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1 Chain conditions

1.1 Modules

In this course, a ring is taken to mean a commutative unital ring R. We do however allow for one
noncommutative exception, the endomorphism ring End(M) of an abelian group M. This is a ring
where composition is the multiplication operation.

Definition. An R-module is an abelian group M with a fixed ring homomorphism p : R —
End(M). If r € R and m € M, we define r - m = p(r)(m).

Remark. Note that as p(r) is a group homomorphism,
r(my + my) = p(r)(my + my) = p(r)(my) + p(r(my) =r-my +r-m,
Also, as p is a ring homomorphism,

(n+r)m=pr +r)m)=(o(n)+prR)m=r -m+r,-m

Example. (i) Letk be a field. Then a k-module is a k-vector space.

(ii) Every abelian group M is a Z-module in a unique way, because the morphism Z — End M must
map 1 to id.

(iii) Every ring R is an R-module, by taking p(r) = ry +— ryr.

Definition. The direct product of abelian groups (M;);c; is the set of I-tuples (a;);c; Where
a; € M;, with elementwise addition as the group operation.

Definition. The direct sum of abelian groups (M;);cr is the set of I-tuples (a;);c; Where a; €
M; and all but finitely many of the a; are zero, again with elementwise addition as the group
operation.

Direct products are written Hl. <1 M;, and direct sums are written @i <1 M;. These constructions coin-
cideifthe index et is finite. Direct products and direct sums of R-modules are also R-modules.

The universal property of the direct sum states that each collection of module homomorphisms ¢; :
M; — R can be combined into a unique homomorphism ¢ : P, < Mi — R. Similarly, the universal
property of the direct product states that each collection of module homomorphisms ¢; : R — M;
can be combined into a unique homomorphism ¢ : R — Hie[ M;.

1.2 Noetherian and Artinian modules

Definition. An R-module M is Noetherian if one of the following conditions holds.
(i) Every ascending chain of submodules M, C M; C --- inside M stabilises. That is, for
some k, every j € Nhas My ; = Mj.
(i) Every nonempty set Z of submodules of M has a maximal element.



Lemma. The two conditions above are equivalent.

Proof. (i) implies (ii). Let Z be a nonempty set of submodules of M. If it has no maximal element,
then for each M’ € X there exists M” € X with M’ ¢ M”. We can then use the axiom of choice to
pick a sequence My, ¢ M; & M, C --- of elements in X. This contradicts (i).

(ii) implies (i). Let My, C M; C --- be an ascending chain of submodules in M. Then let & =
{My, My, ... }. This has a maximal element M by (ii). Then for all j € N, My, ; = M. asrequired. [J

Definition. M is Artinian if one of the following conditions holds.
(i) Every descending chain of submodules M, 2 M; D --- inside M stabilises.
(i) Every nonempty set Z of submodules of M has a minimal element.

Again, both conditions are equivalent.

Lemma. An R-module M is Noetherian if and only if every submodule of M is finitely gen-
erated.

Proof. Suppose M is Noetherian, and let N C M be a submodule. Pick m; € N, and consider the
submodule M; C N generated by m,. If M; = N, then we are done. Otherwise, pick m, € M; \ N,
and consider M, C N generated by m,. This construction will always terminate, as if it did not, we
would have constructed an infinite strictly ascending chain of submodules of M, contradicting that
M is Noetherian.

Now suppose every submodule of M is finitely generated, and let M, C M; C --- be an ascending
chain of submodules of M. Let N = U?:o M;; this is a submodule of M as the M; form a chain. Then
N is finitely generated, say, by generators my, ..., m; € N. As the M; form a chain increasing to N,
there exists n such that my, ... ,m, € M,,. In particular, N C M,, C N, so M,, = N. Thus the chain
stabilises. O

Note that every Noetherian module is finitely generated. Let R = Z[T}, T5,... ], and let M = R as
an R-module. M is generated by 1y, so in particular it is finitely generated. But it has a submod-
ule (T}, T5, ... ) that is not finitely generated. So in the above lemma we indeed must check every
submodule.

Definition. A ring R is Noetherian (respectively Artinian) if R is Noetherian (resp. Artinian)
as an R-module.

Example. (i) Z over itself is a Noetherian module as it is a principal ideal domain, but it is not
an Artinian module because we can take the chain (2) 2 (4) 2 (8) 2 ---.

(ii) Zissimilarly a Noetherian ring but not an Artinian ring by unfolding the definition and using

).

1
(iii) Z[E]/Z is an Artinian Z-module but not a Noetherian Z-module. This can be seen from the
fact that the only submodules are of the form (zik + Z) for k € N.



(iv) In fact, a ring R is Artinian if and only if R is Noetherian and R has Krull dimension 0.
1.3 Exact sequences

Definition. A sequence

fi fi
> M;_, > M; —% My, —

is exact if the image of f; is equal to the kernel of f;,; for each i, where the M; are modules
and the f; are module homorphisms.

Definition. A short exact sequence is an exact sequence of the form

injecti\@ surjectiye
\
> M

0o —> M S M 5 0

In this situation, M" ~ M/i( M) This is a way to encode M"” as a quotient by a submodule.

Lemma. Let

0 SN —Sy M 23 L S0

be a short exact sequence of R-modules. Then M is Noetherian (resp. Artinian) if and only if
both N and L are Noetherian (resp. Artinian).

Proof. We show the statement for Noetherian modules.

Suppose M is Noetherian. If Ny C N; C --- is an ascending chain of submodules inside N, then by
taking images,
(No) € «Ny) € -+

is also naturally an ascending chain of submodules inside M, so it stabilises. As ¢ is injective, the
original sequence also stabilises. Hence N is Noetherian.

If L, C L; C ---is an ascending chain of submodules inside L, then by taking preimages,
7 (Lo) CeTH(Ly) C -
is an ascending chain of submodules inside M, where
(L) ={m € M | p(m) € L}

So this chain stabilises at ¢p~!(L;). But as ¢ is surjective, p(¢~'(L;)) = L;, so the original sequence
must stabilise at L.

Now suppose N and L are Noetherian, and let My, C M; C --- be an ascending chain of submodules
in M. Then
T (Mo) ST (My) € -

is an ascending chain of submodules in N, so stabilises at (=}(M, ky) for some ky. Similarly,

e(My) € p(M;) C -



is an ascending chain of submodules in L, so stabilises at p—1(My, ) for some k;. Take k > ky, ky,
and let j > 0. We show My, ; C My, proving that the sequence stabilises.

Let m € My, j. As 9(My ;) = @(Mjy), there exists m" € My such that p(m) = ¢(m’). Then p(m —
m’) = 0, so by exactness, m — m’ is in the image of ¢, say, (x) = m — m’. Since m —m’ € My j, we
must have x € (7!(Mj ;). But then x € (7'(My), so «(x) = m —m’ € My. Hence m € M. O

Corollary. If My, ..., M,, are Noetherian (resp. Artinian) modules, then so is M; @ --- @ M,,.

Proof. Consider the sequence

0 — M, —> M{®M, —> M, —> 0

where ((x) = (x,0) and 7(x,y) = y. This is exact, so M; @ M, is Noetherian. We then proceed by
induction on n. O

Proposition. For a Noetherian (resp. Artinian) ring R, every finitely generated R-module is
Noetherian (resp. Artinian).

Proof. M is finitely generated if and only if there is a surjective module homomorphism ¢ : R* - M
for some n > 0. That is, M is a quotient of R". The fact that R" is Noetherian (or Artinian) passes
through to its quotients. O

1.4 Algebras

Definition. An R-algebra is a ring A together with a fixed ring homomorphism p : R — A.

Example. The map k — k[Tj, ..., T,,] makes the polynomial ring k[ Ty, ..., T,,] a k-algebra.

We will write ra = p(r)a. Note that p(r) = p(r) - 14 = r - 14, so we can write r - 14 for p(r).

Remark. Every R-algebra is an R-module.

Example. As a k-module, k[Ty, ..., T, ] is infinite-dimensional. As a k-algebra, k[T}, ..., T,] is gen-

erated by the n elements Ty, ..., Tj.

Definition. ¢ : A — B is an R-algebra homomorphism if ¢ is a ring homomorphism and
preserves all elements of R. Thatis, p(r-14) =r - 15.

An R-algebra A is finitely generated if and only if there is some n > 0 and a surjective algebra homo-
morphism R[T, ..., T, ] - A.

Theorem (Hilbert’s basis theorem). Every finitely generated algebra A over a Noetherian
ring R is Noetherian.

For example, the polynomial algebra over a field is Noetherian.



Proof. 1t suffices to prove this for a polynomial ring, as every finitely generated algebra is a quotient
of a polynomial ring. It further suffices to prove this for a univariate polynomial ring A = R[T] by
induction. Let a be an ideal of R[T]; we need to show that a is finitely generated. For eachi > 0,
define ’
a(i) ={co | coT" + -+ + ¢;T° € a}
Thus a(i) is the set of leading coefficients of polynomials of degree i that lie in a. Each a(i) is an ideal
in R, and a(i) C a(i + 1) by multiplying by T. As R is Noetherian, each a(i) is a finitely generated
ideal, and this ascending chain stabilises at a(m), say. Let
a(l) = (bi,17 cees bi,ni)

We can choose f; ; of degree i with leading coefficient b; ;. Define the ideal
b= (fij)i<m,j<n;
Note that b is finitely generated. Defining b(i) in the same way as a(i), we have
Vi, a(i) = b(i)

By construction, b C a; we claim that the reverse inclusion holds, then the proof will be complete.
Suppose that a ¢ b, and take f € a \ b of minimal degree i. As a(i) = b(i), there is a polynomial g
in b of degree i that has the same leading coefficient. Then f — g has degree less than i, and lies in a.
But then by minimality, f — g € b, giving f € b. O

Therefore, if S C R[T;, ..., Tn]/I where R is Noetherian, then (S) = (Sy) where S, C S is finite.

2 Tensor products

2.1 Introduction

Let M and N be R-modules. Informally, the tensor product of M and N over R is the set M ®g N of

all sums
¢

Zmi®ni; m; € M,n; € N
i=1

subject to the relations
(m+m)@n=mn+m,Qn
mn +n)=mn +mQen,
(rm@n=r(m@n)
m® (rn) =r(m @ n)
This is a module that abstracts the notion of bilinearity between two modules.
Example. Consider Z/ZZ Rz Z/3Z' In this Z-module,
x®y=3Bx)y=x®By)=x®0=x®0-0)=0x®0)=0
Hence Z/ZZ Rz Z/3Z =0.

Example. Now consider R” @ R?. We will show later that this is isomorphic to R"*¢.

2.2 Definition and universal property



Definition. A map of R-modules f : MXN — Lis R-bilinear iffor eachm, € M andny € N,
the maps n — f(mgy,n) and m — f(m, ny) are R-linear (or equivalently, a homomorphism of
R-modules).

Definition. Let M, N be R-modules. Let F = R®MXN) pe the free R-module with coordin-
ates indexed by M X N. Define K C ¥ to be the submodule generated by the following set of
relations:

(my + my, n) — (my, n) — (my, n)
(m,ny + ny) — (m,ny) — (m, ny)
r(m,n) — (rm, n)

r(m’ n) - (m9 rn)
The tensor product M @z N is 7 /g~ We further define the R-bilinear map

iMgN : MXN > MQ@N; iygn(m,n)=emmny=m@n

Proposition (universal property of the tensor product). The pair (M ®g N, iy, n) satisfies
the following universal property. For every R-module L and every R-bilinear map f : M X
N — L, there exists a unique homomorphism h : M @z N — L such that the following
diagram commutes.

IM@RN

MxN —25 M@y N
h

Equivalently, h o iyg.n = f-

Proof. The conclusion h o i;gn = f holds if and only if for all m, n, we have

h(im ® n) = f(m,n)

Note that the elements {m ® n} generate M ® N as an R-module, so there is at most one h. We now
show that the definition of & on the pure tensors m ® n extends to an R-linear map M N — L.
The map ROMXN) _, [, given by (m,n) — f(m,n) exists by the universal property of the direct
sum. However, this map vanishes on the generators of K, so it factors through the quotient 7 /K as

required.

The universal property given above characterises the tensor product up to isomorphism.

Proposition. Let M, N be R-modules, and (7, j) be an R-module and an R-bilinear map M X
N — T. Suppose that (T, j) satisfies the same universal property as M ® N. Then there is a
unique isomorphism of R-modules ¢ : M @ N = T such that g o ipren = j.



Proof. By using the universal property of M @ N and T, we obtain ¢ and 1 as follows.

M®N 3=ZZZZ-22222 T
’\ 4 /
iM®N J
M XN

The universal property states that ¢ o ipjgn = jand P o j = iygn. Hence, P o p o iyen = iyen-
This means that the following diagram commutes.

MxN —2 \ M®N

\ id\l/ \l/¢°¢
IM®N

M®N
By the uniqueness condition of the universal property, id = ¥ o ¢. Similarly, id = ¢ o 3. Hence, ¢
is an isomorphism M @ N — T with ¢ o ij;gn = j. Uniqueness of ¢ is guaranteed by the universal

property: it is the only solution to ¢ o iyren = J. O

In particular, we have
Biling(M X N,L) = Hom(M ®x N, L)

given by the universal property, and the inverse is given by h = h o iygN.

2.3 Zero tensors

Proposition. Let M, N be R-modules. Then
Z m; ® n; = 0
if and only if for every R-module L and every R-bilinear map f : M X N — L, we have

> f(myn) =0

To show an element of M @ N is nonzero, it suffices to find a single R-module L and bilinear map
M x N — L with mapping the required sum to a nonzero value.

Proof. Assume ), m; @ n; = 0. f factors through the map iy;gy, giving

MxN 2N yeN

\ f‘

> flmin) = h(imgn(mi, ny)) = h(z imen(m;, ”i)) =h(0)=0

In the other direction, suppose ), m;®n; # 0. Then, taking f = iy;gn, We obtain ) iygn(m;, 1) # 0
as required. O

So



Example. Let k be a field, and consider k™ ® k¢. Let k" have basis {e, ..., e,,} and k¢ have basis
fir-s feo- Then

k"™ @ k? = span, {v @ w | v € k™, w € k’} = span, {¢; ® f;}
This is in fact a basis. Suppose Zi’j a;je;® fj =0.Foreacha < m,b < ¢,define T, j, : k" X k¢ = k

by
Ta,b((vi)?zla(wj)le) = anb

By the above proposition,

0= a;;Taples f}) = dap
i,j

So k™ ® k? ~ k™. Note that this construction only relied on the existence of a free basis, not on k
being a field.

Example. Consider R?> ®j R2. There are infinitely many pure tensors, but there is a basis consisting
of the four pure vectors
e1®fi; e1®f e®fi; e®f

A pure tensor in R? @ R? is of the form

(xey + Bex) @ (vfi +612)

which expands to

(ay)(er @ fi) + (ad)(er ® f2) + (By)(ex ® fi) + (Bd)(e; ® f2)

Note that there is a linear dependence relation between the coefficients ay, ad, Sy, 59, so in some
sense ‘most’ tensors are not pure. For example,

1(e; ® fi) +2(e1 ® f2) +3(e2 ® f1) +4(e2 ® f>)
is not pure.
Example. Consider Z ®, Z/ZZ- In this module,
20(14+22)=1@(2+22)=1®0=0

Note that Z has a Z-submodule 2Z. In 2Z ® Z/ZZ’ the element also denoted with 2 ® (1 + 227) is
nonzero. For example, we can define a bilinear map to Z/2Z given by

b(2n,x +27) = nx + 27

Then b(2,1 + 2Z) = 1 # 0. So it is not the case that tensor products of submodules are submodules
of tensor products.

