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1 Definitions and resolutions
1.1 ???
Let 𝐺 be a group.

Definition. The integral group ring ℤ𝐺 is the set of formal sums ∑𝑛𝑔𝑔, where 𝑛𝑔 ∈ ℤ,
𝑔 ∈ 𝐺, and only finitely many of the 𝑛𝑔 are nonzero. An addition operation makes this set a
free abelian group:

(∑𝑚𝑔𝑔) + (∑𝑛𝑔𝑔) = ∑(𝑚𝑔 + 𝑛𝑔)𝑔
Multiplication is defined by

(∑
ℎ∈𝐺

𝑚ℎℎ)(∑
𝑘∈𝐺

𝑛𝑘𝑘) = ∑( ∑
ℎ𝑘=𝑔

𝑚ℎ𝑛𝑘)𝑔

Themultiplicative identity is 1𝑒where 𝑒 is the identity of𝐺. This produces an associative ring,
which underlies the integral representation theory of 𝐺.

Definition. A (left) ℤ𝐺-module 𝑀 is an abelian group under addition together with a map
ℤ𝐺 ×𝑀 → 𝑀 denoted (𝑟,𝑚) ↦ 𝑟𝑚, satisfying
(i) 𝑟(𝑚1 +𝑚2) = 𝑟𝑚1 + 𝑟𝑚2;
(ii) (𝑟1 + 𝑟2)𝑚 = 𝑟1𝑚+ 𝑟2𝑚;
(iii) 𝑟1(𝑟2𝑚) = (𝑟1𝑟2)𝑚;
(iv) 1𝑚 = 𝑚.

A module is trivial if 𝑔𝑚 = 𝑚 for all 𝑔 ∈ 𝐺 and 𝑚 ∈ 𝑀. We call ℤ the trivial module, given by the
trivial action 𝑔𝑛 = 𝑛 for all 𝑛 ∈ ℤ and 𝑔 ∈ 𝐺.
The free ℤ𝐺-module on a set 𝑋 is the module of formal sums∑𝑟𝑥𝑥 where 𝑟𝑥 ∈ ℤ𝐺 and 𝑥 ∈ 𝑋 , and
only finitely many of the 𝑟𝑥 are nonzero. This has the obvious 𝐺-action. This module will be denoted
ℤ𝐺{𝑋}.
We can define submodules, quotient modules, and so on as one would expect.

Definition. A (left) ℤ𝐺-map or morphism 𝛼 ∶ 𝑀1 → 𝑀2 is a map of abelian groups with
𝛼(𝑟𝑚) = 𝑟𝛼(𝑚) for all 𝑟 ∈ ℤ𝐺 and𝑚 ∈ 𝑀1.

Example. The augmentation map 𝜀 ∶ ℤ𝐺 → ℤ is the ℤ𝐺-map between left ℤ𝐺-modules given by

∑𝑛𝑔𝑔 ↦ ∑𝑛𝑔

This is also a right ℤ𝐺-map, and also a map of rings.
We will write Hom𝐺(𝑀,𝑁) to be the set of ℤ𝐺-maps 𝑀 → 𝑁, which is made into an abelian group
under pointwise addition.

Example. Regarding ℤ𝐺 as a left ℤ𝐺-module, then

Hom𝐺(ℤ𝐺,𝑀) ≅ 𝑀
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for any left ℤ𝐺-module 𝑀. This isomorphism is given by 𝜑 ↦ 𝜑(1); the ℤ𝐺-map is determined by
the image of 1.

𝜑(𝑟) = 𝜑(𝑟 ⋅ 1) = 𝑟𝜑(1)

Note that Hom𝐺(ℤ𝐺,𝑀) can be viewed as a left ℤ𝐺-module, given by

(𝑠𝜑)(𝑟) = 𝜑(𝑟𝑠); 𝑠 ∈ ℤ𝐺

Note that the isomorphism
Hom𝐺(ℤ𝐺, ℤ𝐺) ≅ ℤ𝐺; 𝜑 ↦ 𝜑(1)

satisfies 𝜑(𝑟) = 𝑟𝜑(1) and so 𝜑 corresponds to multiplication on the right by 𝜑(1).
Remark. 𝐺 may not be abelian, and so we must carefully distinguish left and right actions.

Definition. If 𝑓 ∶ 𝑀1 → 𝑀2 is a ℤ𝐺-map, its dual maps 𝑓⋆ are ℤ𝐺-maps Hom𝐺(𝑀2, 𝑁) →
Hom𝐺(𝑀1, 𝑁) for each ℤ𝐺-module 𝑁, given by composition on the right with 𝑓. If 𝑓 ∶ 𝑁1 →
𝑁2, its induced maps 𝑓⋆ are Hom𝐺(𝑀,𝑁1) → Hom𝐺(𝑀,𝑁2) given by composition on the left
with 𝑓. These are maps of abelian groups.

We will now present a prototypical example.

Example. Let𝐺 = ⟨𝑡⟩ be an infinite cyclic group. Consider the graph whose vertices are 𝑣𝑖 for 𝑖 ∈ ℤ,
where 𝑣𝑖 is joined to 𝑣𝑖+1 and 𝑣𝑖−1. Let 𝑉 be its set of vertices, and 𝐸 be its set of edges. 𝐺 acts by
translations on this graph, where 𝑡maps 𝑣𝑖 to 𝑣𝑖+1. The formal sums ℤ𝑉 and ℤ𝐸 can be regarded as
ℤ𝐺-modules. They are free: ℤ𝑉 = ℤ𝐺{𝑣0}, and ℤ𝐸 = ℤ𝐺{𝑒} where 𝑒 is the edge connecting 𝑣0 and
𝑣1. The boundary map is a ℤ𝐺-map 𝑑 ∶ ℤ𝐸 → ℤ𝑉 given by 𝑒 ↦ 𝑣1 − 𝑣0. There is also a ℤ𝐺-map
ℤ𝑉 → ℤ given by 𝑣0 ↦ 1; this corresponds to the augmentation map.

Definition. A chain complex of ℤ𝐺-modules is a sequence

𝑀𝑠 𝑀𝑠−1 𝑀𝑠−2 ⋯ 𝑀𝑡
𝑑𝑠 𝑑𝑠−1 𝑑𝑡+1

such that for every 𝑡 < 𝑛 < 𝑠, we have 𝑑𝑛𝑑𝑛+1 = 0, and so im𝑑𝑛+1 ⊆ ker𝑑𝑛. We will refer to
the entire sequence as𝑀• = (𝑀𝑛, 𝑑𝑛)𝑡≤𝑛≤𝑠.

We say that 𝑀• is exact at 𝑀𝑛 if im 𝑑𝑛+1 = ker𝑑𝑛, and we say it is exact if it is exact at all 𝑀𝑛 for
𝑡 < 𝑛 < 𝑠. The homology of this chain complex is

𝐻𝑠(𝑀•) = ker𝑑𝑠; 𝐻𝑛(𝑀•) = ker𝑑𝑛⟋im𝑑𝑛+1; 𝐻𝑡(𝑀•) = coker𝑑𝑡−1 = 𝑀𝑡⟋im𝑑𝑡+1
A short exact sequence is an exact chain complex of the form

0 𝑀1 𝑀2 𝑀3 0𝛼 𝛽

That is, 𝛼 is injective, 𝛽 is surjective, and im𝛼 = ker 𝛽.
Example. In our example above, we have the short exact sequence

0 ℤ𝐸 ℤ𝑉 ℤ 0

3



This corresponds to a short exact sequence

0 ℤ𝐺 ℤ𝐺 ℤ 0

where 𝐺 = ⟨𝑡⟩ is an infinite cyclic group, and the map ℤ𝐺 → ℤ𝐺 is given by multiplication on the
right by 𝑡 − 1.

