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1 Definitions and examples

1.1 Categories

Definition. A category C consists of
(i) a collection of objects ob €, denoted A, B, C, ...;
(ii) a collection of morphisms mor €, denoted f, g, h, ...;

(iii) two operations dom,cod : mor € — ob €, and we write f : A -> Bor A L B to state
that f is a morphism with domain A and codomain B;
(iv) anoperation A — 14 : A - A;
(V) a composition operation (f,g) — fg : domg — cod f, defined exactly when cod g =
dom f; satisfying
(vi) f14 = f and 14,g = g whenever the composites are defined; and
(vii) (fg)h = f(gh) whenever the composites are defined.

Remark. (i) The collections of objects and morphisms may be sets or classes in some set theory,
but our definitions are built to be interpretable in any system supporting first-order logic. If
ob € and mor C are sets, we call C a small category; otherwise we call it large.

(ii) We could formulate a definition of category with no mention of objects, since objects biject
with the identity morphisms. We will not take this approach here.

(iii) Note that we choose fg to mean ‘first g and then f’; this choice is a convention and the other
one may be adopted.

Example. (i) Set is the category where the objects are all of the sets, and the morphisms are all
of the functions between them, each of which is suitably tagged with an appropriate codomain.
This must be done because set-theoretic functions do not ‘remember’ their codomain: f(x) = x
as a function f : R > Ror R — C are equal sets.

(i) Gp is the category where the objects are all of the groups, and the morphisms are all of the
group homomorphisms.

(iii) Rng is the category where the objects are all of the rings, and the morphisms are all of the ring
homomorphisms.

(iv) For a field k, Vect, is the category where the objects are all of the k-vector spaces, and the
morphisms are all of the k-linear maps.

(v) Top is the category where the objects are all of the topological spaces, and the morphisms are
all of the continuous functions.

(vi) Met is the category where the objects are all of the metric spaces, and the morphisms are all
of the nonexpansive mappings, i.e. functions that do not increase the distance between points.
One could choose a different convention, for example by letting morphisms be arbitrary con-
tinuous functions.

(vii) Mfd is the category where the objects are all of the smooth manifolds, and the morphisms are
C* maps.

(viii) TopGp is the category where the objects are all of the topological groups, and the morphisms
are the continuous homomorphisms.



(ix) Htpy is the category where the objects are all of the topological spaces, and the morphisms are
equivalence classes of continuous functions under homotopy.

(x) More generally, if ~ is an equivalence relation on the morphisms of € such that f ~ g implies
dom f = domg and cod f = codg, and the relation is stable under composition so f ~ g
implies fh ~ gh and kf ~ kg, we call ~ a congruence. In this case, we can form the quo-
tient category C)/z, which has the same objects as C, but its objects are equivalence classes of
morphisms in € under =~.

(xi) Rel is the category where the objects are all of the sets, and the morphisms A — B are the
relations R C A X B, where composition is given by

SoR ={(a,c)| Ib € B,(a,b) € RA(b,c) € S}

Note that if R and S happen to be functions, o is the standard composition operator. Therefore,
Set is a subcategory of Rel.

(xii) Part is the category where the objects are all of the sets, and the morphisms A — B are the
partial functions A — B. This is a subcategory of Rel, and Set is a subcategory of Part.

(xiii) Given acategory C, we can construct its opposite category C°P, where the objects and morphisms
are the same asin €, but dom and cod are swapped. We also reverse composition in the opposite
category. This gives a duality principle: whenever a statement about categories is proven, a dual
statement follows from applying the statement to an opposite category.

xiv) A small category with one object * is a monoid, a group without inverses. In particular, eve

(xiv) A 11 category with bject * i id, a group without i In particul ry
group can be seen as a small category on a single object in which every morphism is an iso-
morphism, i.e. invertible.

(xv) A groupoid is a category in which every morphism is an isomorphism. For example, we can
construct the fundamental groupoid of a topological space X. Here, the objects correspond to
points x in X, and represent 77, (X, x). Morphisms x — y are homotopy classes of paths starting
at x and ending at y. Composition is path concatenation.

(xvi) A category with at most one morphism between any pair of objects is a preorder. The existence
of a morphism A — B corresponds to stating A < B in the preorder. In particular, a partially
ordered set (poset) is a small preorder in which the only isomorphisms are identity morphisms.

(xvii) For a field k, Mat, is the category where the objects are the natural numbers, and the morph-
isms n — p are the p X n matrices over k. Composition is multiplication of matrices. The
identity morphisms are the identity matrices.

1.2 Functors

F
Definition. Let C, D be categories. A functor F : ¢ — D consists of a map obC — ob D

and a map mor C i mor D, such that
(i) F(dom f) = dom Ff;
(ii) F(cod f) = cod Ff;
(iv) F(fg) = (Ff)(Fg) whenever fg is defined.



Example. (i) The forgetful functors Gp — Set, Rng — Set, Top — Set and so on forget that the
objects are structures and forget the conditions on morphisms. Similarly, there are forgetful
functors Rng — AbGp, Met — Top, TopGp — Top, TopGp — Gp.

(i) Any mapping f : A — UG from a set A to the underlying set of a group G extends uniquely to
a homomorphism FA — G, where FA is the free group on the set A. This can be made into a
functor F : Set — Gp: given f : A — B, the homomorphism Ff is the unique homomorph-

ism extending A i» B — FB. Given g : B — C, then F(gf) and (Fg)(Ff) both extend the
same mapping A — FC, so by the uniqueness property they are equal.

(iii) The power-set construction P : Set — Set is a functor. PA is the set of all subsets of A, and
given f : A — B, Pf is the map sending S to the image of S under f.

(iv) There is another power-set functor P* : Set”” — Set (or Set — Set’”). This has the same
object map, but given f : A — B, P* f maps S C B to its inverse image under f. A functor like
this that reverses the direction of arrows is sometimes called contravariant; functors which do
not are called covariant.

(v) The construction of dual spaces in linear algebra gives rise to a functor (—)* : Vectzp — Vecty.
V* is the space of linear maps V' — k,and alinearmap f : V — W givesriseto f* : W* —» V*
given by composition.

(vi) Cat is the category where the objects are the small categories and the morphisms are functors.
This is well-defined as functors have identities and compositions.

(vii) The assignment ¢ — C°P defines a (covariant) functor Cat — Cat.
(viii) A functor between monoids is a monoid homomorphism.

(ix) A functor between groups is a group homomorphism.

(x) A functor between posets is an order-preserving map.

(xi) If G is a group, a functor F : G — Set defines a set A = Fx, together with a collection of
endomorphisms of A denoted a — g - a for each g € G. This collection of endomorphisms is
compatible with the identity and composition, so is precisely the definition of a group action
or permutation representation of G.

(xii) If G is a group, a functor F : G — Vecty is a k-linear representation of G.

(xiii) The fundamental group of a topological space defines a functor 7z; : Top, — Gp, where Top,
is the category of pointed topological spaces.

1.3 Natural transformations

Definition. Let C, D be categories,and F, G : € =3 D be functors. A natural transformation
a : F — G is amapping ob ¢ — mor D denoted A — a4, such that
(i) a4 : FA — GA for all A; and



(i) for any morphism f : A — Bin C, the square

Fa Ly FB

o e

GA Tf} GB
commutes. Such squares are called naturality squares.

If we have a natural transformation 8 : G — H, we can define fa by (fa), = Baas. We therefore
have a category [C, D] whose objects are the functors € — D and whose morphisms are the natural
transformations between them.

Example. (i) Given a vector space V, we have a linear map o, : V — V** sending v € V to the
map f + f(v). This is a natural transformation a : lyee, — (—)**. The naturality squares
are of the form

v L s w
aV\L J/aW

V** f**} W**

where

ay(v) = fr fv);  fr()(h)=g(f"h) =g(hef)

We show the naturality square commutes.

(g hglhof))oay)(v) =(g~ hr glhe ) ayv)
= (g hglho )k~ kv)
=h (k- kv)(ho f)
=hw (ho fu
= h — (h(fv))
= ay (fv)
= (ay o fv

(ii) There is an inclusion from any set A to its free group FA. The map sending a set A to the
inclusion A — FA is a natural transformation 1g,, — UF. Naturality is built into the definition
of F on morphisms.

a—L 55

O{A\l/ \l/(XB
UFA m UFB

(iii) There is a mappinga, : A - PA by mapping a € A to {a} € PA. This is a natural transforma-



tion 1gee — P, since Pf{a} = {fal.

A%B

o e

PA —— PB

(iv) Let f,g : P 33 Q be order-preserving maps between posets. Then for x < y in P, the naturality
square is

fx —> fy
ocx\l/ \l/ay
gx —> &y

In particular, the existence of a, proves that fx < gx. Thus a natural transformation f — g
exists if and only if fx < gx pointwise for all x € P. Note that every square of morphisms in a
poset commutes.

(v) Letu,v : G 3 H be group homomorphisms. For g € G, the naturality square is

ug
*

. L
oz*\l/ o,
* ﬁg *
A natural transformation @ : u — visanelementa, = h € H such that hu(g) = v(g)hforall g,
or equivalently, v(g) = hu(g)h~!. Thus a natural transformation exhibits a conjugacy between

two homomorphisms. In particular, the natural transformations u — u are the elements of the
centraliser of u(G).

(vi) Let A, B be permutation representations of G, that is, functors G — Set.

A
Ax Hg Ax

7| Ir

Bx Tg> Bx
A natural transformation f : A — B is a mapping of the underlying sets Ax — Bx satisfying
g-f(a)= f(g-a)foralla € A and g € G. This is the definition of a G-equivariant map.

(vii) For any (nice) pointed topological space X with base point x, the Hurewicz homomorphism is
amap hy, , : m,(X,x) — H,(X). This is a natural transformation ,, - H, U where U is the
forgetful functor Top, — Top.

1.4 Equivalence of categories

There is a notion of isomorphism of categories, namely, isomorphism in the category Cat. For ex-
ample, Rel = Rel™ via the functor

A~ A; R R ={(b,a)|(a,b) €ER}



However, there is a weaker notion that is often more useful in practice, called equivalence. To define
this, we need a notion of ‘natural isomorphism’. There are two obvious definitions, which we show
are equivalent.

Lemma. Let ¢ : F — G be a natural transformation between functors € = 2. Then
a is an isomorphism in the functor category [C, D] if and only if each component a4 is an
isomorphism in D.

Proof. The forward direction is clear as composition in [C, D] is pointwise; if 8 is an inverse for a,
then 5,4 is an inverse for ay. Suppose 4 is an inverse for ¢4 for each A. We show the § collectively
form a natural transformation by verifying the naturality squares. Given f : A — Bin €, consider

FA 1y FB
] Jen o] Too
GA G—f) GB
Then
(Ff)Ba = Brag(Ff)Ba = B(GflaaBa = Bp(Gf)
using naturality of a. Thus g is natural, and an inverse for a. O

Definition. Let C, D be categories. An equivalence between C and D is a pair of functors
F:C-D;, G:D->C¢C
and a pair of natural isomorphisms
a:le—GF, B:FG-lp

If € and D are equivalent, we write € ~ D.

The reason the natural isomorphisms point in opposite directions will be clarified later. A property
P of categories that is called categorical if whenever € satisfies P and € ~ D, then D satisfies P.
For example, the properties of being a preorder or being a groupoid are categorical. Being a partial
order or being a group are not categorical. Generally, properties that rely on equality of objects, not
isomorphism, will not be categorical.

Example. (i) Let Set, be the category of pointed sets and functions preserving the base point.
Then Set, ~ Part by

F : Set, —» Part; F(A,a)=A\{a}; F((4,a) L (B,b))(x) = f(x)
and

f(x) if fisdefined at x

G : Part — Set,; G(A)=Au{d} GA i» B partial)(x) = .
B otherwise

Note that FG = 1p,, but GF is not equal to 1ge, . It is not possible for these two categories
to be isomorphic, because there is an isomorphism class of Part that has only one member,
namely {@}, but this cannot occur in Set,.



(ii) LetfdVect, be the category of finite-dimensional vector spaces over k. This category is equival-
ent to its opposite category deectzp via the dual space functors in both directions. The natural
isomorphisms o and 8 are both as in the double dual example given above.

(iii) We show fdVect; ~ Mat,. Define
F : Mat;, — fdVect,; F(n)=k"

and sending a matrix A to the linear map it represents in the standard basis. For each finite-
dimensional vector space V, choose a particular basis. Define

G : fdVect, —» Mat;; G(V)=dimV

and let G(6) be the matrix representing 6 with respect to the particular bases chosen above.
Then GF = 1y, as long as we chose the bases above in such a way that the k" have the
standard basis. Further, FG is naturally isomorphic t0 l¢gyect, » since the chosen bases define
isomorphisms k4™ — V, which are natural in V.

In line with the idea that we do not want to consider equality of objects but only equality of morph-
isms, we make the following definitions.

Definition. Let F : ¢ — D be a functor. We say that F is
(i) faithful, if for each f,g € mor € with equal domain and codomain, Ff = Fg implies
f=g
(ii) full, if for each FA L FB, there exists a morphism A i» Bsuchthat Ff = g;
(iii) essentially surjective, if every B € ob D is isomorphic to some FA for A € ob C.

Note that if F is full and faithful, it is essentially injective: if FA % FBisan isomorphism, the

unique A L B with Ff = g is an isomorphism, because its inverse is the unique B - A mapped to
-1
g

Lemma. Let F : ¢ — D be a functor. Then F is part of an equivalence C ~ D if and only if
F is full, faithful, and essentially surjective.

Proof. Suppose G, a, 3 make F into an equivalence. The existence of § ensures that B ~ FGB

for any B € ob D, giving essential surjectivity. For faithfulness, for any A ER B in €, we have
f = ag*(GFf)ay,, allowing us to reproduce f from its domain, codomain, and image under F. For

fullness, consider FA LR FB, and define f = a3'(Gg)ay : A — B. Then, GFf = Gg. As G is faithful
by symmetry, Ff = g.

For the converse, for each object B € D, we choose an isomorphism g : FA — B where A € C,

and define the action of G at B to be this A. Then we define G on morphisms by letting G(B LN )
be the unique GB — GC whose image under F is Sg! o g o B3, thus making the following diagram

commute.

F6B L% FGe

ﬁB\L Tﬁal

Bﬁc



This is functorial: given h : C — D, we can form G(hg) and (Gh)(Gg) which have the same image
under F, so must be equal.

h
FGB Foth®)  \ koD
BB /r o'
FGg FGh
B FGC D
Bt Bc
8 h
C S C
1c

By construction, § is a natural isomorphism FG — 14. It suffices to construct the natural isomorph-
isma : 1¢ — GF. Its component at A is the unique isomorphism whose image under F is

-1
FA ’BFHA FGFA
Consider a naturality square for a.
Aa—L s

ocA\l/ \l/ocB
GFA W GFB

As F is faithful, to show this diagram commutes, it suffices to show that its image under F commutes.

FaA — \ FB

FaA=6E¥&L \l/FO(B=ﬁEﬁ
FGFA m FGFB

This commutes by naturality of 71 O

We call a subcategory full if its inclusion functor is full.

Definition. A category is called skeletal if every isomorphism class has a single member. A
skeleton of C is a full subcategory €’ containing exactly one object for each isomorphism class.

Note that an equivalence of skeletal categories is bijective on objects, and hence is an isomorphism
of categories.

1.5 Monomorphisms and epimorphisms

Definition. A morphism f : A — B is a monomorphism, and is called monic, if fg = fh
implies g = h whenever the compositions are defined. Dually, f is an epimorphism, and is
called epic, if gf = hf implies g = h whenever the compositions are defined.

