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1 Inaccessible cardinals
1.1 Large cardinal properties
Modern set theory largely concerns itself with the consequences of the incompleteness phenomenon.
Given any ‘reasonable’ set theory 𝑇, Gödel’s first incompleteness theorem shows that there is a sen-
tence 𝜑 such that 𝑇 ⊬ 𝜑 and 𝑇 ⊬ ¬𝜑. To be ‘reasonable’, the set of axioms must be computably
enumerable, among other similar restrictions. In particular, Gödel’s second incompleteness theorem
shows that 𝑇 ⊬ Con(𝑇), where Con(𝑇) is the statement that 𝑇 is consistent. Hence,

{𝜓 ∣ 𝑇 ⊢ 𝜓} ⊊ {𝜓 ∣ 𝑇 + 𝜑 ⊢ 𝜓}

We might say
𝑇 <consequence 𝑇 + 𝜑

so 𝑇 has strictly fewer consequences than 𝑇 + 𝜑. Modern set theory is about understanding the
relation ≤consequence and other similar relations. It turns out that large cardinal axioms are the most
natural hierarchy that we can use to measure the strength of set theories.

In this course we will not provide a definition for the notion of ‘large cardinal’, but we will provide
an informal description. A large cardinal property is a formula Φ such that Φ(𝜅) implies that 𝜅 is a
very large cardinal, so large that its existence cannot be proven in ZFC. A large cardinal axiom is an
axiom of the form ∃𝜅.Φ(𝜅), which we will abbreviateΦC. We begin with some non-examples.
(i) 𝜅 is called an aleph fixed point if 𝜅 = ℵ𝜅. Note that, for example, 𝜔, 𝜔1, and ℵ𝜔 are not aleph

fixed points. However, we have the following result. We say that 𝐹 ∶ Ord → Ord is normal if
𝛼 < 𝛽 implies 𝐹(𝛼) < 𝐹(𝛽), and if 𝜆 is a limit, 𝐹(𝜆) = ⋃𝛼<𝜆 𝐹(𝛼). One can show that every
normal ordinal operation has arbitrarily large fixed points, and in particular that these fixed
pointsmay be enumerated by the ordinals. In particular, since the operation 𝛼 ↦ ℵ𝛼 is normal,
it admits fixed points.

(ii) Let Φ(𝜅) be the property
𝜅 = ℵ𝜅 ∧ Con(ZFC)

Clearly ΦC implies Con(ZFC), so ZFC ⊬ ΦC. We would like our large cardinal axioms to be
unprovable by ZFC because of the size of the cardinal in question, not because of any other
arbitrary reasons that we may attach to these axioms.

One source of large cardinal axioms is as follows. Consider the ordinal 𝜔; it is much larger than any
ordinal smaller than it. We can consider properties that encapsulate the notion that 𝜔 is much larger
than any smaller ordinal, and use these as large cardinal properties.

(i) If 𝑛 < 𝜔, then 𝑛+ < 𝜔, where 𝑛+ is the cardinal successor of 𝑛. We define

Λ(𝜅) ⟺ ∀𝛼. (𝛼 < 𝜅 → 𝛼+ < 𝜅)

where 𝛼+ is the least cardinal strictly larger than 𝛼. Then,Λ(𝜅) holds precisely when 𝜅 is a limit
cardinal. These need not be very large, for example, ℵ𝜔 is a limit cardinal, and the existence of
this cardinal is proven by ZFC.

(ii) If 𝑛 < 𝜔, then 2𝑛 < 𝜔, where 2𝑛 is the size of the power set of 𝑛.

Σ(𝜅) ⟺ ∀𝛼. (𝛼 < 𝜅 → 2𝛼 < 𝜅)
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where 2𝛼 is the cardinality of 𝒫(𝛼). Such cardinals are called strong limit cardinals. We will
show that these exist in all models of ZFC. Similarly to the aleph hierarchy, we can define the
beth hierarchy, denoted ℶ𝛼. This is given by

ℶ0 = ℵ0; ℶ𝛼+1 = 2ℶ𝛼 ; ℶ𝜆 = ⋃
𝛼<𝜆

ℶ𝛼

Cantor’s theorem shows that ℵ𝛼 ≤ ℶ𝛼, and the continuum hypothesis is the assertion that
ℵ1 = ℶ1. Note that 𝜅 is a strong limit cardinal if and only if 𝜅 = ℶ𝜆 for some limit ordinal 𝜆. In
particular, ZFC ⊢ ΣC.

(iii) If 𝑠 ∶ 𝑛 → 𝜔 for 𝑛 < 𝜔, then sup(𝑠) = ⋃ ran(𝑠) < 𝜔. This gives rise to the following definition.

Definition. Let 𝜆 be a limit ordinal. We say that 𝐶 ⊆ 𝜆 is cofinal or unbounded if
⋃𝐶 = 𝜆. Wedefine the cofinality of 𝜆, denoted cf(𝜆), to be the cardinality of the smallest
cofinal subset. If 𝜆 is a cardinal, then cf(𝜆) ≤ 𝜆. If this inequality is strict, the cardinal
is called singular; if this is an equality, it is called regular.

Note that if 𝜅 is regular, then if 𝜆 < 𝜅, and for each 𝛼 < 𝜆 we have a set 𝑋𝛼 ⊆ 𝜅 of size |𝑋𝛼| < 𝜅,
then⋃𝑋𝛼 ≠ 𝜅. It is easy to show that this property is equivalent to regularity.

We have therefore shown that 𝜔 is a regular cardinal. Note that ℵ1 is also regular, since count-
able unions of countable sets are countable. This argument generalises to all succcessor cardin-
als, so all successor cardinalsℵ𝛼+1 are regular. The cardinalℵ𝜔 is not regular, as it is the union
of {ℵ𝑛 ∣ 𝑛 ∈ ℕ}, which is a subset of ℵ𝜔 of cardinality ℵ0, giving cf(ℵ𝜔) = ℵ0. The cofinality
of ℵℵ𝜔 is also ℵ0. Limit cardinals are often singular.

1.2 Weakly inaccessible and inaccessible cardinals
Motivated by these examples of properties of 𝜔, we make the following definition.

Definition. A cardinal 𝜅 is calledweakly inacessible if it is an uncountable regular limit, and
(strongly) inaccessible if it is an uncountable regular strong limit. We write WI(𝜅) to denote
that 𝜅 is weakly inaccessible, and I(𝜅) if 𝜅 is inaccessible.

To argue that these are large cardinal properties, we will show that they are very large, and that
the existence of such cardinals cannot be proven in ZFC. Note that we cannot actually prove this
statement; if ZFC were inconsistent, it would prove every statement. Whenever we write statements
such as ZFC ⊬ IC, it should be interpreted to mean ‘if ZFC is consistent, it does not prove IC’.
Many things in the relationship of WI and I are unclear: 2ℵ0 is clearly not inaccessible as it is not a
strong limit, but it is not clear that this is not a limit. The generalised continuum hypothesis GCH is
that for all cardinals 𝛼, we have 2ℵ𝛼 = ℵ𝛼+1, and so ℵ𝛼 = ℶ𝛼. Under this assumption, the notions of
limit and strong limit coincide, and so the notions of inaccessible cardinals and weakly inaccessible
cardinals coincide.

Proposition. Weakly inaccessible cardinals are aleph fixed points.
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Proof. Suppose 𝜅 is weakly inaccessible but 𝜅 < ℵ𝜅. Fix𝛼 such that 𝜅 = ℵ𝛼, then𝛼 < 𝜅. As 𝜅 is a limit
cardinal, 𝛼must be a limit ordinal. But then ℵ𝛼 = ⋃𝛽<𝛼 ℵ𝛽, so in particular, the set {ℵ𝛽 ∣ 𝛽 < 𝛼} is
cofinal in 𝜅, but this set is of size |𝛼| < 𝜅. Hence 𝜅 is singular, contradicting regularity.

1.3 Second order replacement
We will now show that ZFC does not prove IC, and we omit the result for weakly inaccessible car-
dinals. We could do this via model-theoretic means: we assume 𝑀 ⊨ ZFC, and construct a model
𝑁 ⊨ ZFC + ¬IC. However, there is another approach we will take here. By Gödel’s second incom-
pleteness theorem, under the assumption that ZFC is consistent, we have ZFC ⊬ Con(ZFC), so it
suffices to show IC → Con(ZFC). Gödel’s completeness theorem states that Con(𝑇) holds if and only
if there exists a model𝑀 with𝑀 ⊨ 𝑇. Thus, it suffices to show that under the assumption that there
is an inaccessible cardinal, we can construct a model of ZFC. Note that the metatheory in which the
completeness theorem is proven actually matters; both theories and models are actually sets in the
outer theory.

Recall that the cumulative hierarchy inside a model of set theory is given by

V0 = ∅; V𝛼+1 = 𝒫(V𝛼); V𝜆 = ⋃
𝛼<𝜆

V𝛼

(i) The axiom of foundation is equivalent to the statement that every set is an element of V𝛼 for
some 𝛼.

(ii) (V𝜔, ∈) is a model of all of the axioms of set theory except for the axiom of infinity. This collec-
tion of axioms is called finite set theory FST.

(iii) (V𝜔+𝜔, ∈) is a model of all of the axioms of set theory except for the axiom of replacement.
This theory is called Zermelo set theory with choice ZC. In fact, for any limit ordinal 𝜆 > 𝜔, ZFC
proves that (V𝜆, ∈) ⊨ ZC. That is, ZFC proves the existence of a model of ZC, or equivalently,
ZFC ⊢ Con(ZC). Hence, ZC cannot prove replacement, since Gödel’s second incompleteness
theorem applies to ZC. In this way, replacement behaves like a large cardinal axiom for ZC.
The same holds for infinity and FST.

We briefly discuss why replacement fails in V𝜔+𝜔. Consider the set of ordinals 𝜔 + 𝑛 for 𝑛 < 𝜔; this
set does not belong to V𝜔+𝜔 as its rank is 𝜔 + 𝜔. However, the class function 𝐹 given by 𝑛 ↦ 𝜔 + 𝑛
is definable by a simple formula, and applying this to the set 𝜔 ∈ V𝜔+𝜔 gives a counterexample
to replacement. Our counterexample is thus a cofinal subset of V𝜔+𝜔 whose union does not lie in
V𝜔+𝜔. In some sense, the fact that 𝜔 + 𝜔 is singular is the reason why V𝜔+𝜔 does not satisfy replace-
ment.

Now, consider 𝛼 = ℵ1, which is regular. Consider 𝒫(𝜔) ∈ V𝜔+2 ⊆ V𝜔1 . There is a definable sur-
jection from 𝒫(𝜔) to 𝜔1, motivated by the proof of Hartogs’ lemma. Indeed, subsets of 𝜔 can encode
well-orders, and every countable well-order is encoded by a subset of 𝜔, so the map

𝑔 ∶ 𝐴 ↦ {𝛼 if 𝐴 codes a well-order of order type 𝛼
0 otherwise

is a surjection 𝒫(𝜔) → 𝜔1. This class function has cofinal range in 𝜔1, and so V𝜔1 does not satisfy
replacement.

We will prove that I(𝜅) implies that V𝜅 models replacement. A set 𝑀 is said to satisfy second-order
replacement SOR if for every function 𝐹 ∶ 𝑀 → 𝑀 and every 𝑥 ∈ 𝑀, the set {𝐹(𝑦) ∣ 𝑦 ∈ 𝑥} is in 𝑀.
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Any model of V𝛼 that satisfies second-order replacement is a model of ZFC, as the counterexamples
to replacement are special cases of violations of second-order replacement.

Theorem (Zermelo). If 𝜅 is inaccessible, then V𝜅 satisfies second-order replacement.

We first prove the following lemmas.

Lemma. If 𝜅 is inaccessible and 𝜆 < 𝜅, then |V𝜆| < 𝜅.

Proof. This follows by induction. Note |V0| = 0 < 𝜅. If |V𝛼| < 𝜅, then as 𝜅 is a strong limit, |V𝛼+1| =
|𝒫(V𝛼)| = 2|V𝛼| < 𝜅. If 𝜆 is a limit and |V𝛼| < 𝜅 for all 𝛼 < 𝜆, then if |V𝜆| = 𝜅, we have written 𝜅 as a
union of less than 𝜅 sets of size less than 𝜅, contradicting regularity.

Lemma. If 𝜅 is inaccessible and 𝑥 ∈ V𝜅, then |𝑥| < 𝜅.

Proof. Suppose 𝑥 ∈ V𝜅 = ⋃𝛼<𝜅 V𝛼. Then there exists 𝛼 < 𝜅 such that 𝑥 ∈ V𝛼. Then 𝑥 ⊆ V𝛼 as the
V𝛼 are transitive, but then |𝑥| ≤ |V𝛼| < 𝜅.

We can now prove Zermelo’s theorem.

Proof. Let 𝐹 ∶ V𝜅 → V𝜅, and 𝑥 ∈ V𝜅; we must show that 𝑅 = {𝐹(𝑦) ∣ 𝑦 ∈ 𝑥} ∈ V𝜅. By the second
lemma above, |𝑥| < 𝜅, hence |𝑅| < 𝜅. For each 𝑦 ∈ 𝑥, define 𝛼𝑦 to be the rank of 𝐹(𝑦). This is an
ordinal less than 𝜅. Consider 𝐴 = {𝛼𝑦 ∣ 𝑦 ∈ 𝑥}; its cardinality is bounded by that of 𝑥, so |𝐴| < 𝜅.
But as 𝜅 is regular, |𝐴| is not cofinal, so there is 𝛾 < 𝜅 such that 𝐴 ⊆ V𝛾. By definition, 𝑅 ⊆ V𝛾, so
𝑅 ∈ V𝛾+1 ⊆ V𝜅, as required.