However, if M CMand N' CNand ),m; ® n; =0in M’ @ N',then ), m; ® n; =0in M Q N.

Proposition. If ), m; ® n; = 0in M ®g N, then there are finitely generated R-submodules
M’ C M and N’ C N such that the expression ), m; ® n; also evaluates to zero in M’ @z N'.

This is the last proof that will use the direct construction of the tensor product instead of the universal
property directly.

10



S(MxN)
Proof. Weknow that ), m; ®n; =0in Mz N = R /%> s0in particular )’ e(y, .y € K, where

e, maps x € M xN toits basis element in ROM*N)_ So this is a finite sum of a;k; with o; € R, k; € K,
and so we can take the mj, ..., m; that appear on the left-hand sides of the k; as the generators for
M’, and similarly for N'. O

Corollary. Let A, B be torsion-free abelian groups. Then A ® 7 B is torsion-free.

Proof. Supposen(Y. a; ® b;) = 0withn > 1. By the previous proposition, there are finitely generated
subgroups A' < A and B’ < Bsuch that n(};a; ® b;) = 0in A’ ® B'. But as A’ and B’ are finitely
generated abelian groups, the structure theorem shows that A’ = 7™ and B’ = Z¢, showing that
A’ ®7 B’ ~ 7™ is torsion-free. Thus Y. a; ® b; =0in A’ ®, B',s0also Y. a;®b; =0inA®,B. [

Example.
C? Q¢ C3 ~ Cl ~ R12

However,
C?Qp C ~ R* @p RS ~ R

This is to be expected: tensoring over a larger ring introduces more relations, so the amount of dis-
tinguishable elements should shrink.

2.4 Monoidal structure

We will prove a number of elementary propositions in detail to show how tensor products are used

in practice.

Proposition (commutativity). There is an isomorphism M ® N ~ N ® N mapping a pure
tensorm @ nton @ m.

Proof. Define f : M XN - N ® M by f(m,n) = n ® m; this is bilinear. The universal property
yields

MxN 2N v eN

b

N®M

such that h(m ® n) = n @ m. Similarly, we obtainh’ : NQM - M Q N with Y'(n ® m) = m ® n.
Hence, the following diagram commutes.

MxN 2N v eN

. \/‘id\l/\l/ "oh
IM®N

M®N

So by the uniqueness condition in the universal property, i’ o h is the identity. Similarly, h o h’ is the
identity, thus h is an isomorphism. O

11



Proposition (associativity). There is an isomorphism (M @ N) ® P ~ M ® (N ® P) mapping
m@n)@ptom® (n® p).

Proof. For each p € P, define the bilinear map ];, :MXN—->MQ® (N ® P)by

fmn)=m® (n® p)
Thus, each f, factors through h, : M ® N - M ® (N ® P). Then, define the bilinear map [ :
(M®N)XP - M® (N Q® P) by

f(x, p) = hp(x)
We show this is bilinear in p. Note that

hP1+P2(m ®n)= ﬁ)lﬂ?z(m’ n)
=mQ@ (n® (p1+ p2))
=m@n®p)+mQ(n® p,)
= fp,(m,n) + fp,(m,n)
= h,, (m®n) + hy,(MQ n)

So hy, 4p, coincides with h, + h,, on the pure tensors, so by the universal property they coincide
everywhere. Similarly,

hyp(m @ n) = frp(m, n)
=m® (n®rp)
=r(m® (n® p))
= rfy(m,n)
= rh,(m @ n)
s0 h,, = rhy,. Then, by the universal property, f factors throughh : M® N)® P - M ® (N ® P),

SO
h(m®n) @ p)=mnQ p)

We can similarly construct ' : M @ (N ® P) —» (M ® N) ® P with
Wim®n®p)=mn)Qp

Since h o h' and h' o h are the identity on pure vectors, they are the identity everywhere, and hence

are inverse isomorphisms. O

Proposition (identity). There is an isomorphism R ® M ~ M mapping r @ m to rm.

Proof. The map f : R X M — M given by f(r, m) = rm factors through some h : RQ M — M.

RxM 224 poM

i
f v

M

12



Now define the R-module homomorphism h’ : M - R @ M by h’'(m) = 1 ® m = irgp(1, m). Then
(h o h')(m) = h(irgm(1,m)) = f(1,m) =m
giving h o h' = id. Further,
(Woh)(r@m=10h(r@m)=1Q f(rm)=1Q@rm=r®m

So by the uniqueness condition in the universal property, h’ o h is the identity, and hence & is an
isomorphism. O

These operations, together with coherence conditions, make the category of R-modules into a braided
monoidal category, where the monoid operation is ® and the unit is R.

Proposition (distributivity). There is an isomorphism (691 M;)®P ~ @,(M; ® P) mapping
(m;); ® p to (m; @ p);.

Proof. Define f by
f((my);, p) = (m; ® p);

Then there is a unique h such that the following diagram commutes.

(D, M;)) x P —

For each i, define the map f; : M; X P — (@l M;) ® P by
fi(mi,p)=m; @ p

By the universal property of the tensor product, this factors through a unique #;.

imM;®P
MiXP — M;®P

[
1 hi
fi v

(®iMi) ® P

Then, by the universal property of the direct sum, the h; can be combined into a single /', so this
diagram commutes for each i.

M;®P — D;(M; ®P)
|
n, W

(691' Mi) ® P

13



It remains to show that h and h’ are inverses. To show hoh' = id@i (M, ®P), it suffices by the universal
property of the direct sum to show that (h o h')(x) = x for all x € M; ® P, for each i. Then, by the
universal property of the tensor product, it further suffices to show this result only for pure tensors.

(hoh')(m; ® p) = h(W' (m; ® p))
= h(hj(m; ® p))
= h(f{ (m;, p))
= h(m; ® p)
= f(my, p)
=m;@p
To show h' o h = id(@l_ M;)®p> it suffices by the universal property of the tensor product to show that

(h' o h)((M;); ® p) = (M;); ® p. By linearity of h and h’, we can reduce to the case where (m;); has a
single non-zero element m;.

(h" o h)(m; ® p) = h'(h(m; ® p))
= h'(f(my, p))
=h'(m; ® p)
= hi(m; ® p)
= f{(m; ® p)
= f{(m;, p)
=mQ@p

Example.
m € m ¢ m ¢
RM®RR€=(@R>®R (@R)z PreR) =P PR =R

Proposition (quotients). Let M’ C M and N’ C N be R-modules. Then there is an isomorph-
ism

M/M’ ®N/N/ = (M®N)/L
where L is the submodule of M @ N generated by
fm@n|(m,n)eM XN} ufm@n' | (m,n') e M xXN'}

and mapping
m+M)Y®(n+N)>m@n+L

Proof. Define
fMapxNay - (M®N)/L

by
fm+M ,n+N)=m®@n+1L

14



This is well-defined: if m € M’ or n € N’, then m ® n € L. By the universal property of the tensor
product, f factors through some h.

My @N

M/M'XN/N’ —_— M/M'®N/N’

\) : h
f ¥

(M@N),
Now define
fiMxN-M4, N,

by
ffimn)=m+M)Q® (n+N')

This is clearly bilinear. Thus, we have

MxXN —> s M eN
T
M @ Ny
We show that if x € L, then h'(x) = 0. By linearity it suffices to show this for the generators.
Wm @n)=f'm,n)=00(n+N')=0, hW(m®n)=f'(mn)=m+M)®0=0

Thus k' factors through the quotient.

M@N —Z5 M®N),

|
N \Lh”

M/M’ ® N/N/

We show h and h” are inverses. To show ho h” = idmg N, it suffices by the universal properties of

the quotient and the tensor product to consider the images of pure tensors under the quotient map
TT.

(hoh")(m @ n+ L) = h(h"(n(m @ n)))
= h(h'(m @ n))
= h(f'(m,n))
=h(m+M)®(n+N")
=f(m+M,n+N')
=m@n+L

To show h” o h = idm &N it suffices to show the result for expressions of the form (m + M") ®

15



(n+N').

(h"oh)(m+M')®(n+N") =h"(h((m+M')® (n+N")))
=h"(f(m+M',n+ N"))
=h"(m@n+L)
=h'(mQ®n)
=f'(m+M',n+N’)
=(m+M)®(n+N')

2.5 Tensor products of maps

Proposition. Let f : M - M’ and g : N - N’ be R-module homomorphisms. There is a
unique R-module homomorphism f ® g : M ® N - M’ ® N’ such that

(f®8m@n) = f(m) ® gn)

Proof. We apply the universal property tothemap T : M X N - M ® N’ given by
T(m,n) = f(m) ® gn)
which can be checked to be R-bilinear.

Example. We can show
(f®Qe(h®@)=(feh)®(gei)
For example, if T : k% - kP and S : k¢ — k¢4,

T®S : k* ® k¢ = kP @ k¢

is given by
(T®S)e; ®ej) =(Te;) ® (Se;j) = Z[T]ei[s]tj(fe ® fi)
ot

where [T] denotes T in the standard basis. Ordering the basis elements of k¢ ® k€ as
e1®eq,...,e1®eq,e,,Qeq,...,e, Q€.

and similarly for k? ® k¢,
[Thy - [S] - [Tha-[S]
resl=( : :

[Tl -[S] - [Tloa - [S]

This is known as the Kronecker product of matrices.

Proposition. Let f : M — M’',g : N — N’ be R-module homomorphisms. Then,
(i) if f, g are isomorphisms, then so is f ® g;

16



(ii) if f, g are surjective, thensois f ® g.

Proof. Part(i). f~! ® g~! is a two-sided inverse for f ® g, as
f1®gHNe(f®=("f®E'®g=id

and similarly for the other side.

Part (ii). The image of f ® g contains all pure tensors of M’ ® N’, so it must be surjective. O

The analogous result for injectivity does not hold in the general case. Consider f : Z — Z given by
multiplication by p, and g : Z/pZ - Z/pZ given by the identity. Here,

(f®g)(a®b)=(pa)®b=a®(pb)=a®0=0

So f ® g is the zero map, but Z ® Z/pZ o~ Z/pZ is not the zero ring.

2.6 Tensor products of algebras

Let B, C be R-algebras. The usual tensor product of modules B ®y C can be made into a ring and
then an R-algebra. This allows us to define the tensor product of algebras in a natural way. We want
the ring structure to satisfy

(bQc)b' ®c') = (bb") ® (cc’)

This extends to a well-defined map on all of B ® C. Indeed, for a fixed (b,c) € B X C, there is an
R-bilinear map B X C — B ® C given by
(b',c") = (bb") ® (cc’)

so we can use the universal property to extend this to a map B® C — B ® C that acts on pure
tensors in the obvious way. One can show that the ring axioms are satisfied. To define the R-algebra
structure, we define the ring homomorphism R — B ® C by

rer-13)®1lec =1 (r-1¢)

Example. There is an isomorphism of R-algebras
¢ : R[Xy,....X,] ®: R[Ty, ..., T,] = R[Xy, ... X, Tys .., T}

An R-basis for the left-hand side as an R-module is given by elements of the form a ® b where a and b
are monomials. The right hand side has a basis of elements of the form ab, where a € R[ X}, ..., X},;]
and b € R[Ty, ..., T,] are monomials as above. Mapping ¢(a ® b) = ab, we obtain an R-module
isomorphism. To check this is an R-algebra isomorphism, we verify multiplication and its action on
scalars.

pr®=r-1; ¢(1®1)

17



and for monomials p;, q;, h;, g;»

€0(<Z pi® Ch)(z h; ® gj)) = Z(pihj)(qigj)
i J L,J
= Z(piQi)(hjgj)
i,j

= o(p; ® q)e(h; ® g))

i,j

= (Z‘ o(p; ® qi))(zj: co(h,-gj))
-r{preaq{zes)

More generally,

R[X;, ... ,Xn]/I ® R[TY, ..., T’]/] ~ R[Xy, ... X, ]®R[TY, ..., T,]/L ~RX1, . X0 T4, T,]/Ie e
where L is constructed as above when quotients were discussed, and I° is the extension of I in the
larger ring R[X;, ..., X,;, T3, ..., T,]. For example,

CIX.Y,2],

(f,g) ®c Clw, U,y = CIX.Y, Z,W, U],

f.8h

Proposition (universal property of tensor product of algebras). Let A, B be R-algebras. For
every algebra C and R-algebra homomorphisms f; : A — Cand f, : B — C, thereisaunique
R-algebra homomorphism h : A ® B — C such that the following diagram commutes:

A B
A®B
f1 :h f2
v
c

where iy(a) = a ® 1 and ig(b) = 1 ® b. Furthermore, this characterises the triple (A ®g
B, iy4,ig) uniquely up to unique isomorphism.

Proof. A ®g B is generated as an R-algebraby {a ® 1| a € A} U {1 ® b | b € B}. This implies the
uniqueness of h. For existence, we can define an R-bilinear map A X B — C by (a,b) — fi(a)f,(b),
then apply the universal property of the tensor product of modules. This produces an R-linear map
h : A® B — C. It remains to show that this is a homomorphism of algebras. O
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Example.
R[X1, ..., X,] R[Ty, ..., T,]

R[Xy,.... X, Ths .., Ty ]
\L f2
C

An algebra homomorphism from a polynomial ring is defined uniquely by giving its action on its
variables, thus
R[Xy,....X, | ®R[T3,...,T,] ~R[X, ... X, Ty, ..., Ty

as was shown above.

Remark. (i) Iff : A - A',g: B — B’ are R-algebra homomorphisms, then f ® g : AQ B -
A’ ® B’ is not only an R-module homomorphism but is also an R-algebra homomorphism.

(ii) There are R-algebra homomorphisms
(a) R/I®R/JZR/[+J;
(b)) AQB~BQ®A;
() AQBXC)~(A®B)X(AQC);
() AQB" ~(A®B)";
(&) ARB)®C~AQ(B®C).

2.7 Restriction and extension of scalars

Let f : R — S be a ring homomorphism. Let M be an S-module. Then we can restrict scalars to
make M into an R-module by
r-m=f(r)-m

The composition R — S — End M is a ring homomorphism, so this makes M into an R-module
automatically without needing to check axioms.

Example. Let f : R — C be the inclusion. Then any C-module is an R-module.

Now suppose f : R — S is a ring homomorphism, M is an S-module, and N is an R-module. We
can form the R-module M @ N, as M is an R-module by restriction of scalars. Extension of scalars
shows that M @ N is also an S-module. The action of s € S on pure tensors is

s-(m@n)=sm@n
We have an R-bilinear map M X N - M ®p N by
(m,n) »sm®n

so by the universal property this givesrise toamap hy : M®rN — M QN with the desired action on
pure tensors. h is R-linear by the universal property. Defining ¢ : S - End(M ®g N) by ¢(s) = h;,
one can check that hy is a well-defined endomorphism and that ¢ is a ring homomorphism.

19



Example. S ®g R ~ S as R-modules, by s ® r — s - f(r). This is also S-linear, since
Ss®r)=(s's@r) = s's- f(r)=5(s- f(r)

For example, C @r R ~ C as C-modules.

Example. Let M be an S-module and (N;);c; are R-modules. Then

M® (@N) ~PMON)

as S-modules. So C @i R"™ ~ C" as C-modules.
Example. Restrict the C-module C" to an R-module to obtain R?". Then, extending to C,
C ®R RZVL ~ CZn

Similarly, extending R" to C, we find C ®g R" ~ C" over C. Restricting to R, C" ~ R?". So the
operations of restriction and extension of scalars are not inverses in either direction.