Monomorphisms are left-cancellable; epimorphisms are right-cancellable. We will often denote a
monomorphism with an arrow with a tail A » B, and denote epimorphisms with double-headed
arrows A - B. Isomorphisms are clearly monic and epic; if all monic and epic morphisms in a
category are isomorphisms, we call the category balanced.

10



Example. (i) InSet,the monomorphisms are precisely the injective functions, and the epimorph-
isms are precisely the surjective functions. Thus Set is balanced.

(i) In Gp, the monomorphisms are the injective functions, and the epimorphisms are the surject-
ive functions.

(iii) In Rng, the monomorphisms are again the injective functions, but there are epimorphisms
that are not surjective, for example the inclusion Z — Q.

(iv) In Top, the monomorphisms are the injective functions, and the epimorphisms are the sur-
jective functions. However, Top is not balanced, because continuous bijections need not have
continuous inverses.

(v) In a preorder, any morphism is monic and epic. The category is balanced if and only if it is an
equivalence relation (or equivalently, symmetric).

2 The Yoneda lemma

2.1 Statement and proof

Definition. A category C is called locally small if the collection of morphisms A — B are
parametrised by a set. In this case, we write C(A, B) for the set of such morphisms.

Given an object A of a locally small category, we can define a functor
C(A,-) : € — Set

given by
Be CAB; BLO) - (3B - fg)
This is functorial by associativity of function composition. We can also define
C(—,A) : C® - Set
by
B C(B,A; (BLC)m ((CEA)m g

Lemma (Yoneda lemma). Let € be a locally small category. Let A € obC, and letF : € —
Set be a functor. Then,
(i) there is a bijection

{natural transformations C(A, —) — F} < {elements of FA}

(ii) and further, this bijection is natural in both A and F.

This shows that we can consider a natural transformation C(A, —) — F as a way to evaluate morph-
isms at a point x € FA.

11



Example. Consider the category € of the form

A
7 N
B c
and the functor F : € — Set given by
F(A)={1,2} FB)={3) F(C)={45,6}
and
F(HQ) =F()2) =3 Fl@1) =4 F@QR=>5
A natural transformation a : C(A, —) — F is given by its components
ag {la} = {12} ap:{f}=>{3k ac:{g—{456}
subject to the naturality square

C(A8)

{la} —— {g}

o |z

{la 2} Fﬁg {4a 5’ 6}
which enforces that
(Fg)ay) = ac(g)

This means that such a natural transformation « is defined uniquely by a choice of (Fg)(a4); that is,
a choice of an element of FA.

Example. Let G be a group in the set-theoretic sense. Let us represent G as the category C; that is,
let
obC={x} morC=G

Consider the functor F : € — Set given by
F(x)=G; F(g)(h) = gh

Ifa : C(x,—) — Fisanatural transformation, for each g € G, a,(g) isa map G — G. The naturality
condition ensures that o respects the group structure. Applying the Yoneda lemma, we find that
every map G — G that respects the group structure in this way is just the action of multiplication by
some element of the group.

We prove part (i) now, and postpone (ii) until some corollaries have been established.

Proof. We want to show that a natural transformation a : €(4,—) — F is a way to evaluate morph-
isms at a point x € FA. To find a sensible value for x, we evaluate the identity morphism1, : A — A.

®: (CA,—) > F) > FA; ®(a)=a,(1,) € FA

Now, given a point x € FA, we want to create a natural transformation that evaluates functions
A — Band yields a point in FB. We define

W FA - (CA,—) — F); WA 5> B) = (Ff)x

12



For h : B — C, the naturality square is as follows.

e, B) SN e, 0)

‘P(X)B\l/ \l/‘l’(x)c

FB ——— FC
Here, C(A, h) denotes the operation g — hg. For f : A - B,

F(x)c(C(A, h)(f)) = ¥(xX)c(hf) = (F(hf)x

and
(FR)(¥(x)p(f)) = (FR)((F[)x) = (F(hf))x

as required. Hence the ‘evaluate at x’ map W(x) is a natural transformation. We show that these two
constructions are inverses.

OY(x) = W(x)a(14) = (Flg)x = 1pgx = x

Leta : C(A,—) — F be a natural transformation, let B € ob €, and let f : A — B. Then ag(f) and
(¥®(a))g(f) are elements of FB; we show they coincide.

(Y2()p(f) = FH)(@(@) = (Ff)aa(la))
Naturality of o shows that the following diagram commutes.

e, 4) S8R e, B

) |

FA —— FB
Thus,
(Y(a)p(f) = ap(f1a) = ag(f)
Hence, ® and W are inverse bijections. O

Corollary. For any locally small category €, the map
A CA,-)

is a full and faithful functor
Y : G - [C,Set]

This is called the Yoneda embedding.

Proof. Let F = C(B,—) in the Yoneda lemma. Then there is a bijection
C(B, A) < {natural transformations €(A,—) — C(B,—)}

This bijection maps f : B — A to the natural transformation given by composition with f. This is
functorial as composition in € is associative. O

13



This says that any locally small category € is equivalent to a full subcategory of a functor category
[C°P, Set]. The category [C°P, Set] is sometimes called the category of presheaves on €, so any category
embeds into its category of presheaves.

We now explain and prove part (ii) of the Yoneda lemma. Suppose that € were small, so [C, Set] were
locally small. Then we have two functors

C x [@,Set] — Set

The first is the evaluation functor
(A,F) » FA

The second is the composite

[e,Set](—,—)
— 35S

Yx1
€ x [€,Set] —— [€, Set]* x [€, Set] et

The naturality condition is that ® and W are natural transformations between these two functors, and
thus are natural isomorphisms.

Proof. Letf : A > A,a : F - F',and x € FA. If x’ is the image of x under the diagonal of the
naturality square

FA 15 Fa

al Lo

FFA —— F'A
F'f
we want to show that ¥(x') is the composite

e(f,— ¥
e, =) 2 e, ) X g & p

But this can be easily verified, as the composite maps
Lar = [ (Ff)(x) = ag(Ff)(X) = x'

as required. O
2.2 Representable functors

Definition. Let C be a locally small category. A functor F : ¢ — Set is called representable
if it is isomorphic to (A, —) for some A. A representation of F is a pair (A, x) where A € ob C,
and x € FA is such that

¥(x): C(A,-) > F

is a natural isomorphism. In this case, we say that x is a universal element of F.

Corollary. Suppose (A4, x) and (B, y) are representations of F : € — Set. Then there is a
unique isomorphism f : A — Bsuch that Ff(x) = y.

14



Proof. The Yoneda lemma shows that the elements of FA correspond to natural transformations
C(A,—) - F, and similarly for the elements of FB. Thus, F f(x) = y equivalently says that

e®,-) —LD \ e4,-)

‘I’m A)
F

commutes. But ¥(x) and ¥(y) are isomorphisms, so this holds if and only if f is the unique isomorph-
ism sent by the Yoneda embedding to W(x)~1¥(y). O

(i) Consider the forgetful functor Gp — Set. This is representable by the free group on one gen-
erator, Z. Similarly, the forgetful functor Rng — Set is represented by the free ring on one
generator, Z[x].

(ii) The forgetful functor Top — Set is representable by the one-point space.

(iii) The contravariant power set functor P* : Set’” — Set is representable by the two-element set
2 = {0, 1} via the bijection mapping f : A — 2to f~1(1).

(iv) The covariant power set functor P : Set — Set is not representable. Set(A4,1) = 1 for any A,
butP1=~22%1.

(v) Define Q : Top” — Set to be the functor mapping a space X to its set of open subsets. If
f X — Y is continuous, this induces a map Qf : QY — QX. This is representable by the
Sierpinski space ¥ with two points {0, 1} and open sets

@, {1} Z

The continuous maps f : X — X are exactly the characteristic functions of the open subsets of
X, because continuity is just that f~!({1}) is open.

(vi) The dual vector space functor (—)* : Vectzp — Vect, is not representable because its codo-
main is not Set, but composing with the forgetful functor makes it representable by the one-
dimensional space k.

(vii) Let G be a group. The (unique up to isomorphism) representable functor G — Set is the Cayley
representation of the group; that is, the set G acting on itself by multiplication.

(viii) Let A, B be objects of a locally small category €. Then there is a functor C°? — Set sending C
to the Cartesian product
C(C,A)x e(C,B)

If this is representable, we call the representing object a categorical product of A and B, and
denote it A X B. The universal element is a pair of morphisms 7, : AXB — A,7, : AXB — B,
called projections. This has the property that for any pair (f : C - A,g : C — B) there exists
a unique morphism h = (f,g) : C - A X Bsatisfying m;h = f,m,h = g.

(ix) Dually, there is the notion of a coproduct A + B, which is a representing object of the functor
mapping C to
C(A,C) x C(B,C)

with coprojectionsv, : A—->A+B,v, : B> A+B.
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(x) Let f,g : A =3 Bbe aparallel pair of morphisms in a locally small category €. Define a functor
F : C°°? — Set by sending C to

th:C—Alfh=gh

If this is representable, we call the representation an equaliser of f and g. This consists of a rep-
resenting object E with amorphisme : E — A satisfying fe = ge. Moreover, for any morphism
hwith fh = gh, h factors uniquely through e. Hence, e is a monomorphism. Monomorphisms
that occur in this way are called regular.

(xi) Dually, there is also a notion of coequaliser, giving rise to an epimorphism. We again call epi-
morphisms regular if they arise in this way.

In Set, the categorical product is the Cartesian product, and the categorical coproduct is the disjoint
union. The equaliser of f,g : A = Bis the set

{a€A| fa=gad
The coequaliser of f, g is the quotient
B/,
where ~ is the equivalence relation generated by fa ~ ga.

In Gp, the product is the direct product, but the coproduct is the free product A * B. The equaliser
of f,g : A 33 Bis as in Set, which is a subgroup of A. The coequaliser of f,g is the quotient
by the smallest congruence containing all pairs (fa, ga). In Set and Gp, all monomorphisms and
epimorphisms are regular.

In Top, not all injections or surjections are regular monomorphisms or epimorphisms.
2.3 Separating and detecting families

Definition. Let € be a locally small category, and G a class of objects of C. We say that
(i) G is a separating family for C if the functors C(G, —) for G € G are collectively faithful;
that is, if f,g : A 3 B, the equations fh = ghforallh : G - A with G € G imply
f=g
S
h —
G— A B
7
(ii) G is a detecting family for € if the functors C(G,—) for G € G collectively reflect iso-

morphisms; that is, if f : A — Bissuch thatevery h : G — B with G € G factors
uniquely through A, then f is an isomorphism.

G-f34

N

If G = {G}, we call G a separator or detector respectively.

Separating and detecting families are both sometimes called generating families.

16



Lemma. (i) If C has equalisers, then any detecting family is separating.
(ii) If € is balanced, then any separating family is detecting.

Proof. Part (i). Suppose G is detecting, and f,g : A = B such that every morphism h : G — A with
G € G has fh = gh. Then every such h : G - A with G € G factors uniquely through the equaliser

of f and g.
G
| x
[
v f
E—> A } B
e T
Thus this equaliser e must be an isomorphism as G is detecting. Since ef = eg, we must have f = g,

as required.

Part (ii). Suppose § is separating, and f : A — Bissuch thatevery h : G - Bwith G € § factors
uniquely through f. As C is balanced, it suffices to show that f is both monic and epic.

If fg = fhforsomeg,h : C 3 A, thenany k : G —» C with G € G satisfies gk = hk, since both are
factorisations of fgk = fhk through f.

g
G —*s ¢ ?AL)B

h

Since G is separating, g = h. As this is true for all pairs g, h, we must have that f is monic.

Similarly, if ¢,m : B = D satisfy £f = mf, thenanyn : G — B with G € § satisfies #n = mn, since
it factors through f.

€

K/ —fy
A——> D
f e

W%Q

So ¢ = m, giving that f is epic. O

Example. (i) In Gp, the forgetful functor is represented by Z. This functor is faithful and reflects
isomorphisms, so it is a separator and a detector.

(i) In Rng, the forgetful functor is represented by Z[x], so similarly Z[x] is a separator and a
detector.

(iii) If € is small, the set {C(A,—) | A € ob C} is a separating and detecting set for [C, Set] by the
Yoneda lemma.

(iv) In Top, the one-point space 1 is a separator, but Top has no detecting set. If x is an infinite
cardinal, let X, be a discrete space of cardinality x, and let Y, be the same set with the co-< %
topology:

Uopen < U=gor|Y, \U|l<x

The identity X,, — Y, is continuous but not a homeomorphism. Given any set G of spaces, if
x is larger than |G| for all G € G, then G cannot detect the fact that the map X,, — Y, isnota
homeomorphism.
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(v) Let C be the category whose objects are the (von Neumann) ordinals, and in addition to the
identity morphisms, there are precisely two morphisms f,g : « = § when a < . We define
composition in such a way that ff = fg = gf = gg = f. Now, 0 is a detector for C: it detects
that f,g : 0 =3 a are not isomorphisms, as neither factors through the other, and it detects
that f,g : a 3 B are not isomorphisms for 0 < a <  since the morphism g : 0 — f does
not factor through either of them. There is no separating set for C: for any set of ordinals G, if
a>yforally € G, G cannot separate f,g : « 3 a+ 1.

(vi) Gp hasno coseparating or codetecting set of objects. Given any set G of groups, let H be a simple
group with cardinality greater than that of each element of G. Then the only homomorphisms
from H to elements of G are trivial. In particular, G cannot detect that the map H — 1 is not
an isomorphism.

2.4 Projectivity

The functors C(4,—) : € — Set preserve monomorphisms. They do not, in general, preserve epi-
morphisms.

Definition. We say that an object P of a locally small category C is projective if C(P, —) pre-
serves epimorphisms. In more elementary terms, given a diagram

P

I

Q—»R
there exists h : P — Q such that gh = f.

P
h 7
o Ir
Q—»R
If this holds for all g in some class € of epimorphisms, we say that P is £-projective. The dual

notion is called injectivity.

We will consider the class of pointwise epimorphisms in [C, Set]; that is, those natural transforma-
tions o« whose components a4 are surjective.

Corollary. Objects of the form C(A, —) are pointwise projective in [C, Set].

Proof. If P = C(A,—), an f in the above diagram corresponds to some ®(f) € RA by the Yoneda
lemma. But g4 is surjective, so there exists ®(h) € QA mapping to ®(f). O

Proposition. If C is small, then [C, Set] has enough pointwise projectives; that is, for any
object F there exists a pointwise epimorphism P — F with P pointwise projective.
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Proof. LetP = H( Ax) C(A, —) where the disjoint union is taken over all pairs (4, x) with A € ob €
and x € FA. Then P is pointwise projective, since the C(A, —) are. There is a natural transformation
a : P — F where the (A, x)-indexed term is ¥(x) : C(A,—) — F. This is pointwise epic, since any
X € FA is in the image of ¥(x). O

3 Adjunctions

3.1

Definition and examples

Definition. Let C, D be categories. An adjunction between € and D is a pair of functors
F:€C - Dand G : D — C, together with a bijection between morphisms FA — B in D
and A — HB in €, which is natural in both variables A, B. We say that F is the left adjoint to
G, and that G is the right adjoint to F, and write F - G.

If C, D are locally small, then the naturality condition is that

Q(F_r_); e(_’G_)

are naturally isomorphic functors €°° x D — Set.

