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1. Category Theory

1. Definitions and examples

1.1. Categories
Definition. A category C consists of
(i) a collection of objects ob €, denoted A, B, C, ...;

(ii) a collection of morphisms mor €, denoted f, g, h, ...;

(iii) two operations dom, cod : mor € — ob €, and we write f : A > Bor A L B to state
that f is a morphism with domain A and codomain B;

(iv) anoperation A — 1,4 : A — A;

(v) a composition operation (f,g) — fg : domg — cod f, defined exactly when cod g =
dom f; satisfying

(vi) f14 = f and 148 = g whenever the composites are defined; and
(vii) (fg)h = f(gh) whenever the composites are defined.

Remark. (i) The collections of objects and morphisms may be sets or classes in some set
theory, but our definitions are built to be interpretable in any system supporting first-
order logic. If ob € and mor € are sets, we call € a small category; otherwise we call it
large.

(ii) We could formulate a definition of category with no mention of objects, since objects
biject with the identity morphisms. We will not take this approach here.

(iii) Note that we choose fg to mean ‘first g and then f’; this choice is a convention and
the other one may be adopted.

Example. (i) Setisthe category where the objects are all of the sets, and the morphisms
are all of the functions between them, each of which is suitably tagged with an appro-
priate codomain. This must be done because set-theoretic functions do not ‘remember’
their codomain: f(x) = x asa function f : R - R or R — C are equal sets.

(ii) Gp is the category where the objects are all of the groups, and the morphisms are all
of the group homomorphisms.

(iii) Rng is the category where the objects are all of the rings, and the morphisms are all
of the ring homomorphisms.

(iv) For a field k, Vect, is the category where the objects are all of the k-vector spaces, and
the morphisms are all of the k-linear maps.

(v) Top is the category where the objects are all of the topological spaces, and the morph-
isms are all of the continuous functions.



1. Definitions and examples

(vi) Met is the category where the objects are all of the metric spaces, and the morph-
isms are all of the nonexpansive mappings, i.e. functions that do not increase the dis-
tance between points. One could choose a different convention, for example by letting
morphisms be arbitrary continuous functions.

(vii) Mfd is the category where the objects are all of the smooth manifolds, and the morph-
isms are C® maps.

(viii) TopGp is the category where the objects are all of the topological groups, and the
morphisms are the continuous homomorphisms.

(ix) Htpy is the category where the objects are all of the topological spaces, and the morph-
isms are equivalence classes of continuous functions under homotopy.

(x) More generally, if ~ is an equivalence relation on the morphisms of € such that f ~ g
implies dom f = dom g and cod f = cod g, and the relation is stable under composi-
tion so f ~ g implies fh ~ gh and kf ~ kg, we call ~ a congruence. In this case, we
can form the quotient category 6)/z, which has the same objects as €, but its objects
are equivalence classes of morphisms in € under ~.

(xi) Relis the category where the objects are all of the sets, and the morphisms A — B are
the relations R C A X B, where composition is given by

SoR={(a,c)| 3b € B,(a,b) € RA(b,c) € S}

Note that if R and S happen to be functions, o is the standard composition operator.
Therefore, Set is a subcategory of Rel.

(xii) Part is the category where the objects are all of the sets, and the morphisms A — B
are the partial functions A — B. This is a subcategory of Rel, and Set is a subcategory
of Part.

(xiii) Given a category C, we can construct its opposite category C°?, where the objects and
morphisms are the same as in €, but dom and cod are swapped. We also reverse com-
position in the opposite category. This gives a duality principle: whenever a statement
about categories is proven, a dual statement follows from applying the statement to an
opposite category.

(xiv) A small category with one object * is a monoid, a group without inverses. In particular,
every group can be seen as a small category on a single object in which every morphism
is an isomorphism, i.e. invertible.

(xv) A groupoid is a category in which every morphism is an isomorphism. For example,
we can construct the fundamental groupoid of a topological space X. Here, the objects
correspond to points x in X, and represent 77;(X, x). Morphisms x — y are homotopy
classes of paths starting at x and ending at y. Composition is path concatenation.

(xvi) A category with at most one morphism between any pair of objects is a preorder. The
existence of a morphism A — B corresponds to stating A < Bin the preorder. In partic-
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ular, a partially ordered set (poset) is a small preorder in which the only isomorphisms
are identity morphisms.

(xvii) For a field k, Mat, is the category where the objects are the natural numbers, and the
morphisms n — p are the p X n matrices over k. Composition is multiplication of
matrices. The identity morphisms are the identity matrices.

1.2. Functors

F
Definition. Let C, D be categories. A functor F : € — D consists of a map obC — obD

and a map mor € i mor D, such that
(i) F(dom f) = domFf;
(ii) F(cod f) = cod Ff;
(iii) F(14) = 1g4;and
(iv) F(fg) = (Ff)(Fg) whenever fg is defined.

Example. (i) The forgetful functors Gp — Set,Rng — Set, Top — Set and so on for-
get that the objects are structures and forget the conditions on morphisms. Similarly,
there are forgetful functors Rng — AbGp, Met — Top, TopGp — Top, TopGp —
Gp.

(i) Any mapping f : A — UG from a set A to the underlying set of a group G extends
uniquely to a homomorphism FA — G, where FA is the free group on the set A. This
can be made into a functor F : Set — Gp: given f : A — B, the homomorphism F f

is the unique homomorphism extending A EN B — FB. Given g : B — C, then F(gf)
and (Fg)(F f) both extend the same mapping A — FC, so by the uniqueness property
they are equal.

(iii) The power-set construction P : Set — Set is a functor. PA is the set of all subsets of
A, and given f : A — B, Pf is the map sending S to the image of S under f.

(iv) There is another power-set functor P* : Set” — Set (or Set — Set’”). This has
the same object map, but given f : A — B, P*f maps S C B to its inverse image
under f. A functor like this that reverses the direction of arrows is sometimes called
contravariant; functors which do not are called covariant.

(v) The construction of dual spaces in linear algebra gives rise to a functor (—)* : Vectzp -
Vect,. V* is the space of linear maps V' — k, and a linear map f : V — W gives rise
to f* : W* — V* given by composition.

(vi) Cat is the category where the objects are the small categories and the morphisms are
functors. This is well-defined as functors have identities and compositions.

(vii) The assignment € — C°P defines a (covariant) functor Cat — Cat.

10
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(viii) A functor between monoids is a monoid homomorphism.
(ix) A functor between groups is a group homomorphism.
(x) A functor between posets is an order-preserving map.

(xi) If G is a group, a functor F : G — Set defines a set A = F, together with a collec-
tion of endomorphisms of A denoted a — g - a for each g € G. This collection of
endomorphisms is compatible with the identity and composition, so is precisely the
definition of a group action or permutation representation of G.

(xii) If G is a group, a functor F : G — Vecty is a k-linear representation of G.

(xiii) The fundamental group of a topological space defines a functor 7; : Top, — Gp,
where Top, is the category of pointed topological spaces.

1.3. Natural transformations

Definition. Let C, D be categories, and F,G : C = D be functors. A natural transforma-
tion a : F — G is a mapping ob ¢ — mor D denoted A — a4, such that

(i) a4 : FA - GA for all A; and

(ii) for any morphism f : A — Bin C, the square

FA 1y B

w| L

GA —=» GB

commutes. Such squares are called naturality squares.

If we have a natural transformation 8 : G — H, we can define fa by (fa)4 = Ba4. We
therefore have a category [C, D] whose objects are the functors € — 2 and whose morph-
isms are the natural transformations between them.

Example. (i) Given a vector space V, we have a linear map «;, : V — V** sending
v € V to the map f + f(v). This is a natural transformation a : lyec, — (—)**. The
naturality squares are of the form

|4 —)f w
OCV\L \L‘XW
V** f** ; W**

where

ay(v) = f = f);  f7(@h) =g(f"h) =glhe f)

11



1. Category Theory

We show the naturality square commutes.

(g~ k> glho ) o)) = (g = h > glho H)ay)
=(gr hglho f))k — kv)
=hw (k- kv)(hof)
=hwe (ho f)v
= h — (h(fv))
= aw (fv)
= (aw o flv

(ii) There is an inclusion from any set A to its free group FA. The map sending a set A to
the inclusion A — FA is a natural transformation 1g,, — UF. Naturality is built into
the definition of F on morphisms.

A—L B

OCAJ/ J/O(B
UFA m UFB

(iii) There is a mapping ay : A — PA by mapping a € A to {a} € PA. This is a natural
transformation 1ge; — P, since Pf{a} = {fa}.

AL)B

ol e

PA ——5 PB

(iv) Let f,g : P = Q be order-preserving maps between posets. Then for x < y in P, the
naturality square is

fx —> fy

o e

gx — gy

In particular, the existence of a,, proves that fx < gx. Thus a natural transformation
f — gexists if and only if fx < gx pointwise for all x € P. Note that every square of
morphisms in a poset commutes.

(v) Letu,v : G =3 H be group homomorphisms. For g € G, the naturality square is

*
a *l
*

w8
\l/oc*

— S

vg

12
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Anatural transformation @ : u — visanelementa, = h € H such that hu(g) = v(g)h
for all g, or equivalently, v(g) = hu(g)h~!. Thus a natural transformation exhibits a
conjugacy between two homomorphisms. In particular, the natural transformations
u — u are the elements of the centraliser of u(G).

(vi) Let A, B be permutation representations of G, that is, functors G — Set.

A
Ax _>g Ax

A,

B*BHgB*

A natural transformation f : A — B is a mapping of the underlying sets Ax — Bx
satisfying g - f(a) = f(g-a)foralla € A and g € G. This is the definition of a
G-equivariant map.

(vii) For any (nice) pointed topological space X with base point x, the Hurewicz homo-
morphism is a map h, , : 7,(X,x) — H,(X). This is a natural transformation
m, = H,U where U is the forgetful functor Top, — Top.

1.4. Equivalence of categories

There is a notion of isomorphism of categories, namely, isomorphism in the category Cat.
For example, Rel =~ Rel” via the functor

A A; R R ={(b,a)| (a,b) €R}

However, there is a weaker notion that is often more useful in practice, called equivalence.
To define this, we need a notion of ‘natural isomorphism’. There are two obvious definitions,
which we show are equivalent.

Lemma. Let @ : F — G be a natural transformation between functors ¢ = 2. Then a
is an isomorphism in the functor category [C, D] if and only if each component 4 is an
isomorphism in D.

Proof. The forward direction is clear as composition in [C, D] is pointwise; if § is an inverse
for a, then 84 is an inverse for or4. Suppose 54 is an inverse for a4 for each A. We show
the 8 collectively form a natural transformation by verifying the naturality squares. Given
f : A— BinC, consider

Fa s B
ﬁ’AT \L“A “B\L TﬁB
GA G—f} GB
Then
(Ff)Ba = Bpap(Ff)Ba = Bp(Gflaafa = B(GS)
using naturality of a. Thus § is natural, and an inverse for a. O

13



1. Category Theory

Definition. Let C, D be categories. An equivalence between € and 2 is a pair of functors

F:€C—-D; G:D->¢C

and a pair of natural isomorphisms

Of:le—>GF; 5FG—>1D

If C and D are equivalent, we write C ~ D.

The reason the natural isomorphisms point in opposite directions will be clarified later. A
property P of categories that is called categorical if whenever C satisfies P and C ~ D, then
D satisfies P. For example, the properties of being a preorder or being a groupoid are cat-
egorical. Being a partial order or being a group are not categorical. Generally, properties
that rely on equality of objects, not isomorphism, will not be categorical.

Example. (i) Let Set, be the category of pointed sets and functions preserving the base

(if)

point. Then Set, ~ Part by

F:Set, - Part; F(A,a)=A\{a} F((Aa)> B.b)x) =fx)

and

if f is defined at
G : Part - Set,; G(A) = Au{A}; G(A LBpartial)(x) = g(x) if fIs defined at x

otherwise

Note that FG = 1p,y, but GF is not equal to 1g. . It is not possible for these two
categories to be isomorphic, because there is an isomorphism class of Part that has
only one member, namely {@}, but this cannot occur in Set, .

Let fdVect, be the category of finite-dimensional vector spaces over k. This category
is equivalent to its opposite category deectzp via the dual space functors in both dir-
ections. The natural isomorphisms « and 8 are both as in the double dual example
given above.

(iii) We show fdVect; ~ Mat;. Define

14

F : Mat; — fdVect,; F(n)=k"

and sending a matrix A to the linear map it represents in the standard basis. For each
finite-dimensional vector space V, choose a particular basis. Define

G : fdVect, - Mat;; G(V)=dimV

and let G(6) be the matrix representing 6 with respect to the particular bases chosen
above. Then GF = 1y, , as long as we chose the bases above in such a way that the
k™ have the standard basis. Further, FG is naturally isomorphic to lggyect, » since the
chosen bases define isomorphisms kdmV _, v which are natural in V.



1. Definitions and examples

In line with the idea that we do not want to consider equality of objects but only equality of
morphisms, we make the following definitions.

Definition. Let F : ¢ — D be a functor. We say that F is
(i) faithful, if for each f,g € mor C with equal domain and codomain, Ff = Fg implies
f=8
(ii) full, if for each FA LN FB, there exists a morphism A i) BsuchthatFf =g;

(iii) essentially surjective, if every B € ob D is isomorphic to some FA for A € ob C.

Note that if F is full and faithful, it is essentially injective: if FA % FBisan isomorphism,

the unique A i) B with Ff = g is an isomorphism, because its inverse is the unique B — A
mapped to g~1.

Lemma. Let F : C — D be a functor. Then F is part of an equivalence € ~ D if and only
if F is full, faithful, and essentially surjective.

Proof. Suppose G, a, § make F into an equivalence. The existence of 5 ensures that B ~ FGB
for any B € ob D, giving essential surjectivity. For faithfulness, for any A L Bin @, we have
f = ag'(GFf)ay, allowing us to reproduce f from its domain, codomain, and image under
F. For fullness, consider FA LA FB, and define f = a3'(Gg)a, : A — B. Then, GFf = Gg.
As G is faithful by symmetry, Ff = g.

For the converse, for each object B € D, we choose an isomorphism Sz : FA — B where
A € €, and define the action of G at B to be this A. Then we define G on morphisms by

letting G(B LN C) be the unique GB — GC whose image under F is Sz! o g o 83, thus making
the following diagram commute.

FGB %% FGC

BB\L Tﬁal

B—C

This is functorial: given h : C — D, we can form G(hg) and (Gh)(Gg) which have the same
image under F, so must be equal.

FGB FOth®) o kD
BB /f 551
FGg FGh
B FGC D
B! Bc
g h
c S C
1c

15



1. Category Theory

By construction, 8 is a natural isomorphism FG — 14. It suffices to construct the natural
isomorphism « : 1¢ — GF. Its component at A is the unique isomorphism whose image
under F is

Brh

FA —% FGFA

Consider a naturality square for a.

A—L s

OfA\L \LOfB
GFA W GFB

As F is faithful, to show this diagram commutes, it suffices to show that its image under F
commutes.

FA — s pp

Fay =35114J/ J/FO(B ZBF}B
FGFA m FGFB

This commutes by naturality of 3~1. O

We call a subcategory full if its inclusion functor is full.

Definition. A category is called skeletal if every isomorphism class has a single member.
A skeleton of € is a full subcategory C’ containing exactly one object for each isomorphism
class.

Note that an equivalence of skeletal categories is bijective on objects, and hence is an iso-
morphism of categories.

1.5. Monomorphisms and epimorphisms

Definition. A morphism f : A — B is a monomorphism, and is called monic, if fg = fh
implies g = h whenever the compositions are defined. Dually, f is an epimorphism, and is
called epic, if gf = hf implies g = h whenever the compositions are defined.

Monomorphisms are left-cancellable; epimorphisms are right-cancellable. We will often
denote a monomorphism with an arrow with a tail A — B, and denote epimorphisms with
double-headed arrows A - B. Isomorphisms are clearly monic and epic; if all monic and
epic morphisms in a category are isomorphisms, we call the category balanced.

Example. (i) In Set, the monomorphisms are precisely the injective functions, and the
epimorphisms are precisely the surjective functions. Thus Set is balanced.

(i) In Gp, the monomorphisms are the injective functions, and the epimorphisms are the
surjective functions.

16



1. Definitions and examples

(iii) In Rng, the monomorphisms are again the injective functions, but there are epimorph-
isms that are not surjective, for example the inclusion Z — Q.

(iv) In Top, the monomorphisms are the injective functions, and the epimorphisms are
the surjective functions. However, Top is not balanced, because continuous bijections
need not have continuous inverses.

(v) In a preorder, any morphism is monic and epic. The category is balanced if and only
if it is an equivalence relation (or equivalently, symmetric).

17



1. Category Theory

2. The Yoneda lemma

2.1. Statement and proof

Definition. A category C is called locally small if the collection of morphisms A — B are
parametrised by a set. In this case, we write C(A, B) for the set of such morphisms.

Given an object A of a locally small category, we can define a functor
C(A,—) : € — Set
given by
B CAB; BLO)wm (LB fg
This is functorial by associativity of function composition. We can also define

e(—,A) : C°% - Set

by
B €(B.A): BLC)m((CEA)- g

Lemma (Yoneda lemma). Let C be a locally small category. Let A € obC,andletF : C —
Set be a functor. Then,

(i) there is a bijection

{natural transformations C(A, —) — F} < {elements of FA}

(i) and further, this bijection is natural in both A and F.

This shows that we can consider a natural transformation €(A, —) — F as a way to evaluate
morphisms at a point x € FA.

Example. Consider the category € of the form

A
YN
B C
and the functor F : ¢ — Set given by

F(A)={1,2}; F(B)={3} F(C)={4,5,6}

and
F(H)=F()2) =3 F@)=4 F@Q2) =5

A natural transformation a : C(A,—) — F is given by its components

ag {lat = {12k ap :{f1 =85 ac:{gl— {4506}

18
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subject to the naturality square

C(A,g)

{1a} —> {g}

o Joe

{1,2} Tg> {4,5,6}
which enforces that

(Fg)ay) = ac(g)

This means that such a natural transformation « is defined uniquely by a choice of (Fg)(a,4);
that is, a choice of an element of FA.

Example. Let G be a group in the set-theoretic sense. Let us represent G as the category C;
that is, let

obC ={x}; morC=G
Consider the functor F : € — Set given by
F(x)=G; F(g)(h)=gh

Ifx : €(*,—) — F is a natural transformation, for each g € G, a,(g) isamap G — G.
The naturality condition ensures that a respects the group structure. Applying the Yoneda
lemma, we find that every map G — G that respects the group structure in this way is just
the action of multiplication by some element of the group.

We prove part (i) now, and postpone (ii) until some corollaries have been established.

Proof. We want to show that a natural transformation a : €(A,—) — F is a way to evalu-
ate morphisms at a point x € FA. To find a sensible value for x, we evaluate the identity
morphism 14 : A — A.

®:(CA,—) > F)—> FA; ®(a)=a,(l1,) EeFA

Now, given a point x € FA, we want to create a natural transformation that evaluates func-
tions A — B and yields a point in FB. We define

W FA — (C(A,—) — F); WA 5 B) = (Ff)x

For h : B — C, the naturality square is as follows.

e, B) EN e, 0)

W(X)Bi \L‘I’(X)C

FB ——— FC

19



1. Category Theory

Here, C(A, h) denotes the operation g — hg. For f : A — B,

¥(x)c(CA, h)(f) = ¥(x)c(hf) = (F(hf))x

and
(FR)(¥(x)p(f)) = (FR)((F[f)x) = (F(hf))x

as required. Hence the ‘evaluate at x’ map ¥(x) is a natural transformation. We show that
these two constructions are inverses.

PY(x) = W(x)a(14) = (Flg)x = 1pgx =x

Leta : C(A,—) — F be a natural transformation, let B € obC, and let f : A — B. Then
ag(f) and ($®(a))g(f) are elements of FB; we show they coincide.

(PD(a)p(f) = Ff)P(a)) = Ff)aa(la))
Naturality of o shows that the following diagram commutes.

e, 4) SN e, B)

a 1

FA ———— FB
Thus,
(PD(a)p(f) = ap(fla) = ag(f)
Hence, ® and ¥ are inverse bijections. O

Corollary. For any locally small category C, the map
A CA,-)

is a full and faithful functor
Y : CP > [C, Set]

This is called the Yoneda embedding.
Proof. Let F = C(B, —) in the Yoneda lemma. Then there is a bijection
C(B,A) <« {natural transformations C(4, —) — C(B, —)}

This bijection maps f : B — A to the natural transformation given by composition with f.
This is functorial as composition in C is associative. O

20



2. The Yoneda lemma

This says that any locally small category € is equivalent to a full subcategory of a functor
category [C°P, Set]. The category [C°P, Set] is sometimes called the category of presheaves
on C, so any category embeds into its category of presheaves.

We now explain and prove part (ii) of the Yoneda lemma. Suppose that € were small, so
[@, Set] were locally small. Then we have two functors

C x[€,Set] - Set

The first is the evaluation functor
(A,F) ~ FA

The second is the composite

Yx1 C,Set|(—,—
e x [e,Set] 2 [, Set]? x [, Set] 22T, get

The naturality condition is that ® and ¥ are natural transformations between these two
functors, and thus are natural isomorphisms.

Proof Letf : A—> A',a : F - F',and x € FA. If X' is the image of x under the diagonal
of the naturality square

FA s par

w e

F'A W F'A
we want to show that W(x') is the composite

e(f,— p
e, =) 22 ea, oy X p &

But this can be easily verified, as the composite maps

Ly = [ (FX) = ap(FX) = x'

as required. O

2.2. Representable functors

Definition. Let € be a locally small category. A functor F : C — Set is called representable
ifit isisomorphic to C(A, —) for some A. A representation of F is a pair (A, x) where A € ob C,
and x € FA is such that

¥(x) : C(A4,—) > F

is a natural isomorphism. In this case, we say that x is a universal element of F.

Corollary. Suppose (A4, x) and (B, y) are representations of F : € — Set. Then there is a
unique isomorphism f : A — B such that Ff(x) = y.
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Proof. The Yoneda lemma shows that the elements of FA correspond to natural transforma-
tions C(A, —) — F, and similarly for the elements of FB. Thus, F f(x) = y equivalently says

that

eB,-) — L2\ e, )

‘%Af)
F

commutes. But ¥(x) and ¥(y) are isomorphisms, so this holds if and only if f is the unique
isomorphism sent by the Yoneda embedding to ¥(x)~1¥(y). O

(i) Consider the forgetful functor Gp — Set. This is representable by the free group on
one generator, Z. Similarly, the forgetful functor Rng — Set is represented by the free
ring on one generator, Z[x].

(ii) The forgetful functor Top — Set is representable by the one-point space.

(iii) The contravariant power set functor P* : Set’” — Set is representable by the two-
element set 2 = {0, 1} via the bijection mapping f : A — 2 to f~1(1).

(iv) The covariant power set functor P : Set — Set is not representable. Set(A, 1) = 1 for
any A,but P1 ~2 £ 1.

(v) Define Q : Top® — Set to be the functor mapping a space X to its set of open subsets.
If f : X - Yiscontinuous, thisinducesamap Qf : QY — QX. Thisis representable
by the Sierpinski space £ with two points {0, 1} and open sets

g; {1} Z

The continuous maps f : X — X are exactly the characteristic functions of the open
subsets of X, because continuity is just that f~1({1}) is open.

(vi) The dual vector space functor (—)* : Vectip — Vect, is not representable because its
codomain is not Set, but composing with the forgetful functor makes it representable
by the one-dimensional space k.

(vii) Let G be a group. The (unique up to isomorphism) representable functor G — Set is
the Cayley representation of the group; that is, the set G acting on itself by multiplica-
tion.

(viii) Let A, B be objects of a locally small category C. Then there is a functor C°? — Set
sending C to the Cartesian product

e(C,A) x €(C,B)

If this is representable, we call the representing object a categorical product of A and
B, and denote it A X B. The universal element is a pair of morphisms 7; : A X B —
A,m, : A X B — B, called projections. This has the property that for any pair (f :
C — A,g : C — B) there exists a unique morphism h = (f,g) : C — A X B satisfying
mih=f,mh=g.
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2. The Yoneda lemma

(ix) Dually, there is the notion of a coproduct A + B, which is a representing object of the
functor mapping C to

CA,C)x eB,C)
with coprojectionsv, : A—-> A+ B,v, : B—> A+ B.

(x) Let f,g : A =33 Bbe a parallel pair of morphisms in a locally small category C. Define
afunctor F : €°P — Set by sending C to

th:C— Al fh=gh

If this is representable, we call the representation an equaliser of f and g. This consists
of a representing object E with a morphism e : E — A satisfying fe = ge. Moreover,
for any morphism h with fh = gh, h factors uniquely through e. Hence, e is a mono-
morphism. Monomorphisms that occur in this way are called regular.

(xi) Dually, there is also a notion of coequaliser, giving rise to an epimorphism. We again
call epimorphisms regular if they arise in this way.

In Set, the categorical product is the Cartesian product, and the categorical coproduct is the
disjoint union. The equaliser of f,g : A =3 Bis the set

la€A| fa=ga}
The coequaliser of f, g is the quotient
B 3/,
where ~ is the equivalence relation generated by fa ~ ga.

In Gp, the product is the direct product, but the coproduct is the free product A = B. The
equaliser of f,g : A =3 Bis as in Set, which is a subgroup of A. The coequaliser of f, g
is the quotient by the smallest congruence containing all pairs (fa, ga). In Set and Gp, all
monomorphisms and epimorphisms are regular.

In Top, not all injections or surjections are regular monomorphisms or epimorphisms.

2.3. Separating and detecting families
Definition. Let C be a locally small category, and G a class of objects of C. We say that

(i) G is a separating family for C if the functors C(G, —) for G € G are collectively faithful;
that is, if f,g : A = B, the equations fh = ghforallh : G - A with G € G imply
f=g

h ;)
G A B
s —=

g
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1. Category Theory

(ii) G is a detecting family for € if the functors €(G, —) for G € G collectively reflect iso-
morphisms; that is, if f : A - Bissuch thateveryh : G — B with G € § factors
uniquely through A, then f is an isomorphism.

If G = {G}, we call G a separator or detector respectively.
Separating and detecting families are both sometimes called generating families.
Lemma. (i) If C has equalisers, then any detecting family is separating.
(ii) If € is balanced, then any separating family is detecting.
Proof. Part (i). Suppose § is detecting, and f,g : A =3 B such that every morphism h :

G — Awith G € G has fh = gh. Then everysuch h : G - A with G € G factors uniquely
through the equaliser of f and g.

m{-- Q

h
ey

Thus this equaliser e must be an isomorphism as G is detecting. Since ef = eg, we must
have f = g, as required.

Part (ii). Suppose G is separating, and f : A — Bissuchthateveryh : G - BwithG € G
factors uniquely through f. As C is balanced, it suffices to show that f is both monic and
epic.

If fg= fhforsomeg,h : C 2 A, thenanyk : G — C with G € G satisfies gk = hk, since
both are factorisations of fgk = fhk through f.

8
¢ Xy ¢ ?A%B

h
Since G is separating, g = h. As this is true for all pairs g, h, we must have that f is monic.

Similarly, if £,m : B = D satisty ¢f = mf, thenanyn : G - B with G € G satisfies
€n = mn, since it factors through f.

G
el \Ln y
A——>B ;D
f —
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2. The Yoneda lemma

So ¢ = m, giving that f is epic. O

Example. (i) In Gp, the forgetful functor is represented by Z. This functor is faithful

(ii)

(iii)

(iv)

)

(vi)

and reflects isomorphisms, so it is a separator and a detector.

In Rng, the forgetful functor is represented by Z[x], so similarly Z[x] is a separator
and a detector.

If C is small, the set {C(A, —) | A € ob C} is a separating and detecting set for [C, Set]
by the Yoneda lemma.

In Top, the one-point space 1 is a separator, but Top has no detecting set. If x is an
infinite cardinal, let X, be a discrete space of cardinality x, and let Y, be the same set
with the co-< x topology:

Uopen < U=gor|Y, \U|l<x

The identity X, — Y, is continuous but not a homeomorphism. Given any set G of
spaces, if x is larger than |G| for all G € G, then G cannot detect the fact that the map
X, — Y, is not a homeomorphism.

Let C be the category whose objects are the (von Neumann) ordinals, and in addition
to the identity morphisms, there are precisely two morphisms f,g : a« = § when
a < 8. We define composition in such a way that ff = fg = gf = gg = f. Now, 0 is
a detector for C: it detects that f,g : 0 = a are not isomorphisms, as neither factors
through the other, and it detects that f,g : « = § are not isomorphisms for0 < o < 8
since the morphism g : 0 — (8 does not factor through either of them. There is no
separating set for C: for any set of ordinals G, if « > y for all y € G, G cannot separate
frgiaza+1l.

Gp has no coseparating or codetecting set of objects. Given any set G of groups, let H be
a simple group with cardinality greater than that of each element of G. Then the only
homomorphisms from H to elements of G are trivial. In particular, G cannot detect
that the map H — 1 is not an isomorphism.

2.4. Projectivity

The functors C(A,—) : € — Set preserve monomorphisms. They do not, in general, pre-
serve epimorphisms.

Definition. We say that an object P of a locally small category € is projective if C(P,—)
preserves epimorphisms. In more elementary terms, given a diagram

P

s

Q—»R
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1. Category Theory

there exists h : P — Q such that gh = f.

p
h 7
s
Q—»R
If this holds for all g in some class € of epimorphisms, we say that P is £-projective. The dual

notion is called injectivity.

We will consider the class of pointwise epimorphisms in [C, Set]; that is, those natural trans-
formations o whose components a4 are surjective.

Corollary. Objects of the form C(A, —) are pointwise projective in [C, Set].

Proof. If P = C(A,—), an f in the above diagram corresponds to some ®(f) € RA by the
Yoneda lemma. But g4 is surjective, so there exists ®(h) € QA mapping to ®(f). O

Proposition. If C is small, then [C, Set] has enough pointwise projectives; that is, for any
object F there exists a pointwise epimorphism P — F with P pointwise projective.

Proof. Let P = ]_[( Ax) C(A, —) where the disjoint union is taken over all pairs (A, x) with
A € obC and x € FA. Then P is pointwise projective, since the C(A, —) are. There is a
natural transformation o : P — F where the (4, x)-indexed term is ¥(x) : C(A,—) — F.
This is pointwise epic, since any x € FA is in the image of W(x). O
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3. Adjunctions

3. Adjunctions

3.1. Definition and examples

Definition. Let C, D be categories. An adjunction between € and D is a pair of functors
F:€C— DandG : D — C, together with a bijection between morphisms FA — Bin D
and A - HB in @, which is natural in both variables A, B. We say that F is the left adjoint to
G, and that G is the right adjoint to F, and write F - G.

If C, D are locally small, then the naturality condition is that
D(F-,-); C(-G-)
are naturally isomorphic functors C°? X D — Set.

Example. (i) The free group functor F : Set — Gp is left adjoint to the forgetful functor
U : Gp — Set.
Gp(FA,G) < Set(A,UG)

(i) The forgetful functor U : Top — Set has a left adjoint D : Set — Top which equips
each set with its discrete topology.

Top(DX,Y) < Set(X,UY)

It also has a right adjoint I : Set — Top which equips each set with its indiscrete
topology.
Set(UX,Y) < Top(X,IY)

(iii) Consider the functor ob : Cat — Set which maps each category to its set of objects. It
has a left adjoint D which turns each set X into a discrete category in which the objects
are elements of X, and the only morphisms are identities. It also has a right adjoint I
which turns each set X into an indiscrete category in which the objects are elements
of X, and there is exactly one morphism between any two elements of X. In addition,
D : Set — Cat has a left adjoint 7, : Cat — Set, where 7,C is the set of connected
components of ob € under the graph induced by its morphisms.

Set(7,C,X) < Cat(C,DX); Cat(DX,C) < Set(X,0bC); Set(obC,X) « Cat(C,IX)

Thus we have a chain
o 1D -HdobHI

(iv) For any set A, we have a functor (—) X A : Set — Set. This functor has a right adjoint,
which is the functor Set(4, —) : Set — Set.

Set(B x A, C) < Set(B, Set(4, C))

Applying this bijection is sometimes called currying or A-conversion. We say that a
category C with binary products is cartesian closed if (—) X A : € — C has a right
adjoint, written [A, —] or (—)4, for each A. For example, Cat is cartesian closed, where
D¢ = [, D] is the functor category that this notation already refers to.
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1. Category Theory

(v) Anequivalence F : C - D, G : D — € forms adjunctions both ways: F 4 G,G - F.

(vi)

(vii)

(viii)

(ix)

Let Idem be the category of pairs (A, e) where A is a set and e is an idempotent endo-
morphism A — A. The morphisms in Idem are the maps of sets which commute with
the idempotents. We have a functor F : Set — Idem sending A to (A, 14). Consider
G : Idem — Set sending (A, e) to the set of fixed points of e. Then F - G since any
morphism FA — (B,e) takes values in G(B,e). But also G - F, since a morphism
(A,e) — FBis entirely determined by its action on the fixed points in A under e, be-
cause f(a) = f(ea). This is not an equivalence of categories, because G is not faithful.
So not all pairs of functors that are adjoint in both directions form an equivalence.

Let C be a category. There is a unique functor G : ¢ — 1, where 1 is the discrete
category on a single object. A left adjoint for G, if it exists, sends the object in 1 to an
initial object I of €, which is an object with a unique morphism to every object in C.
Dually, a right adjoint sends the object in 1 to a terminal object T, which is an object
with a unique morphism from every object in €. In Set, the empty set is initial, and
any singleton is terminal. In Gp, the trivial group is initial and terminal.

Let f : A — B be a function of sets, and let A" C A,B’ C B. Then Pf(A’) C B’ if and
only if A" C P* f(B"). Thus Pf - P* f as functors between PA and PB as posets.

Let A, B be sets with a relation R C A X B. We define mappings (—)" : PA — PB by
S'={beB|VaeS, (a,b) ER}
and (-)¢ : PB — PAby
T’ ={a€A|VbET, (ab)€R}
These are contravariant functors, and
SCT? & SXTCR < TCS"

We say that ()¢ and (—)" are adjoint on the right. This pair is called a Galois connec-
tion.

(x) The contravariant power-set functor P* is self-adjoint on the right, since functions

A — P*Band B — P*A naturally correspond bijectively to subsets of A X B.

(xi) The dual vector space functor (—)* : Vect, — Vect, is self-adjoint on the right, as

3.2.

linear maps V' — W* and linear maps W — V* both naturally correspond to bilinear
formson V X W.

Comma categories

Definition. Let G : D — € be a functor and A € ob €. Then, the comma category (A | G)
is the category whose objects are pairs (B, f) where B € obD and f : A - GBin C, and
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3. Adjunctions

whose morphisms (B, f) — (B', f’) are morphisms g : B — B’ which commute with f, f":

Theorem. Let G : D — € be a functor. Then specifying a left adjoint for G is equivalent to
specifying an initial object of the comma categories (A | G) for each A.

Proof. First, note that an object (B, f) is initial in (A | G) if and only if for every (B’, f'),
there is a unique morphism g : B — B’ such that the following triangle commutes.

A—L5 6B

&

GB’

Suppose F 4 G. Then let n4 : A — GFA correspond to the identity 1z4 under the adjunc-
tion. We show that (FA,7,) is initial in (A | G). Indeed, given f : A — GB, then

A AN GFA

f\/‘ oe

GB

commutes if and only if g is the morphism corresponding to f under the adjunction. In
particular, for any f, there is a unique such g.

Conversely, suppose (FA,7,) is initial in (A | G) for each A. Then we define the action of
F on objects by mapping A to FA. We make F into a functor by mapping f : A - A’ to
the unique morphism that makes the following square commute; this exists as (FA,7,) is
initial.

A AN GFA

L e

A" ——> GFA

na’

Functoriality of F follows from the uniqueness of Ff. The bijection between morphisms
f i A—> GBandg : FA — Bsends f to the unique g giving (Gg)n, = f. Naturality of the
bijection in A was built in to the definition of F as a functor, and naturality in B is easy. [

Corollary. Let F,F' : € - D be left adjointsto G : D — C. Then F ~ F" in [C, D].
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1. Category Theory

Proof. (FA,n,) and (F'A,n/,) are both initial objects in (A | G), and so there is a unique
isomorphism a4 : (FA,7n4) — (F'A,n,) in this category. The map A — a, is natural, be-
cause given f : A = A, au (Ff) and (F' f)ax 4 are both morphisms (FA,74) = (F'A', 1)y f)
from an initial object in (A | G), so must be equal. O

Lemma. Suppose

where F 4 G and H 4 K. Then HF - GK.

Proof. We have bijections
E(HFA,C) & D(FA,KC) « C(A,GK(C)
which are natural in A and C, so their composite is also natural. O

Corollary. Suppose the square of functors

@

1|

S4B

commutes, and all of the functors F, G, H, K have left adjoints F’, G’, H', K'. Then the square
of left adjoints

)

Q

‘9?@

commutes up to natural isomorphism.

This result holds for any shape of diagram, not just a square. The hypothesis can be weakened
to only require that the first diagram commutes up to natural isomorphism.

Proof. The two composites F'H' and G'K’ are left adjoints to HF = KG, so must be naturally
isomorphic. O

3.3. Units and counits

Given an adjunction F - G, the proof of the previous theorem demonstrated a naturality
square between the morphisms 4 : A — GFA corresponding to 1r4 under the adjunction.
We call  : 1o — GF the unit of the adjunction. Dually, the map e : FG — 14 is called the
counit of the adjunction; each €z : FGB — B corresponds to 15p.
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3. Adjunctions

Theorem. LetF : € — D, G : D — C. Specifying an adjunction F - G is equivalent to
specifying natural transformations 7 : 1¢ — GF, € : FG — 1y, satisfying the triangular
identities
Fn NG
F —— FGF G — GFG

Proof. Suppose we have an adjunction F - G. We have seen how to define 7 and ¢; it
thus suffices to check the triangular identities. Since they are dual to each other, it suffices
to check the first. The morphism ez4 corresponds under the adjunction to 15r4, SO by
naturality, the composite g4 (F7,4) corresponds to 1gpana = 14. But 1g4 corresponds to
Na, giving the commutative triangle x4 (Fn4) = 1pa-

Conversely, suppose 7 and € are natural transformations satisfying the triangular identities.
We map f : A — GB to the composite ®(f) given by

F
FA 2y poB —y B

and g : FA — B to the composite ¥(g) given by

A 24y gra -8y B

These assignments are natural in A and B as 7 and ¢ are natural transformations. Thus it
suffices to show W® and OV are the relevant identity maps; again they are dual so it suffices
to show ¥O(f) = f. YO(f) is the composite

GFf, Gep

A Ay 6rA Iy GFeB =2y GB
which by naturality of 7 is equal to

G
A -1y 6B 9 grgB Sy GB

which is equal to f by the triangular identity. O

Recall that an equivalence of categories consisted of isomorphisms « : 1¢ -— GF and 8 :
FG — 15. These isomorphisms may not satisfy the triangular identities, but we can always
choose o and §§ in such a way that these identities hold.

Proposition. Let (F, G, «, ) be an equivalence of categories. Then there exist natural iso-
morphisms a’ : 1¢ — GF and 8’ : FG — 15 which satisfy the triangular identities. In
particular, F 4 G 4 F.

Proof. We will set &’ = «, and construct 5’ to be the composite

FGRY! (Fag)!

Fe N ke Ty ro £y 1,

31
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Note that FGS = Brg, since

Forc 2 Fe

= L

FG —— 1p

commutes by naturality of 5. Note also that 8 is monic. Dually, note that GFa = agg. For
the triangular identities, consider the diagrams

-1
F —foy perrerN peror

\‘ \L(Foc)—l \L(ForGF)‘lz(FGFoc)‘l
F
F —pr—» FGF

\‘ Jer

F

and
GFGB)™!
¢ =%y orF% Grere

\/‘ \L“E;I \L(GF“G)_lz(O‘GFG)_I
G

G -©p'y GFG

N Jos

G

where the squares commute by naturality of § and « respectively. Thus o', 8" are the unit
and counit of an adjunction F 4 G as required. Similarly, (8")~!,(«’)~! are the unit and
counit of an adjunction G - F. 0

Lemma. Let F o G be an adjunction with counite : FG — 15. Then
(i) e is pointwise epimorphic if and only if G is faithful;

(ii) eisa (pointwise) isomorphism if and only if G is full and faithful.

Proof. Part(i). Giveng : B — B’ in D, the composite geg corresponds under the adjunction
to Gg : GB — GB'. Thus for morphisms g with specified domain and codomain, the map
g — gep is injective if and only if the action of G is injective. This is true for all B and B’ if
and only if € is pointwise epimorphic, if and only if G is faithful.

Part (ii). Similarly, G is full and faithful if and only if the map g — gep is a bijection on
morphisms with specified domain and codomain. This clearly holds if e is an isomorphism
for all B. Conversely, if the condition holds, there is a unique map g : B — FGB such that
€gg = 1g. Then eggep = €p, s0 geg and 1pgp have the same composite with €z, so they are
equal. O
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3.4. Reflections

Definition. An adjunction F - G is called a reflection if the counit is an isomorphism.
Dually, it is called a coreflection if the unit is an isomorphism. A full subcategory is called
reflective if the inclusion functor has a left adjoint; in this case the adjunction is a reflection.

Remark. If F 4 G is a reflection, then G : D — C induces an equivalence of categories
between D and the full subcategory of € on the objects in the image of G. This subcategory
is reflective.

If D C Cisareflective subcategory, there is intuitively a best possible way to get into D from
some object in €. The left adjoint sends an object in € to its ‘best approximation’ in D. If D
is coreflective, there is a best possible way to get out of D to some object in C.

Example. (i) AbGpisreflective in Gp; the left adjoint to the inclusion map sends a group
G to its abelianisation G* = G/H, the quotient of G by its commutator subgroup

H={aba™'b™' |a,b € G} 4G

Note that any homomorphism G — A where A is abelian factors uniquely through the
quotient map G — G®, giving the adjunction as required.

(ii) Recall that an abelian group is called torsion if all of its elements have finite order,
and torsion-free if all of its nonzero elements have infinite order. For an abelian group
A, its set of torsion elements forms a subgroup A;, which is a torsion group. Any
homomorphism from a torsion group to A must factor through A,. Thus A; is the
coreflection of A in the category of torsion abelian groups, and 4, A, is the reflection
of A in the category of torsion-free abelian groups.

(iii) The full subcategory KHaus of compact Hausdorff spaces is reflective in the category
Top of topological spaces. The left adjoint to the inclusion map is the Stone-Cech
compactification functor 3. We will construct this functor using the special adjoint
functor theorem, which is explored in the next section.

(iv) Recall that a subset C of a topological space X is called sequentially closed if for every
sequence x, € C converging to a limit x € X, we have x € C. We say that X is
a sequential space if all sequentially closed subsets are closed. The full subcategory
Seq of sequential spaces is coreflective in Top. Given a space X, let X; denote the
same set, but where the topology is such that all sequentially closed sets are also taken
to be closed. The identity map X; — X is continuous, and forms the counit of the
adjunction.

(v) The category Preord of preorders is reflective in Cat. The left adjoint maps a category
C to the quotient category G/N where ~ identifies all parallel pairs of morphisms.

(vi) Let X be a topological space. Then the poset QX of open sets in X is coreflective in the
poset PX, since if U is open and A is an arbitrary subset of X, then U C A if and only
if U C A°. Thus the interior operator (—)° is right adjoint to the inclusion QX — PX.
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Dually, the poset of closed sets is reflective in PX; the closure operator m is left adjoint
to the inclusion.
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4. Limits

4.1. Cones over diagrams

To formally define limits and colimits, we first need to define more precisely what is meant
by a diagram in a category.

Definition. Let J be a category, which will almost always be small, and often finite. A
diagram of shape J in a category C is a functor D : J — C.

We call the objects D(j) the vertices of the diagram, and the morphisms D(«) the edges of the
diagram.

Example. Let J be the finite category
L] < L]
L] H L]
A diagram of shape J in € is exactly a commutative square in €. The diagonal arrow is

required to make J into a category.

Example. LetJ be the finite category
L] H L]

S

Then a diagram of shape J in C is a square of objects in ¢ whose morphisms may or may not
commute.

Definition. Let D be a diagram of shape J in €. A cone over D consists of an object A € ob €
called the apex of the cone, together with morphisms 4; : A — D(j) called the legs of the
cone, such that all triangles of the following form commute.

A
N

D(j) T) D(j")

We can define the notion of a morphism between cones.

Definition. Let (A, 4;),(B,u j) be cones over a diagram D of shape J in C. Then a morphism
of cones is a morphism f : A — B such that all triangles of the following form commute.

A \ B
D(j)
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This makes the class of cones over a diagram D into a category, which will be denoted
Cone(D).

Remark. A cone over a diagram D with apex A is the same as a natural transformation from
the constant diagram AA to D, as we can expand the commutative triangles into the follow-
ing form.

A—2 v A
Aji \LAJ-,
D) 5z DU

Note that A is a functor € — [J, €], and thus Cone(D) is exactly the comma category (A | D).

4.2. Limits

Definition. A limit for a diagram D of shape J in C is a terminal object in the category of
cones over D. Dually, a colimit for D is an initial object in the category of cones under D.

A cone under a diagram is often called a cocone.

Remark. Using the fact that Cone(D) = (A | D) where A : C — [J, C], the category C has
limits for all diagrams of shape J if and only if A has a right adjoint.

Example. (i) If J is the empty category, there is a unique diagram D of shape J in any
category €. Thus, a cone over this diagram is just an object in €, and morphisms
of cones are just morphisms in €. In particular, Cone(D) = C, so a limit for D is a
terminal object in €. Dually, a colimit of the empty diagram is an initial object.

(ii) LetJ be the discrete category with two objects. A diagram of shape J in C is thus a pair
of objects. A cone over this diagram is a span.

N

A B

A limit cone is precisely a categorical product A X B.
AXB
A B
Similarly, the colimit for a pair of objects is a categorical coproduct A + B.

(iii) IfJ is any discrete category, a diagram of shape J is a family of objects A; in € indexed
by the objects of J. Limits and colimits over this diagram are products and coproducts
of the A;.
J
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4. Limits

(iv) IfJ is the category « =3 », a diagram of shape J is a parallel pair of morphisms f, g :
A 33 B. A cone over such a parallel pair is

satistying fh = k = gh. Equivalently, it is a morphism & : C — A satisfying fh = gh.
Thus, a limit is an equaliser, and dually, a colimit is a coequaliser.

(v) LetJ be the category

1

.H.

A diagram of shape J is thus a cospan in C.

Q4>

B—% }

A cone over this diagram is
D"y 4
k x /
B ? C

where ¢ = fh = gk is redundant. Thus a cone is a span that completes the commutat-
ive square. A limit for the cospan is the universal way to complete this commutative
square, which is called a pullback of f and g. Dually, colimits of spans are called
pushouts.

If any category € has binary products and equalisers, we can construct all pullbacks.
First, we construct the product A X B, then we form the equaliser of f7r,,gm, : AXB =3
C. This yields the pullback.

(vi) Let M be the two-element monoid {1, e} with e? = e. A diagram of shape M in a
category C is an object of € equipped with an idempotent endomorphism. A cone
over this diagram is a morphism f : B — A such thatef = f. A limit (respectively
colimit) is the monic (respectively epic) part of a splitting of e. This is because the pair
(e,14) has an equaliser if and only if e splits.

(vii) Let N be the poset category of the natural numbers. A diagram of shape N is a direct se-
quence of objects, which consists of objects Ay, Ay, ... and morphisms f; : A; = A;1-
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A colimit for this diagram is a direct limit, which consists of an object A, and morph-
isms g; : A; - A which are compatible with the f;. Dually, an inverse sequence is
a diagram of shape N°P, and a limit for this diagram is called an inverse limit. For ex-
ample, an infinite-dimensional CW-complex X is the direct limit of its n-dimensional
skeletons in Top. The ring of p-adic integers is the limit of the inverse sequence
defined by A, = Z/an in Rng.

Lemma. Let C be a category.
(i) If € has equalisers and all small products, then € has all small limits.
(ii) If C has equalisers and all finite products, then € has all finite limits.
(iii) If € has pullbacks and a terminal object, then € has all finite limits.

Note that the empty product is implicitly included in (i) and (ii). A terminal object is a
product over no factors.

Proof. Parts (i) and (ii). We prove (i) and (ii) in the same way. We will first construct the
product P of the D(j) for each j € obJ. Then, we will use an equaliser to construct the
subobject E of P that simultaneously satisfies all of the equations required for E to be the
apex of a cone. The fact that we have used an equaliser will show that this is a limit cone.

Let D : J — C be a diagram. We form the products

=[] b Q= J] Dlcoda)

jeobJ aemorJ

These are small or finite as required. Using the universal property of the product on Q, we
have morphisms f,g : P = Q defined by

Tof = Teodaq - P = D(coda); 7ug = D()Tyome : P — D(cod @)

For a : j — j' in D, these morphisms are represented by

P————f———>Q P--—--4f-_30Q
T T Tj Ty
j
D(j") D(j) T) D(j")

Lete : E — P be an equaliser for f and g, and define 4; = 7je : E — D(j). Then for each
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4. Limits

a: j — j', the following diagram commutes.

Araule

p
N

D(j) T> D(j")

Therefore, these morphisms form a cone. Given any cone (A, (4;)jeobs) OVer D, we have a
unique ¢ : A — P with 77;u = u; for all j. Then,

Taf M = Meoda = D(OHdoma = TaH
for all «, so u factors uniquely through e.

Part (iii). We show that the hypotheses of (iii) imply those of (ii). If 1 is the terminal object,
we form the pullback of the span

A
B——1
This has the universal property of the product A X B, so C has binary products and hence

all finite products by induction. To construct the equaliser of f,g : A = B, we consider the
pullback of

A

\L(lA’f)

AXB
(1A’g

Any cone over this diagram has its two legs C = A equal, so a pullback is an equaliser for
f.8 m

Definition. A category is called complete if it has all small limits, and cocomplete if it has
all small colimits.

Example. The categories Set, Gp, Top are complete and cocomplete.

4.3. Preservation and creation
Definition. Let G : D — C be a functor. We say that G

(i) preserves limits of shape J if whenever D : J — D is a diagram with limit cone
(L, (4})jeob ) the cone (GL, (GA;)jeqp s) is a limit for GD;
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(i) reflects limits of shape J if whenever D : J — D is a diagram and (L, (1;)jeobs) is @
cone such that (GL, (GA;)jeqp ) is a limit for GD, then (L, (4;);eobs) is @ limit for D;

(iii) createslimits of shapeJifwhenever D : J — D isadiagram with limit cone (M, (4;)jeob7)
for GD in C, there exists a cone (L, (4j)jeobs) over D such that (GL,(G4;)jeobs) &
(M, (4})jeobs) in Cone(GD), and any such cone is a limit for D.

We typically assume in (i) that 2D has all limits of shape J, and we assume in (ii) and (iii) that
C has all limits of shape J. With these assumptions, G creates limits of shape J if and only if
G preserves and reflects limits, and 2 has all limits of shape J.

Corollary. In any of the statements of the previous lemma, we can replace both instances
of ‘C has’ by either “D hasand G : D — C preserves’ or ‘C hasand G : D — C creates’.

Example. (i) The forgetful functor U : Gp — Set creates all small limits. It does not
preserve colimits, as in particular it does not preserve coproducts.

(ii) The forgetful functor U : Top — Set preserves all small limits and colimits, but does
not reflect them, as we can retopologise the apex of a limit cone.

(iii) The inclusion AbGp — Gp reflects coproducts, but does not preserve them. A free
product of two groups G, H is always nonabelian, except for the case where either G
or H is the trivial group, but the coproduct of the trivial group with H is isomorphic to
H in both categories.

Lemma. Suppose D has limits of shape J. Then, for any €, the functor category [, D] also
has limits of shape J, and the forgetful functor [C, D] — D€ creates them.

Proof. Given a diagram D : J — [C, D], we can regard it as a functor D : J X € - D,
so for a fixed object in €, we obtain a diagram D(—, A) of shape J in D, which has a limit
(LA, (AjA)jeobs)- Givenany f : A — Bin €, the composites

A; i
LA % pi,ay 2998 pj,B)

form a cone over D(—, B), and so factor uniquely through its limit LB. Thus we obtain Lf :
LA — LB. This is functorial because Lf is unique with this property. This is the unique
lifting of (LA) geqp e to an object of [C, D] which makes the 1; _ into natural transformations.
It is a limit cone in [€, D]: given any cone in [C, D] with apex M and legs (i, _)jeobs OVer
D, the u; 4 form a cone over D(—,A), so we obtain a unique v4 : MA — LA such that
Ajava = uja for all A. The v, form a natural transformation M — L, because for any
f : A - Bin C, the two paths vg(Mf),(Lf)v4 : MA = LB are factorisations of the same
cone over D(—, B) through its limit, so must be equal. O
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4. Limits

Remark. Note that f : A — B is monic if and only if

A4y 4
1a \Lf
A—3B

f

is a pullback square. Thus, if D has pullbacks, any monomorphism in [, D] is a pointwise
monomorphism, because the pullback in [C, D] is constructed pointwise by the previous
lemma. In particular, the monomorphisms and epimorphisms in [C, Set] are precisely the
pointwise monomorphisms and pointwise epimorphisms respectively.

4.4. Interaction with adjunctions

Lemma. Let G : D — C be a functor with a left adjoint. Then G preserves all limits which
exist in D.

Proof 1. In this proof, we will assume that €, D both have all limits of shape J. If F 4 G,
then the diagram

S

e —F
A\L A
[J,(‘,’] m [J:

commutes. All of the functors in this diagram have right adjoints, so the diagram

3

]

eSS

limy limy

commutes up to natural isomorphism, where lim; sends a diagram of shape J to the apex of
its limit cone. But this is exactly the statement that G preserves limits. O

Proof 2. In this proof, we will not assume that C has limits of any kind, and only assume
a single diagram D : J — D has a limit cone (L, (4j)jeobs) Over it. Given any cone over
GD with apex A and legs u; : A — GD(j), the legs correspond under the adjunction to
morphisms j i FA - D(j), which form a cone over D by naturality of the adjunction.

We obtain a unique factorisation u : FA — L with 4;u = /7]. for all j, or equivalently,
(GAj)u = uj, where u : A — GL corresponds to i under the adjunction. O

Suppose that D hasand G : D — C preserves all limits. The adjoint functor theorems say
that G has a left adjoint, under various assumptions.
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Lemma. Suppose that D hasand G : D — € preserves limits of shape J. Then forany A €
ob C, the category (A | G) has limits of shape J, and the forgetful functor U : (A | G) —» D
creates them.

Proof. LetD : J — (A | G) be a diagram. We write each D(j) as (UD(j), f;) where f; :
A — GUD()). Let (L, (4j)jeqps) be alimit for UD in D. By assumption, (GL, (GA;)jep ) is @
limit for GUD in €. But the edges of D are morphisms in (A | G), so the f; form a cone over
GUD. Thus, we obtain a unique factorisation f : A — GL such that (G4;)f = f; for all j.
In other words, we have a unique lifting of L to an object (L, f) of (A | G) which makes the
A; into a cone over D with apex (L, f). Any cone over D with apex (M, g) becomes a cone
over UD with apex M by forgetting the structure map, so we get a unique h : M — L, and
this becomes a morphism in (A | G) as both (Gh)g and f are factorisations through L of the
same cone over UD. O

Lemma. Let C be a category. Specifying an initial object of C is equivalent to specifying a
limit for the identity functor 1 : € — €, considered as a diagram of shape C in C.

Proof. First, suppose we have an initial object I in €. Then the unique morphisms I — A
form a cone over 1¢, and it is a limit, because for any other cone (B, (1,4 : B — A)), then 4;
is the unique factorisation as required. Conversely, suppose (I,(14 : I — A)) is a limit for
1e. Then certainly I is weakly initial: it has at least one morphism to any other object, given
by A,4. For any morphism f : I — A, itis an edge of the diagram, so fA; = 1,4, so it suffices
to show that A; is the identity morphism. Using the same equation with f = 14, we obtain
Aald; = A4, s0 Ay is a factorisation of the limit cone through itself. As this factorisation must
be unique, we must have A; = 1;. O

Proposition (primitive adjoint functor theorem). If D hasand G : D — € preserves all
limits, then G has a left adjoint.

Proof. The categories (A | G) have all limits, and in particular they have initial objects, so
G has a left adjoint. O

4.5. General adjoint functor theorem

Theorem (general adjoint functor theorem). Suppose D is complete and locally small. Then
afunctor G : D — C hasaleft adjoint if and only if G preserves small limits and satisfies the
solution-set condition: given any A € ob C, there is a set {f; : A — GB;};; such that every
f : A — GB factors as

A Ity g, 85 gB

forsomei € I and g : B; — B. This set I is called a solution-set at A.
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4. Limits

The solution-set condition can be equivalently phrased as the assertion that the categories
(A | G) all have weakly initial sets of objects: every object of (A | G) admits a morphism
from a member of the solution set.

Proof. If F - G, then G preserves all limits that exist in its domain, so in particular it pre-
serves small limits, and {n, : A - GFA} is a solution-set at A for any A. Now suppose
A € obC. Then (A | G)is complete, and is locally small as morphisms (B, f) — (B’, f') in
(A | G) are a subset of D(B, B’). We must then show that if A is complete and locally small
and has a weakly initial set of objects {S; | i € I}, then it has an initial object; then, setting
A = (A | G) and using the solution-set as the weakly initial set, the result follows.