The definition of inacessibility is precisely what is needed for this proof to work. The following
converse holds.

Theorem (Shepherdson). If V𝜅 satisfies second-order replacement, then 𝜅 is inaccessible.

Proof. Suppose 𝜅 is not inaccessible, so either 𝜅 is singular or there is 𝜆 < 𝜅 such that 2𝜆 ≥ 𝜅. If 𝜅 is
singular, then 𝜅 = ⋃𝛼<𝜆 𝜅𝛼 for 𝜆 < 𝜅 and 𝜅𝛼 < 𝜅. Consider 𝐶 = {𝜅𝛼 ∣ 𝛼 < 𝜆}; this set is cofinal in 𝜅,
but the cardinality of 𝐶 is 𝜆. Therefore, 𝐶 ∉ V𝜅. We simply take the function 𝐹 ∶ 𝛼 ↦ 𝜅𝛼, then the
image of 𝜆 under 𝐹 is 𝐶 ∉ V𝜅, so 𝐹 witnesses that V𝜅 violates second-order replacement.

Suppose there is 𝜆 < 𝜅 such that 2𝜆 ≥ 𝜅. Let 𝐹 ∶ 𝒫(𝜆) → 𝜅 be a surjection. Since 𝜆 < 𝜅, we must
have 𝒫(𝜆) ∈ V𝜆+2 ⊆ V𝜅. Then the image of 𝒫(𝜆) under 𝐹 is 𝜅 ∉ V𝜅 as required.

1.4 Countable transitive models of set theory
It is not generally the case that if V𝜅 ⊨ ZFC then 𝜅 is inaccessible. Moreover, the existence of an inac-
cessible cardinal is strictly stronger than the consistency of ZFC. We will show this second statement
first.
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Suppose 𝜅 is inaccessible, so V𝜅 ⊨ ZFC. A standard model-theoretic argument shows there is a
countable elementary substructure (𝑁, ∈) ⪯ (V𝜅, ∈). In particular, (𝑁,∈) ⊨ ZFC. The proof of
the downwards Löwenheim–Skolem theorem that we will use is a Skolem hull construction, given
by

𝑁0 = ∅; 𝑁𝑘+1 = 𝑁𝑘 ∪𝑊(𝑁𝑘); 𝑁 = ⋃
𝑘∈ℕ

𝑁𝑘

where𝑊(𝑁𝑘) is a set of witnesses for all formulas of the form ∃𝑥. 𝜑 with parameters in 𝑁𝑘. The fact
that this is an elementary substructure follows from the Tarski–Vaught test. Wewill now explore this
model in more detail.

If 𝑛 ∈ 𝜔, there is a formula 𝜑𝑛 such that V𝜅 ⊨ 𝜑𝑛(𝑥) if and only if 𝑥 = 𝑛. Clearly, the formula
∃𝑥. 𝜑𝑛(𝑥) has precisely one witness, so 𝜔 ⊆ 𝑁1. Similarly, there are formulas 𝜑𝜔, 𝜑𝜔+𝜔, 𝜑𝜔⋅3 and so
on. There is also a formula 𝜑𝜔1 such that 𝑥 = 𝜔1 if and only if V𝜅 ⊨ 𝜑𝜔1(𝑥). As before, because
there is a unique witness to this formula in V𝜅, we must have 𝜔1 ∈ 𝑁1. But since the model 𝑁 is
countable, there must be a gap in the ordinals at some point below 𝜔1. By the same argument, the
model contains 𝜔2, 𝜔3 and so on. Therefore, 𝑁 is a nontransitive model.

As (𝑁, ∈) is well-founded and extensional, byMostowski’s collapsing theorem there is a unique trans-
itive𝑀 such that (𝑀,∈) ≅ (𝑁,∈). This fills all of the gaps in our model. As this is an isomorphism,
we obtain (𝑀,∈) ⪯ (𝑁,∈) ⪯ (V𝜅, ∈), so (𝑀,∈) is a countable transitive model of ZFC. In partic-
ular, its height 𝛼 = Ord ∩ 𝑀 is a countable ordinal. There is an elementary embedding of 𝑀 into
V𝜅 given by the inverse of the Mostowski collapse. In particular, some 𝛽 < 𝛼 has the property that
𝑀 ⊨ 𝜑𝜔1(𝛽).
Therefore, the property ‘𝑥 is a cardinal’ cannot be an absolute property between𝑀 andV𝜅. A property
is said to be absolute between𝑀 and some larger structure𝑁 if it holds in𝑀 precisely if it holds in𝑁,
where parameters are allowed to take values in the smaller structure𝑀. If the truth of the property in
the smaller structure implies the truth in the larger structure, we say the property is upwards absolute;
conversely, if truth in the larger structure implies truth in the smaller one, we say the property is
downwards absolute. The theory of absoluteness concerns the following classes of formulas, among
others.

(i) Δ0 formulas, in which only bounded quantifiers are permitted, for example in ZFC, ‘𝑥 is an
ordinal’, ‘𝑓 is a function’, ‘𝑥 is a subset of 𝑦’, ‘𝑥 is 𝜔’.

(ii) Σ1 formulas, which are Δ0 formulas surrounded by a single existential quantifier.
(iii) Π1 formulas, which are Δ0 formulas surrounded by a single universal quantifier, for example

‘𝑥 is a cardinal’ or ‘𝑥 is the power set of 𝑦’.
One can show that Δ0 formulas are absolute between transitive models. Further, Σ1 formulas are
upwards absolute and Π1 formulas are downwards absolute. The example above shows that ‘𝑥 is a
cardinal’ cannot be Δ0 as it is not upwards absolute. Similarly, ‘𝑥 is the power set of 𝑦’ cannot be Δ0,
because the object 𝑝 that 𝑀 believes is the power set of 𝜔 must be countable, and so cannot be the
real power set in V𝜅. As being a subset is absolute, this object 𝑝must consist of subsets of𝜔, but must
only contain very few of them.

As being 𝜔 is Δ0, in fact all arithmetical statements (and therefore, by encoding, all syntactic state-
ments) are Δ0.

Theorem. IC → Con(ZFC) but Con(ZFC) ↛ IC.
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Proof. The forward direction has already been proven. Since IC proves the consistency of ZFC, there
is a countable transitive model𝑀 ⊆ V𝜅 ⊆ V of ZFC. By absoluteness,𝑀 ⊨ Con(ZFC), so𝑀 ⊨ ZFC⋆

where we define ZFC⋆ = ZFC + Con(ZFC). We have thus proven that IC implies the consistency of
ZFC⋆. So, by the second incompleteness theorem, ZFC⋆ ⊬ IC.

1.5 Worldly cardinals
We now show that if V𝜅 ⊨ ZFC, it is not necessarily the case that 𝜅 is inaccessible.
Observe that𝑀 ≠ V𝛼 for any 𝛼. Clearly𝑀 ≠ V𝜔. But |V𝜔+1| = |𝒫(𝜔)| = 2ℵ0 , and |V𝛼| > 2ℵ0 for all
𝛼 ≥ 𝜔 + 1. But𝑀 is countable, so it cannot be any of these.

Recall the definition of 𝑁 by

𝑁0 = ∅; 𝑁𝑘+1 = 𝑊(𝑁𝑘); 𝑁 = ⋃
𝑘∈ℕ

𝑁𝑘

We wish to create a similar structure that is of the form V𝛼 for some 𝛼. We define

𝛼0 = 0; 𝛼𝑘+1 = sup {rank(𝑥) ∣ 𝑥 ∈ 𝑊(V𝛼𝑘)}; 𝛼 = sup {𝛼𝑛 ∣ 𝑛 ∈ ℕ}

Note that 𝑁 ⊆ V𝛼1 .

Theorem. V𝛼 ⪯ V𝜅 and 𝛼 < 𝜅.

Proof. The first statement follows from the Tarski–Vaught test. To show 𝛼 < 𝜅, we first show by
induction that 𝛼𝑘 < 𝜅. This is clearly true for 𝑘 = 0. Now, if 𝛼𝑘 < 𝜅, we have ||V𝛼𝑘 || < 𝜅 by a previous
lemma. Thus,

||𝑊(V𝛼𝑘)|| ≤ ℵ0 ⋅ ||V<𝜔𝛼𝑘 || = ||V𝛼𝑘 || < 𝜅

where 𝑋<𝜔 is the set of finite sequences of elements of 𝑋 . Hence {rank(𝑥) ∣ 𝑥 ∈ 𝑊(V𝛼𝑘)} is a set of
less than 𝜅 ordinals less than 𝜅, so it must be bounded by regularity. Finally, as 𝛼 is a countable union
of the 𝛼𝑘, regularity again shows 𝛼 < 𝜅.

Remark. The ordinal 𝛼 produced in this way has countable cofinality, so cannot be inaccessible. In
particular, V𝛼 ⊨ ZFC but 𝛼 is not inaccessible.

Definition. We call an ordinal 𝛼 worldly if V𝛼 ⊨ ZFC, and write Wor(𝛼).

We have shown I(𝜅) → Wor(𝜅), but not the other way round given that a wordly cardinal exists. In
particular,

IC → WorC → Con(ZFC)

Theorem. If 𝜅 is a wordly ordinal, 𝜅 is a cardinal.

Proof. First, observe that 𝜅 is a limit ordinal; otherwise, its predecessor would be the largest ordinal
in the model, but ZFC proves that there is no largest ordinal. Suppose 𝜅 is not a cardinal, so there
is 𝜆 < 𝜅 such that there is a bijection 𝜆 → 𝜅. In particular, 𝜆 < 𝜅 < 𝜆+. By the proof of Hartogs’
lemma, there is a relation 𝑅 ⊆ 𝜆 × 𝜆 such that (𝜆, 𝑅) ≅ (𝜅, ∈). Assuming Kuratowski’s definition
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of ordered pairs, an element of 𝜆 × 𝜆 is an element of V𝜆, so 𝜆 × 𝜆 ∈ V𝜆+1 and 𝑅 ∈ V𝜆+1. The pair
(𝜆, 𝑅) is an element of V𝜆+3 ⊆ V𝜅. Thus V𝜅 contains a well-order (𝜆, 𝑅) of order type 𝜅. But ZFC
proves that every well-ordering is isomorphic to a unique ordinal, so we must have 𝜅 ∈ V𝜅, which is
a contradiction.

1.6 The consistency strength hierarchy
Let 𝐵 be a base theory; we will often use ZFC. If 𝑇, 𝑆 are extensions of 𝐵, we say that 𝑇 has lower
consistency strength than 𝑆, written 𝑇 ≤Con 𝑆, if 𝐵 ⊢ Con(𝑆) → Con(𝑇). We say that 𝑇 and 𝑆 is
equiconsistent, written 𝑇 ≡Con 𝑆, if 𝑇 ≤Con 𝑆 and 𝑆 ≤Con 𝑇, and write 𝑇 <Con 𝑆 if 𝑇 ≤Con 𝑆 but
𝑆 ≰Con 𝑇.
Remark. (i) If 𝐼 is inconsistent, then 𝑇 ≤Con 𝐼 for all 𝑇. All inconsistent theories are equiconsist-

ent. In particular,𝑇 is consistent if and only if𝑇 <Con 𝐼. We typicallywrite⊥ for an inconsistent
theory.

(ii) <Con is more than just ‘proving more theorems’. If 𝜑 is such that ZFC ⊬ 𝜑 and ZFC ⊬ ¬𝜑,
it is not necessarily the case that ZFC <Con ZFC + 𝜑 or ZFC <Con ZFC + ¬𝜑. For example,
ZFC + CH, ZFC + ¬CH, and ZFC are all equiconsistent.

(iii) The second incompleteness theorem shows, for suitably nice theories 𝑇, that if 𝑇 ≠ ⊥ then
𝑇 <Con 𝑇 +Con(𝑇). Note that it is possible that 𝑇 is consistent but 𝑇 +Con(𝑇) is inconsistent,
so the incompleteness theorem does not necessarily give an infinite chain of strict consistency
strength inequalities. For example, consider

ZFC† = ZFC + ¬Con(ZFC)

Since ZFC† ⊇ ZFC, we must have Con(ZFC†) → Con(ZFC), but ZFC† → ¬Con(ZFC), so
ZFC† + Con(ZFC†) is inconsistent.

In conclusion,

ZFC <Con ZFC + Con(ZFC) <Con ZFC + WorC <Con ZFC + IC

where the second inequality uses the same argument as IC → Con(ZFC + Con(ZFC)).
We will see that ZFC ≡Con ZFC + ¬IC. Many large cardinal axioms have this property that their
negations are weak.

If 𝜅 is the least inaccessible cardinal, then V𝜅 is a model of ZFC, but we can show that it cannot
satisfy IC. Note that the statement ‘𝜆 is inaccessible’ is a Π1 statement, so is downwards absolute.
Given a model with two inaccessible cardinals 𝜅0 < 𝜅1, we have V𝜅1 ⊨ ZFC + I(𝜅0) so in particular,
V𝜅1 ⊨ ZFC + IC.

Lemma. If 𝛼 is a limit ordinal, then the formula ‘𝜆 is inaccessible’ is absolute for V𝛼 and V.

In particular, V𝜅 above does not satisfy IC.

Proof. By downwards absoluteness, it suffices to show that if V𝛼 ⊨ I(𝜆) then I(𝜆). Suppose not, so 𝜆
is singular or not a strong limit.