Example. (i) The free group functor F : Set — Gp is left adjoint to the forgetful functor U :

(ii)

(iii)

(iv)

Gp — Set.
Gp(FA, G) < Set(A,UG)

The forgetful functor U : Top — Set has a left adjoint D : Set — Top which equips each set
with its discrete topology.
Top(DX,Y) < Set(X,UY)

It also has a right adjoint I : Set — Top which equips each set with its indiscrete topology.

Set(UX, Y) < Top(X,IY)

Consider the functor ob : Cat — Set which maps each category to its set of objects. It has a
left adjoint D which turns each set X into a discrete category in which the objects are elements
of X, and the only morphisms are identities. It also has a right adjoint I which turns each set
X into an indiscrete category in which the objects are elements of X, and there is exactly one
morphism between any two elements of X. In addition, D : Set — Cat has a left adjoint
my . Cat — Set, where 7,C is the set of connected components of ob € under the graph
induced by its morphisms.

Set(7,C,X) « Cat(C,DX); Cat(DX,C) < Set(X,obC); Set(obC,X) < Cat(C,IX)

Thus we have a chain
o 1D -HobAdI

For any set A, we have a functor (—) X A : Set — Set. This functor has a right adjoint, which
is the functor Set(4,—) : Set — Set.

Set(B X A, C) « Set(B, Set(4, C))
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Applying this bijection is sometimes called currying or A-conversion. We say that a category C
with binary products is cartesian closed if (—) X A : € — C has a right adjoint, written [A, —]
or (—)4, for each A. For example, Cat is cartesian closed, where D¢ = [@, D] is the functor
category that this notation already refers to.

(v) Anequivalence F : C - D, G : D — € forms adjunctions both ways: F 4 G,G 1 F.

(vi) Let Idem be the category of pairs (A, e) where A is a set and e is an idempotent endomorphism

(vii)

(viii)

(ix)

9]

(xi)

3.2

A — A. The morphisms in Idem are the maps of sets which commute with the idempotents.
We have a functor F : Set — Idem sending A to (4,1,). Consider G : Idem — Set sending
(A, e) to the set of fixed points of e. Then F - G since any morphism FA — (B, e) takes values
in G(B,e). But also G - F, since a morphism (A, e) — FB is entirely determined by its action
on the fixed points in A under e, because f(a) = f(ea). This is not an equivalence of categories,
because G is not faithful. So not all pairs of functors that are adjoint in both directions form an
equivalence.

Let C be a category. There is a unique functor G : ¢ — 1, where 1 is the discrete category on
a single object. A left adjoint for G, if it exists, sends the object in 1 to an initial object I of C,
which is an object with a unique morphism to every object in €. Dually, a right adjoint sends
the object in 1 to a terminal object T, which is an object with a unique morphism from every
object in C. In Set, the empty set is initial, and any singleton is terminal. In Gp, the trivial
group is initial and terminal.

Let f : A — B be a function of sets, and let A” C A, B’ C B. Then Pf(A") C B’ if and only if
A’ C P*f(B'). Thus Pf - P* f as functors between PA and PB as posets.

Let A, B be sets with a relation R C A X B. We define mappings (—)" : PA — PB by
S"'={beB|Va€S, (a,b)E€R}

and (=)¢ : PB —» PAby
T ={a€A|Vb€ET, (ab)€R}

These are contravariant functors, and
SCT? < SXTCR < TCS"

We say that (—)? and (—)" are adjoint on the right. This pair is called a Galois connection.

The contravariant power-set functor P* is self-adjoint on the right, since functions A — P*B
and B — P*A naturally correspond bijectively to subsets of A X B.

The dual vector space functor (—)* : Vect, — Vect, is self-adjoint on the right, as linear maps
V — W™ and linear maps W — V* both naturally correspond to bilinear forms on V' x W.

Comma categories

Definition. Let G : D — € be a functor and A € ob €. Then, the comma category (A | G)is
the category whose objects are pairs (B, f) where B € obD and f : A - GBin €, and whose
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morphisms (B, f) — (B, f') are morphisms g : B — B’ which commute with f, f':

Theorem. Let G : D — C be a functor. Then specifying a left adjoint for G is equivalent to
specifying an initial object of the comma categories (A | G) for each A.

Proof. First, note that an object (B, f) is initial in (A | G) if and only if for every (B’, f'), there is a
unique morphism g : B — B’ such that the following triangle commutes.

A —Ly GB
G
f\‘ l g
GB’
Suppose F - G. Then letn, : A — GFA correspond to the identity 1z, under the adjunction. We
show that (FA,7,) is initial in (A | G). Indeed, given f : A — GB, then

A4y GFA

N

GB

commutes if and only if g is the morphism corresponding to f under the adjunction. In particular,
for any f, there is a unique such g.

Conversely, suppose (FA,7,) is initial in (A | G) for each A. Then we define the action of F on
objects by mapping A to FA. We make F into a functor by mapping f : A — A’ to the unique
morphism that makes the following square commute; this exists as (FA, 1,4 ) is initial.

A A GFA

L

A — GFA’
Nar

Functoriality of F follows from the uniqueness of F f. The bijection between morphisms f : A — GB
and g : FA — Bsends f to the unique g giving (Gg)n, = f. Naturality of the bijection in A was
built in to the definition of F as a functor, and naturality in B is easy. O

Corollary. Let F,F' : C — D be left adjointsto G : D — C. Then F ~ F' in [C, D].

Proof. (FA,7n,)and (F'A,n,)areboth initial objectsin (A | G), and so there is a unique isomorphism
ay : (FA,nm4) — (F'A,n)) in this category. The map A — a4 is natural, because given f : A - A,
aa(Ff)and (F’' f)a, are both morphisms (FA,n4) = (F'A', 1)y, f) from an initial object in (4 | G),
so must be equal. O
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Lemma. Suppose

_Ey _H,
GEG ’DEK o)

where F 4 G and H - K. Then HF - GK.

Proof. We have bijections
E(HFA,C) & D(FA,KC) « C(A,GKC)

which are natural in A and C, so their composite is also natural. O

Corollary. Suppose the square of functors

F

L

@

Q
G

™

K

commutes, and all of the functors F, G, H, K have left adjoints F’, G’, H', K'. Then the square
of left adjoints

(¢

\%T\)G

&

commutes up to natural isomorphism.

This result holds for any shape of diagram, not just a square. The hypothesis can be weakened to
only require that the first diagram commutes up to natural isomorphism.

Proof. The two composites F'H' and G’'K’ are left adjoints to HF = KG, so must be naturally iso-
morphic. O

3.3 Units and counits

Given an adjunction F - G, the proof of the previous theorem demonstrated a naturality square
between the morphisms 74 : A — GFA corresponding to 1r,4 under the adjunction. We call 7 :
le¢ — GF the unit of the adjunction. Dually, the map ¢ : FG — 1y is called the counit of the
adjunction; each €g : FGB — B corresponds to 155.

Theorem. LetF : C - D,G : D — C. Specifying an adjunction F - G is equivalent to
specifying natural transformations 7 : 1¢ - GF, € : FG — 1y, satistying the triangular
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identities

F —% FGF G —5 GFG
IR DN
F G

Proof. Suppose we have an adjunction F -4 G. We have seen how to define 7 and ¢; it thus suf-
fices to check the triangular identities. Since they are dual to each other, it suffices to check the
first. The morphism €g4 corresponds under the adjunction to 154, so by naturality, the composite
erpa(Fny) corresponds to 1gpana = Na- But 1g4 corresponds to 74, giving the commutative triangle

€ra(Fna) = 1pa.

Conversely, suppose 7 and € are natural transformations satisfying the triangular identities. We map
f : A - GB to the composite ®(f) given by

FA Ly FeB -3 B
and g : FA — B to the composite ¥(g) given by

G
Ay GrA 25 GB

These assignments are natural in A and B as 7 and ¢ are natural transformations. Thus it suffices to
show ¥® and O are the relevant identity maps; again they are dual so it suffices to show ¥®(f) = f.
YP(f) is the composite

A 24y gra 2y grep £y GB
which by naturality of 7 is equal to

Gep

A —Ly 6B 7 grep Sy GB
which is equal to f by the triangular identity. O
Recall that an equivalence of categories consisted of isomorphisms ¢ : 1¢ - GFand 8 : FG — 1p.

These isomorphisms may not satisfy the triangular identities, but we can always choose a and £ in
such a way that these identities hold.

Proposition. Let (F,G,a, ) be an equivalence of categories. Then there exist natural iso-
morphisms &’ : 1¢ - GF and 8’ : FG — 15 which satisfy the triangular identities. In
particular, F 4 G - F.

Proof. We will set @’ = a, and construct 5’ to be the composite

FGRY! (Fag)

rc S rorc e po £y 1,
Note that FGS = g, since
FGFG 2 Fg

frc, i

FG —— 1p

23



commutes by naturality of 5. Note also that 8 is monic. Dually, note that GFax = agp. For the
triangular identities, consider the diagrams

-1
F —Eoy porrerX pGRGE

N \l/(Foc)‘l \l/(FaGF)—I:(FGFot)‘l
F — pr—> FGF

N Jer

F

and

-1
¢ =2y 6ré % Grora

\‘ \l/“al \l/(GFO(c)_l=(Ofc:Fc)_1
G

G - @GPy GFG

N Jes

G

where the squares commute by naturality of 8 and « respectively. Thus a’, 8’ are the unit and counit
of an adjunction F - G as required. Similarly, (8’)~!, (a’)~! are the unit and counit of an adjunction
GHF. O

Lemma. Let F - G be an adjunction with counite : FG — 14. Then
(i) € is pointwise epimorphic if and only if G is faithful;
(ii) e is a (pointwise) isomorphism if and only if G is full and faithful.

Proof. Part (i). Giveng : B — B’ in D, the composite geg corresponds under the adjunction to
Gg : GB — GB'. Thus for morphisms g with specified domain and codomain, the map g — gep
is injective if and only if the action of G is injective. This is true for all B and B’ if and only if € is
pointwise epimorphic, if and only if G is faithful.

Part (ii). Similarly, G is full and faithful if and only if the map g — gep is a bijection on morphisms
with specified domain and codomain. This clearly holds if eg is an isomorphism for all B. Conversely,
if the condition holds, there is a unique map g : B — FGB such that egg = 15. Then eggeg = €p, SO
gep and 1xgp have the same composite with e, so they are equal. O

3.4 Reflections

Definition. An adjunction F - G is called a reflection if the counit is an isomorphism. Du-
ally, it is called a coreflection if the unit is an isomorphism. A full subcategory is called reflect-
ive if the inclusion functor has a left adjoint; in this case the adjunction is a reflection.

Remark. If F - G is a reflection, then G : D — € induces an equivalence of categories between D
and the full subcategory of € on the objects in the image of G. This subcategory is reflective.

If D C € is a reflective subcategory, there is intuitively a best possible way to get into D from some
object in €. The left adjoint sends an object in € to its ‘best approximation’ in D. If D is coreflective,
there is a best possible way to get out of 2 to some object in C.
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Example. (i) AbGp is reflective in Gp; the left adjoint to the inclusion map sends a group G to

(ii)

(iii)

(iv)

\

(vi)

its abelianisation G* = G/H, the quotient of G by its commutator subgroup
H={aba b~ |a,b€ G} <G

Note that any homomorphism G — A where A is abelian factors uniquely through the quotient
map G — G®, giving the adjunction as required.

Recall that an abelian group is called torsion if all of its elements have finite order, and torsion-
free if all of its nonzero elements have infinite order. For an abelian group A4, its set of torsion
elements forms a subgroup A, which is a torsion group. Any homomorphism from a torsion
group to A must factor through A;. Thus A; is the coreflection of A in the category of torsion

abelian groups, and A/At is the reflection of A in the category of torsion-free abelian groups.

The full subcategory KHaus of compact Hausdorff spaces is reflective in the category Top of
topological spaces. The left adjoint to the inclusion map is the Stone-Cech compactification
functor 8. We will construct this functor using the special adjoint functor theorem, which is
explored in the next section.

Recall that a subset C of a topological space X is called sequentially closed if for every sequence
X, € C converging to a limit x € X, we have x € C. We say that X is a sequential space
if all sequentially closed subsets are closed. The full subcategory Seq of sequential spaces is
coreflective in Top. Given a space X, let X; denote the same set, but where the topology is
such that all sequentially closed sets are also taken to be closed. The identity map X; — X is
continuous, and forms the counit of the adjunction.

The category Preord of preorders is reflective in Cat. The left adjoint maps a category C to the
quotient category G/N where ~ identifies all parallel pairs of morphisms.
Let X be a topological space. Then the poset QX of open sets in X is coreflective in the poset

PX, since if U is open and A is an arbitrary subset of X, then U C A ifand only if U C A°. Thus
the interior operator (—)° is right adjoint to the inclusion QX — PX. Dually, the poset of closed

sets is reflective in PX; the closure operator E is left adjoint to the inclusion.

4 Limits

4.1

Cones over diagrams

To formally define limits and colimits, we first need to define more precisely what is meant by a
diagram in a category.

Definition. Let J be a category, which will almost always be small, and often finite. A dia-
gram of shape J in a category € is a functor D : J — C.

We call the objects D(j) the vertices of the diagram, and the morphisms D(«) the edges of the dia-
gram.

Example. LetJ be the finite category

«— .
oy
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A diagram of shape J in C is exactly a commutative square in €. The diagonal arrow is required to
make J into a category.

Example. LetJ be the finite category

«— .

N

Then a diagram of shape J in € is a square of objects in € whose morphisms may or may not commute.

Definition. Let D be a diagram of shape J in €. A cone over D consists of an object A € ob €
called the apex of the cone, together with morphisms 1; : A — D(j) called the legs of the
cone, such that all triangles of the following form commute.

A
2N

D(j) —)D(a) D(j")

We can define the notion of a morphism between cones.

Definition. Let (A, 4;), (B, u;) be cones over a diagram D of shape J in €. Then a morphism
of cones is a morphism f : A — B such that all triangles of the following form commute.

f

\
4

D(j)

A B

This makes the class of cones over a diagram D into a category, which will be denoted Cone(D).

Remark. A cone over a diagram D with apex A is the same as a natural transformation from the
constant diagram AA to D, as we can expand the commutative triangles into the following form.

A—2 s 4

u) I
D(j) 5z DU

Note that A is a functor € — [J, €], and thus Cone(D) is exactly the comma category (A | D).
4.2 Limits

Definition. A limit for a diagram D of shape J in € is a terminal object in the category of
cones over D. Dually, a colimit for D is an initial object in the category of cones under D.

A cone under a diagram is often called a cocone.
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Remark. Using the fact that Cone(D) = (A | D) where A : € — [J, €], the category € has limits for
all diagrams of shape J if and only if A has a right adjoint.

Example. (i) If J is the empty category, there is a unique diagram D of shape J in any category
C. Thus, a cone over this diagram is just an object in €, and morphisms of cones are just
morphisms in €. In particular, Cone(D) = €, so a limit for D is a terminal object in €. Dually,
a colimit of the empty diagram is an initial object.

(ii) Let J be the discrete category with two objects. A diagram of shape J in € is thus a pair of
objects. A cone over this diagram is a span.

N

A B

A limit cone is precisely a categorical product A X B.

AXB
A B
Similarly, the colimit for a pair of objects is a categorical coproduct A + B.

(iii) IfJ is any discrete category, a diagram of shape J is a family of objects 4; in C indexed by the
objects of J. Limits and colimits over this diagram are products and coproducts of the A;.