First, we form the product P = [],_; S;- The set {P} is weakly initial since we have morph-
ismsz; : P — S; for alli. Now consider the diagram P = P whose edges are all endomorph-
isms of P. By assumption, leti : I — P be a limit for this diagram; this is an equaliser over
a family of morphisms. Then I is weakly initial. For a parallel pair f,g : I = C, we have an
equalisere : E — I, and can choose some h : P — E. Then we have the endomorphisms ieh
and 1p of P. Thusiehi = 1pi = i, buti is monic, so ehi = 1;. Hence e is a split epimorphism,
and hence f = g. O

Example. (i) Consider the forgetful functor U : Gp — Set. Note that Gp is complete
and locally small, and U creates small limits so in particular it preserves them. Given
aset A, any function f : A — UG can be factored as

A —> UG — UG

where G’ is the subgroup generated by {f(a) | a € A}. Note that the cardinality of G’ is
at most max(R, |A|), so we can fix a set B of this cardinality and consider all possible
subsets of B, all possible group structures on those sets, and all possible functions A —
B'; these form a solution-set at A. Hence, free groups exist. Note that the cardinality
bound on G’ requires most of the technology needed to explicitly construct free groups.

(ii) Let CLat be the category of complete lattices. The forgetful functor U : CLat —
Set creates all small limits; this can be seen in the same way as was shown with the
forgetful functor Gp — Set. In 1964, A. Hales proved that there are arbitrarily large
complete lattices with only three generators. Hence U has no solution set at A =
{a, b, c}. Note that U is representable, or equivalently, (1 | U) has an initial object. If
CLat had all coproducts, we would be able to form initial objects for (A | U), as every
set is a coproduct of singletons. But CLat does not have even finite coproducts.

4.6. Special adjoint functor theorem

Definition. Let A € ob C. A subobject of A is a monomorphism with codomain A; dually,
a quotient of A is an epimorphism with domain A. The subobjects of A in € form a preorder
Sube(A) by setting m < m’ when m factors through m’. € is well-powered if Sube(A) is
equivalent to a (small) poset for any A. Dually, we say C is well-copowered.
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Example. Set is well-powered, since every monomorphism is isomorphic to a subset inclu-
sion; the power-set axiom encodes this fact. Set is also well-copowered, because quotients
correspond to equivalence relations up to isomorphism, there is only a set of equivalence
relations on a given object A.

Lemma. Let
p—ya

(| \f;

B T> C
be a pullback square where f is monic. Then k is also monic.

Informally, monomorphisms are stable under pullback.

Proof. Let€,m : D =3 P be such that k¢ = km. Then fhl = gk¢ = gkm = fhm, but fisa
monomorphism, so hl = hm.

So ¢ and m are both factorisations of (h¢, k€) through the pullback, so ¢ = m. O

Theorem. Let C, D be locally small, and suppose that D is complete, well-powered, and
has a coseparating set. Then a functor G : D — € preserves all small limits if and only if it
has a left adjoint.

Proof. As above, any functor with a left adjoint preserves all limits that exist. For the other
direction, fix an object A and consider the category (A | G), which is complete and locally
small. Note that the forgetful functor (A | G) — D preserves monomorphisms, because
it preserves pullbacks. Thus, one can show that (A | G) is well-powered, because the su-
bobjects of a given object (B, f) are the monomorphisms m : B’ — B for which f factors
through Gm. If {S;},_; is a coseparating set for D, we have a coseparating set for (A | G) by
taking the setof all f : A — GS; with i € I; this is a set by local smallness. This is cosep-
arating, because given h,k : (B,g) = (B',g’) with h # k, there is a morphism ¢ : B — S;
with €h # €k, and ¢ is a morphism (B’,g") — (S;, (G#£)g') in (A | G).

It remains to show that there is an initial object in a category A if it is complete, locally small,

well-powered, and has a coseparating set {S;},;. First, we form the product

P=HSi

iel
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and consider the diagram

N7

P

whose edges are representative monomorphisms for each isomorphism class of subobjects
of P. Let I be the apex of a limit cone for this ‘wide pullback’ The legs of the cone are
monomorphisms, using the same argument as was described for pullbacks. In particular,
the composite maps I — P are monomorphisms, so I is a subobject of P. But by construction,
it factors through every subobject of P, so is a minimal subobject of P.

It remains to show that I is initial. Note thatif f,g : I =2 A were different monomorphisms,
their equaliser e : E — I would yield a subobject of P contained in I — P, so it would be an
isomorphism, giving f = g. For an arbitrary object A € ob A, form the product

Q= HSi; f A S;
(i.f)
and defineg : A - Qby
7.8 =f

As the S; form a coseparating family, g is a monomorphism. Thus A is a subobject of Q by g.
Thereisamap h : P — Q defined by

T, nh =7
Thus we can form the pullback

B—— A

k g

P >h—> Q

where k is a monomorphism as it is the pullback of a monomorphism. Hence B is a subobject
of P, and thus factors through I.
I-->B
\ k
p

Hence, we have a morphism I — A by composition. U

Example. Let I : KHaus — Top be the inclusion functor. KHaus is closed under small
products in Top by Tychonoff’s theorem, and is closed under equalisers since the equaliser
of f,g : X 33 Y is a closed subspace of X, and thus is compact and Hausdorff. Hence
KHaus is complete, and the inclusion preserves small limits. It is clearly locally small and
well-powered, since the subobjects of X are isomorphic to closed subspaces. It has a single
coseparator, namely [0, 1], by Urysohn’s lemma. Hence, by the special adjoint functor the-
orem, I has a left adjoint 8, which is the Stone-Cech compactification functor.
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Remark. Cech’s construction of 8 is almost identical to the construction of left adjoints given
above. Given a space X, one can form

p= J] [0.1]; g:X—>P, mg=f
f:X-[0,1]

which is the product of the members of coseparating set for (X | I). Then, X can be defined
to be the closure of the image of g, that is, the smallest subobject of (P, g) in (X | I).

The general adjoint functor theorem can also be used to construct . To obtain a solution-set
at a space X, observe that any morphism from X to a compact Hausdorff space I'Y factors as
X — IY' — IY where Y’ is the closure of X’ = {f(x) | x € X}. One can show that if Y’ is

Hausdorff and X’ is dense in Y’, then |Y’| < 22‘X |.
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5. Monads

5.1. Definition

Suppose F - G is an adjunction with F : ¢ - Dand G : D — €, where C is a well-
understood category, but D is not. We can study 2D indirectly inside the context of € by
using the adjunction. We have the composite T = GF : € — C, and we have the unit
n : 1le — T. The counit is not directly accessible from €, but we have u = Gep : T? - T.
The triangular identities give rise to identities linking » and u.

T
T —2y 12 T Ly 12
\‘ u \ \L:“
iy It
T T
In addition, naturality of € gives
T
73 £ 712
#T\L \Lu
T? ——> T

Definition. A monad on a category C is a triple T = (T, 5, u) where T is a functor € — C,
and” : 1l¢ - Tand u : T? — T are natural transformations satisfying the following
commutative diagrams.

T
T %72 7y 2 T3 —5 12
\ \Lﬂ \‘ \LM #T\L \Lﬂ
1T 1
T T T? —— T

7 is the unit of the monad, and u is the multiplication of the monad.
The dual notion is called a comonad.

Example. (i) Let M be a monoid. The functor M X (—) : Set — Set has a monad
structure. The unitn, : A - M X A maps each a to (1,a), and the multiplication
Ua i M XM XA — M XAmaps (m,m’,a) to (mm’,a). These maps are natural. The
required commutative diagrams encode precisely the left and right unit laws and the
associativity law of a monoid. In fact, monoids correspond precisely to monads on Set
whose underlying functors have right adjoints.

(ii) Let P : Set — Set be the covariant power-set functor. This can be given a monad
structure. The unit#, : A — PA maps a to its singleton {a}, and the multiplication
M4 : PPA — PA is the union operation mapping S to | J S. One can check that the
required laws are satisfied.
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These examples both arise as a result of adjunctions. Example (a) arises from the free M-set
functor F : Set — [M, Set] and the forgetful functor U : [M, Set] — Set, where F - U. For
example (b), there is a forgetful functor U : CSLat — Set from the category of complete
(join-)semilattices. This has a left adjoint P : Set — CSLat, which is the free complete
semilattice on A. Indeed, given any f : A — UB, there is a unique extension of f to a
join-preserving map f : PA — Bgiven by

f@) =\/{f@)|a €A}

Note that an M-setis aset A equipped withamapa : MXA — A, and a complete semilattice
is a set A equipped with a map \/ : PA — A. So the elements of the other category can be
defined in terms of the monad.

This holds in general: every monad arises from an adjunction. We present two construc-
tions.

5.2. Eilenberg-Moore algebras

Definition. Let T = (T, 7, 4) be a monad on C. An Eilenberg-Moore algebra or T-algebra is
a pair (A, o) where A is an objectin €, and a : TA — A is a morphism satisfying

A Ay 1A 24 1% TA

DN

TA — A
A homomorphism of algebras f : (4,a) — (B, ) is a morphism f : A — B such that the
following diagram commutes.
A 2\ T8
{
This forms a category of T-algebras, denoted €.
Proposition. The forgetful functor G’ : €' — € has a left adjoint F', and the adjunction

FT 4 GT induces the monad T on €.

Proof. We define the free algebra of an object A to be F'A = (TA,u,). This defines an
algebra structure on TA for every A by the monad laws. For f : A — B,wedefine F' f = Tf;
this is a homomorphism by naturality of u. This is functorial as T is functorial.

We have GTFT = T. For the unit of the adjunction, we use the unit of the monad #. For the
counit, we define
M = FTA = (A, a)
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This is a homomorphism by the definition of an algebra, and it is a natural transformation by
the definition of homomorphisms of algebras. It suffices to verify the triangular identities,
which follows from the remaining unused diagrams. One can check that the multiplication
induced by this monad is equal to that of T. O

5.3. Kleisli categories

IfFHAGwithF : ¢ - Dand G : D — C is an adjunction inducing T, then F’ 4 G’ with
F': C - D andG' : D' — €, where D’ is the full subcategory of D on objects in the image
of F. Thus, when finding a construction for D, we can assume that F is surjective (or, indeed,
bijective) on objects. Then, the morphisms FA — FB must correspond to morphisms A —
GFB under the adjunction, but GF = T.

Definition. Let T = (T,u,n) be a monad on C. The Kleisli category Cy is the category
where the objects are precisely the objects of €, and the morphisms from A to B in Gy are
the morphisms A — TB in €. To avoid confusion, we will denote morphisms from A to B in
this category by A > B. The identity A -» Aisn4 : A - TA. The composite of

is

These satisfy the unit and associativity laws.

A -2 Th
A —Ls rp 1 12 fi s
TB 2
1“\4 ius B XBy 12B
TB \ iuB
1rp
TB

T 2 T,
ALy g I8 20 Ty p3p TEDG o

[

N T2 \
TC —— T?D ——» TD

where in the last diagram, the upper composite is (hg) f and the lower composite is h(gf) in
Cy.

Proposition. There is an adjunction Fy | Gy where Fy : ¢ — Gy and Gy : Cp — C that
induces the monad T.

49



1. Category Theory

Proof. We define FfA = A, and for f : A — B, define Fyf = ngf. This preserves identities
as 1p, 4 = na, and preserves composites since

A—lyp_ "y rp T2C
\Lg Tg\l/ TV \Lﬂc
s 1C S TC
TC

C

1

commutes. For G, we define GfA = TA, and for f : A -» B, we define Gt f to be the
composite

A s 23 _FBy g

Note that Gy preserves identities by the unit law and preserves composites as

T T2 T
Ta —y r2p T8y 3o THey g

o e e

TB Tg> T?C —> TC

commutes. Then G is a functor, and GtFy = T. The unit of the adjunction is the unit of the
monad 7. For the counitey : TA = FyGtA > A, we use the identity 174. This is natural,

FrG
TA -7 Tf> TB
€A§ €B
v v
A o) B
i

commutes, as the paths are

TA —y r2p _FBy g By qap _MB pp

and
Tf 2 MB
TA —> T“B —— TB

which coincide. One can show that both triangular identities reduce to a unit law. It suffices
to verify that the multiplication of the induced monad is correct. The multiplication law is
Grep,a, Which is

724 ZIA 124 _HAy Ty

which is equal to 4, as required. O
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5.4. Comparison functors

Definition. Let T = (T, 7, «) be a monad on €. Then Adj(T) is the category of adjunctions
F - G which induce T, where the morphisms F 4 Gto F’ - G’ are the functorsK : D — D'
satisfying KF = F' and G'K = G.

¢
F F’
D@‘D’

N,

Theorem. The Kleisli adjunction Fr - G is initial in Adj(T), and the Eilenberg-Moore
adjunction F' 4 G7 is terminal in Adj(T).

Proof. We will first do the case of the Eilenberg-Moore adjunction. Let F - G be an ad-
junction inducing T. We define K : D — €' by KB = (GB, Geg). This is an algebra by
the triangular identities and naturality of . On morphisms f : B — C in D, we define
Kg = Gg, which is a homomorphism as ¢ is a natural transformation. Clearly G'K = G,
and KFA = (GFA, Gepy) = F'A,andfor f : A - A, KFf =GFf=Tf =F'f.SoKisa
morphism of Adj(T).

For uniqueness, suppose K’ were another such morphism. Then K'B = (GB, fg),and K'g =
Gg for g : B — C. Note that § must be a natural transformation GFG — G. Also, s =
Gepy forall A, as K'F = F'. But we have naturality squares

GFGFGB —X%By GFGB

BFGB\L \LGEFGB BB\L J/GEB

GFGB ——— GB
B

where the left edges are equal and the top edge is a split epimorphism, so the right edges are
equal. Thus K is unique.

Given an adjunction F 4 G inducing T, we define H : Cy — D by HA = FA, and for

Fa -y FGFB —FEy FB

This is functorial. Indeed, for f : A > Band g : B -> C, H(gf) is the upper composite and
(Hg)(Hf) is the lower composite in the following diagram.

FGepc

ra — s rorB L8 perorc LSSy RoRC

\LEFB \LGFGFC \LGFC

FB ———— FGFC ———— FC
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Then HF;(f) = epg(Fng)(Ff) = Ff. Moreover, GHA = GFA = TA = G+ A, and for
f : A-»> B, GFf is the composite

cra 2y GrGFB 25 GFB

which is the definition of G1(f). Thus H is a morphism of Adj(T). If H' : Ct — D were
another such morphism, then since H' Fy = F, we must have H'A = FA for all A. Note that
for f : A -» B, Hf is the transpose of f : A — GFB across F 4 G. Since H' commutes
with G and G, and F 4 G and Fy - G have the same unit 7, H must send the transpose

on morphisms. Hence H' = H. O

Definition. The functor K : D — ! is called the Eilenberg-Moore comparison functor.
Similarly, the functor H : Gt — D is called the Kleisli comparison functor.

Remark. Note that Ct has coproducts if € does, since Fy preserves them and is bijective on
objects. However, it has few other limits or colimits in general. In contrast, €' inherits many
limits and colimits from €.

Proposition. (i) The forgetful functor G = G' : @' — C creates any limits which exist
in C.

(ii) If C has colimits of shape J, then G = G' creates colimits of shape J if and only if T
preserves them.

Proof. Part (i). Let D : J — C' be a diagram of shape J. Write D(j) = (GD()), g;) for
J € obJ. Let(L,(4; : L = GD(j))jeobs) be alimit for GD in €. Then (TL,(T4;)jeoby) is @
cone over TGD, so (TL, (8(T4;j))jeobs) is a cone over TGD, and inducesaunique 6 : TL — L
making squares of the form

T/lj .
TL —% TGD())

e\L \Laj

L T> GD(j)

commute for each j. Note that 6 is an algebra structure on L, since the required diagrams
commute by uniqueness of factorisation through limits. It is the unique algebra structure
on L which make the /lj into a cone in €T, and one can easily show it is a limit cone.

Part (ii). In the forward direction, if G creates colimits of shape J, then it certainly preserves
them, as they exist in both categories. But F preserves all colimits, so T = GF preserves
them. Given D : J — €' and a colimit cone Aj : GD(j) — Lunder GD, we know that T4; :
TGD(j) — TL is a colimit cone, so there is a unique 6 : TL — L satisfying 6(T4;) = 4;6;
for all j, and 6 is an algebra structure since TTL is also a colimit. Hence (L, 6) is a colimit
for Din CT. O
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Remark. One can show that €' has colimits of any shape which exist in €, provided that it
has reflexive coequalisers.

5.5. Monadic adjunctions

It can be useful to know, for an arbitrary adjunction, if the Eilenberg-Moore comparison
functor K : D — G is part of an equivalence of categories. Note that the Kleisli com-
parison functor H is always full and faithful, so is part of an equivalence if and only if it
is essentially surjective, and since its action on objects is F, this holds if and only if F is
essentially surjective.

Definition. An adjunction F - G is monadic, or the right adjoint G is monadic, if K is part
of an equivalence.

Lemma. Let F 4 G be an adjunction inducing the monad T, and suppose that for every
T-algebra (A, @), the pair

a
FGFA 3 FA

€FA

has a coequaliser in 2. Then the comparison functor K : D — €' has a left adjoint L.

Proof. LetA(4,q) : FA — L(A, @) be a coequaliser for Fa, €p4. We can make L into a functor
C! = D. Given f : (4,a) — (B, B), the composite A,p)(F[f) coequalises Fa and €4, so it
induces a unique map Lf : L(A,a) — L(B, 3). This makes L into a functor by uniqueness.

FGFA > FA 24 14 a)

cor| Tl

FGFB :; FB —> L(B,B)

For any object B of D, morphisms L(A,a) — B correspond to morphisms f : FA — B
satisfying f(Fa) = fepa. If f : A — GB is the transpose of f across F - G, then by
naturality, the transpose of f(Fa) is foc, and the transpose of fer 4 is Gf since eg 4 transposes
to 1gra. But we have f = eB(Ff), o) (GeB)(GFf) = (GeB)(Tf). Thus f(Fa) = f(epa) if
and only if foc = (Geg)(T f), which is to say that f is an algebra homomorphism (A4, @) —
(GB, Geg) = KB. Naturality of this bijection follows from the fact that the map f ~— f is
natural, so L - K as required. O

Definition. A parallel pair f,g : A = B is reflexive if there exists r : B — A such that

fr=gr=13z.
f
}B

A
1

RS

~

=3

53
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Note that the parallel pair

Fa
FGFA }; FA

€FA

is a reflexive pair, and the common right inverse is r = F1 4.

Definition. A split coequaliser diagram is a diagram

f
% h
A——B K_/> c
K_/ s
t
such that hf = hg, hs = 10,8t = 1, ft = sh. That is, h has equal composites with f and g,
and the following diagrams commute.

The equations hs = 1., gt = 1 enforce that s is a section of &, and ¢ is a section of g. The
equation ft = sh enforces that the two non-identity paths from B to itself coincide.

Note that this implies that h is a coequaliser of f and g. Indeed, if k : B — D satisfies
kf = kg, then k = kgt = kft = ksh, so k factors through h. Moreover, this factorisation is
unique as h is split epic. Any functor preserves split coequaliser diagrams.

Definition. Given a functor G : D — C, we say that a parallel pair f,g : A 3 Bin D
is G-split if there is a split coequaliser diagram

Gf
H h
GA Tg> GB } C
. T
t
in C.
Note that the pair
Fa
FGFA }} FA
€FA
is G-split, as
GFa «
GFGFA ——— > GFA ; C
Gepa=Ha —
na
1GFA

is a split coequaliser diagram.

54



5. Monads

Theorem (Beck’s precise monadicity theorem). A functor G : D — € is monadic if and
only if G has a left adjoint and creates coequalisers of G-split pairs.

Theorem (Beck’s crude monadicity theorem). Suppose G : D — C has a left adjoint, and
G reflects isomorphisms. Suppose further that D has and G preserves reflexive coequalisers.
Then G is monadic.

We prove both theorems together.

Proof. First, suppose G : D — C is monadic. Then G has a left adjoint by definition. It
suffices to show that GT : €T — € creates coequalisers of G'-split pairs. This follows from
the argument of a previous lemma: if f,g : (A,a) = (B, ) are algebra homomorphisms,
and

f
H h
A——B_ 7€
K. _~ s

t

is a split coequaliser, then since the coequaliser is preserved by T and T2, C acquires a unique
algebra structure y : TC — C such that h is a coequaliser in C.

For the converse, either set of assumptions ensures that D has coequalisers of parallel pairs
of the form

Fa
FGFA }; FA

€FA

so the comparison functor K : D — €' has a left adjoint L. We must now show that
the unit and counit of L - K are isomorphisms. The unit (4, «) — KL(A, a) is the unique
factorisation of GA(4 o) : GFA — GL(A, a) through the (G'-split) coequalisera : GFA — A
of GFa, Gepy : GEGFA = GFAin C'. Buteither set of hypotheses implies that G preserves
the coequaliser of Fa, €r4, so the factorisation is an isomorphism. The counit LKB — B is
the unique factorisation of ez : FGB — B through Agp : FGB — LKB. The hypothesis in
the precise theorem implies directly that ep is a coequaliser of FGeg, €grp, because the pair
is G-split. From the hypotheses of the crude theorem, we can see that both ez and Agg map
to coequalisers in €, so the counit maps to an isomorphism in €, so it is an isomorphism as
G reflects isomorphisms. O

Remark. (i) LetJ be the finite category
N
((JEEN
A<&<r—B
Y
t
with fr = gr = 1g,rf = s,rg = t, then a diagram D of this shape is a reflexive pair.

A cone under it is determined by h : DB — L, which must satisfy h(Df) = h(Dg). A
colimit for this diagram is a coequaliser for f, g.
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(i) All small (respectively finite) colimits can be constructed from small (respectively fi-
nite) coproducts and reflexive coequalisers. The pair f,g : P = Q in the proof form a
coreflexive pair, with common left inverse r : Q — P given by 7;r = Ty, for all j.

(iii) Given a reflexive pair f,g : A =2 B, amorphism h : B — C is a coequaliser for it if
and only if the diagram

A—Lyp
g h
B—C

is a pushout, since any cone under the span given by f and g has its two legs equal.
The dual of this statement has already been proven.

(iv) In any cartesian closed category, reflexive coequalisers commute with finite products:
if the following are reflexive coequaliser diagrams,

f1 f2
—1 h —2y hy
A B, —5 C A B, —5% C
1 o ) 1 1 2 = ) 2 2

then the following diagram is also a coequaliser.

f1xf2
hyxh
A XA, ? B, x B, —X"2% ¢, x G,
81X82

Indeed, consider the diagram

A XA, ? By XA, — C; XA,

R~

A; X B, ;} B; XxB, —— C; X B,

! 1 !

A; X Cy ; By xXC, — C; X G,

All rows and columns are coequalisers, since functors of the form (—) X D preserve
coequalisers. It then follows that the lower right square is a pushout. By reflexivity, if
k : B; X B, — D coequalises

fiXf,81X8 1 Aj XA; 3 By XB,
then it also coequalises B; X A, =3 B; X B, and A; X B, =3 B; X B,, as they both factor

through the diagonal pair. Therefore, it factors through the top and left edges of the
lower right square, and hence through its diagonal.
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Example. (i) The forgetful functor U : Gp — Set satisfies the hypotheses of the crude

(i)

(iii)

(iv)

monadicity theorem. Indeed, it has a left adjoint and reflects isomorphisms, and it
creates reflexive coequalisers. Given a reflexive pair f,g : A =3 B in Gp, consider its
coequaliser h : UB — C in Set. As reflexive coequalisers commute with products in
Set,

f
UA x UA — UBxUB — CXxC
=
is a coequaliser. So we obtain a binary operation C X C — C making h into a homo-
morphism, C into a group, and & a coequaliser in Gp. The same procedure applies for
many other algebraic structures, such as rings, modules over a given ring, and lattices.
For infinitary algebraic categories such as complete semilattices and complete lattices,
we can use the precise monadicity theorem whenever a left adjoint exists.

Any reflection is monadic. If I : D — C is the inclusion of a reflective subcategory
and f,g : A 33 Bis an I-split pair in D, then the splittingt : B — A belongs to D,
and so its composite ft = sh also lies in D. But D is closed under limits that exist in
G, so in particular it is closed under splittings of idempotents.

Consider the composite adjunction

N Ly
Set AbG tfAbG
g TP - TR

Both factors are monadic: we have already shown that F -4 U is monadic, and L < I
is a reflection. However, the composite LF - Ul is not monadic. Indeed, free abelian
groups are torsion-free, so the monad induced by the composite adjunction coincides
with that induced by F 4 U.

The contravariant power-set functor P* : Set®® — Set is monadic as it satisfies the
hypotheses of the crude monadicity theorem. Its left adjoint is P* : Set — Set®”, and
it reflects isomorphisms. Let

f
A—23B ?c

8

be a coreflexive equaliser in Set. Then the square

AN
ool

o

8

=
a

ey
f

is a pullback. Thus, the composite

pB 2% pa ¢y pp
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)

(vi)
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coincides with

Pg

pB 28y pc Y

S\ PB

Also, (P*e)(Pe) = 1p4 and (P*g)(Pg) = 1pp, so we obtain the following split coequal-
iser diagram in Set.

P f

— Pe_,
PC Tg} PB SR PA
K. _~ Pe
Pg

The forgetful functor U : Top — Set is not monadic. The monad induced by D 4 U is
1get, and the unit and multiplication are the identity natural transformations. Hence
its category of algebras is isomorphic to Set. This example demonstrates that reflection
of isomorphisms is necessary for the crude theorem.

The composite
D \ B \
Set EU Top E . KHaus

is monadic, where § is the Stone-Cech compactification functor; we will prove this
using the precise monadicity theorem. Consider a Ul-split pair f,g : X 33 Y in
KHaus.

uf

H h
UXTUYV>Z
K~ s

t

There is a unique topology on Z making h into a coequaliser in Top, which is the
quotient topology. This is compact as it is a continuous image of the compact space
Y. Hence h will be a coequaliser in KHaus if and only if this topology is Hausdorff.
Note that the quotient topology is the only possible candidate topology on Z that could
make & into a morphism in KHaus.

It is a general fact that for every compact Hausdorff space Y and equivalence relation
S C Y X Y, the quotient is Hausdorff if and only if S is closed as a subset of Y X Y.
Suppose (¥1,¥2) € S, so h(y;) = h(y,). Then the elements x; = t(y;) and x, = t(y,)
satisfy

gx) =y gxx) =y f(x1) = f(x2)

and if x;, x, satisfy these three equations, then h(y;) = h(y,). Thus S is the im-
ageunder g X g : X XX — Y XY of the equivalence relation R on X given by
{(x1,x3) | f(x1) = f(x,)}. But R is closed in X X X, as it is the equaliser of f7;, f7, :
X X X =3 Y into a Hausdorff space, so it is compact. Hence S is compact, and thus
closed.
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Definition. Let F - G be an adjunction with F : € — D,G : D — €. Suppose that D has
reflexive coequalisers. The monadic tower of F H G is the diagram

where T is the monad induced by F - G, K is the comparison functor, L is the left adjoint
to K which exists as D has reflexive coequalisers, S is the monad induced by L - K, and so
on. We say that F - G has monadic length n, or that D has monadic height n over C, if the
tower reaches an equivalence after n steps.

If F - G is an equivalence, it has monadic length zero. Monadic length one means that

F H G is monadic but not an equivalence, and example (iii) above has monadic length
two.
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1. Category Theory

6. Monoidal and enriched categories

6.1. Monoidal categories

There are many examples of categories € equipped with a functor @ : € X ¢ — € and
an object I € ob € that turn € into a monoid up to isomorphism. Such a structure on a
category is called a monoidal structure, which will be defined precisely at the end of this
subsection.

Example. (i) Let C bea category with finite products. Let ® be the categorical product X,
and let I = 1 be the terminal object. This is known as the cartesian monoidal structure.
Dually, if € is a category with finite coproducts, it has a cocartesian monoidal structure,
givenby ® = +and I = 0.

(ii) In Met, the different metrics on X X Y yield different monoidal structures on Met.
Each of these have the one-point space, which is the terminal object, as the unit of the
monoid.

(iii) In AbGp, the tensor product gives a monoidal structure, where Z is the unit. Recall
that if A, B, C are abelian groups, then morphisms A ® B — C (that is, Z-linear maps)
correspond to Z-bilinear maps A X B — C. Similarly, if R is a commutative ring, the
tensor product ®g gives a monoidal structure on Mody with unit R. The R-linear
maps A ® B — C correspond to R-bilinear maps A X B — C.

(iv) For any category C, its category of endofunctors [C, C] has a monoidal structure given
by composition. The unit is the identity endofunctor 1e.

(v) For posets with top and bottom elements 1 and 0, we can define the ordinal sum A « B
to be the poset obtained from their disjoint union, by identifying the top element of
A with the bottom element of B. This is a monoidal structure, where the unit is the
one-element poset.

Definition. A monoidal category is a category € equipped with a functor® : € X € — C
and a distinguished object I, together with three natural isomorphisms

OCA’B’C(A®B)®C—)A®(B®C), /1AI®A—>A, pAA®I—>A

such that the diagrams
(A®B)®C)®D “4pc®1D > (A®(B®C)®D
“A@B,C,D\L J/aA,B®C,D
(A®B)® (C®D) AQR((B®C)®D)
O‘A,B,C@D 1A®O{BCD
A®(B®(C®D))
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XA,IB

AR Q®B > AQ (I ® B)
PAm AAB
AQ®B

commute, and A; = pr : I ® I - I. A monoidal category is strict if o, 4, p are identities.
a is called the associator, and 1 and p are the left and right unitors.

These diagrams suffice to prove the commutativity of the following two diagrams.

I®9A)®B 2% 18 (A®B) ARB)®I =M A0 BRI

| bo
AQlB % m AQPB

AQ®B AQ®B

Note that in the category of abelian groups with the usual tensor product, the obvious choice
for ay p ¢ is the map sending (a ® b) ® c to a @ (b ® c). However, there is also a natural
isomorphism sending (a®b)®c to —a®(b®c). But this choice does not satisfy the pentagon
equation, as a pentagon has an odd number of sides.

6.2. The coherence theorem
Given a monoidal category (C, ®, I), we define a word recursively.
(i) We have a stack of variables A, B, C, ..., which are all words.
(ii) The unit I is a word.
(iii) If u,v are words, then u ® v is a word.
A word with n variables defines a functor " — C.

Theorem (Mac Lane’s coherence theorem). For any two words w, w’ with the same se-
quence of variables in the same order, there is a unique natural isomorphism w — w’ ob-
tained by composing instances of «, 4, p and their inverses.

Proof. We define the height of a word w to be a(w) + i(w), where

(i) a(w) is the associator height, which is the number of closing parentheses occurring
immediately before ® in w;

(i) i(w) is the number of occurrences of I in w.

Applying any instance of «, 4, p to a word reduces its height. For example, ifx ... : w — w’,
then a(w’) < a(w) and i(w’') = i(w), and correspondingly if 4...w — w’, then i(w') =
i(w) — 1 and a(w") < a(w). In particular, any string of instances of @, 4, p starting from w
has length at most a(w) + i(w).
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We say that a word w is reduced if either a(w) = i(w) = 0 or w = I. If a(w) > 0, then w is the
domain of an instance of a, and if i(w) > 0 and w # I, then w is the domain of an instance
of either A or p. Thus, for any word w, there is a stringw — --- — w, where w, is the unique
reduced word containing the same variables of w in the same order. We must show that any
two such strings have the same composite. Given

w
SN

w w

where ¢, 1 are instances of a, 4, or p, we need to find a word w” completing the commutative
square

where 6, y are composites of instances of a, 1, and p.

If ¢, 3 act on disjoint subwords of w, sow = u @ vwherep = ¢’ ® 1, and = 1,, ® ¢’, then
we can fill in the square as follows.

u®u
§0l®1v 1u®¢’l
u ®vu uuv
lu’w\/k )/(P/®1v’
u Qv

Now suppose one acts within the argument of the other, for example, if p is a; ;, , and P =
(1; ® ') ® 1,,. Then by naturality of a, we can complete the diagram with 1, ® (' ® 1,))
and a; 1 4.

Now suppose that ¢ and ¥ interfere. If ¢ and 3 are both instances of «, then the pentagon
equation completes the commutative square.

Suppose one is an instance of o and the other is an instance of 4 or p. Then I must occur
as one of the three arguments to a. If it is the middle argument, the two diagrams in the
definition of a monoidal category complete the square. If if is the left or right argument, the
other two diagrams defined immediately after will complete the square.

Finally, if one is an instance of 4 and the other is an instance of p, then they must be A; and
P1, and so must agree. This completes the proof that there is a unique natural isomorphism
to a reduced word.
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Now suppose we have a string

~

Wy > Wy < w3 Wy Wn

Then there are unique ‘forwards’ morphisms

to wg, which is the reduced word with the same sequence of variables. Each of the triangles
must commute by the uniqueness result proven above. Hence the composite of the arrows
along the top edge is equal to the composite w; — wy « wy,. O

Definition. A symmetry on a monoidal category (€, ®,I) is a natural isomorphism y4 p :
A ® B — B ® A such that the following diagrams commute.

LB ®C S 40B®C) 5 40 (C®B)

VA®B,CJ/ \LaZ,IC,B

C®A®B) m (C®A)®BymB(A®C)®B

YA,B

AQI — ™ v 1®A4 A®B 25 BRA

AQ®B

For the weaker notion of a braiding, we can omit the last of the three diagrams, but add an
additional hexagonal equation, since it can no longer be derived from the first.

There is a coherence theorem for symmetric monoidal categories, which is also due to Mac
Lane. The theorem shows that for any two words w, w’ involving the same set of variables
without repetition, there is a unique natural isomorphism between w and w’ obtained from
compositions of instances of a, 4, y and their inverses. Note that p is not necessary, as it can
be produced from instances of 4 and y. The examples of monoidal categories above are all
symmetric, except for (iv) and (v).

6.3. Monoidal functors

Definition. Let (C,®,1),(D,®,J) be monoidal categories. A (lax) monoidal functor F :
€e,Q®,1) - (D,4,J)is a functor F : € — D equipped with a natural transformation
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¢ap - FA®FB - F(A® B) and amorphism : J — FI, such that the following diagrams
commute.

PA®B,C

FA® FB) & FC 2% (4 @ By @ FC 2% F(A® B)® C)

O(FA,FB,FC\L \LF aA,B,C

FA® (FB@FC) ——» FA®F(BRC) ;— FA®(B®C))

T@FA B4 FraFaA FA®T X FA@FI

AFAL \L¢I,A PFA\L J/@A,I

FA {—— FI®A) FA{—— FAQ]I)
Fa Fpa

We say F is strong monoidal (respectively strict monoidal) if ¢ and ¢ are isomorphisms (re-
spectively identities). An oplax monoidal functor is the same definition, but where the dir-
ections of the maps ¢ and  are reversed.

Note that the same letters are used for the associators and unitors in both monoidal categor-
ies.

Example. (i) The forgetful functor U : (AbGp,®,Z) — (Set,X,1) is lax monoidal.
We define t : 1 — Z to map the element of 1 to the generator 1 € Z, and define
@ : UAX UB - U(A® B) by (a,b) » a ® b. One can easily verify that the required
diagrams commute.

(ii) The free functor F : (Set, X,1) — (AbGp, ®, Z) is strong monoidal, because F1 = Z
and F(A X B) ~ FA ® FB.

(iii) Let R be a commutative ring. Then the forgetful functor Modp — AbGp is lax mon-
oidal, where t : Z — R is the natural map, and ¢ : A ® 7 B - A ®p B is the quotient
map. Its left adjoint, the free functor AbGp — Modg, is strong monoidal.

(iv) If € and D have the cartesian monoidal structure, then any functor F : ¢ — D is
oplax monoidal. ¢ : F1 — 1 is the unique morphism to the terminal object of D, and
®ap - F(AXB) - FA X FBis given by (Frry, Frr,). F is strong monoidal if and only
if it preserves finite products.

(v) If X and Y are metric spaces, then 1xy is non-expansive as a map (X X Y,d;) —
(XXY,d), making the identity functor 1y into a monoidal functor (Met, X, 1) —
(Met, X;,1). Note that the d, metric on X X Y defines the categorical product.

Lemma. Let C and D be monoidal categories. Let F 4 G, where F : ¢ — D and G :
D — C. Then there is a bijection between lax monoidal structures on G and oplax monoidal
structures on F.

Proof sketch. Suppose we have (¢,t) on G. Then the transpose of t : J — GI is a morphism
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FJ — I, and we have a natural transformation

€EFA®FB

F(A® B) L™ p(GFA ® GFB) A% FG(FA @ FB) —49"% FA @ FB

One can check that each of the required diagrams commute, defining an oplax monoidal
structure on F. By duality, an oplax monoidal structure on F yields a lax monoidal structure
on G, and it can be shown that these constructions are inverse to each other. O

6.4. Closed monoidal categories

Definition. We say that a monoidal category (C, ®, I) is (left/right/bi)-closed it AQ(—), (—)®
A, or both have right adjoints for all A. If ® is symmetric, we say in any of these cases that
C is closed.

Right adjoints for (—) ® A are denoted [A, —] if they exist.

Example. (i) A cartesian closed category is a monoidal category with @ = X, that is
closed as a monoidal category. In particular, Set and Cat are cartesian closed.

(i) The metric d; on the set [X, Y] of non-expansive maps X — Y yields a closed structure
on (Met, X, 1).

(iii) AbGp and Mody, for any commutative ring R are monoidal closed, where [A, B] is
the set of homomorphisms A — B, turned into an abelian group or R-module by
pointwise addition and scalar multiplication. The homomorphisms C — [A, B] cor-
respond under A-conversion to bilinear maps C XA — B, and thus to homomorphisms
C®rA— B.

(iv) The cartesian monoidal structure on the category of pointed sets Set, is not closed,
but the monoidal structure given by the smash product (=) A (—) is closed, where

(A,ap) A (B,bg) =A% B/

and ~ identifies all elements where either coordinate is the basepoint. Basepoint-
preserving maps A A B — C correspond to basepoint-preserving maps from A to the
set [B, C] of basepoint-preserving maps B — C.

(v) Consider the set Rel(A x A) = P(A X A) of relations on A. This is a poset under inclu-
sion, and is a monoid under relational composition. Composition is order-preserving
in each variable, making Rel(A X A) into a strict monoidal category. Itis not symmetric,
but biclosed. For the right adjoint to (—) o R, we define R = T to be

(R=>T)={(b,c)eAXA|Va€eA, (a,b)eR=>(a,c) €T}

Then S C (R=> T)ifandonlyif SoR C T.
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6.5. Enriched categories
Definition. Let (&, ®,I) be a monoidal category. An E-enriched category consists of
(i) acollection ob € of objects;
(ii) an object C(A, B) of & for each pair of objects A, B € ob C;
(iii) morphismsty : I —» C(A,A) for each A;
(iv) morphismsx, g : C(B,C) ® C(A,B) — C(A, C) for objects A, B, C,
such that the following diagrams commute.

®1
1® C(A, B) — %% (B,B) ® C(A, B)

\LKA,B,B
Ae(a,B)

(A, B)

®1
(A, B) ® I'—4"6(4, B) ® C(A,A)
\LKA,A,B
Pm
C(A, B)

(C(C,D) ® €(B,C)) ® C(A, B) =215 €(B,D) ® €(A, B)

« C(A,D)

C(C,D)® (C(B,C) ® C(A, B)) <z €(C,D) ® C(A,C)

Definition. Let C, D be &-enriched categories. An E-enriched functor € — D consists of
a map of objects F : obC — ob D together with morphisms F, g : C(A,B) - D(FA,FB)
for each pair of objects A,B € ob C, in such a way that is compatible with identities and
composition.

Definition. Let F,G : € =3 D be &-enriched functors between E-enriched categories. An
E-enriched natural transformation F — G assigns a morphism 6, : I — D(FA, GA) to each
A € ob @, satisfying the naturality condition

F, _
C(A, B) A S D(FA,FB) A \ I ® D(FA, FB)
GA,B\L \L@B@)l
D(GA, GB) D(FB, GB) ® D(FA,FB)

-] I

D(GA,GB) ® I <= D(GA,GB) ® D(FA, GA) ———— D(FA,GB)
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If C is an &-enriched category, its underlying ordinary category |C| is the category where the
objects are those of €, the morphisms A — B are the morphisms I — C(A, B) in &, where
the identity morphisms are given by ¢4, and the compositionofg : C - Band f : A - B
given by

T8 1e1 2% 0(B.0)® C(A.B) —5 €(A.C)

One can check that this indeed forms a category. An E-enrichment of an ordinary category
Cy is an &-enriched category € such that |C| = C,.

Example. (i) A category enriched over (Set, X, 1) is a locally small category.
(ii) A category enriched over the poset 2 = {0, 1} with 0 < 1 is a preorder.

(iii) A category enriched over (Cat, X, 1) is a 2-category. Its morphisms or I-arrows A — B
are the objects of a category C(A, B). It has 2-arrows between parallel pairs f,g :
A 3 B, which are the morphisms f — g in the category C(A, B). Cat is a 2-category,
by taking the 2-arrows to be the natural transformations. The category of small &-
enriched categories with £-enriched functors is a 2-category.

(iv) A category enriched over (AbGp, ®, Z) is an additive category.

(v) If € is a right closed monoidal category, it has a canonical enrichment structure over
itself. Take (A, B) tobe [A, B], where [A, —] is the right adjoint of (—)®A. The identity
I — [A, A] is the transpose 14 : [ ® A — A, and the composition « is the transpose of

1Qey,

([B,C1®[A,B)) ® A — [B,C]1® ([A,B]® A) — [B,C]® B — C

where ev is the evaluation map, which is precisely the counit of the adjunction.

(vi) A one-object E-enriched category is an (internal) monoid in &; it consists of an object
M of &, equipped with morphismse : I - Mandm : M ® M — M satisfying the left
and right unit laws and the associativity law.

(a) An internal monoid in Set is a monoid.
(b) An internal monoid in AbGp is a ring.
(c) An internal monoid in Cat is a strict monoidal category.

(d) An internal monoid in [€, €] is a monad on C.
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7. Additive and abelian categories

7.1. Additive categories

In this section, we will study categories enriched over (AbGp, ®, Z); these are called addit-
ive categories. We will also consider other weaker enrichments: a category enriched over
(Set,, A, 2) is called pointed, and a category enriched over (CMon, ®, N), where CMon is
the category of commutative monoids, is called semi-additive.

In a pointed category C, each C(A, B) has a distinguished element 0, and all composites
with zero morphisms are zero morphisms. In a semi-additive category C, each C(A, B) has
a binary addition operation which is associative, commutative, and has an identity 0. Com-
position in a semi-additive category is bilinear, so (f + g)(h + k) = fh + gh + fk + gk
whenever the composites are defined. In an additive category, each morphism f € C(A, B)
has an additive inverse —f € C(A, B).

Lemma. (i) For an object A in a pointed category €, the following are equivalent.
(a) Aisa terminal object of C.
(b) Ais an initial object of C.
(c)1,=0:A-A.
(ii) For objects A, B, C in a semi-additive category C, the following are equivalent.

(a) there exist morphisms 77; : C - A and 7, : C — B making C into a product of
A and B;

(b) there exist morphisms v; : A — C and v, : B — C making C into a coproduct
of A and B;

(c) there exist morphisms 7, : C - A,m, : C - B,v; : A > C,v, : B> C
satisfying

vy =1y TV, =1, mv,=0; mv; =0; vim +v,71m =1¢
Proof. In each part, as (a) and (b) are dual and (c) is self-dual, it suffices to prove the equi-
valence of (a) and (c).

Part (i). If A is terminal, then it has exactly one morphism A — A, so this must be the
zero morphism. Conversely, if 14 = 0, then A is terminal, as for any f : B — A, we have
f =14f =0f =0, so the only morphism B — A is the zero morphism.

Part (ii). If (a) holds, take vy, v, to be defined by the first four equations in (c); it suffices to
verify the last equation, vy, + v,7m, = 1. Composing with 7,

TV 7T = 1A7T1 + 07'[2 =T

and similarly, composing with 7, gives 7,. So by uniqueness of factorisations through limit
cones, V71 + ¥,7, must be the identity. Conversely, if (c) holds, given a pair f : D — A and
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7. Additive and abelian categories

g : D — B, the morphism
h=vf+v,8

satisfies
mh=1,f4+0g=f; mh=0f+18=¢g
giving a factorisation, and if 4" also satisfies these equations, then
h' =@ +vym)h' =vif+v,8=h
so the factorisation is unique. O
In any category, an object which is both initial and terminal is called a zero object, denoted

0. An object that is a product and a coproduct of A and B is called a biproduct, denoted
ADB.

Lemma. Let € be alocally small category.
(i) If € has a zero object, then it has a unique pointed structure.

(i) Suppose € has a zero object and has binary products and coproducts. Suppose further
that for each pair A, B € ob C, the canonical morphism c : A+ B — A X B defined by

1 ifi=j
TV = ipe s
0 ifi#j
is an isomorphism. Then € has a unique semi-additive structure.
We adopt the convention that morphisms into a product are denoted with column vectors,
and morphisms out of a coproduct are denoted with row vectors.

Proof. Part (i). The unique morphism 0 — 0 is both the identity and a zero morphism. So
for any two A,B : ob C, the unique composite A — 0 — B must be the zero element of
C(A, B). We can define a pointed structure on € in this way.

Part (ii). This technique is known as the Eckmann-Hilton argument. Given f,g : A 3 B,
we define the left sum f +, g to be the composite

o

— 1 1
A—)BXBL>B+BL;B

and the right sum f +, g to be
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1. Category Theory

Note that (f +, g)h = fh +, gh, since
N\ (fh
<g) "= (gh>

k(f +r g) = kf +, kg
So if we show that the two sums coincide, we obtain the required distributive laws. First,

note that 0 : A — B is a two-sided identity for both +, and +,. For example, f +,0 = f,
since

and similarly,

A ! \ B 15 \ B

(f>\" Bx B/AQ—N Xl/KB + B/(1 !

0

commutes. Suppose we have morphisms f, g, h,k : A — B, and consider the composite
1 f e
1 1 h k 1
A—35AXA -S> A+A—3SBxB--3B+B
The composite of the first three factors is
f+rg
h+,k
so the whole composite is (f +, g) +, (h +, k). Evaluating from other end, we obtain

(f+r@+e(h+r k) =(f+o )+, (g +e k)

This is known as the interchange law. Substituting g = k = 0, we obtain f +, k = f +, k.
Substituting f = k = 0 (and dropping the subscripts) we obtain the commutative law g+h =
h + g. Substituting h = 0, we obtain the associativity law (f + g) + k = f + (g + k).

(

11
B

For uniqueness, suppose we have some semi-additive structure + on €. Then vy71; + v,7,

1 0
must be the inverse of ¢ = (

0 1) : A+ B — A X B, since

nme=v(1 0)=(v; 0); vme=(0 v,)

SO
Iy + )= +0 0+4vy)=(v; v,)=1a4p

Hence the definitions of +, and +, both reduce to +. O

Note that if € and 2 are semi-additive categories with finite biproducts, then a functor F :
C — D is semi-additive (that is, enriched over CMon) if and only if it preserves either
finite products or finite coproducts. In particular, if F has either a left or right adjoint, then
it is semi-additive, and the adjunction is enriched over CMon; the bijection €(A, GB) —
D(FA, B) is an isomorphism of commutative monoids, since the operations F(—) and (—)eg
both respect addition.
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7.2. Kernels and cokernels

Definition. Let f : A — B be a morphism in a pointed category C. The kernel of f is the
equaliser of the pair (f, 0); dually the cokernel is the coequaliser of (f, 0). A monomorphism
that occurs as the kernel of a morphism is called normal.

In an additive category, the normal monomorphisms are precisely the regular monomorph-
isms, since the equaliser of (f, g) is the kernel of f —g. In Gp, all inclusions of subgroups are
regular, but not all inclusions are normal, since a normal monomorphism corresponds to a
normal subgroup. In Set,, all surjections are regular epimorphisms, but (A4, ay) — (B, by) is
a normal epimorphism if f is bijective on elements not mapped to b,. We say that a morph-
ism f : A — B is a pseudomonomorphism if its kernel is a zero morphism; that is, fg = 0
implies g = 0.

Lemma. In a pointed category with kernels and cokernels, f : A — B is normal monic if
and only if f = ker coker f.

Proof. If f = kercoker f, it is clearly normal. Now suppose f = kerg. Then g factors
through the cokernel of f, so g(ker coker f) = 0. Thus kercoker f < f in Sub(B). But
(coker f)f = 0,s0 f < kercoker f, so they are isomorphic as subobjects of B. g

Corollary. In a pointed category with kernels and cokernels, the operations ker and coker
induce an order-reversing bijection between isomorphism classes of normal subobjects and
isomorphism classes of normal quotients of any object.

Remark. For any morphism f : A — Binsuch a category, ker coker f is the smallest normal
subobject of B through which f factors.

7.3. Abelian categories

Definition. An abelian category is an additive category with all finite limits and colimits.
Equivalently, an abelian category is a category with a zero object, finite biproducts, kernels,
and cokernels, such that all monomorphisms and epimorphisms are normal.

Example. (i) The category AbGp is abelian; more generally, for any ring R, the category
Mody, is abelian.

(ii) If A is abelian and € is small, then [C,.A] is abelian, with all structures defined point-
wise.

(iii) If A is abelian and € is small and additive, then the category of additive functors € —
A, denoted Add(C,.A), is also abelian, as it is closed under all of the structures on
[@,A]. Note that this covers the case of R-modules, as an additive category with a
single object is a ring, and the category of modules over such a ring is isomorphic to
the category of additive functors from this category to AbGp.
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Remark. If f : A — B in an abelian category, then ker coker f is the smallest subobject
I — B through which f factors. This is called the image of f, denoted im f = ker coker f.
The other part of the factorisation A — I is epic, as it cannot factor through the equaliser of
any nonequal parallel pair I =3 C. Thus, itis also the smallest quotient of A through which f
factors, so it is the coimage of f, given by coim f = coker ker f. The composition A - I —» B
is the unique epi-mono factorisation of f.

To show that this factorisation is stable under pullback, it suffices to show that the pullback
of an epimorphism in an abelian category is epic, as the corresponding statement for mono-
morphisms has already been shown.

Lemma (flattening lemma). Consider a square

R
S

8N
&

g h

a
o

k

in an abelian category A. Its flattening is the sequence
: (n
A—SB®C —¥D

Then

(i) the square commutes if and only if the composite of the flattening (h —k) (é ) is the

zero morphism;

(ii) the square is a pullback if and only if (ch ) =ker(h —k);

(iii) the square is a pushout if and only if (h —k) = coker ({; )

Proof. Part (i). The composite (b —k) ({; ) is hf — kg, so it vanishes if and only if the square

commutes.

Part (ii). (g ) is the kernel of (h  —k) if and only if

l

QOQ
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7. Additive and abelian categories

is universal among spans completing the cospan

B
h
C —k> D
into a commutative square.
Part (iii). Follows by duality, taking care of the asymmetric negation. O

Corollary. In an abelian category A, epimorphisms are stable under pullback.

Proof. Suppose we have a pullback square

oq
U%Q‘J

By part (ii) of the above result, (J; ) =ker(h —k). But h is an epimorphism, so (h —k) is
f

also an epimorphism. Thus (h —k) = coker (g)’ so the square is also a pushout. We show

that g is a pseudoepimorphism; this suffices as .A is abelian. Suppose we have ¢ : C - E
with g = 0. Then (g (B 2 E)) factors uniquely through the pushout.

A—1yp
g @ X
C—D

But then mh = 0 and h is epic, so m = 0, giving € = mk = 0. O

Thus image factorisations are stable under pullback, and dually, under pushout.

7.4. Exact sequences

Definition. A sequence

fn fn
—> An+1 +1> Ap > Ap—1 —>

in an abelian category A is exact at A, if ker f, = im f,,, ;. The entire sequence is said to be
exact if it is exact at every vertex.
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By duality, the sequence is exact at A,, if and only if coker f,,,; = coim f,.

Example.

0—>a-JIsp_8yc

is exact at A if and only if f is monic, and is exact at A and B if and only if f = ker g.

Definition. A functor between abelian categories F : A — B is exact if it preserves arbit-
rary exact sequences.

This implies that F preserves kernels and cokernels, and the converse is true as images are
defined in terms of kernels and cokernels.

Definition. F is left exact if it preserves exact sequences of the form

f

0—3>aA-—Lsp_=

> C

Proposition. Let F : A — B be a functor between abelian categories. Then
(i) F is left exact if and only if it preserves all finite limits (and hence is additive);

(ii) F is exactif and only if it is left exact and preserves epimorphisms.

Proof. Part (i). One direction is trivial as kernels are finite limits. Conversely, note that for
any A, B, the sequence

1
P
0—3>A—5A®B B—>30
is exact, and conversely, if we have an exact sequence

0—3ya-Tsc_2

> B 7 0

and either f is a split monomorphism or g is a split epimorphism, then C =~ A @ B. Indeed,
suppose that f is split, so rf = 14. Then g = coker f = coker fr is the coequaliser of
(1¢c — fr, 1), so it is the epic part of a splitting of the idempotent 1- — fr. If s : B —» Cis
the monic part of this splitting, then the four morphisms (r, g, f, s) satisfy the equations of a
biproduct. So F maps

o
RN U S

to a sequence identifying F(A @ B) as FA @ FB, and thus preserves biproducts. Hence F
preserves all finite limits.
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Part (ii). If F is left exact and preserves epimorphisms, then it preserves the exactness of
sequences of the form

0 va—Jyc_2yp 50

Thus it preserves kernels and cokernels. O

7.5. The five lemma

Lemma. Suppose we have a commutative diagram in an abelian category

f
A — A > As > Ay > As

\Lul \l/uz \l/ug, L"“ \Lus

B, 7 B,

~
o]
w

81 82

where the rows are exact sequences. Then,
(i) if u, is epic and u,, u, are monic, then u; is monic;
(ii) if us is monic and u,, u, are epic, then u; is epic.
Thus if uy, u,, uy, us are isomorphisms, u; is an isomorphism.
Proof. By duality it suffices to show (i). We show u; is a pseudomonomorphism. Suppose
we have x : C - A; with u3x = 0. Then u, f3x = g us3x = 0, so as u, is a monomorphism,

fzx = 0. Hence x factors through the kernel of f;, which is the image of f,. Form the
pullback of f, and x to obtain

Then y is also the pullback of this factorisation of x along coim f,, so y is an epimorphism
as epimorphisms are stable under pullback. Then g,u,z = u;f,z = uzxy = 0. Thus u,z
factors through ker g, = im g;. Consider the pullback square

75



1. Category Theory

So v is epic, as it is the pullback of coim(g,u;).

> C

\Lw 2 \Lx
A Dy oA, L2y oa, iy oa, T g
2>B

Us \Lu4 J/MS
> B > B
3 g3 7 P4 7 D5

\
By —7 B, —

Thus u,zv = g;u,w, and u, is monic, so zv = fiw. Then xyv = f,zv = f,fijw = 0,and yv is
epic, hence x = 0. O

7.6. The snake lemma

Lemma. Consider a diagram in an abelian category

B, 7> B, 7 Bs

\Lvl lvz \ng

0 7 G 7 G 7 G

~
(=)

where the rows are exact and the squares commute. Then we obtain an exact sequence

Kerv;, —— Kerv, ——— Keruv;

~ ~ ~-
\ \ \
B, > B > Bs J > 0
( s
U1 U2 U3
~ ~ ~-
0 > > G, > C
~ ~ ~-

> Cokerv; ——» Cokerv, ——» Cokerv;

7.7. Complexes in abelian categories

Definition. Let.A be an abelian category. A (chain) complex in A is an infinite sequence of
objects and morphisms

dn+1 dn
o= Cpyy — Gy — Gy —> =

where the composite of any two consecutive morphisms is zero.
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Note that a complex may be identified with an additive functor £ — A, where Z is the
additive category with obZ = Z and

Z ifm=norm=n-1
Z(n,m) = .
0 otherwise

Thus, complexes on A are the objects of an abelian category cA = Add(Z,.A), where the
morphisms are natural transformations.

Definition. Let C, be a complex. We define
(i) Z,(C.) » C, to be the kernel of d,;;
(i) I,(C.) = C, to be the image of d,,;
(iii) Z,(C.) » H,(C.) to be the cokernel of I,,(C.) » Z,(C.).
We say that H,,(C.) is the nth homology object of C..
Note that Z,,, I,,, H,, are additive functors CA — A.

Lemma. The construction of H,(C,) is self-dual.

Proof. Write C,, » Q,(C.) for the cokernel of d,,, ;. Then we have the diagram

dn+1 dn
C'n+1 > Cn > Cn—l

4 N 1

In H Zn —» Hn Qn —» In—l

By definition, I,, - C, is ker(C,, - Q,). As Z,, — C, is a monomorphism, I,, - Z, is
ker(Z, - C,, — Q,). Hence Z,, —» H,, is coim(Z,, — Q,,), so we obtain

dn
C’n+1 > Cn > Cn—l

4 N 1

In>—>Zn—»Hn>—>Qn—»1n—l

dn+1

and Z,, » H, - Q, is the image factorisation of Z, — Q,,. g

Theorem (Mayer—Vietoris sequence). Suppose we have a short exact sequence of complexes
in A.