Let 𝜆 be singular, so there is a cofinal set 𝐶 ⊆ 𝜆 with |𝐶| = 𝛾 < 𝜆, so there is a bijection 𝑓 ∶ 𝛾 → 𝐶.
Note that being singular is Σ1, witnessed by 𝐶, 𝛾, 𝑓. We have 𝐶 ∈ V𝜆+1, 𝛾 ∈ V𝜆, and 𝑓 ∈ V𝜆+2. All
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of these are subsets of V𝛼, so these witnesses exist in V𝛼. Hence V𝛼 believes that 𝐶 is a cofinal set of
cardinality less than 𝜆, so it believes 𝜆 is singular, contradicting inaccessibility.
Now let 𝜆 not be a strong limit. Let 𝛾 < 𝜆, and let 𝑓 ∶ 𝒫(𝛾) → 𝜆 be a surjection. Then 𝒫(𝛾) ∈ V𝛾+2 ⊆
V𝜆 ⊆ V𝛼, and so this function is an element of V𝜆+2 ⊆ 𝑉𝛼. The statement that it is a surjection is
absolute, so V𝛼 believes 𝑓 is a surjection from 𝒫(𝛾) to 𝜆, contradicting its belief that 𝜆 is a strong
limit.

Therefore, we have the following.

Theorem. Suppose ZFC + IC, and let 𝜅 be the least inaccessible. Then V𝜅 ⊨ ZFC + ¬IC.

Proof. Suppose V𝜅 ⊨ ZFC + IC. Then there is 𝜆 < 𝜅 such that V𝜅 ⊨ I(𝜆), but by the previous lemma
this contradicts minimality of 𝜅.

Therefore, we have the following.

ZFC + IC ⊢ there is a transitive model of ZFC + ¬IC

For any theory 𝑇, we write
𝑇⋆ = 𝑇 + Con(𝑇)

We make the following remarks.

(i) Observe that if 𝑆 proves that there is a transitive model of 𝑇, then 𝑆 ⊢ Con(𝑇⋆) because con-
sistency statements are downwards absolute between transitive models.

(ii) Note also that if 𝑆 proves every axiom of 𝑇, then Con(𝑆) → Con(𝑇).
(iii) If 𝑇 is not equiconsistent with ⊥, then Con(𝑇) ↛ Con(𝑇⋆).
We can therefore show

Con(ZFC + ¬IC) ↛ Con(ZFC + IC)
assuming that ZFC+¬IC is consistent. We have that ZFC+ IC yields a transitive model of ZFC+¬IC.
Thus, by (i), ZFC + IC implies Con((ZFC + ¬IC)⋆). Hence Con(ZFC + ¬IC) → Con((ZFC + ¬IC)⋆),
so if the given implication were to hold, it would contradict Gödel’s second incompleteness theorem.
Thus, if ZFC + ¬IC is consistent,

ZFC + ¬IC <Con ZFC + IC

Observe that none of the proofs given in this section work for weakly inaccessible cardinals, so it
is not clear that weakly inaccessible cardinals qualify as large cardinals. However, that under the
generalised continuum hypothesis, we have ℵ𝛼 = ℶ𝛼 and so the notions of weakly inaccessible
cardinal and inaccessible cardinal coincide. In Part III Forcing and the Continuum Hypothesis, we
see that if 𝑀 ⊨ ZFC, there is L ⊆ 𝑀 such that L is transitive in 𝑀, L contains all the ordinals of 𝑀,
and L ⊨ ZFC + GCH. Thus, given a model𝑀 ⊨ ZFC + WIC, we obtain L ⊨ ZFC + IC, and thus the
two axioms WIC and IC are equiconsistent.

Note that 2ℵ0 is not a strong limit, but it is consistent that 2ℵ0 is weakly inaccessible (under suit-
able assumptions), so the notions of weakly inaccessible cardinals and inaccessible cardinals do not
coincide.
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2 Measurability and compactness
2.1 The measure problem
Let 𝕀 denote the unit interval [0, 1] ⊆ ℝ. A function 𝜇 ∶ 𝒫(𝕀) → 𝕀 is called ameasure if
(i) 𝜇(𝕀) = 1 and 𝜇(∅) = 0;
(ii) (translation invariance) if 𝑋 ⊆ 𝕀, 𝑟 ∈ ℝ, and 𝑋 + 𝑟 = {𝑥 + 𝑟 ∣ 𝑥 ∈ 𝑋} ⊆ 𝕀, then 𝜇(𝑋) = 𝜇(𝑋 + 𝑟);

and

(iii) (countable additivity) if (𝐴𝑛)𝑛∈ℕ is a family of pairwise disjoint subsets of 𝕀, then𝜇(⋃𝑛∈ℕ 𝐴𝑛) =
∑𝑛∈ℕ 𝜇(𝐴𝑛).

The Lebesgue measure problem was the question of whether such a measure function exists. Vitali
proved that a measure cannot be defined on all of 𝒫(𝕀). This proof requires the axiom of choice
nontrivially. In 1970, Solovay proved that if ZFC + IC is consistent, then, there is a model of ZF in
which all sets are Lebesgue measurable. In 1984, Shelah showed that the inaccessible cardinal was
necessary to construct this model.

Now, replace translation invariance with the requirement that for all 𝑥 ∈ 𝕀, we have 𝜇({𝑥}) = 0,
and call such measures Banach measures. Banach’s measure problem was the question of whether a
Banach measure exists. Note that every Lebesgue measure is a Banach measure. If 𝜇({𝑥}) > 0 for
some 𝑥, then by translation invariance, every singleton has the same measure 𝜇({𝑥}) > 0. There is
some natural number 𝑛 such that 𝑛𝜇({𝑥}) > 1, but this contradicts countable additivity using a set
of 𝑛 reals. Observe that for any 𝜀 > 0, there can be only finitely many pairwise disjoint sets with
measure at least 𝜀.
Banach and Kuratowski proved in 1929 that the continuum hypothesis implies that there are no
Banach measures on 𝕀. We can define Banach measures on any set 𝑆 by also replacing property (i)
with the requirement that 𝜇(𝑆) = 1 and 𝜇(∅) = 0. Note that if |𝑆| = |𝑆′|, then there is a Banach
measure on 𝑆 if and only if there is one on 𝑆′. Thus, having a Banach measure is a property of
cardinals.

For larger cardinals, it may not be natural to just consider countable additivity.

Definition. A Banach measure 𝜇 is called 𝜆-additive if for all 𝛾 < 𝜆 and pairwise disjoint
families {𝐴𝛼 ∣ 𝛼 < 𝛾}, then

𝜇(⋃𝐴𝛼) = sup {∑
𝛼∈𝐹

𝜇(𝐴𝛼)
||||
𝐹 ⊆ 𝛾 finite}

Theorem. If 𝜅 is the smallest cardinal that has a Banach measure, then that measure is 𝜅-
additive.
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2.2 Real-valued measurable cardinals

Definition. A cardinal 𝜅 is real-valued measurable, written RVM(𝜅), if there is a 𝜅-additive
Banach measure on 𝜅.

Proposition. Every real-valued measurable cardinal is regular.

Proof. Suppose that 𝜅 is a real-valuedmeasurable cardinal, and that𝐶 ⊆ 𝜅 is cofinal with |𝐶| = 𝜆 < 𝜅.
We can write

𝐶 = {𝛾𝛼 ∣ 𝛼 < 𝛾}
where 𝛾𝛼 is increasing in 𝛼. Consider

𝐶𝛼 = {𝜉 ∣ 𝛾𝛼 ≤ 𝜉 < 𝛾𝛼+1}

Then ⋃𝛼<𝛾 𝐶𝛼 = 𝜅 as 𝐶 is cofinal, and the 𝐶𝛼 are disjoint. Note that |𝐶𝛼| ≤ |𝛾𝛼+1| < 𝜅. Writing
𝐶𝛼 = ⋃𝑥∈𝐶𝛼

{𝑥}, we observe by 𝜅-additivity that 𝜇(𝐶𝛼) = 0. But again by 𝜅-additivity, 𝜇(𝜅) = 0,
contradicting property (i).

Proposition (the pigeonhole principle). Let 𝜅 be regular, 𝜆 < 𝜅, and 𝑓 ∶ 𝜅 → 𝜆. Then there
is some 𝛼 ∈ 𝜆 such that ||𝑓−1(𝛼)|| = 𝜅.

Proof. We have
𝜅 = ⋃

𝛼∈𝜆
𝑓−1(𝛼)

giving the result immediately by regularity of 𝜅.

Proposition. All successor cardinals are regular.

Proposition. If 𝜇 is a Banach measure on 𝑆, and 𝐶 is a family of pairwise disjoint sets of
positive 𝜇-measure, then 𝐶 is countable.

Proof. Consider the collection
𝐶𝑛 = {𝐴 ∈ 𝐶 ||| 𝜇(𝐴) >

1
𝑛}

Observe that each 𝐶𝑛 is finite, so 𝐶 = ⋃𝑛∈ℕ 𝐶𝑛 must be countable.

Lemma (Ulam). For any cardinal 𝜆, there is anUlammatrix 𝐴𝜉
𝛼 indexed by 𝛼 < 𝜆+ and 𝜉 < 𝜆

such that
(i) for a given 𝜉, the set {𝐴𝜉

𝛼 || 𝛼 < 𝜆+} is a pairwise disjoint family; and
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(ii) for a given 𝛼, we have
||||
𝜆+ ∖⋃

𝜉<𝜆
𝐴𝜉
𝛼
||||
≤ 𝜆

Proof. For each 𝛾 < 𝜆+, fix a surjection 𝑓𝛾 ∶ 𝜆 → 𝛾 + 1. Define

𝐴𝜉
𝛼 = {𝛾 ∣ 𝑓𝛾(𝜉) = 𝛼}

It is clear that property (i) holds. For property (ii), suppose

𝛾 ∈ 𝜆+ ∖⋃
𝜉<𝜆

𝐴𝜉
𝛼

Then 𝛾 < 𝜆+ and for all 𝜉, we have 𝑓𝛾(𝜉) ≠ 𝛼. Hence

𝜆+ ∖⋃
𝜉<𝜆

𝐴𝜉
𝛼 ⊆ 𝛼

so the size of this set is at most 𝜆.

Theorem. Every real-valued measurable cardinal is weakly inaccessible.

Remark. If there is a Banach measure on [0, 1], then in particular 2ℵ0 is weakly inaccessible.

Proof. Wehave already shown regularity. Suppose 𝜅 is not a limit cardinal, so 𝜅 = 𝜆+. Let (𝐴𝜉
𝛼)𝛼<𝜆+;𝜉<𝜆

be an Ulam matrix for 𝜆. By (ii),

|𝑍𝛼| ≤ 𝜆; 𝑍𝛼 = 𝜆+ ∖⋃
𝜉<𝜆

𝐴𝜉
𝛼

so by 𝜅-additivity, 𝜇(𝑍) = 0. Hence

𝜇(⋃
𝜉<𝜆

𝐴𝜉
𝛼) = 1

This is a small union of sets of measure 1, so again by 𝜅-additivity there is some 𝜉𝛼 such that 𝜇(𝐴𝜉𝛼
𝛼 ) >

0. Let 𝑓 ∶ 𝜆+ → 𝜆 be the map 𝛼 ↦ 𝜉𝛼. By the pigeonhole principle, there is some 𝜉 and a set 𝐴 ⊆ 𝜆+
with |𝐴| = 𝜆+ such that for all 𝛼 ∈ 𝐴, we have 𝜉𝛼 = 𝜉. By property (i), the collection {𝐴𝜉

𝛼 ∣ 𝛼 ∈ 𝐴} is
a collection of uncountable size 𝜆+ of pairwise disjoint sets, all of which have positive measure, but
we have already shown that such a collection must be countable.

2.3 Measurable cardinals

Definition. A Banach measure 𝜇 is called two-valued if 𝜇 takes values in {0, 1}.

This removes any mention of the real numbers from the definition of a Banach measure.
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Remark. Two-valued measures correspond directly to ultrafilters. Recall that 𝐹 is a filter on 𝑆 if
(i) ∅ ∉ 𝐹, 𝑆 ∈ 𝐹;
(ii) if 𝐴 ⊆ 𝐵 then 𝐴 ∈ 𝐹 → 𝐵 ∈ 𝐹;
(iii) if 𝐴, 𝐵 ∈ 𝐹 then 𝐴 ∩ 𝐵 ∈ 𝐹.
We say that 𝐹 is an ultrafilter if 𝐴 ∈ 𝐹 or 𝑆 ∖𝐴 ∈ 𝐹 for all 𝐴 ⊆ 𝑆. 𝐹 is nonprincipal if for all 𝑥 ∈ 𝑆, the
singleton {𝑥} is not in 𝐹. An ultrafilter is 𝜆-complete if for all 𝛾 < 𝜆 and all families {𝐴𝛼 ∣ 𝛼 < 𝛾} ⊆ 𝐹,
we have ⋂𝛼<𝛾 𝐴𝛼 ∈ 𝐹. In this way, the collection of sets of a two-valued Banach measure 𝜇 that
are assigned measure 1 form a nonprincipal ultrafilter. This filter is 𝜆-complete if and only if 𝜇 is
𝜆-additive.

Definition. An uncountable cardinal 𝜅 ismeasurable, written M(𝜅), if there is a 𝜅-complete
nonprincipal ultrafilter on 𝜅.

Remark. (i) ZFC proves that there is an ℵ0-complete nonprincipal ultrafilter on ℵ0, because ℵ0-
completeness is equivalent to closure under finite intersections, which is trivial.