(iv) IfJ is the category « =3 », a diagram of shape J is a parallel pair of morphisms f,g : A 3 B. A
cone over such a parallel pair is

satisfying fh = k = gh. Equivalently, it is a morphism h : C — A satisfying fh = gh. Thus, a
limit is an equaliser, and dually, a colimit is a coequaliser.

(v) LetJ be the category

OH'

A diagram of shape J is thus a cospan in C.

A

Is

B—>C
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A cone over this diagram is

S

Iyl

=

where ¢ = fh = gkisredundant. Thus a cone is a span that completes the commutative square.
A limit for the cospan is the universal way to complete this commutative square, which is called
a pullback of f and g. Dually, colimits of spans are called pushouts.

If any category € has binary products and equalisers, we can construct all pullbacks. First, we
construct the product A X B, then we form the equaliser of fr;,gm, : A X B =3 C. This yields
the pullback.

(vi) Let M be the two-element monoid {1, e} with e = e. A diagram of shape M in a category C
is an object of € equipped with an idempotent endomorphism. A cone over this diagram is a
morphism f : B — Asuchthatef = f. Alimit (respectively colimit) is the monic (respectively
epic) part of a splitting of e. This is because the pair (e, 14) has an equaliser if and only if e splits.

(vii) Let N be the poset category of the natural numbers. A diagram of shape N is a direct sequence of
objects, which consists of objects Ay, Ay, ... and morphisms f; : A; — A;,1. A colimit for this
diagram is a direct limit, which consists of an object A, and morphisms g; : A; - A, which
are compatible with the f;. Dually, an inverse sequence is a diagram of shape N°P, and a limit
for this diagram is called an inverse limit. For example, an infinite-dimensional CW-complex X
is the direct limit of its n-dimensional skeletons in Top. The ring of p-adic integers is the limit
of the inverse sequence defined by 4,, = Z/an in Rng.

Lemma. Let C be a category.
(i) If € has equalisers and all small products, then € has all small limits.
(ii) If € has equalisers and all finite products, then € has all finite limits.
(iii) If € has pullbacks and a terminal object, then € has all finite limits.

Note that the empty product is implicitly included in (i) and (ii). A terminal object is a product over
no factors.

Proof. Parts (i) and (ii). We prove (i) and (ii) in the same way. We will first construct the product P
of the D(j) for each j € obJ. Then, we will use an equaliser to construct the subobject E of P that
simultaneously satisfies all of the equations required for E to be the apex of a cone. The fact that we
have used an equaliser will show that this is a limit cone.

LetD : J — C be a diagram. We form the products

P= ] p(j» Q= J] D(coda)

j€EobJ aE€mor J

These are small or finite as required. Using the universal property of the product on Q, we have
morphisms f,g : P 3 Q defined by

Tof = Teoaa : P — D(coda); 78 = D()Tgome - P = D(cod @)
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Fora : j — j' in D, these morphisms are represented by

p---I--0 P-—--f-_30
T J:Toc 7j T
J
D(j") D) —55— D)

Lete : E — P be an equaliser for f and g, and define A; = 7je : E — D(j). Then foreacha : j — j,
the following diagram commutes.

Apanlics

p
N

D(j) T D(j")

Therefore, these morphisms form a cone. Given any cone (4, (4j)jeobs) Over D, we have a unique
u A — Pwithzju = p; for all j. Then,

Tafft = feode = D(@Hdoma = Taglt
for all «, so u factors uniquely through e.

Part (iii). We show that the hypotheses of (iii) imply those of (ii). If 1 is the terminal object, we form
the pullback of the span
A
B——>1

This has the universal property of the product A X B, so € has binary products and hence all finite
products by induction. To construct the equaliser of f,g : A =3 B, we consider the pullback of

Any cone over this diagram has its two legs C =3 A equal, so a pullback is an equaliser for f,g. [

Definition. A category is called complete if it has all small limits, and cocomplete if it has all
small colimits.

Example. The categories Set, Gp, Top are complete and cocomplete.

4.3 Preservation and creation
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Definition. Let G : D — C be a functor. We say that G
(i) preserves limits of shape J if whenever D : J — D is a diagram with limit cone

(L, (4))jeobs)s the cone (GL, (GA;)jeob ) is a limit for GD;

(i) reflects limits of shape J if whenever D : J — D is a diagram and (L, (4;)jeop ) is a cone
such that (GL, (G4;)jeob ) is a limit for GD, then (L, (1;);eobs) is a limit for D;

(iii) creates limits of shape J if whenever D : J — D is a diagram with limit
cone (M, (4j)jeons) for GD in €, there exists a cone (L, (4;)jeqbs) Over D such that
(GL,(G4j)jeop ) = (M, (4})jeobs) in Cone(GD), and any such cone is a limit for D.

We typically assume in (i) that 2 has all limits of shape J, and we assume in (ii) and (iii) that € has
all limits of shape J. With these assumptions, G creates limits of shape J if and only if G preserves
and reflects limits, and 2 has all limits of shape J.

Corollary. In any of the statements of the previous lemma, we can replace both instances of
‘C has’ by either ‘D hasand G : D — € preserves’ or ‘C hasand G : D — C creates’.

Example. (i) The forgetful functor U : Gp — Set creates all small limits. It does not preserve
colimits, as in particular it does not preserve coproducts.

(ii) The forgetful functor U : Top — Set preserves all small limits and colimits, but does not
reflect them, as we can retopologise the apex of a limit cone.

(iii) The inclusion AbGp — Gp reflects coproducts, but does not preserve them. A free product
of two groups G, H is always nonabelian, except for the case where either G or H is the trivial
group, but the coproduct of the trivial group with H is isomorphic to H in both categories.

Lemma. Suppose D has limits of shape J. Then, for any €, the functor category [€, D] also
has limits of shape J, and the forgetful functor [C, D] — DO C creates them.

Proof. Given adiagram D : J - [C, D], we can regard it as a functor D : J X € — D, so for a fixed
object in €, we obtain a diagram D(—, A) of shape J in D, which has a limit (LA, (4 4)jeobs)- Given
any f : A — Bin C, the composites

A ;
LA 224 p(j,a) 298 p;j,B)

form a cone over D(—, B), and so factor uniquely through its limit LB. Thus we obtain Lf : LA — LB.
This is functorial because L f is unique with this property. This is the unique lifting of (LA) gcop e t0
an object of [C, D] which makes the 4; _ into natural transformations. It is a limit cone in [C, D]:
given any cone in [€, D] with apex M and legs (; _)jeqbs OVer D, the u; 4 form a cone over D(—, A),
so we obtain a unique v4 : MA — LA such that 1; 4v4 = ;4 for all A. The v, form a natural
transformation M — L, because for any f : A — Bin C, the two paths vg(Mf),(Lf)v4 : MA = LB
are factorisations of the same cone over D(—, B) through its limit, so must be equal. O
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Remark. Note that f : A — B is monic if and only if

A4y g

4L
A ﬁB

is a pullback square. Thus, if D has pullbacks, any monomorphism in [C, D] is a pointwise mono-
morphism, because the pullback in [C, D] is constructed pointwise by the previous lemma. In partic-
ular, the monomorphisms and epimorphisms in [ €, Set] are precisely the pointwise monomorphisms
and pointwise epimorphisms respectively.

4.4 Interaction with adjunctions

Lemma. Let G : D — C be a functor with a left adjoint. Then G preserves all limits which
exist in D.

Proof 1. 1n this proof, we will assume that €, D both have all limits of shape J. If F 4 G, then the
diagram
e—f vop
AJ/ \LA
[J, €] ﬁ [J, D]

commutes. All of the functors in this diagram have right adjoints, so the diagram

e+ »p

1imJT Tlim,
[7, €] Sa [7,D]

commutes up to natural isomorphism, where lim; sends a diagram of shape J to the apex of its limit
cone. But this is exactly the statement that G preserves limits. O

Proof 2. 1n this proof, we will not assume that € has limits of any kind, and only assume a single
diagram D : J — D has a limit cone (L, (j)jeops) Over it. Given any cone over GD with apex A
and legs u; : A — GD(j), the legs correspond under the adjunction to morphisms ﬁj : FA - D(j),
which form a cone over D by naturality of the adjunction. We obtain a unique factorisationu : FA —
L with 2;u = ﬁj for all j, or equivalently, (GA;)u = u;, where 4 : A — GL corresponds to « under
the adjunction. O

Suppose that D hasand G : D — C preserves all limits. The adjoint functor theorems say that G
has a left adjoint, under various assumptions.

Lemma. Suppose that D hasand G : D — € preserves limits of shape J. Then for any A €
ob C, the category (A | G) has limits of shape J, and the forgetful functor U : (4 | G) » D
creates them.
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Proof. LetD : J — (A | G)beadiagram. We write each D(j)as (UD(j), f;) where f; : A - GUD(j).
Let (L, (4))jeops) be alimit for UD in D. By assumption, (GL, (GA4;)jeqp ) is @ limit for GUD in €. But
the edges of D are morphisms in (A | G), so the f; form a cone over GUD. Thus, we obtain a unique
factorisation f : A — GL such that (G4;)f = f; for all j. In other words, we have a unique lifting of
L to an object (L, f) of (A | G) which makes the 1; into a cone over D with apex (L, f). Any cone over
D with apex (M, g) becomes a cone over UD with apex M by forgetting the structure map, so we get a
unique & : M — L, and this becomes a morphism in (A | G) as both (Gh)g and f are factorisations
through L of the same cone over UD. O

Lemma. Let C be a category. Specifying an initial object of € is equivalent to specifying a
limit for the identity functor 1¢ : € — C, considered as a diagram of shape € in C.

Proof. First, suppose we have an initial object I in C. Then the unique morphisms I — A form a
cone over 1e, and it is a limit, because for any other cone (B,(14 : B — A)), then A; is the unique
factorisation as required. Conversely, suppose (I,(14 : I — A))is a limit for 1¢. Then certainly I
is weakly initial: it has at least one morphism to any other object, given by 1,. For any morphism
f I - A,itis an edge of the diagram, so fA; = A4, so it suffices to show that 1; is the identity
morphism. Using the same equation with f = 14, we obtain A44; = 44, so A; is a factorisation of
the limit cone through itself. As this factorisation must be unique, we must have A; = 1;. O

Proposition (primitive adjoint functor theorem). If D hasand G : D — C preserves all
limits, then G has a left adjoint.

Proof. The categories (A | G) have all limits, and in particular they have initial objects, so G has a
left adjoint. O

4.5 General adjoint functor theorem

Theorem (general adjoint functor theorem). Suppose D is complete and locally small. Then
afunctor G : D — C has a left adjoint if and only if G preserves small limits and satisfies the
solution-set condition: given any A € ob C, there is a set {f; : A — GB;};; such that every
f : A - GB factors as

i G
a1ty g, %y 6B

for somei € I and g : B; — B. This set I is called a solution-set at A.

The solution-set condition can be equivalently phrased as the assertion that the categories (A | G)
all have weakly initial sets of objects: every object of (A | G) admits a morphism from a member of
the solution set.

Proof. If F - G, then G preserves all limits that exist in its domain, so in particular it preserves small
limits, and {n, : A — GFA} is a solution-set at A for any A. Now suppose A € ob C. Then (A4 | G)
is complete, and is locally small as morphisms (B, f) — (B’, f')in (A | G) are a subset of D(B, B").
We must then show that if A is complete and locally small and has a weakly initial set of objects
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{S; | i € I}, then it has an initial object; then, setting A = (A | G) and using the solution-set as the
weakly initial set, the result follows.

First, we form the product P = [] ier Si- The set {P} is weakly initial since we have morphisms
m; . P — S;foralli. Now consider the diagram P = P whose edges are all endomorphisms of P. By
assumption, leti : I — P be a limit for this diagram; this is an equaliser over a family of morphisms.
Then I is weakly initial. For a parallel pair f,g : I = C, we have an equaliser e : E — I, and can
choose some h : P — E. Then we have the endomorphisms ieh and 1p of P. Thus iehi = 1pi = i,
but i is monic, so ehi = 1;. Hence e is a split epimorphism, and hence f = g. O

Example. (i) Consider the forgetful functor U : Gp — Set. Note that Gp is complete and locally
small, and U creates small limits so in particular it preserves them. Given a set A, any function
f : A — UG can be factored as

A s UG s UG

where G’ is the subgroup generated by {f(a) | a € A}. Note that the cardinality of G’ is at most
max(N, |A|), so we can fix a set B of this cardinality and consider all possible subsets of B,
all possible group structures on those sets, and all possible functions A — B’; these form a
solution-set at A. Hence, free groups exist. Note that the cardinality bound on G’ requires
most of the technology needed to explicitly construct free groups.

(ii) Let CLat be the category of complete lattices. The forgetful functor U : CLat — Set creates
all small limits; this can be seen in the same way as was shown with the forgetful functor
Gp — Set. In 1964, A. Hales proved that there are arbitrarily large complete lattices with only
three generators. Hence U has no solution set at A = {a, b, c}. Note that U is representable,
or equivalently, (1 | U) has an initial object. If CLat had all coproducts, we would be able to
form initial objects for (A | U), as every set is a coproduct of singletons. But CLat does not
have even finite coproducts.

4.6 Special adjoint functor theorem

Definition. Let A € ob C. A subobject of A is a monomorphism with codomain A; dually, a
quotient of A is an epimorphism with domain A. The subobjects of A in € form a preorder
Sube(A) by setting m < m’ when m factors through m'. € is well-powered if Sube(A) is
equivalent to a (small) poset for any A. Dually, we say C is well-copowered.

Example. Set is well-powered, since every monomorphism is isomorphic to a subset inclusion; the
power-set axiom encodes this fact. Set is also well-copowered, because quotients correspond to equi-
valence relations up to isomorphism, there is only a set of equivalence relations on a given object
A.

Lemma. Let
p—sa

K] \f;

BT)C

be a pullback square where f is monic. Then k is also monic.
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Informally, monomorphisms are stable under pullback.

Proof. Let ¢,m . D =3 P be such that k¢ = km. Then fhl = gk¢ = gkm = fhm, but f is a
monomorphism, so hl = hm.

D
e

N\P AN
€| \f;

B—>C

So ¢ and m are both factorisations of (h¢, k¢) through the pullback, so ¢ = m. O

Theorem. Let C, D be locally small, and suppose that D is complete, well-powered, and has
a coseparating set. Then a functor G : D — C preserves all small limits if and only if it has a
left adjoint.

Proof. As above, any functor with a left adjoint preserves all limits that exist. For the other direction,
fix an object A and consider the category (A | G), which is complete and locally small. Note that
the forgetful functor (A | G) — D preserves monomorphisms, because it preserves pullbacks. Thus,
one can show that (A | G) is well-powered, because the subobjects of a given object (B, f) are the
monomorphisms m : B’ — B for which f factors through Gm. If {S;},, is a coseparating set for D,
we have a coseparating set for (A | G) by taking the set of all f : A — GS; with i € I; this is a set
by local smallness. This is coseparating, because given h,k : (B,g) = (B',g’) with h # k, there is a
morphism ¢ : B’ — S; with ¢h # ¢k, and ¢ is a morphism (B, g') = (S;,(G¢)g’)in (A | G).

It remains to show that there is an initial object in a category A if it is complete, locally small, well-
powered, and has a coseparating set {S;};;. First, we form the product

P=]]s:

iel

and consider the diagram

N

p

whose edges are representative monomorphisms for each isomorphism class of subobjects of P. Let
I be the apex of a limit cone for this ‘wide pullback’. The legs of the cone are monomorphisms, using
the same argument as was described for pullbacks. In particular, the composite maps I — P are
monomorphisms, so I is a subobject of P. But by construction, it factors through every subobject of
P, so is a minimal subobject of P.