Example. Consider Z" as a Z-module. Consider the quotientmap f : Z — Z/ZZ' Extending scalars
to Z/zz,
n
Z/zz Qz 2" ~ (Z/zz>
Example. Consider C" ® R? as a C-module. As R-modules,
cr ®R R€ ~ RZVI ®R R€ ~ R2n€ ~ Cn€
We would like to make this into an isomorphism of C-modules. We will show that in fact
C" ®r R ~ C" ®c (C Qg RY)

where
VRQui v (1 Qu
giving
cr ®R Ré’ ~ C" ®C Cé’ ~ Cn€

as C-modules. The isomorphism
C" ®g R ~ C" @ C¢

maps a pure tensorv Q utov ® u.

Proposition. Let M be an S-module and N be an R-module. Then
M®RN2M®S(S®RN)

as S-modules, where

mnmR(1Qn);, smPn—me(s® n)
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Proof. The map (m,n) —» m ® (1 ® n) is R-bilinear, so the map f mappingm @ ntom ® (1 ® n) is
well-defined as a map of R-modules. We show it is S-linear on pure tensors.

fem@n)=f(smn)=sm(QALQn)=sm 1 Qn)) =sf(mn)

For a fixed m € M, the map s ® n — sm @ n is well-defined and S-linear. This collection of maps is
S-linear in its parameter m, so we obtain an S-bilinear map (m, s ® n) — sm ® n. Hence, we obtain
amap g mapping m ® (s ® n) to sm ® n, as desired. One can easily check that f and g are inverses
on pure tensors. O

Proposition. Let M, M’ be S-modules and N, N’ be R-modules. Then we have S-module
isomorphisms

M®RNZN®RM
(M@rN)QrN' =M Qr (N®gN')
(M®RN)®5MI EM®S(N®RM/)

M ®p (GB Ni) ~ M ¢ N;)
i i
Heuristically, the tensor products in the above isomorphisms always operate over the largest possible
ring: S if both operands are S-modules, else R. We prove only the third result.
Proof. By the previous proposition,

(M@rN)Qs M ~ (M Qs (N QrS)) Qs M’
~M Qs (N®gS) Qs M)

~ M ®S (N ®R M,)
O
Corollary. Let N, N’ be R-modules. Then
S®r(N®rN') = (S®r N)®s (S®rN')
as S-modules.
Proof.
SQrIN®rN') = (SQrN)®r N' = (SQr N) ®s (S Qr N')
O
Example.

C ®r (R @ R¥) ~ (C ®r RY) ®¢ (C ®r R¥) =~ C¢ ®¢ Ck ~ C*

By induction, one can see that

SQr (N1 ®r - ®r Ng) = (SQ®r Np) ®s -+ Qs (S®g Nyp)
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2.8 Extension of scalars on morphisms

Let f : N - N’ be an R-linear map, and M be an S-module. Then the map
ldM®f . M®RN—>M®RN,
is S-linear. Indeed,

(idpy @) (s(m @ n)) = idyy sm @ f(n) = s(m @ f(n)) = s((idy ® f)(m @ n))

Example. Let T : R" — R¢ be R-linear, and use bases ey, ..., e, and fi, ..., f,. Then
idc ®T : C Qg R" - C ®r R?
is given by

£ €
(de ®T)A®e) =1 T(e) =1® Y.[Tlji - fj = 2. [T;(1 ® f})
j=1

j=1

This shows that the matrix [idc ®T] has all real elements, and is the same as the matrix [T].

2.9 Extension of scalars in algebras

Let A, B be R-algebras. Then the module A ®p B is also an R-algebra. Furthermore, can see that
A ®pg Bis an A-algebra and a B-algebra by the mapsa—~ a®landb— 1Q®b.

Example. Consider R[X},...,X,,]and f : R — S. Then
® : S®rR[Xq,....X,] = S[Xy, ..., X,]
as S-algebras. Indeed, ¢ already exists as an isomorphism of S-modules given by

p(s® p) = sp

and one can verify that unity and multiplication are preserved. Further,

S® (R[X ,Xn]/l) o SIX o Xnl

Proposition. Let A be an R-algebra and B be an S-algebra. Then
AQrB=~(AQ®rS)®sR

as S-algebras.

Proposition. Let A, B be R-algebras. Then
S®r(A®rB) ~(SQrA) ®s (S®g B)

as S-algebras.

The proofs are omitted, but trivial.
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2.10 Exactness properties of the tensor product
Let M be an R-module. There is a functor
TM : MOdR - MOdR

from the category of R-modules to itself given by

f .
TM(N) =M Q®gN; Ty(N>N')=idy Qf

We intend to show that if

f

A—1ysp_8

> C

~
o

is an exact sequence of R-modules, then

T ( Tm(
M®RAMM®RBMM®RCHO

is also an exact sequence. This shows that Ty, is a right exact functor.

Definition. Let Q, P be R-modules. Then
Hompy(Q,P) ={f : Q — P | f is R-linear}
This is also an R-module: if p € Homg(Q, P),

(r-o)q) =r-9(q

Definition. Let Q, P be R-modules. Then
Homp(Q,—) : Modyr - Mody

and
Homg(—,P) : Mody — Modg

are functors, with action on morphisms f : N’ — N given by

Homg(Q, f)(¢) = f o ¢ = f.(¢) : Homg(Q,N’) - Homg(Q,N")

and
Homg(f,P) (@) =¢po f = f*(¢) : Homg(N, Q) - Homg(N’, Q)

Proposition. Suppose

0 S A

~
vy
~
Q

is exact. Then, so is

0 —% Homg(Q,A) —% Homg(Q,B) —5% Homg(Q,C)

Thus, the covariant hom-functor is left exact.

23



Proof. First, we show f, is injective. Suppose f,(¢) = 0,s0 fop = 0. Then as f is injective, f(p(x)) =
0 implies p(x) = 0, giving ¢ = 0 as required.

Now consider ¢ : Q — A. Then
8.(f(p) =go(fep)=(geflop=00p=0

soim f, C kerg,. Now suppose ¢ : Q - Bhasg,(¢) = go@ = 0. So for all x € Q, g(¢(x)) = 0. By
exactness of the original sequence, ¢(x) € im f. As f is injective, ¢(x) has a unique preimage (x)
under f. As f is R-linear, sois 3 : Q — A. Hence f,(3) = ¢ as required. O

Proposition. Suppose

is exact. Then, so is

0 —— Homg(C,P) ——5 Hompg(B,P) —— Homg(A, P)

Thus, the contravariant hom-functor is also left-exact.

Proof. First, we show g* is injective. Suppose g*(¢) = 0,0 p o g = 0. As g is surjective, we must
have ¢ = 0.

Now consider ¢ : C — P. Then
[ (@)= (pog)of=po(gef)=¢e0=0
soimg* C ker f*. Now suppose ¢ : B — Phas f*(¢) = po f = 0. Sofor all x € A, ¢(f(x)) = 0.

Definey : C —» P by
h(g(x)) = (x)

We show this is well-defined. If g(x) = g(y), then g(x —y) = 0,s0 x — y = f(a) for some a € A. But
then p(f(a)) = 0, so ¢(x) = ¢(¥). As ¢ and g are R-linear, so is ¢. Hence g*(¢) = ¢ as required. O

Lemma. Consider a sequence of R-modules
f g
A— B — C
Suppose that for each R-module P,
Homg(C,P) —5— Homg(B, P) —— Homg(A, P)
is exact. Then the original sequence
f g
A— B — C

is exact.
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Proof. First, take P = C. By hypothesis, the following sequence is exact.

Homg(C, C) —5—% Hompg(B,C) —— Hompg(A, C)

Consider
idc [ =d ldc og ldc ogo f

By exactness, id¢c must be mapped to zero under f* o g*,so go f = 0. Hence im f C kerg.

Now, take P = B/im f= coker f.
Homg (C, By ) £ Homg (BB, ;) —— Homg (4,84, f)

Leth : B— B/im f be the quotient map. Then,

fr()y=hof; h(f(x)=0

Thus by exactness, h has a preimagee : C — B/im f: Theng*(e) = eog = h,sokerg C kerh =im f,
giving the reverse inclusion. 0

By the universal property of the tensor product,
Homg(M ®z N, L) ~ Biling(M X N, L) ~ Homg(N, Homg(M, L))

given by
pr P meem®n); (Mn+— e(m)(n)) <@

This bijection is natural, in the sense that many commutative diagrams involving them will com-
mute.

Proposition. Let M be an R-module. Then the functor Ty = M ®g (—) is right exact.

Proof. Consider an exact sequence of R-modules

S

A N .

> C

~
(e}

We must show that

idy ®, idy ®,
M®RAMM®RBM_§M®RCHO

is exact. Let P be an R-module, and consider apply the functor Hom(—, P) to this sequence. As this
is left exact, the resulting sequence will be exact.

0 —— Homg(C,P) ——5 Hompg(B,P) —— Hompg(A, P)
Then, apply the functor Hom(M, —), which is also left exact.

0 —— Homg(M, Homg(C, P)) % Hompg(M, Homg(B, P)) % Homg(M, Homg(A, P))
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We thus obtain
0 —— Homg(M,Homg(C,P)) —— Hompy(M, Homg(B, P)) —— Hompgz(M, Homg(A, P))
0 ——— Homg(M ®g C,P) ——— Homp(M ®g B,P) ———— Homgzp(M ®g A, P)

As this diagram commutes, the bottom sequence is exact. Since this holds for all P, by the previous
lemma, we can cancel P to give exact sequences

0 —> M®C —> M®yB M®rC —> MQ@rB —> M@z A
which combine into the longer sequence as required. O

Remark. 1t is not the case that if

A——> B ——C
is exact, then
M®RrA —> M@rB —> M@ C

is also exact; the fact that the sequence has a zero on the right is important. Consider the exact
sequence

0—s7-237
and tensor with Z/ZZ- We would then obtain

0— 24,07 225 24,,87
0 —— 24, —22 52,

but this sequence is not exact.

2.11 Flat modules

Definition. An R-module M is flat if whenever f : N — N’ is R-linear and injective, the
map
ldM®f . M®RN—)M®RN,

is injective.
Example. (i) Z/ZZ is not a flat Z-module.
(ii) Free modules are flat. Suppose f : N — N’ is an injective R-linear map. Then

ROI

e
RO QN RO @, N’

:l l:

NGBI z ) ( N/)EBI
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commutes, where
g((npien) = (f(n)ier

But g is injective, so idgrer ® f must also be injective.

(iii) The base ring matters. One can see that Z/ZZ isnot a flat Z-module but it is a flat Z/ZZ-module
asitis a free Z/2Z—modu1e.

Definition. An R-module M is torsion-free if rm # 0 whenever r is not a zero divisor in R
and m # 0.

Proposition. Flat modules are torsion-free.

Proof. Suppose M is not torsion-free. Then there is r, € R not a zero divisor and m, # 0, such that
romg = 0. Consider the R-linear map f : R — R given by multiplication by r,. Its kernel is zero, as
¥y is not a zero divisor. So f is injective. The following diagram commutes.

id
M®x R 2 M @g R

zl l:

M —mr M

If M were flat, idj; ® f would be injective, but then the map m — rym would also be injective, which
is a contradiction. O

Example. Let R be an integral domain, and let I be a nonzero ideal of R. Then R/I is not flat. Indeed,
if I = R then R/I = 0 is not flat. Instead, suppose I C R, and let 0 # x € I. Tensoring with R/I, the

map R/I - R/I given by multiplication by x is the zero map, but R/I is not the zero module, so R/I is
not torsion-free.

Proposition. Let M be an R-module. Then the following are equivalent.
(i) Ty preserves exactness of all exact sequences;
(ii) Ty preserves exactness of short exact sequences;
(iii) M is flat;
@iv) if f : N — N’ is R-linear and injective, and N, N’ are finitely generated R-modules,
then idy,; ® f is injective.

Note thata map f : M — N is injective exactly when the sequence

0—> M-S N

is exact, so all of these conditions relate exact sequences.

Proof. Note that (i) implies (ii) which implies (iii) which implies (iv).

(ii) implies (i). Suppose the sequence
f g
A— B — C
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is exact. Then, the following diagram is exact.

N N

0

ker f 8
NN
A > B > C
N Ny
imf =kerg coker g
O/' \O \‘O

After applying T = T, the diagram still commutes, and the diagonal lines remain exact.

im(TA — TB) = im(TA — T(im f) — TB)
= im(T(im f) — TB)
= ker(TB — T(im g))
=ker(TB — T(img) — TC)
= ker(TB - TC)

(iii) implies (ii). Suppose the sequence

RN

0—3 A N .

> C

~
o

is exact. As Ty is right exact, we obtain the exact sequence

idy ®, idpr ®,
M®RAM—;M®RBM—§M®RCHO

It suffices to show that idy; ® f is injective, but this is precisely the hypothesis of (iii).

(iv) implies (iii). Let f : N — N’ be R-linear and injective. Let ), m; ® n; € M ®g N be such that
0=(idy ®N . m®n) e MRN'

Then there are finitely generated submodules L, L' of N, N’ such that the n; are elements of L and
0=(idy ®NDm@n)eML

By (iv), we obtain
0=)m@neMQL

But L is a submodule of N, so

0=Zmi®ni EM®N
Henceidy ®f : M ®g N - M Qg N’ is injective.
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Proposition. Let f : R — S be a ring homomorphism, and let M be a flat R-module. Then
S ®g M is a flat S-module.

Proof. Letg : N — N’ be an S-linear injective map. Then

id ®g
(S ®x M) ®s N —225(S @ M) @ N’

:l lz

MQ@gN —>idM®g M®gN'

commutes. The map idy; ®g is injective as M is flat, so the map idgg,p ®g is also injective. Thus
S ®g M is a flat S-module. O
We now explore some further examples of tensor products.

Example. Consider Q ®» Z/nZ In this ring,
X X X
x®y=n-z®y=z®ny=z®0=0

So this ring is trivial. To prove this, we used the fact that for all x € Q and n > 1, there is an element
y € Qsuch that ny = x. We say that Q is a divisible group. We also needed the fact that Z/nZ isa
torsion group: all elements are of finite order. Hence the tensor product of a divisible group with a
torsion group is zero. In particular, it follows that

Q. 7 Qz % 7=0
However, for an R-module M # 0, if M is finitely generated then M ®p M # 0.

Example. Let V be a vector space over Q. Then Q ®g V ~ V as Q-modules, given by the map
x ® v — xv. However, Q ®5 V is also isomorphic to V, given by the same map. First, note that every
tensor in Q ® V is pure.

a; _ 1 _ 1 a; _ a; _ a;

b—i®Ui—Zb—i®aiUi _Zb_i®bib_ivi —Zl@b—ivi = 1®Zb—lvl
Surjectivity of the map is clear as 1 ® v — v. We check injectivity on pure tensors. If xv = 0, then
X =0orv=0,andin any case, x ® v = 0.

Example. Consider

M ®p (@M) ~ P M Ny)

iel iel

given by m ® (n;)icr ~ (m ® n;);c;. This is not true with the direct product. However, we do have a

map
M ®p (HM) - [[M®rN)

iel iel

given by the same formula, but this is in general not an isomorphism. Consider
Q®z HZ/Z”Z - H (@ Qz Z/znz)
n=1 n=1
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The right-hand side is zero, as each factor is a tensor product of a divisible group by a torsion group.
However, the left-hand side is nonzero. Let

g=111..)e [[Yonz
n=1

This is an element of infinite order, so (g) ~ Z as a subgroup of H:o:l Z/2”Z~ Thus
Q®z (g ~Q

as Z-modules. But we have an injective inclusion map

(g — H Z/znz

n=1

We will later show that Q is a flat Z-module. This justifies the fact that there is an inclusion

Q®z (g~ A®z HZ/QHZ

n=1
showing that in particular the module in question is nonzero.
Example. Consider C ®r C. We will choose to extend scalars on the left, treating the right-hand

copy of C as an R-module isomorphic to R?. As a module, C ®g C ~ C ® R? is isomorphic to C2.
The basis for C?is givenby 1 ® 1,1 ® i.

