants obtained under this restriction can be used to prove soundness and safety properties

of programs written in Rust. Formal developments surrounding the Rust language specifically

include the RustBelt project [Jung et al. 2017] and Oxide [Weiss et al. 2019].

Memory management. Research on memory management systems has a long history. One main

development motivating our ideas is region-based memory management [Tofte et al. 2004; Tofte

and Talpin 1997]. In this system, all allocations are placed into a region defined by a scope, and

at the end of such a scope, all allocations in this region are freed. Our 𝑒1; free 𝑒2 construct can

be thought of as a variant of this, disposing of a single name at the end of the scope of 𝑒1. The

capability calculus [Crary et al. 1999] is a variant of this idea that tracks what regions are used

while evaluating a certain expression. A type-correct expression in this system never accesses a
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region that has already been freed. Islands [Hogg 1991] are another related idea, which can be used

to provide non-aliasing guarantees for particular objects.

Type-based approaches to memory management. Type systems play an important rule in modern

approaches to memory management semantics. We were inspired by the following work in this area,

although our work takes place in an untyped setting. Uniqueness types [Barendsen and Smetsers

1993] and ownership types [Clarke et al. 1998] are methods of aliasing protection that have been

used in languages like Rust to enable predictable behaviour of memory. A graded extension of

uniqueness types, called fractional uniqueness types, have been used to encode ownership and

borrowing in the functional language Granule [Marshall and Orchard 2024]. An ownership-like

system can also be modelled using reachability types [Bao et al. 2021; Wei et al. 2024], using an effect

system to determine which objects are reachable from which others. Their main technical tool is

kill effects, which disable future accesses to a value, analogously to our name freeing construct. In

fact, their effect labels with kill can be viewed as a variant of our name effects from section 3.2.

Effect structures. Many of the approaches to memory management discussed above use effect

systems to track validity of computations, which were first introduced in [Gifford and Lucassen

1986; Lucassen and Gifford 1988]. Effect systems can often be characterised as an instance of a

general algebraic structure, such as an effect quantale [Gordon 2021]. This was the notion of effect

structure that we chose to work with in this paper due to its ability to represent noncommutative

effects without much complexity. There are several other alternatives that have been proposed for

noncommutative effects, such as Kleene algebras [Kozen 1994]. In such a system, the additive unit 0

corresponds to an invalid effect, and the operators are total; conversely, with effect quantales, there

is no designated undefined effect but the join and sequencing operators ⊔ and may be partial.

Another notable example of such an algebraic structure is that of preordered monoids [Katsumata

2014], which is a preorder with a monotone monoid operation representing sequential composition.

These can be considered a generalisation of both effect quantales and Kleene algebras, where

neither joins of effects nor repetition of an effect is defined in general.

7 Conclusions and Future Work
We have introduced an explicit naming system in which names are first-class citizens, and are

manipulated using explicit operations for creating, using and freeing names. The traditional heap-

threading semantics is not compositional, but is equivalent to an effect-based semantics that is

better suited for reasoning about program behaviour. For example, we were able to show easily

that dead code elimination is a valid code transformation for the heap-based semantics, by using

the equivalence to translate the problem into the effect-based semantics.

Our equivalence proof makes use of a ‘clairvoyant’ semantics, which does not correspond to a

real evaluation strategy that can be carried out in practice, but can naturally express the behaviour

of both the heap-based and effect-based approaches. This allowed us to avoid comparing the two

semantics directly, which was a significant technical convenience.

This work suggests many potential directions of future study. First of all, it would be interesting

to generalise our effect system to allow other effects, such as exceptions or mutability. We could

also consider a feature for ‘masking’ externally unobservable effects [Lucassen and Gifford 1988],

such as locally manipulating a name that is inaccessible to the rest of a program. Next, we note that

a heap-threading evaluation function can be viewed as a monadic function using the state monad

on heaps, whereas an effect-based evaluation function can be viewed as a map using a composite

of a reader and a writer monad: the context used for evaluation forms the reader part, and the

effect produced by an expression forms the writer part. In light of this, our equivalence theorem

can be viewed as describing a translation of a program from the state monad to a reader-writer
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monad, and it would be interesting to investigate whether this idea can be carried out in other

settings. And finally, we are interested in developing type systems for explicit naming in which

type-correct programs never attempt to read from a freed name, because this would allow us to

better understand type systems for safe memory management.
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