0—3 A Ly B &y,

~
S

Then there is a long exact sequence of homology objects

o — HyA) Y gy B g — By a)™ K, )%y, ) — -
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Proof. First, we apply the snake lemma to

fn &n
0 — Apy1 — By — Cpp 50
0 S A > B, > Cp 50

n fn gn

to obtain exact sequences

0 —> Zn+1(A-) —> Zn+1(B-) —> Zn+1(c-)
and
Qn(A-) —> Qn(B-) —> Qn(C.) —> 0

Thus Z,, is a left exact functor and Q,, is right exact. We now apply the snake lemma again
to the diagram

Qn+1(A-) —> Qn+l(B-) —> Qn+1(c-) —> 0

! 1 !

0 ——> Zy(A) —— Zy(B.) —> Zu(C.)

Here, the cokernel of Q,,,.; — Z, coincides with that of I,, — Z,, as Q,,.; — I, is epic. Their
kernels coincide with H,,,; — Q4 as homology is self-dual. Hence we obtain

Hpi1(A)) —> Hp1(B)) — Hypa(C.) —— Hu(A.) —— Hy(B.) —— Hy(C.)

as required. O

Note that Z,, : cA — A is the right adjoint to the functor A — A[n], where A[n] is the
complex that has A in dimension n and 0 everywhere else; this gives another proof that Z is
left exact. Dually, Q,, is the left adjoint to this functor.

Definition. Let f,,g. : C. =3 D, be two morphisms of CA. A homotopy from f, to g, is a
sequence of morphisms h,, : C,, = D, such that

8n — Jfuo = dps1hn + hypady
for all n. We say that f,, g, are homotopic and write f, ~ g, if there exists such a sequence h,.

Homotopy is an equivalence relation on morphisms of CA. It is a congruence, as it is com-
patible with composition on both sides; indeed, if k. : D, — E,,and h, : f. ~ g., then the
morphisms k., h, form a homotopy k. f, — k.g., and similarly for the other side. We write
HA for the quotient of CA by the homotopy congruence. Also, homotopy is compatible with
addition, by adding the relevant homotopies, so the quotient category inherits an additive
structure, and the quotient CA — HA is an additive functor. In particular, HA has finite
biproducts, although it is not an abelian category.
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Lemma. If f, ~ g, : C, 3 D,, then H,(f.) = H,(g.) for all n.
Thus, the H,, can be regarded as additive functors HA — A.
Proof. Let h, be a homotopy from f, to g., so g, — f, = dy1h, + hy_1d,. Then Z,(g.) —

Zy,(f.)is the restriction of d,,, | h,, to Z,,(C.), since h,,_,d,, is zero on this subobject. Similarly,
H,(g.) — H,(f.) is zero, as d,, .1 h,, vanishes when factoring through the quotient. O

7.8. Projective resolutions

Definition. A category C has enough projectives if for every object A, there exists an epi-
morphism P - A where P is projective.

Note that this holds in AbGp and Modp, for any commutative ring R, because free modules
are projective, and every module can be written as a quotient of a free module.

Definition. Let A be an abelian category and let A be an object of A. A projective resolution
of A is a complex P. where the objects B, are projective, B, = 0 for all n < 0, and

A ifn=0

H,(P) =
n(F) 0 otherwise

Equivalently, a projective resolution is an exact sequence

A
o

> B > B > B > A

where the P; are projective.

Lemma. Let .4 be an abelian category that has enough projectives. Then every object of A
has a projective resolution.

Proof. Given an object A, choose some projective object Ry with an epimorphism R, » A. Let
Ky = R beits kernel, and choose B to be a projective object with an epimorphism B - K,
then continue by induction. O

Lemma. Suppose P, Q, are projective resolutions of objects A, B. Then for any f : A — B,
there is a morphism of complexes f, : B — Q, with H,(f.) = f. Moreover, any two such

morphisms P, — Q, are homotopic.

Proof. Consider the diagram

B—>K —>R— K —>h—>A4
b
Q—> L —>Q —>Lg—>Q — B
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1. Category Theory

By projectivity of By, we obtain f, completing the right-hand square.

35 > Ky > B 7> Ko > B > A

ol

QZ >L1 >Q1 >LO >Q0 >B

The morphism B, — B — A is zero by exactness, so B — B — Qq, — B is also zero. Thus
B — Qq factors through the kernel L, — Q,. We then obtain f; by projectivity.

B r Ky

> B > Ko > B > A
fll \‘ \Lfo \Lf
\ > B

Q> 7 Ly 7 Q1 7> Lo > Qo

Continue by induction.

Now suppose we have another morphism of chains g, with Hy(g.) = f. Then g, — f;, factors
through Ly — Q, as they have the same composite with Q; — B. Thus we obtain

B > Ky > B > Ko z B > A

L%i b

Q> 7 Ly 7 Q1 7 Lo 7 Qo > B

where dihy = gy — fo- Then

di(g1 — fi — hody) = d1g1 — dy fi — dihody = gody — fody —dihod; =0

Hence g; — f; — hyd,; factors through L, — Q;, so we obtain h, as follows.

> B — A
l l I
> Q> > B

Then djh; + hod, = g; — fi as required. Continue similarly by induction to construct all
components of the homotopy. O

Thus construction of projective resolution is a functor. Note that in this proof we never
made use of projectivity of Q,. In particular, this shows that the construction of projective
resolutions is left adjoint to Hy : ¢ — A where C C HA is the full subcategory on complexes
C, for which H,(C,) = 0 for alln > 0.
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7.9. Derived functors

Let F : A — B be an additive functor between abelian categories. Then F extends to a
functor CF : cA — c3B which respects homotopy. Hence F induces a functor HF : HA —
HB.

Definition. Let F : A — 3B be an additive functor between abelian categories, and suppose
A has enough projectives. Then the left derived functor L'F of F is the composite

PR F H,
A S HA —> HB — B

for any n > 0, where PR is the projective resolution functor.

Note that if F is exact, we have I°F =~ F and I"F = 0 for n > 0. More generally, if F is right
exact, then it preserves exactness of

R > B > A > 0
for any projective resolution P, of A. In particular, I°F = F in this case.

Lemma. Let

0—3ya-JIsp_8yc_ g
be a short exact sequence in an abelian category A with enough projectives. Then we can
choose projective resolutions P, Q., R, of A, B, C and morphisms f., g, extending f, g making

the sequence

0—3 P2 -y —E3yRrR —30

exact. Moreover, the exactness of this sequence is preserved by arbitrary additive functors.

Proof. We choose P, R, arbitrarily, and take Q,, = B, @ R,;; this is projective as the coproduct
of projective objects is projective. Consider the diagram

> B — Ko > B > A
1 \Lf
0
B®R, B
IR
> Ri — M > Rg — C

By projectivity of Ry, we obtain h : Ry — B, and so we define e, = (fe; h).

€1

> B — K, > B > A
Lk
R @Ry — B

~
2
g
X
g
=
(=}
~
a
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1. Category Theory

This makes both right-hand squares commute:
1
s o) =Feri sea=(efe gh)=(0 &)

To show e, is epic, suppose we have a morphism k : B — D such that ke, = 0.

> R > Ko > B > A
b
e k
R®Ry, —» B —> D
L
\ R S M \ R 5 s
7/ 1 /4 0 /4 0 7

Then kfe, = 0, so k factors as £g for some €.

>R — Ko > B > A
N
BR®Ry, —3% B -3 D
! 4
> Ri — Mo > Ry —— C

Now ¢e; (0 1) = ¢ge, = ke, =0,s0¢ = 0asezand (0 1)are pseudoepimorphisms. Thus
k = 0. Forming the kernel, we obtain

~
e
N
&
~
)
N
b

~
2
g
X
N
=
(=}
~
!
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7. Additive and abelian categories

Applying the snake lemma to the diagram

the left-hand column extends to a short exact sequence.

0 — Ko —> Ly —> My —> 0

Hence, as before, we can define an epimorphism B @ R; — L, making the two left-hand
squares commute.

> B > Ko > B > A
S A A/
0 e
RO®R, > Lo > R®Ry — B

O
> Ry > Mo > Ry —— C

Continue by induction. As the columns

0 — B — Qu — Ry — 0
are biproduct diagrams, they are preserved by arbitrary additive functors. O

This proof does not show that Q, = P, @ R, in CA. Indeed, if it were, then d,;, : Q,, —» Q,,_;
would have matrix

d, 0

(5 &)

whered,, : B, - B,_; and d;, : R,, = R,_;. Our construction above was of the form
d, x
0 dy
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Theorem. Let F : A — B be an additive functor between abelian categories, and suppose
A has enough projectives. Then, for any short exact sequence

g

0o—sa—Jsp_8vc__ vy

in A, we obtain an exact sequence

... — > IFA S ['FB S\ ['FC — I°FA — I°FB S IOFC 50

Proof. Choose projective resolutions P, Q,, R, for A, B,C as above. Then applying F, we
obtain an exact sequence of complexes

0 > FP, > FQ. > FR. 7 0
in B. Then the result follows from the Mayer-Vietoris sequence. O

In particular, L°F is always right exact, so I°F =~ F if and only if F is right exact.

84



II. Commutative Algebra

Lectured in Michaelmas 2023 by DR. O. BECKER

(Course description goes here.)

85



II. Commutative Algebra

Contents
1. Chainconditions . . .. . ... ... ... ... ... ... 0., 88
1.1. Modules . . . . . . . . . e 88
1.2.  Noetherian and Artinian modules . . . . . .. ... ... ... 88
1.3.  EXactsequences . . . . . . . . . i ittt it 90
1.4. Algebras . . . . ... L e 91
2. Tensorproducts . . . . . ... ... ... .. ..., 93
2.1. Introduction . .. ... ... ... ... .. ... . ... 93
2.2.  Definition and universal property . . . . . . . . ... ... ... 93
2.3. ZETOLENSOTS « « & v v v v v v e e e e e e e e e e e e e e e e e 95
2.4. Monoidal structure . . . . . . . . ... e e e 97
2.5.  Tensor productsofmaps . .. ... ... ............ 102
2.6.  Tensor productsofalgebras . . . . . .. .. ... ........ 103
2.7. Restriction and extensionofscalars . . . . . . .. ... ... .. 105
2.8.  Extension of scalars on morphisms . . . . . . .. ... ... .. 108
2.9.  Extensionofscalarsinalgebras . . . . ... ... ... ... .. 109
2.10. Exactness properties of the tensor product . . . . ... ... .. 109
2.11. Flatmodules . . . .. ... ... ... ... ..., 113
3. Localisation . . . . . .. ... ... ... ... .. ... . . 0., 119
3.1. Definitions . . . . .. .. ... ... e 119
3.2.  Universal property forrings . . . . . .. ... ... ... .... 120
3.3. Functoriality . . . .. ... ... .. ... .. ... 0. ... 121
3.4.  Universal property formodules . . . . . ... ... ... .... 123
3.5. Exactness . . . . . . . . .. e e e e e e e e e 124
3.6. Extension and contraction ofideals . . . . . . . ... ... ... 125
3.7. Localproperties . . . . . . . ... .. ... Lo 128
3.8. Localisationsasquotients . . . . . . .. ... . ... ...... 130
4. Integrality, finiteness, and finite generation . . . . . . . . . .. .. 132
4.1. Nakayama’slemma . .. ... .................. 132
4.2. Integral and finite extensions . . . . . . . .. ... ... ... 133
4.3. Integralclosure . . . . . . ... ... ... L oL, 136
4.4. Noether normalisation . . . . . ... ... .. ......... 138
4.5.  Hilbert’s Nullstellensatz . . . ... ... ............ 139
4.6. Integralityoverideals . . . . . .. ... ... 0oL 142
4.7. Cohen-Seidenberg theorems . . . . . . .. ... ... ..... 144
5. Primarydecompeosition . ... .. ..... ... .. ........ 147
6. Directandinverselimits . . . . . . ... ... ... ......... 150
6.1.  Limitsand completions . . . . . .. ... ... ... ... .. 150

86



6.2. Gradedringsandmodules . . ... ... ... ......... 152

6.3. Artin-Reeslemma . . ... ................... 154
Dimensiontheory . ... .. ........... .. .. .. ..., 156
25 SR 156
7.2. Hilbert polynomials . . . . . . .. ... ... .......... 157
7.3.  Dimension theory of local Noetherian rings . . ... ... ... 159

37



II. Commutative Algebra

1. Chain conditions

1.1. Modules

In this course, a ring is taken to mean a commutative unital ring R. We do however allow
for one noncommutative exception, the endomorphism ring End(M) of an abelian group M.
This is a ring where composition is the multiplication operation.

Definition. An R-module is an abelian group M with a fixed ring homomorphismp : R —
End(M). Ifr € R and m € M, we define r - m = p(r)(m).

Remark. Note that as p(r) is a group homomorphism,
r(my + my) = p(r)(my + my) = p(r)(imy) + p(r)(my) =r-my +r-my
Also, as p is a ring homomorphism,

(n+r)m=p( +nrn)m)= () +pr)m=r -m+r,-m

Example. (i) Let k be a field. Then a k-module is a k-vector space.

(ii) Every abelian group M is a Z-module in a unique way, because the morphism Z —
End M must map 1 to id.

(iii) Every ring R is an R-module, by taking p(r) = ry = 1gr.

Definition. The direct product of abelian groups (M;);¢ is the set of I-tuples (a;);c; Where
a; € M;, with elementwise addition as the group operation.

Definition. The direct sum of abelian groups (M;);cr is the set of I-tuples (a;);c; Where
a; € M; and all but finitely many of the q; are zero, again with elementwise addition as the
group operation.

Direct products are written Hi <1 M;, and direct sums are written D ier M. These construc-
tions coincide if the index set I is finite. Direct products and direct sums of R-modules are
also R-modules.

The universal property of the direct sum states that each collection of module homomorph-
isms ¢; : M; — R can be combined into a unique homomorphism ¢ : @ie] M; — R.
Similarly, the universal property of the direct product states that each collection of module
homomorphisms ¢; : R - M; can be combined into a unique homomorphism ¢ : R —

HieIMi'

1.2. Noetherian and Artinian modules
Definition. An R-module M is Noetherian if one of the following conditions holds.

(i) Every ascending chain of submodules M, C M; C --- inside M stabilises. That is, for
some k, every j € N has My, j = M.
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1. Chain conditions

(i) Every nonempty set X of submodules of M has a maximal element.

Lemma. The two conditions above are equivalent.

Proof. (i) implies (ii). Let X be a nonempty set of submodules of M. If it has no maximal
element, then for each M’ € X there exists M" € £ with M’ ¢ M”. We can then use the
axiom of choice to pick a sequence My C M; € M, C --- of elements in X. This contradicts
®.

(ii) implies (i). Let My, C M; C --- be an ascending chain of submodules in M. Then let
Z = {My, My, ... }. This has a maximal element M by (ii). Then for all j € N, My, ; = M as
required. O

Definition. M is Artinian if one of the following conditions holds.
(i) Every descending chain of submodules M, 2 M; D --- inside M stabilises.
(ii) Every nonempty set X of submodules of M has a minimal element.
Again, both conditions are equivalent.

Lemma. An R-module M is Noetherian if and only if every submodule of M is finitely gen-
erated.

Proof. Suppose M is Noetherian, and let N C M be a submodule. Pick m; € N, and con-
sider the submodule M; C N generated by m,;. If M; = N, then we are done. Otherwise,
pick m, € M; \ N, and consider M, C N generated by m,. This construction will always
terminate, as if it did not, we would have constructed an infinite strictly ascending chain of
submodules of M, contradicting that M is Noetherian.

Now suppose every submodule of M is finitely generated, and let My, € M; C --- be an
ascending chain of submodules of M. Let N = Uzo M;; this is a submodule of M as the
M; form a chain. Then N is finitely generated, say, by generators m,, ..., m; € N. As the
M; form a chain increasing to N, there exists n such that m,,...,m, € M,,. In particular,
N C M,, C N,so M,, = N. Thus the chain stabilises. O

Note that every Noetherian module is finitely generated. LetR = Z[T}, T5, ... ],and letM = R
as an R-module. M is generated by 1g, so in particular it is finitely generated. But it has a
Z-submodule (T;, T», ... ) that is not finitely generated. So in the above lemma we indeed
must check every submodule.

Definition. A ringR is Noetherian (respectively Artinian)if R is Noetherian (resp. Artinian)
as an R-module.

Example. (i) Z over itself is a Noetherian module as it is a principal ideal domain, but
it is not an Artinian module because we can take the chain (2) 2 (4) 2 (8) 2 ---.

(ii) Z is similarly a Noetherian ring but not an Artinian ring by unfolding the definition
and using (i).
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II. Commutative Algebra

1
Z[E]/Z is an Artinian Z-module but not a Noetherian Z-module. This can be seen

from the fact that the only submodules are of the form ( 2ik + Z) fork € N.

(iii)
(iv) Infact, aring R is Artinian if and only if R is Noetherian and R has Krull dimension 0.

1.3. Exact sequences

Definition. A sequence

fi fi
o My = My = My — -

is exact if the image of f; is equal to the kernel of f;,, for each i, where the M; are modules
and the f; are module homomorphisms.

Definition. A short exact sequence is an exact sequence of the form

injecti\Qe surjectiye
\ " \
> M > M > 0

0 > M’

In this situation, M" ~ M/i(M’)' This is a way to encode M"” as a quotient by a submodule.

Lemma. Let

0—3SN—3SM-231 30

be a short exact sequence of R-modules. Then M is Noetherian (resp. Artinian) if and only
if both N and L are Noetherian (resp. Artinian).

Proof. We show the statement for Noetherian modules.

Suppose M is Noetherian. If Ny, C N; C --- is an ascending chain of submodules inside N,
then by taking images,
(No) € «(Ny) € -+

is also naturally an ascending chain of submodules inside M, so it stabilises. Astis injective,
the original sequence also stabilises. Hence N is Noetherian.

If Ly C Ly C --- is an ascending chain of submodules inside L, then by taking preimages,
¢ (L) S (L) € -
is an ascending chain of submodules inside M, where
¢~ (L) ={m e M| p(m) € L;}

So this chain stabilises at ¢p~!(Lj). But as ¢ is surjective, p(¢~(L;)) = L;, so the original
sequence must stabilise at L.
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1. Chain conditions

Now suppose N and L are Noetherian, and let M; C M; C --- be an ascending chain of
submodules in M. Then
(M) C (M) C -

is an ascending chain of submodules in N, so stabilises at M, kN) for some k. Similarly,

p(Mo) € p(My) C -

is an ascending chain of submodules in L, so stabilises at p—1(Mj, ) for some k;. Take k >
kn,kp,and let j > 0. We show My, ; C M, proving that the sequence stabilises.

Let m € My, j. As (M, j) = p(My), there exists m" € M such that p(m) = p(m’). Then
p(m —m") = 0, so by exactness, m — m' is in the image of ¢, say, «(x) = m — m'. Since
m—m' € My, j, we must have x € '(Mj ;). Butthen x € "!(My), so «(x) = m—m’' € M.
Hence m € M. O

Corollary. If My, ..., M,, are Noetherian (resp. Artinian) modules, then so is M; @ --- @ M,,.

Proof. Consider the sequence

L

0 > M, > M, &M, ——> M, >0

where «(x) = (x,0) and 7(x,y) = y. This is exact, so M; @ M, is Noetherian. We then
proceed by induction on . O

Proposition. For a Noetherian (resp. Artinian) ring R, every finitely generated R-module
is Noetherian (resp. Artinian).

Proof. M is finitely generated if and only if there is a surjective module homomorphism
@ : R" - M for some n > 0. That is, M is a quotient of R". The fact that R" is Noetherian
(or Artinian) passes through to its quotients. O

1.4. Algebras
Definition. An R-algebra is a ring A together with a fixed ring homomorphism p : R = A.
Example. The map k — k[T, ..., T,,] makes the polynomial ring k[Tj, ..., T,,] a k-algebra.

We will write ra = p(r)a. Note that p(r) = p(r) - 14, = r - 14, So we can write r - 14 for
p(r).
Remark. Every R-algebra is an R-module.

Example. Asa k-module, k[T, ..., T,,] is infinite-dimensional. As a k-algebra, k[T}, ..., Ty, ]
is generated by the n elements T3, ..., T,,.

Definition. ¢ : A — B is an R-algebra homomorphism if ¢ is a ring homomorphism and
preserves all elements of R. Thatis, ¢(r-14) =r- 1p.
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An R-algebra A is finitely generated if and only if there is some n > 0 and a surjective algebra
homomorphism R[T}, ..., T,,] — A.

Theorem (Hilbert’s basis theorem). Every finitely generated algebra A over a Noetherian
ring R is Noetherian.

For example, the polynomial algebra over a field is Noetherian.

Proof. 1t suffices to prove this for a polynomial ring, as every finitely generated algebra is a
quotient of a polynomial ring. It further suffices to prove this for a univariate polynomial
ring A = R[T] by induction. Let a be an ideal of R[T]; we need to show that a is finitely
generated. For each i > 0, define

a(i) ={co | coT" + -+ +¢;T° € a}

Thus a(i) is the set of leading coefficients of polynomials of degree i that lie in a. Each a(i)
is an ideal in R, and a(i) C a(i + 1) by multiplying by T. As R is Noetherian, each a(i) is a
finitely generated ideal, and this ascending chain stabilises at a(m), say. Let

a(i) = (bj1s -, bip,)
We can choose f; j of degree i with leading coefficient b; i Define the ideal
b=(fij)i<m,j<n;
Note that b is finitely generated. Defining b(i) in the same way as a(i), we have
Vi, a(i) = b(i)

By construction, b C a; we claim that the reverse inclusion holds, then the proof will be
complete. Suppose thata ¢ b, and take f € a\ b of minimal degree i. As a(i) = b(i), there is
a polynomial g in b of degree i that has the same leading coefficient. Then f — g has degree
less than i, and lies in a. But then by minimality, f — g € b, giving f € b. O

Therefore, if S C RIT, ..., Tn]/I where R is Noetherian, then (S) = (S,) where S, C S is
finite.
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2. Tensor products

2. Tensor products

2.1. Introduction

Let M and N be R-modules. Informally, the tensor product of M and N over R is the set

M ®g N of all sums
e

Zmi®ni; m; € M,n; €N
i=1

subject to the relations
(m+m)@n=m O n+m,@n
mm+n,)=m@n +mQen,
(rm)®@n=r(mQ® n)
me® (rn) =r(mQ@ n)
This is a module that abstracts the notion of bilinearity between two modules.

Example. Consider Z/ZZ X7 Z/3Z. In this Z-module,
Xx®y=06Bx)®y=x®By)=x®0=x®0-00=0x®0)=0

Hence Z/ZZ ®Z Z/3Z =0.

Example. Now consider R" ®p R¢. We will show later that this is isomorphic to R™.

2.2. Definition and universal property

Definition. A map of R-modules f : M X N — L is R-bilinear if for each my, € M and n, €
N,themapsn — f(mgy,n)andm — f(m, ny) are R-linear (or equivalently, a homomorphism
of R-modules).

Definition. Let M, N be R-modules. Let F = R®MXN) pe the free R-module with coordin-
ates indexed by M X N. Define K C ¥ to be the submodule generated by the following set
of relations:

(ml + my, VI.) - (mli n) - (mZ’ VI.)
(m,ny + ny) — (m,ny) — (m, ny)
r(m,n) — (rm, n)

V(m, n) - (I’I’l, }’n)
The tensor product M @g N is 7 /- We further define the R-bilinear map

iMgn : MXN—>MQ@N; iygn(m,n) =emp =m@en
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Proposition (universal property of the tensor product). The pair (M ®g N, iyg,n) satisfies
the following universal property. For every R-module L and every R-bilinear map f : M X
N — L, there exists a unique homomorphism & : M ®g N — L such that the following
diagram commutes.

iM@RN

MXN — MQ®rN
h

Equivalently, h o iyg.n = f-

Proof. The conclusion h o iy;gn = f holds if and only if for all m, n, we have
h(m @ n) = f(m,n)

Note that the elements {m ® n} generate M ® N as an R-module, so there is at most one h.
We now show that the definition of h on the pure tensors m ® n extends to an R-linear map
M ® N — L. The map R®MxN) _, [ given by (m,n) — f(m,n) exists by the universal
property of the direct sum. However, this map vanishes on the generators of K, so it factors
through the quotient 7 /& as required. O

The universal property given above characterises the tensor product up to isomorphism.

Proposition. Let M, N be R-modules, and (T, j) be an R-module and an R-bilinear map
M X N — T. Suppose that (T, j) satisfies the same universal property as M @ N. Then there
is a unique isomorphism of R-modules ¢ : M ® N = T such that g o ipygn = J.

Proof. By using the universal property of M ® N and T, we obtain ¢ and 1 as follows.

M®N z::::::::::k T
7\ (/] /
iM®N J
MxN

The universal property states that poiy e = jandpoj = iygn. Hence, popoiyen = iyen-
This means that the following diagram commutes.

MxN —2N v y@N

\ id\l/ \l/lp"("
IMQN

M®N
By the uniqueness condition of the universal property, id = 1 o ¢. Similarly, id = ¢ o 3.

Hence, ¢ is an isomorphism M @ N — T with g oip;gn = j. Uniqueness of ¢ is guaranteed
by the universal property: it is the only solution to ¢ o ipygn = J. O
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In particular, we have
Biling(M X N, L) =~ Hom(M ®g N, L)

given by the universal property, and the inverse is given by h = h o iy g N.

2.3. Zero tensors

Proposition. Let M, N be R-modules. Then
Z m; (024 n; = 0
if and only if for every R-module L and every R-bilinear map f : M X N — L, we have

Zf(mi’ni) =0

To show an element of M ® N is nonzero, it suffices to find a single R-module L and bilinear
map M X N — L with mapping the required sum to a nonzero value.

Proof. Assume ), m; ® n; = 0. f factors through the map iy;gn, giving

MxN 2N Mo N

\ %"

D, flmy,ny) = 37 h(iyen(m;, ny) = h(Z imeN (M, ni)) =h(0)=0

In the other direction, suppose ), m;®n; # 0. Then, taking f = iy;gn, We obtain )} iy gn(m;, n;) #
0 as required. O

So

Example. Let k be a field, and consider K ® k?. Let k™ have basis {e;, ..., e,,} and k¢ have
basis fi, ..., fo- Then

k™ @ k? = span, {v @ w | v € k™, w € k*} = span, {e; ® f;}

This is in fact a basis. Suppose Zi’j a;je; ® fj = 0. Foreach a < m,b < ¢, define T, :
k™ x k¢ - k by
Top((D)Iey, W)Yy ) = vawp
By the above proposition,
0= Z ;i Tap(eis i) = aap
Lj

So k™ ® k? ~ k™?. Note that this construction only relied on the existence of a free basis,
not on k being a field.
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Example. Consider R?> @z R2. There are infinitely many pure tensors, but there is a basis
consisting of the four pure vectors

e1®f1;, ea1®fr a®fi; @[

A pure tensor in R? ® R? is of the form

(ae; +Be) ® (vfi +612)

which expands to

(ay)(e1 ® f1) + (ad)(e; ® f2) + (By)(ex ® f1) + (BS)(ex ® f2)

Note that there is a linear dependence relation between the coefficients ay, ad, fy, §J, so in
some sense ‘most’ tensors are not pure. For example,

1(e; ® f1) +2(e1 ® f2) +3(e2 ® f1) +4(e; ® [2)
is not pure.

Example. Consider Z @ Z/zz. In this module,
2Q(14+22)=10(2+27)=1®0=0

Note that Z has a Z-submodule 2Z. In ZZ®ZZ/2Z, the element also denoted with 2®(1+22)
is nonzero. For example, we can define a bilinear map to Z/ZZ given by

b(2n,x +27) = nx + 27
Then b(2,1 + 27Z) = 1 # 0. So it is not the case that tensor products of submodules are
submodules of tensor products.

However, if M' C Mand N' C Nand ), m; ® n; = 0in M’ ® N, then > m; @ n; = 0 in
MQ@N.

Proposition. If ), m; ® n; = 0in M ®g N, then there are finitely generated R-submodules
M’ C M and N’ C N such that the expression ), m; ® n; also evaluates to zero in M’ @ N'.

This is the last proof that will use the direct construction of the tensor product instead of the
universal property directly.

Proof. We know that ), m;®n; = 0in M@gxN = R@(MXN)/K, soin particular )} e, ) € K,
where e, maps x € M x N to its basis element in R®M*N)_ Sg this is a finite sum of a;k;
with o; € R, k; € K, and so we can take the my, ..., m that appear on the left-hand sides of
the k; as the generators for M’, and similarly for N”. O]

Corollary. Let A, B be torsion-free abelian groups. Then A ® B is torsion-free.
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2. Tensor products

Proof. Suppose n(), a; ® b;) = 0 with n > 1. By the previous proposition, there are finitely
generated subgroups A’ < A and B’ < Bsuch thatn(},a; ® b;) =0in A’ ®, B'. Butas A’
and B’ are finitely generated abelian groups, the structure theorem shows that A" = 7" and
B’ = 7%, showing that A’ ® ; B’ ~ 7™ is torsion-free. Thus Y, a; ® b; = 0in A’ ®, B, s0
also ). a; ® b; =0in A ® B. O

Example.
C? ®c C* ~ C° ~ R1?

However,
C?’ Qi C? ~ R* ®@p R® ~ R?

This is to be expected: tensoring over a larger ring introduces more relations, so the amount
of distinguishable elements should shrink.

2.4. Monoidal structure

We will prove a number of elementary propositions in detail to show how tensor products
are used in practice.

Proposition (commutativity). There is an isomorphism M ® N ~ N ® N mapping a pure
tensorm @ nton @ m.

Proof. Define f : M XN — N ® M by f(m,n) = n ® m; this is bilinear. The universal
property yields

MxN 22X voN

T

N®M

such that h(m ® n) = n ® m. Similarly, we obtain h’ : NQM - M Q Nwithh'(n@®@ m) =
m ® n. Hence, the following diagram commutes.

MxN 2N MoN

. id\L \Lh’ oh
IM®N

MQ@®N

So by the uniqueness condition in the universal property, h’ o h is the identity. Similarly,
h o k' is the identity, thus & is an isomorphism. O

Proposition (associativity). There is an isomorphism (M @N)®P ~ M ® (N ® P) mapping
(mM@n)@ptom® (nQ p).
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II. Commutative Algebra

Proof. For each p € P, define the bilinear map f, : M XN - M ® (N ® P) by
Jom,n) =m® (n® p)

Thus, each f, factors through h, : M @ N - M ® (N ® P). Then, define the bilinear map
f:(M®N)XP—->MQ(NQ®P)by

f(x, p) = hy(x)

We show this is bilinear in p. Note that

hp1+P2 (m®n) = ﬁ?l"'l?z (m,n)

m® (nQ (p1 + p2))
m@nQp))+mQn® p,)
Jo,(m,n) + f, (m, n)

= h, (Mm@ n) + h,,(m ® n)

So hy, 4p, coincides with h, + h,, on the pure tensors, so by the universal property they
coincide everywhere. Similarly,

hyp(m @ n) = fip(m, n)
memnrp)
rim® (n® p))
= rf,(m,n)

= rh,(m ® n)

so h,, = rhy. Then, by the universal property, f factors through h : (M @ N) ® P —
M® (N ® P),so
h((m®n)®@p)=m® (nQ® p)

We can similarly construct b’ : M @ (N ® P) - (M @ N) ® P with

Wim®n®p)=men®p

Since ho h' and h’ o h are the identity on pure vectors, they are the identity everywhere, and
hence are inverse isomorphisms. O

Proposition (identity). There is an isomorphism R ® M ~ M mapping r ® m to rm.

Proof. Themap f : RXM — M given by f(r, m) = rm factors throughsome s : RQM — M.

RxM 2™ poM

L
f '

M
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2. Tensor products

Now define the R-module homomorphism h’ : M - RQM by h'(m) = 1®@m = iggp (1, m).
Then
(hoh')(m) = h(iggm(1,m)) = f(1,m) =m

giving h o h' = id. Further,
(Woh)(r@m=10h(r@m)=1Q frrm)=1rm=rQm

So by the uniqueness condition in the universal property, h’ o h is the identity, and hence h
is an isomorphism. O

These operations, together with coherence conditions, make the category of R-modules into
a braided monoidal category, where the monoid operation is ® and the unit is R.
Proposition (distributivity). There is an isomorphism (@l M i) ®P ~ P,(M; ®P) mapping
(m); ® p to (m; @ p);.
Proof. Define f by

f((my);, p) = (m; @ p);

Then there is a unique 4 such that the following diagram commutes.

(®i Mi) X PI(MP(GBZ' Mi) ® P
! \:fh
@i(Mi &® P)

For each i, define the map f/ : M; x P - (€D, M;) ® P by
fi(mi, p) =m; @ p

By the universal property of the tensor product, this factors through a unique h;.

im;@P
M;XP — M;®P

|
| b
£l -

(@iMi) ® P

Then, by the universal property of the direct sum, the h; can be combined into a single /',
so this diagram commutes for each i.

M;®P —> @, (M; ® P)

|
’
N \I(h

(EBi Mi) ® P
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II. Commutative Algebra

It remains to show that 4 and h’ are inverses. To show ho h' = id@i (M;@P)> it suffices by
the universal property of the direct sum to show that (h o h")(x) = x for all x € M; ® P, for
each i. Then, by the universal property of the tensor product, it further suffices to show this
result only for pure tensors.

(heh')(m; ® p) = h(h'(m; ® p))
= h(hj(m; ® p))
= h(f{(m;, p))
= h(m; ® p)
= f(m;, p)
=m;®p
To show h' o h = id(@i M;)ep> it suffices by the universal property of the tensor product to

show that (h' o h)((m;); ® p) = (m;); ® p. By linearity of h and h’, we can reduce to the case
where (m;); has a single non-zero element m;.

(h" o h)(m; ® p) = h'(h(m; ® p))
= h'(f(my, p))
=h'(m; ® p)
= hi(m; ® p)
= f{(m; ® p)
= fi(m;, p)
=m; ®p

Example.

m € m € m €
R™ @ R¢ = (@R) Rr (@R) ~PPreR =P EPR=~R™
N

i=1 Jj=1 i=1 i=1 j=1

Proposition (quotients). Let M’ C M and N’ C N be R-modules. Then there is an iso-
morphism

M/M' ®N/N’ & (M®N)/L
where L is the submodule of M ® N generated by

m@n|(m,n)eM xXxNlum®n' | (m,n') € M X N’}

and mapping
m+M)Yn+N)»m@n+L
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2. Tensor products

Proof. Define
[ M/M' ><N/N' - (M®N)/L

by
fm+M',n+N)=m@n+1L

This is well-defined: if m € M’ or n € N’, then m ® n € L. By the universal property of the
tensor product, f factors through some h.

i
M &N

M/M' XN/N' — M/M'®N/N'

\ : h
f g

M®N),

Now define
fiMxN-Ms, N,

by
f'fmn)=(m+M)®(n+N')

This is clearly bilinear. Thus, we have

MxN —2N v N

[
N J h

M/M' ® N/N'
We show that if x € L, then h'(x) = 0. By linearity it suffices to show this for the generators.
hWm @n)=f'(m' n)=00(n+N')=0;, hW(m®n')=f(mn)=(m+M)®0=0

Thus h' factors through the quotient.

M@N —— MON),

|
N \!rh ’

M/M' ®N/N'

We show h and h" are inverses. To show h o h" = id(M®N)/L, it suffices by the universal
properties of the quotient and the tensor product to consider the images of pure tensors
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II. Commutative Algebra

under the quotient map 7.

(hoh")(m®n + L) = h(h"(n(m ® n)))
= h(h'(m ® n))
= h(f'(m,n))
=h(im+M)® (n+N"))
=f(m+M,n+N')
=m@n+1L

To show K" o h = idy @ it suffices to show the result for expressions of the form
(m+M)®[m+N').

(" eh)(m+M)®Mn+N'))=h"(W((m+M)Q® (n+N")))
=h"(f(m+M',n+ N"))
=h"(m®n+1L)
=h'(im®n)
=f'(m+M',n+N')
=(m+M)® (n+N')

2.5. Tensor products of maps

Proposition. Let f : M — M'and g : N — N’ be R-module homomorphisms. There is a
unique R-module homomorphism f ® g : M @ N - M’ ® N’ such that

(f®8)m@n) = f(m)Qgn)
Proof. We apply the universal property to themap T : M X N - M ® N’ given by
T(m,n) = f(m) @ g(n)
which can be checked to be R-bilinear. g

Example. We can show
(f®8e(h®@i)=(feh)@(goi)
For example, if T : k% — kP and S : k¢ — k9,
T®S : k% Q@ k¢ = kP @ k¢
is given by

(T S)e; Re;j) =(Te;) ®(Se;) = Z[T]é’i[s]tj(fé’ ® f1)

é,t
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2. Tensor products

where [T] denotes T in the standard basis. Ordering the basis elements of k* ® k¢ as

e1®eq,...,e1Qe.,e,5,Q¢e,...,e, e,

and similarly for k? ® k¢,

[Tyt - [S] - [Tl - [S]

This is known as the Kronecker product of matrices.

[Thy-[S] - [Tha- [S]
resi=( i o

Proposition. Let f : M - M',g : N — N’ be R-module homomorphisms. Then,
(i) if f, g are isomorphisms, then so is f ® g;

(ii) if f, g are surjective, then sois f ® g.

Proof. Part(i). f~! ® g~ is a two-sided inverse for f ® g, as
f1RgNe(f®Y=U"eHR®E'®g=id
and similarly for the other side.

Part (ii). The image of f ® g contains all pure tensors of M’ ® N’, so it must be surjective. [J

The analogous result for injectivity does not hold in the general case. Consider f : Z - Z
given by multiplication by p, and g : Z/pZ - Z/pZ given by the identity. Here,

(f®ga®b)=(pa)@b=a®(ph)) =a®0=0
So f ® g is the zero map, but Z ® Z/pZ ~ Z/pZ is not the zero ring.

2.6. Tensor products of algebras

Let B, C be R-algebras. The usual tensor product of modules B®z C can be made into a ring
and then an R-algebra. This allows us to define the tensor product of algebras in a natural
way. We want the ring structure to satisfy

(b®c)(' @)= (bb") ® (cc)

This extends to a well-defined map on all of B® C. Indeed, for a fixed (b,c) € B X C, there
is an R-bilinear map B X C — B @ C given by

(b',c") — (bb") ® (cc’)

so we can use the universal property to extend this to a map B® C — B ® C that acts on
pure tensors in the obvious way. One can show that the ring axioms are satisfied. To define
the R-algebra structure, we define the ring homomorphism R - B ® C by

re -1 ®1lc=1® (r- 1¢)
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II. Commutative Algebra

Example. There is an isomorphism of R-algebras
¢ : R[Xy,....X,] ® RITy, ..., T.] = R[Xy, ., Xppy Tys oo s T ]

An R-basis for the left-hand side as an R-module is given by elements of the form a®b where
a and b are monomials. The right hand side has a basis of elements of the form ab, where
a € R[Xj,...,X,]land b € R[T, ..., T,] are monomials as above. Mapping ¢(a ® b) = ab,
we obtain an R-module isomorphism. To check this is an R-algebra isomorphism, we verify
multiplication and its action on scalars.

pre)=r-1; ¢(1®1)

and for monomials p;, q;, h;, 8;»

§0((Z pi ® CIi)(Z h; ® gj>) = Z(pihj)(qigj)
i J i,j
= > (pia)(h;g))
i,j

= > o(p; ® q)e(h; ® &)

Lj

_ (zi (b, ® qi>)(; go(hjgj))
= qo(zi: P ® Qi)§0<; h ® gj)

More generally,

RIXs oo Xn) @RIy s Tel o RIX0, o X ] @ RITy, - T o R s X T T e
where L is constructed as above when quotients were discussed, and I¢ is the extension of I

in the larger ring R[Xj, ..., X,,, Ty, ..., T,.]. For example,

Clx,v,7],

(f. 2 Qc cw, U]/(h) ~CIX,Y,Z,W, U]/(

f.&h

Proposition (universal property of tensor product of algebras). Let A, B be R-algebras. For
every algebra C and R-algebra homomorphisms f; : A - Cand f, : B — C, there is
a unique R-algebra homomorphism i : A ®; B — C such that the following diagram
commutes:

A B
% y
AQ®B
f1 :h f2
e
C
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2. Tensor products

where iy(a) = a ® 1 and ig(b) = 1 ® b. Furthermore, this characterises the triple (A ®x
B, iy, ig) uniquely up to unique isomorphism.

Proof. A ®g B is generated as an R-algebraby{a®1|a€ A}U{1®b | b € B}. This im-
plies the uniqueness of h. For existence, we can define an R-bilinear map A X B — C by
(a,b) = fi(a)fo(b), then apply the universal property of the tensor product of modules. This
produces an R-linear map h : A ® B — C. It remains to show that this is a homomorphism
of algebras. O

Example.

An algebra homomorphism from a polynomial ring is defined uniquely by giving its action
on its variables, thus

R[Xy, ... X, QR[Ty, ..., T.] © R[Xy, ., Xy Ty e, T,

as was shown above.

Remark. (i) If f : A — A',g : B — B’ are R-algebra homomorphisms, then f ® g :
A®B — A’ ® B’ is not only an R-module homomorphism but is also an R-algebra
homomorphism.

(ii) There are R-algebra homomorphisms
@ RieRs=Rq 5
(b) AQ B~B®A;
() AQR(BXC)~(A®B)X(AQ C);
(d) A®B" ~(AQB)";
(&) A®B)®C~2AR(B®C).

2.7. Restriction and extension of scalars

Let f : R — S be a ring homomorphism. Let M be an S-module. Then we can restrict
scalars to make M into an R-module by

r-m=f(r)-m
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II. Commutative Algebra

The composition R — S — End M is a ring homomorphism, so this makes M into an R-
module automatically without needing to check axioms.

Example. Let f : R — C be the inclusion. Then any C-module is an R-module.

Now suppose f : R — Sisaring homomorphism, M is an S-module, and N is an R-module.
We can form the R-module M ®g N, as M is an R-module by restriction of scalars. Extension
of scalars shows that M @z N is also an S-module. The action of s € S on pure tensors
is

s-(m@n)=smQ@n
We have an R-bilinear map M X N - M @ N by
(m,n) » sm®n

so by the universal property this gives rise to a map hy : M Qg N - M ®z N with the
desired action on pure tensors. hy is R-linear by the universal property. Definingg : S —
End(M ®z N) by ¢(s) = hy, one can check that kg is a well-defined endomorphism and that
@ is a ring homomorphism.

Example. S ®g R ~ S as R-modules, by s ® r — s - f(r). This is also S-linear, since
SEQRr)=('s@r)— s's- f(r)=5'(s- f(r))

For example, C @ R ~ C as C-modules.

Example. Let M be an S-module and (N;);e; are R-modules. Then

M® (@ Nl-> ~ PNy

as S-modules. So C ® R" ~ C" as C-modules.
Example. Restrict the C-module C" to an R-module to obtain R?". Then, extending to C,
C ®R RZn ~ CZn

Similarly, extending R" to C, we find C ®g R" ~ C" over C. Restricting to R, C"* ~ R?", So
the operations of restriction and extension of scalars are not inverses in either direction.

Example. Consider Z" as a Z-module. Consider the quotient map f : Z — Z/ZZ- Extend-
ing scalars to Z/ZZ’

Z/zz ®z 7" ~ (Z/zz)n

Example. Consider C" ®g R? as a C-module. As R-modules,

ch ®R R€ ~ RZH ®R R€ ~ R2n€ ~ Cn€
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We would like to make this into an isomorphism of C-modules. We will show that in fact
C" ®r R’ = C" ®¢ (C ®g RY)

where

VRUPFP VR (1Qu)
giving
C" @p RY =~ C" @ Cf ~ C
as C-modules. The isomorphism
C" ®p R ~ C" @ C°
maps a pure tensorv @ utov Q u.

Proposition. Let M be an S-module and N be an R-module. Then
M®RNZM®S(S®RN)

as S-modules, where
mnH>mQARn); smJPn—-me(sQn)

Proof. The map (m,n) » m®(1Q®n) is R-bilinear, so the map f mappingm®@n tom@(1®n)
is well-defined as a map of R-modules. We show it is S-linear on pure tensors.

fem®n)=f(smn)=sm@ (1 ®n)=s(m@ (1 ®n)) =sf(mn)

For a fixed m € M, the map s @ n —» sm ® n is well-defined and S-linear. This collection
of maps is S-linear in its parameter m, so we obtain an S-bilinear map (m,s ® n) — sm @ n.
Hence, we obtain a map g mapping m ® (s ® n) to sm ® n, as desired. One can easily check
that f and g are inverses on pure tensors. g

Proposition. Let M, M’ be S-modules and N, N’ be R-modules. Then we have S-module
isomorphisms

M®RN2N®RM
(M@rN)@rN' =M Qg (NQ®rN')
(M@rN)®@sM ~M Qs (NQgrM)

M ®x (@M) ~ @(M ®z Ny)

Heuristically, the tensor products in the above isomorphisms always operate over the largest
possible ring: S if both operands are S-modules, else R. We prove only the third result.
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Proof. By the previous proposition,

M@rN)®sM' ~ (M Qs (NQrS)) s M
~M®s ((NQ®gS)®@s M)

~MQ®s (NQ®rM')
O]
Corollary. Let N, N’ be R-modules. Then
S®r(N®rN') = (S®rN)®s (S®rN')
as S-modules.
Proof.
SOr(N®rN') = (S®rN)®r N = (SQ®r N) ®s (SQ®r N')
O]
Example.

C ®r (Re Pr Rk) ~ (C®r R?) ®c (C ®r IRk) ~ C? Rc Cck ~ ctk
By induction, one can see that

SOr(N; ®r - ®rNy) = (S®r Np) Qs -+ ®s (S®r Ny)

2.8. Extension of scalars on morphisms

Let f : N — N’ be an R-linear map, and M be an S-module. Then the map
idyy ®f : M@®r N > M Qx N’

is S-linear. Indeed,

(idy @) (s(m @ n)) = idpr sm ® f(n) = s(m @ f(n)) = s((idy ®f)(m @ n))

Example. LetT : R" - R? be R-linear, and use bases ey, ...,eyand fi, ..., fp. Then
idc ®T : CQr R" - C @i R?
is given by
¢

¢
(dc ®T)(1®e) =1QT(e) =1Q® Z[T]ji fi= Z[T]ji(l ®f)
j=1

j=1

This shows that the matrix [idc ®T'] has all real elements, and is the same as the matrix [T].
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2.9. Extension of scalars in algebras

Let A, B be R-algebras. Then the module A ®p B is also an R-algebra. Furthermore, can see
that A ®x B is an A-algebra and a B-algebra by the mapsa—a® land b — 1 ® b.

Example. Consider R[X, ..., X,]and f : R —» S. Then
@ : S®gr R[Xy, ..., X, ] = S[Xy, ..., X,
as S-algebras. Indeed, ¢ already exists as an isomorphism of S-modules given by
p(s® p) =sp
and one can verify that unity and multiplication are preserved. Further,

S® (R[X - ,Xn]/I) ~ SIX1, o Xl

Proposition. Let A be an R-algebra and B be an S-algebra. Then
A®RBZ (A®RS)®SR
as S-algebras.

Proposition. Let A, B be R-algebras. Then
SQr(A®rB) ~(S®rA) ®s (S Qg B)
as S-algebras.

The proofs are omitted, but trivial.

2.10. Exactness properties of the tensor product

Let M be an R-module. There is a functor
TM . MOdR - MOdR
from the category of R-modules to itself given by
o, .
We intend to show that if

A-Llsp_ 8y

~
=)

is an exact sequence of R-modules, then

M®RAMM®RBTM—@;M®Rc—>O

is also an exact sequence. This shows that Ty, is a right exact functor.
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Definition. Let Q, P be R-modules. Then
Homy(Q,P) ={f : Q — P| f is R-linear}
This is also an R-module: if ¢ € Homg(Q, P),
(r-o)q) =r-9(q)

Definition. Let Q, P be R-modules. Then
HomR(Q, —) . MOdR - MOdR

and
Homg(—,P) : Mod, — Modg

are functors, with action on morphisms f : N — N given by

Homg(Q, f)(¢) = f o ¢ = f.(p) : Homg(Q,N’) - Homg(Q,N")
and

Homg(f, P)(¢) = ¢ o f = f*(¢) : Homg(N, Q) - Homg(N', Q)
Proposition. Suppose

0 Sy A

~
&
~
a

is exact. Then, so is

0 — Homg(Q,A) — Homg(Q,B) —% Homg(Q,C)
Thus, the covariant hom-functor is left exact.
Proof. First, we show f, is injective. Suppose f,(¢) = 0,s0 f o ¢ = 0. Then as f is injective,
f(p(x)) = 0 implies ¢(x) = 0, giving ¢ = 0 as required.
Now consider ¢ : Q — A. Then
g8.(f(@)=go(fop)=(goflop=0090=0

soim f, C kerg,. Now suppose ¢ : Q — Bhasg,(p) = gop = 0. Soforall x € Q,
g(p(x)) = 0. By exactness of the original sequence, ¢(x) € im f. As f is injective, ¢(x) has
a unique preimage (x) under f. As f is R-linear, sois 3 : Q — A. Hence f,() = ¢ as
required. O

Proposition. Suppose

is exact. Then, so is

0 — Homg(C,P) ——5 Homg(B, P) —1— Homg(4, P)

Thus, the contravariant hom-functor is also left-exact.
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Proof. First, we show g* is injective. Suppose g*(¢) = 0, so ¢ o g = 0. As g is surjective, we
must have ¢ = 0.

Now consider ¢ : C — P. Then
g (@) =(peg)eof=gpo(gof)=¢e0=0

so img* C ker f*. Now suppose ¢ : B — P has f*(p) = ¢o f = 0. So for all x € A,
@(f(x)) = 0. Define ¢ : C — P by

P(g(x)) = p(x)

We show this is well-defined. If g(x) = g(y), then g(x —y) = 0, s0 x — y = f(a) for some
a € A. But then ¢(f(a)) = 0, so p(x) = @(y). As ¢ and g are R-linear, so is ®. Hence
g*(¥) = ¢ as required. O

Lemma. Consider a sequence of R-modules
f g
A——> B — C
Suppose that for each R-module P,
Homg(C, P) —5—% Homg(B,P) ——5 Homg(A, P)
is exact. Then the original sequence
f g
A——> B —C

is exact.

Proof. First, take P = C. By hypothesis, the following sequence is exact.

Homg(C, C) —5— Homg(B,C) ——5 Hompg(4, C)

Consider
id¢c = idc og = idcogo f
By exactness, id- must be mapped to zero under f* o g*,s0 go f = 0. Hence im f C kerg.

Now, take P = B/im f= coker f.
Homp (€, B4, 1) —£5 Homg (B, B4, f) "y Homy (44 7)

Leth : B> B/im f be the quotient map. Then,

frm=hef; h(f(x))=0

Thus by exactness, h has a preimagee : C — B/im f: Then g*(e) = eog = h,sokerg C
ker h = im f, giving the reverse inclusion. O
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By the universal property of the tensor product,
Homgzp(M ®z N, L) ~ Biling(M X N, L) ~ Homg(N, Homg(M, L))

given by
g me-em@n);, (Mne— e(m)(n) « ¢

This bijection is natural, in the sense that many commutative diagrams involving them will
commute.

Proposition. Let M be an R-module. Then the functor Tj; = M ®p (—) is right exact.
Proof. Consider an exact sequence of R-modules

A—LSsp 5y

We must show that

idy ® idps &,
M®RAM—§M®RBM—§M®RC—>O

is exact. Let P be an R-module, and consider apply the functor Hom(—, P) to this sequence.
As this is left exact, the resulting sequence will be exact.

0 — Homg(C,P) —5— Homg(B,P) —— Homg(A, P)

Then, apply the functor Hom(M, —), which is also left exact.

0 —— Homg(M, Homg(C, P)) % Hompy (M, Homg(B, P)) Q Hompy (M, Homg(A, P))
We thus obtain

0 —— Homgz(M,Homg(C,P)) —— Homgx(M, Homg(B, P)) —— Hompg(M, Homg(A, P))

| I I I

0 —— Homyz(M ®g C,P) ————> Homp(M ®g B,P) ————» Homgyp(M ®gz A, P)

As this diagram commutes, the bottom sequence is exact. Since this holds for all P, by the
previous lemma, we can cancel P to give exact sequences

0 —> M®C —> MQ®rB M®RC —> M®rB —)» M®rA
which combine into the longer sequence as required. O

Remark. 1t is not the case that if

A—SB—3C
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2. Tensor products

is exact, then
MQ@QrA —> M@rB —> M Qi C

is also exact; the fact that the sequence has a zero on the right is important. Consider the
exact sequence

0—s7 -2y 7

and tensor with Z/ZZ' We would then obtain

00— 25707 225 21,07
FooE L

0 —— Z/zz —x Z/zz

but this sequence is not exact.

2.11. Flat modules

Definition. An R-module M is flat if whenever f : N — N’ is R-linear and injective, the
map
ldM®f . M®RN—)M®RN,

is injective.
Example. (i) Z/zz is not a flat Z-module.

(ii) Free modules are flat. Suppose f : N — N’ is an injective R-linear map. Then

idper ®f
R @ N 225 RO @ N’

:i lz

N@I z ; ( N/)@I
commutes, where

g((npien) = (f(n))ier
But g is injective, so idger ® f must also be injective.

(iii) The base ring matters. One can see that Z/ZZ is not a flat Z-module but it is a flat
Z/ZZ—module as it is a free Z/zz-module.

Definition. An R-module M is torsion-free if rm # 0 whenever r is not a zero divisor in R
and m # 0.

Proposition. Flat modules are torsion-free.
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II. Commutative Algebra

Proof. Suppose M is not torsion-free. Then there is r, € R not a zero divisor and my # 0,
such that rymy = 0. Consider the R-linear map f : R — R given by multiplication by r. Its
kernel is zero, as ¥, is not a zero divisor. So f is injective. The following diagram commutes.

Mg R 2 M@y R

:i l:

M — i M

If M were flat, idy; ® f would be injective, but then the map m — rym would also be injective,
which is a contradiction. O

Example. Let R be an integral domain, and let I be a nonzero ideal of R. Then R/I is not
flat. Indeed, if I = R then R/I = 0 is not flat. Instead, suppose I C R,and let0 # x € I.
Tensoring with R/I, the map R/I - R/I given by multiplication by x is the zero map, but R/I
is not the zero module, so R/I is not torsion-free.

Proposition. Let M be an R-module. Then the following are equivalent.
(i) Ty preserves exactness of all exact sequences;
(ii) Tys preserves exactness of short exact sequences;
(iii) M is flat;

@iv) if f : N — N’ is R-linear and injective, and N, N’ are finitely generated R-modules,
then idy; ® f is injective.

Note that a map f : M — N is injective exactly when the sequence

0—3> M-Iy N

is exact, so all of these conditions relate exact sequences.

Proof. Note that (i) implies (ii) which implies (iii) which implies (iv).

(ii) implies (i). Suppose the sequence
f g
A—3SB-—23%C
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2. Tensor products

is exact. Then, the following diagram is exact.

O\W O\img/
NN
N Y

After applying T = Ty, the diagram still commutes, and the diagonal lines remain exact.
im(TA - TB) =im(TA - T(im f) — TB)
=im(T(im f) - TB)
= ker(TB — T(im g))
= ker(TB —» T(img) — TC)
=ker(TB —» TC)

(iii) implies (ii). Suppose the sequence

0o—sa—Jtsp 8y

~
o

is exact. As Ty, is right exact, we obtain the exact sequence

idy ® idy ®,
M®RAM—;M®RBIM—§M®RC—>O

It suffices to show that idy; @ f is injective, but this is precisely the hypothesis of (iii).

(iv) implies (iii). Let f : N — N’ be R-linear and injective. Let ), m; ® n; € M ®g N be such
that

0=(idy ®)(D,m ®n;) EMQN’
Then there are finitely generated submodules L, L' of N, N’ such that the n; are elements of
L and

0=(idy ®NY.mn)EMQL
By (iv), we obtain
0=Zmi®ni EMQ®L
But L is a submodule of N, so
0=Zmi®ni EMQN
Henceidy; ®f : M ®r N > M ®z N’ is injective. O
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II. Commutative Algebra

Proposition. Let f : R — S be a ring homomorphism, and let M be a flat R-module. Then
S @r M is a flat S-module.

Proof. Letg : N — N’ be an S-linear injective map. Then

idsg M ®F
(S ®r M) ®s N —2257(S @ M) ®5 N’

:l i:

M Q@g N W M ®r N’

commutes. The map idy; ®g is injective as M is flat, so the map idgg ,ar ®g is also injective.
Thus S ®z M is a flat S-module. O
We now explore some further examples of tensor products.