As a C-algebra, we again choose to extend scalars on the left, considering the right-hand copy of C as
an R-algebra.

= C[T]/(Tz +1)

~ Y Zir 4

= C[T]/(T - X C[T]/(T +1i)

~CxC

using the Chinese remainder theorem, which will be explored later. The action of this isomorphism
on a pure tensor is

x®y=(a+b)®(+di)m (a+bi)® (c+dT + (T? + DR[T])
~ (a+ bi)(c+dT)+ (T? + 1)C[T]
= (ac + bdiT) + (ibc + adT) +(T? + 1)C[T]
P
(P + (T — i)C[T], P + (T +i)C[T])
— ((ac — bd) + i(bc + ad), (ac + bd) + i(bc — ad)) = (xy, xy)

3 Localisation

3.1 Definitions
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Definition. A multiplicative set or multiplicatively closed set S C R is a subset such that1 € S
andifa,b € S, then ab € S. If U C R is any set, its multiplicative closure S is the set

{ﬁw

i=1

n>0,u; € U}

which is the smallest multiplicatively closed set containing U.

Example. (i) If R is an integral domain, then S = R \ {0} is multiplicative.
(ii) More generally, if p is a prime ideal in R, then S = R \ p is multiplicative.
(iii) If x € R, then the set {x" | n > 0} is multiplicative.

Remark. Q is obtained from Z by adding inverses for the elements of the multiplicative subset Z \
{0}. We have a ring homomorphism Z » Q. We generalise this construction to arbitrary rings and
multiplicative sets. In general, injectivity of the ring homomorphism in question may fail.

Definition. Let S C R be a multiplicative set, and let M be an R-module. Then the localisa-

tion of M by S is the set STIM = M XS,/ where (my, s7) ~ (my,s,) if and only if there exists

u € S such that u(s,m; — s;m,) = 0. We write 2 for the equivalence class corresponding to
N

(m, s). We make S~'M into an R-module by defining

ﬂ+@_m1sz+mzsl‘ Lomo_rm

ST S, 515, ’ s s
We can make S™!R into a ring by defining

n n nr
1 8 5182

Then S~'M is an S~'R-module by
rm

St

r
S

~|3

We have the localisation map R — S™!R given by r — %, which is a ring homomorphism. We

also have the localisation map M — S~M given by m — %, which is a homomorphism of
R-modules.

We must show that ~ is an equivalence relation. The only nontrivial thing to prove is transitivity.
Let
u(s,my — s;my) = 0 = v(sz3m, — s,m3); U,V ES

Then
0 = uv(S,853mM; — 8153M,) + UV(S1S3My — §15,M3) = UVS,(S3my — S;M3);  ULS, € S

as required. All other operations mentioned are well-defined; the proofs are not enlightening so are
omitted.
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3.2 Universal property for rings

Proposition. Let U C R, and let S C R be its multiplicative closure. Let f : R — B be
a ring homomorphism such that f(u) is a unit for all u € U. Then there is a unique ring
homomorphism h : ST'R — B such that the following diagram commutes.

R =8 s-1R
\ n
f e
B
where (g_15(r) = {, so in particular, f(r) = h({)

Thus
HomRing(S_lR7B) = {(P € HomRing(R7 B) | gD(U) c BX}

(9 (- 55) -

mapping

Proof. Let f : R — B be aring homomorphism such that f(u) is a unit for all u € U. Then f(s) is a

unit for all s € S. We want to construct a ring homomorphism 4 : S™'R — B such that f(r) = h(f)
for all r € R. Such an h must satisfy the following condition.
1 s 1

L=k = (- 5) =A(5)

Thus h(i) = f(s)~!. Hence, we must have
n()=h(5)n(5) = F& )

It thus suffices to show that this & is well-defined; it is then a ring homomorphism satisfying the
correct property. If :—1 = :—2 then there is t € S such that ts,r; = ts;r,. Applying f,
1 2

F@®f(s2)f(n) = f(©)f(s1)f(r2)
As f(t), f(s1), f(s,) are invertible,
f(r) _ f(r)
f(s1)  f(s2)
so h is well-defined. O

Proposition. Suppose (A4, j) has the same universal property of (S7!R,ig-1z) where
ts-1g(r) = {, then there is a unique ring isomorphism S~™'R — A mapping g to j(s)~Lj(r).

Remark. (i) Let L eSR. Then® = % if and only if there exists u € S such that ur = 0.
S S

(i) In particular, S~1R = 0 when % = (I)’ which occurs precisely when 0 € S.
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(iii) kerig-ig ={r € R|Ju € S, ur = 0}.
(iv) ts-1p is injective if and only if S contains no zero divisors.

(V) tg-1 is always an epimorphism, but usually not surjective. For example, the map (¢ : Z » Qs
epic. Indeed, for f,g : Q — A are such that f ot = g oy, then

f< g) _ f(p)) _ g(p)) _ (p>

q)” T " gq) ~ 2\q

Example. (i) Let f € R and define S = {f" | n > 0}. Define Ry = S~IR. Taking for instance
R=Zand f =2,
1

a
=4 — > = —
Ry={3;|a€znz0} Z[z]
producing the ring of dyadic rational numbers. Since we write Z/nZ for the finite quotient ring
and Z, for the 2-adic integers, we must use the notation ZE] for this particular construction
instead. Thus Ry is the zero ring if and only if f is nilpotent.

(ii) Let p € SpecR, where SpecR is the set of prime ideals in R. Then S = R \ p is a multiplicative
set. Consider (R \ p)~'R = Ry. For example,

Z)={3|abez 3tb}
3.3 Functoriality

Proposition. Let M be an R-module and S C R be a multiplicative set. Then there is an
isomorphism of S~!R-modules

STIRQr M — S™'M

givenbyf@m - %

Thus the localisation of any module can be reduced to a tensor product with the localisation of a
ring.

Proof. Define the map S™'R x M — S~!M mapping (E, m) - %; this is bilinear and thus gives rise
to an R-linear map ¢ : ST'R ® M — S~'M with the desired action on pure tensors. One can check
that this is in fact S™!R-linear. Clearly ¢ is surjective by % Rm - % For injectivity, we first show
that every tensor

Z?@mies—lR@)RM
i i

is pure. We define

s=1Iss =11y
i

J#
hence

~ S
i

Zr_;®mi:Zsli®rimi22%®rimi:Z§®tirimi=%®Zti"'imi
i i i i
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as required. Now, it suffices to prove injectivity on pure tensors. If qo(% ® m) = %, then there exists
u € S such that
u(lm—-0s)=0 = um=0
Thus
1®m=1®m=i®um=i(X)O:O
s us us us

as required. O
The map S~'R ® (—) acts on modules and on morphisms. The map S~!(—) acts on modules, and can

be extended to act on morphisms in the following way. If f : N — N’ is R-linear, we produce the
commutative diagram

ide—
SR @p N %8 s-1p @, N
STIN —————— STIN'
s

with action

TN - ® f(n)

1 1

Sk o

N

Then the functor S™!R ®5 (—) is naturally isomorphic to the functor S7}(-).

Remark. If A is an R-algebra, then we have an S~!R-linear isomorphism S™'R ® A = S~1A; this is
also an isomorphism of S~!R-algebras.

Lemma. Let M be an S~1R-module. Treating M as an R-module, we can define S~1M. Then,
S™IM ~ M

as ST'R-modules, mapping % - %m.

Equivalently, M ~ S™1R ®z M as S"!R-modules, mapping m — % ® m.

Proof. The localisation map M — S~'!M maps m ~ ? This is S~'R-linear, and surjective as Ime
N

2. To show injectivity, note that % = % implies there exists u € S with um = 0. Multiplying by Las

S u

M is an S~'R-module we obtain m = 0 as required. O

3.4 Universal property for modules

Recall that if U has multiplicative closure S,

Homgi,o(S™'R, B) = {p € Homg;yo(R, B) | (U) C B*}
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If M is a fixed R-module and L is an S~!R-module, we have
Hompgz(M, L) ~ Homg-1x(S™'M, L)

Proposition. Let M be an R-module and L be an S~'R-module. Let f : M — L be R-linear.
Then there exists a unique S~!R-linear map h : S™'M — L such that f = hoig-1;.

M EM g1y

\:h
f v
L

As usual with universal properties, this characterises S~'M uniquely up to unique isomorphism.

Proof. We use the natural isomorphism between S~!(=) and S™'R ®g (—). After applying this, we
have a map

t: M- STIR®g M, m»—>%®m
Let f : M — L be R-linear, and define
h=idg-1g®f : STTRr M — ST'RQR L

Note that STIR ® r L ~ L, so we can consider i as mapping to L, with action

h(Z@m) =< fm)

s

Uniqueness of h follows from the fact that {1 ® m},,,, generate ST'R®gM as an S~'R-module. [
3.5 Exactness

Proposition. The functor S~!(-) is exact. More explicitly, if

Aty p 2y

is an exact sequence of R-modules, then

-1 -1
s-1a Sy g-1p 578 o1

is an exact sequence of S"!R-modules.

Proof. First,
(S7'g) o (s ) =5 (gof)=5"0=0

soim S~!f C ker S~'g. Now suppose b € ker S1g,s0 gb) _ %. Hence there exists u € S such that
N

N
ug(b) = 0. As g is R-linear and u € R, we have g(ub) = 0. By exactness, ub € kerg = im f. Thus
there exists a € A such that f(a) = ub. Hence,

b_ub _fl@) . a
= w = w =S G)
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In particular, STIR is a flat R-module, so for example Q is a flat Z-module.

Remark. Suppose N C M are R-modules, and ¢t : N — M is the inclusion map. Then applying the

localisation, the map S~'t : STIN — S~!M given by 2w Disstill injective. Note that the similar
S N

result for tensor products fails.

Proposition. Let M be an R-module and N, P be submodules of M. Then,
(i) STIIN+P)=S"'N+S71p;
(ii)) STY(NNnP)=S"INNnS~'P;
-1
(iii) S M/S‘lN = S‘l(M/N) given by % +S7 N

m+N

N

Parts (i) and (ii) rely on a slight abuse of notation, thinking of S™!N as a submodule of S~*M. Due to
the above remark, this should not cause confusion.

Proof. Part (i). Note that

BEP_ i PesiNtstp
S S S

and
n +£ _ Sn+ S1p

eSTI(IN+P)
S1 % 5182

Part (ii). The forward inclusion is clear. Conversely, suppose x € STINNS™'P,sox = — = £

S1 S ’
Hence, there exists u € S such that us,n = us;p = w. Note us,n € Nand us;p € P,sow € NNP.

Now,
’ n usn w
X=——=—= —

= €STI(NNnP)
S; U818y US;S,

Part (iii). Consider the short exact sequence

0 N ‘s M I3 My, 50

~

Applying the exact functor S~1(—), we obtain the short exact sequence

0 — s7IN S sy SR si(Ma) 3 o

Thus
(SW)(STIN) =S INC S~ M
and N
1 (my_m
sm(T) = —
giving the isomorphism as required. O

Proposition. Let M, N be R-modules. Then

STIM ®g-1g STIN = S~I{(M ®x N)
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Proof. We have already proven that
(ST'R® M) ®s-1g (ST'R®r N) ~ ST'R®g (M ®& N)

giving the result as required. O

Example. Let p be a prime ideal in R. Then by setting S = R \ p,

M, ®g, Np ~ (M Qg Ny

3.6 Extension and contraction of ideals

If f : A — Bisaring homomorphism and b is an ideal in B, the preimage f~!(b) = b¢ is an ideal
in A, called its contraction. If a is an ideal in A, we can generate an ideal (f(a)) = a® in B, called its
extension. We show on the first example sheet that for any ring homomorphism f : A — B, there is
a bijection

{contracted ideals of A} < {extended ideals of B}
noting that the contracted ideals are those ideals with a = a®, and the extended ideals are those
ideals with b = b, where the bijection maps a — a¢ and b¢ < b.
We now study the special case where f : R — S~!R is the localisation map of a ring, given by r — g
In this case, the extension of an ideal is written S~'a = a®. We claim that

a
ae:{§|aea,ses}

Indeed, a¢ is generated by {% ) ae a}, so a® must contain {g ( a€EaseS }, but this is already an ideal.
We also claim that
aeC=U(a 18); (a:s)={reR|rs€a}
seS
Indeed, forr € Uses(a : 5),wehavers = ain R for some s € Sand a € a, so ? = % giving { = g
sor € a% asrequired. In the other direction, if r € a%¢, then % = g for some s € Sand a € a, so
there exists u € S such that rus = ua € a,sor € (a : us) as required.

Now, let b be an ideal of S~1R. Then
r
C — —_
b¢ = {r € R) T € b}
We claim that b = b, so all ideals in S~IR are extended. Note that the inclusion b%¢ C b holds for

. . . . . r r r
any pair of rings. For the reverse inclusion, consider - € b, so T € b. Hence r € b, so 1€ b, thus
N

L € b as b€ is an ideal in S~1R.
S

Proposition. Consider the localisation map R — S™!R given by r — f

(i) Every ideal of S~!R is extended.
(ii) Anideal a of Ris contracted if and only if the image of S in R/a contains no zero divisors.
(iii) a¢ = S~!Rifand onlyifan S # @.
(iv) There is a bijection
{p € SpecR|pn S = &} « Spec SR
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given by p — p¢, ¢ < q.

Proof. Part (i). Follows from the fact that b = b for all ideals b in S™'R.

Part (ii). a is contracted if and only if a®® C a, because the reverse inclusion always holds. This
happens if and only if

U(a:s)ga

SES

which occurs if and only if
VreR,(SrNa# Q@ = re€a)

VreR,(0+a€Sr+a) = r+a=0+a)

which in turn occurs if and only if the image of S in R/a contains no zero divisors.

Part (iii). Suppose anS # @, soletx € an S. Then 2 ea%s0a® = (1) = SR Conversely, if
X

a¢ = S~IR, then % € af, so % = 2 forsome a € a, s € S. Therefore there exists u € S such that
S

us=ua € Sna.

Part (iv). Consider the contraction map SpecS™'R — {p € SpecR | pn S = @} given by q — ¢°.

We show this is well-defined. In general, a contraction of a prime ideal is always prime. Further,

p € SpecR is contracted if and only if the image of S in R/p contains no zero divisors, but R/p isan

integral domain, so its only zero divisor is zero itself. So this condition is equivalent to the condition
pNS = @. In particular, {p € SpecR | p NS = @} is precisely the set of contracted prime ideals of R.
The map is injective, since if ¢ € Spec S7!R, then q% = q.

In the other direction, for p € SpecR such that p N S = @, it must be contracted, so p*¢ = p. It
-1
therefore remains to show that p® is a prime ideal. We want to show that S R/pe is an integral
-1
domain. We have that p® # S~!R by (iii), so S R/pe is not the zero ring, so it suffices to show that
-1
this quotient has no zero divisors. To show this, we embed S R/pe in the field FF(R/p).