Definition. A ℤ𝐺-module 𝑃 is projective if, for every surjective ℤ𝐺-map 𝛼 ∶ 𝑀1 → 𝑀2 and
every ℤ𝐺-map 𝛽 ∶ 𝑃 → 𝑀2, there is a map 𝛽 ∶ 𝑃 → 𝑀1 such that 𝛼 ∘ 𝛽 = 𝛽.

𝑃

𝑀1 𝑀2 0
𝛽

𝛽

𝛼

Given any short exact sequence

0 𝑁 𝑀1 𝑀2 0𝑓 𝛼

we can consider

0 Hom𝐺(𝑃, 𝑁) Hom𝐺(𝑃,𝑀1) Hom𝐺(𝑃,𝑀2) 0𝑓⋆ 𝛼⋆

We could have defined projectivity by saying that this new sequence is exact. Note that this sequence
is always a chain complex regardless if 𝑃 is projective, and we always have exactness except possibly
at Hom𝐺(𝑃,𝑀2).

Lemma. Free modules are projective.

Proof. Let 𝛼 ∶ 𝑀1 → 𝑀2 be a surjective ℤ𝐺-map, and let 𝛽 ∶ ℤ𝐺{𝑋} → 𝑀2. Then for each generator
𝑥 ∈ 𝑋 , there exists some 𝑚𝑥 ∈ 𝑀1 such that 𝛼(𝑚𝑥) = 𝛽(𝑥). We then define 𝛽 ∶ ℤ𝐺{𝑋} → 𝑀1 by
mapping

∑𝑟𝑥𝑥 ↦∑𝑟𝑥𝑚𝑥

which satisfies the required equation 𝛼𝛽 = 𝛽.

Definition. A projective (free) resolution of the trivial module ℤ is an exact sequence

⋯ 𝑃1 𝑃0 ℤ 0𝑑2 𝑑1 𝑑0

where the 𝑃𝑖 are projective (respectively free). This is a chain complex.

Example. Let 𝐺 = ⟨𝑡⟩ be an infinite cyclic group. Then we have a finite free resolution of ℤ given
by the exact sequence

0 ℤ𝐺 ℤ𝐺 ℤ 0⋅ (𝑡−1) 𝜀

where 𝜀 is the augmentation map.
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Example. Let 𝐺 = ⟨𝑡⟩ be a cyclic group of order 𝑛. Then we have a resolution

⋯ ℤ𝐺 ℤ𝐺 ℤ𝐺 ℤ𝐺 ℤ𝐺 ℤ 0𝛽 𝛼 𝜀𝛼𝛽

where
𝛼(𝑥) = 𝑥(𝑡 − 1); 𝛽(𝑥) = 𝑥(1 + 𝑡 +⋯+ 𝑡𝑛−1)

From algebraic topology, if we have a connected simplicial complex 𝑋 with fundamental group
𝜋1(𝑋) = 𝐺, such that the universal cover 𝑋 is contractible, we obtain a free resolution of ℤ given
by the universal cover. In this way, the simplicial complex 𝑋 contains a lot of information about its
fundamental group; this is what we aim to replicate algebraically.

For calculation purposes, we are interested in ‘small’ resolutions, for instance where the free mod-
ules have small rank. However, for theory development, we often want general constructions, and
resolutions given by generic theory tend to be large.

Definition. 𝐺 is of type 𝐹𝑃𝑛 if ℤ has a projective resolution

⋯ 𝑃1 𝑃0 ℤ 0𝑑2 𝑑1 𝑑0

which may be infinite, but where 𝑃𝑛, 𝑃𝑛−1,… , 𝑃0 are finitely generated as ℤ𝐺-modules.
We say𝐺 is of type 𝐹𝑃∞ ifℤ has a projective resolutionwhere all of the 𝑃𝑖 are finitely generated
as ℤ𝐺-modules. Finally, 𝐺 is of type 𝐹𝑃 if ℤ has a projective resolution where all of the 𝑃𝑖
are finitely generated as ℤ𝐺-modules, and the resolution is of finite length, so 𝑃𝑠 = 0 for
sufficiently large 𝑠.

Example. (i) Let 𝐺 = ⟨𝑡⟩ be the infinite cyclic group. Then 𝐺 is of type 𝐹𝑃.
(ii) Let 𝐺 = ⟨𝑡⟩ be a finite cyclic group. Then 𝐺 is of type 𝐹𝑃∞; we will show later that it is not of

type 𝐹𝑃.
These can be regarded as finiteness conditions on the group 𝐺. The topological version of 𝐹𝑃𝑛 would
be that a simplicial complex 𝑋 with fundamental group 𝐺 has a finite 𝑛-skeleton.

1.2 ???
Consider a partial projective resolution

𝑃𝑠 𝑃𝑠−1 ⋯ 𝑃1 𝑃0 ℤ 0

Then we can set 𝑃𝑠+1 to be the free module ℤ𝐺{𝑋𝑠+1} where 𝑋𝑠+1 is the kernel of 𝑑𝑠. We can then set
𝑑𝑠+1 to be

∑𝑟𝑥𝑥⏟⎵⏟⎵⏟
∈𝑃𝑠+1

↦ ∑𝑟𝑥𝑥⏟⎵⏟⎵⏟
∈𝑃𝑠

where the left-hand side is a formal sum, and the right-hand sum takes place in 𝑃𝑠. We thus obtain a
longer partial projective resolution

𝑃𝑠+1 𝑃𝑠 𝑃𝑠−1 ⋯ 𝑃1 𝑃0 ℤ 0𝑑𝑠+1
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since exactness holds at 𝑃𝑠 by construction. We could alternatively take 𝑋𝑠+1 to be a ℤ𝐺-generating
set of ker 𝑑𝑠; this would have the effect of reducing the size of 𝑃𝑠+1, which is most useful in direct
calculation if ker𝑑𝑠 is finitely generated. Continuing in this way, we obtain a resolution of ℤ.

Definition. The standard or bar resolution of ℤ is constructed as follows. Let𝐺(𝑛) be the set
of formal symbols

𝐺(𝑛) = {[𝑔1|… |𝑔𝑛] ∣ 𝑔1,… , 𝑔𝑛 ∈ 𝐺}
where 𝐺(0) is the set containing only the empty symbol []. Let 𝐹𝑛 = ℤ𝐺{𝐺(𝑛)} be the corres-
ponding free modules. We define the boundary maps 𝑑𝑛 ∶ 𝐹𝑛 → 𝐹𝑛−1 by

𝑑𝑛([𝑔1|… |𝑔𝑛]) = 𝑔1[𝑔2|… |𝑔𝑛]
− [𝑔1𝑔2|𝑔3|… |𝑔𝑛]
+ [𝑔1|𝑔2𝑔3|… |𝑔𝑛] − …
+ (−1)𝑛−1[𝑔1|… |𝑔𝑛−1𝑔𝑛]
+ (−1)𝑛[𝑔1|… |𝑔𝑛−1]

One can verify explicitly that these are chain maps as required, giving a free resolution

⋯ 𝐹1 𝐹0 ℤ

Remark. The bar resolution corresponds to the standard resolution in algebraic topology. Consider
the free abelian group ℤ𝐺𝑛+1 generated by the (𝑛 + 1)-tuples with elements in 𝐺. Then 𝐺 acts on
𝐺𝑛+1 diagonally:

𝑔(𝑔0,… , 𝑔𝑛) = (𝑔𝑔0,… , 𝑔𝑔𝑛)
Thus ℤ𝐺𝑛+1 is a free ℤ𝐺-module on the basis of (𝑛 + 1)-tuples with first element 1. The symbol
[𝑔1|… |𝑔𝑛] corresponds to the (𝑛 + 1)-tuple

(1, 𝑔1, 𝑔1𝑔2,… , 𝑔1…𝑔𝑛)

Removing the first entry gives
𝑔1(1, 𝑔2, 𝑔2𝑔3,… , 𝑔2…𝑔𝑛)

and removing the second entry gives

(1, 𝑔1𝑔2,… , 𝑔1…𝑔𝑛)

Lemma. The bar resolution is exact.