Example. Consider Q ®» Z/nZ- In this ring,
X X X
X®J’—n'ﬁ®y’—ﬁ®”}"—ﬁ®0—0

So this ring is trivial. To prove this, we used the fact that for all x € Q and n > 1, there is an
element y € Q such that ny = x. We say that Q is a divisible group. We also needed the fact
that Z/nZ is a torsion group: all elements are of finite order. Hence the tensor product of a
divisible group with a torsion group is zero. In particular, it follows that

@/Z ®z Q/Z =0

However, for an R-module M # 0, if M is finitely generated then M @ M # 0.

Example. Let V be a vector space over Q. Then Q ®g V ~ V as Q-modules, given by the
map x ® v — xv. However, Q ® V is also isomorphic to V, given by the same map. First,
note that every tensor in Q ® 7 V' is pure.

Yo =S Leoar=SLep %y = iy = i
b, Qv; _Zbi ® a;v; _Zbi ®b’bivl —Zl® bivl = 1®Zbivl
Surjectivity of the map is clear as 1 ® v — v. We check injectivity on pure tensors. If xv = 0,

then x = 0or v = 0, and in any case, x ® v = 0.

Example. Consider
M ®p (@N,-) ~ P M R Ny)
iel iel
given by m ® (n;)ier = (m @ n;);e;- This is not true with the direct product. However, we
do have a map

M ®g (HNi) - [Ny

iel iel
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2. Tensor products

given by the same formula, but this is in general not an isomorphism. Consider

0@z [[ %7~ [1(@®2%n7)
n=1 n=1

The right-hand side is zero, as each factor is a tensor product of a divisible group by a torsion
group. However, the left-hand side is nonzero. Let

g=111,..) € [[ %4z
n=1

This is an element of infinite order, so (g) ~ Z as a subgroup of H:’:l Z/znz. Thus

QRz(e ~0Q

as Z-modules. But we have an injective inclusion map

g — H Z/znz
n=1

We will later show that Q is a flat Z-module. This justifies the fact that there is an inclusion

Q®z (@) » Q®z [[ “onz
n=1

showing that in particular the module in question is nonzero.

Example. Consider C @z C. We will choose to extend scalars on the left, treating the right-
hand copy of C as an R-module isomorphic to R?. As a module, C ® C ~ C Qi R? is
isomorphic to C2. The basis for C?is givenby 1 ® 1,1 ® i.

As a C-algebra, we again choose to extend scalars on the left, considering the right-hand
copy of C as an R-algebra.

COrC~C®g IR[T]/(TZ +1)

= G:[T]/(TZ +1)

2C[T]/(T—i)(TH)

zC[T]/(T—i)XC[T]/(TH)

~CxC
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II. Commutative Algebra

using the Chinese remainder theorem, which will be explored later. The action of this iso-
morphism on a pure tensor is

x®y=(a+b)®(c+di)~ (a+bi)® (c+dT + (T? + DR[T])
— (a+ bi)(c+dT) + (T? + 1)C[T]
= (ac + bdiT) + (ibc + adT) +(T? + 1)C[T]
P
= (P+ (T —-i)C[T],P+ (T +i)C[T])
— ((ac — bd) + i(bc + ad), (ac + bd) + i(bc — ad)) = (xy, xy)
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3. Localisation

3. Localisation

3.1. Definitions

Definition. A multiplicative set or multiplicatively closed set S C R is a subset such that
1 e Sandifa,b € S,then ab € S. If U C R is any set, its multiplicative closure S is the set

{ﬁw

i=1

nZO,uieU}

which is the smallest multiplicatively closed set containing U.

Example. (i) If R is an integral domain, then S = R \ {0} is multiplicative.
(ii) More generally, if p is a prime ideal in R, then S = R \ p is multiplicative.
(iii) If x € R, then the set {x" | n > 0} is multiplicative.

Remark. Q is obtained from Z by adding inverses for the elements of the multiplicative sub-
set Z \ {0}. We have a ring homomorphism Z ~» Q. We generalise this construction to
arbitrary rings and multiplicative sets. In general, injectivity of the ring homomorphism in
question may fail.

Definition. Let S C R be a multiplicative set, and let M be an R-module. Then the localisa-
tion of M by S is the set S™!M = M XS/ where (my, $1) ~ (m,, s,) if and only if there exists
u € S such that u(s,m; — s;m,) = 0. We write % for the equivalence class corresponding to
(m, s). We make S™'M into an R-module by defining
mo My mys, + m;,sy L. m_rm
ST S5 15, ’ S S
We can make S~!R into a ring by defining
n n_nn
15 S

Then S™'M is an ST!R-module by
r m rm

s t st
We have the localisation map R — S™!R given by r — g which is a ring homomorphism.
We also have the localisation map M — S~'M given by m %, which is a homomorphism
of R-modules.

We must show that ~ is an equivalence relation. The only nontrivial thing to prove is trans-
itivity. Let
u(s,m; — sym,) = 0 = v(s3my, — s,M3); U,VE S
Then
0 = uv(8,83my — $153My) + UV(S1S3My — S1S,M3) = UVS,(S3my — s;M3);  ULS, € S

as required. All other operations mentioned are well-defined; the proofs are not enlighten-
ing so are omitted.
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II. Commutative Algebra

3.2. Universal property for rings

Proposition. Let U C R, and let S C R be its multiplicative closure. Let f : R — B be
a ring homomorphism such that f(u) is a unit for all u € U. Then there is a unique ring
homomorphism & : S™'R — B such that the following diagram commutes.

RﬂS‘lR
\ :h
f v

B

where tg-1x(r) = f so in particular, f(r) = h(f)

Thus
Homg,(S™'R, B) ~ {p € Homg;y(R, B) | 9(U) C B*}
mapping
r\. (r o)
ek (- 5m) e

Proof. Let f : R — B be aring homomorphism such that f(u) is a unit for all u € U. Then
f(s) is a unit for all s € S. We want to construct a ring homomorphism h : S™!R — B such

that f(r) = h(f) for all € R. Such an h must satisfy the following condition.
1 s 1
1=h =h(5-7) =h(5)ro
Thus h(%) = f(s)~!. Hence, we must have

n(:) = h(3 (%) = 7 £

S

It thus suffices to show that this  is well-defined; it is then a ring homomorphism satisfying

the correct property. If :—1 = :—2 then there is t € S such that ts,r; = ts;r,. Applying f,
1 2

F@Of(s2)f(n) = f(Of (51)f(r2)

As f(t), f(s1), f(s,) are invertible,
f(r) _ f(r)
fGs1)  f(s2)
so h is well-defined. O

Proposition. Suppose (4, j) has the same universal property of (ST!R, ig-1z) where ig-1x(r) =
%, then there is a unique ring isomorphism S~'R — A mapping Zto Jj&Lj(r).
N

Remark. (i) Let € S™'R. Then - = % if and only if there exists u € S such that ur = 0.
N N
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3. Localisation

(ii) In particular, ST'R = 0 when % = %, which occurs precisely when 0 € S.
(iii) kerig-ig ={r€R|3u € S, ur =0}.
(iv) tg-1g is injective if and only if S contains no zero divisors.

(V) tg-1f is always an epimorphism, but usually not surjective. For example, the map
t . Z»» Qisepic. Indeed, for f,g : @ - A aresuch that fot=goy then

f( Q) _ JWp) _ g(p) _ (p)

q)” FW@) " s " ®\q

Example. (i) Let f € R and define S = {f" | n > 0}. Define Ry = S~IR. Taking for
instance R = Z and f = 2,

1
an,nZO}:Z[E]

a
Ry ={3
producing the ring of dyadic rational numbers. Since we write Z/nZ for the finite

quotient ring and Z, for the 2-adic integers, we must use the notation Z[l] for this
particular construction instead. Thus Ry is the zero ring if and only if f is nilpotent.

(ii) Let p € SpecR, where SpecR is the set of prime ideals in R. Then S = R\ pisa
multiplicative set. Consider (R \ p)~'R = Ry. For example,

2oy =1}

a,bez,3+b}

3.3. Functoriality

Proposition. Let M be an R-module and S C R be a multiplicative set. Then there is an
isomorphism of S~'R-modules

STIRrM = S~'M
given by ome- 2.
N N

Thus the localisation of any module can be reduced to a tensor product with the localisation
of aring.

Proof. Define the map S™'R X M — S~!M mapping (E, m) - %; this is bilinear and thus
gives rise to an R-linear map ¢ : ST'R®M — S~'M with the desired action on pure tensors.
One can check that this is in fact S"!R-linear. Clearly ¢ is surjective by % @m - % For
injectivity, we first show that every tensor

Z?@mieS‘lR@)RM
i i
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II. Commutative Algebra

is pure. We define
s=ITsi 4=TIs
i Jj#i

hence
ri 1 t; 1 1
—Q@m=) —Q@rim;=) —Q@rim; =) —Qtirim;=—-Q ) tirim;
Yyem=3 enm=3enm =3 etrm=8Yum

as required. Now, it suffices to prove injectivity on pure tensors. If go(l ® m) = %, then
S
there exists u € S such that

ulm—-0s)=0 = um =0

Thus 1 1 1
SOm=LtQ@m=—Qum=—®0=0
S us us us

as required. O

The map S~'R ® (—) acts on modules and on morphisms. The map S~!(—) acts on modules,
and can be extended to act on morphisms in the following way. If f : N — N’ is R-linear,
we produce the commutative diagram

ide—
s IR@x N 28/ s-1r @ N
S—l ______ S—lN/
ST

with action

“®n— - ® f(n)

1 ]

I 1w

N
Then the functor S™'R ® (—) is naturally isomorphic to the functor S~1(-).

Remark. If A is an R-algebra, then we have an S~'R-linear isomorphism ST'R®QzA = S™1A4;
this is also an isomorphism of S~!R-algebras.

Lemma. Let M be an S™!R-module. Treating M as an R-module, we can define S~1M.
Then,
ST IM~M

as ST!R-modules, mapping % > im.

Equivalently, M ~ S~!R ®g M as S"'R-modules, mapping m ~ % ® m.

122



3. Localisation

Proof. The localisation map M — S™'M maps m — % This is S~!R-linear, and surjective
as % -m - % To show injectivity, note that ? = % implies there exists u € S with um = 0.

Multiplying by % as M is an S~'R-module we obtain m = 0 as required. O

3.4. Universal property for modules

Recall that if U has multiplicative closure S,
Homgng(S™'R, B) = {p € Homgng(R, B) | ¢(U) € BX}
If M is a fixed R-module and L is an S~'R-module, we have
Homg(M, L) ~ Homg-1x(S™M, L)

Proposition. Let M be an R-module and L be an S™'R-module. Let f : M — L be R-linear.
Then there exists a unique S~!R-linear map h : S™!M — L such that f = hoig-1p,.

M S o-1pr

\:h
¥ v
L

As usual with universal properties, this characterises S~'M uniquely up to unique isomorph-
ism.

Proof. We use the natural isomorphism between S~}(—) and S~!R ®5 (—). After applying
this, we have a map

1
1: M- ST'RQRM; me 1®m
Let f : M — L be R-linear, and define
h=idg-1g ®f : ST'TRAg M - ST'R®y L

Note that ST'R ®g L ~ L, so we can consider h as mapping to L, with action

h(= @ m) = Zf(m)

T s

Uniqueness of & follows from the fact that {1 ® m},,_,, generate ST'R ® M as an S™'R-
module. O
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3.5. Exactness

Proposition. The functor S~!(—) is exact. More explicitly, if

A—tlsp_ 8y

is an exact sequence of R-modules, then

s-1 st
s-14 Sy g-1p 578 10
is an exact sequence of S~'R-modules.

Proof. First,
(57'g)o (S‘lf) =S5gef)=510=0

g(b)

soimS~!f C kerS~'g. Now suppose - € kerS71g,s0 == . Hence there existsu € S

such that ug(b) = 0. As g is R-linear and u € R, we have g(ub) = 0. By exactness, ub €
ker g = im f. Thus there exists a € A such that f(a) = ub. Hence,

S us us

b _u_bzwzs-lf(i)
us

In particular, ST'R is a flat R-module, so for example Q is a flat Z-module.

Remark. Suppose N C M are R-modules, and ¢t : N — M is the inclusion map. Then

applying the localisation, the map S~'t : S™!N — S~!M given by 2 Disstill injective.
N N

Note that the similar result for tensor products fails.

Proposition. Let M be an R-module and N, P be submodules of M. Then,
(i) SSIIN+P)=S"'N+S71p;
(ii) ST INNP)=STINNS~IP;

m+N

S~IMm 1(M 1
(iii) /a— ( /N) given by +ST'N - p
Parts (i) and (ii) rely on a slight abuse of notation, thinking of S!N as a submodule of S~ M.
Due to the above remark, this should not cause confusion.

Proof. Part (i). Note that

L N
S S S

and n S>n—+ s
BB _5RTHP o g-i(N 4 p)
S1 82 5152
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Part (ii). The forward inclusion is clear. Conversely, suppose x € SN N S~!P,so x = z=
S1

£ Hence, there exists u € S such that us,n = us;p = w. Note us,n € N and us;p € P, so

S
w € NnP. Now,

n us,n w
X=—=—2 = e STI(NNP)
51 US1Sy  US|S;

Part (iii). Consider the short exact sequence

0 —3N—> M3 My —0

Applying the exact functor S~!(—), we obtain the short exact sequence

0 — s7IN 22 sy S s1(My) s 0

Thus
S W)STIN)=S"INC STIM
and N
(M _m
(S 7'()( . ) =
giving the isomorphism as required. O

Proposition. Let M, N be R-modules. Then
STIM ®g-1g STIN = S71(M ®% N)
Proof. We have already proven that
(ST'TROR M) ®s-1z (ST'TR®R N) = ST'R ®r (M Qg N)
giving the result as required. O
Example. Let p be a prime ideal in R. Then by setting S = R \ b,

3.6. Extension and contraction of ideals

If f : A — Bisaring homomorphism and b is an ideal in B, the preimage f~!(b) = b is an
ideal in A, called its contraction. If a is an ideal in A, we can generate an ideal (f(a)) = a®in
B, called its extension. We show on the first example sheet that for any ring homomorphism
f : A — B, there is a bijection

{contracted ideals of A} < {extended ideals of B}
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II. Commutative Algebra

noting that the contracted ideals are those ideals with a = a¢, and the extended ideals are
those ideals with b = b, where the bijection maps a — a® and b® < b.

We now study the special case where f : R — S™!R is the localisation map of a ring, given
byr — { In this case, the extension of an ideal is written S~'a = a®. We claim that

a
ae:{ﬂaea,ses}

Indeed, a® is generated by {% | ace a}, so a® must contain {9
N

an ideal. We also claim that

a€a,se S}, but this is already

aec=U(a:s); (a:s)={reR|rsea}

seS

Indeed, forr € | J,_¢(a : 5), we have rs = ain R for some s € Sand a € a, s0 r—ls = % giving

r a . . . . r a
1= 801 € a®® as required. In the other direction, if r € a®¢, then 1= for some s € S
N N

and a € a, so there exists u € S such that rus = ua € a,sor € (a : us) as required.

Now, let b be an ideal of S™1R. Then
’
C — _
b¢ = {r € R| 7 € b}

We claim that b = b, so all ideals in S™'R are extended. Note that the inclusion b C b
holds for any pair of rings. For the reverse inclusion, consider E € b, so f € b. Hencer € b¢,

o) { € b, thus E € b° as b is an ideal in S~!R.
Proposition. Consider the localisation map R — S~!R given by r {
(i) Every ideal of ST!R is extended.

(ii) An ideal a of R is contracted if and only if the image of S in R/a contains no zero
divisors.

(iii) a® = S~'Rifand onlyifan S # @.

(iv) There is a bijection
{p € SpecR|pNS = @} < SpecS~'R
given by p — p¢, q¢ < q.

Proof. Part (i). Follows from the fact that b = b for all ideals b in S™'R.

Part (ii). a is contracted if and only if a®® C a, because the reverse inclusion always holds.
This happens if and only if
U(a :8)Ca

seS
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which occurs if and only if
VreR,(Srna# Qg = rea)

VreR,(0+aeSr+a) = r+a=0+a)
which in turn occurs if and only if the image of S in R/a contains no zero divisors.

Part (iii). Suppose anS # @,soletx € anS. Then = € a¢,s0 a¢ = (1) = S~!R. Conversely,
X
ifa® = STIR, then % € a%,so % = % for some a € a, s € S. Therefore there exists u € S such

that us = ua € Sna.

Part (iv). Consider the contraction map SpecS™'R — {p € SpecR | pn S = @} given by
q — q°. We show this is well-defined. In general, a contraction of a prime ideal is always
prime. Further, p € Spec R is contracted if and only if the image of S in R/p contains no zero

divisors, but R/p is an integral domain, so its only zero divisor is zero itself. So this condition
is equivalent to the condition p N S = @. In particular, {p € SpecR | pN S = @} is precisely
the set of contracted prime ideals of R. The map is injective, since if ¢ € Spec S™IR, then

q“ =q.

In the other direction, for p € Spec R such that p N S = @, it must be contracted, so p*® = p.
-1

It therefore remains to show that p¢ is a prime ideal. We want to show that S R/pe is an

-1
integral domain. We have that p¢ # S~!R by (iii), so S R/pe isnot the zero ring, so it suffices

to show that this quotient has no zero divisors. To show this, we embed S _IR/pe in the field
FF(R4).
Consider the composite map

R84~ FF(%)

which is a surjection followed by an injection. This has the property that all elements of S
are mapped to units, because S N p = @. By the universal property of the localisation, we

have a map

P SR - FF(R/p>; g — :_T_E

It suffices to show that ker ¢ = p¢, then the result holds by the isomorphism theorem. Let
—1 —
s % in FF(R/p). Observe thatimgp C S (R/p), where S is the image

s+p

e ker ¢, so
N

—1
of Sin R/p. Restricting the range, we can consider ¢ as a map from S~'R to S (R/p), So
@(E) = % implies that there existsu + p € S such that (u + p)(r+p)=0,s0ur+p=0.1In

particular, u € S and ur € p. Hence =X whereur € pand us € S, so e pe.
N us S

For the other direction, take x € p¢, so x = g for p € p,s € S. Then p(x) = g =0, so

X € kerg. O
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It is not true in general that the extensions of prime ideals are prime.

Definition. If ] is an ideal in R, the radical of I is the ideal

\/}z{reRHnZl,r”eI}

Proposition. Let I be an ideal in a ring R. Then

Vi= () »

ICpeSpecR

Proof. Letx € \ﬁ Then x" € I for some n > 1. For every p € SpecR,ifI C p, then x" € p,
so x € p. Conversely, suppose x" ¢ I foralln > 1. AsI # R, we have R/I # 0. Let x be the
image of x in R/I, and consider

(By),= {7 [nz1)" (B

This is not the zero ring, because x" ¢ I for all n > 1. Therefore, (R/I); has a prime ideal,

as it contains a maximal ideal. By the bijection described in part (iv) of the previous result,
this prime ideal corresponds to a prime ideal of R/I that avoids x. This in turn corresponds
to a prime ideal p € Spec R that contains I and avoids x. Hence x ¢ () IcpespecR P- O

3.7. Local properties
Definition. A ring R is local if it has exactly one maximal ideal.
We write mSpec R for the set of maximal ideals of R.

Example. Let p € Spec R. Then there is a bijection between the prime ideals of R contained
within p to Spec Ry, mapping n — nRy and q° < q. Hence, all prime ideals of R, are
contained in p® = pR,,. Thus (Ry, pRy) is a local ring.

Example. Recall that
a
Zo ={3|abez 240}

This ring is local, and the unique maximal ideal is
)7 —{Z—G'a bez 2+b}
(2) - b ’ )
Proposition. Let M be an R-module. The following are equivalent.
(i) M is the zero module;

(ii) M, is the zero module for all prime ideals p € SpecR;
p p pESp

(iii) My, is the zero module for all maximal ideals m € mSpecR.
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3. Localisation

Informally, for modules, being zero is a local property.

Proof. First, note that (i) implies (ii) and (ii) implies (iii). We show that (iii) implies (i).
Suppose that M is not the zero module, so let m € M be a nonzero element. Consider
Anng(m) = {r € R|rm = 0}. This is an ideal of R, but is a proper ideal because 1 ¢
Anng(m). Let m be a maximal ideal of R containing Anng(m). Now, % € M,, = 0. Thus,

? = %, so um = 0 for some u € R \ m. But then u ¢ Anng(m), giving a contradiction. [J

Proposition. Let f : M — N be an R-linear map. The following are equivalent.
(i) fisinjective;
(ii) fy : My — N, is injective for every prime ideal p € SpecR;
(i) fm : My — Ny, is injective for every maximal ideal m € mSpecR.
The same result holds for surjectivity.
Proof. The fact that (i) implies (ii) follows directly from the fact that localisation at p is an

exact functor. Clearly (ii) implies (iii). Suppose that f;; is injective for each m € mSpecR.
We have the following exact sequence.

0 — kerf —> M L3 N

As (—)y is exact, the sequence

0 — (ker fly — My —"% Ny,

is exact. But by assumption, (ker f);, = ker(f;;;) = 0. So (ker f),, = 0 for all maximal ideals
m € mSpecR, so ker f = 0. O
Proposition. Let M be an R-module. The following are equivalent.

(i) M isa flat R-module;

(ii) M), is aflat R,-module for every prime ideal p € SpecR;

(ili) My, is a flat R;;-module for every maximal ideal m € mSpecR.

Proof. (i) implies (ii). Note that M, ~ R, ® M as Ry-modules, by extension of scalars. Since
extension of scalars preserves flatness, My, is flat.
Clearly (ii) implies (iii).

(iii) implies (i). Let f : N — P be an R-linear injective map. Let m € mSpecR. Then
fm © Ny — P, is injective by the previous proposition. Note that the following diagram
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commutes.
fm®ide
N ®gyy Min ———> Bn ®r,, Min

(N ®r M) (J‘®i—<11w)m> (P ®r M),

Hence (f ® idys), is injective. Since this holds for each m € mSpecR, the map f ® idy,
must be injective, as required. O

Example. An R-module M is locally free if My, is a free Ry,-module for every prime ideal
p € SpecR. Consider R = C ® C. Then

SpecR={pXC|p e SpecC}U{C X p|p € SpecC}={C x(0),(0) x C}

The map C x C - C given by (a,b) — b sends (C x C) \ C X (0) to units. Thus, by the
universal property of the localisation, we have a map

(@b) b

X0 = Tay™a

This is clearly surjective, and one can check that this is also injective. Thus (CX C)cy () = C
is a field. Similarly, (C X C))xc is a field. So for every C x C-module M and prime ideal
p € Spec(C x C), the module My, is a C-vector space, so is free. Thus every module over
C X C is locally free, but not every module over C X C is free. For example, take M = C X {0}
as a C x C-module. One can show that M is not the zero module, and not free of rank at
least 1, so cannot be free.

3.8. Localisations as quotients

Let U C R, and let S C R be its multiplicative closure. We can define
Ry =Rlhevly o 1y = (fuT, - 1},ep)

We claim that R;; = S™!R asrings, and also as R-algebras. Writing u and T, to be the images
of these elements in Ry;, the isomorphism maps

=

Tu == 1Ty, Ty, + Iy A

Uy ... Up

This is because Ry; has the universal property of S~'R. Indeed, for any f : R — A mapping
U to units, there is a unique h making the following diagram commute.

R —3 Ry
N:h

J
A
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3. Localisation

Note that A is an R-algebra via f, so the diagram commutes if and only if & is an R-algebra
homomorphism. We have

HomR-algebra(RU’A) = {§0 tU—-A| f(u)go(u) = 1}
But the the right hand side is a singleton.

Example. Let x € R, and consider R, = Rp1x,x2,...)- Here,

Ry = R[T]/(xT ~1)
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4. Integrality, finiteness, and finite generation

4.1. Nakayama’s lemma

Proposition (Cayley—-Hamilton theorem). Let M be a finitely generated R-module, and let
f : M - M be an R-linear endomorphism. Let a be an ideal in R such that f(M) C aM.
Then, we have an equality in Endy M

ffraftt e 4agfO=0 fr=fo--of
—
r times

where q; € a.

Proof. Let M = spang {m, ..., m,}, so aM = span_ {my, ..., m,}. Then
fimy) m,
=P ; Pe Mnxn(a)
f(my) my,

Let p : R — End M be the structure ring homomorphism of M as an R-module. Then we
can define R[T] — End M by T ~ f, making M into an R[T]-module. Hence,

my my
T : |=P| :
ml’l mn
Thus
my
Ql : |=0 Q=TI,—-P
mn

Multiplying by the adjugate matrix adj Q on the left on both sides,

my

(detQ) 0

my

In particular, (det Q)m = 0 for all m € M, as the m; generate M. Hence, m — (detQ)m =
(detQ)|r_; is 0 in Endg M. Finally, note that det Q is a monic polynomial, and all other
coefficients lie in a. O

Corollary. Let M be a finitely generated R-module, and let a be an ideal in R. If aM = M,
then there exists a € a such that am = m for allm € M.

Proof. Apply the Cayley-Hamilton theorem with f = id,;;. We obtain a polynomial
(1 +a;+ -+ an)idM =0

Take a = —(a; + -+ + ap). O
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4. Integrality, finiteness, and finite generation

Definition. The Jacobson radical of aring R, denoted J(R), is the intersection of all maximal
ideals of R.

Example. (i) If (R, m)is alocal ring, then J(R) = m.

(i) J(2) ={o}.
Proposition. Let x € R. Then x € J(R) if and only if 1 — xy is a unit for every y € R.
Proof. First, let x € J(R), and suppose y € R is such that 1 — xy is not a unit. Then (1 — xy)

is a proper ideal, so it is contained in a maximal ideal m. But as x € J(R), we must have
X € m, giving 1 = 1 — xy + xy € m, contradicting that m is a maximal ideal.

Now suppose x & J(R), so there is a maximal ideal m such that x ¢ m. Then m + (x) = R
as m is maximal. In particular, there exists t € m and y € Rsuch thatt + xy = 1, or
equivalently, 1 — xy = t € m. Note that ¢ cannot be a unit, because it is contained in a
proper ideal. O

Proposition (Nakayama’s lemma). Let M be a finitely generated R-module, and leta C J(R)
be an ideal of R such that aM = M. Then M = 0.

This lemma is more useful when J(R) is large, so is particularly useful when applied to local
rings.

Proof. By the above corollary, there exists a € a such thatam = mforallm € M, or
equivalently, (1 — a)m = 0. By assumption, a € J(R), so 1 — a is a unit in R. Hence
m=0. O

Corollary. Let M be a finitely generated R-module, and let N C M be a submodule. Let
a C J(R) be an ideal in R such that N + aM = M. Then N = M.

This can be applied to find generating sets for M.

Proof. Note that
a(M/N) _ (aM +N)/N — M/N

o) M/N = 0 by Nakayama’s lemma. O

4.2. Integral and finite extensions

Definition. Let A be an R-algebra, and let x € A. Then x is integral over R if there exists a
monic polynomial f € R[T] such that f(x) = 0.

Example. (i) If R = ks a field, then x is integral over k if and only if x is algebraic over
k.

(ii) We will prove later that
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II. Commutative Algebra

(a) the Z-integral elements of Q are Z;

(b) the Z-integral elements of @[\/E] are Z[\/E];

(c) the Z-integral elements of @[\/g] are Z[HZ—\/E] 2 Z[\/g]

Definition. Let M be an R-module. We say that M is faithful if the structure homomorph-
ism p : R — End M is injective. Equivalently, for every nonzero ring element r, there exists
m € M such that rm # 0.

Example. Let R C A be rings, and let A be an R-module in the natural way. Then A is a
faithful R-module, asifr # 0, thenrl, =r # 0.

Proposition. Let R C A be rings and x € A, and consider A as an R[x]-module. Then x is
integral over R if and only if there exists M C A such that

(i) M is a faithful R[x]-module; and
(ii) M is finitely generated as an R-module.

Condition (i) is that M is an R-submodule of A, xM C M, and M is faithful over R[x].

Proof. First, assume conditions (i) and (ii) hold. We have an R-linear map f : M — M given
by multiplication by x, as xM C M. As M is a finitely generated R-module, we can apply the
Cayley-Hamilton theorem to find

ff+rff" '+ 4+nrf°=0 r;eR
in Endg M. Then, evaluating at m € M,
X" +rx" 14+ xm =0
As this holds for all m, and M is a faithful R[x]-module, we must have
X" +rx" e+ x°=0
Thus x is integral over R.

Now suppose x is integral over R. Then
X"+ x4+ x%=0
for some ry, ..., 1, € R. We define
M = spang {xo, ..., x" 71}

This is finitely generated, and satisfies xM C M. M is faithful over R[x] as it contains x°

1. O

Definition. Let A be an R-algebra. Then A is
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4. Integrality, finiteness, and finite generation

(i) integral over R, if all of its elements are integral over R;
(ii) finite over R, if A is finitely generated as an R-module.
Proposition. Let A be an R-algebra. Then the following are equivalent.
(i) Ais afinitely generated R-algebra and is integral over R;
(ii) A isgenerated as an R-algebra by a finite set of integral elements;

(iii) A is finite over R.

Proof. (i) implies (ii). The generators for A are integral.

(ii) implies (iii). Suppose A is generated by a4, ..., &, as an R-algebra, and the «; are integral

over R. As q; is integral,
ni—1

n
at+ripat 4+ rial =0

ni q. : . nj—1 . .
Hence «;" lies in the R-linear span of {oc?, e 0 } Thus, every element is an R-linear

combination of products of the form ocel21 ...o." which in turn lies in the R-linear span of
products of the same form where all e; are less than the corresponding n;. This is a finite set,
so A is finitely generated as an R-module.

(iii) implies (i). As A is finitely generated as an R-module, it must be finitely generated as
an R-algebra. Let « € A; we show « is integral over R. Let p : R — A be the structure
homomorphism of A as an R-algebra. Then p(R) C A, and consider (o(R))[a] C A. Now, A is
a(p(R))[x]-module, and is faithful because 1, € A. As A is a finitely generated p(R)-module,
the previous proposition shows that « is p(R)-integral. Equivalently, « is R-integral. O

Proposition. Let A be an R-algebra and let O be the set of elements of A that are integral
over R. Then @ is an R-subalgebra of A.

Proof. Let x,y € O. Then {x, y} is a finite set of R-integral elements, so the set generates an
integral R-subalgebra of A. Hence x+Yy, xy lie in this subalgebra, and so they are integral. [

Proposition. Let A C B C C be rings. Then,
(i) if C is finite over B and B is finite over A, then C is finite over A;

(ii) if C is integral over B and B is integral over A, then C is integral over A.

Proof. Part (i). Suppose that

C = spang {riseesvnly B= span , {B1,---s B}

Then
C =span, {y;B; |i<n,j< ¢}
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Part (ii). Let c € C, so f(c) = 0 for
f(r)=T"+b;T" '+ - +b,T° € B[T]

Then f € A'[T],where A’ = A[b,, ..., b,]. Theinclusion A C A’ is generated as an A-algebra
by finitely many integral elements. Similarly, A" C A’[c] is generated as an A-algebra by c,
which is integral over A" as f € A'[T]. By the previous result, both extensions are finite.
Then, by part (i), A C A’[c] is finite, so c is integral over A. O

4.3. Integral closure

Definition. Let A C B be rings. The integral closure of A in B is the set A of elements of
B that are integral over A, which is an A-algebra. We say that A is integrally closed in B if
A=A

Definition. Let A be an integral domain. In this case, the integral closure of A is the integral
closure of A in its field of fractions FF(A). We say that A is integrally closed if it is integrally
closed in its field of fractions.

Example. (i) Z[\/g] is not integrally closed, because a = 1+—f € FF (Z[\/g]) = @[\/g],
anda? —a—1=0soitis Z[\/g]-integral.
(ii) Zis integrally closed.
(iii) Ifkis afield, k[T, ..., T,,] is integrally closed.
Examples (ii) and (iii) are special cases of the following result.

Proposition. Let A be a unique factorisation domain. Then A is integrally closed.

Proof. Let x € FF(A) \ A, and write x = % with a € A,b € A\ {0}. As A is a unique

factorisation domain, we can assume there is a prime p such that p | band p  a. If x is
integral over A, then

a\" a n-1 a 0
(5) +alp) +-+a(z) =0
Multiplying by b",
a" = —b(a;bga™! + -+ + a,b"1aP)
But as p | b, we must have p | a", so p | a, which is a contradiction. O

Lemma. Let A C Bbe rings, and let A be the integral closure of A in B. Then A is integrally
closed in B.

Taking the integral closure is an idempotent operation.
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4. Integrality, finiteness, and finite generation

Proof. Let x € B be integral over A. Then, we have
ACACA[x]

The first extension is integra_l by definition, and the second is_integral by the above propos-
ition, as x is integral over A. By transitivity of integrality, A[x] is integral over A, so in
particular, x is integral over A. Thus x € A. O
Proposition. Let A C B be rings.

(i) if B is integral over A and b is an ideal in B, then B/b is integral over A/bc;

(ii) if Bisintegral over A and S C A is a multiplicative set, then S~'B is integral over S~1A4;

(iii) if A is the integral closure of A in B and S C A is a multiplicative set, then S~1A is the
integral closure of S™'A in S7!B, so S—14 = S~A.

The proofs follow directly from the definitions.
Lemma. Let A C B be an integral extension of rings. Then
(i) AnBX = A%,
(ii) if A, B are integral domains, then A is a field if and only if B is a field.

Proof. Part (i). One inclusion is clear: A* C AN B*. Suppose a € A and a is a unit in B with
inverse b € B; we show that b € A. As b is integral over A,

b"+ab" 1+ +a,b°=0;, g €A

Multiplying by a"~1,
b+a;+aal+-+a,a*1=0
€A

Hence b must lie in A.

Part (ii). Suppose B is a field. Then
A*=An(B\{0}) =A4\{0}

Hence A is a field. Conversely, suppose A is a field. Let b € B be a nonzero element; we
want to show that b is a unit in B. As b is integral over A,

b"+a;b" '+ +4a,b°=0;, aq, €A
Let n be minimal with this property. Then

b(bl’l—l + Cllbn_2 + -+ an_lbo) = _an
A
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Note that b # 0 by assumption, and A # 0 by minimality. As Bis an integral domain, a,, # 0.
Because A is a field, a,, is invertible. Thus

b(—=a;'A)=1 = b € BX

O]

Corollary. Let A C B be an integral extension of rings, and let q be a prime ideal in B. Then
q is a maximal ideal of B if and only if it ° = q N A is a maximal ideal in A.

Proof. We have an embedding of rings
YanarBy

which is an integral extension of integral domains. By the previous result, one is a field if
and only if the other is, so g N A is maximal in A if and only if q is maximal in B. O

4.4. Noether normalisation

Definition. Let A be a k-algebra, and let x4,...,x,, € A. We say that x,,...,x, are k-
algebraically independent if for every nonzero polynomial p € k[Ty, ..., T, |, we have p(xy, ..., x,,) #
0. Equivalently, the k-algebra homomorphism k[Ty, ..., T,,] — A given by T; — Xx; is inject-

ive.

Theorem (Noether’s normalisation theorem). Let k be a field, and let A # 0 be a finitely
generated k-algebra. Then there exist xy, ..., x;,, € A which are k-algebraically independent
and A is finite over A’ = k[x, ..., X, ]

We first present an example of the method used in the proof.

Example. Let A = k[T, T7!] ~ k[X, Y]/(XY —1) We claim that k[T] C k[T, T~!] isnot a

finite extension. Indeed, suppose it were finite. Then T~! would be integral over k[T], so
(T~H" € span 4 {(T71)°, ... J(T7Hr=1

Multiplying by T", we have
1e spank[T](T”, .., )

which is false. However, if ¢ € k is a scalar which we will choose later,
A=k[T, T = k[T, T —cT]

We claim that k[T~! — ¢T] C A is a finite extension for most values of ¢, and in particular,
for at least one. First, note T™1T — 1 = 0, and then change variables to

(T =eD+eNT =120 = ¢ T+ (T =c)T~ 1 =0
ck ck[T-1—cT] €k[T-1—-cT]

Hence if ¢ # 0, T is integral over k[T~ — cT].
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Proof. In this proof, we will assume k is infinite, although the theorem is true even if k if
finite. We will proceed by induction on the minimal number of generators of A as a k-algebra,
which we will denote m. For the case m = 0, we have A = k, so we can take A" = k.

Suppose that A is generated as a k-algebra by x4, ..., x,, € A. If x4, ..., x,,, are algebraically
independent, then we can take A’ = A. Otherwise, we claim that there are ¢y, ...,¢,,_; € k
such that x,, is integral over

B =k[xX; —C1 X, - s X1 — Crn—1Xm |

Assuming that this holds, we have A = B|[x,,], so B C A is a finite extension. But B is gener-
ated by m — 1 elements, so by induction B contains zy, ..., z,, € B which are k-algebraically
independent, and B is finite over A’ = k[z;, ..., z,]. Then A is finite over A’ by transitivity of
finiteness.

We now prove the claim. As x,, ..., X, are not algebraically independent over k, there is a
nonzero polynomial f € k[T, ..., T,,] such that f(x,,...,x,,) = 0. We want to show that
X,, is integral over B. Write f as the sum of its homogeneous parts, and let F be the part of
highest degree deg f = r. For scalars ¢y, ..., ¢,,,—; € k which will be chosen later, we define

g(Tl’ vee s Tm) = f(Tl + Cle, vee s Tm_1 + Cm_le, Tm)

= F(cy, ..., Cm» 1) Ty, + terms of lower degree in T, with coefficients in k[ T3, ...
—_———
€k
Note that
g(x1 —C1Xpms e s Xp—1 — C'm—lxm’xm) = f(xl’ ’xm) =0
but as a polynomial in T, over k[T, ..., T;,_; ], it has degree at most r, and the coefficient of

s Tm—l]

T, isF(cy, ... s Cp» 1). ASF(Ty, ..., T,,,) is anonzero homogeneous polynomial, F(Ty, ..., T,,—1, 1)

is not the zero polynomial. Thus there are cy, ..., ¢,,,_; such that F(cy,...,¢,,,—1,1) # 0ask
is an infinite field. O

4.5. Hilbert’s Nullstellensatz

Proposition (Zariski’s lemma). Let k C L be fields where L is finitely generated as a k-
algebra. Then dimy L is finite.

Proof. By Noether normalisation, we have
k C k[xy,...,x,] C L

where x4, ..., x, are algebraically independent over k, and L is finite over k[x, ..., X, ]. As
this is an integral extension of integral domains and L is a field, k[x;, ..., x,,] must be a field.
But as k[x, ..., X,,] is a polynomial algebra over k, the x; cannot be invertible. Hence n = 0,
so k C L is finite as required. O

Definition. Let k C Q be an extension of fields, where Q is algebraically closed.
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(i) LetS C k[T, ..., T,]. We define
VIS ={xeQ"|Vfes, f(x)=0}
Sets of this form are called k-algebraic subsets of Q".
(ii) Let X C Q". We define

IX) = {f € K[T,,...,T,] | Vx € X, f(xX) = 0}

Note that V(S) = V(I), where I is the ideal generated by S. Recall that for every finite
field extension k C L, there is a k-algebra embedding L — Q, because Q is algebraically
closed.

Theorem. Leta C k[T, ..., T,,] be an ideal. Then
(i) (weak Nullstellensatz) V(a) = @ ifand only if 1 € a;
(ii) (strong Nullstellensatz) I(V(a)) = \/E.

Proof. Weak Nullstellensatz. Clearly if 1 € a then V(a) = @, as 1 # 0. Now suppose 1 ¢ a.

There is a maximal ideal m € mSpec k[T, ..., T,,] such thata C m. ThenL = k[T, ..., Tn]/m
is a field, which is finitely generated over k as an algebra. By Zariski’s lemma, this extension
is finitely generated as a module. Hence, there is an injective k-algebra homomorphism
L — Q. Composing with the quotient map, we obtain a k-algebra homomorphism ¢ :
k[Ty, ..., T,,] » Q with kernel m. Now, let

X= (@(Tl)s seey §0(Tn)) € Q"

We claim that this isa common solution to all polynomials in a. Note that for f € k[T, ..., T,],
we have ¢(f) = f(x). Therefore, for all f € a, we have f € kergp so f(x) = ¢(f) = 0.

Strong Nullstellensatz. Let f € \/E. Then f¢ € a for some ¢ > 1, and therefore, f¢(x) = 0
for all x € V(a). As Q is an integral domain, f(x) = 0 for all x € V(a). Hence f € I(V(a)).

Conversely, suppose f € I(V(a)), so for all x € V(a), we have f(x) = 0. We want to show
that f € \/E. To do this, we show that f is nilpotent in k[T, ... Tn]/a. It suffices to show

that KT, I]
Lesdnls) =0
( a);
Note that

(k[Tl’ seey Tn]/a)? ~ k[Tb ceey Tn, Tl’l+1]/b; b = ae + (TI’H—lf —_ 1)
We will show that 1 € b, or equivalently by the weak Nullstellensatz, V(b) = @.

Suppose X = (X1, ...,Xp41) € V(b) C Q"L Define x, = (X1, ...,X,), 80 X, € V(a). In
particular, f(xo) = 0, as f € I(V(a)). Thus f(x) = 0. Now, (T,,;1f — D) = —1 # 0,
but (T,,;1f — 1) € b, so x is not a common solution to all polynomials in b, which is a
contradiction. O

140



4. Integrality, finiteness, and finite generation

One can easily derive the weak Nullstellensatz from the strong Nullstellensatz.
Note that
) \Va=va

(ii) IfX C Y C Q", then I(X) 2 I(Y).

(iii) fS C T Ck[Ty, ..., T,], then V(S) 2 V(T).

(iv) If S C k[T, ..., T,], then S C I(V(S)).

(v) IfX C Q", then X C VUI(X)).

(vi) If X C Q" is an algebraic set, then X = V(I(X)), as X = V(a) gives

V(a) € V(I(V(a))) € V(a)

(vii) If X C Q", then I(X) is a radical ideal.

Proposition. Let k = Q be an algebraically closed field, and let n > 0. Then we have an
inclusion-reversing bijection

{k-algebraic subsets of Q"} < {radical ideals of k[ T}, ..., T,,]}

given by X — I(X) and V(a) < a.

Proof. We have already shown that I(X) is radical, and X = V(I(X)) if X is an algebraic set.
For the converse, let a C k[Ty, ..., T,,] be a radical ideal. Then I(V(a)) = \/E = a by the

strong Nullstellensatz. O
Remark. Every prime ideal p isradical, as x" € pimplies x € p. In particular, every maximal
ideal is radical.

Corollary. Let k = Q be an algebraically closed field. Then we have a bijection

Q" & mSpeck|[T, ..., T,]
given by x = (xq,...,x,) = (T} — X1, ..., T, — X)) = m,.
Proof. First, note that m, is a maximal ideal for every x, since it is the kernel of the map
klTy,...,T,] » Qgiven by T; — x;. Also, my, = I({x}). Indeed, the inclusion m, C I({x})
is clear, and I({x}) is a proper ideal of k[Tj, ..., T,,], so they must be equal by maximality.

Note that V(my) = {x}. Hence the claim follows from the inclusion-reversing bijection, as
maximal ideals correspond to minimal nonempty kalgebraic sets. O

Definition. We say that X C Q" is irreducible if X cannot be expressed as the union of two
strictly smaller algebraic subsets.

Proposition. X C Q" is irreducible if and only if I(X) is prime.
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4.6. Integrality over ideals

Definition. Let A C B be an extension of rings, and let a C A be an ideal. We say that x € B
is integral over a if

X"+ a x4 40, x° =0

for some ay, ...,a, € a. The integral closure of a in B is the set of elements of B that are
integral over a.

Proposition. Let A C B be an extension of rings, and let A be the integral closure of A in

B. Let a be an ideal of A. Then the integral closure of a in Bis V aA, the radical in A of the
extension of a to A.

Proof. If b € B is integral over a, then
b" +ab" 1+ +a,b°=0;, a €a

In particular, b lies in A, and so all of its powers lie in A as A is a ring. Using the integrality
equation for b, we observe that b" € a4, hence b € VaA.

Now, suppose b € VaA. Then b" € aA for some n, s0

m
b" :Zaixi; ag;€a,x; €A

i=1
Define M = A[Xy, ... , X,,,]. The generators lie in A, so M is an A-algebra generated by finitely

many integral elements over A. Hence M is a finite A-algebra. Note that b"M C aM by the
equation for b", thought of as an extension of A-modules.

Now define f : M — M by multiplication by b". This satisfies f(M) C aM, and f is A-linear.
Thus by the Cayley-Hamilton theorem,

fl4+afil+ - +a,f°=0€EndgM; o;€a
Evaluating thisat 14, € M,
b + bV 4 ... 4 q,b=0€B
This is an integrality relation for b is a-integral. U

Hence, the integral closure of an ideal is closed under sums and products.

Corollary. Let A C B be an extension of rings, and let a be an ideal of A. Then b € B is
a-integral if and only if b is \/H-integral.
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Proof. By the previous proposition, it suffices to show that

The forwards inclusion is clear. For the other direction, it is a general fact that \/._Te - \/F,

) -

Taking radicals on both sides,

O]

Proposition. Let A be an integrally closed integral domain (in its field of fractions). Let
A C B be an extension of rings, let a be an ideal in A, and let b € B. The following are
equivalent:

(i) bisintegral over a;

(i) b is algebraic over FF(A) with minimal polynomial over FF(A) of the form

T+ a;T" '+ 4+a,T°=0; q; €+a
Note that there is an embedding FF(A) C FF(B).

Proof. Suppose (ii) holds. Then b is integral over \/E by definition. Thus, by the above
corollary, b is integral over a.

Now suppose (i) holds. We have an integrality equation
b"+a;b" '+ 4+4a,b°=0; q;€a

Define
h=T"+a,T" !+ - +a,T° € (FF(A))[T]

so h(b) = 0, so certainly b is algebraic over FF(A). Let f € (FF(A))[T] be the minimal
polynomial of b over FF(A). Let FF(A) C Q where Q is an algebraically closed field, so

o
f= H(T—oci); a; =b,a; €Q
i=1

We want to show that the coefficients of f are in \/E. By the previous proposition, together
with the fact that A is integrally closed, the integral closure of a in FF(A) is \/E C A. Soit
suffices to show that the coefficients of f lie in FF(A) and are integral over a. As f is the
minimal polynomial over FF(A), the first part holds by definition.
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Expanding brackets in the equation for f, the coefficients of f are sums of products of the
a;. The proposition above implies that the integral closure of a in Q is closed under sums
and products, so it suffices to show that the «; are all integral over a. As the «; and b have
the same minimal polynomial f over FF(A), there is an isomorphism of FF(A)-algebras
@; . FF(A)[b] » FF(A)[«a;] that maps b to «;. Then as h(b) = 0 and h € (FF(A))[T], we
must have h(a;) = h(p;(b)) = ¢;(h(b)) = ¢;(0) = 0. O

4.7. Cohen-Seidenberg theorems

If A C Bis an extension of rings, the inclusion: : A — B gives rise to (" : Spec B — Spec A
given by t*(q) = q N A. We will study the fibres of this induced map on spectra.

Proposition (incomparability). Let A C B be an integral extension, and let q, q' be prime
ideals of B. Suppose that q and ¢’ contract to the same prime ideal p = qNA = ¢’ N A of A,
and thatq C q’. Thenq = q'.

In this section, we will write By, to abbreviate (A \ p)~'B.

Proof. Define S = A \ p. Then q and q’ are prime ideals of B not intersecting S. Hence
q = (S7'q)°, where S~'q = By, is the extension of q to S™'B, due to the bijection

{p €SpecR | pNnS =g} < SpecS~'R

It suffices to show that qB), = q'B,,, as then they are the contractions of the same ideal. Note
that

By NAp, =S1qnS!A=S5"1(qnA)=5""p = pA,
Similarly, q'B,NA, = pA,, which is a maximal ideal of Ay,. AsA C Bis an integral extension,
Ay C B,y is also an integral extension. Recall that the if the contraction of a prime ideal is
maximal in an integral extension, the prime ideal was maximal. Thus, qB, C q'B, are

maximal ideals of By, so they must coincide. O

Proposition (lying over). Let A C B be an integral extension of rings, and let p € Spec A.
Then there is a prime ideal q € Spec B such that ¢ N A = p. In other words, t* : Spec B —
Spec A is surjective.

Proof. We have a commutative diagram

A— 3B

! I
Ay — By =(A\ »)~'B
Let m be a maximal ideal of By. Then Ay, C By, is an integral extension, so m contracts to

a maximal ideal m N A, of A,. But there is exactly one maximal ideal in Ay, namely pAy.
Note that pAy, contracts to p under the map A — Ay,

144



4. Integrality, finiteness, and finite generation

We have that m contracts to p under the map A — Ay, — By, but this is the same as the map
A = B = By, 50 f71(m) N A = p. Note that 7!(m) is a prime ideal, as required. O

Theorem (going up). Let A C B be an integral extension of rings. Let p; C p, be prime
ideals in A, and let q; € Spec B be a prime ideal such that q; N A = p;. Then there is a prime
ideal q, € Spec B such that q; C q,,and g, N A = b,.

a1 ——g—> 92
S
h—7 P

Proof. We have an injection A/pl - B/q , given by a + p; — a+ q;. This is an integral
extension, so by lying over, there is a prime ideal Qg/ql of B/q , that contracts to pZ/pl in
A/Pl' We claim that q, N A = p,. In the diagram

A——>3B

oo

A s B
) P 7m
we obtain contractions of prime ideals

P2 q2

I 1

Pz/pl B,
hence q, contracts to p,, as required. O

Theorem (going down). Let A C B be an integral extension of integral domains, and sup-
pose that A is integrally closed (in its field of fractions). Let p; D p, be prime ideals in A,
and let q; € SpecB be a prime ideal such that q; N A = p;. Then there is a prime ideal
q, € Spec B such that q; D q,,and q, N A = p,.

T <—2—— q2
wl
<5 ¥

Proof. Consider the map A — B — B, . These maps are injective as B is an integral domain,
so we can think of these as inclusions of rings. We want to prove that there is a prime ideal
n € Spec By, such that n N A = p,. This suffices, as (n N B) N A = p, is a contraction of a
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prime ideal q, = nN B of B contained in q; to p, € Spec A. In other words, we want to show
that p, is a contracted ideal under the map A — By, . As contracted ideals are contracted
from their own extension, it suffices to show that (p,B;,) N A C p,, noting that the converse
inclusion always holds.

Note that p,B,, = (p,B)By, . Let e (p,B)B;, NA, wherey € p,Bands € B\ q;. AsSACB
S

is an integral extension, the integral closure of p, in B is 4/p,B. In particular, y is integral
over p,. Since A is integrally closed and y is integral over p,, the minimal polynomial of
y € FF(B) over FF(A) has the form

YoAuy Ty’ =0 w €py = b
We can write y = Y/ - s, where y, s € FF(B) and % € FF(A). Hence,
y r y r—1 y 0 B
(55) +ulGrs) +ovum(sos) =0
s r
Multiplying by (;) ,

1

r
st + (;) ulSr_l + -+ (;) urSO =0, u; € \/p_ =P,

This must be the same minimal polynomial of s as an element of FF(B) over FF(A). As
s € B, s is integral over A, so the coefficients in this polynomial must lie in A.

r
S S
(;) ul,...,<;) U, €A

1

Suppose % & p,. Then

But . ;
! s
Uu; € py; (%) €A\ Py (;) u €A

N

i
By primality, (y) u; € p,. As this holds for all i, the coefficients in the equation for s lie in

Py, SO
s"€pP,BCpB=(q:NA)BCq;

Hence s € q; by primality, giving a contradiction. O

146



5. Primary decomposition

5. Primary decomposition

Definition. Let I be an ideal of R. I is
(i) primeif R/I # 0 and 0 is the only zero divisor of R/I;
(ii) radical if the only nilpotent element of R/I is zero;
(iii) primary if R/I # 0 and every zero divisor in R/I is nilpotent.

The prime ideals precisely those ideals that are both radical and primary. R is radical but
not prime or primary.

Example. (i) Let R = Z. The ideal (6) is radical but not primary, as R/(6) contains zero
divisors 2, 3 which are not nilpotent. The ideal (9) is primary but not radical.

(i) More generally, let R = Z and x # 0. Then (x) is prime if and only if x = 0 or |x|
is prime, and (x) is radical if and only if x is squarefree. (x) is primary if and only if
x = p" for some prime pand n > 1.

Proposition. Let I be a proper ideal in R. Then
(i) IfIis primary, then p = \ﬁ is prime. We say I is p-primary.
(i) If \ﬁ is maximal, then I is primary.
(iii) If q4,...,q, are p-primary, then ﬂ?zl q; is also p-primary.

(iv) If I has a primary decomposition I = ﬂ?:l q; where the q; are primary, then I has a
minimal primary decomposition ﬂ;ﬂzl r; where the \/r—] are distinct and no r; can be
dropped.

(v) If R is Noetherian, then every proper ideal has a primary decomposition.

In Z,
(90) = (2) N (3*) N (5)

Primary decomposition therefore generalises prime factorisation. Note that for a prime ideal
p, if p™ is primary, then p” is p-primary, because 4/p" = p.

Example. (i) Notevery primary ideal is a power of a prime ideal. For instance, consider
R =k[X,Y]and q = (X, Y?). We claim that this is primary. For instance, 1/q = (X,Y)
is maximal, so q is (X, Y)-primary. Alternatively,

k[X, Y]

(X, Y2 = kY]

7(v?)
If f € k[Y] satisfies f € (Y?) soitis a zero divisor, then Y | f, so f + (Y?) is nilpotent.

Now, if ¢ = p”, then
X, Y)=+/a=+/p"=p
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But
X, V)2 (X,Y?) 2 (X,Y)?

So g is not a power of p = (X, Y).
(ii) If p is prime, p” need not be primary. Let
R = kXY, Z]/(XY _)= kKIX,Y,Z); p»=(X,2)
where X,Y, Z are the images of X, Y, Z under the quotient map. We claim that p is
prime, but p? is not primary. Indeed,

Ry = k[X,Y,Z]

k[X,Y,Z
(X, Z,XY — 7%) = [ )

/(X, Z) ~ k[Y]

which is an integral domain, so p is prime. For the second part,

2 — — 2
v=X,X-2,7)
- —
ThenX .Y =Z € p?, thatis,
(X +p)(Y +p) = 0+p
But X + p? # 0and Y + p? # 0. Hence Y + p? is a zero divisor in R/pz. Note that

k[X,Y,Z]

R/pz ~ k[X, Y, Z] /(XY,XZ,ZZ)

V(XY - 22, X2,X7,7%) =
so Y + p? is not nilpotent.

Theorem. Let (;_, ¢; be a minimal primary decomposition for an ideal I of R, and let
p; = +/q; for each i. Then

(i) (associated prime ideals of I) The prime ideals p;, ... , p,, are determined only by I, even
though there may not be a unique minimal primary decomposition.

(ii) (isolated prime ideals of I) The minimal elements of {p;, ..., p,,}, ordered by inclusion,
are exactly the minimal prime ideals of R that contain I. An associated prime ideal
that is not isolated is called embedded.

(iii) (isolated primary components of I) If py, ..., p, are the isolated prime ideals of I for
t < n, then qq, ..., q; are determined only by I.

Example. Let R = k[X, Y] and I = (X?,XY). We have primary decompositions
I=X)NX,Y)?=X)nX%Y)

Note that
VO =X); VX Y2 =X, Y); VX2,Y)=(X,Y)

The associated primes of I are (X) and (X, Y). The isolated prime is (X) and the embedded
prime is (X, Y).
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Remark. LetI = ﬂinzl q; be a minimal primary decomposition with \/E = p;. Suppose
Y1, ..., p; are the isolated primes. Then

n n n t
Vi= ﬂqi=ﬂ@=ﬂpi=ﬂpi
\]izl i=1 i=1 i=1

This is a primary decomposition of \ﬁ ,and one can check that this is minimal. All associated

primes in this decomposition are isolated. Going from I to \ﬁ , we only ‘remember’ the
isolated primes.

Analogously, let R = k[T, ..., T,,|, where k C C. Then V(I) = \/( I) and I(V(I)) = \/7
Hence, taking the algebraic set of I ‘remembers’ the radical of I and nothing else.
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6. Direct and inverse limits

6.1. Limits and completions
Definition. Let C be a category.

(i) A directed set (I, <) is a partially ordered set such that for all a, b € I, there existsc € I
such thata,b < c.

(ii) A direct system on a directed set (I, <) is a pair ((X;);es, (fij)i<j) where X; € ob € and
fij X = )(j’ such that fii = 1Xi and fik = f]k o fl]

(iii) An inversesystemon (I, <)isa pair ((Y;)ies» (hij)i<j) whereY; € obCand h;; : Y; —
Yi, such that hii = 1Xi and hik = hlJ ° Nj.
Remark. An inverse system in € is the same as a direct system in C°P.

Example. Let I = (N, <).

(i) Let p be a prime, and let X; = Fpu. Recall thatif a | b, then there is an embedding
® t Fpa = Fpo. The collection of embeddings Fpa — Fpp is then given by x — (p(x))P°

where 0 < ¢ < a — 1. The map fjiy) @ Fp — Fpi+y is defined to be one such

embedding. A general embedding f;; is given by the composite f(;j_1)j o -+ o ficiy1)-
This creates a direct system on I.