Consider the composite map

R - R/p - FF(R/p)
which is a surjection followed by an injection. This has the property that all elements of S are mapped
to units, because S N p = @. By the universal property of the localisation, we have a map

r+p
sS+Dp

p:STR—~FF(R4): e

It suffices to show that ker ¢ = p®, then the result holds by the isomorphism theorem. Let L € ker @,
1 S
r+p _ 0. R . < (R S . . R L
0 _s+p =7 in FF ( /p). Observe thatim¢p C S ( /p), where S is the image of S in /p. Restricting

—1
the range, we can consider ¢ as a map from S~'Rto S (R/p). So go(f) = ? implies that there exists
S
ur

u+p € Ssuch that (u+ p)(r + p) = 0,s0 ur + p = 0. In particular, u € S and ur € p. Hence - = —
N

us
where ur € pand us € S, so - € p°.
N

For the other direction, take x € p®, so x = 2 for p € p,s € S. Then ¢(x) = % = 0,80 x €
S S
ker . O
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It is not true in general that the extensions of prime ideals are prime.

Definition. If is an ideal in R, the radical of I is the ideal

\ﬁ:{rERlEInZl,r”eI}

Proposition. Let I be an ideal in a ring R. Then

Vi= (] v

ICpeSpecR

Proof. Letx € V/I. Then x" € I for some n > 1. For every p € SpecR,ifI C p,thenx" € p,sox € p.
Conversely, suppose x" ¢ I for alln > 1. As I # R, we have R/I # 0. Let x be the image of x in R/I,

and consider .
Ba)e="n21} (*1)

This is not the zero ring, because x" ¢ I for all n > 1. Therefore, (R/I); has a prime ideal, as it

contains a maximal ideal. By the bijection described in part (iv) of the previous result, this prime
ideal corresponds to a prime ideal of R/I that avoids x. This in turn corresponds to a prime ideal
p € SpecR that contains I and avoids x. Hence x & () IcpespecR P- O

3.7 Local properties

Definition. A ring R is local if it has exactly one maximal ideal.

We write mSpec R for the set of maximal ideals of R.

Example. Let p € SpecR. Then there is a bijection between the prime ideals of R contained within
b to Spec Ry, mapping n — nR, and q° < q. Hence, all prime ideals of Ry, are contained in p® = pRy,.
Thus (Ry, pRy) is a local ring.

Example. Recall that
a
Z) :{E)a,bez, 2+b}

This ring is local, and the unique maximal ideal is
(Z)Z(z) = {2?(1 ‘ a,bez 24 b}
Proposition. Let M be an R-module. The following are equivalent.
(i) M is the zero module;

(i) M), is the zero module for all prime ideals p € SpecR;
(iii) My, is the zero module for all maximal ideals m € mSpecR.

Informally, for modules, being zero is a local property.
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Proof. First, note that (i) implies (ii) and (ii) implies (iii). We show that (iii) implies (i). Suppose that
M is not the zero module, so let m € M be a nonzero element. Consider Anng(m) = {r € R | rm = 0}.
This is an ideal of R, but is a proper ideal because 1 ¢ Anng(m). Let m be a maximal ideal of R

containing Anng(m). Now, ? € M,, = 0. Thus, ? = %, so um = 0 for some u € R\ m. But then
u ¢ Anng(m), giving a contradiction. O

Proposition. Let f : M — N be an R-linear map. The following are equivalent.
(i) f isinjective;
(i) fy : My — N, is injective for every prime ideal p € SpecR;
(iii) fm : My — Ny, is injective for every maximal ideal m € mSpecR.

The same result holds for surjectivity.

Proof. The fact that (i) implies (ii) follows directly from the fact that localisation at p is an exact
functor. Clearly (ii) implies (iii). Suppose that f;; is injective for each m € mSpec R. We have the
following exact sequence.

0 — kerf —> M L3 N

As (—)y is exact, the sequence

0 — (ker i My -1 N,

~

is exact. But by assumption, (ker ), = ker(fy) = 0. So (ker f),, = 0 for all maximal ideals
m € mSpecR, so ker f = 0. O

Proposition. Let M be an R-module. The following are equivalent.
(i) M isa flat R-module;
(ii) M, is aflat R,-module for every prime ideal p € SpecR;
(iii) My, is a flat R,,-module for every maximal ideal m € mSpecR.

Proof. (i) implies (ii). Note that M, ~ Ry, g M as Ry-modules, by extension of scalars. Since exten-
sion of scalars preserves flatness, M, p is flat.

Clearly (ii) implies (iii).
(iii) implies (i). Let f : N — P be an R-linear injective map. Let m € mSpecR. Then f;;; : Ny, — By,

is injective by the previous proposition. Note that the following diagram commutes.

S ®idpy,

N ®r,, My ———> Fn ®r,, M

(N ®r M)y W (P ®gr M),

Hence (f ® idps)y, is injective. Since this holds for each m € mSpecR, the map f ® id,, must be
injective, as required. U
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Example. An R-module M is locally free if My, is a free Ry,-module for every prime ideal p € SpecR.
Consider R = C ® C. Then

SpecR={pXC|peSpecC}U{C X p|p € SpecC} = {C x (0),(0) x C}

The map C X C - C given by (a,b) — b sends (C x C) \ C X (0) to units. Thus, by the universal
property of the localisation, we have a map

(a,b) b

(C X C)exo) = G ©d) g

This is clearly surjective, and one can check that this is also injective. Thus (C X C)¢cx() =~ Cisa
field. Similarly, (C X C))x¢ is a field. So for every C X C-module M and prime ideal p € Spec(CxC),
the module Mp is a C-vector space, so is free. Thus every module over C X C is locally free, but not
every module over C X C is free. For example, take M = C X {0} as a C X C-module. One can show
that M is not the zero module, and not free of rank at least 1, so cannot be free.

3.8 Localisations as quotients

Let U C R, and let S C R be its multiplicative closure. We can define
RU = R[{Tu}MEU]/IU’ IU = ({uTu —_ I}MEU)

We claim that R;; = S™'R as rings, and also as R-algebras. Writing % and T,, to be the images of these
elements in Ry, the isomorphism maps

— 1
T, a; rTy, - Ty, + 1y <

Uy ... Uy

This is because Ry has the universal property of S™!R. Indeed, for any f : R — A mapping U to
units, there is a unique h making the following diagram commute.

R —> Ry
|

N
A

Note that A is an R-algebra via f, so the diagram commutes if and only if 4 is an R-algebra homo-
morphism. We have

HomR-algebra(RUyA) = {§0 tU—-A | f(u)go(u) = 1}
But the the right hand side is a singleton.

Example. Let x € R, and consider Ry = Ry x »2,. ..} Here,
~ RIT
Ry = [ ]/(xT -1)

4 Integrality, finiteness, and finite generation

4.1 Nakayama’s lemma
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Proposition (Cayley-Hamilton theorem). Let M be a finitely generated R-module, and let
f : M — M be an R-linear endomorphism. Let a be an ideal in R such that f(M) C aM.
Then, we have an equality in Endy M

frtafil bty =0 fT=fouof
r times

where q; € a.
Proof. Let M = spang {my, ..., m,},so aM = span_ {m, ..., m,}. Then

(f(n’h)) (ml)
=P 5 Pe Mn)(n(a)
f(mn) My

Let p : R - End M be the structure ring homomorphism of M as an R-module. Then we can define
R[T] - EndM by T — f, making M into an R[T]-module. Hence,

-0

m;
Q( : )=0; Q=TI,—P

my

Thus

Multiplying by the adjugate matrix adj Q on the left on both sides,

my
(detQ)( : )=0
my

In particular, (det Q)m = 0 forall m € M, as the m; generate M. Hence, m — (det Q)m = (det Q)|,_ ¥
is 0 in Endg M. Finally, note that det Q is a monic polynomial, and all other coefficients lie in a. [

Corollary. Let M be a finitely generated R-module, and let a be an ideal in R. If aM = M,
then there exists a € a such that am = m for all m € M.

Proof. Apply the Cayley-Hamilton theorem with f = idy,;. We obtain a polynomial
(1 +a;+ -+ an)idM =0
Take a = —(a; + -+ + ap). O

Definition. The Jacobson radical of a ring R, denoted J(R), is the intersection of all maximal
ideals of R.

Example. (i) If (R, m)isalocal ring, then J(R) = m.
(i) J(2) = {o}.
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Proposition. Let x € R. Then x € J(R) if and only if 1 — xy is a unit for every y € R.

Proof. First, let x € J(R), and suppose y € R is such that 1 — xy is not a unit. Then (1 — xy) is a
proper ideal, so it is contained in a maximal ideal m. But as x € J(R), we must have x € m, giving
1=1-xy+ xy € m, contradicting that m is a maximal ideal.

Now suppose x & J(R), so there is a maximal ideal m such that x ¢ m. Then m + (x) = R as
m is maximal. In particular, there exists t € m and y € R such that t + xy = 1, or equivalently,
1 —xy =t € m. Note that ¢ cannot be a unit, because it is contained in a proper ideal. O

Proposition (Nakayama’s lemma). Let M be a finitely generated R-module, and let a C J(R)
be an ideal of R such that aM = M. Then M = 0.

This lemma is more useful when J(R) is large, so is particularly useful when applied to local rings.

Proof. By the above corollary, there exists a € a such that am = m for all m € M, or equivalently,
(1 — a)m = 0. By assumption, a € J(R), so 1 — a is a unit in R. Hence m = 0. O

Corollary. Let M be a finitely generated R-module, and let N C M be a submodule. Let
a C J(R) be an ideal in R such that N + aM = M. Then N = M.

This can be applied to find generating sets for M.

Proof. Note that
a(M/N) _ (aM + N)/N — M/N

o) M/N = 0 by Nakayama’s lemma. O
4.2 Integral and finite extensions

Definition. Let A be an R-algebra, and let x € A. Then x is integral over R if there exists a
monic polynomial f € R[T] such that f(x) = 0.

Example. (i) If R = kis a field, then x is integral over k if and only if x is algebraic over k.
(ii) We will prove later that

(a) the Z-integral elements of Q are Z;

(b) the Z-integral elements of Q[\/E] are Z[\/E];

(c) the Z-integral elements of Q[\/g] are Z[%g] 2 Z[\/g]

Definition. Let M be an R-module. We say that M is faithful if the structure homomorphism
p : R — EndM is injective. Equivalently, for every nonzero ring element r, there exists
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m € M such that rm # 0.

Example. Let R C A be rings, and let A be an R-module in the natural way. Then A is a faithful
R-module, asifr # 0, thenrly =r # 0.

Proposition. Let R C A be rings and x € A, and consider A as an R[x]-module. Then x is
integral over R if and only if there exists M C A such that

(i) M is a faithful R[x]-module; and

(ii) M is finitely generated as an R-module.

Condition (i) is that M is an R-submodule of A, xM C M, and M is faithful over R[x].

Proof. First, assume conditions (i) and (ii) hold. We have an R-linear map f : M — M given by
multiplication by x, as xM C M. As M is a finitely generated R-module, we can apply the Cayley-
Hamilton theorem to find

ff+nrnfft+.+rf°=0; r,eRrR

in Endp M. Then, evaluating at m € M,
X" +rx" 1+ 4+, xOm =0
As this holds for all m, and M is a faithful R[x]-module, we must have
X"+ x4+ x°=0

Thus x is integral over R.

Now suppose x is integral over R. Then
X" +rx" 14+ 15 x°=0
for somery, ..., 1, € R. We define
M = spang {xo, ..., X"}
This is finitely generated, and satisfies xM C M. M is faithful over R[x] as it contains x° = 1. O
Definition. Let A be an R-algebra. Then A is

(i) integral over R, if all of its elements are integral over R;
(ii) finite over R, if A is finitely generated as an R-module.

Proposition. Let A be an R-algebra. Then the following are equivalent.
(i) Ais afinitely generated R-algebra and is integral over R;
(ii) A is generated as an R-algebra by a finite set of integral elements;
(iii) A is finite over R.

44



Proof. (i) implies (ii). The generators for A are integral.

(ii) implies (iii). Suppose A is generated by «, ..., &, as an R-algebra, and the «; are integral over R.
As a; is integral,
at + r,-’loc?"_1 +otra) =0

nij—1

njq. . .
Hence «;* lies in the R-linear span of {a?, s O

}. Thus, every element is an R-linear combination

of products of the form oc‘l?1 ...a which in turn lies in the R-linear span of products of the same
form where all e; are less than the corresponding n;. This is a finite set, so A is finitely generated as
an R-module.

(iii) implies (i). As A is finitely generated as an R-module, it must be finitely generated as an R-algebra.
Let @ € A; we show « is integral over R. Let p : R — A be the structure homomorphism of A as an
R-algebra. Then p(R) C A, and consider (p(R))[ct] C A. Now, A is a (o(R))[a]-module, and is faithful
because 14 € A. As A is a finitely generated p(R)-module, the previous proposition shows that « is
p(R)-integral. Equivalently, « is R-integral. O

Proposition. Let A be an R-algebra and let O be the set of elements of A that are integral
over R. Then O is an R-subalgebra of A.

Proof. Let x,y € O. Then {x, y} is a finite set of R-integral elements, so the set generates an integral
R-subalgebra of A. Hence x + y, xy lie in this subalgebra, and so they are integral. O

Proposition. Let A C B C C be rings. Then,
(i) if C is finite over B and B is finite over A, then C is finite over A4;
(ii) if C is integral over B and B is integral over A, then C is integral over A.

Proof. Part (i). Suppose that

C = spang {vis-eesvnly B= span , {B1s -5 Be}

Then
C =span, {y;B; |i<n,j<¢}

Part (ii). Let c € C, so f(c) = 0 for
f(Ty=T"+b;T" 1 +--- +b,T° € B[T]

Then f € A'[T], where A" = A[by, ..., b,]. The inclusion A C A’ is generated as an A-algebra by
finitely many integral elements. Similarly, A" C A’[c] is generated as an A-algebra by ¢, which is
integral over A" as f € A'[T]. By the previous result, both extensions are finite. Then, by part (i),
A C A'[c] is finite, so c is integral over A. O
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4.3 Integral closure

Definition. Let A C B be rings. The integral closure of A in B is the set A of elements of B
that are integral over A, which is an A-algebra. We say that A is integrally closed in Bif A = A.

Definition. Let A be an integral domain. In this case, the integral closure of A is the integral
closure of A in its field of fractions FF(A). We say that A is integrally closed if it is integrally
closed in its field of fractions.

Example. (i) Z[\/g] is not integrally closed, because a = 1+2\E S FF(Z[\/E]) = @[\/g], and
a’ —a—1=0soitis Z[\/g]-integral.
(ii) Zis integrally closed.
(iii) Ifkisafield, k[T, ..., T, ] are integrally closed.

Examples (ii) and (iii) are special cases of the following result.

Proposition. Let A be a unique factorisation domain. Then A is integrally closed.

Proof. Let x € FF(A) \ A, and write x = % with a € A,b € A\ {0}. As A is a unique factorisation
domain, we can assume there is a prime p such that p | b and p } a. If x is integral over A, then

a n a n—1 a 0
(5) +al(g) +-+a(g) =0
Multiplying by b",
a" = —b(a;bpa™ ! + -+ + a,b"1a%)
But as p | b, we must have p | a”, so p | a, which is a contradiction. O

Lemma. Let A C B be rings, and let A be the integral closure of A in B. Then A is integrally
closed in B.

Taking the integral closure is an idempotent operation.

Proof. Let x € B be integral over A. Then, we have
ACACA[x]

The first extension is integral by definition, and the second is integral by the above proposition, as x

is integral over A. By transitivity of integrality, A[x] is integral over A, so in particular, x is integral
over A. Thus x € A. O

Proposition. Let A C B be rings.
(i) if B is integral over A and b is an ideal in B, then B/h is integral over A/bc;
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(ii) if Bis integral over A and S C A is a multiplicative set, then S™'B is integral over S™14;
(iii) if A is the integral closure of A in Band S C A is a multiplicative set, then S~'4 is the
integral closure of S~'A in S™!B, s0 S—1A = S—A.