Proof. We will just consider the 𝑑𝑛 as maps of abelian groups. 𝐹𝑛 has basis 𝐺 ×𝐺(𝑛) as a free abelian
group.

𝐺 × 𝐺(𝑛) = {𝑔0[𝑔1|… |𝑔𝑛] ∣ 𝑔0,… , 𝑔𝑛 ∈ 𝐺}
We define ℤ-maps 𝑠𝑛 ∶ 𝐹𝑛 → 𝐹𝑛+1 such that

id𝐹𝑛 = 𝑑𝑛+1𝑠𝑛 + 𝑠𝑛−1𝑑𝑛
by

𝑠𝑛(𝑔0[𝑔1|… |𝑔𝑛]) = [𝑔0|𝑔1|… |𝑔𝑛]
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This is not a ℤ𝐺-map. One can check that the required equation holds. If 𝑥 ∈ ker𝑑𝑛, then

𝑥 = id𝑥 = 𝑑𝑛+1𝑠𝑛(𝑥) + 𝑠𝑛−1𝑑𝑛(𝑥) = 𝑑𝑛+1𝑠𝑛(𝑥) ∈ im𝑑𝑛+1

Corollary. Any finite group is of type 𝐹𝑃∞.

Proof. The bar resolution gives a suitable resolution.

1.3 Cohomology

Definition. Consider a projective resolution

⋯ 𝑃𝑛+1 𝑃𝑛 ⋯ 𝑃1 𝑃0 ℤ 0

of ℤ by ℤ𝐺-modules. Let 𝑀 be a (left) ℤ𝐺-module. Applying Hom𝐺(−,𝑀), we obtain a se-
quence

⋯ Hom𝐺(𝑃𝑛+1,𝑀) Hom𝐺(𝑃𝑛,𝑀) ⋯ Hom𝐺(𝑃1,𝑀) Hom𝐺(𝑃0,𝑀)𝑑1

where 𝑑𝑛 = 𝑑⋆
𝑛. Then the 𝑛th cohomology group 𝐻𝑛(𝐺,𝑀) with coefficients in𝑀 is

𝐻𝑛(𝐺,𝑀) = ker𝑑𝑛+1im𝑑𝑛; 𝐻0(𝐺,𝑀) = ker𝑑1

Remark. We have removed the ℤ term in the Hom𝐺(−,𝑀) sequence. These cohomology groups are
the homology groups of a chain complex 𝐶𝑛 = Hom𝐺(𝑃−𝑛,𝑀) for 𝑛 ≤ 0. We will show that these
cohomology groups are independent of the choice of projective resolution.

Example. Let 𝐺 = ⟨𝑡⟩ be an infinite cyclic group. We have a projective resolution

0 ℤ𝐺 ℤ𝐺 ℤ 0⋅ (𝑡−1)

For 𝜑 ∈ Hom𝐺(ℤ𝐺,𝑀) and 𝑥 ∈ ℤ𝐺,

𝑑1(𝜑)(𝑥) = 𝜑(𝑑1(𝑥)) = 𝜑(𝑥(𝑡 − 1))

Recall that we have an isomorphism 𝑖 ∶ Hom𝐺(ℤ𝐺,𝑀) ≅ 𝑀 by 𝜃 ↦ 𝜃(1). In particular,

𝑑1(𝜑) ↦ 𝑑1(𝜑)(1) = 𝜑(𝑡 − 1) = (𝑡 − 1)𝜑(1) = (𝑡 − 1)𝑖(𝜑)

We thus obtain
0 𝑀 𝑀𝛼

where 𝛼 is multiplication on the left by 𝑡 − 1. Therefore, the cohomology groups are

𝐻0(𝐺,𝑀) = {𝑚 ∈ 𝑀 ∣ 𝑡𝑚 = 𝑚} = 𝑀𝐺; 𝐻1(𝐺,𝑀) = 𝑀⟋(𝑡 − 1)𝑀 = 𝑀𝐺; 𝐻𝑛(𝐺,𝑀) = 0 for 𝑛 ≠ 0, 1

Note that the group of invariants𝑀𝐺 is the largest submodule with trivial 𝐺-action, and the group of
coinvariants𝑀𝐺 is the largest quotient module with trivial 𝐺-action.
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Remark. It is generally true that 𝐻0(𝐺,𝑀) = 𝑀𝐺, but in general 𝐻1(𝐺,𝑀) = 𝑀𝐺 does not hold. In
general,𝑀𝐺 is the 0th homology group, which will be discussed later. Note that for any group of type
𝐹𝑃, the cohomology groups vanish for all but finitely many indices 𝑛.

Definition. 𝐺 is of cohomological dimension 𝑚 over ℤ if there exists some ℤ𝐺-module 𝑀
with 𝐻𝑚(𝐺,𝑀) ≠ 0 but 𝐻𝑛(𝐺,𝑀1) = 0 for all 𝑛 > 𝑚 and all ℤ𝐺-modules𝑀1.

Remark. For all 𝐺, we have 𝐻0(𝐺, ℤ) = ℤ ≠ 0 so all groups have dimension at least zero.
Example. Infinite cyclic groups have cohomological dimension 1 over ℤ. One can show that if 𝐺 is
a free group of finite rank, then it is also of cohomological dimension 1 over ℤ. Stallings showed in
1968 that the converse is true: a finitely generated group of cohomological dimension 1 is free. Swan
strengthened this in 1969 by removing the assumption of finite generation.

We now consider the bar resolution in our definition of cohomology. Note that

Hom𝐺(ℤ𝐺{𝐺(𝑛)},𝑀) ≅ 𝐶𝑛(𝐺,𝑀)

where 𝐶𝑛(𝐺,𝑀) is the set of functions 𝐺(𝑛) → 𝑀, since a ℤ𝐺-map is determined by its action on a
basis. Moreover,𝐶𝑛(𝐺,𝑀) corresponds to the set of functions𝐺𝑛 → 𝑀. For 𝑛 = 0, note that𝐶0(𝐺,𝑀)
is the set of functions 𝐺0 → 𝑀 which bijects with𝑀.