(i) LetY; = Z, iz’ and let h;; : Z/p iz = Z/piZ be the natural projection. This is an
inverse system on I.
Definition. Let (I, <) be a directed set.
(i) Let D = ((Xyier» (fij)i<;j) be a direct system on I. Then the direct limit of D is
imX; = \ier }/~
where for x; € X; and x; € Xj,
xi~x; <= k>4, j, fulx) = fix;)
Equivalently, one can define ~ to be the smallest equivalence relation containing x; ~
fi j(xi)-
(ii) Let E = ((Y)ier» (hij)i<;) be an inverse system on I. Then the inverse limit of E is

@Yi={yeH

Xi

Vi<j,yi= hij(yj)}
Example. (i) [F?,lg = 11_11)1 Fpir is an algebraic closure of [F,. First, [F;‘,lg is algebraic over [F,.

Indeed, for [x] € Fy¥, we have x € F} for some i > 1. Then xP" — x = 0. Hence

[x]P" = [x] = [x*" — x] = [0]
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Further, [F?,lg is algebraically closed. Any polynomial h € [F;lg[T ] has coefficients in

[F?,lg, so in particular h arises from an element of i [ T] for some i. This element splits
under some Fpi — [Fpe, so it splits under some F,u — F,a. Hence it splits under

hij : Fpit = Fyy1, s0 hsplits in the direct limit Fp.

(ii) Define Z, = 1(i£12/pi 7- This is the ring of p-adic integers. For example, writing num-

bers in base p = 5,

1=>01+571+5*7,1+57,...)
—-1=(4+5'7,44 +5°7,444 + 537, ...)

In every position in such an expansion, we ‘expose’ another digit of the p-adic integer
to the left.

Definition. Let R be a ring, and let a be an ideal of R. Then the a-adic completion of R is
R= l(iLnR/ai
where the inverse limit is taken over the directed system (N, <) with morphisms given by
the natural projections.
Example. (i) IfR=Zand a = (p), then R = Z,,.
(ii) IfR =k[T] and a = (T), then

R= l(iLnk[T]/(Ti) = k[t]

Definition. Let M be an R-module, and let a be an ideal of R. Then the a-adic completion
of M is
M= l(iLnM/ai M
which is naturally an R-module.
We can make the following more general definition.

Definition. Let M be an R-module.

(i) A filtration of M is a sequence (M,,),>; of submodules of M such that My = M and
M, 2 M,,,, for each n.

(ii) The completion of M with respect to a filtration (M,,),,>; is 1<i£1M/Mn.
Theorem. Let R be a Noetherian ring, and let a be an ideal of R. Then,
(i) the a-adic completion R is Noetherian;

(ii) the functor R @z (=) is exact;
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(iii) if M is a finitely generated R-module, then the natural map R g M — M is an R-linear
isomorphism.

Thus a-adic completion is an exact functor from the category of finitely generated R-modules
if R is Noetherian.

6.2. Graded rings and modules

Definition. A graded ringisaring A = @f;o A,, where each A, is an additive subgroup
of A, such that A,;,A,, C Apin-

Proposition. A is a subring of A.

Proof. 1t is clearly a subgroup closed under multiplication, so it suffices to check that it
contains the identity element of A. We have

m
La= Dy Yi€4
i=0

Forz, € A4,,
m
Zp = Z YiZn
i=0

z, is an element of A4,,, and each term y;z, is an element of A,,,;. But since the sum is
direct, we must have z,, = yyz,,s0z = ygz for all z € A. Hence y, € A, is the identity
element. ]

Remark. Each A,, is an Ay-module as AgA,, C A,,.

Example. The polynomial ring in finitely many variables has a grading: k[T, ..., T,,,] =
@;ozo A, where A,, is the set of homogeneous polynomials of degree n.

Definition. Let A = EB:;O A, be a graded ring. A graded A-module is an A-module M =
@;o:o M,, such that A,,M,, C M, , ..

For a graded ring A, we define A, = @:ozlAn = ker(A -» Aj). This is an ideal of A, and
A/ A, = Ap.-
Proposition. Let A = @zo A, be a graded ring. Then the following are equivalent:
(i) A is Noetherian;
(ii) Apis Noetherian and A is finitely generated as an A,-algebra.
Proof. Hilbert’s basis theorem shows that (ii) implies (i). For the converse, A, is Noetherian

as it is isomorphic to a quotient of the Noetherian ring A. Note that A, is generated by the
set of homogeneous elements of positive degree. By (i), A, is an ideal in a Noetherian ring
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so is generated by a finite set {x;, ..., X}, and we can take each x; to be homogeneous, say,
X; € Ay, where k; > 0. Let A" be the Aj-subalgebra of A generated by {x;, ..., x;}; we want
to show A" = A. It suffices to show that A, C A’ for every n > 0, which we will show by
induction. The case n = 0 is clear.

Letn > 0,andlety € A,. Notethaty € A, so

N
y= Z FiXi
i=1

where r; € A and x; € Ay,. Applying the projection to Ay,
S
Y=Y ax; a; €Ay,
i=1

where q@; is the (n — k;) homogeneous part of r;. As k; is positive, the inductive hypothesis
implies that each a; can be written as a polynomial in xy, ..., x; with coefficients in A, giving
y € A’ as required. O

Definition. Let a be an ideal of R, and let M be an R-module. Then a filtration (M,,),,>¢ is
an a-filtration if aM,, € M, for each n > 0. An a-filtration (M,,),>¢ is stable if there exists
ng > 0 such that aM,, = M,,, for all n > n,.

Example. (a"M),>, is a stable a-filtration of M.

Definition. Let a be an ideal in R. The associated graded ring is

G,(R) = @ an/an+1; a® =R

n>0
This is a ring by defining

(x+ a™D)(y + a™) = xy + a™"FL x €a,y € a™

Definition. Let M be an R-module, and let a be an ideal of R. Let (M},),,>¢ be an a-filtration
of M. The associated graded module is

con =P My .

n>0

This is a module over G,(R) by defining

(X +a™ D) (m + Mgiy) = XM+ Myip4q

Proposition. Let R be a Noetherian ring, and let a be an ideal of R. Then

(i) the associated graded ring G,(R) is Noetherian; and
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(ii) if M is a finitely generated R-module and (M,,),,>¢ is a stable a-filtration of M, then the
associated graded module G(M) is a finitely generated G,(R)-module.

Proof. Part (i). Let R be Noetherian. Then let a = (xy, ..., X,), and write X; for the image of
x; in ¢/,;2. Note that
2
GR =Rp0v, 0%/ 30

G,(R) is generated as an R/a-algebra by X1, ..., X5, by taking sums and products. Note that
R/a is Noetherian, so G,(R) is Noetherian by Hilbert’s basis theorem.

Part (ii). Let (M,,),>0 be a stable a-filtration of M. Then there exists ny such that for all
n > ny, we have M, ., = a"M,, . Thus G(M) is generated as a G,(R)-module by

M(VMl EBMl/M2 e - @M”Q/M

no+1

Each factor M VMi+1 is a Noetherian R-module, as they are quotients of Noetherian modules,
and are annihilated by a. In particular, G(M) is a finitely generated G,(R)-module, say by
X1y eee s Xge O

Definition. Let M be an R-module. We say that filtrations (M,,), (M;,) of M are equivalent
if there exists n, such that for all n > 0, we have M, ,, € My, and My, C M,,.

Lemma. Let a be an ideal of R. Let M be an R-module, and let (M,,),>o be a stable a-
filtration of M. Then (M,,),,> is equivalent to (a"M),,>¢.

Proof. As (My,),>0 is an a-filtration, for all n > 0, we have
M, D aM,_; D a’M,,_, D --- 2 a"M D a"*MoM

For the other direction, as the filtration is stable, there exists n, such that for each n > n,,
we have aM,, = M,,,,. Then M, ,,, = a"M,, C a"M as required. O

6.3. Artin—-Rees lemma
Definition. Let a be an ideal of R. Let M be an R-module, and let (M,,),,>o be an a-filtration

of M. Then we define
R=@o W=,

n>0 n>0

Note that R* is a graded ring, as for x € a”,y € a?, we have xy € a"*. As (M), is an a-
filtration, M™* is a graded R*-module. Indeed, for x € a” and m € M,, we have xm € M, ,
as required.

If R is Noetherian, the ideal a is finitely generated, say by x, ..., x,. Then R* is generated as
an R-algebra by x, ..., x, by taking sums and products. By Hilbert’s basis theorem, R* is a
Noetherian ring.
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Lemma. Let R be a Noetherian ring, and let a be an ideal of R. Let M be a finitely generated
R-module, and let (M,,),,>o be an a-filtration of M. Then, the following are equivalent:

(i) M~ is finitely generated as an R*-module;
(ii) the a-filtration (M,,),> is stable.
Proof. First, note that each M,, is a finitely generated R-module. Indeed, R is a Noetherian

ring and M is finitely generated, so M is a Noetherian module, or equivalently, every sub-
module is finitely generated. Now, consider

M, =My@® --- ®M, & aM,, @a2Mn @® -
This is an R*-submodule of M*. Note that (M};),>¢ is an ascending chain of R*-submodules
of M*, and this chain stabilises if and only if the a-filtration (M,,),,>¢ is stable.

(i) implies (ii). As R is Noetherian, so is R* by the discussion above. By assumption, M*
is finitely generated as a module over a Noetherian ring, so it is Noetherian. Hence the
ascending chain (M), stabilises, giving the result.

(ii) implies (i). Suppose (M},),,>o is stable. Then (M), stabilises at some ny > 0, so

M= My =My,

n>0
Now, note that M, & --- & M,,, generatees M; as an R*-module. Each M,, is a finitely

generated R-module, so M, @ --- @ M, is also finitely generated as an R-module. So these
generators span My, = M* as an R*-module, as required. O

Proposition (Artin—Rees). Let R be a Noetherian ring, and let a be an ideal of R. Let M be
a finitely generated R-module, and let (M},),,>( be a stable a-filtration of M. Then for any
submodule N < M, (N N M), is a stable a-filtration of N.

Thus, stable filtrations pass to submodules.

Proof. First, we show that (N N M,,),,>¢ is indeed an a-filtration.
alNNM,) ENnaM, CNNM,,

Now, define

M =@M, N =PWnM,)

n>0 n>0

Note that M* is an R*-submodule of N*. As R is Noetherian, so is R*. Then as (M},),,>0 is
stable, M™* is a finitely generated R*-module by the previous lemma. Thus M* is a Noetherian
R*-module. Its submodule N* is then finitely generated, so (N N M,,),,>¢ is stable. O
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7. Dimension theory
7.1. 27?
Definition. Let p be a prime ideal of R. The height of p, denoted ht(p), is

ht(p) = sup{d | po & P1 & - & Pa = b; p; € SpecR}
The (Krull) dimension of R is

dim R = sup {ht(p) | p € Spec R} = sup {ht(m) | m € mSpec R}

Remark. The height of a prime ideal p is the Krull dimension of the localisation Ry. In
particular,

dimR = sup{dimR,, | p € SpecR} = sup {dimR,, | m € mSpec R}
So the problem of computing dimension can be reduced to computing dimension of local
rings.

Definition. Let I be a proper ideal of R. Then the height of I is

ht(I) = inf{ht(p) | I C p}

Proposition. Let A C B be an integral extension of rings. Then,
(i) dim A = dim B; and

(ii) if A, B are integral domains and k-algebras for some field k, they have the same tran-
scendence degree over k.

We prove part (i); the second part is not particularly relevant for this course.

Proof. First, we show that dim A < dim B. Consider a chain of prime ideals py C -+ C py
in Spec A. By the lying over theorem and the going up theorem, we obtain a chain of prime
ideals gy C --- C q4 in SpecB. As p; = q; N A and p; # p;,1, we must have q; # q;,1- So this
produces a chain of length d in B, as required.

Now consider a chain qq ¢ -+ ¢ q4 in Spec B. Contracting each ideal, we produce a chain
Po € -+ C py in SpecA. Suppose that q; and q;,; contract to the same prime ideal p;
in SpecA. Note that q; C q;,1, so by incomparability, they must be equal, but this is a
contradiction. O

Remark. If Aisafinitely generated k-algebra for some field k, then by Noether normalisation,
we obtain a k-algebra embedding k[T;, ..., T;] — A, and the extension is integral. Thus
dimA = dimk[T,..., T;]. One can show that dimk[Ty, ..., T;] = d, and hence that the
integer d obtained by Noether normalisation is uniquely determined by A and k.
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7.2. Hilbert polynomials

Let A = @, ,An be a Noetherian graded ring, so A, is Noetherian and A is finitely gen-
erated as an Ay-algebra. Now let M = @ _ M, be a finitely generated graded A-module.
Then each M,, is an Ay-module.

n>0

We claim that M, is finitely generated as an Aj,-module. Indeed, M = span, {my, ..., m;},
and the m; can be taken to be homogeneous, say, m; € M,.. Then

M, ={aym; + -+ agm; | a; € A_,,}
Let xy, ..., X5 generate A as an Aj-algebra, where x; € Ay, k; > 0. Then

S
ISiSt,eiZO,Zkiei=n—ri

e e
M,, = span,_ {xll e Xty
i=1

and the right-hand side is a finite set.

We will make the further assumption that A, is Artinian. Hence, each M,, is a finitely gener-
ated module over a ring that is both Noetherian and Artinian, so each M,, is Noetherian and
Artinian as an Ay-module. Further, each M,, is of finite length ¢(M,,) < oo; it has a compos-
ition series of finite length. Note that if Ay = k is a field, then ¢(M,,) = dim; M,,.

Definition. Let A, M be as above. Then the Poincaré series of M is

P(M,T) = i o(M,)T" € Z[[T]

n=0

Theorem (Hilbert-Serre theorem). Let A be generated by X, ..., X, as an Ag-module with
x; € Ay, for k; > 0. The Poincaré series P(M, T) is a rational function of the form

(.
S N
I1,_,a—Tk)
Proof. For the base case s = 0, we must have A = A, so M is a finitely generated A,-module,

say, M = span, S where S is a finite subset of M, @ --- @ M,,. Thus there exists n, such that
M,, = 0 for all m > n,. In particular, P(M, T) is a polynomial.

feZT]

For the inductive step, let

M=@M,;; M,=0if¢<0

nez

Let f : M,, - M, be the homomorphism given by multiplication by x;. We obtain the
exact sequence

o
~

f
Ky > M, —> Mn+ks — Ln+ks — 0
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where K, = ker f and L, i, = coker f. ThenletK = @, _, K, and L = P, _, L, These
are graded A-modules, and K is a submodule of M. Note that K and L are annihilated by x;.
Applying the length function to the exact sequence, we obtain

€(Kyp) — €(Mp) + ¢(Mpx,) = €(Lpyr,) =0
Multiplying by T"*ks,
My )T s — TR 0(M)T™ = €Ly )T s — TRs6(K,,)T"
Then, taking the sum over all integers,
P(M,T) — T*P(M, T) = (1 — Tk)P(M, T) = P(L, T) — T*P(K, T)

By the inductive hypothesis,

AT A
[, —Tk) T, —Tk)

as required. O

(1—Tks)P(M, T) =

In particular, this rational function is holomorphic almost everywhere, with potentially a
pole of some order at 1. Let d(M) be the order of the pole of P(M, T) at T = 1. One can show
that if M # 0, then d(M) > 0.

Example. Let A = k[T}, ..., Ty] = @nzo A, where A, is the set of homogeneous polynomi-
als of degree n. Then A is generated as an A, = k-algebra by {13, ..., T;}. For this choice of
generators, k; = --- = ky = 1. The length of A,, is dim; A, = ("**~"), which is a polynomial
of degree s — 1 in n over Q. The Poincaré series of A over itself is

n>0

Proposition. If k; = --- = kg = 1, then there exists a Hilbert polynomial HP,; € Q[T] and
ng > 0 such that
¢(My,) = HPy(n)

for all n > ngy. In addition, deg HP); = d(M) — 1 where d(M) is the order of the pole of
P(M,T)atT = 1.
Proof. Letd = d(M) > 0. Then,

P(M,T) =) 6(M,)T" = %; fez[T),f1)#0
n>0

Let
deg f

f= Z . T a,ez
k=0
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7. Dimension theory

Note that
1 > [j+d—-1
= TJ
= O
j=0
bj
Thus, for n > deg f,
deg f
¢(My,) = Z jbp_i

! . Then
(d-1)!

€(M,,) is a polynomial p in n over Q for n > deg f. Then deg p < d — 1, and the coefficient
of T4 1in pis

Note that b; is a polynomial in j over Q of degree d — 1 with leading coefficient

deg f

> - 1 f@ £0
i=0

(d-1)! (d-1)
so the degree is exactly d — 1. O

7.3. Dimension theory of local Noetherian rings
Lemma. Let (A, m) be a Noetherian local ring. Then
(i) anideal q of A is m-primary if and only if there exists ¢ > 1 such that m‘ C q C m;

(ii) if q is m-prima ,thenA/ is Artinian.
q P Ty, q

Proof. Part (i). Given an ideal q between m' and m, taking radicals we obtain
ymt C4/qCym

Hence \/_ = m and thus q is m-primary. Conversely, if q is m-primary, (\/ﬁ)t C q for some
t as A is Noetherian, so m! C q C m as required.

Part (ii). (A/q, m/q) is a Noetherian local ring. If ¢ C p C m, then taking radicals,
m=4qCpCm

Hence p = m. In particular, the spectrum of A/q is the single ideal m/q_ Thus its dimension
is zero, and so the quotient is Artinian. O

Theorem (dimension theorem). If A is a Noetherian local ring, then
dimA = §(A) = d(G(A))

where 6(A) = min{5(q) | q C A is m-primary}and 6(q) is the minimal number of generators
of q, and where the right-hand side is the order of the pole at T = 1 of the rational function

equal to the Poincaré series
n
Z op(m /mn+1)Tn

n>0

159



II. Commutative Algebra

of the associated graded ring.

Proof. We will show that § > d > dim > 6.

Let q be an m-primary ideal of A, generated by Xy, ..., x; where s = §(¢q). Then

G4(A) = A/q 52 q/qz S @ C'n/qn+1

n>2

The first factor A/q is Artinian, and the images of x,, ..., x; generate G4(A) as an A/q-algebra,
where the x; are of degree 1. Then €<qn/qn+1) < oo. From the theorem on Hilbert polyno-

mials, €<qn/qn+1) is a polynomial in n of degree at most 5(q) — 1, for sufficiently large n.

Fix some m-primary ideal q, such that 6(q,) = §(A). We consider two special cases: q = q
and q = m. For gy, we have

deg e(qg/qgﬂ) <8(A)—1

As

4 n-1 qi

o(Yn) = ;f( Wqé”)
we have
A

deg€< /qg) <46(A)

For m,
n
deg £(™"/yns1) = d(G(A)) — 1

and hence

degé(/n) = d(G(A))
Now, there exists t > 1 such that m’ C g, C m. Then
W) = e(H5) 5 ¢¥/)

But all of these terms are eventually polynomial, and the degrees of the left-hand and right-
hand sides are the same, so we must have €<A/q8) = €(A/mn).

Proposition. §(A) > d(G,,(A)).

Proof.
8(A) = 8(qp) > deg e(A/qg) = deg 6(4/yn) = d(G(A))
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7. Dimension theory

Proposition. If x € m is not a zero divisor, then
4Gy p)(Vica)) < d(Grm(A) — 1
This proposition allows us to prove results by induction on d.

Proof. We have a local ring (A/x A "Wy A)' Then

d(Gm(A)) = deg £(4/n)

and
A(Gmy ) (Ya)) = deg 6(AP Ay payn) = dege((MH XA 4)

‘We want to show that
deg €<(mn + XA)/xA) < deg €(A/mn) -1

We have the short exact sequence

0 — mi+xd), s A, — Amn + xa) —> 0

By the second isomorphism theorem,

(m + xA)/mn ~ xA/(mn A XA)

Thus, by additivity of length,
A — p(A A
g( 7mn + xA) - t?( /m”) - €<x /(m" N xA))
Note that (m"),,> is a stable m-filtration of A, so (m” N xA),> is a stable m-filtration of the

submodule xA by the Artin-Rees lemma. Then (m”NxA),,» is equivalent to the m-filtration
(m"xA);>0. This equivalence implies that there exists n, such that

Y mnx) < 0 amremo axn) - (M 0 xa)) < 0 (mremoxa)

Hence the polynomials have the same leading term, and so the degree of €(A/mn> must
decrease.

Proposition. d(G,,(A)) > dim A.
Proof. We can prove this by induction using the previous proposition. O

Proposition. dim A < §(A). That is, there exists an m-primary ideal q that is generated by
d = dim A elements.
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II. Commutative Algebra

Proof. As m is the unique maximal ideal, we must have ht(m) = d. Also, ht(p) < d for any
prime p # m. We will form an ideal q generated by d elements such that ht(q) > d. This
suffices, as then for every minimal prime ideal p of q, we must have ht(p) = d and thus
p = m, giving \/_ = m SO p is m-primary as required.

Construct xy, ..., x4 inductively such that ht(q;) > i where q; = (xy, ..., X;). For the base
case, we take q, = (0). For the inductive step, we assume that q;_; = (xy,...,Xx;_;) has
already been constructed, with i — 1 < d and ht(q;_;) > i — 1. We claim that there are only
finitely many prime ideals py, ..., p; that contain q;_; and have height exactly i — 1. Indeed,
ht(g;_;) > i — 1, so each p; is a minimal prime ideal of q;_;, and in a Noetherian ring, every
ideal has only finitely many minimal primes. We know thati —1 < d = ht(m), so m ¢ p;
for all j. Therefore, m ¢ Uj p; by the prime avoidance lemma. Take x; € m \ Uj p;, and

define q; = (xy, ..., X;_1, X;). Now, if p is a prime ideal that contains q;, as p & {p1, ..., s}
we must have ht(p) > i as required. O

O]

Corollary (Krull’s height theorem). Let A be a Noetherian ring, and let a = (xy, ..., x,) be
an ideal of A. Let p be a minimal prime ideal of a. Then ht(p) < r.

Proof. First, we claim that , /aAy, is the unique maximal ideal pAy, of the localisation. In-

deed, suppose aA, C n € SpecA,,. Contracting, we obtain a C (aAy)° C n° C p. Butas p is
a minimal prime ideal of a, we must have n® = p. Extending, n® = p¢® = pAy,, but n® = n

as required. Hence, , / aAy, is the intersection of the primes containing it, which is just pA,,.

As the radical is maximal, the ideal aAy, is pAy-primary. Note that aAy, = (%, s ?), so by
applying the dimension theorem,
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1. Introduction

1.1. Course description
The course consists of four parts.
(i) The theory of sheaves on topological spaces.
(ii) The definitions of schemes and morphisms between them.

(iii) Properties of schemes, such as the algebraic geometry analogues of compactness and
other similar properties.

(iv) Rapid introduction to the cohomology of sheaves.

1.2. Motivation from moduli theory

In moduli theory, we study families of varieties instead of one at a time. In the extreme, we
study all varieties of a given ‘type’ simultaneously. For now, let

pn — [P’g =Cn+1\{0}/N

where x ~ Ax for nonzero 4,X. A variety is the vanishing locus V(S) of a set S of homogen-
eous polynomials in n + 1 variables. These are subsets of P". We present some examples of
moduli.

Example. The set of all lines in P2. A line in P? is given by
{aXO + le + CX2 = O}

where not all of a, b, ¢ are zero. The set of all lines in P? are given by triples (a, b, c). Note
that (1a, Ab, Ac) gives the same line as (a, b, ¢), so really lines in P? correspond exactly to
points in P2. We call the set of all lines in P? the dual space P3 ;. This property is known as
projective duality.

The same logic applies to the set of degree d hypersurfaces in P"; this space corresponds
directly to
[p(n;d)‘l

There is an unfortunate consequence of this method of study. Some polynomials are of the
form f = fZf, for some non-constant f;, but then V(f) = V(f; f5). For example, (X, + X; +
X,)? C P?is a line not a conic. In particular, the limit of a sequence of conics may not be a
conic. The solution is to take the set
n+d
U, C [p( -1

in which [f] € U, has no repeated factors. But then, U, is ‘not compact’, as some points
have been removed.
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We will now describe the impact of scheme theory on this situation. Fix some P”, and we
will produce a ‘space’
Var(P") C Hilb(P")

The set Var(P") bijects onto the set of varieties of P". The set Hilb(P") bijects onto the set of
subschemes of P", and is compact in the Euclidean topology. In particular, limits of varieties
need not be varieties, but limits of schemes are always schemes. One consequence is that in
scheme theory,

V(Xo + X1 +X3), V(X + X3 + X5)%)

are not isomorphic as schemes in P2.

1.3. Motivation from the Weil conjectures

Fix some homogeneous polynomial f € Z[X, ..., X,+1]. First, consider
X = V(f) c PEH!

and assume that X is smooth. As X is a compact topological space, we can find its Betti
numbers by(X), ..., by, (X), where

b;(X) = rank H;(X; Z)
In particular, we can find its Euler characteristic.
XX) = 3 (=1)'b(X)

Second, fix a prime p and let N,,, be the number of solutions of f over F,m. Define the Weil

zeta function
) = _lm m
§'(X,t)—exp(mg t )

One of the Weil conjectures states the following.

Theorem (Grothendieck). (i) {(X;t) is a rational function in ¢, so

Px (t)
Qx (1)

CHE

(ii) Further, ¢{(X;t) can be written as a ratio of the form

BOB() ... By(t)
R(OB() ... By (1)

where
deg P,(t) = bi(X)

The proof relies fundamentally on scheme theory: we need a space X that interpolates
between the algebraic closure [, and C.

167



II1. Algebraic Geometry

1.4. Summary of classical algebraic geometry

Let k = k be an algebraically closed field. The notation A} = A" denotes affine space of
dimension n over the field k. As a set, this is equal to k. An affine variety is a subset V' C A"
of the form

V=V(S)={xeA" |Vf eS, f(x)=0}

where S C k[X;,...,X,]. Note that V(S) = V(I(S)), where I(S) is the ideal generated by
S. By Hilbert’s basis theorem, or equivalently the fact that k[X] is Noetherian, V(S) is the

vanishing locus of a finite set (even a finite subset of S). In fact, V(I) = \/(\/7 ) where

VIi={fe€k[X]|In>0, fr e}

Note that \/f is an ideal, and is called the radical ideal of I. For example, in k[X], if I = (X?)

then \ﬁ = (X). Notice that an affine variety is a subset of A" for some n, so we have really
defined varieties with a chosen n; we have not defined an abstract variety.

A morphism between varieties V' C A" and W C A™ is a set-theoretic map ¢ : V — W such
that if (f}, ..., fin), €ach f; is the restriction of a polynomial in {Xj, ..., X},} to V. Note that
the polynomials f; are not part of the definition; a given set-theoretic map may be represen-
ted by multiple polynomials. This indicates that the ambient spaces A", A" are not relevant
to this definition. Isomorphisms are those morphisms with two-sided inverses.

The basic correspondence of the theory of algebraic varieties is

{affine varieties over k}
isomorphism

< {finitely generated k-algebras without nilpotent elements}

We explain each direction of the correspondence. Given a variety V representing an iso-
morphism class of affine varieties over k, we can write V' as the vanishing locus of some
radical ideal I C k[Xj, ..., X,,]. We can then produce the finitely generated k-algebra given
by the quotient

k[Xq, ... ’X"]/I

This is nilpotent-free as I is radical. In reverse, if A is a finitely generated nilpotent-free
k-algebra, then by definition we can write A as

KYio s Yl

where J is radical, or at least up to isomorphism. Then we can produce the affine variety
V = V(J). One must show that the choices we made in the above explanation do not mat-
ter.

Note that, for example, k[X ]/( X2) has anilpotent element X. The theory of schemes explains

the relevance of these nilpotent elements, but the theory of varieties ‘ignores’ nilpotent ele-
ments.
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The algebra associated to V is classically denoted k[V], and is called the coordinate ring
of V. There is a bijection between morphisms V' — W and k-algebra homomorphisms
k[W] — k[V]. In category theoretic terminology, the category whose objects are affine
varieties up to isomorphism is equivalent to the category of finitely generated k-algebras up
to isomorphism.

Let V = V(I) C A" be a variety with coordinate ring k[V]. The Zariski topology on V is
defined such that the closed sets are exactly those sets of the form V(S) where S C k[V]. One
can show that this really induces a topology. If V' =~ W, then V and W are homeomorphic
as topological spaces.

Let V be a variety and k[V] be its coordinate ring. For all points P € V, we can produce a
homomorphism evp : k[V] — k mapping f to f(P); one can check that this is well-defined.
Note that evp is surjective by considering the constant functions. Thus the kernel of evp is
a maximal ideal mp. We thus obtain

{points of V} - {maximal ideals in k[V']}

Hilbert’s Nullstellensatz states, among other things, that this is a bijection.

1.5. Limitations of classical algebraic geometry

The description of varieties given above always retains information about its ambient affine
space, so we cannot define an abstract variety. Similarly to manifolds which locally look like
vector spaces, we want to consider ‘spaces’ that locally look like affine varieties. For example,
projective space does not live inside an affine space.

LetI = (X2 4+ Y? +1) C R[X,Y]. Observe that V(I) is empty in R2, but I is prime and
hence radical. Hence the Nullstellensatz fails in this case. It is then natural to ask on which
topological space R[X, Y]/(Xz +Y24+1) is naturally the set of functions. Similar questions

can be asked about Z or Z[X], for example.

Consider C = V(Y—X?) C A and D = V(Y). Then CND = V(X%,Y) = V(X,Y) = {(0,0)}. If
Ds =V(Y+06)ford € k, CNDg is two points unless § = 0. This breaks a continuity property.
Therefore, the intersection of two affine varieties is not naturally an affine variety.

1.6. Spectrum of a ring
Let A be a commutative unital ring.
Definition. The Zariski spectrum of A is Spec A = {p < A prime}.

Remark. Given a ring homomorphism ¢ : A — B, we have an induced map of sets ¢! :
Spec B — SpecA given by q — ¢~1(q), as the preimage of a prime ideal is always prime.
Note, however, that this property would fail if we only considered maximal ideals, because
the preimage of a maximal ideal need not be maximal.

169



II1. Algebraic Geometry

Given f € A and a point p € Spec A, we have an induced 7 S A/p obtained by taking the
quotient. We can think of this operation as ‘evaluating’ an f € A ata point p € Spec A, with
the caveat that the codomain of this evaluation depends on p.

Example. (i) LetA = Z. Then Spec A = Spec Zis the set{(p) | p prime}uU{(0)}. Consider
an element of Z, say, 132. Given a prime p, we can ‘evaluateitat p’, giving 132 mod p €
Z/pZ- Thus Spec Z is a space, 132 is a function on Spec Z, and 132 mod p is the value
of this function at p.

(i) Let A = R[X]. Then Spec A is naturally C modulo complex conjugation, together with
the zero ideal.

(iii) If A = C[X], then Spec A is naturally C, together with the zero ideal.
Definition. Let f € A. Then we define

V(f) ={p € SpecA | f = 0 mod p, or equivalently, f € p} C SpecA
Similarly, for J < A an ideal,

V() ={peSpecA|Vfel, fep={peSpecA|JCp}

Proposition. The sets V(J) C Spec A ranging over all ideals J < A form the closed sets of a
topology.

This topology is called the Zariski topology on A.

Proof. We have @ = V(1) and Spec A = V(0), so they are closed. Note that

()

It remains to show V(I;) U V(I,) = V(I; N I,). The containment V(I;) U V(I,) C V(I; N L,) is
clear. Conversely, note I, I, C I; N I,. If I; N I, C p, then by primality of p, either I; C p or
L, Cy. O

Example. Consider Spec C[x, y]. The point (0) € Spec C[x, y] is dense in the Zariski topo-

logy, so {(0)} = Spec C[x, y]. This is because all prime ideals in integral domains contain the
zero ideal. (0) is sometimes called the generic point.

Consider the prime ideal (y* — x*), and consider a maximal ideal my;, = (x — a,y — b)
corresponding to the point (a, b). Then one can show that

myp €{2—x3)} < b*=d

In general, points are not closed.
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1.7. Distinguished opens and localisation

Definition. Let f € A. Define the distinguished open corresponding to f to be

Uy = SpecA\ V(f)

Example. (i) LetA = C[x], and recall that Spec A is Cu{(0)}, where the complex number
a represents the maximal ideal (x — a). Let f = x and consider

V(x) ={p | x € p}={(x)}
Hence U, = SpecA \ {(x)}, which is Spec A without the complex number 0.

(i) More generally, suppose we fix a;, ..., a, € C. Then
,
r
U=SpecA\{(x—a)l_, =Up f=]]x-a)
i=1
Lemma. The distinguished opens Uy, taken over all f € A, form a basis for the Zariski

topology on Spec A; that is, every open set in Spec A is a union of some collection of the Uy.

Proof. Let U = SpecA \ V(J) be an open set. Then
V() = v(z (f)) = (v
feJ fel

So

u=Juy

Definition. Let f € A. The localisation of A at f is

ap =Y wp

Informally, we adjoin % to A.

Lemma. The distinguished open Uy C SpecA is naturally homeomorphic to Spec Ay via
the ring homomorphism j : A — Ay.

Proof. We will exhibit a bijection between the prime ideals in Ay and the prime ideals in A

that do not contain f, producing a homeomorphism as required. Given q C Ay prime, its
contraction j~!(q) is a prime ideal in A.
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Now suppose p C A is a prime ideal, and let p; = j(p)-A;. We show that j(p)- Ay is a prime
ideal if and only if f & p, giving the result. If f € p, then the unit f lies in p;. Thus pr = (1),
so is not prime. If f & p, observe that

A= (Mp)p T=r+v
But then,
(4 p); c FE(%4)

Since p is prime, A/p is an integral domain, so its fraction field is well-defined. So py is
a prime ideal. One can then check that our two constructions are inverse to each other,
providing a bijection between prime ideals as required. g

Remark. (i) Uy N Uy = Upg. Indeed, if p € Uyg, then fg & p, so clearly neither f nor g
can lie in p; conversely, if p € Uy N Uy, then f & p and g & p, so by primality, fg & p.

(if) The distinguished opens Uy do not uniquely define an element f € A. For instance,
one can easily show that Usn = Uy for all n > 1, using the properties of prime ideals.

(iii) Inline with (ii), the localisations Ay and Ay» are homeomorphic in a natural way. If

Af = A[x]

Vg -1y A =4V

yfr—1)

then consider the inverse A-algebra homomorphisms given by

x> [Py y e X"

Informally, we map Lto f n-1 L and = to (l)n

’ f AN LA VA

(iv) The containment Uy C Uj holds if and only if f" is a multiple of g for some n > 1.

First, if f™ is a multiple of g, then the claim holds by (i). Now suppose Uy C Uy, s0
V(f) 2 V(g). Hence, all prime ideals that contain g also contain f. But since

Vi= () »

p prime2I

YGENE

Remark. For a fixed ring A, we have made an assignment

we must have

giving the result.

{distinguished opens in Spec A} — Rng

given by Uy — Ay, where Rng denotes the class of rings. This association is functorial: if
Uy, C Uy, there is a natural map Ay, — Ay, which should be viewed as the restriction
map from functions defined on Uy, to those defined on f;. This produces a sheaf; we now
explore these in more generality.
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2. Sheaves

2.1. Presheaves

Definition. Let X be a topological space. Let Open X be the set of open sets on X, and AbGp
be the class of abelian groups. A presheaf & on X of abelian groups is an association

Open X — AbGp
and for open sets U C V, a restriction map
resI{I cFV) > FU)

such that

14 w

U®° resV =Tres

CF

resg =1id; res

Example. For any topological space X, the presheaf of real-valued continuous functions on
X is defined by
FU)={f : U—- R| f continuous}

and

resj;(f) = f

U

One can also define presheaves of rings, sets, or other objects by simply replacing the words
‘abelian groups’ in the definition.

Definition. A morphism ¢ of presheaves F, G on X is, for each open set U in X, a homo-
morphism
pU) : F(U) - GU)

such that
I‘eSIL/]
FU — FV
¢(U)\L \Lw(V)
GU —V> (1%
resU
commutes.

Remark. A presheaf on a topological space X is just a functor (Open X)°® — AbGp, where
ADbGp is the category of abelian groups, and Open X is the category where the objects are
the open sets in X, and there is a morphism U — V if and only if U C V. A morphism
of presheaves is just a natural transformation between two such functors. Replacing AbGp
with an arbitrary category €, we can define presheaves on X of objects in C.

Definition. A morphism ¢ : F — G of presheaves is injective (respectively surjective) if
p(U) : F(U) - G(U) is injective (respectively surjective) for all open sets U of X.
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2.2. Sheaves
Definition. A sheaf on X is a presheaf # on X such that

(i) if U C X is open and {U,} is an open cover of U, then for s € F(U), if resg. s = 0 for
all i, then s = 0; and

U; Uj

(ii) if U,{U;} are as in (i), given s; € F(U;) such that reSyny, i = T8y ay,

s for all i, j,

then there exists s € F(U) such that resg_ s =s;.
Remark. These two axioms imply that F(@) = 0.
A morphism of sheaves is a morphism of the underlying presheaves.

Example. (i) Let X be a topological space. Then the presheaf F# given by
FU)={f : U—> R| f continuous}
is a sheaf.
(i) Let X = C with the usual Euclidean topology, and let
FU)={f : U—- C| f bounded and holomorphic}

Then ¥ is not a sheaf, because the functions id;; on bounded open sets U do not glue
together to a bounded holomorphic function on all of C. This is a failure of locality in
our definition of F; whether f is bounded is a global condition.

(iii) Let Gbe agroup and set #(U) = G, giving the constant presheaf. This is not in general
a sheaf. For example, if U;, U, are disjoint, then F(U; U U,) ~ G X G. Instead, we can
give G the discrete topology, and define

FWU)={f : U— G| f continuous} = {f : U — G| f locally constant}

This is now a sheaf, called the constant sheaf.

(iv) Let V be an irreducible variety over k. Let
Oy(U)={f € k(V)|Vp e U, fregularat p}

where a function f is regular at p precisely if it can be represented as a quotient £ in

a neighbourhood of p on which h is nonzero. This is called the structure sheaf of V; it
is a sheaf since regularity is a local condition.

2.3. Stalks

Definition. Let F be a presheaf. A section of # over U is an element s € F(U).
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Definition. Let p € X, and ¥ a presheaf on X. Then the stalk of  at p is
_{(U, eFU),pelU
7, = {U.s) s € FWU).pe U},
where

(U,s) ~(V,s') < IW C UnV open with p € W such that res) s = res, s

Elements of , are called germs.
Example. Let A! be the affine line, and let O41 be the sheaf of regular functions. Its stalk
at0is

0}
40)

Proposition. Let f : ¥ — G be a morphism of sheaves on X. Suppose that for all p € X,
the induced map f, : #, - G, given by

JolU, ) =, fu(s))

is an isomorphism. Then f is an isomorphism.

Ono =1 |80 # 0f = Ky

Proof. We will show that f; : F(U) — G(U) are isomorphisms for each U, then define f~!
by (f v = ()™

To show fy; is injective, consider s € F(U) with fy;(s) = 0. Since f, is injective, (U, s) = 0 in
F, for every point p € U. Thus for each p € U, there exists an open neighbourhood U, C U

such that res]) s = 0. The sets {U}, | p € U} cover U, so as ¥ is a sheaf, s = 0.
p

To show fy; is surjective, let t € G(U). For each p € U, there is an element (U, s,) € 7,
such that f,((Up,, sp)) = (U, t) € G,. By shrinking U, if necessary, we can assume fUp (sp) =
U

: !
resUp t. For points p,p’' € U,
U Uy
p _ p r\ _ U _ U —
fUanp, (resUanp, S resUanp, s ) resUanp, t resUanp, t=0

Thus U

U, ’

p p ’
res s —res =0
UpﬂUp/ UpﬂUp/

by injectivity of fUanp,. So there exists a section s of # over U such that resg s = sp. We
p

now show fi;(s) = t. Consider
resgp fu(s) = fu, (resgp s) = fu,(sp) = resgp t
Thus fy(s) = ¢t. O
Remark. (i) Consider the map F(U) — HpEU‘% given by s = ((U, s))pey- This is in-
jective by the first sheaf axiom.

(ii) Given two morphisms of sheaves ¢,% : ¥ =3 G with ¢, = 9, for all p € X, we have
P =1
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2.4. Sheafification

Definition. Let F be a presheaf on X. Then a morphism sh : F — F to a sheaf 7" is a
shedfification if for any map ¢ : F — G where G is a sheaf, ¢ factors uniquely through sh.

‘,},L 3:'sh

|
PN\ v
g

Remark. (i) As this is a definition by a universal property, #*" along with the map sh :
F — F" are unique up to unique isomorphism if they exist.

(ii) A morphism of presheaves ¥ — G induces a morphism of sheaves " — Gsh,
F S_h> ?sh

~
9 — ; gsh

4

Proposition. Every presheaf admits a sheafification.
Corollary. The stalks of  and ! coincide.
Proof. Suppose (U, f) is a germ of 7" at p € X. Then f(p) € Fp is a germ of F at p. If

(U,s) € Fp, we can produce the germ (U, (U, s)pey) of F sh at p € X. These are inverse
operations, and hence give a bijection of stalks. O

2.5. Kernels and cokernels
Lety : ¥ — G beamorphism of presheaves. Then we can define presheaves ker ¢, coker ¢, im ¢

by

(ker p)(U) = ker gy
(coker p)(U) = coker ¢y;

(imp)(U) = im gy
One can check that these are indeed presheaves.
Proposition. The presheaf kernel for a morphism of sheaves is a sheaf.
Proof. Letp : F — G be a morphism of sheaves, let U C X be open, and let {U;};; be an

open cover of U. Let f € (ker ¢)(U) be such that resgi f =0foreach f. Then as f € F(U),
we can use the fact that F is a sheaf to conclude f = 0.
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2. Sheaves

Now suppose f; € (ker¢)(U;) agree on their intersections. Then they can be glued as ele-
ments of F(U;) into f € F(U). As gy, (f;) = 0foreachi €I,

0= gy, (resy, ) = resY oy ()
So as G is a sheaf, p;(f) = 0in G(U). O

However, the presheaf cokernel of a morphism of sheaves is not in general a sheaf.

Example. Consider X = C with the Euclidean topology, and let Ox be the sheaf of holo-
morphic functions on X under addition. Let O be the sheaf of nowhere vanishing holo-
morphic functions under multiplication. We have a morphism of sheaves

exp : Ox — Ox

given by

f € 0x(U) = exp(f) € Ok
The kernel of exp is 2ziZ, where Z is the constant sheaf. The cokernel is not a sheaf. To
show this, consider the cover

Uy =C\[0,0); U, =C\(~00,0]

and take U = U; U U, = C\ {0}. Let f(z) = z,s0 f € Ox(U), but f is not in the image of
exp : Ox(U) - Ox(U) as there is no single-valued logarithm on C \ {0}. Hence f defines
a nonzero section of (coker exp)(U). However, restricting to U;, a single-valued branch of
logarithm is defined, so f is in the image of exp : Ox(U;) — Ox(U;). Thus resgi f=1,but
f # 1, violating the first sheaf axiom.

Similarly, the image presheaf may not be a sheaf.

Definition. Let ¢ : ¥ — G be a morphism of sheaves. We define the sheaf cokernel and
the sheaf image of ¢ to be the sheafifications of the presheaf cokernel and presheaf image
respectively.

Remark. 1t turns out that the sequence

0 — 27iZ S Oy —2% 0% .l

is an exact sequence of sheaves. In particular,

kerexp = 2wiZ; cokerexp =1

Remark. ker ¢, coker ¢ satisfy the category-theoretic definitions of kernels and cokernels.
For kernels, the universal property to be satisfied is

L
a7 0
- P
INg \L \(

kerp > 7 5 9
0
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For cokernels, we reverse the arrows.

. L

I TN

e 4

coker ¢ t& g
0

Definition. We say that F is a subsheaf of G, written & C G, if there are inclusions #(U) C
G(U) compatible with the restriction maps.

Kernels are examples of subsheaves.

2.6. Moving between spaces

Let f : X - Y be a continuous map of topological spaces, and let # and G be sheaves on X
and Y respectively.

Definition. The presheaf pushforward or direct image f, ¥ is the presheaf on Y given by

LFWO) =7 (f~1(U)
Proposition. The presheaf pushforward of a sheaf is a sheaf.

Proof. Let {U,};c;

Then {f~'(Up},_,
So s = 0 as ¥ is a sheaf.

be an open cover of U, and let s € f,F(U) with resg_ s = 0 for each U;.
is an open cover of f~1(U) and satisfies resj:igg_)) s = 0in F(f~Y(UY)).

Similarly, if s; € f,#(U) are compatible sections, then they can be glued into an element of
F(f~Y(U)). But this is precisely an element of f, F(U), as required. O

Definition. The inverse image presheaf (f~1G)P™ is the presheaf on X given by
(f1G)Pre(V) = {57, U) | f(V)CU,sy € 9(U)}/N

where ~ identifies pairs that agree on a smaller open set containing f(V'). The inverse image

sheaf is f~1G = ((f~1G)Pre)™h.

Example. The inverse image presheaf need not be a sheaf, even when f is an open map.
Let Y be a topological space, and let X = Y U Y. Take § = Z the constant sheaf, and
F = (f"1G)P*. Let U C Y be open, and let V = f~1(U). Then F(V) = G(U) = Z, assuming
U is connected. But V = U L U, so F"(V) = §(U) x G(U) = Z2.

Example. Let F be a sheaf on X, and let 7 be the map from X to a point. Then f, F is a
sheaf on a point, which is just an abelian group, specifically F(z~1({+})) = F(X).
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2. Sheaves

‘We will use the notation
FX)=T(X,F) =H(X,F)

where T is called the global sections, and Hy, is called the Oth cohomology with coefficients in
F.

For p € X,i : {p} » X. Let G be a sheaf on {p}, which is an abelian group A. Consider the
sheafi, G on X, defined by

0 ifpgU

A ifpeU

This is called the skyscraper at p with value A.

(L.9)(U) =
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3. Schemes

. . 174
We will now use the notation f|; for res; f.

3.1. Localisation

Definition. Let A be aring and S C A be a multiplicatively closed set. The localisation of

AatSis
s-ia={@as)|a€AseS)

where
(a,8) ~(a',s') < Fs"€S,5"(as' —a's)=0€ A

Examples of multiplicatively closed sets include the set of powers of a fixed element, or the
complement of a prime ideal. The pair (a, s) represents % The extra s” term represents a
unit in this new ring, which may be needed in rings that are not integral domains.

Remark. The natural map A — S~!A need not be injective, for example, if S contains a zero
divisor.

3.2. Sheaves on a base

Definition. Let X be a topological space and B be a basis for the topology. A sheaf on

the base B consists of assignments B; — F(B;) of abelian groups, with restriction maps
resgi. : F(B;) — F(B;j) whenever B; C B; such that,
J

B

(i) resy

i3 .
L= ldBi’
(i) res. orest! = res’:
By B; — By
with the additional axioms that

(i) if B=|JB; with B,B; € B and f, g € F(B) such that flg, = 8lp, foralli, then f = g;

(ii) if B = |J B; as above, with f; € F(B;) such that foralli, jand B’ C B;nB; with B’ € B,
filg = fj|B,,then there exists f € F(B) with f|5 = fi.

This is very similar to the definition of a sheaf, but only specified on the basis.

Proposition. Let F be a sheaf on a base B of X. This determines a sheaf # on X such that
F(B) = F(B) for all B € B, agreeing with restriction maps. Moreover, F is unique up to
unique isomorphism.

Proof. We first define the stalks using F:

5, = {(sg;B) | pEB€E€ B,sg € F(B)}/N
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3. Schemes

We then use a sheafification idea to define #(U). The elements are the dependent functions
fell peU Fp such that for each p € U, there exists a basic open set B containing p and
a section s € F(B) such that s; = f; in 7, for all ¢ € B. This is then clearly a sheaf. The
natural maps F(B) — F(B) are isomorphisms by the sheaf axioms. O

3.3. The structure sheaf

Recall that the distinguished opens Uy, U, coincide if and only if f, g are powers of some
h € A. Also, if Uy = Ug then Ay = Ag. Therefore, the assignment Uy — Ap is well-
defined.

Proposition. The assignment Uy — Ay defines a sheaf of rings on the base {Uf} of the
topological space Spec A.

Remark. If {U £ }ie | covers Spec A, there exists a finite subcover. Indeed, since the Uy, cover
Spec A, there is no prime ideal p C A containing all (f;);e;. Equivalently, >, . (f;) = (D).
In particular, 1 = )., a;f; for J C I finite. So Y._,(f;) = (1), and thus {Ufi}iej covers
Spec A. We say that Spec A is quasi-compact; traditionally the word ‘compact’ is reserved for
Hausdorff spaces in the context of algebraic geometry.

Proof. We will check the axioms for the basic open set B = Spec A; the general case follows
by applying this result to a localisation. Suppose Spec A = U?zl Uy,; this union is finite by
the previous remark. Lets € A be such that s| U = 0 for alli. By the definition of localisation,
as the set {U 7, } is finite there exists m such that f/"s = 0 for all i. But note that (1) = (f/")-,

n n
i= i:

for any m > 0 because the {U fi} | cover Spec A. Thus {U f{n} | cover Spec A.

1=Zrifim E S=Zrl~fi’"s=0

Now suppose Spec A = Ui oy Uy, and s; € Ay, are elements that agree in Ay, £ We need to
build an element in A with these restrictions.

First, suppose I is finite. On Uy,, we have chosen a—,fi € Ay,; we write g; = ffi, noting that
f

Uy, = Ug,. On the overlaps, by hypothesis we have l
(gigj)™i(a;gj — a;g;) =0

Rewriting this using the fact that Uy = U g« for all k > 0, and assuming m = m;; by taking

the largest, we obtain
h: = m+1
1

b; = a;g!"; g

b;
so on each Uy, we have chosen an element h—l Now, as the Uj,, = Uy, cover Spec A, we have

i
1 = ) r;h; for some r; € A. We can thus construct r = ). r;b; with the r; as above. This
. . b; .
construction then has the correct restrictions to h—’ in Up,.

1
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When I is infinite, choose (f;){L; such that the Uy, for i € {1, ...,n} form a cover, and use
the finite case to build r € A. This has the correct restrictions to the U £ fori € {1,...,n}.
Given (fy, ..., fu» fa) = A, the same construction gives a new r’ € A, but then by the first
sheaf axiom, r = r'. O

Definition. The structure sheaf on Spec A is the sheaf Ogp 4 associated to the sheaf on the
base of distinguished opens mapping U to Ay.
Remark. The stalk Ogpec 4,y is equal to Ay,

3.4. Definitions and examples

Definition. A ringed space (X, Ox) is a topological space X with a sheaf of rings Ox. An
isomorphism of ringed spaces (X, Ox) — (Y, Oy) is a homeomorphism 7 : X — Y and an
isomorphism Oy — 7, Ox of sheaveson Y.

Note that for U C X open, U is naturally a ringed space with Oy (V) = Ox (V).
Definition. An affineschemeisaringed space (X, Ox) thatisisomorphic to (Spec A, Ogpec 4)-

Definition. A scheme is a ringed space (X, Ox) where every point p € X has a neighbour-
hood U, such that the ringed space (U,, OUp) is isomorphic to some affine scheme.

Proposition. Let X be a scheme, U C X an open set, and i : U » X be the inclusion map.
Then, the ringed space (U, Or) is a scheme, where

Oy = (9X¢ =i"10x
U

For example, take X = SpecAand U = U forsome f € A. Then (U, Oy) = (Spec Ay, OspecAf).

Proof. Let p € U C X. Since X is a scheme, we can find (I{, OX|Vp) inside X with p € V/,

such that V} is isomorphic to an affine scheme. Then take Iy N U C U with structure sheaf
given by the inclusion map. Note that 1, N U may not be affine, but I, =~ Spec B, and the
distinguished opens in Spec B form a basis. This reduces the problem to the example of a
distinguished open set above. O

Definition. Affine space of dimension n over k is defined to be

A} = Speck[xy, ..., Xx,]

Example. Let
U= Azz \{det(xl]) = 0}

which is the open set representing GL,,(k). We will show that the multiplication map U X
U — U is a morphism of schemes.
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Example. Let U = AZ \ (x,y). This is a scheme representing a plane without an origin.
We claim that U is not an affine scheme. Suppose that U were affine; we aim to calculate
Oy (U). Write

U =V(x)* CAY; U, = V() CA;

These two open sets cover U, and
U N Uy, = Uy, = A7\ V(xy)
Then,
Ou(Uy) = k[x,x7 1y, Oy(U,) = klx,y,y7 '], Ou(Ue nUy) = k[x,x7!,y,y7"]

The restriction maps Oy (Uy) — Oy(Uyy,) and Oy(U,) — Oy (Uy,) are the obvious ones. By
the sheaf axioms,

Oy(U) = klx,x7 Lyl nkl[x,y,y™] € k[x,x71,y,y7]

Thus, Oy (U) = k[x,y]. This is a contradiction: one way to see this is that there exists a
maximal ideal (x, y) in the ring of global sections in (U, O;) with empty vanishing locus.

In general, if X is a scheme, f € T'(X, Ox) = Ox(X), and p € X, then there is a well-defined
stalk Ox, at p, which is of the form Ay, up to isomorphism, where p is a prime ideal. To say
this, we are using an isomorphism of an open set ¥}, containing p to Spec A. In particular, Ay,

has a unique maximal ideal, namely pA,. We say that f vanishes at p if its image in AVP Ay’
or equivalently, f € pAy. As a consequence, the vanishing locus V(f) C X is well-defined.

3.5. Gluing sheaves

Let X be a topological space with a cover {U,}. Let {#,} be sheaves on {U,}, with isomorph-
isms

Pagp : ?oc

Ugn Uﬁ Ugn UB

such that

Paa = id; Pap = §0,Eé; PBy °Pap = Pay
The last equation is called the cocycle condition. This combination of conditions resembles
the definition of an equivalence relation, with reflexivity, symmetry, and transitivity.

We will construct a sheaf # on X. Given V' C X open, we define

¢aﬁ<sa ) = 3p
VnULnUg

F is a presheaf. Indeed, given (s,) € F(V) and W C V open, we take
VnUq
. = (resWnUa(sa))a

This lies in (W) by the sheaf axioms. One check easily check that this is a sheaf.

‘T(V) = {(Soz) € H‘Ta(Ua N V)

VnUanUﬁ}

(Sa)
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Proposition. 7| and ¥, are canonically isomorphic as sheaves on U,.
14

Proof. First, we construct a map , —» F |Uy. Let V C U, and s € ¥, (V). Define its image

oeld, )
VnUq/

We must check that this tuple lies in F| U, V) =F(V).

VNUxnUg

in 5—"|UV to be

Pap ° §0ya(S )
VULNUg

3.6. Gluing schemes

Let (X, Ox) and (Y, Oy) be schemes with opensets U C X,V C Y,and letp : (U, Ox|,) —
(V, Oyl;,) be an isomorphism. The topological spaces X,Y can be glued on U,V using
®.

First, take § = X U Y/U ~ /- By definition of the quotient topology, the images of X and Y
in S form an open cover, and their intersection is the image of U, or equivalently, the image
of V. Now, we can glue the structure sheaves on these open sets as described in the previous
subsection. Note that in this case, there is no cocycle condition.

Example (the bug-eyed line; the line with doubled origin). Let k be a field. Let X =
Speck[t] and Y = Spec k[u]. Let

U = Speck[t,t7!] = Speck[t]; = U, CX; V = Speck[u,u"'] = Speck[u], =U, CY

We define the isomorphism ¢ : U — V given by ¢t <= u. Technically, we define an isomorph-
ism of rings k[u,u™!] — k[t,t7'] by u — t and then apply Spec. At the level of topological
spaces, X = AL and Y = A, so U = Ap \ {()} and V = A} \ {(w)}. Gluing along this
isomorphism, we obtain a scheme S which is a copy of A} but with two origins. Note that
the generic points in X and Y lie in U and V respectively, and thus are glued into a single
generic point in S.

Consider the open sets in S. Open sets entirely contained within X and Y yield open sets in
S. We also have open sets of the form W = S\ {py, ..., b,} where p; is contained in U or V.
One example is W = S; we can calculate Og(S) using the sheaf axioms, and one can show
that it is isomorphic to k[t]. We can conclude that S is not an affine scheme, because there
is a maximal ideal in k[t] where the vanishing locus is precisely two points.

Example (the projective line). Let X = Speck[t] and Y = Speck[s], and define U =
Speckl[t,t71],V = Speck[s,s~!] as above. We glue these schemes using the isomorphism
s — t71, giving the projective line P}.
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3. Schemes
Proposition. Op1 (Py) = k.

Proof sketch. We use the same idea as in the previous example. The only elements of k[¢, t7!]
that are both polynomials in ¢ and ¢~! are the constants. O

In particular, P}, is not an affine scheme.

Example. We can similarly build a scheme S which is a copy of AZ with a doubled origin.
This has the interesting property that there exist affine open subschemes U;, U, C S such
that U; N U, is not affine; we can take U; and U, to be S but with one of the origins deleted.
Note that A}, without the origin is affine.

Let {Xi}iel
such that

be schemes, X;; C X; be open subschemes, and f;; : X;; — Xj; be isomorphisms

fu=idx; fij=fi's fic=Fijxe fij
where the last equality holds whenever it is defined. Then there is a unique scheme X with

an open cover by the X;, glued along these isomorphisms. This is an elaboration of the above
construction, which is discussed on the first example sheet.

c
Let A be a ring, and let X; = SpecA[%,...,z—’f]. Let X;; = \/(};—’) C X;. We define the

isomorphisms X;; — Xj; by i—k > i—k< %) . The resulting glued scheme is called projective
i J\Xj

n-space, denoted P%.