The proofs follow directly from the definitions.

Lemma. Let A C B be an integral extension of rings. Then
(i) AnB* = A%;
(ii) if A, B are integral domains, then A is a field if and only if B is a field.

Proof. Part (i). One inclusion is clear: A* C A N B*. Suppose a € A and a is a unit in B with inverse
b € B; we show that b € A. As b is integral over A,
b"+a;b" 1+ +a,b®=0; a, €A
Multiplying by a1,
b+ay+aal+--+aa*1=0
€A

Hence b must lie in A.
Part (ii). Suppose B is a field. Then
A*=AnB\{0}) =A\{0}

Hence A is a field. Conversely, suppose A is a field. Let b € B be a nonzero element; we want to show
that b is a unit in B. As b is integral over A,

b"+a;b" 1+ +a,b®=0; aq, €A
Let n be minimal with this property. Then

b1+ ab"2 + .- +a,_1b°) = —q,
A

Note that b # 0 by assumption, and A # 0 by minimality. As Bis an integral domain, a,, # 0. Because
A is a field, a,, is invertible. Thus

b(—a;'A)=1 = b € BX

Corollary. Let A C B be an integral extension of rings, and let q be a prime ideal in B. Then
q is a maximal ideal of B if and only if it ¢ = q N A is a maximal ideal in A.

Proof. We have an embedding of rings
A B
ZqnA” g

which is an integral extension of integral domains. By the previous result, one is a field if and only if
the other is, so ¢ N A is maximal in A if and only if q is maximal in B. O

4.4 Noether normalisation
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Definition. Let A be a k-algebra, and let x;,...,x, € A. We say that x;,...,X, are
k-algebraically independent if for every nonzero polynomial p € k[Ty,...,T,], we have
p(xy,...,%,) # 0. Equivalently, the k-algebra homomorphism k[T, ..., T,,] — A given by
T; — x; is injective.

Theorem (Noether’s normalisation theorem). Let k be a field, and let A # 0 be a finitely
generated k-algebra. Then there exist x;, ..., Xx,, € A which are k-algebraically independent
and A is finite over A’ = k[x, ..., X, ].

We first present an example of the method used in the proof.
Example. Let A = k[T, T7!] ~ k[X, Y]/(XY 1) We claim that k[T] C k[T, T~!] is not a finite
extension. Indeed, suppose it were finite. Then T-1 would be integral over k[T], so

(T~')" € spany {(t=1°, ..., (T=H"1}

Multiplying by T", we have
1e spank[T](T", v 1)

which is false. However, if ¢ € k is a scalar which we will choose later,
A=k[T, T = k[T, T™! —cT]

We claim that k[T~! — ¢T] C A is a finite extension for most values of ¢, and in particular, for at least
one. First, note T™1T — 1 = 0, and then change variables to

(T =eD+eNT=1=0 = ¢ T+ T —cNT~ 1 =0
ck ek[T-1—cT] ek[T-1-cT]

Hence if ¢ # 0, T is integral over k[T~! — cT].

Proof. In this proof, we will assume k is infinite, although the theorem is true even if k if finite. We
will proceed by induction on the minimal number of generators of A as a k-algebra, which we will
denote m. For the case m = 0, we have A = k, so we can take A’ = k.

Suppose that A is generated as a k-algebra by x4, ..., x,,, € A. If xq, ..., X,,, are algebraically independ-
ent, then we can take A’ = A. Otherwise, we claim that there are ¢, ...,c,,—; € k such that x,, is
integral over

B =k[x] — ¢1Xms e s X1 — Crie1Xm]

Assuming that this holds, we have A = B[x,,], so B C A is a finite extension. But B is generated
by m — 1 elements, so by induction B contains z;, ..., z, € B which are k-algebraically independent,
and B is finite over A’ = k[z, ..., 2, ]. Then A is finite over A’ by transitivity of finiteness.

We now prove the claim. As xy, ..., X,, are not algebraically independent over k, there is a nonzero
polynomial f € k[Ty, ..., T, ] such that f(xy, ..., x,,) = 0. We want to show that x,, is integral over
B. Write f as the sum of its homogeneous parts, and let F be the part of highest degree deg f = r.
For scalars ¢y, ..., ¢,y—; € k which will be chosen later, we define

g(Tl, vee s Tm) = f(Tl + Cle, vee s Tm—l + Cm_le, Tm)
= F(cq, ... ,Cm, 1) T, + terms of lower degree in T,,, with coefficients in k[ Ty, ... , Tj—1 |
—_——
ek
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Note that
g(xl —C1Xms - s Xmp—1 — Cm—lxm’xm) = f(xl’ sxm) =0

but as a polynomial in T, over k[T, ..., T,,_1], it has degree at most r, and the coefficient of T;},
is F(cyy ... sCms 1). As F(Tq, ..., T,,) is a nonzero homogeneous polynomial, F(Ty, ..., T;,_;,1) is not
the zero polynomial. Thus there are ¢y, ..., ¢,,—; such that F(cq,...,¢,u—1,1) # 0 as k is an infinite
field. -

4.5 Hilbert’s Nullstellensatz

Proposition (Zariski’s lemma). Let k C L be fields where L is finitely generated as a k-
algebra. Then dimy, L is finite.

Proof. By Noether normalisation, we have
k C k[x1,...,x,] C L

where x, ..., X, are algebraically independent over k, and L is finite over k[x, ..., X,,]. As thisis an
integral extension of integral domains and L is a field, k[x, ..., x, ] must be a field. Butas k[x;, ..., x,]
is a polynomial algebra over k, the x; cannot be invertible. Hence n = 0, so k C L is finite as
required. O

Definition. Let k C Q be an extension of fields, where Q is algebraically closed.
(i) LetS C k[T, ..., T,]. We define
V(S) = {x € Q" | Vf € S, f(x) = 0}

Sets of this form are called k-algebraic subsets of Q.
(ii) Let X C Q". We define

IX) = {f € k[T}, ..., T,] | Vx € X, f(x) = 0}

Note that V(S) = V(I), where I is the ideal generated by S. Recall that for every finite field extension
k C L, there is a k-algebra embedding L — Q, because Q is algebraically closed.

Theorem. Leta C k[T}, ..., T,,] be an ideal. Then
(i) (weak Nullstellensatz) V(a) = @ if and only if 1 € a;
(ii) (strong Nullstellensatz) I(V(a)) = \/E.

Proof. Weak Nullstellensatz. Clearly if 1 € a then V(a) = @, as 1 # 0. Now suppose 1 ¢ a. Thereisa

maximal ideal m € mSpeck|[Ty, ..., T,] such that a C m. Then L = k[T, ., Tn]/m is a field, which
is finitely generated over k as an algebra. By Zariski’s lemma, this extension is finitely generated
as a module. Hence, there is an injective k-algebra homomorphism L — Q. Composing with the
quotient map, we obtain a k-algebra homomorphism ¢ : k[T, ..., T,,] = Q with kernel m. Now, let

x = (@(T1), ..., ¢(Tp)) € Q"
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We claim that this is a common solution to all polynomials in a. Note that for f € k[Ty, ..., T,,], we
have ¢(f) = f(x). Therefore, for all f € a, we have f € kergp so f(x) = p(f) = 0.

Strong Nullstellensatz. Let f € \/E. Then f¢ € a for some ¢ > 1, and therefore, f¢(x) = 0 for all
x € V(a). As Q is an integral domain, f(x) = 0 for all x € V(a). Hence f € I(V(a)).

Conversely, suppose f € I(V(a)), so for allx € V(a), we have f(x) = 0. We want to show that f € \/E.
To do this, we show that f is nilpotent in k[T, .. Tn]/a. It suffices to show that

k[T, ....T,], ) —o
( Ve a) I
Note that
(k[TI, s Tn]/a)? ~ k[T, ..., Ty, T,H_l]/b; b=a®+ (T f—1)
We will show that 1 € b, or equivalently by the weak Nullstellensatz, V(b) = @.
Suppose X = (X1, ..., X,41) € V(b) C Q"*. Define x, = (x1,...,X,), S0 X, € V(a). In particular,
f(xg) =0, as f € I(V(a)). Thus f(x) = 0. Now, (T, f — 1)(x) = =1 # 0, but (Tp,,,f — 1) € b,sox
is not a common solution to all polynomials in b, which is a contradiction. O
One can easily derive the weak Nullstellensatz from the strong Nullstellensatz.
Note that
M y/Va=+a.
(i) X CY C Q" then I(X) 2 I(Y).
(iii) IfS C T Ck[Ty, ..., T,], then V(S) 2 V(T).
(iv) IfS Ck[Ty, ..., T, ], then S C I(V(S)).
(v) If X C Q", then X C V(I(X)).
(vi) If X C Q" is an algebraic set, then X = V(I(X)), as X = V(a) gives
V(a) € V(I(V(a))) € V(a)

(vii) If X C Q", then I(X) is a radical ideal.

Proposition. Let k = Q be an algebraically closed field, and let n > 0. Then we have an
inclusion-reversing bijection

{k-algebraic subsets of Q"} « {radical ideals of k[ T}, ..., T, ]}
given by X — I(X) and V(a) < a.
Proof. We have already shown that I(X) is radical, and X = V(I(X)) if X is an algebraic set. For the

converse, leta C k[T, ..., T,,] be aradical ideal. Then I(V(a)) = \/E = a by the strong Nullstellensatz.
O

Remark. Every prime ideal p is radical, as x" € p implies x € p. In particular, every maximal ideal
is radical.
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Corollary. Let k = Q be an algebraically closed field. Then we have a bijection
Q" & mSpeck[Ty, ..., T,,]

given by x = (xq,...,%,) = (T} — X1, .ee, Ty — X3) = My

Proof. First, note that m, is a maximal ideal for every x, since it is the kernel of the map k[ T3, ..., T,,] >
Qgivenby T; - x;. Also, m, = I({x}). Indeed, the inclusion m, C I({x})is clear, and I({x}) is a proper
ideal of k[ Ty, ..., T},], so they must be equal by maximality. Note that V(m,) = {x}. Hence the claim
follows from the inclusion-reversing bijection, as maximal ideals correspond to minimal nonempty
kalgebraic sets. O

Definition. We say that X C Q" is irreducible if X cannot be expressed as the union of two
strictly smaller algebraic subsets.

Proposition. X C Q" is irreducible if and only if I(X) is prime.

4.6 Integrality over ideals

Definition. Let A C B be an extension of rings, and let a C A be an ideal. We say that x € B
is integral over a if
X"+ ax" P+ +a,x% =0

for some ay,...,a, € a. The integral closure of a in B is the set of elements of B that are
integral over a.

Proposition. Let A C B be an extension of rings, and let A be the integral closure of A in

B. Let a be an ideal of A. Then the integral closure of a in B is V aZ, the radical in A of the
extension of a to A.

Proof. If b € B is integral over a, then

b"+ab" 1t + - +a,b°=0; q;€a
In particular, b lies in A, and so all of its powers lie in A as A is a ring. Using the integrality equation
for b, we observe that b" € aZ, hence b € VaA.

Now, suppose b € VaA. Then b" € aA for some , so

m
b" = Zaixi; a€Ea,x; €A
i=1
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Define M = A[Xy, ..., X, ]. The generators lie in 4, so M is an A-algebra generated by finitely many
integral elements over A. Hence M is a finite A-algebra. Note that "M C aM by the equation for b",
thought of as an extension of A-modules.

Now define f : M — M by multiplication by b". This satisfies f(M) C aM, and f is A-linear. Thus
by the Cayley-Hamilton theorem,

flHofél4+ - 4+a,f°=0€EndgM; a;E€a

Evaluating thisat 14, € M,
b + o "¢V 4. 4 a,b® =0 € B

This is an integrality relation for b is a-integral. O

Hence, the integral closure of an ideal is closed under sums and products.

Corollary. Let A C B be an extension of rings, and let a be an ideal of A. Then b € B is
a-integral if and only if b is \/H-integral.

Proof. By the previous proposition, it suffices to show that

S\

The forwards inclusion is clear. For the other direction, it is a general fact that \ﬁe C \/F , SO

ﬁZQ\/5

Taking radicals on both sides,

Proposition. Let A be an integrally closed integral domain (in its field of fractions). Let
A C B be an extension of rings, let a be an ideal in A, and let b € B. The following are
equivalent:

(i) bisintegral over a;

(ii) b is algebraic over FF(A) with minimal polynomial over FF(A) of the form

Th+ ;T 1+ +a,T°=0; q;€+a
Note that there is an embedding FF(A) C FF(B).

Proof. Suppose (ii) holds. Then b is integral over y/a by definition. Thus, by the above corollary, b is
integral over a.

Now suppose (i) holds. We have an integrality equation

b"+ab" 1+ +a,b°=0; q;€a
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Define

h=T"+a,T" ' + - +a,T° € (FF(A))[T]
so h(b) = 0, so certainly b is algebraic over FF(A). Let f € (FF(A))[T] be the minimal polynomial
of b over FF(A). Let FF(A) C Q where Q is an algebraically closed field, so

¢
f= H(T—ocl-); a; =b,a; €Q
i=1

We want to show that the coefficients of f are in \/E. By the previous proposition, together with the
fact that A is integrally closed, the integral closure of a in FF(A) is y/a C A. So it suffices to show
that the coefficients of f lie in FF(A) and are integral over a. As f is the minimal polynomial over
FF(A), the first part holds by definition.

Expanding brackets in the equation for f, the coefficients of f are sums of products of the «;. The
proposition above implies that the integral closure of a in Q is closed under sums and products, so it
suffices to show that the «; are all integral over a. Asthe a; and b have the same minimal polynomial f
over FF(A), there is an isomorphism of FF(A)-algebras ¢; : FF(A)[b] — FF(A)[«;] that maps b to «;.
Then as h(b) = 0 and h € (FF(A))[T], we must have h(a;) = h(p;(b)) = ¢;(h(b)) = ¢;(0) =0. [

4.7 Cohen-Seidenberg theorems

If A C B is an extension of rings, the inclusion ¢ : A — B gives rise to (* : Spec B — Spec A given by
t*(q) = q N A. We will study the fibres of this induced map on spectra.

Proposition (incomparability). Let A C B be an integral extension, and let g, q" be prime
ideals of B. Suppose that q and q’ contract to the same prime ideal p = gqnA = q' N A of A,
and that g C ¢’. Then q = ¢'.

We will write By, for (A \ p)~1B, but this is not in general a ring.