Definition. The abelian group of 𝑛-cochains of𝐺with coefficients in𝑀 is𝐶𝑛(𝐺,𝑀). The 𝑛th
coboundary map 𝑑𝑛 ∶ 𝐶𝑛−1(𝐺,𝑀) → 𝐶𝑛(𝐺,𝑀) is dual to the 𝑑𝑛 from the bar resolution:

𝑑𝑛(𝜑)(𝑔1,… , 𝑔𝑛) = 𝑔1𝜑(𝑔2,… , 𝑔𝑛)
− 𝜑(𝑔1𝑔2, 𝑔3,… , 𝑔𝑛)
+ 𝜑(𝑔1, 𝑔2𝑔3,… , 𝑔𝑛) −⋯
+ (−1)𝑛−1𝜑(𝑔1, 𝑔2,… , 𝑔𝑛−1𝑔𝑛)
+ (−1)𝑛𝜑(𝑔1, 𝑔2,… , 𝑔𝑛−1)

The group of 𝑛-cocycles is 𝑍𝑛(𝐺,𝑀) = ker𝑑𝑛+1 ≤ 𝐶𝑛(𝐺,𝑀). The group of 𝑛-coboundaries is
𝐵𝑛(𝐺,𝑀) = im𝑑𝑛 ≤ 𝐶𝑛(𝐺,𝑀). Thus the 𝑛th cohomology group is

𝐻𝑛(𝐺,𝑀) = 𝑍𝑛(𝐺,𝑀)⟋𝐵𝑛(𝐺,𝑀)

Corollary. 𝐻0(𝐺,𝑀) = 𝑀𝐺 for all 𝐺.

Definition. A derivation of 𝐺 with coefficients in 𝑀 is a function 𝜑 ∶ 𝐺 → 𝑀 such that
𝜑(𝑔ℎ) = 𝑔𝜑(ℎ) + 𝜑(𝑔).

Note that 𝑍1(𝐺,𝑀) is exactly the set of derivations of 𝐺 with coefficients in 𝑀, so a derivation is
precisely a 1-cocycle.

Definition. An inner derivation of 𝐺 with coefficients in𝑀 is a function 𝜑 ∶ 𝐺 → 𝑀 of the
form 𝜑(𝑔) = 𝑔𝑚 −𝑚 for a fixed𝑚 ∈ 𝑀.
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Such maps are derivations.

Corollary. 𝐻1(𝐺,𝑀) is the group of derivations modulo the inner derivations. In particular,
if𝑀 is a trivial ℤ𝐺-module, then

𝐻1(𝐺,𝑀) = {group homomorphisms 𝐺 → 𝑀}

treating𝑀 as an abelian group under addition.

1.4 Independence of cohomology groups
We now prove that cohomology groups are independent of the choice of resolution.

Definition. Let (𝐴𝑛, 𝛼𝑛), (𝐵𝑛, 𝛽𝑛) be chain complexes of ℤ𝐺-modules. A chain map (𝑓𝑛) is a
sequence of ℤ𝐺-maps 𝑓𝑛 ∶ 𝐴𝑛 → 𝐵𝑛 such that the following diagram commutes.

⋯ 𝐴𝑛 𝐴𝑛−1 𝐴𝑛−2 ⋯

⋯ 𝐵𝑛 𝐵𝑛−1 𝐵𝑛−2 ⋯

𝛼𝑛

𝛽𝑛

𝑓𝑛 𝑓𝑛−1

𝛽𝑛−1

𝛼𝑛−1

𝑓𝑛−2

Lemma. A chain map (𝑓𝑛) as above induces a map on homology groups

𝑓⋆ ∶ 𝐻𝑛(𝐴•) → 𝐻𝑛(𝐵•)

Proof. Let 𝑥 ∈ ker𝛼𝑛, and define 𝑓⋆([𝑥]) = [𝑓𝑛(𝑥)], where square brackets denote the quotient maps
to the relevant homology classes. Observe that 𝑓𝑛(𝑥) ∈ ker 𝛽𝑛, since 𝛽𝑛𝑓𝑛(𝑥) = 𝑓𝑛−1𝛼𝑛(𝑥) = 0.
Further, if 𝑥′ = 𝑥 + 𝛼𝑛+1(𝑦) for some 𝑦, we obtain

𝑓𝑛(𝑥′) = 𝑓𝑛(𝑥) + 𝑓𝑛𝛼𝑛+1(𝑦) = 𝑓𝑛(𝑥) + 𝛽𝑛+1𝑓𝑛+1(𝑦) ∈ 𝑓𝑛(𝑥) + im 𝑏𝑛+1

Therefore, this map is well-defined. One can check that this is a map of abelian groups, as required.

Theorem. The definition of 𝐻𝑛(𝐺,𝑀) does not depend on the choice of resolution.

Proof. Take projective resolutions (𝑃𝑛, 𝑑𝑛) and (𝑃′𝑛 , 𝑑′𝑛) of ℤ by projective ℤ𝐺-modules. We will pro-
duce ℤ𝐺-maps 𝑓𝑛 ∶ 𝑃𝑛 → 𝑃′𝑛 and 𝑔𝑛 ∶ 𝑃′𝑛 → 𝑃𝑛 satisfying

𝑓𝑛−1𝑑𝑛 = 𝑑′𝑛𝑓𝑛; 𝑔𝑛−1𝑑′𝑛 = 𝑑𝑛𝑔𝑛

as well as maps 𝑠𝑛 ∶ 𝑃𝑛 → 𝑃𝑛+1 and 𝑠′𝑛 ∶ 𝑃′𝑛 → 𝑃′𝑛+1 satisfying

𝑑𝑛+1𝑠𝑛 + 𝑠𝑛−1𝑑𝑛 = 𝑔𝑛𝑓𝑛 − id; 𝑑′𝑛+1𝑠′𝑛 + 𝑠′𝑛−1𝑑′𝑛 = 𝑓𝑛𝑔𝑛 − id
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Thus, the 𝑓𝑛 and 𝑔𝑛 form chain maps, and the 𝑠𝑛 and 𝑠′𝑛 form chain homotopies. The chain maps
(𝑓𝑛), (𝑔𝑛) give rise to chain maps

Hom𝐺(𝑃′• ,𝑀) → Hom𝐺(𝑃•,𝑀); Hom𝐺(𝑃•,𝑀) → Hom𝐺(𝑃′• ,𝑀)

giving maps between the respective homology groups by the previous lemma. We now observe that
if 𝜑 ∈ ker𝑑𝑛+1 ∈ Hom(𝑃,𝑀), we have

𝑓⋆
𝑛 𝑔⋆

𝑛(𝜑)(𝑥) = 𝜑(𝑔𝑛𝑓𝑛(𝑥))
= 𝜑(𝑥) + 𝜑(𝑑𝑛+1𝑠𝑛(𝑥)) + 𝜑(𝑠𝑛−1𝑑𝑛(𝑥))
= 𝜑(𝑥) + 𝑠⋆𝑛𝑑𝑛+1𝜑(𝑥) + 𝑑𝑛𝑠⋆𝑛−1(𝜑)(𝑥)
= 𝜑(𝑥) + 0 + 𝑑𝑛𝑠⋆𝑛−1(𝜑)(𝑥)

Thus 𝑓⋆
𝑛 𝑔⋆

𝑛(𝜑) = 𝜑 + 𝑑𝑛𝑠⋆𝑛−1(𝜑), and so 𝑓⋆
𝑛 𝑔⋆

𝑛 induces the identity map on ker𝑑
𝑛+1
⟋im𝑑𝑛. The same

holds for 𝑔⋆
𝑛𝑓⋆

𝑛 , and so 𝑓⋆
𝑛 , 𝑔⋆

𝑛 define isomorphisms of homology groups as desired.