3.7. The Proj construction
Definition. A Z-grading on a ring A is a decomposition
A=Pa
i€z
as abelian groups, such that A;A; C Ay ;.

Example. Let A = k[x, ..., X, ], and let A4 be the set of degree d homogeneous polynomials,
together with the zero polynomial.

Example. Let I C k[x,, ..., X,] be a homogeneous ideal; that is, an ideal generated by
homogeneous elements of possibly different degrees. Then, for A = k[x,, ..., X, ], the ring
A/I is also naturally graded.

Note that by definition, A, is a subring of A. For simplicity, we will always assume in this
course that the degree 1 elements of a graded ring generate A as an algebra over A,. We also
typically assume that A; = 0 for i < 0. We define

A, =Paica

i>1
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This forms an ideal in A, called the irrelevant ideal. If A is a polynomial ring with the usual
grading, the irrelevant ideal corresponds to the point 0 in the theory of varieties. This aligns
with the definition of projective space in classical algebraic geometry, in which the point 0
is deleted.

A homogeneous element f € A is an element contained in some A,. An ideal I of A is called
homogeneous if it is generated by homogeneous elements.

Definition. Let A be a graded ring. Proj A is the set of homogeneous prime ideals in A that
do not contain the irrelevant ideal. If I C A is homogeneous, we define

V() ={p € ProjA | I C p}

The Zariski topology on ProjA is the topology where the closed sets are of the form V(I)
where I is a homogeneous ideal.

The Spec construction allows us to convert rings into schemes; the Proj construction allows
us to convert graded rings into schemes. Unlike Spec, the construction of Proj is not func-
torial.

Let f € A; and Uy = ProjA \ V(f). Observe that the set {U } covers Proj A, because

feA
the f generate the unit ideal. The ringA[%] = Ay is naturally Z-graded by defining deg % =
—deg f. Note that Ay may have negatively graded elements, even though A does not.

Example. Let A = k[xy, x;] and f = x,. Then in A[l] = k[xg, X1, x5"], the degree zero
) f
elements include k and elements such as ﬁ, m

. There are degree one elements such
X0 X0

2
X
as =L.
Xo
Proposition. There is a natural bijection

{homogeneous prime ideals in A that miss f} « {prime ideals in (4/),}

Note also that the set of homogeneous prime ideals in A that miss f are naturally in bijection
with the homogeneous prime ideals in A.

Proof. Suppose q is a prime ideal in (A[H) . Then let 1(q) be the ideal
0

¢(q)=(U{aeAd)f%Eq}§A)

d>0

One can check that this is prime. Now suppose p is a homogeneous prime ideal missing f.

Define ¢(p) to be
1 1
o =(p-4[ 7] (A[f])o)
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This ideal is also prime.

One can easily check that ¢ o 9 is the identity. For the other direction, suppose p is a homo-
geneous prime ideal missing f; we show that p = ¥(¢(p)) by antisymmetry. If a € p € Ay,
then ind € ¢(p), so a € P(e(p)) by construction. Conversely, if a € P(¢(p)), then ind € o(p)

for some d, so there exists b € p such that % = ;id inA[%
f¥(feb — féa) = 0, and f°** ¢ p. But by primality, a € }, as required. O

]. Hence for some k > 0, we have

The bijection constructed is compatible with ideal containment, so is a homeomorphism of
topological spaces
Uy < Spec(Af)o

Thus Proj A is covered by open sets homeomorphic to an affine scheme. If f,g € A;, then
Uy N Uy is naturally homeomorphic to

() £] s

Take the open cover {U f} with structure sheaf Ogpeca o On each Uy, and isomorphisms on
Uy n Uy by the condition above. The cocycle condition follows from the formal properties
of the localisation. Therefore, Proj A is a scheme.

If A = k[xy, ..., x,,] with the standard grading, we write P} for Proj A.
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4. Morphisms

4.1. Morphisms of ringed spaces

Let (X, Ox) be a scheme. The stalks Oy, are local rings: they have a unique maximal
ideal, which is the set of all non-unit elements. Given f € Ox(U), we can meaningfully
ask whether f vanishes at p; that is, if the image of f in Oy, is contained in the maximal
ideal.

Definition. A morphism of ringed spaces f : (X, Ox) — (Y, Oy) consists of a continuous
function f : X — Y and a morphism f* : Oy — f,Ox between sheaves of ringson Y.

f* represents function composition with f~1, although the ring ©Ox may not be a ring of
functions. It is possible to find a morphism (f, f#) between schemes (X, Ox) and (Y, Oy)
such that there exists ¢ € U C Y and h € Oy(U) such that h vanishes at q but f f(h)
Ox(f~1(U)) does not vanish at some p € X with f(p) = q. This motivates the definition of
a morphism of schemes.

Let f : X — Y be a morphism of ringed spaces. Given any point p € X, there is an induced
map f* : Oy,f(py = Oxp- Explicitly, given s € Oy (), we can represent it by (sy, U)
where U is open, f(p) € U, and sy € Oy(U). Now, fi(sy) € Ox(f~1(U)), so the pair
(f*(spy), f~1(U)) defines an element of Ox p-

Definition. A ringed space (X, Ox) is called a locally ringed space if for all p € X, the stalk
Ox p is is a local ring. A morphism of locally ringed spaces (f, f B 1 (X,0x) > (Y,0y)
is a morphism of ringed spaces such that if m, denotes the maximal ideal in Ox ,, then

fAmppy) € my,.

This encapsulates the idea that functions vanishing on the codomain must also vanish on
the domain after the inverse image, as the maximal ideal represents functions vanishing at
the point.

4.2. Morphisms of schemes
Note that all schemes are locally ringed spaces.
Definition. A morphism of schemes X — Y is a morphism of locally ringed spaces X — Y.

Theorem. There is a natural bijection

{morphisms of schemes Spec B — Spec A} < {homomorphisms of rings A — B}

Proof. First, recall that a section s of a sheaf # on U is a coherent collection of elements of
the stalks s(p) € 7, for all p € U. We will construct a map of schemes Spec B — Spec A for
every ring homomorphism A — B, and then show that every morphism of schemes arises
in this way.
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4. Morphisms

Let ¢ : A — B be a ring homomorphism. Let ¢=! : SpecB — SpecA be the map of
topological spaces; this is a continuous function. We now build

goﬁ : OSpecA - §0:108pecB

At the level of stalks, the map Ag-1(yy — By, is induced by ¢ by mapping % to 29 This is

»(s)
well-defined, as for s € ¢~1(p), then p(s) & p. Observe that this is automatically a local
homomorphism.

We must now show that this choice of maps on stalks extends to a map between sheaves.
Given U C Spec A, we need to define

goﬁ : OSpecA(U) - OSpecB((¢_1)_1(U))

An element s € Ogpec4(U) is a collection of assignments (p — s(p))pey for p € U and
s(p) € Ap. We then define ¢ by

(= sMpev = (@ = 24P (@N)ge@-1)-1(1)

One can check that the gluing conditions are satisfied.

Conversely, suppose (f, f #) : SpecB — SpecA is a morphism of schemes. Using the fact
that we have a map of global sections Ogpec 4(SpecA) — Ogpec (Spec B), we obtain a ring
homomorphism g : A — B. We must check that g! : SpecB — SpecA gives the cor-
rect map f on topological spaces, and that the construction above yields the correct map f*
on sheaves. The maps on stalks are compatible with restriction, so the following diagram
commutes for all p € Spec B.

F(SpeCA’ OSpecA) —> F(Spec B, OSpecB)

u y

OSPBCAsf(P) EEE— OSpec B,p
Equivalently, the following diagram commutes for all p € Spec B.

A——3B

Lol

Afpy — By

Since the morphism is local, (f li)‘l(po) = f(P)Af(p). As the above diagram commutes,
g~! = f as maps of topological spaces, and the maps of structure sheaves agree at the level
of stalks by construction so they must agree everywhere. O
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4.3. Immersions

Definition. Let X, Y be schemes. A morphism of schemes f : X — Y is an open immersion
if f induces an isomorphism of X onto an open subscheme (U, OY|U) of Y. A morphism
f X - Y is a closed immersion if f is a homeomorphism onto a closed subset of Y, and
grt 1 Oy — g,.0x is surjective.

Example. Let k[t] — k[t]/(tz). The induced map Spec k[t]/(tz) — Speck][t] is a closed
immersion. More generally, let A be a ring and I be an ideal in A. Then the induced map

SpecA/I — Spec A is a closed immersion.

Definition. Let Y be a scheme. A closed subscheme of Y is an equivalence class of closed
immersions X — Y, wherewesay f : X — Y and f’ : X' — Y are equivalent if there is a
commutative triangle

X4—> N x

Nt

4.4. Fibre products

The notion of fibre product will simultaneously generalise the notions of product, intersec-
tions of closed subschemes, and inverse images of subschemes (such as points) along morph-
isms.

Definition. Consider a diagram
X

l

Y — S

The fibre product is a scheme X Xg Y making the following diagram commute:

XxgY 223 X

N

Y — 3§

such that for any other scheme Z together with morphisms gy, gy completing the square,
there is a unique factorisation through X X5 Y, making the following diagram commute.

n — X

190



4. Morphisms

Note that as this is a definition by universal property, if X XY exists, it is unique up to unique
isomorphism. The fibre product is schemes is the category-theoretic pullback.

Example. (i) In the category of sets, the fibre product of the diagram

X
I
Y — S

is the set
XXxsY ={(x,y) € X XY | rx(x) =ry(y)}

(ii) In the category of topological spaces, the fibre product is defined to be the same set,
assigning X Xg Y the subspace topology as a subset of X X Y.

(iii) Letry : X — S be a map of sets, and let Y = {x} with ry(x) = s € S. Then

X XgY =rg(s)

(iv) Letry : X - Sandry : Y — S be inclusions of subsets. Then

XXsY=XNnY

Theorem. Fibre products of schemes exist.

Proof sketch. Step 1. Let X, Y, S be affine schemes, with associated rings A, B, R. Then the
fibre product X X Y exists, and is isomorphic to Spec(A ® B). Note that the tensor product
is the category-theoretic pushout in the category of rings. We must now check that the uni-
versal property of the fibre product is satisfied. Consider the commutative square

Z—3X

Lol

Y —3 8

If Z is an affine scheme, the result holds. It is a general fact that a map of schemes Z —
Spec(A ®g B) is the same data asamap A ®g B - I'(Z, O).

Step 2. Let X, Y, S be arbitrary schemes. If X X5 Y exists and U C X is an open subscheme,
then U Xg Y also exists, by taking the inverse image of U under the projection X Xg Y — X
endowed with the structure of an open subscheme.

Step 3. If X is covered by open subschemes {X;}, then if X; Xg Y exists for all i, then X Xg Y
exists, by gluing each of the X; Xg Y together. Note that the ability to glue these schemes
together relies on Step 2, and the fact that there is no cocycle condition.
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Step 4. If Y and S are affine, then X X5 Y exists by Step 3, by covering X by affine subschemes.
As X and Y are interchangeable, X Xg Y exists for any X and Y as long as S is affine.

Step 5. Now, cover S by affine subschemes {S;}. Let X;, Y ; be the preimages of of S; in X and
Y respectively. Now, X; Xg, Y; exists. Observe by the universal property that X; Xg, Y; =
X; X SY ;. Finally, gluing gives X X5 Y as required. O

Example. (i) We have
¢ = PZ Xspecz SpecC
where the map Spec C — Spec Z is induced by the ring homomorphism Z — C, and
the map P — SpecZ is induced locally by the inclusion Z — Z[ﬂ, s x—"] Note

xi xi
also that
7|x] ®, C = C[x]

(ii) Let C = Spec Cl%:¥ ]/(y _x2)and L = spec C[x ¥ ]/(y)‘ We have natural closed im-

mersions C — A% and L — A%. One can show that
- Clx
C xgz L = Spec E1x] 2y

representing the intersection.

4.5. Schemes over a base

In scheme theory, we often fix a scheme S called the base scheme, and consider other schemes
with a fixed map to S. These form a category of schemes over S, where the morphisms are
the morphisms of schemes f : X — Y such that the following diagram commutes.

x— T sy
S
This is known as Grothendieck’s relative point of view. Typically, S is the spectrum of a field
or a ring. Note that every scheme has a unique morphism to SpecZ, so the category of
schemes is isomorphic to the category of schemes over Spec Z. The product of X and Y in
the category of schemes over S is the fibre product X Xg Y. Analogously, in commutative

algebra, we often consider algebras of a fixed ring, and the category of rings is isomorphic to
the category of Z-algebras.

4.6. Separatedness

Recall that a topological space X is Hausdorff if and only if the diagonal Ay C X X X is
closed.
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Definition. Let X — S be a morphism of schemes. Then the diagonal is the morphism
Axs © X = X Xg X induced using the universal property by the following diagram.

We write A for Ay/g if X and S are clear from context.

Remark. If U,V are open subschemes of X and S = Spec k for a field k, then

Al UxgV)=UnNV

Definition. A morphism X — S is separated if Ay,s : X — X Xg X is a closed immersion.

Example. Let X = Spec C[¢], let S = Spec C, and induce the map X — S by the C-algebra
homomorphism C — C[¢]. Then

X Xg X = Spec(C[t] ®c C[t])
and the diagonal map A is induced by the multiplication map
Clt] ®c Clt] - Clt]

Note that A is closed, as the map C[t] ®c C[t] — C[t] is surjective.

Proposition. Let g : X — S be a morphism of schemes. Then there is a factorisation of

Ax/s as follows.
U
closed immersioy( Yﬁl immersion

X — S XxgX

Ax/s
We say that g : X — Sis alocally closed immersion.
Proof. Let S be covered by open affine subschemes {V';}, and suppose X is covered by open

affine subschemes {Ul- j}, where for some fixed i, the U;; cover g~ 1(V;). We have morphisms
U;j — V;induced by

Uj —> &' (V) —> Vi

1

X — S
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where the commutative square is a fibre product. Observe that U;; Xy, U;; is affine and
open in X Xg X, and their union contains the image of the diagonal Ay/s. Also,

AUy xy, Uip) = U € X

Let U be the union of the U;; Xy, U;j over all i, j. Then the second map in the statement
is clearly an open immersion. Observe that to check if f : T — T’ is a closed immersion,
it suffices to check locally on the codomain. For each Ujj, the diagonal is a map U;; —

Uij Xy, U;j, which one can show is a closed immersion. O

Proposition. If X — S is a morphism of affine schemes, then Ay /g is a closed immersion.
Proof. Let X = SpecA, S = Spec B, and let the map X — S be given by a map B — A. Then
the map A ®g A — A is surjective as required. O
Thus every morphism of affine schemes is separated.

Corollary. Let X — S be a morphism of schemes. If the image of Ay/g is closed as a topolo-
gical subspace, then X — S is separated.

Proof. A locally closed immersion onto a closed subset is a closed immersion. O

Example. (i) Recall the bug-eyed line
A UAL,

where if U = A} \ {0} C A}, and V is defined similarly, we define the isomorphism
V — Ubythemapu ~ t : k[u,u™!] — k[t,t~!]. We claim that the bug-eyed line is
not separated over Spec k. We can compute X Xg X by the gluing construction of the
fibre product. This is a plane with doubled axes and four origins. The diagonal only
contains two of the four origins, and this is not a closed subset.

(i) Open and closed immersions are are always separated.
(iii) All monomorphisms are separated.
(iv) Compositions of separated morphisms are separated.

(v) Suppose X — S isseparated and S’ — S is an embedding. Then the map X Xg S’ — S’
that comes from

XXsS —> X
S —>S
is also separated. This is called a base extension: the right-hand side of the diagram is

the original morphism X — S, and the left-hand side can be thought of as the same
morphism under a base change.
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Proposition. Let R be a ring. The morphism P} — SpecR is separated.

Proposition. We want to show that the map A in the following diagram is closed, where
the commutative square is a fibre product.

PR —2% PR xg Pp —> P}

1 !

PR —— SpecR

It suffices to check this result on an open cover of P} Xp Pg. Let A = R[x,, ..., x,,| with the

usual grading, so ProjA = P%. Then let U; = Spec (A[l]) . These U; form an open cover
Xi 0

of P%. Now,

U; Xg Uj = SpecR

Xo  Xn Yo Yn
i Xi Yj Yij

Observe that the restriction of A to A™}(U; xg U;) is
UintﬁUiXRUj

given on rings by the map
Xi Xj Xj Xi X y] yj
by changing yy into x;. This is surjective, and the U; Xg U cover P Xg Pg, so A is closed.

Definition. Let k = k be an algebraically closed field. Let X — Spec k be a scheme over
Spec k. We say that X is of finite type over Spec k if there is a cover of X by affines {U,}, such
that Ox(U,) is finitely generated k-algebra. We say that X is reduced if for all open U C X,
Ox(U) has no nilpotent elements.

Definition. A morphism X — Spec k is avariety ifit is reduced, of finite type, and separated.

4.7. Properness

Definition. Let f : X — S be a morphism. Then f is of finite type if there exists an affine
cover of S by open {V,}_, where V,, = Spec A, and covers {Uaﬁ} . of f~1(V,,) by open affine
subschemes with U,g = Spec Bgg, such that Byg is a finitely generated A,-algebra, and
{Uaﬁ}ﬁ can be chosen to be finite.

Definition. A morphism f : X — S is closed if it is closed as a map of topological spaces.
It is universally closed if for any S’ — S, the induced map X Xg S’ — S’ is also closed. f is
proper if it is separated, of finite type, and universally closed.

Example. (i) Closed immersions are proper.

195



II1. Algebraic Geometry

(ii) The obvious map A} — Speck is not proper, because it is not universally closed. In-
deed, consider the fibre product

Ae — A

Lo

A}, —> Speck

Consider Z C AZ = Speckl[x,y] given by the vanishing locus of xy — 1. Then the
projection of Z onto each axis is not Zariski closed.

(iii) The bug-eyed line is neither separated nor universally closed.

Remark. If X — S is universally closed, then any base extension X Xg S’ — S’ is also
universally closed. Similarly, separatedness, properness and being of finite type are stable
under base extension.

Proposition. Let R be a commutative ring. Then the morphism P — SpecR is proper.

Proof. We have already shown that P§ — SpecR is separated. It is of finite type by con-
struction. It suffices to prove that the morphism is universally closed for R = Z, because
PR = P% Xspecz SpecR. We must show that for any Y — SpecZ, the base extension
P% Xspecz Y — Y is closed. But Y is covered by affine schemes of the form SpecR, and
closedness is local on the codomain, it suffices to show that Pz — SpecR is closed.

Let Z C Py be Zariski closed, so Z is the vanishing locus of homogeneous polynomials
{g1, 82, ... }. We want to show that if 7 is the map P§ — Spec R, then 7(Z) is closed. We need
to find equations for 7(Z), or equivalently, we need to characterise the prime ideals p of R
such that 77}(p) N Z is nonempty. Let k(p) = FF (R/p). We have a morphism Spec k(p) —
Spec R. Let Zy, = Z Xgpec g Spec k(p); we want to know for which p this scheme is nonempty.
If we take the equations g;, g5, ... and reduce modulo p, we obtain equations g,, g,, ... which

are homogeneous polynomials in k(p). Thus Zy, is nonempty if and only if g,, g,, ... cut out

more than the origin in A\Z(*;) In particular, Zy, is nonempty if and only if

(81,855 ) P (X0, ..., Xp); PR = ProjR[x, ..., Xp]
Equivalently, for all positive integers d,

(%05 -+ X)? € (81,855 )

Write A = R[x] with the usual grading. The non-containment condition above holds if and
only if the map
@ Ad—deggi — Ag
i

given by f; — f;g; in the ith factor is not surjective modulo p, or equivalently in k(p), for
all degrees d. This condition is given by the maximal minors of the matrix associated to
D, Ad—degg; — Aa> Which is a set of infinitely many polynomials, each in the coefficients of
the g;. O
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4.8. Valuative criteria

From here, we will assume that all schemes are Noetherian; that is, it has a finite cover by
spectra of Noetherian rings.

Definition. A discrete valuation ring is a local principal ideal domain.

Example. (i) C[t] is a discrete valuation ring.

(ii) Oprp = {% | g(0) # 0} is a discrete valuation ring.

(iii) Similarly, Zpy, Zp are discrete valuation rings, where Zp) denotes the localisation of
Z at the prime ideal (p), and Z, denotes the p-adic integers.

We will often drop the word ‘discrete’.

Remark. Let A be a valuation ring. In discrete valuation rings, every nonzero prime ideal is
maximal, so Spec A consists of two points, (0) and the unique maximal ideal m. The topology
on SpecA = {(0), m} has the property that (0) is dense and m is closed. This is called the
Sierpinski topology.

Any generator 7 for m is called a uniformiser or a uniformising parameter. For example, in
C[[t]l, every power series with nonzero constant term is a unit, and ¢ is a uniformiser.

Given a uniformiser, any nonzero element a € A can be written as urk where u is a unit
and k is a unique natural number called the valuation of a. This gives a map A \ {0} - N
mapping a value a to its valuation; this is independent of the choice of uniformiser.

The field of fractions of A is a valued field K = FF(A); the valuation extends to a multi-
plicative function K \ {0} — Z given by the difference of valuations of the numerator and
denominator.

Example. Let A = k[t], then K = k(¢) is the field of Laurent series in one variable in k.
The valuation is the order of vanishing at zero.

One can consider the open immersion Spec K — Spec A as the inclusion from a disc with a
punctured origin to a disc.

Theorem. Let f : X — Y be a morphism of schemes. Then f is separated if and only if for
any (discrete) valuation ring A with function field K and diagram

SpecK —— X

Lo

SpecA — Y

197



II1. Algebraic Geometry

then there exists at most one lift Spec A — X that makes the following diagram commute.

SpecK — X

L ]
SpecA —— Y
Similarly, f is universally closed if and only if there exists at least one lift SpecA — X that
makes the diagram commute.

In particular, a morphism is proper if and only if there is a unique lift, and the morphism is
of finite type. The proof is omitted.

Remark. (i) The map Pk — SpecR is proper.
(ii) The map AR — SpecR is not proper, but is separated.

(iii) Closed immersions are proper. In particular, if Z — Pj is closed, then Z — SpecR is
proper.

(iv) Compositions of proper (respectively separated) morphisms are proper (separated).

(v) If f : X - Y is proper, then for any Y’ — Y, the base extension X Xy Y’ — Y’ is also
proper.

Example. We show that A; — Speck is not proper by showing it is not universally closed.
Write Al = Spec k[x], and consider A = k[[t]] and K = k(t).

Spec k(t) LN A

! 1

Speck[t] —— Speck

The map Spec k[[¢t]] = Spec k is the obvious morphism. Let ¢ be induced by the map on rings
k[x] - k(t) given by x — % Then the map does not factor through Spec k[ ¢]] — Spec k(t),

as required. However, if we replace A} with P}, there is always an affine chart in P! such
that @ is of the form x - t.
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5. Modules over the structure sheaf

5.1. Definitions

Example. Let CP" be the variety C"*! \ {0} modulo scaling by C. We have a structure sheaf
Ocpn, where if U C CP" is Zariski open, we define

P&
Q(x)

For any integer d, we can consider a sheaf O¢pn(d) given by

Ocpn(U) = { ‘ P, Q homogeneous of the same degree, and the ratio is regular at all p € U}

P(x)
Qx)
This is a sheaf of groups, but not a sheaf of rings as it is not closed under multiplication for

d # 0. Note that Ocpn(d)(U) is a module over Ocpn(U), and the multiplication commutes
with restriction.

Ocpn(d)(U) = { ‘P, Q homogeneous, degP —deg Q = d, and regular atall p € U}

Example. Let A be a ring, and let M be an A-module. We define the sheaf ), = M*" on
Spec A as follows. If U C Spec A is a distinguished open U = U s, then we set

which is the module M localised at f. This defines a sheaf on a base, and hence extends to
a unique sheaf on Spec A.

Definition. Let (X, Ox) be a ringed space. A sheaf of Ox-modules on X is a sheaf F of
abelian groups together with a multiplication #(U) X Ox(U) — F(U) that makes F#(U) into
an Ox(U)-module, that is compatible with restriction.

FV)x Ox(V) — F(V)

U 1

FU) X Ox(U) — F(U)

Similarly, we can define a sheaf of Ox-algebras. A morphism between sheaves of modules
® : F — Gon X is a homomorphism of sheaves of abelian groups that is compatible with
multiplication.

Given morphisms of sheaves of modules on X, we can locally take kernels, cokernels, images,
direct sums, tensor products, hom functors, and all of these extend to sheaves of modules.
In the case of cokernels, images, and tensor products, we require a sheafification step. For
example, the presheaf tensor product & ®o, g associated to an open set U C X is given by
F(U) ®o, vy G(U); the sheaf tensor product is given by sheafification.

Given a morphism of ringed spaces or schemes f : X — Y, the pushforward of an Ox-
module ¥ is the sheaf of abelian groups f,#. As a morphism of ringed spaces, we also
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have a map f* : Oy — f.Ox, giving f.F an Oy-module structure. Given an open set
UCY,ae OypU),and m € £,FU) = F(f~1(U)), we define a - m = f¥(a) - m, where
fHa) € Ox(fF7HUY).

Conversely, if G is a sheaf of Oy-modules, we define
frG =719 @10y Ox

where the f~1©y-module structure on Oy is defined via the adjoint to f¥.

5.2. Quasi-coherence

Definition. A quasi-coherent sheaf ¥ on a scheme X is a sheaf of Ox-modules such that
there exists a cover of X by affines {U;} such that & |U is the sheaf associated to a module
over the ring Ox(U;). If these modules can be taken to be finitely generated, we say 7 is
coherent.

Example. (i) On any scheme X, Oy is quasi-coherent (and, in fact, coherent).
(ii) P ; Ox is quasi-coherent, but not coherent if I is infinite.

(iii) Ifi : X — Y is a closed immersion, then i, O is a quasi-coherent Oy-module. Let
U C Y be an affine open set, so U = SpecA. Then X N U — U gives anideal I C A
which is the kernel of the surjection Oy (U) — Ox(X N U). On U, i, Ox|, is the sheaf

associated to the A-module A/I.

Proposition. An Ox-module F is quasi-coherent if and only if for any affine open U C X
with U = Spec A, 7/, is the sheaf associated to a module over A.

We first prove the following key technical lemma.

Lemma. Let X = SpecA, f € A, and ¥ a quasi-coherent Oyx-module. Let s € I'(X,¥).
Then

(i) If s restricts to 0 on Uy, then f"s = 0 for some n > 1.

(ii) Ift € F(Uy), then f"t is the restriction of a global section of F over X for some n > 1.

Proof. There exists some cover of X by schemes of the form Spec B = V, such that 7|, = M sh
for M a B-module. We can cover each such V by distinguished affines of the form U, for some
g€ A. Then ¥ |Ug =M Q®p Ag)Sh, as F|,, is quasi-coherent. But recall that Spec A is quasi-
compact: every open cover has a finite subcover. So finitely many U, will suffice to cover
X by open sets such that F restricts to M on Ug,- Then the lemma follows from formal
properties of localisation. O

We now prove the main proposition.
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Proof. Given U C X, observe that 7/ ; is also quasi-coherent. We can thus reduce the state-
ment to the case where X = Spec A. Now we take M = I'(X, ¥), and let M’ sh pe the associated
sheaf. We claim that M*" &~ #. Leta : M*® — 7 be the map given by restriction (for ex-
ample via stalks). Then « is an isomorphism at the level of stalks by the above lemma, so is
an isomorphism globally. O

In particular, the quasi-coherent sheaves of modules over Spec A are precisely the modules
over A. The coherent sheaves of modules over Spec A are precisely the finitely-generated
modules over A.

Proposition. (i) Images, kernels, and cokernels of maps of (quasi-)coherent sheaves re-
main (quasi-)coherent.

(i) If f : X - S is a morphism of schemes and ¥ is a (quasi-)coherent sheaf of modules
on S, then f*& is also (quasi-)coherent.

(iii) If f : X — S is a morphism of schemes and G is a quasi-coherent sheaf on X, then
f. G is also quasi-coherent.

The proofs are omitted and non-examinable. Note that (iii) need not hold for coherent
sheaves: let f : Ak — Speck be the obvious map, and consider f*OA}{ . This is a quasi-

coherent sheaf on Speck, so is a k-vector space, which is k[t]. As a module, this is not
finitely generated. Observe that if f : P, — Speck, then f*OP}{ is the sheaf associated to k.
In general, if G is a coherent sheaf on X and f : X — Sis proper, then f, G is coherent.

Let A be a graded ring, with the usual assumptions on its generators. To build Proj A, we
consider the cover by Spec (A[H ) for f € A,. We can produce a similar construction for
0

modules.

Let M be a graded A-module, that is,

M =My

dez

where each M is an abelian group, M is an A-module, and A;M; C M, ;. Consider the sheaf
determined by the association

ProjA2 Uy — (M[%DO

To each Uy = V(f)¢, we associate the degree zero elements of the localisation of M at f.
This gives a quasi-coherent sheaf on Proj A by identical arguments as in the Proj construc-
tion.

Definition. Let X be a scheme and F be a quasi-coherent Ox-module. We say that F is

(i) free, it F ~ (9}?1 for some set I;
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(ii) an (algebraic) vector bundle or locally free if there exists an open cover {U;} such that
F |Ui is free;

(iii) a line bundle or an invertible sheaf if it is a vector bundle that is locally isomorphic to
Ox.

Note that such sheaves are coherent if and only if the index sets I can be taken to be fi-
nite.

5.3. Coherent sheaves on projective schemes

Definition. Let A be a graded ring, and let M be a graded A-module. For d € Z, we define
M(d), called M twisted by d, to be the module such that

M(d))k = My4q

Definition. Let X = ProjA where A is a graded ring and let d € Z. The sheaf Ox(d) is
defined to be the sheaf associated to the graded module A(d). In particular, Ox(1) is called
the twisting sheaf.

Remark. Ox(d) = Ox(1)®4. Note that the tensor product of graded modules is additive in
the grading.

Example. Consider Projk[xo, ..., X,] = P{. The global sections of O[pﬂl’{l(d) are homogen-
eous degree d polynomials in the x;. In particular, if d < 0, then T'(P}, Opy(d)) = 0.

Definition. An Ox-module ¥ is called globally generated or generated by global sections if
it is a quotient of O;?r for some r; that is, is there is a surjective map of coherent sheaves
OP" - F. Equivalently, there exist elements sy, ..., s, € (X, F) such that {s;} generate the
stalks #, over Ox ,, for all p € X.

Theorem. Leti : X — P} be a closed immersion. Let Ox(1) be the restriction of Oﬂ:olré(l),
so Ox(1) = i*Opﬁ(l). Let F be a coherent sheaf on X. Then there exists an integer d, such
that for all d > d,, the sheaf

F(d) = F oy Ox(d)
is globally generated.

Proof. By formal properties, it is equivalent to show the statement for i, F; that is, i, #(d) is
globally generated on P%. Write P} = Proj[xy, ..., x,,], and cover P% by U; = Spec B; where

B; = R[ﬂ] We know that F|;, = M;", and M; is a finitely generated B;-module. Let {s;;}
Xi i

1

be generators for M;. We claim that the sections {x?si i }j of F (d)|Ui (U;) are restrictions of

global sections £;; of F(d) for sufficiently large d. Such d can be chosen to be independent
ofiand j. Indeed, if 5;; is an element of M; = F(U;) and x; € Ox(1) = Opn(1), we can show
that x?si j € (F® O(d))(U,) is a restriction of a global section.
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5. Modules over the structure sheaf

Now, on U, the s;; generate M:S", but we have a morphism of sheaves ¥ — F(d), mapping
sto xlds =5Q® xld. This map is globally defined, but on Uj; this restricts to an isomorphism
F |Ui - F (d)|Ui as x; is invertible on U;. Since the {si j} generate F |Ui’ the x?sj generate
F(d)ly,- Thus, the t;; globally generate F (d). O

Corollary. Leti : X — Pg be a closed immersion. Let # be a coherent sheaf on X. Then F
is a quotient of O(—d)®Y for some sufficiently large N and some d € Z.
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6. Divisors

6.1. Height and dimension

Recall that for a prime ideal p in R, its height is the largest n such that there exists a chain of
inclusions of prime ideals

PoCEh1 &C-Chp=p

For example, if R is an integral domain, a prime ideal is of height 1 if and only if no nonzero
prime ideal is strictly contained within it.

Example. (i) In any integral domain, (0) has height 0.
(ii) In C[x,y], the ideal (x) has height 1, and the ideal (x, y) has height 2.

It can be shown that in a unique factorisation domain, every prime ideal of height 1 is prin-
cipal.

We will globalise the notion of height 1 prime ideals, giving Weil divisors, and also the no-
tion of principal ideals, giving Cartier divisors. In the case of Weil divisors, we will assume
that the ambient scheme X is Noetherian, integral, separated, and regular in codimension
1.

If X is integral and U = Spec A is an open affine, then the ideal (0) C A is called the gen-
eric point of X. Each open affine is dense as they are irreducible, so they have a nontrivial
intersection, including their generic points. The generic points given by each U therefore
coincide in X. This point is often denoted by 7 or 7.

Definition. Let X be a scheme.

(i) The dimension of X is the length n of the longest chain of nonempty closed irreducible
subsets

(i) Let Z C X be closed and irreducible. The codimension of X is the length n of the
longest chain

(iii) If X is a Noetherian topological space, so every decreasing sequence of closed subsets
stabilises, then every closed Z C X has a decomposition into finitely many irreducible
closed subsets.

(iv) Suppose X is Noetherian, integral, and separated. We say that X is regular in codimen-
sion 1 if for every subspace Y C X that is closed, irreducible, and of codimension 1, if
7y denotes the generic point of Y, then Ox,, is a discrete valuation ring, or equival-
ently a local principal ideal domain.
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6.2. Weil divisors

Definition. Let X be Noetherian, integral, separated, and regular in codimension 1. A
prime divisor on X is an integral closed subscheme of codimension 1. A Weil divisor on
X is an element of the free abelian group Div(X) generated by the prime divisors.

We will write D € Div(X) as )}, ny,[Y;] where the Y'; are prime divisors.
Definition. A Weil divisor )}, ny,[Y ;] is effective if all ny, are nonnegative.

If X is integral, for SpecA = U C X, the local ring Ox ,, is a field, as it is in particular the
fraction field of A. Indeed, because 7 is contained in every open affine, Ox , permits arbitrary
denominators.

Let f € Ox,, = k(X) be nonzero. Since for every prime divisor Y C X, the ring Ox .,
is a discrete valuation ring, we can calculate the valuation vy (f) of f in this ring. We thus
define the divisor

div(H= D »y(NIY]

YCX prime
We claim that this is a Weil divisor; that is, the sum is finite.

Proposition. The sum

Y w(DIY]

YCX prime

is finite.

Proof. Let f € k(X)*, and choose A such that U = Spec A is an affine open, so FF(A) = k(X).
We can also require that f € A by localising at the denominator, so f is regular on U. Then
X\ U is closed and of codimension at least 1, so only finitely many prime Weil divisors Y of
X are contained in X \ U. On U, as f is regular, vy (f) > 0 for all Y. But vy (f) > 0 if and
only if Y is contained in V(f) C U, and by the same argument, there are only finitely many
such Y. O]

Definition. A Weil divisor of the form div(f) is called principal. In Div(X), the set of prin-
cipal divisors form a subgroup Prin(X), and we define the Weil divisor class group of X to
be

Cl(X) = DiV(X)/Prin(X )

Remark. (i) Let A be a Noetherian domain. Then A is a unique factorisation domain
if and only if A is integrally closed and CI(Spec A) is trivial. This is related to the fact
that in unique factorisation domains, all primes of height 1 are principal. In particular,
there exist rings with nontrivial class groups of their spectra.

(i) CI(AZ) = 0.

(iii) CI(P}) = Z; we will prove this shortly.
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(iv) Let Z C X isclosed, and let U = X \ Z. Then there is a surjective map CI(X) » CI(U),
defined by [Y] —~ [Y n U], but instead mapping [Y] to zero if Y N U = @. This is well-
defined, as k(X) and k(U) are naturally isomorphic, so principal divisors are mapped
to principal divisors. For surjectivity, note that given a prime Weil divisor D C U, its
closure D in X is a prime Weil divisor that restricts to D under the map.

(v) If Z has codimension at least 2, then CI(X) » CI(U) is an isomorphism. This is be-
cause Z does not enter the definition of C1(X).

(vi) If Z C X is integral, closed, and of codimension 1, there is an exact sequence

7z 24 i) — cwy) — o

called the excision exact sequence. Indeed, the kernel of CI(X) — CI(U) are exactly
the divisors in X contained in Z.

Proposition. Let k be a field. Then, CI(P}) = Z.

Proof. Let D C P" be integral, closed, and of codimension 1. Then D = V(f) where f is
homogeneous of some degree d; we will define deg(D) = d. We extend linearly to obtain a
homomorphism deg : Div(P;;) — Z. We claim that this gives an isomorphism CI(P}) — Z.
First, this is well defined on classes, since if f = £ is a rational function, then g and h are
homogeneous polynomials of the same degree, so deg(div(f)) = 0. This is surjective, by
taking H = V(x,) for x, homogeneous linear. For injectivity, suppose D = )} ny,[Y ;] with
2. ny, deg(Y;) = 0. Write Y; = V(g;), and let f = Hg?yi. Now f is a homogeneous rational
function of degree zero. O

6.3. Cartier divisors

Let X be a scheme. Consider the presheaf on X given by mapping U = SpecA to S™'A
where S is the set of all elements that are not zero divisors. Sheafification yields the sheaf
of rings Kx. Define K5 C Kx to be the subsheaf of invertible elements; this is a sheaf of
abelian groups under multiplication. If X is integral, then Kx is the constant sheaf, where
the constant field is Ox ,, = FF(A) for any affine open Spec A.

Similarly, let O3 C Ox be the subsheaf of invertible elements. Thus, every section of jc)*(/o)*(
can be prescribed by {(U;, f;)} where U; is a cover of X, f; is a section of Kx(U;), and that
on U; N U, the ratio / ', lies in (U, N U)).

Definition. A Cartier divisor is a global section of the sheaf ‘(K)*(/O;(.

X X
We have a surjective sheaf homomorphism X5 — X /0}*{, but a global section of X /0)*(
is not necessarily the image of a global section of K.
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Definition. The image of I'(X, X ) in F(X , K?*(/O}*() is the set of principal Cartier divisors.
The Cartier class group is the quotient

r(x, %%/ 05()/1m (X, %)

A section D € F(X , K)*(/O)*() can be specified by {(U;, f;)} where the {U;} form an open
cover and f; € KXx(U;), such that on U; N U}, the quotient % liesin Ox(U; N U)).
J

Let X be Noetherian, integral, separated, and regular in codimension 1. Given a Cartier
divisor D € F(X , KX/O;(), we obtain a Weil divisor as follows. If Y C X is a prime Weil

divisor and its generic point is 7y, we represent D by {(U;, f;)} and set ny to be vy (f;) for
some U; containing ny. Then we obtain the Weil divisor

> nylY]

Ycx
This is well-defined: if 7y is contained in both U; and U}, the valuations of f; and f; dif-

fer by vy(j: L ), but fi is a unit, so has valuation zero. Similarly, one can show that this is

J J

independent of the choice of representative of D.

Proposition. Let X be Noetherian, integral, separated, and regular in codimension 1. Sup-
pose that all local rings Ox , are unique factorisation domains. Then the association of a
Weil divisor to each Cartier divisor is a bijection, and furthermore, is a bijection of principal
divisors.

Proof sketch. If R is a unique factorisation domain, then all height 1 prime ideals are prin-
cipal. If x € X, then Oy , is a unique factorisation domain by hypothesis, so given a Weil
divisor D, we can restrict it to Spec Ox , — X. But on Spec Ox , D is given by V(f;) as Ox
is a unique factorisation domain. f, extends to some neighbourhood U, containing x, then
the f, can be glued to form a Cartier divisor. This can be checked to be bijective. O

Given a Cartier divisor D on X with representative {(U;, f;)}, we can define L(D) C KXx to
be the sub-Ox-module generated on U; by f;!. Note that if X = Spec A where A is integral,
and D = {(X, f)} where f € A, then Ay C FF(A) is an A-module.

Proposition. The sheaf L(D) is a line bundle.
Proposition. On U;, we have an isomorphism Oy, — L(Z))lUi givenby 1 — f;71.

Consider X = Py, and let D be the Weil divisor V(x,). Let D be the corresponding Cartier
divisor. One can show that OPQ(I) ~ L(D).

Remark. A line bundle L on X has an ‘inverse’ under the tensor product; that is, defining
Lt= Homyg, (L, Ox), we obtain L ®, L' = Ox. Tensor products of line bundles are also
line bundles. If all Weil divisors are Cartier, then L(D + &) = L(D) ® L(E).
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Definition. The Picard group of X is the set of line bundles on X up to isomorphism, which
forms an abelian group under the tensor product.

Under mild assumptions, for example assuming that X is integral, the map D — L(D) is
surjective, and the kernel is exactly the set of principal Cartier divisors.
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7. Sheaf cohomology

7.1. Introduction and properties

We have previously seen that if X = A2 \ {(0,0)}, then Ox(X) = 02(A?) = k[x, y]. Given a
topological space X and a sheaf F of abelian groups, there is a series of cohomology groups
HY(X,7) for i € N. The definition will be omitted. These groups have the following fea-
tures.

(i) The group H°(X, F) is precisely I'(X, F).
(ii) If f : Y — X is continuous, there is an induced map f* : H((X,¥) — H\(Y, f~1%).

(iii) Given a short exact sequence of sheaves

0 > F > F > F"

~
o

we obtain a long exact sequence

0 — H(X,¥) —> HOX,F') —> HO(X,F")
HI(X’?) H HI(X’?’) H Hl(Xa‘rf’”)

H*X,F) — -

(iv) If X is an affine scheme and F is a quasi-coherent sheaf, then H i(X,F) = 0 for all
i>o0.

(v) Cohomology commutes with taking direct sums of sheaves.

(vi) If X is a Noetherian separated scheme, then H'(X, ¥) can be computed from the sec-
tions of # on an open affine cover {U;} and from the data of the restrictions to #(U; N
U;),F(U; N U; N Uy) and so on. This can be done by considering Cech cohomology.

7.2. Cech cohomology

Let X be a topological space, and let # be a sheaf on X. Let U = {U;},; be a fixed open cover
of X, indexed by a well-ordered set I. In this course, we will take I = {1, ..., N}, and write
Ui...i, = Ui NN U, Cech cohomology attaches data to the triple (X, F, U). The group
of Cech p-cochains is

cru, )= [ FW,,..

i0<"'<ip

)

p

There is a differential
d: CP(U,F) - CPHI (U, F)
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where the iy, ..., i1 component of da is given by

p+1
_ k .
(dDiy...1py = kz:(—l) aio...ik...ipH’
-

io...ip+1

where i, denotes that the element i; of the sequence is omitted. One can easily show that
d? : CP — CP*?is the zero map. Thus, {CP(U,F )}p has the structure of a cochain com-
plex.

Definition. The ith Cech cohomology of (X, F, U) is the ith cohomology group of the co-
chain complex:

Ker(CH(U, F) & ci+1(u, 7))

H(X,¥) = y
im(Ci-1(U, F) —» Ci(U, F))

Example. Let X = S! be the usual circle. Let F be the constant sheaf Z; on any connected
open set this sheaf has value Z, and for a general open set with n connected components,
this sheaf has value Z". Let U = {U, V} where U, V are obtained by deleting disjoint closed
intervals from the circle, giving an open cover with U, V' = R. We have

Cco%(u,z) = 72
as there is one copy of Z for U and one for V. Also,
clu,z) =272
given by Z(U n V). The differential is (a,b) — (b —a,b — a), so
HO(U,Z) ~ Z = kerd

and
HYU,Z) = Z = cokerd

Remark. (i) These Cech cohomology groups are equal to the corresponding singular co-
homology groups of S*.

(ii) Note that H is typically only well-behaved when U is also well-behaved. That is,
H i(u, F) depends on U and not just X. In the example above, we could have chosen
U = {S'}, and in this case, H(U,Z) = 0. Also note that Z is not a quasi-coherent
sheaf.

(iii) LetX =P, U =X \ {0}, V = X \ {o0}, U = {U, V}. Then

HO(U,0x)=k; HY(U,0x)=0
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(iv) LetX be Noetherian and separated, and let{U},_, be an affine cover of X, so all Uig...ip
are affine. Let ¥ be a quasi-coherent sheaf on X. Then

HP(U,F) =~ HP(X, F)

and the isomorphism is natural. Thus, in this particular case, the cohomology is easy
to calculate by going via Cech cohomology.

Theorem. Let X = P} and & = P dez Opﬁ (d). Then there are isomorphisms of graded
k-vector spaces

(i) HO(X,F) = k[xq, ..., Xp;
1

Xp.--Xp

(iii) HP(X,F) = 0for p # 0, n.

(i) HY(X, F) = klxgh, .., xqt s

In particular, H*(P}, O(d)) has dimension (”;d), and H"(P}, O(d)) has dimension (_‘;_1).

Proof. We prove this result using Cech cohomology. Part (i) follows from earlier discussions,
as H(X, ) = @ ., TP}, 0(d)).

Part (ii). Consider the standard cover U of P by affines U; = V(x;)¢. Observe that

?(Uio...ip) = k[xo, ... ’xn]xio...xip

This k-module is spanned by monomials xlgo xlﬁ” where k; , ... ,kl-p € Z and the other

coefficients are nonnegative. In the associated Cech complex, we have
n
“n—1 _ . no_
C - @ k[xO’ ’xn]xo...fci...xn’ "= k[an ’xn]xo...xn
i=0

Since U contains only n + 1 elements, C"*! vanishes. Thus,

H™(P?, F) = HYU, F)
C’vn
im(Cn-1 - Cn)

span, {xg" o XEm | k; € Z}

span, {xlgo le” | at least one k; > 0}

as required.

Part (iii). We will use the long exact sequence associated to a short exact sequence of sheaves
and use induction on the dimension n. First, observe that I]J’ﬁ_1 is isomorphic to the closed
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subscheme V(x,) C P}. Leti : PP~! — P} be the inclusion. Recall that OPQ(—l) = L(—H)
where H = V(x,). By a result on the example sheets, we obtain the ideal sheaf sequence

0 — Opp(-1) — Opp —> .01 — 0

where the map Opg(—l) - Opﬁ is given by multiplication by x,. This is analogous to the
fact that for an ideal I of a ring A, we have a short exact sequence

0o—I—A—>47—30

We obtain an associated long exact sequence for the homology. Assuming the result for
dimension up to n — 1, we can break this into three smaller exact sequences.

0 — HO(PT,F) =8 HOPL, F) — HO(PE™, Fppr) — HY(PR, ) X H(PrF) =S 0

(a)
where Fpp-1 = Dicr Opn-1(d);

0 — HP(PLF) —= HP(P},F) —> 0 (b)
forl1 < p<n-—1;and

0 = H'\(PRF) =3 H'UPRF) = H'U PR Fppr) = H'(PEF) =5 H'(PLF) —> 0

©
By using (a) and (c), we observe that (b) is also exact for p = 1 and p = n — 1 by expli-
cit computation in the Cech complex. Now, multiplication by x, makes HP(P}, ¥) into
a k[xo]-module. We will calculate the localisation HP(Py, F), . As localisation is exact,

HP(PR, F)x, = HP(UO, F |U0). But the right-hand side vanishes for p > 0 as Uj is affine.
Hence, for any a € HP(P?, F), there exists k such that xfa = 0. But multiplication by X, is
an isomorphism on cohomology by (b), so in fact HP(P},#) =0foralll1 < p<n-1. O
Given the exact sequence

0 — Opn(=1) — Opp — i*opg—l — 0
taking the tensor product with Opp (d), one can show that we obtain an exact sequence

0 — Opy(d = 1) — Opp(d) — L.Oppa(d) — 0

Note that Opﬁ (d) is locally free.

Let X be proper over Spec k and let ¥ be a coherent sheaf on X.
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7. Sheaf cohomology

Remark. (i) We have observed that H°(X, F) is a finite-dimensional k-vector space. The
same holds for all HP (X, ).

(i) If X has dimension n, then HP(X, ¥) vanishes for p > n. Thus, given (X, ¥), there are
finitely many numbers h?(X, F) = dimy, HP (X, F).

Definition. The Euler characteristic of F is

o)

x(F) = D (=1)PRP(X, F)
p=0
Suppose that
0 > F > F' > F > 0

is an exact sequence of such sheaves. Then the associated long exact sequence gives

X(F") = x(F) + x(F")

7.3. Choice of cover

Given a Noetherian separated scheme X, a quasi-coherent sheaf # on X, and an open affine
cover U which we typically take to be finite, we can construct the Cech cohomology H'(U, F).
In this subsection, we show that the Cech cohomology is independent of the choice of cover
in this case.

Theorem. Let X be affine and let & be quasi-coherent. For any finite cover U of X by affine
opens, the groups H (U, F) vanish for i > 0.

Proof. Define the ‘sheafified’ Cech complex as follows.

e =[] i 5—"‘

fp<+<ip Uiy...ip

where i : Uiy...;, = X is the inclusion. Then the CP(¥) are quasi-coherent sheaves. By
taking global sections,
I'(X, CP(F)) = CP(F)

where CP(¥) is the usual group of Cech p-cochains. The same formula used to build the
Cech complex gives differentials

CP(F) — CPHY(F)

as a morphism of sheaves. We intend to show that the usual Cech complex

COF) — CHF) — CX(F) — -
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is exact. By a result on the example sheet, on affines, taking local sections preserves exact-
ness. Thus, it suffices to prove that

COF) — EI(F) — CX(F) —> -

is an exact sequence of sheaves. However, the exactness of this sequence can be checked
locally on stalks. Let ¢ € X, and suppose g € U;. Now define the map on stalks x :
(‘,’g (F) - 6q_1(5‘~ ), where for a cochain a, the (i ... i,_;)-component of x(a) is equal to the
(jig --- Ip—1)-component of a, where by convention if jiy ... i,_; is not in increasing order, but
o € Sp4 brings it into increasing order and ¢ has sign —1, we instead take the negation of
the component. By direct calculation, one can show that dx + xd = id on CP for all p.

We can now verify exactness at each stalk. We know thatim(CP~! — @P) C ker(CP — CP*1).
Conversely, if a € ker(CP — @P*1), then

a = (xd + dx)(a) = d(xa) € im(CP~! — @P)

O

Lemma. Let X be a scheme and let # be a quasi-coherent sheaf on X. Let U = {Uy, ..., Uy}
and U = {Uy, ..., Uy}. That H(U, F) and H'(U, F) are naturally isomorphic.

Proof sketch. Let CP(F) and CP(¥) be the cochain groups for U, U respectively. There are
maps CP(F) — CP(¥) given by dropping the U, data. To make this precise, observe that
& € CP(F) can be viewed as a pair (a, &y) where & € CP(¥) and «, in CP~! for the sheaf
F |Uo with open cover UlUO. These maps commute with the differentials, so we have an
induced map H:(U, ¥) — H'(U, F). By reducing to a calculation on the affine U,, we can
deduce using the previous result that this induced map is surjective and injective. O

Corollary. H'(U, ¥) is independent of the choice of .

Proof. If U, U are two finite open covers by affines, we can interpolate between them by
using U U U and use the previous result. O

7.4. Further topics in cohomology

(i) Let Xy C P; be the vanishing locus of a homogeneous polynomial f of degree d # 2.
Then X} is not isomorphic to a product over Spec k of schemes of dimension 1. Con-
versely, X, can be isomorphic to P}, Xspec k P, using the Segre embedding. This is a con-
sequence of the sheaf Kiinneth formula, and in particular, the fact that h!(Xy, Ox D=
0.

(ii) The different X,; are non-isomorphic as schemes. This follows from calculating y(Xy).
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7. Sheaf cohomology

(iii) One next direction in cohomology is duality theory. Given a closed immersioni : Z C
X, the ideal sheaf I is the kernel of the map i* : Ox — O, which is a coherent
sheaf on X. The conormal sheaf to the closed immersion i, denoted N}/ , is given

X
by i*(IZ/I% ), where I% is the sheafification of the presheaf U — I,(U)%. If X — S is

separated, then the cotangent sheaf is

Qx

AV
/5_1\,A

X/S

A scheme X over Speck is called nonsingular if Qx is locally free. The dualising sheaf
wyx is the sheafification of U — /\dlmX Qx(U).

Theorem (Serre duality). If X is as above and has dimension n, then if F is a locally
free Ox-module, there is an isomorphism of cohomology groups

H{(X,F) - H (e, F¥ @ wx)Y

where
FV = Homy, (¥, Ox)
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1IV. Model Theory and Non-Classical Logic

1. Substructures

1.1. Notation

The interpretation of a function symbol f in a model M is denoted by f, and similarly the
interpretation of a relation symbol R in M is denoted by RM. If M is an £-structure, and
A C M is a subset, we will write £ 4 for the language obtained by adding a new constant
symbol a to the signature of £ for each element a of A. Then M is naturally an £ 4-structure
by interpreting the constants in the obvious way. We will allow for the empty set to be an
L-structure.

1.2. Homomorphisms and substructures

Definition. Let M and NV be £-structures. An £-homomorphismisamapn : M — N that
preserves the interpretations of the symbols in the language: given a = (a4, ..., a,) € M",

(i) for all function symbols f of arity n, we have that
(@) = ¥ (n(a)

(ii) for all relation symbols r of arity n, we have that

aeRM < p(a)e RV

An injective £-homomorphism is called an £-embedding. An invertible £-homomorphism
is called an £-isomorphism.

Definition. If M C JV and the inclusion map is an £-homomorphism, we say that M is
a substructure of V', and that IV is an extension of M. We will typically use the notation
M C N to indicate that M is a substructure of V' when both are £-structures, not just that
it is a subset.

Example. (i) Let£ bethelanguage of groups. Then (N, +, 0) is a substructure of (Z, +, 0),
but it is not a subgroup.

(i) IfM isan L-structure, X is the domain of a substructure of M if and only if it is closed
under the interpretations of all function symbols. The forward implication is clear.
If f is a function symbol of arity n and X is closed under f, f¥| xn is a function
X" — X interpreting f on the domain X, as required. In particular, any substructure
should also contain all of the constants in the language.

(iii) The substructure generated by a subset X C M is given by the smallest set that contains
X and is closed under the interpretations of all function symbols in M. This is denoted
(X)»r, and one can check that for infinite £ (but not necessarily infinite signature),

(Xl < 1X] + |£]
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1. Substructures

We prove this by iteratively closing up X by applying interpretations of function sym-
bols to elements of X, and then taking the union of the resulting sets. At each stage,
for each function symbol f of arity n, we add at most | X " < |X]|-N, new elements. So
in a single stage, we add at most |X| - N, - |£| = |X] - |£| new elements to X. Repeating
this w times, the final set has size at most
2 2
IXT+1XT - L]+ IXT- L7 + - = IXIA + L]+ L] + )

< IXIAL]1+ L]+ 1£] + )

= 1X]-1£]- R

= x| |£]
We say that M is finitely generated if there exists a finite subset X C M such that

(iv) Consider
(R,-,—1) E =3x. (x> = —1)

But it has an extension (C, -, —1) that does not model this sentence.

Proposition. Let ¢(x) be a quantifier-free £-formula with n free variables. Let M be an
L-structure, and let a be an n-tuple in M. Then for every extension N of M,

ME p(a) < N E ¢(a)

Proof. We proceed by induction on the structure of formulae. First, we show that if ¢(x) is a
term with k free variables, then
tM(b) = tV(b)

for all b € M¥. It is clearly the case if t = x; is a variable, as both structures interpret t(b)
as b;. Suppose t is a term of the form t = f(qy, ..., q,) for f a function symbol of arity ¢ and
the g; are terms. By the inductive hypothesis we have

q"(b) = ¢’ (b)

Therefore,

M) = (@ (), ..., ) (b))
= fN¥(q} ), ..., g2 (b))
= V(@) (), ...,q) (b))
= tV(b)

Thus terms are interpreted the same way in both models. For terms ¢, t, with the same free
variables x, then for any choice of a,

ME (LX) = 6x) = () =1")
= t'(a) =" (b)
= NE (%) = 5X)
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1IV. Model Theory and Non-Classical Logic

Let R be a relation symbol of arity n, and let ¢, ..., t,, be terms with the same free variables
X.

MERE®X), ..., t,X) <= (), ..., ) () € RN
= (),...,t)(a)) € R
= @), ...,tY @) e RY
= NERX), ..., (X))

So the result holds for all atomic formulae. For connectives, note that

ME-@p & MFEyp
= N Fop
= NE g

and

MEQoAY < ME Q) AWM EYP)
= WEAWNEY)
= NFopAY

As quantifier-free formulae can be built out of atomic formulae, negation, and conjunction,
we have completed the proof. O

1.3. Elementary equivalence

Definition. Structures M, N are called elementarily equivalent if for every £-sentence,
MEe &< NEgp

Amap f : M — XN is an elementary embedding if it is injective, and for all £-formulae
@(xy, ..., x,) and elements my, ... ,m,, € M, we have

ME p(my, ...,my) = N E o(f(my), ..., f(my,))

If there is an elementary embedding between two structures, they are elementarily equival-
ent. If M and V are elementarily equivalent, we write M = N

Remark. If M and N are L-structures, and m € M,n € N are ordered tuples of the same
length k, then by
M,m) = (V,n)

we view (M, m) and (JV, n) as structures over £ with k additional constants, interpreting
these new constants as the elements of m and n respectively.