Proof. Define S = A\ p. Then q and q’ are prime ideals of B not intersecting S. Hence q = (S~!q)¢,
where S71q = qBy is the extension of q to S~1B, due to the bijection

{p € SpecR | pnS =@}« SpecS~IR
It suffices to show that qB,, = q'By, as then they are the contractions of the same ideal. Note that
qBy NAp = STqnST!A=85"1(qnA)=S"1p= pA,

Similarly, q’Bp N Ap = pAp, which is a maximal ideal of Ap. As A C B s an integral extension,
Ay C By is also an integral extension. Recall that the contraction of a maximal ideal is maximal in
such an extension. Now, qB,, C q'By, are maximal ideals of By, so they must coincide. O

Proposition (lying over). Let A C B be an integral extension of rings, and let p € Spec A.
Then there is a prime ideal q € Spec B such that q N A = p. In other words, t* : SpecB —
Spec A is surjective.
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Proof. We have a commutative diagram

A— 3B

(N

Ay —> By =(A\ »)7'B

Let m be a maximal ideal of Bp. Then Ap Cc Bp is an integral extension, so m contracts to a maximal
ideal mNAy, of A,. But there is exactly one maximal ideal in A, namely pA,. Note that pAy, contracts
to p under the map A — Ay,

We have that m contracts to p under the map A — A, — By, but this is the same as the map A —
B — By, s0 f71(m) N A = p. Note that 7'(m) is a prime ideal, as required. O

Theorem (going up). Let A C B be an integral extension of rings. Let p; C p, be prime
ideals in A, and let q; € Spec B be a prime ideal such that q; N A = p,. Then there is a prime
ideal q, € Spec B such that q; C q,,and q, N A = p,.

q1 ——g—> 92
b
p1 —g>p2

Proof. We have an injection A/P1 - B/Ch given by a + p; — q + q;. This is an integral extension,

so by lying over, there is a prime ideal Qg/ql of B/ql that contracts to p;/pl in A/Pl' We claim that
q, N A = p,. In the diagram

A—5B

Lol

A s B
“ 7m
we obtain contractions of prime ideals

) a2

I 1

pZ/P1 é N

hence q, contracts to p,, as required. O

Theorem (going down). Let A C B be an integral extension of integral domains, and suppose
that A is integrally closed (in its field of fractions). Let p; 2 p, be prime ideals in A, and let
g, € Spec B be a prime ideal such that q; N A = p;. Then there is a prime ideal q, € Spec B
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such that q; 2 q,,and q, N A = p,.

q1 <—2—— 92
-
P1 (2_132

Proof. Consider the map A — B — B, . These maps are injective as B is an integral domain, so we
can think of these as inclusions of rings. We want to prove that there is a prime ideal n € Spec By,
such that n N A = p,. This suffices, as (n N B) N A = p, is a contraction of a prime ideal g, = n N B
of B contained in ¢q; to p, € SpecA. In other words, we want to show that p, is a contracted ideal
under the map A — By, . As contracted ideals are contracted from their own extension, it suffices to
show that (p,B,,) N A C p,, noting that the converse inclusion always holds.

Note that p,B,, = (p,B)B,,. Let f € (p;B)B;, N A, where y € p,Bands € B\ q;. AsA C Bisan

integral extension, the integral closure of p, in B is 4/ p,B. In particular, y is integral over p,. Since A
is integrally closed and y is integral over p,, the minimal polynomial of y € FF(B) over FF(A) has
the form

Yorwy e+ uy’ =0 w €pr=p,
We can write y = )/ - s, where y, s € FF(B) and Y € FF(A). Hence,
N

(o sl vl
Multiplying by <§)r,

1 r
"+ (;) ups 4+ (;) us® =0, w; €4p,=p,

This must be the same minimal polynomial of s as an element of FF(B) over FF(A). Ass € B, s is
integral over A, so the coefficients in this polynomial must lie in A.

S ! S r
(;) ul,...,<;> U, eA

Suppose f & p,. Then

But )
i s\
Uu; € py; (%) € A\ Py (;) u; €A

14
By primality, (i) u; € p,. As this holds for all i, the coefficients in the equation for s lie in p,, so

s"€PBCpB=(q:NA)BCqy

Hence s € q; by primality, giving a contradiction. O
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5 Primary decomposition

Definition. LetI be an ideal of R. I is
(i) primeif R/I # 0 and 0 is the only zero divisor of R/I;
(ii) radical if the only nilpotent element of R/I is zero;
(iii) primary if R/I # 0 and every zero divisor in R/I is nilpotent.

The prime ideals precisely those ideals that are both radical and primary. R is radical but not prime
or primary.
Example. (i) Let R = Z. The ideal (6) is radical but not primary, as R/(6) contains zero divisors
2,3 which are not nilpotent. The ideal (9) is primary but not radical.
(i) More generally, let R = Z and x # 0. Then (x) is prime if and only if x = 0 or |x]| is prime, and
(x) is radical if and only if x is squarefree. (x) is primary if and only if x = p" for some prime
pandn > 1.

Proposition. Let I be a proper ideal in R. Then
(i) IfIis primary, then p = \/7 is prime. We say I is p-primary.
(i) If \/7 is maximal, then I is primary.
(iii) If qq, ..., qy, are p-primary, then ﬂ?:l q; is also p-primary.
(iv) If I has a primary decomposition I = ﬂ?zl q; where the q; are primary, then I has a
minimal primary decomposition ﬂ:nzl r; where the \/r_J are distinct and no r; can be

dropped.
(v) IfRis Noetherian, then every proper ideal has a primary decomposition.

InZ,
(90) = (2)n (3N (5)

Primary decomposition therefore generalises prime factorisation. Note that for a prime ideal p, if p”
is primary, then p” is p-primary, because 4/ p" = p.

Example. (i) Not every primary ideal is a power of a prime ideal. For instance, consider R =
k[X,Y] and q = (X, Y?). We claim that this is primary. For instance, \/_ = (X,Y) is maximal,
so q is (X, Y)-primary. Alternatively,

KXY oy = MY

If f € k[Y] satisfies f € (Y?) soitis a zero divisor, then Y | f, so f 4+ (Y?) is nilpotent. Now, if
q = p", then
X.YV)=+/g=+p"=p

But
X,Y) 2 (X, Y?) 2 (X, Y)?

So q is not a power of p = (X,Y).
(ii) If p is prime, p" need not be primary. Let

r = kXY, Z]/(XY _7=kX.Y.Z p=(X.2)
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where X R 1_/,2 are the images of X, Y, Z under the quotient map. We claim that p is prime, but
p? is not primary. Indeed,

R, k[X,Y,Z ~ kX, Y,Z ~
Vo= Y2 2 xy - 2y = O Py gy = Y]
which is an integral domain, so p is prime. For the second part,
2 _ _ 2
V=X ,X-2,2)
— — —2
ThenX -Y =Z € p?, thatis,
X+P)Y +p) =0+
ButX + p? £ 0and Y + p? # 0. Hence Y + p? is a zero divisor in R/pz. Note that

k[X,Y,Z]

R/pZ =~ k[ /(XY,XZ,ZZ)

X, Y, Z ~
]/(XY - 7%, X%, XZ,7%) =

so Y + p? is not nilpotent.

Theorem. Let ﬂ:lzl q; be a minimal primary decomposition for an ideal I of R, and let p; =
\/4; for each i. Then
(i) (associated prime ideals of I') The prime ideals py, ..., p,, are determined only by I, even
though there may not be a unique minimal primary decomposition.

(ii) (isolated prime ideals of I) The minimal elements of {p;, ..., b, }, ordered by inclusion,
are exactly the minimal prime ideals of R that contain I. An associated prime ideal that
is not isolated is called embedded.

(iii) (isolated primary componentsofI)If p,, ..., p; are the isolated prime ideals of I for t < n,
then g, ..., q; are determined only by I.

Example. Let R = k[X,Y] and I = (X2,XY). We have primary decompositions

I=X)NX,Y)?=X)nX%Y)

Note that
VOO =X); VX Y)?2=(XY); JX2,Y)=(X,Y)

The associated primes of I are (X) and (X, Y). The isolated prime is (X) and the embedded prime is
(X, Y).

Remark. Letl = ﬂ:;l q; be a minimal primary decomposition with 1/q; = p;. Suppose p;, ..., p; are

the isolated primes. Then
n n n t
VI= ﬂ‘h‘= ﬂ\/E= ﬂpi= ﬂpi
i=1 i=1 i=1 i=1

This is a primary decomposition of \ﬁ , and one can check that this is minimal. All associated primes
in this decomposition are isolated. Going from I to \ﬁ , we only ‘remember’ the isolated primes.

Analogously, let R = k[T, ..., T,,], where k C C. Then V(I) = \/(\ﬁ) and I(V(I)) = \/f Hence,
taking the algebraic set of I ‘remembers’ the radical of I and nothing else.
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6 Direct and inverse limits

6.1 Limits and completions

Definition. Let € be a category.

(i) A directed set (I, <) is a partially ordered set such that for all a, b € I, there exists ¢ € I
such that a,b < c.

(ii) A direct system on a directed set (I, <) is a pair ((X;);er, (fij)i<j) where X; € ob € and
fij . Xi - )(j’ such that fii = 1Xi and fik = fjk o fl]

(iii) An inverse system on (I, <) is a pair ((Y ;);er, (h;j)i<j) where Y; € obCand h;; 1 YV; —
Yi! such that hii = 1Xi and hik = hl] o ik

Remark. An inverse system in C is the same as a direct system in C°P.
Example. LetI = (N, <).

() Let pbeaprime, andletX; = F,u. Recallthatifa | b, then there isan embedding ¢ : Fpa — Fpp

The collection of embeddings Fpa — Fpo is then given by x — (qo(x))Pc where0 <c<a-1.
The map fii41) * Fpir — Fpasr 18 defined to be one such embedding. A general embedding
fij is given by the composite f(j_y)j © -+ o f41)- This creates a direct system on I.

(i) LetY; = Z/piZ, and let h;; : Z/p iz = Z/piZ be the natural projection. This is an inverse
system on I.

Definition. Let (I, <) be a directed set.
(i) Let D = ((Xpier» (fij)i<;j) be a direct system on I. Then the direct limit of D is

lim X; = (g Xi) 3
where for x; € X; and x; € Xj,
xi~x; <= 3k >4, fi(x;) = fi(x;)
Equivalently, one can define ~ to be the smallest equivalence relation containing x; ~

fij(xi)-

(ii) Let E = ((Y;)ier> (hij)i<;) be an inverse system on I. Then the inverse limit of E is

Lil_nYi={YE1;[

14

Vi<jyi= hij(yj)}

Example. (i) [F?,lg = h_r)n Fpir is an algebraic closure of . First, [F?,Ig is algebraic over F,,. Indeed,

. !
for [x] € [F?,lg, we have x € ﬂfl’,! for some i > 1. Then xP" — x = 0. Hence

[x]P" - [x] = [x*" — x] = [0]

Further, Fy® is algebraically closed. Any polynomial h € Fy?[T] has coefficients in Fy®, so

in particular h arises from an element of i [T] for some i. This element splits under some
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Fp

splits in the direct limit Fy .

it = Fpe, so it splits under some Fpi — Fpe. Hence it splits under h;; @ Fpi — Fpji, soh

(ii) Define 7, = l(ir_nz/pi 7~ This is the ring of p-adic integers. For example, writing numbers in
base p =5,
1=1+45'721+521+57..)
—1=(4+5'7,44 457,444 + 537, ...)

In every position in such an expansion, we ‘expose’ another digit of the p-adic integer to the
left.

Definition. Let R be a ring, and let a be an ideal of R. Then the a-adic completion of R is
R= lim R/ i

where the inverse limit is taken over the directed system (N, <) with morphisms given by the

natural projections.

Example. (i) IfR =Zand a = (p), then R = Z,,.
(i) fR = k[T] and a = (T), then

R= 1(iLnk[T]/(Ti) = k[t]

Definition. Let M be an R-module, and let a be an ideal of R. Then the a-adic completion of
M is
o i M.
M = lim ™/ ipg
which is naturally an R-module.

We can make the following more general definition.

Definition. Let M be an R-module.
(i) A filtration of M is a sequence (M,,),>; of submodules of M such that My = M and
M, 2 M,,,, for each n.
(ii) The completion of M with respect to a filtration (My,),,>1 is lenM/Mn-

Theorem. Let R be a Noetherian ring, and let a be an ideal of R. Then,
(i) the a-adic completion R is Noetherian;
(ii) the functor R ®x (—) is exact;
(iii) if M is a finitely generated R-module, then the natural map R ® g M — M is an R-linear
isomorphism.

Thus a-adic completion is an exact functor from the category of finitely generated R-modules if R is
Noetherian.
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6.2 Graded rings and modules

Definition. A graded ringisaring A = @:;O A,, where each A,, is an additive subgroup of
A, such that A, A, C Apin.

Proposition. A is a subring of A.

Proof. 1t is clearly a subgroup closed under multiplication, so it suffices to check that it contains the
identity element of A. We have

m
o=y Yi€4
i=0

Forz, € A,
m
Zn = Z YiZn
i=0
z, is an element of A4,,, and each term y;z, is an element of A4,,,;. But since the sum is direct, we
must have z,, = yqz,, 50 z = ygz for all z € A. Hence y, € A, is the identity element. O

Remark. Each A,, is an Ap-module as AyA, C A,,.

Example. The polynomial ring in finitely many variables has a grading: k[T, ..., T,,,] = 69:::0 Ay
where A, is the set of homogeneous polynomials of degree n.

Definition. Let A = @:’:0 A, be a graded ring. A graded A-module is an A-module M =
EB:J:O M,, such that A,,M,, C M,,,,,,.

For a graded ring A, we define A, = @:ozl A, = ker(A » A,). This is an ideal of A, and 4/ A, =
Ap.

Proposition. Let A = @zo A, be a graded ring. Then the following are equivalent:
(i) A is Noetherian;
(ii) Ay is Noetherian and A is finitely generated as an Ay-algebra.

Proof. Hilbert’s basis theorem shows that (ii) implies (i). For the converse, A, is Noetherian as it is
isomorphic to a quotient of the Noetherian ring A. Note that A, is generated by the set of homogen-
eous elements of positive degree. By (i), A, is an ideal in a Noetherian ring so is generated by a finite
set {xy, ..., X}, and we can take each x; to be homogeneous, say, x; € Ay, where k; > 0. Let A’ be
the Ay-subalgebra of A generated by {x, ..., x;}; we want to show A" = A. It suffices to show that
A, C A’ for every n > 0, which we will show by induction. The case n = 0 is clear.

Letn > 0,andlety € A,. Note thaty € A, so

N
y=2rixi
i=1
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where r; € A and x; € Ay,. Applying the projection to A,
N
Y=Y, ax; @ € Ay,

i=1

where q; is the (n — k;) homogeneous part of r;. As k; is positive, the inductive hypothesis implies
that each a; can be written as a polynomial in Xy, ..., x; with coefficients in A, giving y € A’ as
required. O

Definition. Let a be an ideal of R, and let M be an R-module. Then a filtration (M,,),,> is
an a-filtration if aM,, € M,,,, for each n > 0. An a-filtration (M,,),,> is stable if there exists
ng > 0 such that aM,, = M, for all n > n,.

Example. (a"M),5, is a stable a-filtration of M.

Definition. Let a be an ideal in R. The associated graded ring is

G,(R) = @ an/an+1; a® =R

n>0
This is a ring by defining

(x +a™D)(y + a™t) = xy + o™ x € a”y € a™

Definition. Let M be an R-module, and let a be an ideal of R. Let (M,,),,>o be an a-filtration
of M. The associated graded module is

G0 = B,

n>0

This is a module over G,(R) by defining

(X +a™)(m + Mpyy) = Xm+ My oy

Proposition. Let R be a Noetherian ring, and let a be an ideal of R. Then
(i) the associated graded ring G,(R) is Noetherian; and
(ii) if M is a finitely generated R-module and (M,,),,> is a stable a-filtration of M, then the
associated graded module G(M) is a finitely generated G,(R)-module.

Proof. Part (i). Let R be Noetherian. Then leta = (xy, ..., Xy), and write X; for the image of x; in 9/ a2
Note that

_R a (12
GaR)="@®Y 2@ /3@

G,(R) is generated as an R/a-algebra by Xy, ..., X4, by taking sums and products. Note that R/a is
Noetherian, so G,(R) is Noetherian by Hilbert’s basis theorem.
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Part (ii). Let (M},),,>0 be a stable a-filtration of M. Then there exists ny such that for all n > ny, we
have M, ,, = a"M,, . Thus G(M) is generated as a G,(R)-module by

M(VM1 GBMVM2 & - GDM”Q/M

no+1

Each factor M, VMHI is a Noetherian R-module, as they are quotients of Noetherian modules, and are
annihilated by a. In particular, G(M) is a finitely generated G,(R)-module, say by x, ..., X;. O

Definition. Let M be an R-module. We say that filtrations (M,,), (My,) of M are equivalent if
there exists n, such that for all n > 0, we have M, ,, € M}, and My, C M,,.