(ii) A cardinal 𝜅 is called Ulammeasurable if there is an ℵ1-complete nonprincipal ultrafilter on 𝜅.
With this definition, the least Ulam measurable cardinal is measurable. So the existence of an
Ulam measurable cardinal is equivalent to the existence of a measurable cardinal.

(iii) The theories ZFC+MC and ZFC+ RVMC are equiconsistent. This can be shown analogously
to inaccessible andweakly inaccessible cardinals, this time using a variant of Gödel’s construct-
ible universe.

Theorem. Every measurable cardinal is inaccessible.

Proof. We have already shown regularity in the real-valued measurable cardinal case. Let 𝜅 be meas-
urable with ultrafilter 𝑈 . Suppose it is not a strong limit, so there is 𝜆 < 𝜅 such that 2𝜆 ≥ 𝜅. Then
there is an injection 𝑓 ∶ 𝜅 → 𝐵𝜆, where 𝐵𝜆 is the set of functions 𝜆 → 2. Fix some 𝛼 < 𝜆, then for
each 𝛾 < 𝜅, either

𝑓(𝛾)(𝛼) = 0 or 𝑓(𝛾)(𝛼) = 1
Let

𝐴𝛼
0 = {𝛾 ∣ 𝑓(𝛾)(𝛼) = 0}; 𝐴𝛼

1 = {𝛾 ∣ 𝑓(𝛾)(𝛼) = 1}
These two sets are disjoint and have union 𝜅. So there is exactly one number 𝑏 ∈ {0, 1} such that
𝐴𝛼
𝑏 ∈ 𝑈 . Define 𝑐 ∈ 𝐵𝜆 by 𝑐(𝛼) = 𝑏. Then

𝑋𝛼 = 𝐴𝛼
𝑐(𝛼) ∈ 𝑈

This is a collection of 𝜆-many sets that are all in𝑈 , so by 𝜅-completeness, their intersection⋂𝛼<𝜆 𝑋𝛼
also lies in 𝑈 . Suppose 𝛾 ∈ ⋂𝛼<𝜆 𝑋𝛼, so for all 𝛼 < 𝜆, we have 𝛾 ∈ 𝐴𝛼

𝑐(𝛼). Equivalently, for all 𝛼 < 𝜆,
we have 𝑓(𝛾)(𝛼) = 𝑐(𝛼). So 𝛾 lies in this intersection if and only if 𝑓(𝛾) is precisely the function 𝑐.
Hence

⋂
𝛼<𝜆

𝑋𝛼 ⊆ {𝑓−1(𝑐)}

So this intersection has either zero or one element, and in particular, it is not in the ultrafilter, giving
a contradiction.
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Nonprincipal ultrafilters on 𝜅 are not 𝜅+-complete, because 𝜅 itself is a union of 𝜅-many singletons.
Principal ultrafilters are complete for any cardinal. However, we can emulate completeness for non-
principal ultrafilters at the cardinal 𝜅+ using the followingmethod. If (𝐴𝛼)𝛼≤𝜅 is a sequence of subsets
of 𝜅, its diagonal intersection is

Δ
𝛼≤𝜅

𝐴𝛼 = {𝜉 ∈ 𝜅
||||
𝜉 ∈ ⋂

𝛼<𝜉
𝐴𝛼}

A filter on 𝜅 is called normal if it is closed under diagonal intersections.

Theorem. If 𝜅 is measurable, then there is a 𝜅-complete normal nonprincipal ultrafilter on
𝜅.

The proof will be given later, and is also on an example sheet.

2.4 Weakly compact cardinals
Let [𝑋]𝑛 be the set of 𝑛-element subsets of 𝑋 . A 2-colouring of ℕ is a map 𝑐 ∶ [ℕ]2 → {red, blue}.
Ramsey’s theorem states that for each 2-colouring 𝑐, there is an infinite subset 𝑋 ⊆ ℕ such that 𝑐|[𝑋]2
ismonochromatic (or homogeneous): each 2-element subset is given the same colour under 𝑐.
This property is invariant under bijection, so this is really a property of the cardinal ℵ0. In Erdős’
arrow notation, we write

𝜅 → (𝜆)𝑛𝑚
if for every colouring 𝑐 ∶ [𝜅]𝑛 → 𝑚, there is a monochromatic subset 𝑋 ⊆ 𝜅 of size 𝜆:

|𝑐[[𝑋]𝑛]| = 1

In this notation, Ramsey’s theorem becomes the statement

ℵ0 → (ℵ0)22

We can now make the following definition.

Definition. An uncountable cardinal 𝜅 is called weakly compact, written W(𝜅), if 𝜅 → (𝜅)22.

The name will be explained later.

Theorem (Erdős). Every weakly compact cardinal is inaccessible.

Proof. Suppose 𝜅 is weakly compact but not regular. Then 𝜅 = ⋃𝛼<𝜆 𝑋𝛼 for 𝛼 < 𝜅 and disjoint sets
𝑋𝛼 with |𝑋𝛼| < 𝜅. We define a colouring 𝑐 as follows. A pair {𝛾, 𝛿} is red if 𝛾, 𝛿 lie in the same 𝑋𝛼,
and blue if they are in different 𝑋𝛼. Let 𝐻 ⊆ 𝜅 be a monochromatic subset of size 𝜅 for 𝑐. If 𝐻 is red,
then one of the 𝑋𝛼 is large, which is a contradiction. But if 𝐻 is blue, then 𝜆 must be large, which
also gives a contradiction.

Suppose that 𝜅 is not a strong limit, so 2𝜆 ≥ 𝜅 for 𝜆 < 𝜅. Let 𝐵𝜆 be the set of functions 𝜆 → 2, and
give it the lexicographic order: we say that 𝑓 < 𝑔 if 𝑓(𝛼) < 𝑔(𝛼) at the first position 𝛼 at which 𝑓
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and 𝑔 disagree. For this proof, we will use the combinatorial fact that this ordered structure (𝐵𝜆, ≤lex)
is a totally ordered set with no increasing or decreasing chains of length 𝜅 > 𝜆. The proof is on an
example sheet.

If 2𝜆 ≥ 𝜅, there is a family of pairwise distinct elements (𝑓𝛼)𝛼<𝜅 of 𝐵𝜆 of length 𝜅. Define a colouring
𝑐 of 𝜅 as follows. A pair 𝛼, 𝛽 is red if the truth value of 𝛼 < 𝛽 is the same as the truth value of
𝑓𝛼 ≤lex 𝑓𝛽. A pair is blue otherwise. Let 𝐻 be a monochromatic set for 𝑐. If 𝐻 is red, then 𝑓𝛼 forms a
≤lex-increasing sequence of length 𝜅. If𝐻 is blue, then 𝑓𝛼 forms a≤lex-decreasing sequence of length
𝜅. Both results contradict the combinatorial result above.

Theorem. Every measurable cardinal is weakly compact.

Proof. Let 𝑓 ∶ [𝜅]2 → 2 be a colouring of a measurable cardinal 𝜅. Let

𝑋𝛼
0 = {𝛽 ∣ 𝑓({𝛼, 𝛽}) = 0}; 𝑋𝛼

1 = {𝛽 ∣ 𝑓({𝛼, 𝛽}) = 1}

For a given 𝛼, these are disjoint, and 𝑋𝛼
0 ∪𝑋𝛼

1 = 𝜅 ∖ {𝛼}, so precisely one of them lies in the ultrafilter
𝑈 . Define 𝑐 ∶ 𝜅 → 2 be such that 𝑋𝛼

𝑐(𝛼) ∈ 𝑈 . Now, let

𝑋0 = {𝛼 ∣ 𝑐(𝛼) = 0}; 𝑋1 = {𝛼 ∣ 𝑐(𝛼) = 1}

Precisely one of these two sets lies in 𝑈 .
We claim that if 𝑋𝑖 ∈ 𝑈 , then there is a monochromatic set𝐻 for colour 𝑖 with |𝐻| = 𝜅. Without loss
of generality, we may assume 𝑖 = 0. Define

𝑍𝛼 = {𝑋
𝛼
0 if 𝑐(𝛼) = 0

𝜅 if 𝑐(𝛼) = 1

Each of the 𝑍𝛼 lie in the ultrafilter 𝑈 . As we may assume 𝑈 is normal, the diagonal intersection of
the 𝑍𝛼 also lies in 𝑈 . So we can define

𝐻 = 𝑋0 ∩ Δ
𝛼≤𝜅

𝑍𝛼 ∈ 𝑈

and |𝐻| = 𝜅. Let 𝛾 < 𝛿 with 𝛾, 𝛿 ∈ 𝐻. Then 𝛾, 𝛿 ∈ 𝑋0, so 𝑐(𝛾) = 0 = 𝑐(𝛿). Hence 𝑍𝛾 = 𝑋𝛾
0 and

𝑍𝛿 = 𝑋𝛿
0 . In particular,

𝛿 ∈ Δ
𝛼≤𝜅

𝑍𝛼 ⊆ ⋂
𝜉<𝛿

𝑍𝜉 ⊆ 𝑍𝛾 = 𝑋𝛾
0

Hence 𝑓({𝛾, 𝛿}) = 0.

The large cardinal axioms discussed so far fall into a linear hierarchy of consistency strength. This is
known as the linearity phenomenon.

2.5 Strongly compact cardinals
The compactness theorem for first-order logic says that for any first-order language 𝐿𝑆 and set of
axioms Φ ⊆ 𝐿𝑆,

Φ is satisfiable↔ (∀Φ0 ⊆ Φ. |Φ0| < ℵ0 → Φ0 is satisfiable)
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This result cannot work for languages with infinitary conjunctions and disjunctions. Indeed, if we
write

𝜑𝐹 ≡⋁
𝑖∈ℕ

𝜑=𝑛; 𝜑=𝑛 ≡ there are precisely 𝑛 elements; 𝜑≥𝑛 ≡ there are at least 𝑛 elements

then
{𝜑≥𝑛 ∣ 𝑛 ∈ ℕ} ∪ {𝜑𝐹}

is finitely satisfiable but not satisfiable.

Definition. An ℒ𝜅𝜅-language is defined by
• a set of variables;
• a set 𝑆 of function, relation, and constant symbols of finite arity;
• the logical symbols ∧, ∨, ¬, ∃, ∀; and
• the infinitary logical symbols⋀𝛼<𝜆,⋁𝛼<𝜆, ∃𝜆, ∀𝜆 for 𝜆 < 𝜅.

We define the new syntactic rules as follows. If 𝜑𝛼 are 𝐿𝑆-formulas for 𝛼 < 𝜆, then so are⋀𝛼<𝜆 𝜑𝛼
and ⋁𝛼<𝜆 𝜑𝛼. If v is a sequence of variables of length 𝜆 and 𝜑 is an 𝐿𝑆-formula, then ∃𝜆v. 𝜑 and
∀𝜆v. 𝜑 are 𝐿𝑆-formulas.
We say that𝑀 is a model of⋁𝛼<𝜆 𝜑𝛼 if𝑀 ⊨ 𝜑𝛼 for all 𝛼 < 𝜆. Similarly,𝑀 models ∃𝜆v. 𝜑 if there is a
function 𝑎 ∶ 𝜆 → 𝑀 such that

𝑀 ⊨ 𝜑[𝑎(0)𝑎(1)…𝑎(𝜉)…
𝑣0𝑣1…𝑣𝜉…

]

Definition. An ℒ𝜅𝜅-language 𝐿𝑆 satisfies compactness if for all Φ ⊆ 𝐿𝑆,

Φ is satisfiable↔ (∀Φ0 ⊆ Φ. |Φ0| < 𝜅 → Φ0 is satisfiable)

Note that if 𝜅 = 𝜔, we recover the standard notion of a first-order language, so all ℒ𝜔𝜔-languages
satisfy compactness.

Definition. An uncountable cardinal 𝜅 is called strongly compact, denoted SC(𝜅), if every
ℒ𝜅𝜅-language satisfies compactness.

Theorem (Keisler–Tarski theorem). Suppose 𝜅 is a strongly compact cardinal. Then every
𝜅-complete filter on 𝜅 can be extended to a 𝜅-complete ultrafilter.

Proof. We define a language 𝐿 extending the usual language of set theory by creating a constant
symbol 𝑐𝐴 for each 𝐴 ⊆ 𝜅, giving 2𝜅-many symbols. Now let 𝐿⋆ be 𝐿 with an extra constant symbol 𝑐.
Let

𝑀 = (𝒫(𝜅), ∈, {𝐴 ∣ 𝐴 ⊆ 𝜅})
so 𝑐𝐴 is interpreted by 𝐴. Let Φ = Th𝐿(𝑀) be the 𝐿-theory of𝑀. In particular,

𝑀 ⊨ ∀𝑥. 𝑥 ∈ 𝑐𝐴 → 𝑥 is an ordinal

and
𝑀 ⊨ ∀𝑥. 𝑥 is an ordinal→ 𝑥 ∈ 𝑐𝐴 ∨ 𝑥 ∈ 𝑐𝜅∖𝐴
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Now let
Φ⋆ = Φ ∪ {𝑐 ∈ 𝑐𝐴 ∣ 𝐴 ∈ 𝐹}

This is a subset of 𝐿⋆. We show that Φ⋆ is 𝜅-satisfiable. If (𝐴𝛼)𝛼<𝜆 are subsets of 𝜅 such that 𝑐 ∈ 𝑐𝐴𝛼
occurs in a 𝜅-small subset of Φ⋆, then any element 𝜂 ∈ ⋂𝛼<𝜆 𝐴𝛼 can be chosen as the interpretation
of 𝑐. As 𝐹 is 𝜅-complete, this intersection lies in 𝐹 and so is nonempty as required.
Hence, by strong compactness of 𝜅, the theory Φ⋆ is satisfiable. Let𝑀 be a model of Φ⋆. Define

𝑈 = {𝐴 ∣ 𝑀 ⊨ 𝑐 ∈ 𝑐𝐴}

We claim that this is a 𝜅-complete ultrafilter extending 𝐹. The fact that𝑈 extends 𝐹 holds by construc-
tion of Φ⋆. It is an ultrafilter because𝑀 believes that 𝑐 ∈ 𝑐𝐴 or 𝑐 ∈ 𝑐𝜅∖𝐴. It is 𝜅-complete because if
{𝐴𝛼 ∣ 𝛼 < 𝜆} ⊆ 𝑈 , let 𝐴 = ⋂𝛼<𝜆 𝐴𝛼, then

𝑀 ⊨ ∀𝑥. (𝑥 ∈ 𝑐𝐴 ↔ ⋀
𝛼<𝜆

𝑥 ∈ 𝑐𝐴𝛼)

As this holds in particular for 𝑐, we obtain 𝐴 ∈ 𝑈 .