Proposition. If M =~ IV, then M = V.
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1. Substructures

This can be easily shown by induction. The converse is generally not true, for example if the
structures are infinite.

Definition. A substructure M C NV is an elementary substructure if the inclusion map is an
elementary embedding. In this case, we also say that V' is an elementary extension of M. We
write M < V.

1.4. Categorical and complete theories

Recall that a theory J™ is complete if either 7 - ¢ or T F —¢p for all sentences ¢. Then any
two models of a complete theory are elementarily equivalent, but they may have different
cardinalities.

Definition. A theory J is model-complete if every embedding between models of J is ele-
mentary.

Definition. Let x be an infinite cardinal. A theory J is x-categorical if all models of J° of
cardinality x are isomorphic.

It turns out that if theory on a countable language is categorical for some uncountable car-
dinal, then it is categorical for all infinite cardinals.

Proposition (Vaught’s test). Let J” be a consistent £-theory that has no finite models. If 77
is x-categorical for some infinite ¥ > |£|, then J” is complete.

Proof. Suppose there is some ¢ such that 7 ¥ ¢ and J° ¥ —¢. Then J U {¢} and T U {—¢}
are consistent theories, so have models. As J has no finite models, these two models are
infinite. In fact, by the Lowenheim-Skolem theorem, the models can be forced to have size
x. But these models are in particular models of 77, so they must be isomorphic. Since they
are isomorphic, they are elementarily equivalent. But the models disagree on the truth value
of ¢, giving a contradiction. O

Example. (i) Any two countable dense linear orders are isomorphic, so the theory of
dense linear orders without endpoints is Nj-categorical. Thus, by Vaught’s test, the
theory DLO of dense linear orders without endpoints is complete.

(ii) Let F be a field. The theory of infinite (not infinite-dimensional) F-vector spaces is
x-categorical for x > |F|. Hence, the theory is complete.

1.5. Tarski-Vaught test

Proposition. Let V' be an £-structure, and let M C V. Then M is the domain of an ele-
mentary substructure if and only if for any formula ¢(x, t) and tuple m € M, if there exists a
witness n € N such that N = ¢(n, m), then there is a witness 2 € M such that V' E (7, m).
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1IV. Model Theory and Non-Classical Logic

Proof. If M is the domain of an elementary substructure M, then N E Jx. ¢(x, m) implies
that M E 3x. p(x,m). Thus M E ¢(#1, m) for some 1 € M. But then N' E ¢(#1, m), as
required.

For the other implication, if M C )V has the stated property, we first show that M is closed
under the interpretation of function symbols. Consider the formulae ¢/(x,t) = (x = f(t))
for each function symbol f in £. Then for any m € M, there exists n € N such that
N E n = f(m), but then by hypothesis, there exists 7 € M such that V' E vz = f(m). Thus
f(m) = m € M. Interpreting relation symbols on M in the obvious way, we turn M into an
L-structure M, which is clearly a substructure of V.

It now remains to show that the substructure M of V' is elementary. This follows from induc-
tion over the number of quantifiers in formulae, noting that the truth values of quantifier-
free formulae are always preserved under any extension. O

1.6. Universal theories and the method of diagrams

Definition. A formula ¢ is universal if it is of the form Vx. {(x,y) where ¢ is quantifier-free.
A theory is universal if all its axioms are universal sentences.

Definition. Let N be an £L-structure. We define the diagram of V to be the set
Diag N = {p(n,, ... ny) | ¢ is a quantifier-free £, -formula, N' E ¢(n, ..., ng)}
The elementary diagram of \V is

Diag, N = {p(ny, ... ny) | ¢ is an Ly -formula, N E ¢(ny, ..., ny)}

The diagram of a group is a slight generalisation of its multiplication table. Note that a model
of a diagram is the same as an extension, and a model of an elementary diagram is the same
as an elementary extension.

Lemma. Let J be a consistent theory, and let 7 be the theory of universal sentences proven
by 7. If V is a model of 7, then " U Diag V' is consistent.

Proof. Suppose J” U Diag V is inconsistent. As J is consistent, by compactness there must
be a finite number of sentences in the diagram Diag V" that are inconsistent with J". Taking
the conjunction, we can reduce to the case where there is a single sentence ¢(n) that is
inconsistent with 7. Then as 7" U {¢(n)} is inconsistent, 7" - =¢(n). Since J has nothing
to say about the new constants n, we must in fact have 7" F Vx. =¢(x). This is a universal
consequence of J', so by assumption V' models it, giving a contradiction. O

Corollary (Tarski, Lo$). An £-theory J has a universal axiomatisation if and only if it is
preserved under substructures. That is, if M C N are substructures and M E J then
N E 7. Dually, a theory has an existential axiomatisation if and only if it is preserved under
extensions.
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Proof. One direction is clear. Suppose J is preserved under taking substructures. If V' E T,
then V' F J; we show that the converse also holds. By the previous proposition, 7"UDiag NV
is consistent. Let N* be a model of this theory. So N'* is an extension of V, and also models
J. But as J is preserved under substructures, N must model J". O

‘We can show much more with the same method.

Theorem (elementary amalgamation theorem). Let M, N be £-structures,andm € M,n €
XN be tuples of the same size such that (M, m) = (V, n). Then there is an elementary exten-
sion K of M and an elementary embedding g : V'~ X mapping each n; to m;.

Proof. Replacing N with an isomorphic copy if required, we can assume m = n, and that
M and IV have no other common elements. We show that the theory

J = Diag, M U Diag N

is consistent, using compactness. Suppose that @ is a finite subset of sentences in J°, which
of course includes only finitely many sentences in Diag, V. Let the conjunction of those
sentences be written as ¢(m, k), where ¢(x,y) is an £ ,-formula, and k are pairwise distinct
elements of V' \ m. If ® is inconsistent, then

Diag, M + —p(m, k)
Since the elements of k are distinct and not in M, we in fact have
Diag, M + Vy. —p(m,y)

In particular,
(M, m) F Vy. =p(m,y)

By hypothesis,
(V,m) E Vy. 2¢(m,y)

This is a contradiction, as p(m, k) € Diag, N. Hence J is consistent. Take X to be the
L-reduct of a model of 7. O
We can also use this technique to constrain the size of a model.

Theorem (Lowenheim-Skolem theorem). Let M be an infinite £-structure. Let x > |£| be
an infinite cardinal. Then,

(i) ifx < |M]|, there is an elementary substructure of M of size x;
(ii) if x > |M]|, there is an elementary extension of M of size x.

We postpone the proof of part (i).
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Proof. Expand the language £ by adding constant symbols for each m € M and c € x. Let

J = Diag, M U U {=(c =)}

c#c'ex

J has a model by compactness, and this model must be an elementary extension of M with
size at least x. We then apply the downward Léwenheim-Skolem theorem if necessary to
obtain a model of size exactly x. O

For example, if £ is countable, every infinite £-structure has a countable elementary sub-
structure.
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2. Quantifier elimination

2.1. Skolem functions

Definition. Let J be an £-theory, and let ¢(X, y) be an £-formula where x is nonempty. A
Skolem function for ¢ is an £-term ¢ such that

T EVx.(3y.9x,y) = ¢, t(x)))
A skolemisation of an £-theory J” is a language £ D £ and an £*-theory 7+ D J such that
(i) every £-structure that models J” can be expanded to an £*-structure that models J+;
(i) It has Skolem functions for any £*-formula ¢(x, y) where x is nonempty.
A theory is called a Skolem theory if it is a skolemisation of itself.

By ‘expanded’, we mean that J is given interpretations to the elements of £\ £, but no new
objects are added.

Proposition. Let J” be an £-theory, and let ¥ be a collection of £-formulae including all
atomic formulae and closed under Boolean operations. Suppose that for every formula
P(X,y) € F, there exists p(x) € F with

T EVYx.(3y. ¥(x,y) < X))

Then, every £-formula is equivalent to one in F with the same free variables modulo J” (that
is, I proves they are equivalent).

Proof. We proceed by induction on the length of formulae. The case of existential formulae
is the only nontrivial inductive step. Consider the formula 3y, ¥(x,y). By the inductive
hypothesis, (x, y) is T-equivalent to {'(x,y) € F. Then, there is some ¢(x) € F such that

T Vx.(Ay. 9'(x,y) < 9(x))

Thus the formula 3y, (%, y) in question is J-equivalent to ¢p(x) € F. O

Proposition. Let J be a Skolem theory. Then,

(i) every L-formula ¢(x) where x is nonempty is equivalent modulo J to some quantifier-
free p* (x);

(ii) if V E T and X C WV, then either (X)»r = @ or (X)»r < N.
Remark. When NV is a model of a Skolem theory, (X)- is sometimes called the Skolem hull
of X.

Proof. Part (i). Clearly, ¢(x, t(x)) — Iy.¢@(x,y) in any model. So having Skolem functions
means that

T vx.(3y. ox,y) < ¢(x, t(x)))
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completing the proof by the previous proposition.

Part (ii). We proceed by the Tarski-Vaught test. Let M = (X),,, m € M, and let ¢(x, y) be
such that
N E 3y.p(m, y)

Then as IV has Skolem functions, there exists an £-term ¢ such that
N E ¢(m, t(m))

But M is closed under the interpretation of function symbols as it is a substructure, so t(m) €
M. Thus
M E Jy.p(m, y)

as required. O

2.2. Skolemisation theorem

Theorem. Every first-order language £ can be expanded to some £* D £ that admits an
L*-theory X such that

(i) Zis a Skolem £*-theory;
(ii) any £-structure can be expanded to an £*-structure that models %; and
(iii) 1£7] = |£].
Proof. We will design £7 to include Skolem functions for each suitable formula. If y(x,y)
is an £-formula with x nonempty, we add a function symbol F, of arity [x|. Performing this

for all £-formulae of this form, we obtain a language £’ D £. Next, define X(£) to be the set
of £-sentences that enforce the correct behaviour of the Fy:

Vx. (Fy. x(x,y) = x(X, F,(x)))

Note that X(£) is an £’-theory, not an £-theory; there may be existentials in £’ without
explicit witnesses. We can overcome this issue by iterating this construction w times and
taking the union. Formally, we recursively define

Lo=L; Lpp=Lp Z0=0; Zp=Z,UZ(Ly)

cr=JLn z=Jz

n<w n<w

Then we can set

First, note that ¥ is a Skolem theory. This is because each £*-formulaisin £, for somen < w,
s0 Z,,1 C X asserts that it has a Skolem function. It is also clear to see that |£*| = |£| using
basic cardinal arithmetic.

To prove property (ii), it suffices to show that each £-theory can be expanded into an £’-
theory that models X(£); we can then proceed by induction. Note that this argument will
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use the axiom of choice. Let M be an L-structure. We can assume M # @; if M = @
then all sentences in £ would be vacuously true and there would be nothing to prove. We
now expand M into an £’-structure M in the following way. Consider y(x,y) where x is
nonempty and m € M. If

M E 3b. y(m, b)

then we can choose such a b and interpret F, (m) as this value. If
M ¥ 3b. y(m, b)

then we interpret F,,(m) as an arbitrary model element, say, m,. By construction, M’ models
Z(L). O

Corollary. Any £-theory J” admits a skolemisation 7% in a language £ of the same size
as L.

Proof. Take It = JUZ. Any model of 7+ models Z, so 7+ has Skolem functions. Moreover,
any L-structure that models J” can be extended to one that models Z, which will therefore
model . O

Corollary (downward Lowenheim-Skolem theorem). Let M be an £-structure, and let X C
M. Let x be a cardinal such that

IL] +1X] < % < | M|
Then M has an elementary substructure of size x that contains X.

Proof. LetX CY C M and |Y| = x. Let M’ be an expansion of M to a Skolem theory, and
consider the Skolem hull (Y);/. (Y)5 must be an elementary substructure of M’ as Y # @.
Let V be the £-reduct of (Y),. Then V is an elementary substructure of V, and X C V.
It remains to check | V| = «x.

IV <Y+ |LF =x+ L] =x= Y] < |V]

So |[NV] = «x. O

2.3. Elimination sets

Definition. Let 7 be an £-theory. A set F of £L-formulae is an elimination set for J if, for
every £-formula g, there is a Boolean combination ¢* of formulae in F such that

ThHoeo o

A theory J has quantifier elimination if the family of quantifier-free formulae forms an elim-
ination set for J".
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Note that a theory having quantifier elimination depends on its underlying language. Every
Skolem theory has quantifier elimination.

Example. (i) Let p € C[x] be the polynomial x> — 31x% + 6 over C. The sentence
Jx. p(x) = 0 contains a quantifier. But as C is algebraically closed, it is equivalent
to the quantifier-free sentence 1 # 0 v (—31) # 0.

(ii) A real-valued matrix is invertible if there exists a two-sided inverse. This has a quan-
tifier, but there is a quantifier-free sentence equivalent to it, namely, ‘its determinant
is nonzero’.

Remark. (i) We can check if two models of J™ are elementarily equivalent by considering
just those formulae in an elimination set. In particular, to check if a theory is complete,
it suffices to check that all sentences in an elimination set are either deducible from
the theory or inconsistent with it.

(ii) Suppose £ is a recursive language, and the map ¢ — ¢* is computable. Then an
algorithm to decide whether J” proves any sentence can be produced from one that
operates only on the elimination set.

(iii) The elementary embeddings M » NN are precisely those embeddings that preserve ¢
and —¢ for all ¢ in F. So a theory with quantifier elimination is model-complete.

(iv) The definable sets of a model are precisely the Boolean combinations of sets definable
with only formulae in an elimination set.

In the next result, we use the notation —F for the set of negations of formulae in F.

Proposition (syntactic quantifier elimination). Let J be an £-theory, and let F be a family
of £-formulae including all atomic formulae. Suppose that, for every £-formula of the form

6x) =3y. \ ¢i(x.y); @ €FU-F

i<n
there exists a Boolean combination 8*(x) of formulae in F such that
T FVx.(6(x) « 6*(x))

Then F is an elimination set for 7.
The proof is similar to a previous proposition.

Example. Consider the theory J, of infinite sets in the language with empty signature.
The only atomic formulae are equalities, and the only terms in the language are variables.
Using the above proposition, it suffices to eliminate the existential quantifier in formulae
o(xg, --. , X, ) of the form

ay,(/\yzxi)A(/\y#xi)A(/\ )(/\7&)

iel ieJ i,jeKk i,jeEL
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2. Quantifier elimination

where I,J,K,L C {0, ...,n — 1}. Without loss of generality we can assume I is empty, as we
can easily remove the quantifier in this situation. We may also push the quantifier inside
the first conjunct.

(Ely. /\y + xi) AY(Xgseee s Xpe1); P(Xgy e s Xppeq) = ( /\ X; = xj) A ( /\ x; # xj)
iel i,jek i,jeL

But the theory of infinite sets proves Jy. /\l. <7 Y # X;, so we can conclude that ¢ and 3 are
equivalent modulo 7.

2.4. Amalgamation

Definition. Let M and NV be £-structures. We write M' —; NV if every existential sentence
modelled by M is also modelled by V.

Theorem (existential amalgamation). Let M and )V be £L-structures, with S C M. Suppose
there is a homomorphism f : (S),r — N such that (IV, f(S)) —; (M, S). Then there is an
elementary extension KX of N and an embedding g : M » X making the following diagram

commute.
X
/ K
M N
e

Proof. Let M, N be disjoint without loss of generality. Consider the £ 5-theory

(S

J = Diag, M U Diag N' U U {s= f(s)}

SES

We show this is consistent by compactness; then, a model X will be an elementary extension
of M, and V" embeds into it in such a way that makes the above diagram commute due to
the sentences s = f(s). If 7" is inconsistent, there is a finite set of formulae in Diag V" that
are inconsistent with
J" = Diagy M U | J{s = f(s)}
seS
Taking the conjunction, we can suppose it is a single formula ¢(n), where n € V is a tuple
of pairwise distinct elements.
T+ —|¢(n)

Then, using the sentences s = f(s) and the fact that (S), is generated by S, the formula
@(n) is equivalent modulo J” to some quantifier-free formula ¥(s,n") where s € S and
n' e N\imf.

T’ =y(s,n’)
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Now, note that 7 has nothing to say about n’, so in fact
T+ vx. (s, x)

As (IV, f(S)) =1 (M, S), we can convert the universal quantifier above into the negation of
an existential quantifier to conclude

N F —3x.9Y(s, x)

SO
N F =3x.9Y(s,x)

But ¢(n) is in the diagram of 2V, so V' - 3x. 1(s, X), giving a contradiction. O

We can make the following more general definition.

Definition. A class K of £-structures has the amalgamation property if, given a diagram of

elements of K
B A
N . e

there is a structure 2 in K and embeddings making the following diagram commute.
D
B / \ A
\ o ‘/

Definition. Let K be a class of £-structures and M € K. We say that M is existentially closed
in K if, for every existential formula ¥(x) and tuple m € M, the existence of an extension
M C N € Kwith NV E ¢p(m) forces M E 1(m).

Note that being existentially closed in K depends on the choice of K. For example, an exist-
entially closed ordered field need not be an existentially closed field.

Example. (i) Every field that is existentially closed in the class of fields is algebraically
closed. Let A be an existentially closed field, and view a nontrivial polynomial f(y)
over A as a statement p(a, y) where p(x, y) is a term in the language of rings, and a is
a tuple. For instance, y* + 2y — 3 can be seen as p(1,2,3,y), where p(xg, X1, X5, y) =
xo¥? + X1y + (=x,). We can replace f with an irreducible factor and consider the
quotient ring Aly ]/( £y which is an extension of A over which f has a root.

AV gy F Ay p@y) =0
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2. Quantifier elimination

Since f is irreducible, this is an extension of fields. Thus, as A is existentially closed,
AF3y.p(a,y)=0

so f has arootin A. The converse is true, and is one way that Hilbert’s Nullstellensatz
can be stated.

(ii) The existentially closed linear orders are precisely the dense linear orders without en-
dpoints.

(iii) The existentially closed ordered fields are precisely the real closed fields, which are the
ordered fields elementarily equivalent to the real numbers. Equivalently, all nonneg-
ative elements are squares, and all odd-degree elements have a root.

Theorem. Let K be a class of £-structures that is closed under isomorphism. Suppose that
the class of all of the substructures of the structures in K has the amalgamation property.
Then, every existential £-formula ¢(x) is equivalent to a quantifier-free £-formula in all
existentially closed structures in K. In particular, if 7™ is a theory axiomatising existentially
closed structures in KK, then J has quantifier elimination.

Proof. Let p(x) be an existential formula. We will call a pair (M, m) a witnessing pair if M
is existentially closed in K and M E ¢(m). For each such pair, let

Oaeam®) = /\ W(x) a literal | M F 3(m)}

where the literals are the atomic formulae and their negations. Let

x0="\/ xem®

(M,m)
It suffices to show that if V" is existentially closed in K then
(N Epm)) <= (NVF x(m)

Then we can use the compactness theorem twice to reduce y to a first-order finitary formula
as required. If n € NV is such that ' F ¢(n), then (V, n) is a witnessing pair, and thus
N E x(n) by construction. For the converse, if N E y(n), there is a witnessing pair (M, m)
such that V' E 6(yrm)(n). Hence, for each literal ¢(x),

(M E p(m)) = (N F 3(n))

There is thus an embedding e : (m);; > N mapping m to n. Applying the amalgamation
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property, we obtain
D

EAUNEN
7 N
g/// I \\\h
/ e \
/ \
// \\
/ \
M N

(m)yy

where D € K, and both M, N embed into € and therefore into D. Note that g(m) = h(n).
Replacing D with an isomorphic copy if required, we may assume that 4 is an inclusion, so
g(m) = n. We know that (M, m) is a witnessing pair, so M F ¢(m). Then D F ¢(g(m)) as
existential formulae are preserved under taking extensions. Since JV is existentially closed
inkK, D €K, and V' C D, we conclude that ' E ¢(e(m)) so N' E ¢(n) as required.

In particular, if 7™ is a theory axiomatising existentially closed structures in K, then J” has
quantifier elimination by applying the completeness theorem and then using the syntactic
criterion for quantifier elimination proven previously. O

Example. We show that the theory ACF of algebraically closed fields has quantifier elimin-
ation. First, recall that ACF axiomatises the existentially closed fields, so it suffices to check
that the class of substructures of fields has the amalgamation property. Note that a substruc-
ture of a field must satisfy all universal sentences in the theory of fields, so the substructures
of fields are precisely the integral domains. General field theory shows that the class of fields
has the amalgamation property; we can then prove that the class of integral domains has the
amalgamation property by passing to fraction fields.

Example. The theory DLO of dense linear orders without endpoints has quantifier elim-
ination. The class of substructures of dense linear orders has the amalgamation property:
indeed, any two linear orders embed into a poset, which can be extended into a linear order
by Zorn’s lemma, and is thus a substructure of some dense linear order.

2.5. Inductive classes

Definition. A class K of £-structures is inductive if it is closed under isomorphisms and
under unions of chains of embeddings.

Theorem. Let M be a structure in an inductive class K. Then M C N for some NV existen-
tially closed in K.

This is analogous to the theorem that every field has an algebraic closure, and is proven in
a similar way.
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2. Quantifier elimination

Proof. We show that M can be extended to some structure M* € K with the property that
for all m € M and p(x) an existential £L-formula, if ¢(m) holds in some extension of M™* in
K, then ¢(m) holds in M*.

We now show that this suffices to complete the proof. Indeed, we then recursively define a
chain of K-structures by setting M(© = M and MUV = (MD)*, then taking their union
to form V. Then MV lies in K as K is inductive, and moreover it extends M.

This V is existentially closed in K. Suppose ¢(x) is an existential formula, n € V,and D isa
structure in K such that D E p(n). Asn € Ui M ® and the M@ form a chain, there must

be k < w such that n € M® . Then (MK = MK+ £ p(n), so in particular, N E @(n).

We now construct M*. Using the axiom of choice, create an ordinal-indexed list of pairs
(g, mg)g where ¢ is an existential formula and m € M, and 8 ranges over all ordinals less
than some ordinal §. We then construct a chain of K-structures by transfinite induction. Let
M, = M. Ateach successor stage, let Mg, be a K-structure D that extends Mg and models
pp(mg), if this exists. If such a model does not exist, define Mg, ; = Mp. Ateach limit stage,
let M = U,@</1 M. Finally, set M* = M.

If p(x) is existential, m € M, and D is some K-structure that extends M* and models ¢(m),
then (¢, m) = (pg, mg) for some g < 6. Then Mg C M* C D, so Mg,; models pg(mg) =
@(m) by definition. But as ¢ is existential and M* extends Mg, we must also have that M~
models p(m), as required. O

2.6. Characterisations of quantifier elimination
Theorem. Let J be an £-theory. Then the following are equivalent.
(i) The theory J is model-complete.
(i) Every model of J is an existentially closed model of 7.

(iii) Given an embeddinge : A » B between models of T, there is an elementary exten-
sion D of A and an embedding g : B — D such thatgoe = idy.

(iv) For any quantifier-free £-formula p(x,y), the formula Jy. ¢(x,y) is equivalent to some
universal £-formula $(x) modulo J".

(v) Every L-formula is equivalent to some universal £-formula modulo J.

Proof. (i) implies (ii). As all embeddings between models are elementary, if a superstructure
has a witness to an existential, so does the substructure.

(ii) implies (iii). We use the existential amalgamation theorem. Take S to be the set of all
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elements of A, then by (ii), (3B, e(S)) =, (A4, S). We obtain

e
N

as required.

(iii) implies (iv). By the theorem of Tarski and L.o$ characterising theories preserved under
substructures, it suffices to show that existential formulas are preserved under substructures.
Lete : A — B be such that B F ¢(e(a)), where ¢ is an existential formula, and a € A. By
(ii), there is an elementary extension D of A and an embedding g : B » D such that
g o e = id 4. Existential formulas are preserved under extensions, so D F ¢(a). AsA < D,
we must have A E ¢(a), as required.

(iv) implies (v). We proceed by induction on the structure of £-formulae. We can iteratively
convert existential quantifiers to universal quantifiers, noting that (iv) allows us to convert
a sequence of existentials to a sequence of universals simultaneously.

(v) implies (i). Note that universal formulae are preserved under extensions, and every for-
mula and its negation can be represented as a universal formula. This directly gives the
result. -

Let M, N be L-structures. If M, V satisfy the same quantifier-free sentences, we write M =,
N.
Theorem. Let J be an L-theory. Then the following are equivalent.

(i) J has quantifier elimination.

(i) If A,B E J and a € A,b € B are tuples of the same length, then (A4,a) =, (B,b)
implies (A,a) —; (B,b).

(iii) Whenever A, B E J,S C Aande : (S)4 » B, then there is an elementary extension
D of B and an embedding f : A » D extending e.

(iv) J is model-complete and J; has the amalgamation property.
(v) For every quantifier-free £-formula ¢(x, ), the formula Jy. (%, y) is T-equivalent to
a quantifier-free formula ¢(x).
Proof. (i) implies (ii) is clear.

(ii) implies (iii). 1t suffices to show that (B, e(S)) —; (A, S) by the existential amalgamation
theorem. Since a sentence in Ly is finite, it can only mention finitely many of the new
constants in S, so it is enough to check that (8, e(a)) —; (A, a) for all tuples a obtainable
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from S. Now, ifaissuchatupleande : (S),4 > Bisanembedding, then (A, a) =, (B, e(a)),
giving the required result by (ii).

(iii) implies (iv). By the previous theorem, to check model-completeness it suffices to check
that for each embedding h : M » NV between models of 7, there is an elementary extension
D of M and an embedding g : V' — D such that g o h = id,,. Consider the instance of (iii)
where S = h(M) and e = h=! as a map h(M) = M. Then there is an elementary extension
D of M and an embedding g : M » D extending e.

D
/ r\(
" \ / "
(S)n = h(M)

This means that for all m € M, we have g(h(m)) = e(h(m)) = m. To see that J; has the
amalgamation property, consider models.A’, B’, € of 7, where € embeds into both A" and B’.
Models of 7 are precisely the substructures of models of 77, so A" and B’ are substructures
of models A and B of J respectively. Consider the instance of (iii) where S = € = (C)4
and e is the embedding of € into B. Then we have an elementary extension 2 of B and an
embedding f : A » D that extends e.

A\V YXB
; ;
N

Now, D = B F T F Jy, we must have that D is a model of 7, giving the amalgamation
property as desired.

(iv) implies (v). Model-completeness implies that every model of J" is an existentially closed
model of 7. Then, by the theorem characterising theories axiomatising existentially closed
structures, this proof is complete, as the models of 7 are precisely the substructures of mod-
elsof 7.

(v) implies (i). Immediate from the syntactic criterion for quantifier elimination. O
Corollary. Let A be a finite £-structure. The theory Th(A) of A has quantifier elimina-

tion if and only if every isomorphism between finitely generated substructures of .A can be
extended to an automorphism of A.
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Proof. For the forward direction, consider case (iii) of the previous theorem applied to A =
B where e is the composite (a),; = (b), — A. We obtain an elementary extension D of A.
If |[A] = n < N, then the theory of A must include a sentence that states this fact. Thus
D models the same sentence, so |D| = n = |[A]. Thus A and D are elementarily equivalent
finite structures, so the elementary embedding 4 : A » D is an isomorphism.

AsL s p 1y gy
1 1

(a)4 - > (b)4

Now, as [A] = |D|] = n < N, and f is an embedding, it must also be surjective by the
pigeonhole principle, and thus an isomorphism. Hence h~! o f is an automorphism of A
extending our isomorphism (a) ; = (b) 4, as required.

For the converse, we prove case (ii) in the previous theorem. Letb € B E Th(A) and ¢ €
C E Th(A) be tuples of the same length. As Th(A) is a complete theory, the models B and €
are elementarily equivalent to .4, and thus by finiteness they are isomorphic. Thus, without
loss of generality, we can set A = B = €. By hypothesis, (A,b) =, (A, c). Thus we obtain
an isomorphism (b) ; = (c) ; mapping b to ¢, which can be extended to an automorphism
of A by assumption. If m is a witness to

(A,b) F Jy.p(b,y)

then f(m) must witness the truth of

(A,¢) F 3y.p(c.y)
Thus, (A,b) —; (A, c) as required. O
Example. Let V' be a finite vector space. Any isomorphism between subspaces can be ex-

tended to an automorphism using the Steinitz exchange lemma, so Th(V) has quantifier
elimination.

Corollary. Let 7" be an £-theory such that

(i) J preserves existential formulas under substructures: if A, B E J with A C B, and
@(x,y) is a quantifier-free formula, then for all a € A,

(B F3y.¢pay) = (AF3Iy.pay)
(ii) Forany € C A E T, thereis an initial intermediate model A' E T thatis, ¢ C A’ C A,
and for any other model € C B C A, there is an embedding A" » B that fixes C.

Then J has quantifier elimination.
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Proof. We show that condition (ii) of the theorem above holds. Let.4, B be models of 7', and
a € A,b € B be such that (4,a) =, (B,b). It suffices to show that (A,a) —; (B,b). Let
@(x, y) be quantifier-free, and such that A F Jy. ¢(a,y). Let ¢ = (¢, ... ,cx_1) € A be such
a witness, so A E ¢(a, c).

We claim that there is an elementary extension B, of B and an element d, € B, such that
(A,a,cg) =¢ (By,b,dy). If we can do this, we can iterate the process to obtain a chain of
elementary extensions

B=By=By = 2By

and elements d; € B; such that (A, a,c) =, (B,b,d). Then B,_; E ¢(b,d) as ¢ is quantifier-
free, so By_; E Jy. ¢(b,y), giving B E Jy. p(b,y) as By_; = B as required.

To find B, and d,, we use the hypotheses and the compactness theorem. As (A, a) =, (B, b),
there is an isomorphism (a) ; — (b)z mapping a to b. Take ¢ = (a),; C A. By hypothesis
(ii), there is an initial intermediate model ¢ C A’ C A with A’ E 7, and there is an
embedding A’ » B fixing €. Without loss of generality, let us assume that this embedding

is an inclusion.
A / B
A/

@)y — (b)g

Write
¥ = {ih(x,y) | A E P(a,cp), ¥ quantifier-free}

As a € A', we have that A" F 3Jy.y(a,y) for all p € ¥ by hypothesis (i). Now, A’ C B,
and existential formulae are preserved under extension, so B F Jy.(b,y) for all p € ¥.
We conclude that every finite subset of W is satisfied by some element of B, as finite con-
junctions of quantifier-free formulae are also quantifier-free. Thus, by compactness, there
is an elementary extension B < B, and d, € B, satisfying the formulae in ¥. In particular,
(A,a,cp) =¢ (By,b,dy). O]

2.7. Applications

Example. The theory RCF of real closed fields is the theory of ordered fields for which every
nonnegative element is a square, and that all odd polynomials have a root. Equivalently, it
is the theory of ordered fields elementarily equivalent to R. We show that this theory, with
signature (+, X, 0, 1, <), has quantifier elimination. We will assume that every ordered field
has a real closure, and that a real closed field satisfies the intermediate value theorem for
polynomials.

We show that hypothesis (i) of the corollary above holds. Suppose we have an embedding
A C B of real closed fields, a € A, and a quantifier-free formula ¢(x, y) such that B E
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Jy. ¢(a, y). By considering the disjunctive normal form, we may assume that g is a disjunc-
tion of a conjunction of literals. Moreover, the formulae y # z and y £ z can be written in
terms of = and <. Thus, we may assume that ¢(a, y) is of the form

(/\ pi(y) = o) v (/\o < q,-cy))

i<r Jj<s

where p;, q; are polynomials with coefficients in A. If ¢ contains a nontrivial equation
pi(y) = 0, then if a witness exists in B, it must be algebraic over A. One can show al-
gebraically that this witness must lie in A. Therefore, let us suppose r = 0.

There are only finitely many points c, ...,¢,_; € A that are roots for the q;(y). Since the
real closed fields satisfy the intermediate value theorem for polynomials, the g;(y) can only
change sign at the c;. Note that

AEVXy.x<y—-3Az.(x<zAzZ<Y)

Since the c; lie in A, there is an element of A between any pair of distinct ¢;. Suppose b
witnesses y. ¢(a, y) in B. If there is a smallest interval (c;, ¢;) containing B, we can pick
a € A also inside this interval, giving A F ¢(a, a) as required. The other cases are similar.

We now show hypothesis (ii). Suppose ¢ C A where A is a real closed field. Then € is an
ordered integral domain. The field of fractions of € can be made an ordered field in a canon-
ical way, by saying % > 0if ab > 0. The embedding C into A is an injective homomorphism

of ordered rings, into an ordered field. By the universal property of the fraction field, there
is a unique homomorphism of ordered fields from FF(C) to A that extends the inclusion of
C into A. Let A’ be the real closure of FF(C), so that ¢ C FF(€) C A' C A. If B E RCF
and ¢ C B, then by the same argument we have a unique ordered ring homomorphism
FF(C) — B extending the embedding ¢ C B. Thus A’ C B as well, and this embedding
fixes C.

Corollary (Hilbert’s Nullstellensatz). Let k be an algebraically closed field, and I be a proper
ideal of k[xy, ..., x,]. Then there exists a € k" such that f(a) =0forall f € I.

Proof. By Zorn’s lemma, every proper ideal can be extended to a maximal ideal, so without
loss of generality we may assume that I is a maximal ideal. Let L be the residue field kX1, .0 xp ]/I,

and let L be its algebraic closure. By Hilbert’s basis theorem, there exists a finite set of gen-
erators fi, ..., f, for I. Note that 0 is a witness to

LE3IX (fi(X) =0A - A f.(x) = 0)

We have embeddings k C L C L, where both k and L are algebraically closed fields. The
theory of algebraically closed fields has quantifier elimination, so is model-complete. Thus
the embedding k C L is elementary, so

kE3Ix (fix)=0A-- A f,(x)=0)

‘We can then take a to be a witness to this existential. O
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Corollary (Chevalley’s theorem). Let k be an algebraically closed field. Then the image of
a constructible set in k" under a polynomial map is constructible.

Proof. The quantifier-free-definable subsets of k" are precisely the finite Boolean combina-
tions of the Zariski closed subsets of k", which are by definition the constructible sets. As
ACF has quantifier elimination, these are exactly the definable subsets using arbitrary for-
mulae. Now, if X C k" is constructible and p : k" — k™ is a polynomial map, then

p(X) ={y € k™ | Ix. p(x) = y}

This is definable in the same language, so is a constructible set. O
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3. Ultraproducts

3.1. Products

We will use the symbol 1 to define functions without giving them explicit names. The syntax
Ax.y represents the function f such that f(x) = y.

Let {M;};.; be a set of L-structures. The product [ [,_; M; of this family is the £-structure
with carrier set

[Tt ={e: 1> | M |ali) € M}

iel
such that

« an n-ary function symbol f is interpreted as

M (H%) - [
I I

given by
(A, oo s aty) = Ad fMi(ay (D), ..., ay (i)

« an n-ary relation symbol R is interpreted as the subset
n
RILMi (H Mi>
I
given by

Vi € I (a;(i), ..., an(i)) € RM

RILM: — {(ocl, s Oy) € <HML)
T

The relation symbols in this kind of product are not particularly useful. We want to construct
a different kind of product in such a way that ¢ holds in the product if the set of M; that
model ¢ is ‘large’.

3.2. Lattices

Definition. A lattice is a set L equipped with binary operations A and V that are associative
and commutative, and satisfy the absorption laws

av(aanb)=a;, aA(avb)=a

A lattice is called

o distributive,ifaA(bvc) =(aAb)V(aAc)
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« bounded, if there are elements L and T suchthatav .l =aanda AT =a;

« complemented, if it is bounded and for each a € L there exists a* € L called its com-
plementsuchthataAa* = Landava® =T,

« a Boolean algebra, if it is distributive, bounded, and complemented.

Remark. (i) Distributive lattices model the fragment of a deduction system with only
the conjunction and disjunction operators. Boolean algebras model classical proposi-
tional logic.

(ii) Every lattice has an ordering, defined by a < b when a A b = a. This ordering models
the provability relation between propositions.

Example. (i) Let I be a set. The power set P(I) can be made into a Boolean algebra by
taking A =nand v = u.

(ii) More generally, let X be a topological space. The set of closed and open sets of X
form a Boolean algebra; they can also be thought of as the propositions in classical
logic. In fact, all Boolean algebras are of this form. This result is known as Stone’s
representation theorem.

(iii) For any £-structure M and subset B C M, the set {p(M) | p(x) € L} of definable
subsets with parameters in B is a Boolean algebra.

3.3. Filters
Definition. Let X be a lattice. A filter F on X is a subset of X such that
() F#g;
(ii) & is upward closed: if f < x and f € ¥ then x € F;
(iii) F is downward directed: if x,y € F,thenx Ay € F.

A filter on X may be thought of as a collection of ‘large’ subsets of X: subsets that are so large
that the intersection of any two large subsets is also large. For property (ii), we might also
say that ¥ is a terminal segment of X.

Example. (i) Given an element j € I, the family F; of all subsets of I containing j is a
filter on P(I). A filter of this form is called principal. A filter that is not principal is
called free.

(ii) The family of all cofinite subsets of I forms a filter on P(I), called the Fréchet filter.
One can show that any free maximal filter on an infinite set must contain the Fréchet
filter.

(iii) The family of measurable subsets of [0, 1] with Lebesgue measure 1 is a filter.

Definition. A filter # on a lattice L is proper if it is not equal to L. A maximal proper filter
is called an ultrafilter.
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The ultrafilters on P(I) are precisely those filters # where for each U C I, either U € F or
I\UeZ#.

Proposition (the ultrafilter principle). Given a set I, every proper filter on 2(I) can be ex-
tended to an ultrafilter.

The ultrafilter principle is a choice principle that is strictly weaker than the axiom of choice.

Proof. Apply Zorn’s lemma. O

3.4. Lo$’ theorem

Fora € []._, M; and ¢(x) an £-formula, we write

[p(0)] = {i € I | M; E p(a(i))}

Let I be a set and F be a filter on P(I). Let {M;}._, be a family of £-structures. The carrier

set for the reduced product [T Mi/rf is the quotient of the cartesian product [], o Mi by
the equivalence relation defined by @ ~ f§ if and only if [« = §] € F. We write () for
the equivalence class of « in the reduced product. If F is an ultrafilter, we call the reduced
product an ultraproduct. If all of the factors M; are equal, the ultraproduct is called an
ultrapower.

iel

iel

We turn the reduced product into an £-structure as follows.

SV (ot () = (A Yty (0D i (D))

My [R(ay, ..., )] € F

(ar), ... {an)) ER
Note that if & = F; is a principal filter, then I1 MV; = M;.
Theorem. Let {M;};;

(o), ... s {an)) € (H Myu)n and £-formulae ¢(x,, ..., X;),

be a set of £-structures, and U be an ultrafilter on P(I). Then for all

LMy, e o). .. (@) = [o(an . a)] € U

In particular, if each M; is a model for some theory J°, then so is the ultraproduct.

Proof. We prove the result by induction on the length of ¢. The result holds for atomic
formulae by the definition of the interpretations of function and relation symbols. Since all
first-order formulae are equivalent to one composed of atomic formulae under negations,
conjunctions, and existential quantification, it suffices to check these cases.

If the theorem holds for 1, and ¢ = -3, we can negate both sides of the induction hypothesis
to show that

M e~y = wleu
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As U is an ultrafilter, the right hand side holds if and only if the complement of 3] lies in
U. But this complement is precisely [¢], as required.

If the theorem holds for 3, 1,, then

HMVu Fiy < [YilelUu

L% e gy agy = 1] € wand g, e u
= [P1AP]el

Indeed, if [¢; A ;] € U, then both [¢;] and [1),] are in U, since [Pp; A P,] C [¢1],[P2]-

Conversely, if [, ], [$,] € U, then [, ]N[,] C [, A, ] as they are equal, but [¢;|N[P,] €
U, so [, AY,] € U.

For the case of existential quantification, we will use the axiom of choice. Let x be free in .
We have

HMi/u E3x.(x) = Ha). HMi/u Fp(a))

By the inductive hypothesis, the right hand side holds if and only if [¢(«)] € U. Suppose
that

| RLVSVED
Then [Y(a)] C [Tx.P(x)] € U, as U is a filter.

Conversely, suppose [3x.1(x)] € U. Using the axiom of choice, we can choose a witness
a(i) toM; E Ix.P(x) foreach i € [Ix.(x)]. Foreachi & [Ix.(x)], we choose an arbitrary
element of M;. Hence,

L1, e pia
O
Remark. (i) Since U is an ultrafilter, the complement of [3x. (x)] is not in U. Thus, the

set of indices I for which (i) was chosen arbitrarily does not lie in the ultrafilter, so
this choice does not change the equivalence class of a.

(ii) The use of the axiom of choice in the above theorem is essential.

Example. We will show that the class of torsion groups is not first-order axiomatisable in
the usual language of abelian groups with signature (+,0). Let U be a free ultrafilter on w,
and consider the ultraproduct

c=11 Cirny,

i<w

where C; is the cyclic group of order i, generated by g;. Consider the element

g=(1.g)€G
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This has finite order if and only if [ng = 0] € U for some n > 0. However, for each such n,
the set [ng = 0] is finite, so [ng # 0] € U as U contains the Fréchet filter, thus [ng = 0] ¢ U.
But if the class of torsion groups were axiomatisable, this ultraproduct would also model
that theory, and thus would be torsion.

Example. Let U be a free ultrafilter on w, and consider the ultrapower

N = H Dz U
1<w
Its elements are equivalence classes of sequences of natural numbers, where {(a,)) = {((b,,))
if and only if {n | a,, = b,,} € U. It has elements such as ((n),,«,), Which represent infin-
itely large numbers. If N has its usual structure for the language of arithmetic £, then
the ultrapower N¥ is a nonstandard model of Peano arithmetic by Lo’ theorem, and is an
elementary extension of N.

Example. Let U be a free ultrafilter on w, and consider the ultrapower R¥, which is an
elementary extension of R. This includes ‘large numbers’ bigger than any standard real

number, such as w = ((n),,«,,), and also includes ‘infinitesimal numbers’ such as L. Thisis
w
not zero, but is smaller than any positive standard real.

We can give a semantic proof of the compactness theorem without using completeness, by
using Lo$’ theorem.

Corollary. Let J be a first-order theory such that every finite subset of 7" has a model. Then
J has a model.

Proof. If J is finite, the result is trivial, so we may suppose it is infinite. Let I be the set of
all finite subtheories of 77, and let

D={YCI|IAELVXEY.ACX}

Then D is a proper filter on I, so by the ultrafilter principle, it can be extended to an ultrafilter
U. Using the axiom of choice, let M, be a model of A for each finite subtheory A € I. Then,
for any ¢ € 7, we have

{YCI|VXeEY.peX}eDCU

Then by Lo$’ theorem, the ultraproduct [aer MA/U models ¢. In particular, the ultraproduct
models J. O
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4. Types

4.1. Definitions

Definition. Let X C M" be a subset of an £-structure M, and let P C M. We say that X is
definable in £ with parameters in P if there is a tuple p € P and an £p-formula ¢(x,y) such
that

X =opxp)={meM" | MFE ¢(m,p)}

If P = M, we say that X is definable.

Example. Consider the usual natural numbers as a structure for the language generated
by the signature (+, -,0,1). Then there is an £-formula T(e, x, s) such that N E T(e, x, s) if
and only if the Turing machine encoded by the number e halts on input x in at most s steps.
Thus, the set of halting computations is definable in this language. In particular, this implies
that the theory of N is not decidable.

Definition. Let 7 be a theory and n € N. We obtain an equivalence relation ~ on the set
L(x) of L-formulae with free variables x, where x is a tuple of length n, by setting

p(x) ~ Pp(x) = T F Vx.(p(x) < P(x))

The quotient B,(J) = L(X)/N becomes a Boolean algebra by setting [¢] I} [¢] = [¢ X ]
for any logical connective IX, called the Lindenbaum-Tarski algebra of J” on variables x.

Definition. Let M be an £-structure and A C M. Let J be the £ 4-theory of sentences with
parameters in A that hold in M, denoted Th, (M). The proper filters on the Boolean algebra
B, (J) are called the n-types of M over A.

Remark. If F is a proper filter on B,(7), it cannot include the bottom element [L]. This
motivates the following more convenient definition of an n-type.

Definition. Let M be an L-structure and A C M. A set p of £4-formulae with n free
variables x is an n-type of M over A if p U Th, (M) is satisfiable. More generally, if 7 is a
theory, we say that a set p of £L-formulae with n free variables x is an n-type of J™ if

7u{ax. \ ¥}
is consistent for all finite subsets ¥ of p. An n-type pis called complete if it is maximal among
the collection of n-types, in the sense that for any £-formula ¢(x), either ¢ € por ¢ & p.
We denote the set of complete n-types by S, (), or S (A) if 77 = Th,(M). An element
m € M" realises an n-type p in M if M F ¢(m) holds for all ¢ in p. If no element realises
a type, we say that the type is omitted in M.

Example. (i) Let M = (Q, <), and consider the formulae n < x for each natural number
n. This collection of formulae is a 1-type, as any finite subset is consistent with Thy(Q).
This type is omitted in Q as no rational number x satisfies all of the formulae n < x for
n € N. However, this type is realised in an elementary extension of Q. The realisers
can be thought of as imaginary, infinitely large rationals.
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(ii) Consider R as a structure for the theory of ordered fields. The set of formulae
{0<x<%’0<neN}

form a 1-type of infinitesimal real numbers. This type is omitted in R, but there is an
elementary extension realising this type, such as the ultrapower with respect to a free
ultrafilter.

(iii) For any £-structure M, subset A C M, and tuple m € M, we can form the n-type of
all of the £ 4-formulae that hold in M of m.

tp™(m/A) = {p(x) € L4 | M E p(m)}

This is a complete n-type, called the type of m over A. This is a type corresponding to
the principal filter on an equivalence class corresponding to an equality formula.

Proposition. Let M be an L-structure with A C M and let p be an n-type of M over A.

Then there is an elementary extension V' of M that realises p.

Proof. We use the method of diagrams, and show that
I' = p U Diag_ (M)
is satisfiable by compactness. Let A be a finite subset of ', and let
p= N\ ¢ v= AN ¥
@'eAnp ¥’ €AnDiag, (M)

Note that A is satisfiable if and only if

p(x,a) Ap(a’,b)
is satisfiable, where a,a’ € Aand b € M \ A, and

pE€p; MEP@’,b)

As p is an n-type, there is an £ 4-structure N that satisfies p U Thy(M). As M F ¢(a’, b),
we have M F Jy.(a’,y). Note that this is an £ 4-formula, so

(Fy.¥(a’,y)) € Thy(M)

Hence,

No E p(c,a)dy.pp(a’,y)
for some ¢ € N,. Note that N is an £ 4-structure, not an £,-structure. However, by
interpreting b in V|, as the witness y to Jy.(a’,y), we make N into an £,-structure;

elements of M not in A or b are interpreted arbitrarily. In this £,,-structure, A is satisfiable.
Thus T is satisfiable by compactness.

Now, let V" be an L,-structure satisfying I', so V' is an elementary extension of M. As N
satisfies p, there must be a tuple n € IV with V' F ¢(n) for each ¢ € p. In other words, n
realises p in V. O
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Corollary. An n-type p of M over A C M is complete if and only if there is an elementary
extension V" of M and some a € V such that p = tp”¥ (a/A).

Proof. If V is an elementary extension of M and a € NV, then
tp™ (a/A) € S (A) = SY(A4)
as the extension is elementary.

Conversely, if p is a complete n-type, then by the previous result, there is an elementary
extension V' of M with a tuple a realising the type. As p is complete, every £ 4-formula ¢,
either ¢ € p or ¢ & p, but not both. If ¢ € tp™ (a/A), then IV E ¢(a), so we cannot have
@ & p,thus @ € p. Conversely, if o € p, then N E @(a) as a realises p, so ¢ € tp™ (a/A).
Thus p = tp” (a/A) as required. O

4.2. Stone spaces

Let M be an £-structure and let A C M. For each formula ¢ on n variables, we consider the
set of all complete types that include this formula, denoted

[e]l ={p € SY*(A) | ¢ € p}

Note that

leval=leluldl; eyl =Ilelnlyl]
These serve as the basic open sets for a topology on S}*(A), so an open set is an arbitrary
union of open sets of this form. Moreover, each of these basic open sets [¢]] is the comple-
ment of another basic open set [—¢], so these open sets are also closed. The S}¥(A) are
called Stone spaces, which are compact and totally disconnected topological spaces.

Example. Let F be an algebraically closed field, and let k be a subfield of F. The complete
n-types p € SE (k) are determined by the prime ideals of k[x;, ..., X,,]. For such a type p, we
can define a prime ideal by

Ip = {f € k[xl’ ’xn] | (f(xlf ’xn) = 0) € p}

These ideals are prime, and all prime ideals arise in this way. The map p +— I, is a continuous
bijection from the type space SE' (k) to the prime spectrum Spec k[x,, ..., X,,] with the Zariski
topology. Also, note that |SE (k)| < |k| + R, by Hilbert’s basis theorem.

4.3. Isolated points

Recall that a point p in a topological space is isolated if {p} is an open set. If p is isolated in
SM(A), then
{p} =il
T

so as {p} is a singleton, there must be a single formula ¢ = ¢; such that {p} = [¢]}; we say
that ¢ isolates the type.
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Definition. Let 7 be an £-theory. We say that a formula ¢(x, ..., x,,) isolates the n-type p
of 7 if 77U {p} is satisfiable, and

T E VX (p(x) — Y(x))

forall ¢ € p.

Proposition. If ¢ isolates p, then p is realised in any model of 7” U {3x. ¢(x)}. In particular,
if 7 is a complete theory, then all isolated types are realised.

Proof. If M is a model of 7" and there exists a such that M F ¢(a), then clearly a realises p
in M. If 7 is complete, then either

JE Ix (%)

or
T E VX, p(x)

If p isolates T, then J” U {¢p} is satisfiable by definition, so the latter case is impossible. [

4.4. Omitting types

Theorem (omitting types theorem). Let £ be a countable language and let 7" be an £-theory.
Let p be a non-isolated n-type of 7. Then there is a countable model M E J that omits p.

Proof. Let C = {cg,cy, ... } be a countable set of new constants. We expand J™ to a consistent
Lc-theory J7* by adding recursively defined sentences 6y, 6;,.... We will do this in such
a way that 6; — 6 for all s < t. To build the 6, we first enumerate the n-tuples C" =
{dy,d,, ... }, and enumerate the £--sentences ¢, @1, -...

Start with 6, = Vx.x = x, which is trivially true. Suppose we have already constructed &,
in such a way that J” U {6} is consistent.

First, suppose s = 2i. These sentences will be designed to turn C into the domain of an
elementary substructure of some model of 7. Suppose that ¢; = Ix.(x) is existential,
with parameters in C as ¢ is an £ -formula. Suppose also that 77 E 6; — ¢;. As only finitely
many constants from C have been used so far, we can find some unused c € C. Let

es+1 =6 A IP(C)

If NV models 7" U {6}, then there is a witness to 3 in N, so we can interpret c as this witness.
Thus, N models 7 U{6;,}, so this theory is consistent. If ¢; is not existential, or 7 ¥ 6, — ¢,
then define 6;,, = 6.

Now, suppose s = 2i + 1. These sentences will be designed to ensure that C omits p. Let
d; = (ey, ..., e,). Remove every occurrence of the e; from 6; by replacing it with the variable
Xj, and replace every occurrence of other constants in C with a fresh variable x, together
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with a quantifier 3x,. in front of the formula. This yields an £-formula ¥(xy, ..., x,). For
example, if
6 =Vx.Jy.(rx +eje; = y* +tey); r#teC

then
P(x1, X,) = Ix,. 3x,. V. Ay, (x,X + X1X5 = Y* + X, X,)

As p is not isolated, there is no £-formula that isolates it, so there must be some ¢(x) € p
that is not implied by ¥(x); otherwise ¥ would isolate the type p. We define 6, in such a
way that d; cannot realise p.

O5+1 = 65 A 79(d;)

This is consistent, because there must be some n € N E J such that
N E () A ~¢(n)

and we can turn JV into an £c-structure that models &;,, by interpreting d; as n, and in-
terpreting the constants in C but not in d as the respective witnesses to the existential state-
ments dx, within .

Let 7 be J together with all of the 6. Note that each J” U {6} is consistent, and each 6 ;
implies 6;, so by compactness, 7 must be consistent. Moreover, if M is a model of 7, the
construction of 8,;, ; ensures that C has a witness to ¢; that holds in M. Thus, by the Tarski-
Vaught test, C is the domain of an elementary substructure of M. If c € C E J*, thenc = d;
for some i. As C F 6,;,,, we have =¢(c) for some ¢ in the type p. Hence ¢ cannot realise
the type pin C. O

Remark. The proof can be generalised to omit countably many types at the same time.
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5. Indiscernibles

5.1. Introduction

Given a linear order 7, we will write 5] for the set of ordered k-tuples in #:

[k ={aent|ay <" a; <7 <" ap_,}

Definition. Let M be an £-structure, let ® be a set of £L-formulae, and let 7 be a strict chain
of elements of M. We say that # is ®-indiscernible in M if

M E ¢(a) < ¢(b)
for all a,b € [n]* of the correct length and ¢ € ®. We simply say that 7 is a sequence of
indiscernibles if the above holds where @ is the set of every £L-formula.

Example. (i) Any linearly ordered basis B for a vector space provides a sequence of in-
discernibles. Indeed, given a,b € [B]k, there is an automorphism of the vector space
that mapsatob.

(ii) Any chain of algebraically independent elements in a field k E ACF is a sequence of
indiscernibles.

(iii) IfRis aring, then the variables Xj, ..., X, form a set of indiscernibles of R[ X}, ..., X},].

Definition. An Ehrenfeucht-Mostowski functor is a mapping F that takes each linear order 7
to an £-structure F(n), and each order embedding g : 7 » ¢to an embedding of £-structures
F(g) : F(n) » F(¢), in such a way that

(i) eachn generates F(n), thatis,n C F(») as sets, and every element of F(7) is of the form
tF(a) where t(x) is an £-term and a € [5];

(ii) for each order embedding g : 1 » ¢, the embedding of £-structures F(g) extends g;
(iii) for every linear order 7, we have F(1,) = 1p(,);
(iv) for each composable pair of embeddings f, g, we have F(g o f) = F(g)F(f).

In particular, every automorphism of a linear order 7 induces an automorphism of F(n).

Proposition (sliding property). Let F be an Ehrenfeucht-Mostowski functor, let ), € be lin-
ear orders, and let a € []¥,b € [¢]X. Then for every quantifier-free formula ¢(x,, ... , Xi),
we have

F(n) F p(a) <= F(e) F p(b)

Proof. Embed 7 and ¢ into some linear order p in which a and b are identified. Let f : n — p
and g : ¢ — p be the embeddings. Suppose that F(n) E ¢(a). As embeddings preserve
quantifier-free formulae and the map F(f) : F(n) —» F(p) extends f, we must have that
F(p) E ¢(f(a)). As f(a) = g(b), we must have F(p) E ¢(g(b)), and so for the same reason,
F(¢) E ¢(b). O
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We see that the chain 7 C F(#) is indiscernible by quantifier-free formulas.

Definition. Let M be an L-structure containing a linear order 7 C M as sets. Then, we
define the theory of 7 in M, denoted Th(M, ), to be the set of all £L-formulae p(x) that are
satisfiable in M by every ordered tuple a = a5 < --- < ai_; in . The theory Th(F) of an
Ehrenfeucht-Mostowski functor F is the set of all £-formulae ¢(x) such that F() E ¢(a)
for every linear order # and ordered tuple a in 7.

Lemma. Let 7 be an infinite linear order, let F be an Ehrenfeucht-Mostowski functor, and
let @ be a universal sentence that is true in F(5). Then ¢ € Th(F).

Proof. Let ¢ = Vx.9(x) where ¥ is quantifier-free. Let € be a linear order, and let a € F(e);
we need to show F(¢) E 3(a). As ¢ generates F(¢), there is a finite suborder ¢, such that
a € F(gy). But 7 is infinite, so there is an embedding f : ¢, » ». By assumption, F(f)(a)
satisfies 1 in F(n), so F(gy) F 1(a), as 3 is quantifier-free so is preserved under substructures.
Similarly, F(¢) E ¥(a), as required. O

5.2. Existence of Ehrenfeucht-Mostowski functors

Lemma (stretching property). Let M be an £-structure that contains the linear order w as
a generating set. Suppose that w is indiscernible by quantifier-free formulae. Then there is
an Ehrenfeucht-Mostowski functor F such that M = F(w). Moreover, if G is another such
functor, then there is an isomorphism « : F(n) - G(n) for each linear order », and oc|77 =1,.

F is unique up to natural isomorphism.

Definition. Let F be an Ehrenfeucht-Mostowski functor, and let 7" be a theory. The models
of J that are of the form F(») are called Ehrenfeucht-Mostowski models of T".