It remains to construct the maps 𝑓𝑛, 𝑔𝑛, 𝑠𝑛, 𝑠′𝑛. At the end of the resolutions, we set 𝑓−1 ∶ ℤ → ℤ
and 𝑓−2 ∶ 0 → 0 to be the identity maps. Suppose that we have already defined 𝑓𝑛−1 and 𝑓𝑛; we will
define 𝑓𝑛+1. We have 𝑓𝑛𝑑𝑛+1 ∶ 𝑃𝑛+1 → 𝑃′𝑛 and 𝑑′𝑛 ∘ (𝑓𝑛𝑑𝑛+1) = 𝑓𝑛−1𝑑𝑛𝑑𝑛+1 = 0. Hence, the map
𝑓𝑛𝑑𝑛+1 has image inside ker 𝑑′𝑛. We then define 𝑓𝑛+1 to complete the following diagram, which exists
by projectivity.

𝑃𝑛+1 𝑃𝑛 𝑃𝑛−1

𝑃′𝑛+1 ker𝑑′𝑛 𝑃′𝑛 𝑃′𝑛−1

𝑑𝑛+1 𝑑𝑛

𝑑′𝑛

𝑓𝑛 𝑓𝑛−1

𝑑′𝑛+1

𝑓𝑛𝑑𝑛+1
𝑓𝑛+1

We can define 𝑔𝑛+1 in the same way. Now set ℎ𝑛 = 𝑔𝑛𝑓𝑛 − id ∶ 𝑃𝑛 → 𝑃𝑛; this gives a chain map
𝑃• → 𝑃•. Set 𝑠−1 ∶ ℤ → 𝑃0 to be the zero map. Note that 𝑑0ℎ0 = ℎ−1𝑑0 = 0, and so imℎ0 ⊆ ker𝑑0.
We now use projectivity to define

𝑃0 ℤ

𝑃1 ker𝑑0 𝑃0 ℤ

0ℎ0

𝑑0

ℎ0
𝑠0

𝑑1

Suppose that 𝑠𝑛−1 and 𝑠𝑛−2 are already defined. Consider 𝑡𝑛 = ℎ𝑛 − 𝑠𝑛−1𝑑𝑛 ∶ 𝑃𝑛 → 𝑃𝑛. We have

𝑑𝑛𝑡𝑛 = 𝑑𝑛ℎ𝑛 − 𝑑𝑛𝑠𝑛−1𝑑𝑛 = ℎ𝑛−1𝑑𝑛 − (ℎ𝑛−1 − 𝑠𝑛−2𝑑𝑛−1)𝑑𝑛 = 𝑠𝑛−2𝑑𝑛−1𝑑𝑛 = 0

Thus im 𝑡𝑛 ⊆ ker𝑑𝑛.
𝑃𝑛 𝑃𝑛−1

𝑃𝑛+1 ker𝑑𝑛 𝑃𝑛 𝑃𝑛−1

𝑑𝑛

ℎ𝑛−1ℎ𝑛

𝑑𝑛

𝑠𝑛−1𝑡𝑛
𝑠𝑛

We define the 𝑠′𝑛 similarly.

Remark. For any left ℤ𝐺-module 𝑁, we can take a resolution of 𝑁 by projective or free ℤ𝐺-modules.

⋯ 𝑃2 𝑃1 𝑃0 𝑁 0
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Repeating the constructions outlined in this section, applying Hom𝐺(−,𝑀) gives homology groups
called Ext𝑛ℤ𝐺(𝑁,𝑀). Thus

𝐻𝑛(𝐺,𝑀) = Ext𝑛ℤ𝐺(ℤ,𝑀)

2 Low degree cohomology and group extensions
2.1 Degree 1
Recall that 𝐻0(𝐺,𝑀), the group𝑀𝐺 of invariants of𝑀 under 𝐺. A derivation is a 1-cocycle, or equi-
valently a map 𝜑 ∶ 𝐺 → 𝑀 such that 𝜑(𝑔1𝑔2) = 𝑔1𝜑(𝑔2) + 𝜑(𝑔1), and an inner derivation is a map of
the form 𝜑(𝑔) = 𝑔𝑚 −𝑚. We present two interpretations of (inner) derivations.
First interpretation. Consider possible ℤ𝐺-actions on the abelian group𝑀⊕ℤ of the form 𝑔(𝑚, 𝑛) =
(𝑔𝑚 + 𝑛𝜑(𝑔), 𝑛). Then

𝑔1(𝑔2(𝑚, 𝑛)) = 𝑔1(𝑔2𝑚+ 𝑛𝜑(𝑔2), 𝑛) = (𝑔1𝑔2𝑚+ 𝑛𝑔1𝜑(𝑔2) + 𝑛𝜑(𝑔1), 𝑛)

and
(𝑔1𝑔2)(𝑚, 𝑛) = (𝑔1𝑔2𝑚+ 𝑛𝜑(𝑔1𝑔2), 𝑛)

For these to coincide, wemust require𝜑(𝑔1𝑔2) = 𝑔1𝜑(𝑔2)+𝜑(𝑔1), which is to say that 𝜑 is a derivation.
In particular, if𝑀 is a free ℤ-module of finite rank, then we obtain a map

𝑔 ↦ (𝜃1(𝑔) 𝜑(𝑔)
0 1 )

where 𝜃1(𝑔) is a matrix corresponding to the action of 𝑔 on𝑀. This is a group homomorphism only
if 𝜑 is a derivation. One can check that 𝜑 is an inner derivation if (−𝑚, 1) generates a ℤ𝐺-submodule
of𝑀 which is the trivial module.

Second interpretation. We first make the following definition.

Definition. Let𝐺 be a group and𝑀 be a leftℤ𝐺-module. We construct the semidirect product
𝑀 ⋊𝐺 by defining a group operation on the set𝑀 ×𝐺 as follows.

(𝑚1, 𝑔1) ∗ (𝑚2, 𝑔2) = (𝑚1 + 𝑔1𝑚2, 𝑔1𝑔2)

Then𝑀 ≅ {(𝑚, 1) ∣ 𝑚 ∈ 𝑀} is a normal subgroup of𝑀 ⋊𝐺. Also, 𝐺 ≅ {(0, 𝑔) ∣ 𝑔 ∈ 𝐺}, and conjuga-
tion by {(0, 𝑔) ∣ 𝑔 ∈ 𝐺} corresponds to the 𝐺-action on the module𝑀. Further,

𝑀 ⋊𝐺⟋{(𝑚, 1) ∣ 𝑚 ∈ 𝑀} ≅ 𝐺

There is a group homomorphism 𝑠 ∶ 𝐺 → 𝑀⋊𝐺 given by 𝑔 ↦ (0, 𝑔), such that 𝜋2 ∘ 𝑠 = id where 𝜋2
is the second projection. Such a map 𝑠 is called a splitting. Given another splitting 𝑠1 ∶ 𝐺 → 𝑀 ⋊ 𝐺
such that 𝜋2 ∘ 𝑠1 = id, we define 𝜓𝑠1 ∶ 𝐺 → 𝑀 by

𝑠1(𝑔) = (𝜓𝑠1(𝑔), 𝑔) ∈ 𝑀 ⋊ 𝐺

Then 𝜓𝑠1 is a 1-cocycle. Given two splittings 𝑠1, 𝑠2, the difference 𝜓𝑠1 − 𝜓𝑠2 is a coboundary pre-
cisely when there exists 𝑚 such that (𝑚, 1)𝑠1(𝑔)(𝑚, 1)−1 = 𝑠2(𝑔). Conversely, given a 1-cocycle
𝜑 ∈ 𝑍1(𝐺,𝑀), there is a splitting 𝑠1 ∶ 𝐺 → 𝑀 ⋊𝐺 such that 𝜑 = 𝜓𝑠1 .
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Theorem. 𝐻1(𝐺,𝑀) bijects with the𝑀-conjugacy classes of splittings.