Corollary. Every strongly compact cardinal is measurable.

Proof. Let
𝐹 = {𝐴 ⊆ 𝜅 ∣ |𝜅 ∖ 𝐴| < 𝜅}

In the case 𝜅 = 𝜔, this is known as the Fréchet filter. This is a 𝜅-complete filter on 𝜅. If 𝑈 extends 𝐹
then 𝑈 must be nonprincipal, so by the Keisler–Tarski theorem, 𝐹 can be extended to a 𝜅-complete
nonprincipal ultrafilter on 𝜅 as required.

3 Reflection
3.1 The Keisler extension property

Definition. A cardinal 𝜅 has the Keisler extension property, written KEP(𝜅), if there is 𝜅 ∈
𝑋 ⊋ V𝜅 transitive such that V𝜅 ⪯ 𝑋 .

Proposition. If 𝜅 is inaccessible and satisfies the Keisler extension property, there is an in-
accessible cardinal 𝜆 < 𝜅.

Proof. Fix 𝑋 as in the Keisler extension property. As 𝜅 is inaccessible, 𝑋 ⊨ I(𝜅) because 𝜅 ∈ 𝑋 and
inaccessibility is downwards absolute for transitive models. Also, V𝜅 ⊨ ZFC, so 𝑋 ⊨ ZFC as it is
an elementary superstructure. Therefore, 𝑋 ⊨ ZFC + IC, so V𝜅 ⊨ ZFC + IC. So as inaccessibility is
absolute between V𝜅 and V, there is an inaccessible 𝜆 < 𝜅.
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The phenomenon that properties of 𝑋 occur below 𝜅 is called reflection. This argument can be im-
proved in the following sense. For a given 𝛼 < 𝜅,

𝑋 ⊨ ∃𝜆 > 𝛼. I(𝜆)

But as 𝛼 ∈ V𝜅, elementarity gives
V𝜅 ⊨ ∃𝜆 > 𝛼. I(𝜆)

So the set
{𝜆 < 𝜅 ∣ I(𝜆)}

is not only nonempty, but cofinal in 𝜅.

Corollary. Let A be the axiom
∃𝜅. I(𝜅) ∧ KEP(𝜅)

Then
ZFC + IC <Con ZFC + A

Proof. It suffices to show that ZFC + A ⊨ Con(ZFC + IC). We have seen that ZFC + A proves the
existence of (at least) two inaccesible cardinals below 𝜅, and in particular the larger of the two is a
model of ZFC + IC.

Remark. This is themain technique for proving strict inequalities of consistency strength. Given two
large cardinal properties Φ,Ψwith the appropriate amount of absoluteness properties, we show that
ZFC + Φ(𝜅) proves that the set

{𝜆 < 𝜅 ∣ Ψ(𝜆)}
is cofinal in 𝜅. Then ZFC + ΦC ⊨ Con(ZFC + ΨC).
Example. Consider the proof that every inaccessible cardinal has a worldly cardinal below it. In
the construction, we produce a sequence of ordinals (𝛼𝑖)𝑖∈𝜔, and the worldly cardinal is sup𝛼𝑖. But
we can set 𝛼0 = 𝜆 + 1 for a given worldly cardinal 𝜆 < 𝜅, so this gives a cofinal sequence of worldly
cardinals below every given inaccessible.

Theorem. Every strongly compact cardinal has the Keisler extension property.

Proof. We want to use the method of (elementary) diagrams to produce a model with V𝜅 as a sub-
structure. However, we have no way to control whether such amodel is well-founded using standard
first-order model-theoretic techniques. To bypass this issue, we will use infinitary operators.

Let 𝑐𝑥 be a constant symbol for each 𝑥 ∈ V𝜅, and let 𝐿 be the language with ∈ and the 𝑐𝑥. Let

𝒱 = (V𝜅, ∈, {𝑥 ∣ 𝑥 ∈ V𝜅})

In first-order logic, Th(𝑋) is the elementary diagram of V𝜅, so if𝑀 ⊨ Th(𝑋), then V𝜅 ⊆ 𝑀. Let 𝐿𝜅 be
the ℒ𝜅𝜅-language with the same symbols. Consider

𝜓 ≡ ∀𝜔v. ⋁
𝑖∈𝜔

𝑣𝑖+1 ∉ 𝑣𝑖
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This expresses well-foundedness (assuming AC). Writing Φ = Th𝐿𝜅 (𝒱) for the 𝐿𝜅-theory of 𝒱, we
must have 𝜓 ∈ Φ since V𝜅 is well-founded. Thus, if𝑀 ⊨ Φ, then𝑀 is a well-founded model contain-
ing V𝜅. By taking the Mostowski collapse, we may also assume that any such𝑀 is transitive.

Extend 𝐿𝜅 to 𝐿+𝜅 with one extra constant 𝑐, and let

Φ+ = Φ ∪ {𝑐 is an ordinal} ∪ {𝑐 ≠ 𝑐𝑥 ∣ 𝑥 ∈ V𝜅}

Any model of Φ+ induces a transitive elementary superstructure of V𝜅 that contains an ordinal at
least 𝜅, so by transitivity, 𝜅 is in this model.
We show that Φ+ is satisfiable by showing that it is 𝜅-satisfiable, using the fact that 𝜅 is strongly
compact. Let Φ0 ⊆ Φ+ be a subset of size less than 𝜅. Then we can interpret 𝑐 as some ordinal
𝛼 greater than all ordinals 𝛽 occurring in the sentences 𝑐 ≠ 𝑐𝛽 in Φ+. Then 𝒱, together with this
interpretation of 𝑐, is a model of Φ0.

Corollary.
ZFC + IC <Con ZFC + SCC

The proof above only used languages with at most 𝜅-many symbols. Let WC(𝜅) be the axiom that
everyℒ𝜅𝜅-language with at most 𝜅-many symbols satisfies 𝜅-compactness. Then we have shown that
WC(𝜅) implies the Keisler extension property. One can show that

W(𝜅) ↔ WC(𝜅)

So the cardinals 𝜅 that satisfyWC(𝜅) are precisely the weakly compact cardinals. In particular,

ZFC + IC <Con ZFC + WCC

Note that in the proof that strongly compact cardinals are measurable, we used a language with 2𝜅-
many symbols.

3.2 Ultrapowers of the universe
In order to avoid proper classes, we will consider ultrapowers of particular set universes. Later, we
will briefly explain how all of this could have been done in a proper class universe such as V. For
convenience, we will assume that 𝜅 < 𝜆 where 𝜅 is measurable and 𝜆 is inaccessible, so V𝜆 ⊨ ZFC +
MC. We will take the ultrapower of V𝜆.
Let 𝑈 be a 𝜅-complete nonprincipal ultrafilter on 𝜅, and form the ultrapower of V𝜆, consisting of
equivalence classes of functions 𝑓 ∶ 𝜅 → V𝜆 where 𝑓 ∼ 𝑔 when {𝛼 ∣ 𝑓(𝛼) = 𝑔(𝛼)} ∈ 𝑈 .

V𝜆𝜅⟋𝑈 = {[𝑓] ∣ 𝑓 ∶ 𝜅 → V𝜆}

The membership relation on the ultrapower is given by

[𝑓] 𝐸 [𝑔] ↔ {𝛼 ∣ 𝑓(𝛼) ∈ 𝑔(𝛼)} ∈ 𝑈

We have an embedding ℓ from V𝜆 into the ultrapower by mapping 𝑥 ∈ V𝜆 to the equivalence class of
its constant function 𝑐𝑥 ∶ 𝜅 → V𝜆. This is an elementary embedding by Łoś’ theorem. Hence

(V𝜆, ∈) ≡ (V𝜆
𝜅
⟋𝑈)

so they both model ZFC + MC, and in particular, [𝑐𝜅] is a measurable cardinal.
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Remark. (i) Suppose V𝜆
𝜅
⟋𝑈 ⊨ [𝑓] is an ordinal. By Łoś’ theorem,

𝑋 = {𝛼 ∣ 𝑓(𝛼) is an ordinal} ∈ 𝑈

We can define

𝑓′(𝛼) = {𝑓(𝛼) if 𝛼 ∈ 𝑋
0 otherwise

Note that 𝑓 ∼ 𝑓′, so [𝑓] = [𝑓′]. So without loss of generality, we can assume 𝑓 is a function
into Ord ∩ 𝜆 = 𝜆, so 𝑓 ∶ 𝜅 → 𝜆. Since 𝜆 is inaccessible, 𝑓 cannot be cofinal, so there is 𝛾 < 𝜆
such that 𝑓 ∶ 𝜅 → 𝛾. Note also that, for example, we can define 𝑓 + 1 by

(𝑓 + 1)(𝛼) = 𝑓(𝛼) + 1

so
{𝛼 ∣ (𝑓 + 1)(𝛼) is the successor of 𝑓(𝛼)} = 𝜅 ∈ 𝑈

hence by Łoś’ theorem, [𝑓 + 1] is the successor of [𝑓].
(ii) If 𝑓 ∶ 𝜅 → V𝜆 is arbitrary, the set

{rank𝑓(𝛼) ∣ 𝛼 ∈ 𝜅}

cannot be cofinal in 𝜆, so there is 𝛾 < 𝜆 such that𝑓 ∈ V𝛾. However, the union of the equivalence
class [𝑓] is unbounded in V𝜆.

(iii) Given 𝑓, by (ii) we may assume 𝑓 ∈ V𝛾 for some 𝛾 < 𝜆. If [𝑔] 𝐸 [𝑓], then

𝑋 = {𝛼 ∣ 𝑔(𝛼) ∈ 𝑓(𝛼)} ∈ 𝑈

Now we can define

𝑔′(𝛼) = {𝑔(𝛼) if 𝛼 ∈ 𝑋
0 otherwise

Then 𝑔 ∼ 𝑔′ so [𝑔] = [𝑔′], and 𝑔′ ∈ V𝛾. Therefore,

|{[𝑔] ∣ [𝑔] 𝐸 [𝑓]}| ≤ ||V𝛾|| < 𝜆

Lemma. V𝜆
𝜅
⟋𝑈 is 𝐸-well-founded.

Proof. Suppose not, so let {[𝑓𝑛] ∣ 𝑛 ∈ ℕ} be a strictly decreasing sequence, so

[𝑓𝑛+1] 𝐸 [𝑓𝑛]

By definition,
𝑋𝑛 = {𝛼 ∣ 𝑓𝑛+1(𝛼) ∈ 𝑓𝑛(𝛼)} ∈ 𝑈

But as 𝑈 is 𝜅-complete,
⋂
𝑛∈ℕ

𝑋𝑛 ∈ 𝑈

In particular, there must be an element 𝛼 ∈ ⋂𝑛∈ℕ 𝑋𝑛. Hence, 𝑓𝑛(𝛼) is an ∈-decreasing sequence in
V𝜆, which is a contradiction.
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Note that we only used ℵ1-completeness of 𝑈 .
We can take the Mostowski collapse to produce a transitive set𝑀 such that

𝜋 ∶ (V𝜆
𝜅
⟋𝑈,𝐸) ≅ (𝑀,∈)

Combining ℓ and 𝜋, we obtain

𝑗 = 𝜋 ∘ ℓ ∶ (V𝜆, ∈) → (𝑀,∈)

given by
𝑗(𝑥) = 𝜋(ℓ(𝑥)) = 𝜋([𝑐𝑥])

For convenience, will write (𝑓) to abbreviate 𝜋([𝑓]), so 𝑗(𝑥) = (𝑐𝑥).

Lemma. 𝑀 ⊆ V𝜆.

Proof. Note that because 𝜆 is inaccessible, V𝜆 = H𝜆, where

H𝜆 = {𝑥 ∣ |tcl(𝑥)| < 𝜆}

Since𝑀 is transitive, if |𝑥| < 𝜆 for each 𝑥 ∈ 𝑀, then𝑀 ⊆ H𝜆. But remark (iii) above shows precisely
what is required.

Lemma. Ord ∩𝑀 = 𝜆.

Proof. Under the elementary embedding 𝑗, ordinals in V𝜆 are mapped to ordinals in𝑀. So 𝑗 restricts
to an order-preserving embedding from 𝜆 into a subset of 𝜆. Thus this embedding is unbounded, and
therefore by transitivity, Ord ∩𝑀 = 𝜆.

Lemma. 𝑗|V𝜅 = id, so in particular, V𝜅 ⊆ 𝑀.