It remains to show that I is initial. Note that if f,g : I =3 A were different monomorphisms, their
equaliser e : E — I would yield a subobject of P contained in I — P, so it would be an isomorphism,
giving f = g. For an arbitrary object A € ob.A, form the product

@)
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and defineg : A —» Qby
g =f
As the S; form a coseparating family, g is a monomorphism. Thus A is a subobject of Q by g. There
isamap h : P - Q defined by
n(i,f)h =T
Thus we can form the pullback

B—3A

I ¥

Py Q

where k is a monomorphism as it is the pullback of a monomorphism. Hence B is a subobject of P,
and thus factors through I.

I-->B

S

P

Hence, we have a morphism I — A by composition. O

Example. Let] : KHaus — Top be the inclusion functor. KHaus is closed under small products
in Top by Tychonoff’s theorem, and is closed under equalisers since the equaliser of f,g : X 3 Y
is a closed subspace of X, and thus is compact and Hausdorff. Hence KHaus is complete, and the
inclusion preserves small limits. It is clearly locally small and well-powered, since the subobjects
of X are isomorphic to closed subspaces. It has a single coseparator, namely [0, 1], by Urysohn’s
lemma. Hence, by the special adjoint functor theorem, I has a left adjoint 8, which is the Stone-
Cech compactification functor.

Remark. Cech’s construction of 8 is almost identical to the construction of left adjoints given above.
Given a space X, one can form

P= H [0,1; g:X—->P;, 7mg=f
f:X-0,1]

which is the product of the members of coseparating set for (X | I). Then, X can be defined to be
the closure of the image of g, that is, the smallest subobject of (P, g) in (X | I).

The general adjoint functor theorem can also be used to construct 5. To obtain a solution-set at a space
X, observe that any morphism from X to a compact Hausdorff space IY factors as X — IY' — IY
where Y’ is the closure of X’ = {f(x) | x € X}. One can show that if Y’ is Hausdorff and X" is dense

inY’, then |Y'| < 2%,

5 Monads

5.1 Definition

Suppose F - G is an adjunction with F : € - Dand G : D — C, where C is a well-understood
category, but D is not. We can study D indirectly inside the context of € by using the adjunction. We
have the composite T = GF : ¢ — €, and we have the unit# : 1o — T. The counit is not directly
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accessible from €, but we have u = Gep : T? — T. The triangular identities give rise to identities
linking n and u.

In addition, naturality of € gives
T
T3 —£5 T2

wl L
T° ——>T
Definition. A monad on a category C is a triple T = (T, 7, u) where T is a functor € — C,

andn : 1l¢ » Tand u : T? — T are natural transformations satisfying the following
commutative diagrams.

T -y 2 T Ty 2 73 THy 72
\ u \ M I«lT\L \Lﬂ
1t 1t

T T T? — T

7 is the unit of the monad, and u is the multiplication of the monad.

The dual notion is called a comonad.

Example. (i) Let M be a monoid. The functor M X (—) : Set — Set has a monad structure. The
unitn, : A > M X A maps each a to (1, a), and the multiplicationuy : M XM XA > M X A
maps (m,m’,a) to (mm’,a). These maps are natural. The required commutative diagrams
encode precisely the left and right unit laws and the associativity law of a monoid. In fact,
monoids correspond precisely to monads on Set whose underlying functors have right adjoints.

(ii) Let P : Set — Set be the covariant power-set functor. This can be given a monad structure.
The unitn, : A — PA maps a to its singleton {a}, and the multiplication x4 : PPA — PA is
the union operation mapping S to [ J S. One can check that the required laws are satisfied.

These examples both arise as a result of adjunctions. Example (a) arises from the free M-set functor
F : Set — [M,Set] and the forgetful functor U : [M, Set] — Set, where F - U. For example (b),
there is a forgetful functor U : CSLat — Set from the category of complete (join-)semilattices. This
has a left adjoint P : Set — CSLat, which is the free complete semilattice on A. Indeed, given any

f 1 A > UB, there is a unique extension of f to a join-preserving map f : PA — Bgiven by
fay=\/{f@)|a ea}

Note that an M-set is a set A equipped withamap a : M XA — A, and a complete semilattice is a set
A equipped with amap \/ : PA — A. So the elements of the other category can be defined in terms
of the monad.

This holds in general: every monad arises from an adjunction. We present two constructions.
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5.2 Eilenberg-Moore algebras

Definition. Let T = (7,7, x) be a monad on €. An Eilenberg-Moore algebra or T-algebra is
a pair (A4, o) where A is an object in €, and a : TA — A is a morphism satisfying

A Ay Ta 24 1% TA

b T

A TA —— A

A homomorphism of algebras f : (4,a) — (B, ) is a morphism f : A — B such that the
following diagram commutes.

A -y TB

L b

A——B

This forms a category of T-algebras, denoted C".

Proposition. The forgetful functor G' : €' — € has a left adjoint F', and the adjunction
FT 4 GT induces the monad T on €.

Proof. We define the free algebra of an object A to be F'A = (TA,u,). This defines an algebra
structure on TA for every A by the monad laws. For f : A — B, we define F'f = Tf; thisis a
homomorphism by naturality of u. This is functorial as T is functorial.

We have GTFT = T. For the unit of the adjunction, we use the unit of the monad #». For the counit,
we define
Mam =a: FTA = (A,a)

This is a homomorphism by the definition of an algebra, and it is a natural transformation by the
definition of homomorphisms of algebras. It suffices to verify the triangular identities, which follows
from the remaining unused diagrams. One can check that the multiplication induced by this monad
is equal to that of T. O

5.3 Kleisli categories

IfF 4 GwithF : € > Dand G : D — C is an adjunction inducing T, then F’ - G’ with
F' : ¢ > D' and G : D' — €, where D' is the full subcategory of D on objects in the image of
F. Thus, when finding a construction for 2, we can assume that F is surjective (or, indeed, bijective)
on objects. Then, the morphisms FA — FB must correspond to morphisms A — GFB under the
adjunction, but GF = T.

Definition. Let T = (T, u,7) be amonad on €. The Kleisli category Cv is the category where
the objects are precisely the objects of €, and the morphisms from A to B in Cy are the morph-
isms A — TBin €. To avoid confusion, we will denote morphisms from A to B in this category
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by A -> B. The identity A -» Aisn, : A — TA. The composite of

is

up

where in the last diagram, the upper composite is (hg) f and the lower composite is A(gf) in Cy.

Proposition. There is an adjunction Fr | Gy where Fy : € — Cyand Gt : Gt — C that
induces the monad T.

Proof. We define FfA = A, and for f : A — B, define Ff = ngf. This preserves identities as
1p;4 = Ma, and preserves composites since

A—)BHTB

T
g Tg\l/ V \LMC
1T

Cc

T
1A —y 23 _#By TR

Note that G preserves identities by the unit law and preserves composites as

T T2 T
Iy p2p T8y 30 Tey 120

b e e

\ 2 \
TB —— T?C — > TC

TA
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commutes. Then Gy is a functor, and Gt Fy = T. The unit of the adjunction is the unit of the monad .
For the counitey : TA = FyGtA > A, we use the identity 114. This is natural, as given f : A -» B,
the diagram

TA FTGTf) TB
€ €B
~ ~
A ] B

Fr

commutes, as the paths are

T
TA —y r2p _#By T By p2p By 1p

and

T
1A s 123 _#By TR

which coincide. One can show that both triangular identities reduce to a unit law. It suffices to verify
that the multiplication of the induced monad is correct. The multiplication law is Grep, 4, which is

724 1A 124 KA Ty

which is equal to u 4, as required. O
5.4 Comparison functors

Definition. Let T = (T,7,x) be a monad on €. Then Adj(T) is the category of adjunctions
F - G which induce T, where the morphisms F 4 G to F’ - G’ are the functorsK : D — D’
satisfying KF = F' and G'K = G.

e
F F’
p@@/

N,

Theorem. The Kleisli adjunction F - G is initial in Adj(T), and the Eilenberg-Moore
adjunction FT 4 G' is terminal in Adj(T).

Proof. We will first do the case of the Eilenberg-Moore adjunction. Let F - G be an adjunction
inducing T. We define K : D — €' by KB = (GB,Geg). This is an algebra by the triangular
identities and naturality of . On morphisms f : B — C in D, we define Kg = Gg, which is a
homomorphism as ¢ is a natural transformation. Clearly G'K = G,and KFA = (GFA, Gepy) = FTA,
andfor f : A— A,KFf = GFf = Tf = F' f. So K is a morphism of Adj(T).

For uniqueness, suppose K’ were another such morphism. Then K'B = (GB, fg), and K'g = Gg for
g : B — C. Note that § must be a natural transformation GFG — G. Also, frs = Gepy for all A, as
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K'F = F'. But we have naturality squares

GFGFGB —£°By GFGB

BFGB\L \LGeFGB 53\1/ \LG*?B

GFGB ———— GB
B

where the left edges are equal and the top edge is a split epimorphism, so the right edges are equal.
Thus K is unique.

Given an adjunction F 4 G inducing T, we define H : Ct - D by HA = FA,and for f : A -» B,
define Hf to be the composite

FA 21 FGFB By FB

is the lower composite in the following diagram.

Fa —L s rorB —£E8s pororc LSSy FGRC

\l/eFB \l/sFGFC \l/GFc

FB ——— FGFC ———— FC

Then HFy(f) = epg(Fng)(Ff) = Ff. Moreover, GHA = GFA = TA = GtA,andfor f : A -» B,
GFf is the composite
G
cra s Grere -2y GFB

which is the definition of G(f). Thus H is a morphism of Adj(T). If H' : Gt — D were another
such morphism, then since H'Fy = F, we must have H'A = FA for all A. Note that for f : A -» B,
Hf is the transpose of f : A — GFB across F 4 G. Since H' commutes with G and Gy, and F 4 G
and Fy - Gy have the same unit 7, H' must send the transpose f : A > Bof f : A - GFBtoits
transpose across F - G, which is precisely the action of H on morphisms. Hence H' = H. O

Definition. The functor K : D — @' is called the Eilenberg-Moore comparison functor.
Similarly, the functor H : Ct — D is called the Kleisli comparison functor.

Remark. Note that Ct has coproducts if € does, since Fy preserves them and is bijective on objects.
However, it has few other limits or colimits in general. In contrast, €T inherits many limits and
colimits from €.

Proposition. (i) The forgetful functor G = G : @7 — @ creates any limits which exist
in C.
(ii) If € has colimits of shape J, then G = G' creates colimits of shape J if and only if T
preserves them.

Proof. Part(i). Let D : J — CT be a diagram of shape J. Write D(j) = (GD(}), g;) for j € obJ. Let
(L,(4; : L = GD(j))jeobs) be a limit for GD in €. Then (TL,(TA;)jeobs) is a cone over TGD, so

40



(TL,(8(T4;))jeobs) is a cone over TGD, and induces a unique 6 : TL — L making squares of the
form

T/lj .
TL —2% TGD(j)

el laj

L ﬁ GD(j)

commute for each j. Note that 6 is an algebra structure on L, since the required diagrams commute
by uniqueness of factorisation through limits. It is the unique algebra structure on L which make the
/Ij into a cone in €T, and one can easily show it is a limit cone.

Part (ii). In the forward direction, if G creates colimits of shape J, then it certainly preserves them,
as they exist in both categories. But F preserves all colimits, so T = GF preserves them. Given
D : J — €T and a colimit cone Aj : GD(j) — L under GD, we know that T4; : TGD(j) — TLisa
colimit cone, so there is a unique 6 : TL — L satisfying 6(T4;) = 1;6; for all j, and 6 is an algebra
structure since TTL is also a colimit. Hence (L, 8) is a colimit for D in €. O

Remark. One can show that €T has colimits of any shape which exist in €, provided that it has
reflexive coequalisers.

5.5 Monadic adjunctions

It can be useful to know, for an arbitrary adjunction, if the Eilenberg-Moore comparison functor
K : D — €U is part of an equivalence of categories. Note that the Kleisli comparison functor H is
always full and faithful, so is part of an equivalence if and only if it is essentially surjective, and since
its action on objects is F, this holds if and only if F is essentially surjective.

Definition. An adjunction F - G is monadic, or the right adjoint G is monadic, if K is part
of an equivalence.

Lemma. Let F 4 G be an adjunction inducing the monad T, and suppose that for every
T-algebra (A, ), the pair

Fa
FGFA 5 FA

€FA

has a coequaliser in 2. Then the comparison functor K : D — €T has a left adjoint L.

Proof. LetAs,q) - FA — L(A, a) be a coequaliser for Fa, €p4. We can make L into a functor el - .
Given f : (A,a) — (B, B), the composite 4 gy(F f) coequalises Fa and €g4, so it induces a unique
map Lf : L(A,a) - L(B, ). This makes L into a functor by uniqueness.

Fa 2 «
FGFA ? FA 2% 14, a)

€FA
FGF f\L rp \LF f \l/L f

FGFB % FB m L(B,B)
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For any object B of D, morphisms L(A,«) — B correspond to morphisms f : FA — B satisfying
f(Fa) = fepa. If f : A — GBis the transpose of f across F 4 G, then by naturality, the transpose of
f(Fa)is fa, and the transpose of fep, is Gf since g4 transposes to 1gp4. But we have f = eg(Ff),
s0 (Geg)(GFf) = (Geg)(Tf). Thus f(Fa) = f(epa) if and only if fa = (Geg)(Tf), which is to say
that f is an algebra homomorphism (A4, «) — (GB, Geg) = KB. Naturality of this bijection follows
from the fact that the map f — f is natural, so L - K as required. O

Definition. A parallel pair f,g : A =3 B is reflexive if there exists r : B — A such that
fr=gr=1p.
f \
B
e

g

8

~

1

=

Note that the parallel pair

Fa
FGFA ;} FA

€FA

is a reflexive pair, and the common right inverse is r = F74.

Definition. A split coequaliser diagram is a diagram

f

% h
e
R~ s

t

such that hf = hg,hs = 1¢,g8t = 1g, ft = sh. That is, h has equal composites with f and g,
and the following diagrams commute.

A-S4sp_"yc B—ty A

TAT A b

The equations hs = 1¢, gt = 1 enforce that s is a section of h, and t is a section of g. The equation
ft = sh enforces that the two non-identity paths from B to itself coincide.

Note that this implies that & is a coequaliser of f and g. Indeed, if k : B — D satisfies kf = kg, then
k = kgt = kft = ksh, so k factors through h. Moreover, this factorisation is unique as  is split epic.
Any functor preserves split coequaliser diagrams.

Definition. Given a functor G : D — €, we say that a parallel pair f,g : A =3 Bin D
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is G-split if there is a split coequaliser diagram

Gf
h ;
K~ D
t

in C.
Note that the pair

Fa
FGFA ; FA

€FA
is G-split, as
GFa

%

na
NGFA

is a split coequaliser diagram.

Theorem (Beck’s precise monadicity theorem). A functor G : D — € is monadic if and
only if G has a left adjoint and creates coequalisers of G-split pairs.

Theorem (Beck’s crude monadicity theorem). Suppose G : D — C has a left adjoint, and
G reflects isomorphisms. Suppose further that D has and G preserves reflexive coequalisers.
Then G is monadic.

We prove both theorems together.

Proof. First, suppose G : D — € is monadic. Then G has a left adjoint by definition. It suffices to
show that G' : €T — @ creates coequalisers of G'-split pairs. This follows from the argument of a
previous lemma: if f,g : (4,a) 3 (B, B) are algebra homomorphisms, and

f

% h
AT)BK_/>C
K.~ s

t

is a split coequaliser, then since the coequaliser is preserved by T and T2, C acquires a unique algebra
structure y : TC — C such that h is a coequaliser in €.