Lemma. Letabeanideal ofR. Let M be an R-module, and let (M,,),,> be a stable a-filtration
of M. Then (M), is equivalent to (a" M), .

Proof. As (M,,),> is an a-filtration, for all n > 0, we have
M, D aM,_, 2 a?M,,_, D --- D a"M D a"t" M

For the other direction, as the filtration is stable, there exists n, such that for each n > n,, we have
aM,, = My, ,;. Then M, ,, = a"M,,, C a"M as required. O

6.3 Artin-Rees lemma

Definition. Let a be an ideal of R. Let M be an R-module, and let (M,,),,>( be an a-filtration

of M. Then we define
R =@ M =D,

n>0 n>0

Note that R* is a graded ring, as for x € a",y € a, we have xy € a"*. As (M), is an a-filtration,
M* is a graded R*-module. Indeed, for x € a” and m € M,, we have xm € M, , as required.

If R is Noetherian, the ideal a is finitely generated, say by X, ..., x,. Then R* is generated as an R-
algebra by x;, ..., x, by taking sums and products. By Hilbert’s basis theorem, R* is a Noetherian
ring.

Lemma. Let R be a Noetherian ring, and let a be an ideal of R. Let M be a finitely generated
R-module, and let (M,,),>( be an a-filtration of M. Then, the following are equivalent:

(i) M~ is finitely generated as an R*-module;

(ii) the a-filtration (M},),>¢ is stable.

Proof. First, note that each M,, is a finitely generated R-module. Indeed, R is a Noetherian ring and
M is finitely generated, so M is a Noetherian module, or equivalently, every submodule is finitely
generated. Now, consider

Mr*z=Mo®"'€BMn@aMn®02Mn®'“
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This is an R*-submodule of M*. Note that (M};),>¢ is an ascending chain of R*-submodules of M*,
and this chain stabilises if and only if the a-filtration (M,,),,>¢ is stable.

(1) implies (ii). As R is Noetherian, so is R* by the discussion above. By assumption, M* is finitely gen-
erated as a module over a Noetherian ring, so it is Noetherian. Hence the ascending chain (M;;),,>¢
stabilises, giving the result.

(ii) implies (i). Suppose (M,,),,>¢ is stable. Then (M},),,> stabilises at some ny > 0, so

M =M =M,
n>0

Now, note that M, & -+ & M, generatees M, as an R*-module. Each M,, is a finitely generated
R-module, so My @ --- & M,, is also finitely generated as an R-module. So these generators span
My, = M* as an R*-module, as required. O

Proposition (Artin-Rees). Let R be a Noetherian ring, and let a be an ideal of R. Let M be
a finitely generated R-module, and let (M,,),>, be a stable a-filtration of M. Then for any
submodule N < M, (N N M,,),,>0 is a stable a-filtration of N.

Thus, stable filtrations pass to submodules.

Proof. First, we show that (N N M,,),,> is indeed an a-filtration.
aNNM,)CNnaM, CNNM,,

Now, define

M =P M; N =POnM,)

n>0 n>0

Note that M* is an R*-submodule of N*. As R is Noetherian, so is R*. Then as (M},),,>¢ is stable, M*
is a finitely generated R*-module by the previous lemma. Thus M* is a Noetherian R*-module. Its
submodule N* is then finitely generated, so (N N M,,),,> is stable. O

7 Dimension theory
7.1 MMM
Definition. Let p be a prime ideal of R. The height of p, denoted ht(p), is
ht(p) = sup{d | po G P1 & - & Pa = P; p; € SpecR}
The (Krull) dimension of R is
dim R = sup {ht(p) | p € Spec R} = sup {ht(m) | m € mSpec R}
Remark. The height of a prime ideal p is the Krull dimension of the localisation R,. In particular,

dimR = sup{dimR,, | p € SpecR} = sup{dimR,, | m € mSpec R}

So the problem of computing dimension can be reduced to computing dimension of local rings.

63



Definition. Let I be a proper ideal of R. Then the height of I is

ht(I) = inf{ht(p) | I € p}

Proposition. Let A C B be an integral extension of rings. Then,
(i) dim A = dim B; and
(ii) if A, B are integral domains and k-algebras for some field k, they have the same tran-
scendence degree over k.

We prove part (i); the second part is not particularly relevant for this course.

Proof. First, we show that dim A < dim B. Consider a chain of prime ideals p, C --- C p4 in Spec A.
By the lying over theorem and the going up theorem, we obtain a chain of prime ideals g, C --- C qq4
in SpecB. As p; = q; N A and p; # p;,1, we must have q; # q;4;. So this produces a chain of length
d in B, as required.

Now consider a chain q C -+ C qg in Spec B. Contracting each ideal, we produce a chain p, C
-+ C pg in Spec A. Suppose that q; and ¢;,; contract to the same prime ideal p; in Spec A. Note that
q; € qi41, S0 by incomparability, they must be equal, but this is a contradiction. O

Remark. If A is a finitely generated k-algebra for some field k, then by Noether normalisation, we ob-

tain a k-algebraembedding k[T, ..., Ty] = A, and the extension isintegral. Thusdim A = dim k[T, ..., Ty].
One can show that dim k[T, ..., Ty] = d, and hence that the integer d obtained by Noether normal-
isation is uniquely determined by A and k.

7.2 Hilbert polynomials

LetA = @nzo A, be a Noetherian graded ring, so A is Noetherian and A is finitely generated as an

Ay-algebra. Now let M = € ., M,, be a finitely generated graded A-module. Then each M, is an
Ap-module.

n>0

We claim that M,, is finitely generated as an Aj-module. Indeed, M = span, {my, ..., m,}, and the m;
can be taken to be homogeneous, say, m; € M,,. Then

Mn = {alml + -+ am; | a; EAn_ri}
Let xy, ..., X5 generate A as an Ag-algebra, where x; € Ay, k; > 0. Then
S

1§i§t,ei20,2kiei=n—r,-

e e
M,, = span, [xll e Xt my
i=1

and the right-hand side is a finite set.

We will make the further assumption that A, is Artinian. Hence, each M,, is a finitely generated
module over a ring that is both Noetherian and Artinian, so each M,, is Noetherian and Artinian as
an Ag-module. Further, each M,, is of finite length ¢(M,,) < oo; it has a composition series of finite
length. Note that if Ay = k is a field, then ¢(M,,) = dim; M,,.
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Definition. Let A, M be as above. Then the Poincaré series of M is

P(M,T) = i o(M,)T" € Z[[T]

n=0

Theorem (Hilbert-Serre theorem). Let A be generated by X, ..., X as an Ay-module with
x; € Ay, for k; > 0. The Poincaré series P(M, T) is a rational function of the form

f(D)

m; f € Z[T]

Proof. For the base case s = 0, we must have A = A, so M is a finitely generated A,-module, say,
M =span, S where S is a finite subset of My @ --- @ M,,. Thus there exists n, such that M,,, = 0 for

all m > ng. In particular, P(M, T) is a polynomial.

For the inductive step, let
M=PM,; M,=0if¢ <0
nez
Let f : M, — M, be the homomorphism given by multiplication by x,;. We obtain the exact
sequence
f

0 > Kn > My > Mn+ks — Ln+ks —0

where K, = ker f and L., = coker f. ThenletK = (P, _, K, and L = B, _, L,. These are graded
A-modules, and K is a submodule of M. Note that K and L are annihilated by x;. Applying the length
function to the exact sequence, we obtain

O(Ky) — €(Mp) + €(Mp1i) = €(Lpyie,) = 0
Multiplying by T"+ks,
E(Myy i )T — T O(M)T™ = E(Liysie )T — THs 6(K)T"
Then, taking the sum over all integers,
P(M,T)—TksP(M, T) = (1 — T*s)P(M, T) = P(L, T) — T*¥sP(K, T)
By the inductive hypothesis,

AT, A
I —Tk)  [Iio (- Tk)

as required. O

(1 - Tks)P(M, T) =

In particular, this rational function is holomorphic almost everywhere, with potentially a pole of
some order at 1. Let d(M) be the order of the pole of P(M, T) at T = 1. One can show that if M # 0,
then d(M) > 0.
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Example. Let A = k[Ty,..., T,] = @,.,A, Where A, is the set of homogeneous polynomials of

degree n. Then A is generated as an A, = k-algebra by {Tj, ..., T;}. For this choice of generators,

k, = --- = ky = 1. The length of A, is dim; A,, = ("+s_1), which is a polynomial of degree s — 1 in n
n

over Q. The Poincaré series of A over itself is

-5

n>0

Proposition. If k; = --- = k; = 1, then there exists a Hilbert polynomial HPy; € Q[T] and
ng > 0 such that
6(M,,) = HPy(n)

for alln > n,. In addition, deg HPy; = d(M)—1 where d(M) is the order of the pole of P(M, T)
atT =1.

Proof. Letd = d(M) > 0. Then,

_ n_ S
P(M,T) = goe(Mn)T =dqopp fedrsm#o
Let
deg f
f= aTh arez
k=0
Note that

1w fj+d-1)
(1_T)d—2( j )T’

j=0

S ——
bj
Thus, for n > deg f,
deg f
o(My,) = 2 aiby_;
i=0
Note that b; is a polynomial in j over Q of degree d — 1 with leading coefficient —L_ Then 2(M,,)

(d-1"
is a polynomial p in n over Q for n > deg f. Then deg p < d — 1, and the coefficient of T4~ in p is

. 1 _ W
; WD T W-D!

#0
so the degree is exactly d — 1. O
7.3 Dimension theory of local Noetherian rings

Lemma. Let (4, m) be a Noetherian local ring. Then
(i) anideal q of A is m-primary if and only if there exists ¢ > 1 such that m! C q C m;
(ii) if q is m-primary, then A/q is Artinian.
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Proof. Part (i). Given an ideal q between m! and m, taking radicals we obtain
Vmt Cqfqcym

Hence \/_ = m and thus q is m-primary. Conversely, if q is m-primary, (\/ﬁ)t C g forsome t as A is
Noetherian, so m! C q C m as required.

Part (ii). (A/q, m/q) is a Noetherian local ring. If ¢ C q C m, then taking radicals,
m=4/qgCpCm

Hence p = m. In particular, the spectrum of A/q is the single ideal m/q. Thus its dimension is zero,
and so the quotient is Artinian. O

Theorem (dimension theorem). If A is a Noetherian local ring, then
dimA = 8(A) = d(Gy (A))

where 6(A) = min{8(q) | q C A is m-primary} and 6(q) is the minimal number of generators
of q, and where the right-hand side is the order of the pole at T = 1 of the rational function

equal to the Poincaré series
n
> o(™ e )T

n>0

of the associated graded ring.

Proof. We will show that § > d > dim > .
Let q be an m-primary ideal of A, generated by X, ... , X, where s = §(q). Then

GaA) =44 @V ® Buxa" /pnn

The first factor A/q is Artinian, and the images of x, ..., x; generate Gq (A)asan A/q—algebra, where
the x; are of degree 1. Then é(qn/qn“) < 0. From the theorem on Hilbert polynomials, €<qn/qn+1>

is a polynomial in n of degree at most 5(q) — 1, for sufficiently large n.

Fix some m-primary ideal q, such that 6(qy) = 8(A). We consider two special cases: q = q, and
q = m. For q, we have

a0 _
degé( O/q?1+1> <o -1

As
A n-—1 qi
o(Vap) = ;f( V)
we have
deg e(A/qg) < 8(A)
For m,

deg €(mn/mn+1) =d(Gr(A) -1
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and hence
deg €(4/un) = d(Gm)(A)

Now, there exists ¢ > 1 such that m’ C q, C m. Then
A A A
((Ywn) < o(Vp) < € en)

But all of these terms are eventually polynomial, and the degrees of the left-hand and right-hand
sides are the same, so we must have €(A/q(r)z) = €(A/mn).

Proposition. §(A) > d(Gy,)(A)

Proof.
5(4) = 8(q0) > deg €(4/yn) = deg £(*/yn) = d(Gu(4))

Proposition. If x € m is not a zero divisor, then
(G (Va) < A(Gn()) 1
This proposition allows us to prove results by induction on d.

Proof. We have a local ring (A/x A W A)' Then

d(Gm(A)) = deg €(A/mn)
and
i) = 08 A ) = des (V434
We want to show that
degé((‘mn + xA)/xA) < deg€(A/mn) 1

We have the short exact sequence

0 — (XA s A —— A 4 xa) — O

By the second isomorphism theorem,

(m" + xA)/mn ~ xA/(mn A xA)

Thus, by additivity of length,
A — (A A
g( 7mn +xA) = g( /m”) - "ﬂ(x /(m" nxA))
Note that (m™),,5 is a stable m-filtration of A, so (m" N xA),,>( is a stable m-filtration of the submod-

ule xA by the Artin-Rees lemma. Then (m" N xA),>, is equivalent to the m-filtration (m"xA),5.
This equivalence implies that there exists ny such that

Y mrxa)) < €% mremo axa)f A0V mn 0 xa) < 60 mremoxa)

Hence the polynomials have the same leading term, and so the degree of €(A/mn) must decrease. [
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Proposition. d(G,(A)) > dim A.
Proof. We can prove this by induction using the previous proposition. O

Proposition. dimA < §(A). That is, there exists an m-primary ideal q that is generated by
d = dim A elements.

Proof. As m is the unique maximal ideal, we must have ht(m) = d. Also, ht(p) < d for any prime
p # m. We will form an ideal q generated by d elements such that ht(q) > d. This suffices, as then
for every minimal prime ideal p of q, we must have ht(p) = d and thus p = m, giving /q = m so p
is m-primary as required.

Construct x, ..., X4 inductively such that ht(q;) > i where q; = (x;, ..., Xx;). For the base case, we take
qo = (0). For the inductive step, we assume that q;_; = (x, ..., x;_;) has already been constructed,
withi—1 < d and ht(q;_;) > i — 1. We claim that there are only finitely many prime ideals py, ..., p;
that contain q;_; and have height exactly i — 1. Indeed, ht(q;_;) > i—1, so each p; is a minimal prime
ideal of q;_;, and in a Noetherian ring, every ideal has only finitely many minimal primes. We know
thati —1 < d = ht(m), so m ¢ p; for all j. Therefore, m ¢ (J b by the prime avoidance lemma.

Take x; € m '\ Uj pj, and define q; = (xy, ..., X;_1, X;). Now, if p is a prime ideal that contains g;, as
p & {p1, .., P;}, we must have ht(p) > i as required. O

O

Corollary (Krull’s height theorem). Let A be a Noetherian ring, and let a = (x, ..., X;) be
an ideal of A. Let p be a minimal prime ideal of a. Then ht(p) < r.

Proof. First, we claim that , /aAy is the unique maximal ideal pA, of the localisation. Indeed, sup-
pose aA, C n € SpecAy. Contracting, we obtain a C (aA,)° C n° C p. But as p is a minimal prime
ideal of a, we must have n¢ = p. Extending, n® = p° = pAp, but n = n as required. Hence, \/Jp
is the intersection of the primes containing it, which is just pA,,.

As the radical is maximal, the ideal aA, is pA,-primary. Note that aA, = (? s ?) so by applying
the dimension theorem,
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