Proof. We show this by ∈-induction on V𝜅. Suppose that 𝑥 ∈ V𝜅 is such that for all 𝑦 ∈ 𝑥, 𝑗(𝑦) = 𝑦.
For any 𝑦 ∈ 𝑥, by elementarity, 𝑗(𝑦) ∈ 𝑗(𝑥), but 𝑗(𝑦) = 𝑦 so 𝑦 ∈ 𝑗(𝑥) as required. For the converse,
suppose 𝑦 ∈ 𝑗(𝑥). Then define 𝑓 such that 𝑦 = (𝑓), so (𝑓) ∈ (𝑐𝑥). Hence

𝑋 = {𝛼 ∣ 𝑓(𝛼) ∈ 𝑐𝑥(𝛼)} = {𝛼 ∣ 𝑓(𝛼) ∈ 𝑥} ∈ 𝑈

But
{𝛼 ∣ 𝑓(𝛼) ∈ 𝑥} = ⋃

𝑧∈𝑥
{𝛼 ∣ 𝑓(𝛼) = 𝑧}

This is a union of |𝑥|-many sets. By 𝜅-completeness, there must be some 𝑧 ∈ 𝑥 such that

{𝛼 ∣ 𝑓(𝛼) = 𝑧} ∈ 𝑈

Hence 𝑓 ∼ 𝑐𝑧. Therefore, (𝑓) = 𝑗(𝑧), and by the inductive hypothesis, 𝑗(𝑧) = 𝑧. Hence 𝑦 ∈ 𝑥.
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Lemma. 𝑗 ≠ id, as 𝑗(𝜅) > 𝜅.

Proof. We know that 𝑗(𝜅) = (𝑐𝜅). By the previous lemma, for each 𝛼 < 𝜅, 𝑗(𝛼) = (𝑐𝛼) = 𝛼. Consider
the identity map id𝜅 ∶ 𝜅 → 𝜅. We have

(𝑐𝛼) < (id𝜅) ↔ {𝛾 ∣ 𝑐𝛼(𝛾) < id𝜅(𝛾)} ∈ 𝑈
↔ {𝛾 ∣ 𝛼 < 𝛾} ∈ 𝑈

But by a size argument, {𝛾 ∣ 𝛾 ≤ 𝛼} ∉ 𝑈 as 𝑈 is nonprincipal, so we must have 𝛼 < (id). Also,
(id𝜅) < (𝑐𝜅) ↔ {𝛾 ∣ id𝜅(𝛾) < 𝑐𝜅(𝛾)} ∈ 𝑈

↔ {𝛾 ∣ 𝛾 < 𝜅} ∈ 𝑈
This is certainly in 𝑈 . So for all 𝛼 < 𝜅,

𝛼 < (id𝜅) < 𝑗(𝜅)
giving

𝜅 ≤ (id𝜅) < 𝑗(𝜅)
as required.

Remark. (i) This implies that 𝑗|V𝜅+1 ≠ id, so the identity result above cannot be strengthened.

(ii) This also shows that many of the elements of𝑀 arise from non-constant functions.

(iii) The set
{𝑗(𝑥) ∣ 𝑥 ∈ V𝜆}

is isomorphic to V𝜆. Therefore, there is a (non-transitive) copy of V𝜆 that sits strictly inside𝑀.

(iv) Let 𝑓 ∶ 𝜅 → 𝜅 be a function such that for all 𝛾 < 𝜅, id𝜅(𝛾) < 𝑓(𝛾). Then (id𝜅) < (𝑓). For
example, the functions 𝑓2(𝛾) = 𝛾 ⋅ 2 and 𝑓3(𝛾) = 𝛾 ⋅ 3 satisfy (id𝜅) < (𝑓2) < (𝑓3).

(v) At the moment, we do not know whether (id𝜅) = 𝜅. Consider

𝑓(𝛾) = {𝛾 − 1 if 𝛾 is a successor
𝛾 if 𝛾 is a limit

Then
(𝑓) < (id𝜅) ↔ {𝛼 ∣ 𝛼 is a limit} ∉ 𝑈

We will discuss this in more detail later.

3.3 Properties above the critical point

Definition. Let 𝑗 ∶ V𝜆 → 𝑀 be an elementary embedding such that 𝑀 ⊆ V𝜆 is transitive.
An ordinal 𝜇 is called the critical point of 𝑗, written crit(𝑗), if 𝑗 ≠ id and 𝜇 is the least ordinal
𝛼. such that 𝑗(𝛼) > 𝛼.

Note that if 𝑗 ≠ id, it moves the rank of some set, so moves some ordinal. Therefore, if 𝑗 ≠ id, it has
a critical point.

In this terminology, the critical point of the embedding 𝑗 above is 𝜅.
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Remark. (i) 𝑀 is closed under finite intersections: if 𝐴, 𝐵 ∈ 𝑀, then 𝐴 ∩ 𝐵 ∈ 𝑀.

(ii) V𝜅 ∈ 𝑀. To show this, we claim that the set

𝑊 = {𝑦 ∈ 𝑀 ∣ 𝑀 ⊨ rank 𝑦 < 𝜅}

is equal to V𝜅. Then, since𝑀 models ZFC, the set𝑊 is V𝑀
𝜅 , so𝑊 ∈ 𝑀.

If 𝑥 ∈ V𝜅, then rank𝑥 = 𝛼 < 𝜅, so 𝑗(𝑥) = 𝑥. By elementarity, rank𝑥 = rank 𝑗(𝑥) = 𝑗(𝛼) = 𝛼 as
required. Conversely, suppose that𝑀 ⊨ rank 𝑦 = 𝛾 for 𝛾 < 𝜅. There is 𝑓 such that 𝑦 = (𝑓), and
without loss of generality we can take 𝑓 ∶ 𝜅 → V𝛾+1. But ||V𝛾+1|| < 𝜅, and so by the argument
in the lemma proving 𝑗|V𝜅 = id, there is some 𝑥 ∈ V𝛾+1 such that {𝛼 ∣ 𝑓(𝛼) = 𝑥} ∈ 𝑈 . Hence
𝑓 ∼ 𝑐𝑥, and so 𝑦 = 𝑗(𝑥) = 𝑥.

Lemma. V𝜅+1 ⊆ 𝑀.

Note that 𝑗|V𝜅+1 ≠ id.

Proof. Let 𝐴 ∈ V𝜅+1, so 𝐴 ⊆ V𝜅. We claim that 𝐴 = 𝑗(𝐴) ∩V𝜅. Then, by the two remarks above, this
implies 𝐴 ∈ 𝑀.

Suppose 𝑥 ∈ 𝐴 ⊆ V𝜅. By elementarity, 𝑗(𝑥) ∈ 𝑗(𝐴), but 𝑥 = 𝑗(𝑥), so 𝑥 ∈ 𝑗(𝐴). Conversely, suppose
𝑥 ∈ 𝑗(𝐴) ∩ V𝜅. Then 𝑥 = 𝑗(𝑥), so 𝑗(𝑥) ∈ 𝑗(𝐴). So by elementarity in the other direction, 𝑥 ∈ 𝐴.

Lemma. V𝜆 ⊨ |𝑗(𝜅)| ≤ 2𝜅.

Proof. Recall that if 𝑓 ∈ V𝛾 then |(𝑓)| ≤ ||V𝛾||. So if (𝑓) ∈ 𝑗(𝜅) = (𝑐𝜅), we can assume 𝑓 ∶ 𝜅 → 𝜅, and
there are only 2𝜅-many such functions.

In particular, V𝜆 believes that 𝑗(𝜅) is not a strong limit cardinal. Hence,

Lemma. 𝑀 ≠ V𝜆.

Proof. 𝑀 believes that 𝑗(𝜅) is measurable, so in particular it believes 𝑗(𝜅) is a strong limit. Hence
𝑀 ≠ V𝜆.

There is a strengthening of this result which exhibits a witness to𝑀 ⊊ V𝜆, discussed on the example
sheets. Namely, we can show that𝑈 ∉ 𝑀. In order to show this, we prove that for arbitrary transitive
𝑁 ⊆ V𝜆 with 𝑈 ∈ 𝑁, we have 𝑁 ⊨ |𝑗(𝜅)| ≤ 2𝜅. In particular, V𝜅+2 ⊈ 𝑀.

Note that𝑀might still believe that 𝜅 is measurable, even though𝑈 ∉ 𝑀. There could be some other
𝑈 ′ ∈ 𝑉𝜅+2 which is 𝜅-complete and nonprincipal.
Recall that the Keisler extension property for a transitivemodel 𝑋 is the statement that there is 𝜅 ∈ 𝑋
such that V𝜅 ⪯ 𝑋 . Properties of 𝑋 reflect down into V𝜅: if 𝛼 ∈ OrdV𝜅 and Φ is a property such that
𝑋 ⊨ Φ(𝜅), then

𝑋 ⊨ ∃𝜇. 𝛼 < 𝜇 ∧ Φ(𝜇)
so

V𝜅 ⊨ ∃𝜇. 𝛼 < 𝜇 ∧ Φ(𝜇)
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hence
𝐶Φ = {𝛾 < 𝜅 ∣ Φ(𝛾)} ⊆ 𝜅

is cofinal in 𝜅. Now, if Φ is any property such that𝑀 ⊨ Φ(𝜅), then for any 𝛼 < 𝜅,

𝑀 ⊨ ∃𝜇. 𝑗(𝛼) < 𝜇 < 𝑗(𝜅) ∧ Φ(𝜇)

By elementarity,
V𝜆 ⊨ ∃𝜇. 𝛼 < 𝜇 < 𝜅 ∧ Φ(𝜇)

Note that 𝛼 = 𝑗(𝛼). So
𝐶Φ = {𝛾 < 𝜅 ∣ Φ(𝛾)}

is cofinal in 𝜅.
Example. (i) Let Φ(𝜅) = I(𝜅) be the statement that 𝜅 is inaccessible. By absoluteness,𝑀 ⊨ I(𝜅),

so
𝐶I = {𝛾 < 𝜅 ∣ I(𝛾)}

is cofinal. So if 𝜅 is measurable, it is the 𝜅th inaccessible cardinal.
(ii) Let Φ(𝜅) = W(𝜅) be the statement that 𝜅 is weakly compact. We show that 𝑀 ⊨ W(𝜅). Let

𝑐 ∶ [𝜅]2 → 2 be a colouring in𝑀; we find 𝐻 ∈ [𝜅]𝜅 in𝑀 that is monochromatic for 𝑐. By the
fact that V𝜆 ⊨ W(𝜅), we obtain 𝐻 as above in V𝜆. But this 𝐻 is a subset of 𝜅, so is an element
of V𝜅+1 ⊆ 𝑀 as required. By the reflection argument,

𝐶W = {𝛾 < 𝜅 ∣ W(𝛾)}

is cofinal in 𝜅. So the least weakly compact cardinal is not measurable.

Definition. A property Φ is called 𝛽-stable if for all transitive models 𝑀 and all 𝜅, if Φ(𝜅)
holds and V𝜅+𝛽 ⊆ 𝑀 then𝑀 ⊨ Φ(𝜅).

Remark. (i) Weak compactness is 1-stable, and 1-stable properties of measurable cardinals reflect
at a measurable cardinal.

(ii) Measurability is 2-stable, because the property Ξ of being a 𝜅-complete nonprincipal ultrafilter
is absolute, but the existence of the ultrafilter requires two power set operations:

M(𝜅) ↔ ∃𝑈 ∈ V𝜅+2. Ξ(𝑈)

Example. Suppose that𝑀 ⊨ M(𝜅). Then by the same reflection argument, the set 𝐶M is cofinal in
𝜅, so 𝜅 is the 𝜅th measurable cardinal, and so is not the least.

Definition. A cardinal 𝜅 is called surviving, written Surv(𝜅), if there is 𝜆 > 𝜅 inaccessible, a
𝜅-complete nonprincipal ultrafilter on 𝜅, a transitive model𝑀 such that𝑀 ≅ V𝜆𝜅⟋𝑈 and 𝑗 is
the elementary embedding derived from 𝑈 , where𝑀 ⊨ M(𝜅).

By the example above, if 𝜅 is the first surviving cardinal, it is the 𝜅th measurable. Under sufficient
consistency assumptions, we have the following.
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Corollary. MC <Con SurvC.

Proof. Let 𝜅 be a surviving cardinal. By the previous results, we can find 𝜆0 < 𝜆1 < 𝜅 such that 𝜆0, 𝜆1
are both measurable. Then 𝜆1 is inaccessible, so V𝜆1 ⊨ ZFC + M(𝜆0) by 2-stability of measurability
and the fact that V𝜆0+2 ⊆ V𝜆1 .

3.4 The fundamental theorem onmeasurable cardinals

Theorem. Suppose 𝜆 is inaccessible and 𝜅 < 𝜆. Then the following are equivalent.
(i) 𝜅 is measurable.
(ii) There is a transitive model 𝑀 of ZFC with V𝜅+1 ⊆ 𝑀 and an elementary embedding

𝑗 ∶ V𝜆 → 𝑀 such that 𝑗 ≠ id and 𝜅 = crit(𝑗).

Proof. We have already shown that (i) implies (ii). For the converse, we define an ultrafilter 𝑈 by

𝑈 = {𝐴 ⊆ 𝜅 ∣ 𝜅 ∈ 𝑗(𝐴)}

Note that if 𝐴 ⊆ 𝜅, then 𝑗(𝐴) ⊆ 𝑗(𝜅), so it could in fact be the case that 𝜅 ∈ 𝑗(𝐴). We show that 𝑈 is
a 𝜅-complete nonprincipal ultrafilter.