2.2 Degree 2

Definition. Let 𝐺 be a group and𝑀 be a ℤ𝐺-module. An extension of 𝐺 by𝑀 is a group 𝐸
with an exact sequence of group homomorphisms

0 𝑀 𝐸 𝐺 1

𝑀 embeds into 𝐸, so its image (also called 𝑀) is an abelian normal subgroup of 𝐸. This is
acted on by conjugation by 𝐸, and so we obtain an induced action of 𝐸⟋𝑀 ≅ 𝐺, which must
match the given 𝐺-action on𝑀.

Example. The semidirect product𝑀 ⋊𝐺 is an extension of 𝐺 by𝑀.

0 𝑀 𝑀 ⋊𝐺 𝐺 1

In this case, the extension is called a split extension, since there is a splitting.

Definition. Two extensions are equivalent if there is a commutative diagram of homomorph-
isms

𝐸

0 𝑀 𝐺 1

𝐸′

If𝐸, 𝐸′ are equivalent extensions, then𝐸 and𝐸′ are isomorphic as groups. The converse is false.

Definition. A central extension is an extension where the given ℤ𝐺-module is a trivial mod-
ule (that is, it has trivial 𝐺-action).

Proposition. Let 𝐸 be an extension of 𝐺 by 𝑀. If there is a splitting homomorphism 𝑠1 ∶
𝐺 → 𝐸, then the extension is equivalent to

0 𝑀 𝑀 ⋊𝐺 𝐺 1

and thus 𝐸 ≅ 𝑀 ⋊𝐺.

Theorem. Let 𝐺 be a group and let 𝑀 be a ℤ𝐺-module. Then there is a bijection from
𝐻2(𝐺,𝑀) to the set of equivalence classes of extensions of 𝐺 by𝑀.
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Proof. Given an extension

0 𝑀 𝐸 𝐺 1

there is a set-theoretic section 𝑠 ∶ 𝐺 → 𝐸 such that

𝐺 𝐸

𝐺

𝑠

𝜋
id

commutes. Note that 𝑠 need not be a group homomorphism. Without loss of generality, we can
suppose 𝑠(1) = 1. We define a map

𝜑(𝑔1, 𝑔2) = 𝑠(𝑔1)𝑠(𝑔2)𝑠(𝑔1𝑔2)−1

which measures the failure of 𝑠 to be a group homomorphism. Then 𝜋(𝜑(𝑔1, 𝑔2)) = 1, and so
𝜑(𝑔1, 𝑔2) ∈ 𝑀. Thus 𝜑 ∶ 𝐺2 → 𝑀 is a 2-cochain, and we can show it is a 2-cocycle. We have

𝑠(𝑔1)𝑠(𝑔2)𝑠(𝑔3) = 𝜑(𝑔1, 𝑔2)𝑠(𝑔1𝑔2)𝑠(𝑔3)
= 𝜑(𝑔1, 𝑔2)𝜑(𝑔1𝑔2, 𝑔3)𝑠(𝑔1𝑔2𝑔3)

and similarly,

𝑠(𝑔1)𝑠(𝑔2)𝑠(𝑔3) = 𝑠(𝑔1)𝜑(𝑔2, 𝑔3)𝑠(𝑔2𝑔3)
= 𝑠(𝑔1)𝜑(𝑔2, 𝑔3)𝑠(𝑔1)−1𝑠(𝑔1)𝑠(𝑔2𝑔3)
= 𝑠(𝑔1)𝜑(𝑔2, 𝑔3)𝑠(𝑔1)−1𝜑(𝑔1, 𝑔2𝑔3)𝑠(𝑔1𝑔2𝑔3)

We therefore obtain

𝜑(𝑔1, 𝑔2)𝜑(𝑔1𝑔2, 𝑔3)𝑠(𝑔1𝑔2𝑔3) = 𝑠(𝑔1)𝜑(𝑔2, 𝑔3)𝑠(𝑔1)−1𝜑(𝑔1, 𝑔2𝑔3)𝑠(𝑔1𝑔2𝑔3)
𝜑(𝑔1, 𝑔2)𝜑(𝑔1𝑔2, 𝑔3) = 𝑠(𝑔1)𝜑(𝑔2, 𝑔3)𝑠(𝑔1)−1𝜑(𝑔1, 𝑔2𝑔3)

Converting into additive notation,

𝜑(𝑔1, 𝑔2) + 𝜑(𝑔1𝑔2, 𝑔3) = 𝑔1𝜑(𝑔2, 𝑔3) + 𝜑(𝑔1, 𝑔2𝑔3)

and so
(𝑑3𝜑)(𝑔1, 𝑔2, 𝑔3) = 0

Hence𝜑 is a 2-cocycle as claimed. Note that𝜑 is a normalised cocycle: it satisfies𝜑(1, 𝑔) = 𝜑(𝑔, 1) = 0.
We have therefore proven that an extension of 𝐺 by𝑀, with a choice of set-theoretic section 𝑠 ∶ 𝐺 →
𝐸, yields a normalised 2-cocycle 𝜑 ∈ 𝑍2(𝐺,𝑀).
Now take another choice of section 𝑠′ with 𝑠′(1) = 1. We show that the normalised cocycles 𝜑, 𝜑′
differ by a coboundary, and so we have a map defined from equivalence classes of extensions to
𝐻2(𝐺,𝑀). We have 𝜋(𝑠(𝑔)𝑠′(𝑔)−1) = 1, so 𝑠(𝑔)𝑠′(𝑔)−1 ∈ ker𝜋 = 𝑀. Let 𝜓(𝑔) denote 𝑠(𝑔)𝑠′(𝑔)−1. Thus
𝜓 ∶ 𝐺 → 𝑀. We have

𝑠′(𝑔1)𝑠′(𝑔2) = 𝜓(𝑔1)𝑠(𝑔1)𝜓(𝑔2)𝑠(𝑔2)
= 𝜓(𝑔1)𝑠(𝑔1)𝜓(𝑔2)𝑠(𝑔1)−1𝑠(𝑔1)𝑠(𝑔2)
= 𝜓(𝑔1)𝑠(𝑔1)𝜓(𝑔2)𝑠(𝑔1)−1𝜑(𝑔1, 𝑔2)𝑠(𝑔2)
= 𝜓(𝑔1)𝑠(𝑔1)𝜓(𝑔2)𝑠(𝑔1)−1𝜑(𝑔1, 𝑔2)𝜓(𝑔1𝑔2)−1𝑠′(𝑔1𝑔2)
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Switching to additive notation,

𝜑′(𝑔1, 𝑔2) = 𝜓(𝑔1) + 𝑔1𝜓(𝑔2) + 𝜑(𝑔1, 𝑔2) − 𝜓(𝑔1𝑔2)
= 𝜑(𝑔1, 𝑔2) + (𝑑2𝜓)(𝑔1, 𝑔2)

Thus 𝜑 and 𝜑′ differ by a coboundary, and so we have a well-defined map from extensions of 𝐺 by𝑀
to 𝐻2(𝐺,𝑀).
To complete the proof, we must check that equivalent extensions give rise to the same cohomology
class, and that there is an inverse map from cohomology classes to equivalence classes of extensions.
To produce the inverse, we use the following lemma.