For the converse, either set of assumptions ensures that D has coequalisers of parallel pairs of the
form

Fa
FGFA ; FA

€FA

so the comparison functor K : D — €T has a left adjoint L. We must now show that the unit
and counit of L - K are isomorphisms. The unit (4,a) — KL(A, ) is the unique factorisation of
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GMa @ GFA — GL(A,a) through the (G"-split) coequaliser & : GFA — A of GFa, Gepy
GFGFA = GFA in C". But either set of hypotheses implies that G preserves the coequaliser of
Fa,egy, so the factorisation is an isomorphism. The counit LKB — B is the unique factorisation
of eg : FGB — B through Axp : FGB — LKB. The hypothesis in the precise theorem implies
directly that eg is a coequaliser of FGeg, egrp, because the pair is G-split. From the hypotheses of
the crude theorem, we can see that both eg and Axg map to coequalisers in €, so the counit maps to
an isomorphism in €, so it is an isomorphism as G reflects isomorphisms. O

Remark. (i) LetJ be the finite category

ml: l\

(i
A
k

with fr = gr = 1,rf = s,rg = t, then a diagram D of this shape is a reflexive pair. A cone
under it is determined by h : DB — L, which must satisfy h(Df) = h(Dg). A colimit for this
diagram is a coequaliser for f, g.

(ii) All small (respectively finite) colimits can be constructed from small (respectively finite) cop-
roducts and reflexive coequalisers. The pair f,g : P = Q in the proof form a coreflexive pair,
with common left inverse r : Q — P given by 7;r = Ty, for all j.

(iii) Given a reflexive pair f,g : A =3 B,amorphism h : B — C is a coequaliser for it if and only if
the diagram

o
Q%}T o~

is a pushout, since any cone under the span given by f and g has its two legs equal. The dual
of this statement has already been proven.

(iv) In any cartesian closed category, reflexive coequalisers commute with finite products: if the
following are reflexive coequaliser diagrams,

1 f2
H I’l.l H h2
Ay )Blﬁq Ay }BZHCZ
81 82
then the following diagram is also a coequaliser.
f1xf2 hyxchy

AIXAZ 1 BlXBZ%CIXCZ

81X82
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Indeed, consider the diagram

Al XA, 5 B XA, —» C; XA,

oo

A1XBZ 1 B1XB2HC1><B2

! 1 !

AL X G, ? B XCy —— C1 X G,

All rows and columns are coequalisers, since functors of the form (—) X D preserve coequalisers.
It then follows that the lower right square is a pushout. By reflexivity, if k : B; X B, - D
coequalises

X f81X8 1 A1 XA, 3 B XB,
then it also coequalises B; X A, = B; X B, and A; X B, = B; X B,, as they both factor through
the diagonal pair. Therefore, it factors through the top and left edges of the lower right square,
and hence through its diagonal.

Example. (i) The forgetful functor U : Gp — Set satisfies the hypotheses of the crude mon-

(i)

(iii)

(iv)

adicity theorem. Indeed, it has a left adjoint and reflects isomorphisms, and it creates reflexive
coequalisers. Given a reflexive pair f,g : A =3 B in Gp, consider its coequaliser h : UB — C
in Set. As reflexive coequalisers commute with products in Set,

]
UAXUA — { UBxUB — CxC
=
is a coequaliser. So we obtain a binary operation C X C — C making & into a homomorphism,
C into a group, and h a coequaliser in Gp. The same procedure applies for many other algebraic
structures, such as rings, modules over a given ring, and lattices. For infinitary algebraic cat-
egories such as complete semilattices and complete lattices, we can use the precise monadicity
theorem whenever a left adjoint exists.

Any reflection is monadic. If I : D — C is the inclusion of a reflective subcategory and
f,g& : A 3 Bisan I-split pair in D, then the splitting ¢t : B — A belongs to D, and so its
composite ft = sh also lies in D. But D is closed under limits that exist in €, so in particular
it is closed under splittings of idempotents.

Consider the composite adjunction

F L
Set 3 AbG 3 tfAbG

g TR TP
Both factors are monadic: we have already shown that F -4 U is monadic, and L - Iis a
reflection. However, the composite LF - UI is not monadic. Indeed, free abelian groups are

torsion-free, so the monad induced by the composite adjunction coincides with that induced
byFHU.

The contravariant power-set functor P* : Set” — Set is monadic as it satisfies the hypotheses
of the crude monadicity theorem. Its left adjoint is P* : Set — Set®”, and it reflects isomorph-
isms. Let
f
A—>B  C
—

g

45



W)

(vi)

be a coreflexive equaliser in Set. Then the square

s
—

8

o
Q%‘m &

ool

f

is a pullback. Thus, the composite

pB -£° pa —£25 pB
coincides with
Pg P f
PB —>% PC —=5 PB
Also, (P*e)(Pe) = 1p4 and (P*g)(Pg) = 1pp, so we obtain the following split coequaliser dia-

gram in Set.
P f

_— P*e
PC ———> PB } PA
Prg ‘e
v Pe
Pg

The forgetful functor U : Top — Set is not monadic. The monad induced by D - U is 1gg,
and the unit and multiplication are the identity natural transformations. Hence its category of
algebras is isomorphic to Set. This example demonstrates that reflection of isomorphisms is
necessary for the crude theorem.

The composite
D \ B \
Set EU Top f . KHaus

is monadic, where  is the Stone-Cech compactification functor; we will prove this using the
precise monadicity theorem. Consider a UI-split pair f,g : X 3 Y in KHaus.

Uf
h
UX —5— UY &/> z
.~ s

t

There is a unique topology on Z making h into a coequaliser in Top, which is the quotient
topology. This is compact as it is a continuous image of the compact space Y. Hence h will be a
coequaliser in KHaus if and only if this topology is Hausdorff. Note that the quotient topology
is the only possible candidate topology on Z that could make & into a morphism in KHaus.

Itis a general fact that for every compact Hausdorff space Y and equivalence relation S C Y XY,
the quotient is Hausdorff if and only if S is closed as a subset of Y X Y. Suppose (y;,,) € S,
so h(y;) = h(y,). Then the elements x; = t(y;) and x, = t(y,) satisfy

gx) =y gxx) =y fx1) = f(x2)

and if x;, x, satisfy these three equations, then h(y;) = h(y,). Thus S is the image under
gXxXg: XXX — Y XY of the equivalence relation R on X given by {(x;, x,) | f(xx;) = f(x,)}-
But R is closed in X X X, as it is the equaliser of fm,, fr, : X X X 33 Y into a Hausdorff space,
so it is compact. Hence S is compact, and thus closed.
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Definition. Let F - G be an adjunction with F : € - D,G : D — €. Suppose that D has
reflexive coequalisers. The monadic tower of F - G is the diagram

DN

where T is the monad induced by F - G, K is the comparison functor, L is the left adjoint to
K which exists as D has reflexive coequalisers, S is the monad induced by L - K, and so on.
We say that F - G has monadic length n, or that D has monadic height n over C, if the tower
reaches an equivalence after n steps.

If F 4 G is an equivalence, it has monadic length zero. Monadic length one means that F - G is
monadic but not an equivalence, and example (iii) above has monadic length two.

6 Monoidal and enriched categories

6.1 Monoidal categories

There are many examples of categories € equipped with a functor ® : € X ¢ — € and an object
I € ob € that turn C into a monoid up to isomorphism. Such a structure on a category is called a
monoidal structure, which will be defined precisely at the end of this subsection.

Example. (i) Let C be a category with finite products. Let ® be the categorical product X, and
let I = 1 be the terminal object. This is known as the cartesian monoidal structure. Dually, if
C is a category with finite coproducts, it has a cocartesian monoidal structure, given by ® = +
andI =0.

(ii) In Met, the different metrics on X X Y yield different monoidal structures on Met. Each of
these have the one-point space, which is the terminal object, as the unit of the monoid.

(iii) In AbGp, the tensor product gives a monoidal structure, where Z is the unit. Recall that if
A, B, C are abelian groups, then morphisms A ® B — C (that is, Z-linear maps) correspond
to Z-bilinear maps A X B — C. Similarly, if R is a commutative ring, the tensor product ®p
gives a monoidal structure on Mody with unit R. The R-linear maps A ® B — C correspond
to R-bilinear maps A X B — C.

(iv) For any category C, its category of endofunctors [C, €] has a monoidal structure given by com-
position. The unit is the identity endofunctor 1e.

(v) For posets with top and bottom elements 1 and 0, we can define the ordinal sum A = B to be the
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poset obtained from their disjoint union, by identifying the top element of A with the bottom
element of B. This is a monoidal structure, where the unit is the one-element poset.

Definition. A monoidal category is a category € equipped with a functor ® : € X € - C
and a distinguished object I, together with three natural isomorphisms

aapc: (A®B)®C>AQRBRC);, Ay IQA—-A; py iAQI—A
such that the diagrams

aspc®lp

(A®B)®C)®D S (A®BRC)®D

aA@B,C,D\L \LO‘A,B®C,D

(A®B)®(C®D) A®(B®C)®D)

XA,B,C®D 14®agcp

AQBR(C®D)

QA,ILB

AQD®B > AQU®B)

mm AAB

AQ®B

commute, and A; = p; : I ® I - I. A monoidal category is strict if a, A, p are identities.

a is called the associator, and A and p are the left and right unitors.

These diagrams suffice to prove the commutativity of the following two diagrams.

I®A)®B 2% I®(A®B) ARB)RI 2 AR BRI

], e
A®lp % m A®PB

AQ®B AQ®B

Note that in the category of abelian groups with the usual tensor product, the obvious choice for
a4 p,c is the map sending (a ® b) ® c to a ® (b ® c). However, there is also a natural isomorphism
sending (a ® b) ® c to —a ® (b ® c). But this choice does not satisfy the pentagon equation, as a
pentagon has an odd number of sides.

6.2 The coherence theorem
Given a monoidal category (C, ®, I), we define a word recursively.
(i) We have a stack of variables A, B, C, ..., which are all words.
(ii) The unit I is a word.
(iii) If u,v are words, then u ® v is a word.

A word with » variables defines a functor €" — €.
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Theorem (Mac Lane’s coherence theorem). For any two words w, w’ with the same sequence
of variables in the same order, there is a unique natural isomorphism w — w’ obtained by
composing instances of a, 4, p and their inverses.

Proof. We define the height of a word w to be a(w) + i(w), where

(i) a(w)isthe associator height, which is the number of closing parentheses occurring immediately
before ® in w;

(ii) i(w) is the number of occurrences of I in w.

Applying any instance of a, 4, p to a word reduces its height. For example, if ... : w — w’, then
a(w') < a(w) and i(w') = i(w), and correspondingly if 1...w — w’, then i(w’) = i(w) — 1 and
a(w') < a(w). In particular, any string of instances of a, 4, p starting from w has length at most
a(w) + i(w).

We say that a word w is reduced if either a(w) = i(w) = O or w = I. If a(w) > 0, then w is the
domain of an instance of «, and if i(w) > 0 and w # I, then w is the domain of an instance of either
A or p. Thus, for any word w, there is a string w — --- — wy where w, is the unique reduced word
containing the same variables of w in the same order. We must show that any two such strings have

the same composite. Given
w
SN
wl wl/

where ¢, 1 are instances of @, 4, or p, we need to find a word w” completing the commutative square

w
o N
wl w//
N Y
wl”

where 6, y are composites of instances of o, 4, and p.

If g, ¥ act on disjoint subwords of w, so w = u @ v where p = ¢’ ® 1, and = 1,, ® ¥’, then we can
fill in the square as follows.

u®u
u v

u Q®u

1@% Am

u Qv

Now suppose one acts within the argument of the other, for example, if pisa;;, ,and ¢ = (1, @P)®
1,. Then by naturality of o, we can complete the diagram with 1, ® (3’ ® 1,) and a; 57 .
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Now suppose that ¢ and 3 interfere. If ¢ and 1 are both instances of «, then the pentagon equation
completes the commutative square.

Suppose one is an instance of « and the other is an instance of A or p. Then I must occur as one
of the three arguments to a. If it is the middle argument, the two diagrams in the definition of a
monoidal category complete the square. If if is the left or right argument, the other two diagrams
defined immediately after will complete the square.

Finally, if one is an instance of 1 and the other is an instance of p, then they must be A; and p;, and so
must agree. This completes the proof that there is a unique natural isomorphism to a reduced word.

Now suppose we have a string

\ Z
Wy 7 W2 < W3

~

w4 e wl’l

Then there are unique ‘forwards’ morphisms

\ 2 \
Wo

to wq, which is the reduced word with the same sequence of variables. Each of the triangles must
commute by the uniqueness result proven above. Hence the composite of the arrows along the top
edge is equal to the composite w; = wy < wy,. O

Wy

Definition. A symmetry on a monoidal category (C, ®,I) is a natural isomorphism y, p :
A ® B - B ® A such that the following diagrams commute.

a 14®
URB)®C 228 AgB®RC) 25°A® (C®B)

VA@B,C\L \l/“:;,lc,B

COMAB®B) ¢ (C®A)®BVWB(A®C)®B

YA,B

AQI — ™ v i®a A®B 25 B®A

DN -

AQ®B

For the weaker notion of a braiding, we can omit the last of the three diagrams, but add an additional
hexagonal equation, since it can no longer be derived from the first.

There is a coherence theorem for symmetric monoidal categories, which is also due to Mac Lane. The
theorem shows that for any two words w, w’ involving the same set of variables without repetition,
there is a unique natural isomorphism between w and w’ obtained from compositions of instances
of a, 4,y and their inverses. Note that p is not necessary, as it can be produced from instances of 1
and y. The examples of monoidal categories above are all symmetric, except for (iv) and (v).
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6.3 Monoidal functors

Definition. Let (C,®,I), (D, ®,J) be monoidal categories. A (lax) monoidal functor F :
(€, ®,I) » (D,d,J) is a functor F : € — D equipped with a natural transformation ¢ AB -
FA®FB — F(A®B) and a morphism : J — FI, such that the following diagrams commute.

PAR®B,C

(FA® FB) ® FC"XFr4 @ B) @ FC “*° F(A® B)® C)

“FA,FB,FC\L \LF aa,B,C

FA® (FB® FC) ——» FA®F(B®C) ;— FA®(B® C))

ToFA B4 FroFa FA®T 2% FA@FI

ﬂFA\L \L(UI A PFA\L \LfPA 1

FA ¢—— FI®A) FA4{—— FA®I
FAA FpA

We say F is strong monoidal (respectively strict monoidal) if ¢ and ¢ are isomorphisms (respect-
ively identities). An oplax monoidal functor is the same definition, but where the directions
of the maps ¢ and ¢ are reversed.

Note that the same letters are used for the associators and unitors in both monoidal categories.

Example. (i) The forgetful functor U : (AbGp, ®,Z) — (Set, X,1) is lax monoidal. We define
t : 1 - Ztomap the element of 1 to the generator 1 € Z, and definep : UAXUB — U(A®B)
by (a,b) — a ® b. One can easily verify that the required diagrams commute.

(ii) The free functor F : (Set,%,1) — (AbGp, ®, Z) is strong monoidal, because F1 = Z and
F(A X B) =~ FA Q@ FB.

(iii) Let R be a commutative ring. Then the forgetful functor Modr — AbGp is lax monoidal,
where ( : Z — R is the natural map, and ¢ : A ® B - A ®g B is the quotient map. Its left
adjoint, the free functor AbGp — Modg, is strong monoidal.