• We have 𝜅 ∈ 𝑈 precisely if 𝜅 ∈ 𝑗(𝜅), but this is true as 𝜅 is the critical point of 𝑗.
• ∅ ∈ 𝑈 precisely if 𝜅 ∈ 𝑗(∅), but 𝑗(∅) = ∅ as 𝑗 is an elementary embedding.
• If 𝐴 ∈ 𝑈 and 𝐵 ⊇ 𝐴, then 𝜅 ∈ 𝑗(𝐴), but 𝑗(𝐵) ⊇ 𝑗(𝐴) by elementarity, so 𝜅 ∈ 𝑗(𝐵) giving 𝐵 ∈ 𝑈 .
• Suppose 𝐴 ∉ 𝑈 . Then 𝜅 ∉ 𝑗(𝐴). We want to show 𝜅 ∖ 𝐴 ∈ 𝑈 , or equivalently, 𝜅 ∈ 𝑗(𝜅 ∖ 𝐴). By
elementarity, 𝑗(𝜅 ∖ 𝐴) = 𝑗(𝜅) ∖ 𝑗(𝐴). But 𝜅 ∈ 𝑗(𝜅) ∖ 𝑗(𝐴) as required.

• We show 𝑈 is nonprincipal. Let 𝛼 ∈ 𝜅. Then {𝛼} ∈ 𝑈 precisely when 𝜅 ∈ 𝑗({𝛼}) = {𝑗(𝛼)}. But
𝛼 < 𝜅, so 𝑗(𝛼) = 𝛼 ≠ 𝜅, hence 𝑈 cannot be principal.

• Finally, we show 𝜅-completeness; this will also show the finite intersection property required
for 𝑈 to be a filter. Let 𝛾 < 𝜅, and fix (𝐴𝛼)𝛼<𝛾 such that 𝐴𝛼 ∈ 𝑈 for each 𝛼 < 𝛾. Then
𝜅 ∈ 𝑗(𝐴𝛼) for all 𝛼 < 𝛾. Then ⋂𝛼<𝛾 𝐴𝛼 ∈ 𝑈 if and only if 𝜅 ∈ 𝑗(⋂𝛼<𝛾 𝐴𝛼). Note that
being an element of⋂𝛼<𝛾 𝐴𝛾 is a formula that says that A is a sequence of objects 𝐴𝛼, the 𝛼th
element of this sequence is𝐴𝛼, and 𝛽 is an element of each element of the sequence. Therefore
𝛽 ∈ 𝑗(⋂𝛼<𝛾 𝐴𝛼) if and only if 𝛽 is an element of all elements of the sequence 𝑗(A). Clearly,
𝑗(A) is a sequence of subsets of 𝑗(𝜅) of length 𝑗(𝛾) = 𝛾. Since 𝐴𝛼 is the 𝛼th element ofA, 𝑗(𝐴𝛼)
is the 𝑗(𝛼)th element of 𝑗(A), but 𝑗(𝛼) = 𝛼. Hence 𝑗(A) is the sequence (𝑗(𝐴𝛼))𝛼<𝛾. Then

𝑗(⋂
𝛼<𝛾

𝐴𝛼) = ⋂
𝛼<𝛾

𝑗(𝐴𝛼)

giving 𝜅-completeness as required.
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Remark. Given a sequence A of subsets of 𝜅 of length 𝛾, then 𝑗(A) is a sequence of subsets of 𝑗(𝜅) of
length 𝑗(𝛾). Moreover, if 𝐴𝛼 is the 𝛼th element of A, then 𝑗(𝐴𝛼) is the 𝑗(𝛼)th element of 𝑗(A). In the
situation above, 𝛾 < 𝜅, so 𝑗(𝛾) = 𝛾 and 𝑗(𝛼) = 𝛼, so 𝑗(A) = {𝑗(𝐴𝛼) ∣ 𝛼 < 𝛾}. If, for example, 𝛾 = 𝜅,
then 𝑗(A) is a sequence of length 𝑗(𝜅), which is strictly longer. Despite this, the first 𝜅-many elements
of the sequence are still 𝑗(𝐴𝛼) for 𝛼 < 𝜅. Beyond 𝜅, we do not know what the elements of 𝑗(A) look
like. This remark suffices for the following result.

Proposition. For arbitrary embeddings 𝑗 with critical point 𝜅, the ultrafilter𝑈𝑗 constructed
above is normal.

Proof. Suppose𝐴𝛼 ∈ 𝑈𝑗 for each𝛼 < 𝜅, or equivalently, 𝜅 ∈ 𝑗(𝐴𝛼). Wemust show 𝜅 ∈ 𝑗(Δ𝛼<𝜅(𝐴𝛼)).
We have

𝜉 ∈ Δ
𝛼<𝜅

(𝐴𝛼) ↔ 𝜉 ∈ ⋂
𝛼<𝜉

𝐴𝛼

↔ ∀𝛼 < 𝜉. 𝜉 ∈ 𝐴𝛼

𝜉 ∈ 𝑗(Δ
𝛼<𝜅

(𝐴𝛼)) ↔ ∀𝛼 < 𝜉. 𝜉 ∈ 𝑗(A)𝑗(𝛼)

Substitute 𝜅 for 𝜉 and obtain

𝜅 ∈ 𝑗(Δ
𝛼<𝜅

(𝐴𝛼)) ↔ ∀𝛼 < 𝜅. 𝜅 ∈ 𝑗(A)𝑗(𝛼)

↔ ∀𝛼 < 𝜅. 𝜅 ∈ 𝑗(A)𝛼
↔ ∀𝛼 < 𝜅. 𝜅 ∈ 𝑗(𝐴𝛼)

which holds by assumption.

Remark. (i) This gives an alternative proof of the existence of a normal ultrafilter on ameasurable
cardinal.

(ii) The operations 𝑈 ↦ 𝑗𝑈 and 𝑗 ↦ 𝑈𝑗 are not inverses in general. In particular, if 𝑈 is not
normal, 𝑈𝑗𝑈 ≠ 𝑈 .

Proposition. Let 𝑈 be a 𝜅-complete nonprincipal ultrafilter on 𝜅. Then the following are
equivalent.
(i) 𝑈 is normal;
(ii) (id) = 𝜅.

This proposition provides an alternative view of reflection. Suppose that the ultrafilter 𝑈 on 𝜅 is
normal. If𝑀 ⊨ Φ(𝜅), then𝑀 ⊨ Φ((id)). By Łoś’ theorem,

{𝛼 < 𝜅 ∣ Φ(id(𝛼))} ∈ 𝑈

SoΦ reflects not only on a set of size 𝜅, but on an ultrafilter set. In particular, ifΦ = M and𝑀 ⊨ M(𝜅),
so if 𝜅 is surviving, then the set of 𝛼 that aremeasurable is in𝑈 . Using this result, we can characterise
the surviving cardinals in a more elegant way.
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Theorem. 𝜅 is surviving if and only if there is a normal ultrafilter on 𝜅 such that
{𝛼 < 𝜅 ∣ M(𝛼)} ∈ 𝑈 .

Proof. We have just shown one direction. For the converse, suppose the set 𝐶 = {𝛼 < 𝜅 ∣ M(𝛼)} is in
𝑈 . Then for each 𝛼 ∈ 𝐶, one can find an 𝛼-complete nonprincipal ultrafilter on 𝛼 called 𝑈𝛼. Define

𝑓(𝛼) = {𝑈𝛼 if 𝛼 ∈ 𝐶
∅ if 𝛼 ∉ 𝐶

Thus the set of 𝛼 such that 𝑓(𝛼) is an 𝛼-complete nonprincipal ultrafilter on 𝛼 is 𝐶, so in 𝑈 . Equival-
ently, the set of 𝛼 such that 𝑓(𝛼) is an id(𝛼)-complete nonprincipal ultrafilter on id(𝛼) is in 𝑈 . So by
Łoś’ theorem,𝑀 believes that (𝑓) is an (id)-complete nonprincipal ultrafilter on (id). So (𝑓)witnesses
that 𝜅 is measurable in𝑀.

This shows that whether a cardinal 𝜅 is surviving depends only on V𝜅+2, and is therefore a 2-stable
property.

Definition. If 𝑈,𝑈 ′ are normal ultrafilters on 𝜅, we write 𝑈 <𝑀 𝑈 ′ if

𝐶 = {𝛼 ∣ M(𝛼)} ∈ 𝑈

and there is a sequence of ultrafilters 𝑈𝛼 on 𝛼 ∈ 𝐶 such that

𝐴 ∈ 𝑈 ′ ↔ {𝛼 ∣ 𝐴 ∩ 𝛼 ∈ 𝑈𝛼} ∈ 𝑈

This is known as theMitchell order.

Then 𝜅 is surviving if and only if there are 𝑈,𝑈 ′ on 𝜅 such that 𝑈 <𝑀 𝑈 ′, because of the fact that if
ℎ(𝛼) = 𝐴 ∩ 𝛼 then (ℎ) = 𝐴. Note that talking about sequences of Mitchell-ordered ultrafilters is also
2-stable.

4 Towards inconsistency
4.1 Strong cardinals

Definition. A large cardinal axiomΦC is called an embedding axiom ifΦ(𝜅) holds if and only
if there is a transitive model𝑀 and elementary embedding 𝑗 ∶ V𝜆 → 𝑀 with critical point 𝜅
with certain additional properties.

M(𝜅) is the simplest embedding axiom. The remaining large cardinal axioms in this course will take
the form of embedding axioms.

Definition. An embedding 𝑗 ∶ V𝜆 → 𝑀 with critical point 𝜅 is called 𝛽-strong if V𝜅+𝛽 ⊆ 𝑀.
A cardinal 𝜅 is called 𝛽-strong if there is a 𝛽-strong embedding with critical point 𝜅.
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𝛽-stable properties are preserved by 𝛽-strong embeddings. In particular, by the reflection argument,
if Φ is 𝛽-stable and 𝜅 is 𝛽-strong with Φ(𝜅), then 𝜅 is the 𝜅th cardinal with property Φ.
Note that 𝜅 is measurable if and only if 𝜅 is 1-strong, and if 𝜅 is 2-strong then {𝛼 < 𝜅 ∣ M(𝛼)} and
{𝛼 < 𝜅 ∣ Surv(𝛼)} are of size 𝜅. If we write 𝛽−S(𝜅) to denote that 𝜅 is 𝛽-strong, then

SurvC <Con 2−S(𝜅)

This also gives an example of 𝑗𝑈𝑗 ≠ 𝑗, as the ultrapower embedding of any ultrafilter is never 2-
strong.

Definition. A large cardinal property Φ is said to have witness objects of rank 𝛽 if there is a
formula Ψ that is downwards absolute for transitive models such that

Φ(𝜅) ↔ ∀𝑥. ∃𝑦 ∈ V𝜅+𝛽. Ψ(𝑥, 𝑦, 𝜅)

Any large cardinal property with witness objects of rank 𝛽 is 𝛽-stable.
Example. (i) Weakly compact cardinals have witness objects of rank 1: for all colourings, there

exists a homogeneous set in V𝜅+1.

(ii) Measurable cardinals have witness objects of rank 2: there is a 𝜅-complete nonprincipal ultra-
filter on 𝜅. The initial ∀𝑥 quantifier is not needed in this case.

(iii) Surviving cardinals also have witness objects of rank 2, namely, a pair of ultrafilters.

In particular, inaccessibility is 0-stable, weak compactness is 1-stable, and measurability and surviv-
ability are 2-stable.

Remark. If𝛽-strong cardinals havewitness objects, they cannot be of rank𝛽, because then theywould
reflect below. Witness objects for strength exist and are called extenders, and if 𝜇 is the least ℶ fixed
point larger than ||V𝜅+𝛽||, then the witness object for 𝛽-strength has rank at most 𝜇.

Definition. A cardinal 𝜅 is called strong if it is 𝛽-strong for all 𝛽 < 𝜆.

Importantly, the quantifiers are
∀𝛽. ∃𝑗.V𝜅+𝛽 ⊆ 𝑀

This does not say that there exists an embeddingwhere all of the V𝜅+𝛽 are subsets of the same𝑀. This
notion cannot have a single witness object of a fixed rank, since otherwise, strength would reflect
strength.

4.2 Removing the inaccessible
The ultrapower constructions used an inaccessible cardinal above a measurable cardinal, so that we
could obtain a set-sized universe containing a measurable cardinal. When trying to do this with the
real universe, we encounter several problems.

(i) The definition of ultrapowers requires a set model.

(ii) In the fundamental theorem of measurable cardinals, we have a quantification over 𝑗 and 𝑀.
If these are proper classes, this quantification cannot be expressed in the usual language of set
theory.
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(iii) Also, in the fundamental theorem of measurable cardinals, we use the notion of an elementary
embedding, which is only definable for set models.

To solve problem (i), we would like to construct V
𝜅⟋∼𝑈 . Note that V

𝜅 is a well-defined class; it is the
class of all functions with domain 𝜅. For such functions, it is easy to define the equivalence relation
∼𝑈 . However, the equivalence classes [𝑓]𝑈 = {𝑔 ∈ V𝜅 ∣ 𝑓 ∼𝑈 𝑔} are all proper classes. So V𝜅⟋∼𝑈 is
no longer a standard class; classes containing proper classes are typically not allowed. This can be
resolved using Scott’s trick. If 𝐶 is a nonempty class, then there is a minimal 𝛼 such that 𝐶 ∩V𝛼 ≠ ∅.
This is a nonempty set. Define scott(𝐶) = 𝐶 ∩ V𝛼 for this 𝛼. Hence, if [𝑓]𝑈 ≠ [𝑔]𝑈 , we have
scott([𝑓]𝑈) ≠ scott([𝑔]𝑈). We can therefore define

V𝜅⟋𝑈 = {scott([𝑓]𝑈) ∣ dom𝑓 = 𝜅}

To obtain ourmodel𝑀, we took theMostowski collapse of V𝜆
𝜅
⟋𝑈 . Therefore, we need a class version

of the Mostowski collapse. Recall that a relation 𝐸 ⊆ 𝐶 × 𝐶 is set-like if for all 𝑥 ∈ 𝐶, the class
{𝑦 ∈ 𝐶 ∣ 𝑦 𝐸 𝑥} is a set.