Lemma. Let 𝜑 ∈ 𝑍2(𝐺,𝑀). Then there is a cochain 𝜓 ∈ 𝐶1(𝐺,𝑀) such that 𝜑 + 𝑑2𝜓 is
a normalised cocycle. Hence, every cohomology class can be represented by a normalised
cocycle.

Proof. Let 𝜓(𝑔) = −𝜑(1, 𝑔). Then

(𝜑 + 𝑑2𝜓)(1, 𝑔) = 𝜑(1, 𝑔) − (𝜑(1, 𝑔) − 𝜑(1, 𝑔) + 𝜑(1, 1))
= 𝜑(1, 𝑔) − 𝜑(1, 1)

Similarly, we obtain
(𝜑 + 𝑑2𝜓)(𝑔, 1) = 𝜑(𝑔, 1) − 𝑔𝜑(1, 1)

But we know that
𝑑3𝜑(1, 1, 𝑔) = 0 = 𝑑3𝜑(𝑔, 1, 1)

since 𝜑 is a cocycle. Hence, one can check computationally that both equations above are zero.

We now take a normalised cocycle 𝜑 representing a given cohomology class. We construct an exten-
sion

0 𝑀 𝐸𝜑 𝐺 1

by
(𝑚1, 𝑔1) ∗ (𝑚2, 𝑔2) = (𝑚1 + 𝑔1𝑚2 + 𝜑(𝑔1, 𝑔2), 𝑔1, 𝑔2)

For this to be a group operation, we use the fact that 𝜑 is normalised. This yields an extension

0 𝑀 𝐸𝜑 𝐺 1𝜋

where 𝜋 is the projection onto the second component. Note that if 𝜑′ is another normalised 2-cocycle
representing the given cohomology class, then 𝜑− 𝜑′ is a coboundary, so we can define a map 𝐸𝜑 →
𝐸𝜑′ by

(𝑚, 𝑔) ↦ (𝑚 + 𝜓(𝑔), 𝑔)
One can check that this induces an equivalence of extensions. These constructions are inverses.
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2.3 Central extensions
Example. Consider central extensions of ℤ2 by ℤ. We already know of two such extensions. The
first is

0 ℤ ℤ3 ℤ2 0

𝑚 (𝑚, 0, 0)

(𝑚, 𝑟, 𝑠) (𝑟, 𝑠)

Let 𝐻 denote the Heisenberg group

𝐻 = {(
1 𝑟 𝑚
0 1 𝑠
0 0 1

)
|
|
|
|
𝑟, 𝑠,𝑚 ∈ 𝑚𝑎𝑡ℎ𝑏𝑏𝑍}

Then we have the extension

0 ℤ 𝐻 ℤ2 0

𝑚 (
1 0 𝑚
0 1 0
0 0 1

)

(
1 𝑟 𝑚
0 1 𝑠
0 0 1

) (𝑟, 𝑠)

Writing multiplicatively, let 𝑇 ≅ ℤ2 be generated by 𝑎 and 𝑏. We have the following free resolution
of the trivial ℤ𝑇-module ℤ.

0 ℤ𝑇 ℤ𝑇2 ℤ𝑇 ℤ 0𝛽 𝛼 𝜀

where

𝛽(𝑧) = (𝑧(1 − 𝑏), 𝑧(𝑎 − 1))
𝛼(𝑥, 𝑦) = 𝑥(𝑎 − 1) + 𝑦(𝑏 − 1)

and 𝜀 is the augmentation map. Apply Hom𝑇(−, ℤ) to obtain the chain complex

0 Hom𝑇(ℤ𝑇, ℤ) Hom𝑇(ℤ𝑇2, ℤ) Hom𝑇(ℤ𝑇, ℤ)
𝛽⋆ 𝛼⋆

We claim that 𝛼⋆ and 𝛽⋆ are both zero maps, and so

𝐻2(𝑇, ℤ) = Hom𝑇(ℤ𝑇, ℤ) ≅ ℤ

and the generator is represented by the augmentation map 𝜀 ∶ ℤ𝑇 → ℤ.
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Take a ℤ𝑇-map 𝑓 ∶ ℤ𝑇2 → ℤ. Then

(𝛽⋆𝑓)(𝑧) = 𝑓(𝛽)(𝑧)
= 𝑓(𝑧(1 − 𝑏), 𝑧(𝑎 − 1))
= 𝑓(𝑧 − 𝑧𝑏, 0) + 𝑓(0, 𝑧𝑎 − 𝑧)
= (1 − 𝑏)𝑓(𝑧, 0) + (𝑎 − 1)𝑓(0, 𝑧)
= 0

where the last line holds as 𝑇 acts trivially. Similarly, 𝛼⋆ = 0.
Next, we interpret 𝐻2(𝑇, ℤ) in terms of 2-cocycles arising from the bar resolution. We construct a
chain map as follows.

ℤ𝑇{𝑇 (2)} ℤ𝑇{𝑇 (1)} ℤ𝑇{𝑇 (0)} ℤ 0

ℤ𝑇 ℤ𝑇2 ℤ𝑇 ℤ 0

𝑑2 𝑑1 𝜀

𝛽 𝛼

𝑓2 𝑓1 id

To construct 𝑓1 such that 𝛼𝑓1 = 𝑑1, we need to give images of the symbols [𝑎𝑟𝑏𝑠] with 𝑟, 𝑠 ∈ ℤ. We
must have

[𝑎𝑟𝑏𝑠] ↦ (𝑥𝑟,𝑠, 𝑦𝑟,𝑠) ∈ ℤ𝑇2

where
𝛼(𝑥𝑟,𝑠, 𝑦𝑟,𝑠) = 𝑑1([𝑎𝑟𝑏𝑠]) = 𝑎𝑟𝑏𝑠 − 1 = (𝑎𝑟 − 1)𝑏𝑠 + (𝑏𝑠 − 1)

We define

𝑆(𝑎, 𝑟) =
⎧⎪
⎨⎪
⎩

1 + 𝑎 +⋯+ 𝑎𝑟−1
if 𝑟 > 0
−𝑎−1 −⋯− 𝑎𝑟
𝑡𝑒𝑥𝑡𝑖𝑓𝑟 ≤ 0

Note that
𝑆(𝑎, 𝑟)(𝑎 − 1) = 𝑎𝑟 − 1

for any 𝑟 ∈ ℤ. Then

𝛼(𝑆(𝑎, 𝑟)𝑏𝑠, 𝑆(𝑏, 𝑠)) = 𝑆(𝑎, 𝑟)𝑏𝑠(𝑎 − 1) + 𝑆(𝑏, 𝑠)(𝑏 − 1)
= 𝑑1([𝑎𝑟𝑏𝑠])

as required. So we may define

𝑓1([𝑎𝑟𝑏𝑠]) = (𝑆(𝑎, 𝑟)𝑏𝑠, 𝑆(𝑏, 𝑠))

To define 𝑓2, we need to give images of the symbols [𝑎𝑟𝑏𝑠|𝑎𝑡𝑏𝑢]. For each such symbol, we find
𝑧𝑟,𝑠,𝑡,𝑢 ∈ ℤ𝑇 such that