(iv) If € and D have the cartesian monoidal structure, then any functor F : € — D is oplax
monoidal. ¢ : F1 — 1 is the unique morphism to the terminal object of D, and p4 5 : F(A X
B) — FA X FB is given by (Fmy, Frr,). F is strong monoidal if and only if it preserves finite
products.

(v) If X and Y are metric spaces, then 1xy is non-expansive asamap (X X Y,d;) - (X X Y,d),
making the identity functor 1y, into a monoidal functor (Met, X,,1) - (Met, X;,1). Note
that the d, metric on X X Y defines the categorical product.

Lemma. Let € and D be monoidal categories. Let F 4 G,whereF : € - DandG : D — C.
Then there is a bijection between lax monoidal structures on G and oplax monoidal structures
onF.

Proof sketch. Suppose we have (¢,t) on G. Then the transpose of ¢t : J — GI is a morphism FJ — I,
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and we have a natural transformation

F
FA® B) 2V £(GFA ® GFB) — % FG(FA @ FB) —“®™ FA @ FB

One can check that each of the required diagrams commute, defining an oplax monoidal structure

onF.

By duality, an oplax monoidal structure on F yields a lax monoidal structure on G, and it can

be shown that these constructions are inverse to each other. O

64

Closed monoidal categories

Definition. We say that a monoidal category (€, ®, I) is (left/right/bi)-closed if AQ (—), (—)®
A, or both have right adjoints for all A. If ® is symmetric, we say in any of these cases that €
is closed.

Right adjoints for (—) ® A are denoted [A, —] if they exist.

Example. (i) A cartesian closed category is a monoidal category with ® = X, that is closed as a

(i)

(iii)

(iv)

W)

6.5

monoidal category. In particular, Set and Cat are cartesian closed.

The metric d; on the set [X, Y] of non-expansive maps X — Y yields a closed structure on
(Met, X, 1).

AbGp and Mody, for any commutative ring R are monoidal closed, where [A, B] is the set of
homomorphisms A — B, turned into an abelian group or R-module by pointwise addition
and scalar multiplication. The homomorphisms C — [A, B] correspond under A-conversion to
bilinear maps C X A — B, and thus to homomorphisms C @z A — B.

The cartesian monoidal structure on the category of pointed sets Set, is not closed, but the
monoidal structure given by the smash product (—) A (—) is closed, where

(A,ap) A (B,bg) =A% B/

and ~ identifies all elements where either coordinate is the basepoint. Basepoint-preserving
maps AAB — C correspond to basepoint-preserving maps from A to the set [B, C] of basepoint-
preserving maps B — C.

Consider the set Rel(A X A) = P(A X A) of relations on A. This is a poset under inclusion, and
is a monoid under relational composition. Composition is order-preserving in each variable,
making Rel(A X A) into a strict monoidal category. It is not symmetric, but biclosed. For the
right adjoint to (—) o R, we define R = T to be

(R=>T)={(b,c)eAXA|Va€eA, (ab)eER=(a,c) €T}

Then S C (R= T)ifandonlyif SoR C T.

Enriched categories

Definition. Let (&, ®,I) be a monoidal category. An E-enriched category consists of

(i) acollection ob € of objects;
(ii) an object C(A, B) of & for each pair of objects A, B € ob C;
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(iii) morphismsty : I — C(A, A) for each A;
(iv) morphisms x4 g ¢ : C(B,C) ® C(A,B) — C(A, C) for objects A, B, C,
such that the following diagrams commute.

[® €A B %8, B) @ (A, B)

\J/KA,B,B
Ae(a,B)

C(A,B)

C(4,B) ® ' 24Pe(4, B) @ C(4, A)

\LKA,A,B
Pm
C(A,B)

(C(C,D) ® E(B,C)) ® C(A,B) =21 €(B,D) ® €(A, B)

a C(A,D)

C(C,D)® (C(B,C) ® C(A,B)) W) C(C,D)® C(A,C)

Definition. Let C,2 be &-enriched categories. An E-enriched functor € — D consists of
a map of objects F . obC — ob D together with morphisms F, g : C(A,B) — D(FA,FB)
for each pair of objects A,B € ob €, in such a way that is compatible with identities and
composition.

Definition. Let F,G : € = D be &-enriched functors between £-enriched categories. An &-
enriched natural transformation F — G assigns a morphism 6, : I — D(FA, GA) to each
A € ob €, satisfying the naturality condition

C(A,B) — 25\ 1(FA,FB) S I ® D(FA, FB)

GA,B\L \LQB ®1

D(GA, GB) D(FB, GB) ® D(FA, FB)

| I

D(GA,GB) ® I 1> D(GA,GB) ® D(FA, GA) ———— D(FA,GB)

If € is an &-enriched category, its underlying ordinary category |C| is the category where the objects are
those of €, the morphisms A — B are the morphisms I — C(A, B) in £, where the identity morphisms
are given by ¢4, and the composition ofg : C - Band f : A — B given by

I 191 2% 0(B.0)® C(A.B) —53 (A.C)
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One can check that this indeed forms a category. An E-enrichment of an ordinary category C, is an
&-enriched category € such that |C| = C,,.

Example. (i) A category enriched over (Set, X, 1) is a locally small category.
(ii) A category enriched over the poset 2 = {0, 1} with 0 < 1 is a preorder.

(iii) A category enriched over (Cat, X, 1) is a 2-category. Its morphisms or I-arrows A — B are the
objects of a category C(A, B). It has 2-arrows between parallel pairs f,g : A = B, which are
the morphisms f — g in the category C(A4, B). Cat is a 2-category, by taking the 2-arrows to
be the natural transformations. The category of small £-enriched categories with £-enriched
functors is a 2-category.

(iv) A category enriched over (AbGp, ®, Z) is an additive category.

(v) If&isarightclosed monoidal category, it has a canonical enrichment structure over itself. Take
E(A, B) to be [A, B], where [A, —] is the right adjoint of (—) ® A. The identity I — [A, A] is the
transpose 14 : I ® A — A, and the composition «x is the transpose of

(B,C1® [A,B) ® A — [B,C] ® ([4,B] ® A) —=% [B,C]®B —5 C

where ev is the evaluation map, which is precisely the counit of the adjunction.

(vi) A one-object E-enriched category is an (internal) monoid in &; it consists of an object M of &,
equipped with morphismse : I - Mand m : M @ M — M satisfying the left and right unit
laws and the associativity law.

(a) An internal monoid in Set is a monoid.
(b) An internal monoid in AbGp is a ring.
(c) An internal monoid in Cat is a strict monoidal category.

(d) An internal monoid in [€, €] is a monad on C.

7 Additive and abelian categories

7.1 Additive categories

In this section, we will study categories enriched over (AbGp, ®, Z); these are called additive categor-
ies. We will also consider other weaker enrichments: a category enriched over (Set,, A, 2) is called
pointed, and a category enriched over (CMon, ®, N), where CMon is the category of commutative
monoids, is called semi-additive.

In a pointed category C, each C(A, B) has a distinguished element 0, and all composites with zero
morphisms are zero morphisms. In a semi-additive category C, each C(A4, B) has a binary addition
operation which is associative, commutative, and has an identity 0. Composition in a semi-additive
category is bilinear, so (f + g)(h + k) = fh + gh + fk + gk whenever the composites are defined. In
an additive category, each morphism f € C(A, B) has an additive inverse —f € C(A, B).

Lemma. (i) For an object A in a pointed category C, the following are equivalent.
(a) Aisaterminal object of C.
(b) Ais an initial object of C.
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() 1,=0:A4—> A.
(ii) For objects A, B, C in a semi-additive category €, the following are equivalent.
(a) there exist morphisms 7z; : C - Aand 7, : C — B making C into a product of A

and B;

(b) there exist morphismsv; : A — C and v, : B — C making C into a coproduct of
A and B;

(c) there exist morphisms 7; : C »> A,m, : C - B,v; : A > C,v, : B> C
satisfying

TV =1 TV, =1p;, My, =0; mv, =0, vm +vm =1¢

Proof. In each part, as (a) and (b) are dual and (c) is self-dual, it suffices to prove the equivalence of
(a) and (c).

Part (i). If A is terminal, then it has exactly one morphism A — A, so this must be the zero morphism.
Conversely, if 14 = 0, then A is terminal, as forany f : B — A, wehave f = 1,f = 0f = 0, so the
only morphism B — A is the zero morphism.

Part (ii). If (a) holds, take v;, v, to be defined by the first four equations in (c); it suffices to verify the
last equation, v, 77, + v,7, = 1¢. Composing with 7,

7711}17{1 = 1A77"l + 077:2 = 7{1
and similarly, composing with 7, gives 7,. So by uniqueness of factorisations through limit cones,
V17T, + Vo7, must be the identity. Conversely, if (c) holds, given a pair f : D - Aand g : D - B,

the morphism
h=vf+v,8

satisfies
mh=1,f+0g=f; mh=0f+1,48=¢g
giving a factorisation, and if 4’ also satisfies these equations, then

h' = +vam)h’ =vif +v8=h

so the factorisation is unique. O

In any category, an object which is both initial and terminal is called a zero object, denoted 0. An
object that is a product and a coproduct of A and B is called a biproduct, denoted A & B.

Lemma. Let € be a locally small category.
(i) If € has a zero object, then it has a unique pointed structure.
(ii) Suppose € has a zero object and has binary products and coproducts. Suppose further
that for each pair A, B € ob C, the canonical morphism ¢ : A+ B — A X B defined by
1 ifi=j
TiCVj = ps s
0 ifi#j

is an isomorphism. Then € has a unique semi-additive structure.

We adopt the convention that morphisms into a product are denoted with column vectors, and morph-
isms out of a coproduct are denoted with row vectors.
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Proof. Part (i). The unique morphism 0 — 0 is both the identity and a zero morphism. So for any
two A, B : ob €, the unique composite A — 0 — B must be the zero element of C(A, B). We can
define a pointed structure on C in this way.

Part (ii). This technique is known as the Eckmann-Hilton argument. Given f,g : A = B, we define
the left sum f +, g to be the composite

¢ )
g 1 (11
A—"3BxB -3 B+B B

and the right sum f +, g to be

1
A S AXA —35 B+B-—3 B

(&)= (i)
k(f +,8) =kf +, kg

So if we show that the two sums coincide, we obtain the required distributive laws. First, note that
0 : A — Bis atwo-sided identity for both +, and +,. For example, f +, 0 = f, since

Note that (f +, g)h = fh +, gh, since

and similarly,

A ! \ B s \ B
V1 /
N /1 \ 1 1)
o) BxB —gl— B+B

commutes. Suppose we have morphisms f, g, h,k : A — B, and consider the composite
1 ;g
1 -1 h k -1 1 1)
A—> AXA > A+A > BXB —— B+B —— B

The composite of the first three factors is
f+rg
h+,k

so the whole composite is (f +, g) +, (h +, k). Evaluating from other end, we obtain

FHre+e(h+ ) =(f+eh) +r (g +c k)

This is known as the interchange law. Substituting g = k = 0, we obtain f +,k = f +, k. Substituting
f =k = 0(and dropping the subscripts) we obtain the commutative law g + h = h + g. Substituting
h = 0, we obtain the associativity law (f + g) + k = f + (g + k).

For uniqueness, suppose we have some semi-additive structure + on €. Then v,7; + v,7, must be
. 1 0 .
the inverse of ¢ = (0 1) : A+ B — A X B, since

nme=v(1 0)=(v; 0); wme=(0 v,)
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SO
(V17T1 + V27T2)C = (Vl +0 0+ Vz) = (Vl Vz) = 1A+B

Hence the definitions of +, and +, both reduce to +. O

Note that if € and D are semi-additive categories with finite biproducts, then a functor F : € — D
is semi-additive (that is, enriched over CMon) if and only if it preserves either finite products or
finite coproducts. In particular, if F has either a left or right adjoint, then it is semi-additive, and
the adjunction is enriched over CMon; the bijection C(A4, GB) — D(FA, B) is an isomorphism of
commutative monoids, since the operations F(—) and (—)eg both respect addition.

7.2 Kernels and cokernels

Definition. Let f : A — B be a morphism in a pointed category C. The kernel of f is the
equaliser of the pair (f,0); dually the cokernel is the coequaliser of (f,0). A monomorphism
that occurs as the kernel of a morphism is called normal.

In an additive category, the normal monomorphisms are precisely the regular monomorphisms, since
the equaliser of (f, g) is the kernel of f — g. In Gp, all inclusions of subgroups are regular, but not all
inclusions are normal, since a normal monomorphism corresponds to a normal subgroup. In Set,, all
surjections are regular epimorphisms, but (4, ag) — (B, by) is a normal epimorphism if f is bijective
on elements not mapped to b,. We say that a morphism f : A — B is a pseudomonomorphism if its
kernel is a zero morphism; that is, fg = 0 implies g = 0.

Lemma. In a pointed category with kernels and cokernels, f : A — B is normal monic if
and only if f = ker coker f.

Proof. If f = kercoker f, it is clearly normal. Now suppose f = kerg. Then g factors through
the cokernel of f, so g(kercoker f) = 0. Thus ker coker f < f in Sub(B). But (coker f)f = 0, so
f < kercoker f, so they are isomorphic as subobjects of B. O

Corollary. In a pointed category with kernels and cokernels, the operations ker and coker
induce an order-reversing bijection between isomorphism classes of normal subobjects and
isomorphism classes of normal quotients of any object.

Remark. For any morphism f : A — B in such a category, ker coker f is the smallest normal subob-
ject of B through which f factors.

7.3 Abelian categories

Definition. An abelian category is an additive category with all finite limits and colimits.
Equivalently, an abelian category is a category with a zero object, finite biproducts, kernels,
and cokernels, such that all monomorphisms and epimorphisms are normal.

Example. (i) The category AbGp is abelian; more generally, for any ring R, the category Mody
is abelian.
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(ii) IfA is abelian and € is small, then [€,.4] is abelian, with all structures defined pointwise.

(iii) If A is abelian and € is small and additive, then the category of additive functors ¢ — A,
denoted Add(C,.A), is also abelian, as it is closed under all of the structures on [C,.A4]. Note
that this covers the case of R-modules, as an additive category with a single object is a ring,
and the category of modules over such a ring is isomorphic to the category of additive functors
from this category to AbGp.

Remark. If f : A — B in an abelian category, then ker coker f is the smallest subobject I - B
through which f factors. This is called the image of f, denoted im f = ker coker f. The other part
of the factorisation A — I is epic, as it cannot factor through the equaliser of any nonequal parallel
pair I =3 C. Thus, it is also the smallest quotient of A through which f factors, so it is the coimage of
f, given by coim f = coker ker f. The composition A - I = B is the unique epi-mono factorisation

of f.

To show that this factorisation is stable under pullback, it suffices to show that the pullback of an
epimorphism in an abelian category is epic, as the corresponding statement for monomorphisms
has already been shown.

Lemma (flattening lemma). Consider a square

Aty
8 h
C—>D

in an abelian category A. Its flattening is the sequence

W o

h -k
A—3B®C—>D

Then
(i) the square commutes if and only if the composite of the flattening (h  —k) (ch ) is the
zero morphism;

(ii) the square is a pullback if and only if ({; ) =ker(h —k);

(iii) the square is a pushout if and only if (h  —k) = coker (}g )

Proof. Part (i). The composite (b —k) (é ) is hf — kg, so it vanishes if and only if the square com-

mutes.
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Part (ii). <£ ) is the kernel of (h  —k) if and only if

ALy

g

C

is universal among spans completing the cospan

B
I
c —)k D
into a commutative square.
Part (iii). Follows by duality, taking care of the asymmetric negation. O

Corollary. In an abelian category A, epimorphisms are stable under pullback.