Theorem. Let 𝐶 be a class, and let 𝐸 ⊆ 𝐶 ×𝐶 be a binary relation on 𝐶 that is well-founded,
extensional, and set-like. Then there is a unique transitive class 𝑇 such that (𝑇, ∈) ≅ (𝐶, 𝐸).

This may be proven in an almost identical fashion to Mostowski’s collapsing theorem for sets.

For problems (ii) and (iii), recall that the fundamental theoremofmeasurable cardinalswas thatM(𝜅)
is equivalent to the statement that there is an elementary embedding 𝑗 ∶ V𝜆 → 𝑀with critical point 𝜅.
Measurability is witnessed at 𝜅 + 2, but the elementary embedding is not witnessed anywhere below
𝜆, so we cannot extend this definition to the usual universe. We can solve this by extending our set
theory to an appropriate class theory. Standard class theories include von Neumann–Bernays–Gödel
orNBG, andMorse–Kelley orMK. These theories have very different notions of class. NBG set theory
is based upon the idea that definable formulas give the classes. It is a ‘minimal class theory’ where
all classes are definable. MK is based on the idea that Ord behaves externally like in inaccessible
cardinal. In this theory, there could be undefinable classes, and more classes than sets.

This resolves problem (ii), as we are permitted to work in a language in which we may quantify over
proper classes. However, this does not solve problem (iii). Elementarity cannot be expressed as a
single formula, but becomes a schema. This causes additional problems as we need the existential
over 𝑗 and 𝑀 to be part of each formula. This could be solved by extending the language to add
symbols for 𝑗 and𝑀. Another resolution is to observe that Σ1-elementarity suffices, as is explored in
Kanamori’s bookTheHigher Infinite on page 45. This can be defined using a single formula, therefore
solving problem (iii).

4.3 Supercompact cardinals

Definition. 𝑀 is closed under 𝜇-sequences if𝑀𝜇 ⊆ 𝑀.

Theorem. If 𝜅 is measurable and 𝑗 ∶ V𝜆 → 𝑀 is the ultrapower embedding, then𝑀 is closed
under 𝜅-sequences but not 𝜅+-sequences.
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Proof. Let 𝑆 = {(𝑓𝛼) ∣ 𝛼 < 𝜅} ∈ 𝑀𝜅. We must show that 𝑆 ∈ 𝑀. Find ℎ such that (ℎ) = 𝜅. For 𝜉 ∈ 𝜅,
define 𝑔(𝜉) to be a function with domain ℎ(𝜉) such that for all 𝛼 ∈ ℎ(𝜉),

𝑔(𝜉)(𝛼) = 𝑓𝛼(𝜉)

Then
{𝜉 ∣ dom 𝑔(𝜉) = ℎ(𝜉)} = 𝜅 ∈ 𝑈

By Łoś’ theorem, dom(𝑔) = (ℎ) = 𝜅. Further,

{𝜉 ∣ ∀𝛼 ∈ dom 𝑔(𝜉). 𝑔(𝜉)(𝛼) = 𝑓𝛼(𝜉)} = 𝜅 ∈ 𝑈

so again by Łoś’ theorem, if 𝛼 ∈ dom(𝑔) = 𝜅, then (𝑔)(𝛼) = (𝑓𝛼). Hence (𝑔) = 𝑆.
Let

𝑇 = {𝑗(𝛼) ∣ 𝛼 < 𝜅+} ∈ 𝑀𝜅+

We claim that 𝑇 ∉ 𝑀. To prove this, we first show that 𝑇 is unbounded in 𝑗(𝜅+), which is equal to
𝑗(𝜅)+ by elementarity. Indeed, consider an arbitrary (𝑓) < 𝑗(𝜅+). Then 𝑗(𝜅+) = (𝑐𝜅+), so without
loss of generality we can assume 𝑓 ∶ 𝜅 → 𝜅+. As 𝜅+ is regular, 𝑓 is bounded by some 𝛼 < 𝜅+, so
𝑓 ∶ 𝜅 → 𝛼. Then (𝑓) < (𝑐𝛼) = 𝑗(𝛼) ∈ 𝑇.
Now, note that 𝑗(𝜅+) = 𝑗(𝜅)+ is a regular cardinal, so cannot have small unbounded subsets. But
|𝑇| = 𝜅+ < 𝑗(𝜅)+, so 𝑇 ∉ 𝑀.

Definition. An embedding 𝑗 is called 𝜇-supercompact if 𝑀𝜇 ⊆ 𝑀. A cardinal 𝜅 is called 𝜇-
supercompact if there is a 𝜇-supercompact embedding with critical point 𝜅.

Therefore, the theorem above shows that if 𝜅 is measurable, then it is 𝜅-supercompact, and the ultra-
power embedding is not 𝜅+-supercompact, although there could be other embeddings that are.

Definition. A cardinal 𝜅 is called supercompact if it is 𝜇-supercompact for all 𝜇 < 𝜆.

As with strong cardinals, the quantifiers are in the order

∀𝜇. ∃𝑗.𝑀𝜇 ⊆ 𝑀

If 𝜅 is 2𝜅-supercompact, then 𝜅 is 2-strong. First note that V𝜅+2 = 𝒫(V𝜅+1) and |V𝜅+1| = |𝒫(V𝜅)| = 2𝜅.
Every 𝐴 ∈ V𝜅+1 is a 2𝜅-sequence of elements of 𝑀, so if every 2𝜅-length sequence lies in 𝑀, then
𝐴 ∈ 𝑀 as required. In general, if 𝜅 is ||V𝜅+𝛽|| = ℶ𝜅+𝛽-supercompact, then 𝜅 is (𝛽 + 1)-strong. In
particular,

Corollary. Every supercompact cardinal is strong.

4.4 The upper limit
We now consider reversing the quantifier order in the definition of a strong cardinal.
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Definition. A cardinal 𝜅 is called Reinhardt if there is an embedding 𝑗 such that for all 𝛽, we
have V𝜅+𝛽 ⊆ 𝑀, or equivalently,𝑀 = V𝜆. In other words, there is an elementary embedding
𝑗 ∶ V𝜆 → V𝜆 with critical point 𝜅.

Theorem (Kunen). ZFC proves that there are no Reinhardt cardinals.

It is an open problem whether ZF without AC proves there are no Reinhardt cardinals.

Proof. Suppose 𝑗 ∶ V𝜆 → 𝑀 has critical point 𝜅. Find the least 𝑗-fixed point above 𝜅, by defining

𝜅0 = 𝜅; 𝜅𝑖+1 = 𝑗(𝜅); ̂𝜅 = ⋃
𝑖∈𝜔

𝜅𝑖

so 𝑗( ̂𝜅) = ̂𝜅. We will show that V ̂𝜅+1 ⊈ 𝑀, which is a result called Kunen’s lemma. This contradicts
the assumption that𝑀 = V𝜆.

We need a combinatorial lemma due to Erdős and Hajnal. For a cardinal 𝛿, we say that 𝑓 ∶ [𝛿]𝜔 → 𝛿
is 𝜔-Jónsson if for every 𝑋 ⊆ 𝛿 such that |𝑋| = 𝛿, we have {𝑓(𝐴) ∣ 𝐴 ∈ [𝑋]𝜔} = 𝛿. The lemma states
that every cardinal 𝛿 has an 𝜔-Jónsson function.
Suppose that V ̂𝜅+1 ⊆ 𝑀. Let 𝑓 ∶ [ ̂𝜅]𝜔 → ̂𝜅 be an 𝜔-Jónsson function for ̂𝜅. Then𝑀 believes that 𝑗(𝑓)
is an 𝜔-Jónsson function for 𝑗( ̂𝜅) = ̂𝜅. Define

𝑋 = {𝑗(𝛼) ∣ 𝛼 ∈ ̂𝜅} ∈ V ̂𝜅+1

We claim that 𝑋 ∉ 𝑀, finishing the proof. Suppose 𝑋 ∈ 𝑀. Clearly |𝑋| = ̂𝜅, so then 𝑀 ⊨ |𝑋| = ̂𝜅.
We can apply the definition of an 𝜔-Jónsson function in𝑀, which shows that

𝑀 ⊨ {𝑗(𝑓)(𝐴) ∣ 𝐴 ∈ [𝑋]𝜔} = ̂𝜅

Any𝐴 ∈ [𝑋]𝜔 is of the form {𝑗(𝛼𝑖) ∣ 𝑖 ∈ 𝜔} for some𝑎 = {𝛼𝑖 ∣ 𝑖 ∈ 𝜔} ∈ [ ̂𝜅]𝜔. Then 𝑗(𝑎) = {𝑗(𝛼𝑖) ∣ 𝑖 ∈ 𝜔} =
𝐴.
In general, if 𝑔(𝑥) = 𝑦, then 𝑔 is a function, 𝑥 ∈ dom 𝑔, and ⟨𝑥, 𝑦⟩ ∈ 𝑔. Applying 𝑗, we have that 𝑗(𝑔)
is a function, 𝑗(𝑥) ∈ dom 𝑗(𝑔), and ⟨𝑗(𝑥), 𝑗(𝑦)⟩ ∈ 𝑗(𝑔). So 𝑗(𝑔)(𝑗(𝑥)) = 𝑗(𝑦) = 𝑗(𝑔(𝑥)). Therefore, we
obtain 𝑗(𝑓)(𝐴) = 𝑗(𝑓)(𝑗(𝑎)) = 𝑗(𝑓(𝑎)). But 𝑓(𝑎) ∈ ̂𝜅, so 𝑗(𝑓(𝑎)) ∈ 𝑋 . Therefore,

𝑀 ⊨ ̂𝜅 = {𝑗(𝑓)(𝐴) ∣ 𝐴 ∈ [𝑋]𝜔} ⊆ 𝑋

But this cannot be true, for example because 𝜅 ∉ 𝑋 but 𝜅 ∈ ̂𝜅.

Remark. (i) The combinatorial lemma was proven using AC, and it is not known whether the
proof works without it.

(ii) To prove Kunen’s lemma, we did not need that 𝜆 is inaccessible. More explicitly, if 𝑗 ∶ V𝛼 → 𝑀
is an elementary embeddingwith critical point 𝜅 such that �̂�+2 ≤ 𝛼 (to guarantee that 𝑓 ∈ V𝛼),
then V ̂𝜅+1 ⊈ 𝑀.

Corollary. For any ordinal 𝛿, there is no elementary embedding 𝑗 ∶ V𝛿+2 → V𝛿+2 with
critical point less than 𝛿 + 2.
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Proof. Observe that if 𝜅 < 𝛿+2 is the critical point, we cannot have 𝜅 = 𝛿 or 𝜅 = 𝛿+1, because 𝛿 and
𝛿 + 1 are definable in V𝛿+2. Then 𝑗(𝜅) < 𝛿, so by induction all of the iterated images of 𝜅 under 𝑗 are
less than 𝛿, so ̂𝜅 ≤ 𝛿. Thus ̂𝜅 + 2 ≤ 𝛿 + 2, so by remark (ii), V ̂𝜅+1 ⊈ V𝛿+2, giving a contradiction.

The axiom stating the existence of an analogous 𝑗 ∶ V𝛿+1 → V𝛿+1 is called 𝐼1, and the existence of
𝑗 ∶ V𝛿 → V𝛿 is called 𝐼3; there is an axiom 𝐼2 in between. Clearly, if 𝑗 ∶ V𝛿+1 → V𝛿+1 is elementary,
then so is 𝑗|V𝛿 ∶ V𝛿 → V𝛿, so 𝐼1 implies 𝐼3. It has been hypothesised that 𝐼1 and 𝐼3 are inconsistent,
but we do not yet have a proof.
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Diagram of large cardinal properties
Under suitable consistency assumptions, large cardinal properties that appear in higher positions
on this diagram have strictly higher consistency strength than properties appearing lower down the
diagram.

𝜅 Reinhardt 0 = 1

𝐼1

𝐼3

𝜅 supercompact

𝜅 strongly compact

large
medium

𝜅 strong

𝜅 surviving

𝜅 Ulam 𝜅measurable 𝜅 real-valued measurable

medium
small

𝜅 weakly compact

𝜅 inaccessible 𝜅 weakly inaccessible

𝜅 worldly

min.

The ‘small large cardinals’ are usually considered those cardinals consistent with V = L, and such
large cardinal properties are usually downwards absolute. Note that 𝐿 has no measurable cardinals.
Indeed, if V = L and𝑈 is a 𝜅-complete nonprincipal ultrafilter on 𝜅, then the ultrapower embedding
𝑗𝑈 ∶ 𝐿 → 𝑀 must map to an inner model strictly smaller than 𝐿, but such an inner model cannot
exist.

There are certain large cardinals calledWoodin cardinalswhich sit between strong and strongly com-
pact cardinals. They represent another boundary between sizes of large cardinal axioms, just like
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measurable cardinals; smaller large cardinals are sometimes called ‘medium-sized large cardinals’,
and the others are called ‘large large cardinals’. Woodin cardinals are crucial for understanding the
connection between large cardinals and infinite games. We know very little about large cardinal
axioms beyond Woodin cardinals.
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