𝑓1𝑑2([𝑎𝑟𝑏𝑠|𝑎𝑡𝑏𝑢]) = 𝛽(𝑧𝑟,𝑠,𝑡,𝑢)
We can explicitly calculate

𝑓1𝑑2([𝑎𝑟𝑏𝑠|𝑎𝑡𝑏𝑢]) = 𝑓1(𝑎𝑟𝑏𝑠[𝑎𝑡𝑏𝑢] − [𝑎𝑟+𝑡𝑏𝑠+𝑢] − [𝑎𝑟𝑏𝑠])
= (𝑎𝑟𝑏𝑠𝑆(𝑎, 𝑡)𝑏𝑢 − 𝑆(𝑎, 𝑟 + 𝑡)𝑏𝑠+𝑢 + 𝑆(𝑎, 𝑟)𝑏𝑠, 𝑎𝑟𝑏𝑠𝑆(𝑏, 𝑢) − 𝑆(𝑏, 𝑠 + 𝑢) + 𝑆(𝑏, 𝑠))
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So defining
𝑧𝑟,𝑠,𝑡,𝑢 = 𝑆(𝑎, 𝑟)𝑏𝑠𝑆(𝑏, 𝑢)

gives the required equation.
𝑓2([𝑎𝑟𝑏𝑠|𝑎𝑡𝑏𝑢]) = 𝑆(𝑎, 𝑟)𝑏𝑠𝑆(𝑏, 𝑢)

Now we find a cochain 𝜑 ∶ 𝑇2 → ℤ representing the cohomology class 𝑝 ∈ ℤ = Hom𝑇(ℤ𝑇, ℤ) =
𝐻2(𝑇, ℤ). Such a cochain is given by the composition

𝑇2 ℤ𝑇 ℤ𝑓2 𝑝𝜀

Since 𝜀(𝑆(𝑎, 𝑟)) = 𝑟, we find
𝜑(𝑎𝑟𝑏𝑠, 𝑎𝑡𝑏𝑢) = 𝑝𝜀(𝑧𝑟,𝑠,𝑡,𝑢) = 𝑝𝑟𝑢

The group structure on ℤ × 𝑇 corresponding to this is

(𝑚, 𝑎𝑟𝑏𝑠) ∗ (𝑛, 𝑎𝑡𝑏𝑢) = (𝑚 + 𝑛 + 𝑝𝑟𝑢, 𝑎𝑟+𝑡𝑏𝑠+𝑢)

This corresponds to the group of matrices

{(
1 𝑝𝑟 𝑚
0 1 𝑠
0 0 1

)
|
|
|
|
𝑟, 𝑠,𝑚 ∈ ℤ}

2.4 Generators and relations
Another approach to considering extensions, and in particular central extensions, is the use of partial
resolutions arising from generators and relations. Given a group 𝐺, for any generating set 𝑋 there is
a canonical map 𝐹 → 𝐺 where 𝐹 is the free group on 𝑋 . Let 𝑅 be the kernel of this map, and so we
have a short exact sequence

1 𝑅 𝐹 𝐺 1

This is a presentation for 𝐺, where the subgroup 𝑅 can be thought of as the set of relations. Since it
is a normal subgroup, 𝐹 acts on it by conjugation. Often we take a set of generators of 𝑅 as a normal
subgroup of 𝐹.

Let 𝑅ab = 𝑅⟋𝑅′ be the largest abelian quotient of 𝑅. We say that 𝑅′ is the derived subgroup of 𝑅, and
is given by the commutator subgroup [𝑅, 𝑅] of 𝐹. It inherits an action of 𝐹, but 𝑅 acts trivially, so we
have an induced action by 𝐺 = 𝐹⟋𝑅. Clearly 𝑅ab is a ℤ-module, and it is a ℤ𝐺-module. This is called
the relation module. We have an extension

1 𝑅ab 𝐹⟋𝑅′ 𝐺 1

To get a central extension, we instead consider

1 𝑅⟋[𝑅, 𝐹] 𝐹⟋[𝑅, 𝐹] 𝐺 1

where [𝑅, 𝐹] is the commutator subgroup. There is not a largest or universal central extension, since
we can always form the direct product with an abelian group, but this particular central extension
above does have some good properties that we will now explore.
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Theorem. Let
1 𝑅 𝐹 𝐺 1

be a presentation of 𝐺. Let𝑀 be a left ℤ𝐺-module. Then there is an exact sequence

𝐻1(𝐹,𝑀) Hom𝐺(𝑅ab,𝑀) 𝐻2(𝐺,𝑀) 0

Thus, any equivalence class of extensions of 𝐺 by𝑀 corresponding to a cohomology class in
𝐻2(𝐺,𝑀) arises from a ℤ𝐺-map 𝑅ab → 𝑀.

Note that𝑀 is a ℤ𝐹-module via the map 𝐹 → 𝐺.

Corollary. In the above situation, if𝑀 is a trivialℤ𝐺-module, thenwehave an exact sequence

Hom(𝐹,𝑀) Hom𝐺(𝑅⟋[𝑅, 𝐹],𝑀) 𝐻2(𝐺,𝑀) 0

Proof. 𝑀 is a trivial ℤ𝐹-module, so𝐻1(𝐹,𝑀) = Hom(𝐹,𝑀), which is a set of group homomorphisms
to an abelian group, and any such morphism factors uniquely through the abelianisation so this is
equal to Hom(𝐹ab,𝑀). Similarly, Hom𝐺(𝑅ab,𝑀) = Hom𝐺 (𝑅⟋[𝑅, 𝐹],𝑀).

2.5 Homology groups
There is also a connection with homology groups. Given a projective resolution of the trivial ℤ𝐺-
module ℤ, we can apply the map ℤ ⊗ℤ𝐺 − and obtain homology groups. The homology groups do
not depend on the choice of resolution, and are written 𝐻𝑛(𝐺, ℤ).

Definition. The Schur multiplier𝑀(𝐺) of a group𝐺 is the second homology group𝐻2(𝐺, ℤ).

Theorem (universal coefficients theorem). Let 𝐺 be a group and𝑀 be a trivial ℤ𝐺-module.
Then there is a short exact sequence

0 Ext1(𝐺ab,𝑀) 𝐻2(𝐺,𝑀) Hom(𝑀(𝐺),𝑀) 0

where Ext1(𝐺ab,𝑀) arises from applyingHomℤ(−,𝑀) to a projective resolution of the abelian
group 𝐺ab.

Corollary. Suppose that 𝐺 = 𝐺′, and so 𝐺ab = 1. Then 𝐻2(𝐺,𝑀) ≅ Hom(𝑀(𝐺),𝑀).

In some texts, the Schur multiplier is defined to be 𝐻2(𝐺, ℂ×), where ℂ× is the a trivial module
written multiplicatively. This approach can be useful when considering projective representations
𝐺 → 𝑃𝐺𝐿(ℂ). Such a map lifts to give a linear representation of central extension of 𝐺.
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Theorem (Hopf’s formula). Given a presentation

1 𝑅 𝐹 𝐺 1

we have
𝑀(𝐺) ≅ 𝐹′ ∩ 𝑅⟋[𝑅, 𝐹]

Note that this is not necessarily all of 𝐹⟋[𝑅, 𝐹], and this shows that 𝐹
′ ∩ 𝑅⟋[𝑅, 𝐹] is independent of

the choice of presentation.
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