Proof. Suppose we have a pullback square

1,
s

=
b(tbd

a

k

By part (ii) of the above result, <£ > = ker(h —k). But h is an epimorphism, so (h —k) is also
f

an epimorphism. Thus (h —k) = coker (g)’ so the square is also a pushout. We show that g is a
pseudoepimorphism; this suffices as A is abelian. Suppose we have ¢ : C - E with €g = 0. Then

(g (B 2 E)) factors uniquely through the pushout.

A—Lsp
b
0
C——>D
\n:l“
4 E
But then mh = 0 and h is epic, so m = 0, giving ¢ = mk = 0. O

Thus image factorisations are stable under pullback, and dually, under pushout.

7.4 Exact sequences
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Definition. A sequence

fn fn
> Appr —> Ay = Ay —

in an abelian category A is exact at A,, if ker f;, = im f,,;. The entire sequence is said to be
exact if it is exact at every vertex.

By duality, the sequence is exact at A,, if and only if coker f,,,; = coim f,,.

Example.

0—3sa-Jtsp 2y

is exact at A if and only if f is monic, and is exact at A and B if and only if f = kerg.

Definition. A functor between abelian categories F : A — B is exact if it preserves arbitrary
exact sequences.

This implies that F preserves kernels and cokernels, and the converse is true as images are defined
in terms of kernels and cokernels.

Definition. F is left exact if it preserves exact sequences of the form

f

0—3sA—1yp_%

S, @

Proposition. Let F : A — B be a functor between abelian categories. Then
(i) F is left exact if and only if it preserves all finite limits (and hence is additive);
(ii) F isexact if and only if it is left exact and preserves epimorphisms.

Proof. Part (i). One direction is trivial as kernels are finite limits. Conversely, note that for any A, B,
the sequence

1

(0) (0 1)

0—S>A—3SA®B—%B—30

is exact, and conversely, if we have an exact sequence

0—3 a1y

> B > 0

and either f is a split monomorphism or g is a split epimorphism, then C =~ A @ B. Indeed, suppose
that f is split, sorf = 14. Then g = coker f = coker fr is the coequaliser of (1 — fr,1¢), so it is
the epic part of a splitting of the idempotent 1 — fr. If s : B — C is the monic part of this splitting,
then the four morphisms (r, g, f, s) satisfy the equations of a biproduct. So F maps

((1)> (0 1)

0 —A —>A®B—F B ——>0
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to a sequence identifying F(A @ B) as FA @ FB, and thus preserves biproducts. Hence F preserves
all finite limits.

Part (ii). If F is left exact and preserves epimorphisms, then it preserves the exactness of sequences

of the form

f

0—3 A sy ¢ 8

> B

~
o

Thus it preserves kernels and cokernels. O

7.5 The five lemma

Lemma. Suppose we have a commutative diagram in an abelian category

A Dsoa, Ly oa, By, oy g

\l/ul \Luz lug lu‘t \Lus

\ \
B, ? By —57 Bs

~
oy
~

81 83

where the rows are exact sequences. Then,
(i) ifu, is epic and u,, u, are monic, then u; is monic;
(ii) if us is monic and u,, u, are epic, then u; is epic.
Thus if uy, u,, uy, us are isomorphisms, u; is an isomorphism.

Proof. By duality it suffices to show (i). We show u; is a pseudomonomorphism. Suppose we have
x : C — A;with uzx = 0. Then u, f3x = g4u3x = 0, so as u, is a monomorphism, f3x = 0. Hence x
factors through the kernel of f;, which is the image of f,. Form the pullback of f, and x to obtain

p Yy

z pe
A Ly 4, Ly gy Ly g, L g,
\l/ul U Uus \l/u4 J/us
By —7 Bo —;7 Bs —;7 Bs — 7 Bs

Then y is also the pullback of this factorisation of x along coim f5, so y is an epimorphism as epi-
morphisms are stable under pullback. Then g,u,z = usf,z = usxy = 0. Thus u,z factors through
ker g, = im g,. Consider the pullback square
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So v is epic, as it is the pullback of coim(g;u;).

B,

Thus u,zv = g;u w, and u, is monic, so zv = fjw. Then xyv = f,zv = f,fiw = 0, and yv is epic,
hence x = 0. O

7.6 The snake lemma

Lemma. Consider a diagram in an abelian category

where the rows are exact and the squares commute. Then we obtain an exact sequence

Kerv; ——— Kerv, ——— Keruv;

) ! !

B, > B, > Bs J > 0
S
U1 Uy U3
0 > C1 > Cy > C3

¢ ¢ ¢

Cokerv; ——» Cokerv, ——> Coker v,

7.7 Complexes in abelian categories

Definition. Let A be an abelian category. A (chain) complex in A is an infinite sequence of
objects and morphisms

dp+1 dn
> Cn+1 > Cn > Cn—l >

where the composite of any two consecutive morphisms is zero.
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Note that a complex may be identified with an additive functor & — A, where Z is the additive
category with ob Z = Z and

Z(n,m)={z ifm=norm=n—-1

0 otherwise

Thus, complexes on A are the objects of an abelian category cA = Add(Z,.A), where the morphisms
are natural transformations.

Definition. Let C, be a complex. We define
() z,(C.) » C, to be the kernel of d,;;
(i) I,(C.) » C, to be the image of d, ,;
(iii) Z,(C.) » H,(C.) to be the cokernel of I,(C.) » Z,(C.).
We say that H,,(C.) is the nth homology object of C.,.

Note that Z,,, I,,, H,, are additive functors CA — A.

Lemma. The construction of H,(C,) is self-dual.

Proof. Write C,, » Q,,(C.) for the cokernel of d,,, ;. Then we have the diagram

dp+1 dn
Cn+1 > Cn > Cn—l

+ 7 N 1

Il’l H Zn % Hn Qn H) In—l

By definition, I,, - C,, is ker(C,, —» Q). As Z,, —» C, is a monomorphism, I,, — Z, is ker(Z,, —
C, - Q,). Hence Z,, - H,, is coim(Z,, — Q,,), so we obtain

dn+1 dn
Cn+1 > Cn > Cn—l

+ 7 N 1

InHZn%)HnHQnH)In—I

and Z,, » H,, » Q, is the image factorisation of Z,, — Q,,. O

Theorem (Mayer—Vietoris sequence). Suppose we have a short exact sequence of complexes
in A.

/AN

00— A Ly B &

> C.

~
=]

Then there is a long exact sequence of homology objects

o — HyA) 29 o) B gc) — Hy(a) ™= Kn, )", (c) — -
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Proof. First, we apply the snake lemma to

0 > An+1 fn+1> Bn+1 ﬁ) Cn+1 —> 0

Lo

7 By > Cn > 0

0 > An

fn 8n

to obtain exact sequences

0 —> Zy1(A) — Zp(B.) —> Z,1(C)

and

Qn(A-) H Qn(B-) H Qn(C-) H 0

Thus Z, is a left exact functor and Q,, is right exact. We now apply the snake lemma again to the
diagram

Qn+1(A-) H Qn+1(B-) H Qn+1(C-) —> 0

1 1 1

0 —— Zy(A) —> Zy(B) —> Zy(C.)

Here, the cokernel of Q,,; — Z, coincides with that of I,, - Z,, as Q,,; — I, is epic. Their kernels
coincide with H, ;1 — Q,,; as homology is self-dual. Hence we obtain

Hp11(A) — Hp(B.) — Hpa(C.) — Hy(A)) —— Hy(B) — Hyu(C)

as required. O

Note that Z,, : cA — A is the right adjoint to the functor A — A[n], where A[n] is the complex that
has A in dimension n and 0 everywhere else; this gives another proof that Z is left exact. Dually, Q,,
is the left adjoint to this functor.

Definition. Let f,,g. : C., = D, be two morphisms of CA. A homotopy from f, to g, is a
sequence of morphisms h,, : C,, —» D,; such that

8n — fn = dn+lhn + hn—ldn

for all n. We say that f,, g. are homotopic and write f, ~ g, if there exists such a sequence ..
Homotopy is an equivalence relation on morphisms of CA. Itis a congruence, as it is compatible with
composition on both sides; indeed, if k, : D, — E,,and h, : f, ~ g., then the morphisms k. h,
form a homotopy k. f. — k.g., and similarly for the other side. We write HA for the quotient of CA
by the homotopy congruence. Also, homotopy is compatible with addition, by adding the relevant

homotopies, so the quotient category inherits an additive structure, and the quotient CA — HA is an
additive functor. In particular, HA has finite biproducts, although it is not an abelian category.

Lemma. If f, ~ g, : C, =2 D,, then H,(f.) = H,(g.) for all n.

Thus, the H,, can be regarded as additive functors HA — A.
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Proof. Let h, be a homotopy from f, to g.,so g, — f,, = dy1hy, + hy,_1d,. Then Z,(g.) — Z,(f.) is the
restriction of d,,, 1 h,, to Z,,(C.), since h,,_,d,, is zero on this subobject. Similarly, H,(g.) — H,(f.) is
zero, as d,, 41 h,, vanishes when factoring through the quotient. O

7.8 Projective resolutions

Definition. A category C has enough projectives if for every object A, there exists an epi-
morphism P - A where P is projective.

Note that this holds in AbGp and Mody for any commutative ring R, because free modules are
projective, and every module can be written as a quotient of a free module.

Definition. Let.A be an abelian category and let A be an object of A. A projective resolution
of A is a complex P, where the objects B, are projective, B, = 0 for all n < 0, and

A ifn=0
0 otherwise

Hn(R) = {

Equivalently, a projective resolution is an exact sequence

where the P; are projective.

Lemma. Let A be an abelian category that has enough projectives. Then every object of A
has a projective resolution.

Proof. Given an object A, choose some projective object Ry with an epimorphism R, » A. LetK, = R
be its kernel, and choose B to be a projective object with an epimorphism P, » K, then continue by
induction. O

Lemma. Suppose P, Q. are projective resolutions of objects A, B. Then for any f : A — B,
there is a morphism of complexes f, : P — Q. with H.(f.) = f. Moreover, any two such
morphisms P, — Q, are homotopic.

Proof. Consider the diagram

B—>K —>R—>K —>h—>A
b
Q—> L —> Q@ —> Lo —> Q —> B
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By projectivity of By, we obtain f, completing the right-hand square.

B > Ky > B > Ko > B > A

\l/fo lf

Q2 > Ly > Q1 > Lo > Qo

~
o

The morphism B — Ry — A is zero by exactness, so B — Ry - Q, — B s also zero. Thus B, — Q,
factors through the kernel L, — Q,. We then obtain f; by projectivity.

B > Ky > B > Ko > B > A
fll \ \Lfo lf
Q, > Ly > Q1 > Lo > Qo > B

Continue by induction.

Now suppose we have another morphism of chains g, with Hy(g.) = f. Then g, — f, factors through
Ly — Qg as they have the same composite with Q, — B. Thus we obtain

B > Ki > B > Ko > B > A

N

Q2 > Ly > Q1 > Lo > Qo > B

where dihy = gy — fo. Then
di(g1 — fi — hody) = dig — di fi — dihod; = gody — fodi — dihod; =0

Hence g, — f; — hod, factors through L; — Qy, so we obtain h, as follows.

B— 3K —3R —>K — Bk —>34
Ml wo Ll
Q55 — 0 55— 0 —3 B

Then d5h, + hod, = g; — f; as required. Continue similarly by induction to construct all components
of the homotopy. O

Thus construction of projective resolution is a functor. Note that in this proof we never made use
of projectivity of Q.. In particular, this shows that the construction of projective resolutions is left
adjoint to Hy : ¢ — A where C C HA is the full subcategory on complexes C, for which H,(C.) =0
foralln > 0.

7.9 Derived functors

Let F : A — B be an additive functor between abelian categories. Then F extends to a functor
CF : CA — c3B which respects homotopy. Hence F induces a functor HF : HA — H3B.
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Definition. Let F : A — B be an additive functor between abelian categories, and suppose
A has enough projectives. Then the left derived functor L"F of F is the composite

Hp

ARy yg P pyp S B

for any n > 0, where PR is the projective resolution functor.

Note that if F is exact, we have I°F =~ F and I*F = 0 for n > 0. More generally, if F is right exact,
then it preserves exactness of

R > B > A > 0
for any projective resolution P, of A. In particular, I°F =~ F in this case.

Lemma. Let

0—3sa-Jtsp_Esc_ vy

be a short exact sequence in an abelian category A with enough projectives. Then we can
choose projective resolutions P, Q., R, of A, B, C and morphisms f,, g. extending f, g making
the sequence

AN

0—>P y Q. =

> R. > 0

exact. Moreover, the exactness of this sequence is preserved by arbitrary additive functors.

Proof. We choose P, R, arbitrarily, and take Q,, = B, @ R,; this is projective as the coproduct of
projective objects is projective. Consider the diagram

\ \ \
> B > Ko >

\ \ \
> Ry > Mo >

By projectivity of Ry, we obtain h : Ry — B, and so we define e, = ( fer h).

€1

> R > Ko > B > A
b
€2
R ® Ry ﬁB
L2
//63

> Ry > Mo > Ro > C

This makes both right-hand squares commute:
1
e (0) = fe;; ge,=(gfe gh)=(0 es)
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To show e, is epic, suppose we have a morphism k : B — D such that ke, = 0.

\ \ \
> B > Ko > B

> Ry > Mo 7> Ro > C

Then kfe; = 0, so k factors as £g for some €.

\ \ \
> B > Ko > B

> Ry > Mo 7> Ro > C

Now ¢e; (0 1) = ¢ge, = ke, = 0,50 ¢ = 0asez and (0 1) are pseudoepimorphisms. Thus k = 0.
Forming the kernel, we obtain

~

51 > Ko > B

> Ry > My > Ro > C
Applying the snake lemma to the diagram
0
\ e\ J/
Ko > B > A
) [
Ly — R®Ry —5 B
) Lok
Mo > Ry —— C
0
the left-hand column extends to a short exact sequence.
0 > Ko > Lo > My > 0

68



Hence, as before, we can define an epimorphism B, @ R; — L, making the two left-hand squares

commute.
€1

> B > Ko > B > A

e A

R®R —> Ly —> R®R, —2> B

e L] :

€3

> Ry ———p My —— Ry ——> C
Continue by induction. As the columns
0 — B —> Qu — Ry — 0
are biproduct diagrams, they are preserved by arbitrary additive functors. O

This proof does not show that Q, = P, @ R, in CA. Indeed, if it were, then d, : Q,, —» Q,_; would

have matrix
d, 0
0 dj
whered, : B, » B,_; and d;, : R,, = R,_;. Our construction above was of the form
d, x
0 dy
Theorem. Let F : A — 3B be an additive functor between abelian categories, and suppose

A has enough projectives. Then, for any short exact sequence

0o—sa—JIyp 2y

~
(e]

in A, we obtain an exact sequence

.. — S JIFA S I'FB S ['FC —— I°FA S I°FB S I°FC —> 0

Proof. Choose projective resolutions P, Q,, R, for A, B, C as above. Then applying F, we obtain an
exact sequence of complexes

~
o

0 > FP, > FQ, > FR,

in B. Then the result follows from the Mayer-Vietoris sequence. O

In particular, L°F is always right exact, so I°F = F if and only if F is right exact.
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