Theorem (Ramsey). Let X be a countable linear order, and let k, n be positive integers. Then
for every function f : [X]* — n, there is an infinite subset Y C X such that f is constant on
[Y7¥.

We will use Ramsey’s theorem to show that Ehrenfeucht-Mostowski models for Skolem
theories with infinite models always exist.

Lemma. Let F be an Ehrenfeucht-Mostowski functor such that Th(F(w)) is Skolem. Then
Th(F) includes either ¢(x) or =¢p(x) for every £L-formula ¢(x). In particular, all of the F()
are elementarily equivalent, and each linear order 7 is indiscernible in F(7).

Proof. Since Th(F(w)) is Skolem, it admits a universal axiomatisation. Moreover, every for-
mula is equivalent to a quantifier-free formula modulo Th(F(w)). The result then follows
from the sliding property and the lemma on universal sentences. O

Theorem (Ehrenfeucht-Mostowski theorem). Let M be an £-structure, and suppose that

Th(M) is Skolem. If 7) is infinite linear order that is contained as a set in M, then there is an
Ehrenfeucht-Mostowski functor F in £ whose theory expands Th(M, n).
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Proof. We want to build a theory expanding Th(M, 5), whose models include an indiscern-
ible copy of w. First, expand £ to add w-many constants C = {c; | i € w}, and we build an
L -theory J” with the following axioms:

(i) @(a) < @(b), for each £-formula ¢(x) and ordered tuples a,b € [C]¥;
(ii) ¢(cg, .- sCr_1), for each formula ¢(x,, ..., x;_;) in Th(M, ).

We will show that this theory has a model by compactness. Let U be a finite subset of T,
and list the formulae in U as ¢, ..., ¢,,_1. Note that there is some finite k such that the new
constants that show up in the formulae in U are among cy, ..., cx_;. By adding redundant
variables, we may assume that each of these formulae all have free variables c, ..., cx_; for
simplicity.

Define an equivalence relation ~ on []¥ by declaring that a ~ bif M kE ¢ j(a) if and only
if M & ¢;(b) for each j < m. This equivalence relation partitions [5]¥ into finitely many
equivalence classes. Hence, by Ramsey’s theorem, there is an infinite sequence e = ¢, <
e; < --- < ey_1 in 7 such that any two ordered k-tuples extracted from e are in the same
equivalence class. We can interpret each c; in M as e; for each j < k, making M into an
L-structure that models U.

Let IV be a model of 7. The new constants c¢; must be interpreted as different elements of
N, as Th(M, n) includes the sentence x, # x;. Hence V' contains a copy of w, by seeing c;
in 2V as i. Consider V*, which is the £-reduct of IV, and let 8§ = (w) . Note that Th(M, )
is contained in Th(V*, w). This in particular implies that Th;(N*) is Skolem, as Th(M)
is Skolem and Th(M) C Th(M,n). It then follows that § is an elementary substructure
of *, and is generated by w. Then, Th(M,7) C Th(S,w). Finally, sentences in J ensure
that w is indiscernible in § by construction, so the stretching lemma gives an Ehrenfeucht-
Mostowski functor F with 8§ = F(w), which completes the proof by the previous lemma. [J
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6. Intuitionistic logic and lambda calculi

6.1. The Brouwer-Heyting-Kolmogorov interpretation

We will construct a system of logic in which every proof contains evidence of its truth. Our
system will have the following properties, known as the Brouwer-Heyting-Kolmogorov in-
terpretation.

(i) L hasno proof.
(ii) To prove ¢ A 3, one must provide a proof of ¢ together with a proof of .

(iii) To prove ¢ — 1, one must provide a mechanism for translating a proof of ¢ into a
proof of . In particular, to prove ¢, we must provide a way to turn a proof of ¢ into
a contradiction.

(iv) To prove ¢ V 3, we must specify either ¢ or 1, and then provide a proof for it. Note
that in a classical setting, a proof of ¢ V 1 need not specify which of the two disjuncts
is true.

(v) The law of the excluded middle LEM, which states ¢ V —1¢, is not valid. If this held for
some proposition, we could decide whether the proposition was true or its negation is
true, because any proof of ¢ V =g contains this information.

(vi) To prove 3x. p(x), one must provide a term ¢ together with a proof of ¢(t).

(vii) To prove Vx. ¢(x), one must provide a mechanism that converts any term ¢ into a proof
of p(t).

This will be called intuitionistic (propositional) logic IPC.

Theorem (Diaconescu). In intuitionistic ZF set theory, the law of the excluded middle LEM
can be deduced from the axiom of choice AC.

Proof. Let ¢ be a proposition; we want a proof of ¢ vV —i¢. Using the axiom of separation, we
have proofs that the following sets exist.

A={x€e{0,1}|pVv(x=0)}; B={x€e€{0,1}|pV(x=1)}

These sets are inhabited: there exists an element in each of them; in particular, 0 € A and
1 € A are intuitionistically valid. Note that being inhabited is strictly stronger than being
nonempty in intuitionistic logic. This is because any proof that a set is inhabited contains
information about an element in the set. The set {A, B} is a family of inhabited sets, so by
the axiom of choice, we have a choice function f : {A, B} - AU B, and we have a proof that
f(A) € A and f(B) € B. Thus, we have a proof of

(pVv(fA)=0)A(pV (f(B)=1))

We also have a proof that f(A), f(B) € {0,1}. In particular, we either have a proof that
f(A) = 0 or we have a proof that f(A) = 1, and the same holds for B. We have the following
cases.
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1IV. Model Theory and Non-Classical Logic

(i) Suppose we have a proof that f(A) = 1. Then we have a proof of ¢ v (1 = 0), so we
must have a proof of ¢.

(ii) Suppose we have a proof that f(B) = 0. Then similarly we have a proof of p v (0 = 1),
so we must have a proof of ¢.

(iii) Suppose we have proofs that f(A) = 0 and f(B) = 1. We will prove —¢. Suppose that
we have a proof of . Then from a proof of ¢ vV (x = 0) or ¢ V (x = 1) we can derive a
proof of the other, so by the axiom of extensionality, A = B. Then0 = f(A) = f(B) =1
as f is a function, giving a contradiction. Thus, we have constructed a proof of —¢.

We can always specify a proof of ¢ or a proof of —¢p, so we have ¢ v —¢. O
Remark. (i) Intuitionistic mathematics is more general than classical mathematics, be-
cause it operates on fewer assumptions.

(ii) Notions that are classically conflated may be different in intuitionistic logic. For ex-
ample, there is no classical distinction between inhabited and nonempty sets, but they
are not the same in intuitionistic logic. Other examples include finiteness, or disequal-
ity and apartness.

(iii) Intuitionistic proofs have computational content attached to them, but classical proofs
may not.

(iv) Intuitionistic logic is the internal logic of an arbitrary topos.

6.2. Natural deduction

We will use the notation I' - ¢, or T’ F|pc @, to denote that the set of open assumptions T
let us conclude ¢. T is also called the context. We will inductively define this provability
relation. Some rules, called introduction rules, let us construct proofs.

A-1 V-1 V-1
r-A I'-B r-A I'-B
I'FAAB 'AvB 'AvB

Dually, some rules, called elimination rules, let us extract information from proofs.

A-E A-E V-E
I'HAAB I'HAAB r ArcC I''BFC 'HAVB
T'HA I'+B 'C

We now define the principle of explosion, which is an elimination rule for L. We do not

construct an introduction rule for L.
1-E
r-.

r-A
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6. Intuitionistic logic and lambda calculi

We now define the introduction and elimination rules for implication. The elimination rule
is known as modus ponens.

—-1 —-E

IAFB '+HA—-B r-A
'HA—-B I'-B

We finally define a rule called the axiom schema, that allows us to prove our assumptions.

AX

NAFA

If an inference rule moves an assumption out of the context, we say that the assumption is
discharged or closed. We are allowed to drop assumptions that we do not use; this is called
the weakening rule. We obtain classical propositional logic CPC by additionally adding one
of the following two rules.

LEM -—-E
I',"AF L
T'HFAV-A rA

We will additionally use the informal notation

(4] [B]
(4,B)

to mean that if we can prove X assuming A and we can prove Y assuming B, then we can
infer C by discharging the open assumptions A and B. For example, we can write an instance

of »-las
I,[A]

B
VA
I'A-B

To extend this to intuitionistic predicate logic IQC, we need to add rules for quantifiers.

3-1 V-1
'k p[x:=t] ko x not free in T’
T+ 3x. p(x) '-Vx.p
3-E V-E
'k3x.p ok x not free in T '-Vx.p
Ty Ik p[x:=t]
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1IV. Model Theory and Non-Classical Logic

Example. We will show that -pc AAB — BAA.

[A A B] [A A B]
A-E
B A
BAA
AANB—-BAA

A-1

Example. We will show that the logical axioms

p=>@W—-9); (e->@->x)->(p—>9)—> (- )x)

are intuitionistically valid.

(]
CR)
qp (_)'L '(,b)
voe (=-L,9)
p—=> @ -0 ’
For the second axiom,
lp = @ — 0] (] E [ — ¥] (] E
Y- x Y E
); ~ (®)
(e—1v)
(e—=>9)—=(p—x) - - 1)

(p->@—>0)->(e—>9) (- x)

Lemma. If ' Fpc ¢, then I, Fpc ¢. Moreover, if p is a primitive proposition and  is
any proposition, then

[[p =] Fipc ¢lp =]

Proof. This follows easily by induction over the length of the proof. O

6.3. The simply typed lambda calculus

For now, we will assume we are given a set IT of simple types, generated by the grammar
IIT==U | II - 11

where U is a countable set of primitive types or type variables.
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6. Intuitionistic logic and lambda calculi

Let V be an infinite set of variables. The set A of simply typed A-terms is defined by the
grammar
AH u=V | AV HAH | AHAH

A-abstraction ~ A-application

A context T is a set of pairs {x; : 7,...,X, : Ty}, Where the x; are distinct variables, and the
7, are types. We write C for the set of all contexts. Given a context I' € C, we also write
T, x : 7 for the context TU{x : 7}. The domain of T is the set dom I of variables that appear
in T; similarly, the range of T is the set |T'| of types that appear in T.

The typability relation (=) I (=) : (—)isarelation on C X Ay X I1, defined recursively using
the following rules.

(i) For every context I, variable x ¢ domT, and type r, we have I', x : 7l x : 7.

(ii) Let T be a context, x ¢ domT, let o, T be types, and let M be a A-term. If T',x : o I+
M : t,thenTIF(Ax:0.M):0—-1.

(iii) Let T be a context, g, T be types, and let M and N be A-terms. If ' I- M : (¢ — 7) and
''-N:o,thenTIF(MN) : 7.

We will refer to the A-calculus of A with this typability relation as A(—).

An occurrence of a variable x in a A-abstraction is called bound, otherwise it is called free. A
term with no free variables is called closed. A-terms that differ only in the names of bound
variables are called a-equivalent, so for example, (1x : ¢.x)and (1y : o.y) are a-equivalent.
Whenever it is convenient, we will replace terms with a-equivalent terms to avoid reusing
variable names.

If M and N are A-terms and x is a variable, we can define the substitution of N for x in M
recursively:

(i) x[x:=N]=N;
(i) y[x=N]=yifx #y;

(iii)) Ay : o.M)[x := N] = (Ay : 0.M|[x := N]) if x # y (which can be done without loss
of generality by a-equivalence);

(iv) (PQ)[x = N] = (P[x := N]) (Q[x := N]).

We define the §-reduction relation — g on Ag to be the smallest relation that is closed under
the following rules:

(i) (/1x :0.P)Q —g P[x = Q],
(ii) if P -4 P’, then for any x € V and o € II, we have (Ax : 0.P) —g (dx : 0. P');

(iii) if P »>g P' and Zis a A-term, then PZ -3 P'Zand ZP —»g ZP'.
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1IV. Model Theory and Non-Classical Logic

We define the -equivalence relation =g to be the smallest equivalence relation containing
—g. For example, we have

Ax:Z.(Ay :1.x))2= Ay : 1.2)

An expression (Ax : 0. P) Q to be -reduced is called a §-redex; the resulting term P[x := Q]
is called its B-reduct or B-contractum. If no S-reductions can be carried out on a A-term, we
say that the term is in 8-normal form. We write M -z N if M reduces to N after potentially
multiple applications of 3-reduction.

If x is not free in P, the term (Ax : o. (P x)) is said to n-reduce to P, written (Ax : 0. (P x)) —,
P, and we say that (Ax : o.(P x)) and P are n-equivalent.

By convention, we will write

(i) KLM for (KL)M;

(i) Ax : 0.y : t.Mfor Ax : o.(Ay : 7.M);
(iii) Ax : o.M N for Ax : o.(M N);

(iv) MAx : o.Nfor M (Ax : o.N).

6.4. Basic properties
The following technical lemmas can be proven by induction.

Lemma (generation lemma). (i) Foreveryvariable x, context T, and type o,if" I+ x : o,
thenx : o €T.

() T I (Ax : 7.N) : o, then there is a type p such that T, x : 7 I N : p, and
o= (t—p)

(iii) T I+ (MN) : o, then thereisa type rsuchthatT'IFM : 7 - candTTIF N : 7.
Lemma (free variables lemma). Suppose thatT'I- M : o. Then
(i) fTC A,thenAIFM : o;
(ii) the free variables of M occur in T;
(iii) A I+ M : o for some A C I containing only the free variables of M in its domain.
Lemma (substitution lemma). The typability relation respects substitution.
Lemma (subject reduction). If ' I=M : cand M —g N, thenT I- N : o.

The following theorem establishes the confluence property of A-terms.
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6. Intuitionistic logic and lambda calculi

Theorem (Church-Rosser theorem for A(—)). Suppose thatT' |- M : 0. If M »g N; and
M - g N,, then there exists P such that N; »g Land N, »g L,and T I- L : o.

M\
\“/

Corollary. If a simply typed A-term admits a S-normal form, then this §-normal form is
unique.

Proposition (uniqueness of types). (i) Suppose'IFM : candT'IF M : 7. Theno = 1.

(ii) Suppose'lFM : gandT' I N : 7,and that M =g N. Theno = 7.
Proof. The first part is by induction on M. For the second part, by the Church-Rosser the-
orem there is a term L to which M and N both eventually reduce, so the result holds by

subject reduction. O

Example. There is no way to assign a type to the expression Ax. x x. Indeed, if x has type 7,
then it must also have type 7 — o for some o, but this contradicts uniqueness of types.

6.5. The normalisation theorems

We will measure the complexity of a type by looking at it as a binary tree. For example,
for
p=p—>[p—=>9)-x)—> (e 20— (-9

the corresponding binary tree is
(] X ’\ /

P

/ /\g
NN

The height of this tree is the complexity of the type, which in this case is 4. For convenience,
we will annotate types of terms with superscripts.
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1IV. Model Theory and Non-Classical Logic

Definition. The height function is the map h : II — N that maps a type variable to 0,
and maps a function type o — 7 to 1 + max(h(o), h(r)). We extend the height function to
B-redexes: if (Ax : 0. P%)°~"TRY is a redex, its height is h(c — 7).

Theorem (weak normalisation theorem). Suppose I' I M : o. Then there is a finite
reduction path
M=M0 _)ﬁ Ml —>[3 _)ﬁ Mn

where M, is in f-normal form.

Proof (taming the hydra). First, we define the function m : A - NXN by m(M) = (0,0) if
M is in B-normal form, and otherwise, m(M) is the pair (h(M), redex(M)) where h(M) is the
maximal height of redexes in M and redex(M) is the number of redexes in M. We will use
induction on the well-founded relation given by the lexicographic order on N X N to show
that if M is typeable, it can be reduced to f-normal form.

IfT I M : oand M is in f-normal form, then the claim is trivial. Otherwise, let A be the
rightmost redex of maximal height h = h(M). By reducing A, we may introduce copies of
existing redexes, or create new redexes. Creation of new redexes can occur in one of the
following ways.

(i) Suppose A is of the form

Ax : (o= ). ...x PP . )Ly : p.QH)PTH

Then it reduces to
e (Ay L p. QBYPTHPR

which is a new redex of height h(p — u) < h.

(ii) Suppose A is of the form
(Ax : 7.y : p.RHPT

occurring in the position AP~7 Q. Suppose that A reduces to Ay : p.RY. Then we
have created a new redex (1y : p.R})QP of height h(p — u) < h(t = p = u) = h.

(iii) Suppose A is of the form

(Ax @ (p = w).-x)(Ay : p. P¥)

occurring in the position AP7#QP. Then this reduces to (1y : p.P*)QF of height
h(o = u) < h.

There is still the possibility that reduction of A introduces copies of existing redexes. Suppose
A is of the form

(Ax : p.PP)QT

and P has more than one free occurrence of x. Then the reduction of A will copy all redexes
in Q. But as A was chosen to be rightmost with maximal height, the height of all redexes in
Q have height less than h.
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6. Intuitionistic logic and lambda calculi

So if M —5 M’ by reducing A, it is always the case that m(M") < m(M) in the lexicographic
order. By the inductive hypothesis, M’ can be reduced to S-normal form, so the result also
holds for M. O

Theorem (strong normalisation theorem). Let I I- M : o. Then there is no infinite se-
quence
M _)B Ml —)'g M2 —>lg

The proof is omitted.
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1IV. Model Theory and Non-Classical Logic

7. Intuitionistic semantics

7.1. Propositions as types

We will work with the fragment of IPC, denoted IPC(—), where the only connective is —,
and the deduction rules are —-I, —-E, AX.

If £ is a propositional language for IPC(—) and P is its set of primitive propositions, we can
generate a simply typed A-calculus A(—) by taking the set of primitive types U to be P. Then
the types IT and the propositions £ are generated by the same grammar

U|ITT-T11I

A proposition is thus the type of its proofs, and a context is a set of hypotheses.

Proposition (Curry-Howard correspondence for IPC(—)). Let I be a context for A(—), and
let ¢ be a proposition. Then

(i) Tl M : ¢, then

|F| = {T ell | Elx.(x . T) (S F} |_|pc(_)) @

(ii) IfT Fipc(o) @, then there is a simply typed A-term M such that
{(x:D)|T€ET}HIFM : @

Proof. Part (i). We use induction over the derivation of I' I- M : ¢. If x is a variable not
occurring in I'", and the derivation is of the form I, x : ¢ I x : ¢, then we must prove that
IT",x : @| F ¢, and this holds as ¢ F ¢.

If the derivation has M of the form Ax : 0.N and ¢ = o0 — 7, then we must have that
I,x : ol N : 7. By the inductive hypothesis, we have |I',x : o| I 7,50 |T'|,0 I 7. Thus we
obtain a proof of o — 7 from |I'| by —-1.

If the derivation is of the form I' I (PQ) : ¢, then we must have T I P : ¢ — ¢ and
I I+ Q : o for some 0. By the inductive hypothesis, |[I'| - ¢ — ¢ and |T'| 0. Then the
result holds by —-E.

Part (ii). We use induction over the proof tree of T' Fjpc (o) . We write
A={(x;:1)|7t€eT}

Suppose that we are at a stage of the proof that uses AX, so I, ¢ - ¢. If ¢ € T, then clearly
Al x, @ @. Otherwise, A, x, @ ¢ I- X, : ¢ as required.
Suppose that we are at a stage of the proof that uses —-E, so
TFp—>19Y e
1y
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7. Intuitionistic semantics

By the inductive hypothesis, there are A-terms M, N such that A I M : ¢ — pand A I+
N : ¢. Then Al (M N) : 1 as required.

Finally, suppose we are at a stage of the proof that uses —-I, so

Lok
r'p->19
If ¢ € T, then by the inductive hypothesis, there is a A-term M such that A - M : 3. By
the weakening rule, A, x : ¢ I M : 1 where x is a variable that does not occur in A. Then

Al-(Ax : 9. M) : ¢ — P asrequired. Now suppose ¢ ¢ I'. By the inductive hypothesis we
obtain a A-term M such that A, x, : ¢ I= M : 3. Then similarly A I- (Ax, : 9. M) : ¢ —

P. O
This justifies the Brouwer-Heyting-Kolmogorov interpretation of intuitionistic logic.

Example. Let ¢, be primitive propositions, and consider the A-term
Af (=)= e8¢ —>P.g(fg)
This term has type
((p—=P) =)= (p—9)—¥)

The term encodes a proof of this proposition in Fpc(-,). The corresponding proof tree is

g:le—yl frlle-P ol
fg ¢ g:le—9l
8(fg) : ¢
Ag 9 —9.8(fe)  (p—~Y)—~ 9 o
Af o> - eigio—9.8(fe): (¢ =)o)~ (¢ > 1Y)~ 9)

—-1

7.2. Full simply typed lambda calculus

The types of the full simply typed A-calculus STAC are generated by the following gram-
mar.
Mu=U |TT>II|OIXO|O+II]1]0

where U is a set of primitive types or type variables. The terms are of the form
AH u=V | (/‘lx o I1L AH) | AH AH |
(A Am) | w1 (An) | (A |

4 (An) | (An) | case(Ar; VAR V.An) |
* | !1_[ AH
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1IV. Model Theory and Non-Classical Logic

where V is an infinite set of variables, and * is a constant. This expanded syntax comes with
new typing rules.

M :9pXxXop I'HM:yPpXop =M : 3y I'EN: @ M : 9y
'z M) : 3y Tl mM): @ Fl-(M,N): )Xo FFyM) :Y+o
F'+—M: o F'-L:¢y+9 Lx:ypI-M:p ILy:el-N:p
FuM) Y+ T I+ case(L; x¥.M;y®.N) : p
r=M:0
TIF«:1 TIF1,M: g

This typing relation captures the Brouwer-Heyting-Kolmogorov interpretation when paired
with new reduction rules.

1 ((M,N)) =g M m,((M,N)) =g N (1 (M), m,(M)) =, M
case(t;(M); x¥ .K; y®.L) —g K[x :== M] case(t,(M); x¥.K; y®.L) —g L[y == M]
ifCI=M : 1then M —) *
We can expand propositions-as-types to our new types:

(i) O corresponds to L;

(ii) 1 correspondsto T;
(iii) product types correspond to conjunctions;
(iv) coproduct types correspond to disjunctions.

In this way, propositions correspond to types. Redexes are now those expressions consisting
of a constructor (pair formation, 1-abstraction, and injections) followed by the correspond-
ing destructor (projections, applications, and case expressions).

Example. Consider the following proof of (p A x) — (¥ — @).

[o A x]
P
P
(PAxX)—> @ -9

Annotating the corresponding A-terms, we obtain

[#]

p:[qu.)(] b [9]
m(p) : @
/1b¢.7'tl(p) Y-
ApP X Ab%. 7r1(p) : (P A X) = (B = )
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Hence this proof tree corresponds to the A-term

ApPXAb%. 711(p) : (p X x) = (P = )

In summary, the Curry—-Howard correspondence for the whole of IPC and STAC states that
(i) (primitive) types correspond to (primitive) propositions;
(ii) variables correspond to hypotheses;
(iii) A-terms correspond to proofs;
(iv) inhabitation of a type corresponds to provability of a proposition;

(v) term reduction corresponds to proof normalisation.

7.3. Heyting semantics

Boolean algebras represent truth-values of classical propositions. We can generalise this
notion to intuitionistic logic.

Definition. A Heyting algebra H is a bounded lattice equipped with a binary operation
=: H X H — H such that
aAbLc &< asb>c

A morphism of Heyting algebras is a function that preserves all finite meets and joins (in-
cluding true and false) and =.

In particular, if f is a morphism of Heyting algebras and a < b, then f(a) < f(b).

Example. (i) Every Boolean algebra is a Heyting algebra by defining a = b to be =a Vv b.
Note that ma = a = 1.

(ii) Every topology is a Heyting algebra, where U = V = (X \ U) U V)".
(iii) Every finite distributive lattice is a Heyting algebra.

(iv) The Lindenbaum-Tarski algebra of a propositional theory J with respect to IPC is a
Heyting algebra.

Definition. Let H be a Heyting algebra and let £ be a propositional language with a set P
of primitive propositions. An H-valuation is a function v : P — H, recursively expanded to
L by the rules

@ v(L) =1L

(ii) v(A A B) = v(A) A V(B);
(iii) v(A Vv B) = v(A) Vv v(B);
(iv) v(A = B) = v(A) = v(B).
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We say that a proposition A is H-valid if u(A) = T for all valuations v. A is an H-consequence
of a finite set of propositions T if u( A\ T') < v(A4), and write T Fp A.

Lemma (soundness). Let H be a Heyting algebra and let v : £ — H be an H-valuation. If
r |_|PC A, then I’ ':H A.

Proof. We proceed by induction over the derivation of I' - pc A.

(i) (AX) v((AD) AA) = v(AT) Av(A) < v(A).

(i) (A-D) In this case, A = B A C and we have derivations I + B,I, = C with [}, I, C T.
By the inductive hypothesis, v(I7) < v(B) and v(I;) < v(C), hence

o( /\T) < v(@) Au(Ty) < v(B) AV(C) = v(B A C) = v(A)

(iii) (—-I) In this case, A = B — C and we have I' U {B} I- C. By the inductive hypothesis,
v(AT) Av(B) < v(C). But then v(AT) < v(B) = v(C) by definition, so v(AT) <
(B — C) as required.

(iv) (v-D) In this case, A = BV C, and without loss of generality, we have I" - B. By the
inductive hypothesis, v(/\ T') < v(B), but v(B) < v(B) vV v(C) = v(B V C) as required.

(v) (A-E) By the inductive hypothesis, we have v(AT) < v(A A B) = v(A) A v(B) <
U(A), v(B) as required.

(vi) (—-E) We know that v(A — B) = (v(A) = v(B)). From the inequality v(A — B) <
(v(A) = v(B)), we deduce V(A — B) A U(A) < v(B). Thus, if v(/\ F) <v(A - B)and
v(AT) < v(A), we have v(AT) < v(B) as required.

(vii) (v-E) By the inductive hypothesis,
o(An \T)<v(©); vBAAT)<o(C); v(/\T)<vAVB)=0v(A)Vu(®)
Hence,
o(/\T) = v(/\ D)A@@VL®B) = (v( \ T) A v@)v(v(\ T) A v(B)) < (CIVU(C) = 1(C)
as every Heyting algebra is a distributive lattice.
(viii) (L-E)Ifo(AT) < v(L) = L, thenv(AT) = L. Hence, v( A T) < v(A) for any A.
O

Example. The law of the excluded middle LEM is not provable in IPC. Let p be a primitive
proposition, and consider the Heyting algebra given by the Sierpinski topology {@, {1}, {1, 2}}
on X = {1, 2}. We define the valuation given by v(p) = {1}. Then

vEp) = {1z @=L\ {1)° =2 =2
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Hence,

vipvop)={ltuea={1}#{1,2}=T
Thus, by soundness, p V —1p is not provable (from the empty context, which has valuation
T =1{1,2})in IPC.

Example. Peirce’s law ((p — q) — p) — p is not intuitionistically valid. Let H be the
Heyting algebra given by the usual topology on the plane R?, and let

v(p) =R*\ {0,005 v(q) =@

Classical completeness can be phrased as
F'kepcA &= I'F, A

where 2 is the Boolean algebra {0,1}. For intuitionistic logic, we cannot replace 2 with a
single finite Heyting algebra, so we will instead quantify over all Heyting algebras.

Theorem (completeness). A proposition is provable in IPC if and only if it is H-valid for
every Heyting algebra H.
Proof. For the forward direction, if F\pc A, then T < v(A) for every Heyting algebra H and

valuation v, by soundness. Then T = v(A), so A is H-valid.

For the backward direction, suppose A is H-valid for every Heyting algebra H. Note that
the Lindenbaum-Tarski algebra L/ for the empty theory, with respect to IPC, is a Heyting
algebra. Consider the valuation given by mapping each primitive proposition to its equival-
ence class in ’C/N. Then, one can easily show by induction thatv : £ — L/N is the quotient
map by considering the construction of the Lindenbaum-Tarski algebra. Now, A is valid in
every Heyting algebra and with respect to every valuation, so in particular, v(A) = T in L.
But then v(A) € [T],s0 Fpc A « T, s0 Fpc A as required. O

7.4. Kripke semantics
Definition. Let S be a poset. For each a € S, we define its principal up-set to be

at={seS|a<s}

Note that U C S is a terminal segment if and only if it contains a1 foreach a € U.
Proposition. Let S be a poset. Then the set T(S) of terminal segments of S has the structure
of a Heyting algebra.

Proof. The order is given by inclusion: U < V ifand only if U C V. We define

UAV=UnV
Uvv=UuV
Us>V={|stnUCV}
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1IV. Model Theory and Non-Classical Logic
One can check that this forms a Heyting algebra as required. O

Definition. Let P be a set of primitive propositions. A Kripke model is a triple (S, <, 1)
where S is a poset and (IF) C S X P is a relation satisfying the persistence property: if p € P
issuch that s I pand s < §', then s’ I p.

S is a set of possible worlds, or states of knowledge, ordered by how knowledgeable they are.
The relation I+ is called the forcing relation; we say that a world forces a proposition to be
true.

Every valuation v on T(S) induces a Kripke model by setting s I p <= s € v(p). The per-
sistence property corresponds to the fact that T'(S) contains only terminal segments.

Definition. Let (S, <, ) be a Kripke model. We can extend the forcing relation to a relation
(IF) € S x £ recursively as follows.

(i) s L;
(i) sl @ Ay ifand onlyifs I @ and s I+ 9;
(i) s+ vy ifand onlyifs I+ ¢ ors Ik 3;
(iv) sl ¢ — ypifand onlyif for all s’ > s, s’ I @ implies s’ I 3.
One can check by induction that persistence holds for arbitrary propositions.

Remark. s | =g if and only if no more knowledgeable world than s forces ¢. s I+ =g is
the statement that ¢ is consistent with every extension of s but need not hold in s itself; that
is, for each s’ > s, there exists s” > s’ with s I ¢.

We say that S I ¢ if every world s forces ¢. If S has a bottom element s, then S I+ ¢ if and
only if s I ¢ by persistence.

Example. Consider the Kripke models

@
Sl
s
where s’ I p;
(ii)
Sl Sll
s

where 5" I+ p;
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7. Intuitionistic semantics

(iii)

where s’ |- pand s’ I g.

Note that in (i), we have s ¥ —p, since ' > sand s’ I+ p. But also s ¥ p by assumption,
thus s ¥ p v =p. Note that s I =—1p, but s I p, so we also have s ¥ =—=p — p.

In (ii), s ¥ ——p, since 5" > s cannot access a world that forces p. We also have s ¢ —p,
since s” > s’ and s” E p. Thus s ¥ 7—p Vv —p.

In (iii), s ¥ (p = q) = (=p V q). Indeed, all worlds force p — g, and we have s ¥ g, so it
suffices to check that s & —1p, but this holds as s’ > sand s’ E p.

A proper filter F is called prime if whenever x Vy € ¥, eitherx € Fory € ¥.

Lemma. Let H be a Heyting algebra and let v be an H-valuation. Then there is a Kripke
model (S, <, IF) such that for each proposition ¢, we have v Fy ¢ if and only if S I+ ¢.

Thus we can convert between Kripke models and valuations on Heyting algebras. This will
allow us to prove the completeness theorem for Kripke semantics.

Proof. Let S be the set of prime filters on H ordered by inclusion. We say that # I p if and
only if v(p) € #, and prove by induction that this extends to arbitrary propositions. Here,
we will prove the case of implications; the other connectives are easy, and primality of the
filter is required for the case of disjunction. Let # I+ (p — ') and suppose v(p — P') =
v(®) = v(W') ¢ F. Let G’ be the smallest filter containing # and v(3). Then

G ={b|3feF.frv@)Lb}

Note that v(3') ¢ G’, otherwise f A v(¥) < v(¥’) for some f € F, and then f < v(¥) =
v(¥') € F, giving a contradiction. In particular, G’ is a proper filter, so by Zorn’s lemma
there is a prime filter G containing G’ that does not contain v(y").

By the inductive hypothesis, G I~ ¥, and since # I (3 — ') and G’ contains G which
contains F, we must have G I 3’. Then v(¢p') € G, which is a contradiction. Thus F I+
Y — ' implies that v(yp - ') € F.

Conversely, suppose

v ->YP)eFCGIHY
By the inductive hypothesis, v() € G, and so V() = v(¥’') € GasF C G. Then v(y’) >
v(P) A (VW) = V(")) € G, so again by the inductive hypothesis, G I ¢’ as required.

It thus suffices to show that v Fy g ifand only if S I+ ¢. If v Fy @, then v(p) = T, so v(gp) is
contained in every filter of H. So F I ¢ for every prime filter . Conversely, suppose S I ¢
but v ¥y @. Then since v(¢) # T, there must be a proper filter F that does not contain
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1IV. Model Theory and Non-Classical Logic

v(p). We extend this as above to a prime filter G that does not contain v(p). Then G ¥ ¢,
contradicting the assumption that S I+ ¢. g

Theorem (completeness). For every proposition ¢, we have I' Fpc ¢ if and only if for all
Kripke models (S, <, ), if S |- T then S I+ ¢.

Proof. Soundness holds by induction. For adequacy, suppose I ¥pc ¢. Then by complete-
ness of Heyting semantics, there is a Heyting algebra H and H-valuation v such thatv Fgy I’
but v ¥y ¢. By the previous lemma, there is a Kripke model (S, <, I-) such that S I+ T but
S I ¢, contradicting the hypothesis. O
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1. Definitions and resolutions

1. Definitions and resolutions
1.1. 7?7?
Let G be a group.

Definition. The integral group ring ZG is the set of formal sums )] n,g, where n, € Z,
g € G, and only finitely many of the ng are nonzero. An addition operation makes this set a

free abelian group:
(Z mgg) + (Z ngg) = Z(mg + ng)g
Multiplication is defined by

(Z mhh)(z nk) =’ ( D mhnk)g

heG keG hk=g

The multiplicative identity is 1e where e is the identity of G. This produces an associative
ring, which underlies the integral representation theory of G.

Definition. A (left) ZG-module M is an abelian group under addition together with a map
ZG X M — M denoted (r,m) — rm, satisfying

1) r(my + my) = rmy + rmy;
() (n+rnm=rnm+r,m;
(iii) r(rm) = (rnr)m;
@iv) 1m = m.

A module is trivial if gm = mfor all g € G and m € M. We call Z the trivial module, given
by the trivial action gn = nforalln € Zand g € G.

The free ZG-module on a set X is the module of formal sums )’ rn.x wherer, € ZG and x € X,
and only finitely many of the r, are nonzero. This has the obvious G-action. This module
will be denoted ZG{X}.

We can define submodules, quotient modules, and so on as one would expect.

Definition. A (left) ZG-map or morphism o : M; — M, is a map of abelian groups with
a(rm) = ra(m) for allr € ZG and m € M;.

Example. The augmentation map ¢ : ZG — Z is the ZG-map between left ZG-modules

given by
2 Mg8 = Mg
This is also a right ZG-map, and also a map of rings.

We will write Homg(M, N) to be the set of ZG-maps M — N, which is made into an abelian
group under pointwise addition.
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V. Group Cohomology

Example. Regarding ZG as a left ZG-module, then
Homg(ZG,M) = M

for any left ZG-module M. This isomorphism is given by ¢ — ¢(1); the ZG-map is determ-
ined by the image of 1.

p(r) = o(r-1) =re(1)
Note that Homg(ZG, M) can be viewed as a left ZG-module, given by
(sp)(r) = @(rs); se€ZG
Note that the isomorphism
Homs(ZG,7G) 2 7G; ¢+ ¢(1)
satisfies ¢(r) = re(1) and so ¢ corresponds to multiplication on the right by ¢(1).
Remark. G may not be abelian, and so we must carefully distinguish left and right actions.

Definition. If f : M; - M, is a ZG-map, its dual maps f* are ZG-maps Homg(M,, N) —
Homg(M;, N) for each ZG-module N, given by composition on the right with f. If f : N; —
N,, its induced maps f, are Homg(M, N;) - Homg(M, N,) given by composition on the left
with f. These are maps of abelian groups.

We will now present a prototypical example.

Example. Let G = (t) be an infinite cyclic group. Consider the graph whose vertices are
v; for i € Z, where v; is joined to v;,; and v;_;. Let V be its set of vertices, and E be its set
of edges. G acts by translations on this graph, where ¢t maps v; to v;,,. The formal sums
ZV and ZE can be regarded as ZG-modules. They are free: ZV = ZG{v,}, and ZE = ZG{e}
where e is the edge connecting vy and v;. The boundary map is a ZG-map d : ZE — ZV
given by e = v; — v,. There is also a ZG-map ZV — Z given by v, — 1; this corresponds to
the augmentation map.

Definition. A chain complex of ZG-modules is a sequence

ds ds_1 dit1
Ms > Ms—l > Ms—2 > > Mt

such that for every t < n < s, we have d,d,,,; = 0, and soimd,,,; C kerd,. We will refer
to the entire sequence as M, = (M, dy,);<p<s-

We say that M, is exact at M, ifimd,,; = ker d,,, and we say it is exact if it is exact at all M,,
for t < n < s. The homology of this chain complex is

— . — kerd . — - M
Hy(M.,) =kerdy; H,(M.) = "im Ayt H;(M.) = cokerd,_; = Vt/jy dia
A short exact sequence is an exact chain complex of the form

0 > M; —— M, d

> M; > 0

That is, « is injective, § is surjective, and im a = ker 3.
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1. Definitions and resolutions

Example. In our example above, we have the short exact sequence

0 \ ZE A% 4 50
This corresponds to a short exact sequence

0 > ZG > ZG > Z > 0

where G = (t) is an infinite cyclic group, and the map ZG — ZG is given by multiplication
on the right by ¢t — 1.

Definition. A ZG-module P is projective if, for every surjective ZG-map a : M; — M, and
every ZG-map 8 : P - M,, thereisamap 8 : P - M; such thatao 3 = f.

_ P
ﬁ '
o Js
M, — M, > 0
Given any short exact sequence
0o—>N -1y M Sy M > 0
/4 /4 1 /4 2 /4

we can consider

0 — Homg(P,N) —3 Homg(P,M;) —= Homg(P,M,) —S 0

We could have defined projectivity by saying that this new sequence is exact. Note that
this sequence is always a chain complex regardless if P is projective, and we always have
exactness except possibly at Homg (P, M,).

Lemma. Free modules are projective.
Proof. Leta : M; — M, be a surjective ZG-map, and let § : ZG{X} - M,. Then for each
generator x € X, there exists some m, € M, such that a(m,) = B(x). We then define
B . ZG{X} - M, by mapping

Z KX Z My

which satisfies the required equation af = . O

Definition. A projective (free) resolution of the trivial module Z is an exact sequence

> B > B > Z > 0

where the P; are projective (respectively free). This is a chain complex.
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Example. Let G = (¢t) be an infinite cyclic group. Then we have a finite free resolution of
Z given by the exact sequence

€

(t-1
0—3726 YNz 5y7_ 39
where ¢ is the augmentation map.

Example. Let G = (t) be a cyclic group of order n. Then we have a resolution

726 £y 76 s 76 £ 76 4y 76 <3 7

~
=)

where
a(x) =x(t—1); B(xX)=x(A+t+--+t"1)

From algebraic topology, if we have a connected simplicial complex X with fundamental
group 7, (X) = G, such that the universal cover X is contractible, we obtain a free resolution
of Z given by the universal cover. In this way, the simplicial complex X contains a lot of in-
formation about its fundamental group; this is what we aim to replicate algebraically.

For calculation purposes, we are interested in ‘small’ resolutions, for instance where the
free modules have small rank. However, for theory development, we often want general
constructions, and resolutions given by generic theory tend to be large.

Definition. G is of type FB, if Z has a projective resolution

which may be infinite, but where B,, B,_, ..., R are finitely generated as ZG-modules.

We say G is of type FP,, if Z has a projective resolution where all of the P; are finitely generated
as ZG-modules. Finally, G is of type FP if Z has a projective resolution where all of the P;
are finitely generated as ZG-modules, and the resolution is of finite length, so B = 0 for
sufficiently large s.

Example. (i) Let G = (t) be the infinite cyclic group. Then G is of type FP.

(ii) Let G = (t) be a finite cyclic group. Then G is of type FE,,; we will show later that it is
not of type FP.

These can be regarded as finiteness conditions on the group G. The topological version of FB,
would be that a simplicial complex X with fundamental group G has a finite n-skeleton.

1.2. 77?

Consider a partial projective resolution

BR—3B,—%—3R—3B —>Z—30
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1. Definitions and resolutions

Then we can set B, to be the free module ZG{Xj,} where X, is the kernel of d;. We can

then set dg, ; to be
Z heX Z X
P

€Ps11 €L

where the left-hand side is a formal sum, and the right-hand sum takes place in B. We thus
obtain a longer partial projective resolution

ds
By —% B —> B_, > R > R >Z —>0

since exactness holds at E by construction. We could alternatively take X, to be a ZG-
generating set of ker dg; this would have the effect of reducing the size of B ;, which is most
useful in direct calculation if ker d; is finitely generated. Continuing in this way, we obtain
a resolution of Z.

(:U

Definition. The standard or bar resolution of Z is constructed as follows. Let G be the
set of formal symbols

G™ ={[gi| ... Ign] | 81> - &n € G}

where G(© is the set containing only the empty symbol []. Let F, = ZG{G(”)} be the corres-
ponding free modules. We define the boundary maps d,, : F, — F,_; by

dn([g1] - 18n]) = g1l82| --- 181]
— (8182183 --- 18]
+ (8118283 - I8l — -
+(=1)""g1l ... |gn-18n]
+(=1D"[g1] ... 18n-1]

One can verify explicitly that these are chain maps as required, giving a free resolution

3 > Fo A

Remark. The bar resolution corresponds to the standard resolution in algebraic topology.
Consider the free abelian group ZG"*! generated by the (n + 1)-tuples with elements in G.
Then G acts on G"*! diagonally:

8(8os -+ »8n) = (880> --- »88n)

Thus ZG"*! is a free ZG-module on the basis of (n + 1)-tuples with first element 1. The
symbol [g,] ... |g,] corresponds to the (n + 1)-tuple

(1,81,8182 -, 81+-- &n)

Removing the first entry gives

21(1,82,8283 -, 82 - &n)

and removing the second entry gives

(1,182 -+, 81 -+ &n)
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V. Group Cohomology
Lemma. The bar resolution is exact.

Proof. We will just consider the d,, as maps of abelian groups. F, has basis G x G as a free
abelian group.

G x G™ ={golgi| .- |gx] | €0, -+ &n € G}

We define Z-maps s, : F, — F,,; such that
ian = dp115p + Sp-1dn

by
sn(8ol&1l --- 18n]) = [8ol&1] --- I8n]

This is not a ZG-map. One can check that the required equation holds. If x € kerd,,, then

x =1dx = dp15p(X) + 8,21dp(X) = dppy18p(x) € imdyyy

Corollary. Any finite group is of type FP,.

Proof. The bar resolution gives a suitable resolution. O

1.3. Cohomology

Definition. Consider a projective resolution

~
o

? B > B > > B > B > Z

of Z by ZG-modules. Let M be a (left) ZG-module. Applying Homg(—, M), we obtain a
sequence

dl
~++ ¢—— Homg(Byy1, M) <— Homg(B, M) <— -+ <— Homg(B, M) <*— Homg (B, M)

where d" = d;;. Then the nth cohomology group H"(G, M) with coefficients in M is

H™(G,M) = kerd"'imd"”; H°G,M) = kerd'

Remark. We have removed the Z term in the Homg(—, M) sequence. These cohomology
groups are the homology groups of a chain complex C,, = Homg(P_,,, M) for n < 0. We will
show that these cohomology groups are independent of the choice of projective resolution.
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1. Definitions and resolutions

Example. Let G = (t) be an infinite cyclic group. We have a projective resolution

0—3726 YN zg—s7—39
For ¢ € Homg(ZG, M) and x € ZG,
d'()(x) = p(dy(x)) = p(x(t — 1))
Recall that we have an isomorphism i : Homg(ZG, M) = M by 6 — 6(1). In particular,
d'(p) = di(@)(1) = p(t — 1) = (t = De(1) = (t - Di(p)

‘We thus obtain
0 < MM

where « is multiplication on the left by t — 1. Therefore, the cohomology groups are

HY(G,M)={m e M | tm =m}=MC®, HY(G,M)= M/(t _ 1M =Mg; H'(G.M)=0forn#0,1
Note that the group of invariants M© is the largest submodule with trivial G-action, and the

group of coinvariants M is the largest quotient module with trivial G-action.

Remark. 1t is generally true that H°(G,M) = M®, but in general H'(G, M) = M does not
hold. In general, M is the Oth homology group, which will be discussed later. Note that for
any group of type FP, the cohomology groups vanish for all but finitely many indices n.

Definition. G is of cohomological dimension m over Z if there exists some ZG-module M
with H™(G, M) # 0 but H*(G,M;) = 0 for all n > m and all ZG-modules M;.

Remark. For all G, we have H(G, Z) = Z # 0 so all groups have dimension at least zero.

Example. Infinite cyclic groups have cohomological dimension 1 over Z. One can show
that if G is a free group of finite rank, then it is also of cohomological dimension 1 over Z.
Stallings showed in 1968 that the converse is true: a finitely generated group of cohomolo-
gical dimension 1 is free. Swan strengthened this in 1969 by removing the assumption of
finite generation.

We now consider the bar resolution in our definition of cohomology. Note that
Homg(ZG{G™}, M) = C"(G, M)

where C"(G, M) is the set of functions G — M, since a ZG-map is determined by its action
on a basis. Moreover, C"(G, M) corresponds to the set of functions G — M. For n = 0, note
that C°(G, M) is the set of functions G° — M which bijects with M.
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Definition. The abelian group of n-cochains of G with coefficients in M is C"(G, M). The
nth coboundary map d" : C"~Y(G,M) — C™(G, M) is dual to the d,, from the bar resolution:

d"(@)(g1> -+ 8n) = 819(&2, -+ 1 8n)
— (8182, 835 - »8n)
+ (81, 82835 -, 8n) — -+
+(=1)"'p(g1 82 -+ » 8n-18n)
+ (=1)"9(g1, 82, -+ » 8n—-1)
The group of n-cocycles is Z"(G,M) = kerd"*! < C"(G,M). The group of n-coboundaries
is B*(G,M) = imd" < C"(G, M). Thus the nth cohomology group is

Hn(G,M) — Zn(G’M)/Bn(G,M)

Corollary. H(G,M) = M€ for all G.

Definition. A derivation of G with coefficients in M is a function ¢ : G — M such that
p(gh) = gp(h) + ¢(g).

Note that Z(G, M) is exactly the set of derivations of G with coefficients in M, so a derivation
is precisely a 1-cocycle.

Definition. An inner derivation of G with coefficients in M is a function ¢ : G — M of the
form ¢(g) = gm — m for a fixed m € M.

Such maps are derivations.

Corollary. H'(G, M) is the group of derivations modulo the inner derivations. In particular,
if M is a trivial ZG-module, then

HY(G,M) = {group homomorphisms G — M}

treating M as an abelian group under addition.

1.4. Independence of cohomology groups
We now prove that cohomology groups are independent of the choice of resolution.
Definition. Let (4,,a,), (B,, ,) be chain complexes of ZG-modules. A chain map (f,) is

a sequence of ZG-maps f, : A, — B, such that the following diagram commutes.

an Ap—
> Ap > Apq 4 Ap—z —

I e e

> Bn Bn > Bn—l ﬁ Bn—2 —>
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1. Definitions and resolutions

Lemma. A chain map (f,,) as above induces a map on homology groups

fo t Hy(A)) — Hy(B.)

Proof. Let x € kera,,, and define f,([x]) = [f,(x)], where square brackets denote the quo-
tient maps to the relevant homology classes. Observe that f,,(x) € ker 8, since 8, f,(x) =
Jfn—1a,(x) = 0. Further, if x" = x + a,,,.;(y) for some y, we obtain

fn(xl) = fn(x) + fnan+l(y) = fn(x) + ﬁn+1fn+1(y) € fn(x) +im bn+1

Therefore, this map is well-defined. One can check that this is a map of abelian groups, as
required. O

Theorem. The definition of H"(G, M) does not depend on the choice of resolution.

Proof. Take projective resolutions (B,,d,) and (B,,d;,) of Z by projective ZG-modules. We
will produce ZG-maps f,, : B, — B, and g,, : B, — B, satisfying

Jae1dn = dnfs 8n—1dn = dngn
aswell asmaps s, : B, - B,;; ands;, : B, — B, satisfying
dpy1Sn + Sp—1dn = gnfr — id; d;'z+15;1 + Sp_1dn = fn8n —id

Thus, the f,, and g,, form chain maps, and the s,, and s, form chain homotopies. The chain
maps (f,), (g,) give rise to chain maps

Homg(P',M) - Homg(P,M); Homg(B,M) — Homg(P',M)

giving maps between the respective homology groups by the previous lemma. We now ob-
serve that if ¢ € kerd"*! € Hom(P, M), we have

Jr 8r(@)(x) = p(gnfu(x))
= 9(x) + P(dp115,(xX)) + @(s,_1d,(x))
= @(x) + s7,d" 1 p(x) + d"sp,_; (9)(x)
= @(x) + 0+ d"s;_1(®)(x)

1
Thus f, g,(p) = ¢ + d"s;,_;1(¢), and so f, g, induces the identity map on kerd™* /im d"

The same holds for g;, f,;', and so f,;, g;, define isomorphisms of homology groups as desired.

It remains to construct the maps f,,, 8., S,, S,- At the end of the resolutions, weset f_; : Z —
Zand f_, : 0 — 0tobe the identity maps. Suppose that we have already defined f,,_; and f,;
we will define f,,,,. Wehave f,d,.; : B,,; = B, andd,o(f,d,41) = fu_1d,d,41 = 0. Hence,
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the map f,d,,; has image inside kerd,,. We then define f,,, to complete the following
diagram, which exists by projectivity.

dn

dn+1
\
E n

Pn+1 7 In B 1
f e
r;:/l/ \Lfndn+1 \Lfn \Lfn—l
Pl

Bt T» kerd, > B, —— B4

!’
n+1 dn

\
4

We can define g, ; in the same way. Now set h,, = g, f,, —id : B, — B,; this gives a chain
map P, —» PB. Sets_; : Z — R to be the zero map. Note that dohy, = h_;d, = 0, and so
im h, C ker d,. We now use projectivity to define

B—>2Z

'
So 7~ ]’lo 0
_ - ho\l/ \ \‘

g
PlTl»kerdoHPoTO)Z

Suppose that s,,_; and s,,_, are already defined. Consider t,, = h,, — s,_1d,, : B, = B,. We
have

dntn = dnhn - dnSn—ldn = hn—ldn - (hn—l - Sn—zdn—l)dn = Sn—zdn—ldn =0

Thus im¢t, C kerd,,.

dn
B, — B
Sn // \ | hn—l
7t hy Sp-1 \‘
L NV
B — kerdy )— By —— By
We define the s;, similarly. O

Remark. For any left ZG-module N, we can take a resolution of N by projective or free ZG-
modules.

> B > B > B > N > 0

Repeating the constructions outlined in this section, applying Homg(—, M) gives homology
groups called Exty; (N, M). Thus

H"(G,M) = Exty5(Z, M)
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2. Low degree cohomology and group extensions

2.1. Degree 1

Recall that H°(G, M), the group M of invariants of M under G. A derivation is a 1-cocycle,
or equivalently a map ¢ : G — M such that p(g,g,) = g:9(g,) + ¢(g;), and an inner
derivation is a map of the form ¢(g) = gm — m. We present two interpretations of (inner)
derivations.

First interpretation. Consider possible ZG-actions on the abelian group M & Z of the form
g(m,n) = (gm + ng(g), n). Then

81(g2(m, n)) = g1(g2m + np(g,), n) = (g182m + ng19(g,) + ne(g1), n)

and
(8182)(m, n) = (g182m + nep(g:182), n)

For these to coincide, we must require ¢(g;2,) = g,9(g2) + ¢(g1), which is to say that p is a
derivation. In particular, if M is a free Z-module of finite rank, then we obtain a map

6:(8) (2
e (57 °F)

where 6;(g) is a matrix corresponding to the action of g on M. This is a group homomorph-
ism only if ¢ is a derivation. One can check that ¢ is an inner derivation if (—m, 1) generates
a ZG-submodule of M which is the trivial module.

Second interpretation. We first make the following definition.

Definition. Let G be a group and M be a left ZG-module. We construct the semidirect
product M X G by defining a group operation on the set M X G as follows.

(my, g1) * (M3, &) = (My + g1my, £182)

Then M = {(m, 1) | m € M}is a normal subgroup of M X G. Also, G = {(0,2) | g € G}, and
conjugation by {(0, g) | g € G} corresponds to the G-action on the module M. Further,
M G ~
A Imemy=6

There is a group homomorphism s : G — M X G given by g — (0, g), such that 7, o s = id
where 7, is the second projection. Such a map s is called a splitting. Given another splitting
$1 : G = M X G such that 7, o 5; = id, we define 5, : G — M by

s1(8) = (¥s,(8),8) EM X G

Then 1y, is a 1-cocycle. Given two splittings s, s,, the difference ¢, — 9, is a coboundary
precisely when there exists m such that (m, 1)s;(g)(m,1)~! = s,(g). Conversely, given a
1-cocycle ¢ € Z'(G, M), there is a splitting s; : G — M X G such that ¢ = 1)g,.

Theorem. H'(G, M) bijects with the M-conjugacy classes of splittings.
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2.2. Degree 2

Definition. Let G be a group and M be a ZG-module. An extension of G by M is a group E
with an exact sequence of group homomorphisms

0 S M —>F Sy G 5 1

M embeds into E, so its image (also called M) is an abelian normal subgroup of E. This is
acted on by conjugation by E, and so we obtain an induced action of E/M =~ G, which must
match the given G-action on M.

Example. The semidirect product M X G is an extension of G by M.

0 > M >MXG — G —— 1

In this case, the extension is called a split extension, since there is a splitting.

Definition. Two extensions are equivalent if there is a commutative diagram of homo-

AN
N

0—> M G —>1

E
|
|
|
|
|
|
\V
El
If E, E’ are equivalent extensions, then E and E’ are isomorphic as groups. The converse is

false.

Definition. A central extension is an extension where the given ZG-module is a trivial mod-
ule (that is, it has trivial G-action).

Proposition. Let E be an extension of G by M. If there is a splitting homomorphism s; :
G — E, then the extension is equivalent to

0 —3>M —3SMXG—>G—>1

and thus E =~ M X G.

Theorem. Let G be a group and let M be a ZG-module. Then there is a bijection from
H?(G, M) to the set of equivalence classes of extensions of G by M.

Proof. Given an extension

0

~
g
us]
~
Q
~
et
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there is a set-theoretic section s : G — E such that
G % E

N

commutes. Note that s need not be a group homomorphism. Without loss of generality, we
can suppose s(1) = 1. We define a map
P(g1,82) = 5(81)5(82)5(g182)~"

which measures the failure of s to be a group homomorphism. Then 7(¢(g;,g,)) = 1, and
so0 ¢(g1,8,) € M. Thus ¢ : G> — M is a 2-cochain, and we can show it is a 2-cocycle. We
have

5(81)5(82)5(83) = P(81,82)5(g182)5(83)

= 9(81,82)9(8182, 83)5(818283)

and similarly,

s(81)5(82)s(g3) = s(g1)p(g2, 83)5(8283)
= 5(g1)9(82, 83)5(81) 7" 5(81)s(8283)
= 5(81)®(82, 83)5(81) (81, 8283)5(818283)

‘We therefore obtain

?(81,82)9(8182, 83)5(818283) = 5(81)®(g2, 83)5(81) " (g1, 8283)5(818283)
(g1, 82)9(8182, 83) = 5(81)p(82, 83)5(81) (g1, 8283)

Converting into additive notation,

P(81:82) + (8182, 83) = 819(82: 83) + P(81.8283)
and so
(d*p)(81,82.83) = 0
Hence ¢ is a 2-cocycle as claimed. Note that ¢ is a normalised cocycle: it satisfies ¢(1,g) =

®(g,1) = 0. We have therefore proven that an extension of G by M, with a choice of set-
theoretic section s : G — E, yields a normalised 2-cocycle ¢ € Z%(G,M).

Now take another choice of section s’ with s'(1) = 1. We show that the normalised cocycles
@, ¢’ differ by a coboundary, and so we have a map defined from equivalence classes of ex-
tensions to H%(G,M). We have 7(s(g)s'(g)™!) = 1, so s(g)s'(g)~! € kerm = M. Let (g)
denote s(g)s’(g)~. Thus ¢y : G — M. We have
s'(81)s'(82) = P(g1)s(g1)(82)s(g2)

= P(g1)s(g1)¥(g2)s(g1) " s(g1)s(g2)

= P(g1)s(g)P(82)s(g) (81, 82)5(82)

= P(g1)s(g)P(82)s(81) " p(g1. 82)%(8182) 75" (2182)
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Switching to additive notation,

©'(81,82) = P(g1) + &19(g2) + 9(g1,82) — ¥(8182)
= o(g1,82) + (d*P)(g1,&2)

Thus ¢ and ¢’ differ by a coboundary, and so we have a well-defined map from extensions
of G by M to H*(G, M).

To complete the proof, we must check that equivalent extensions give rise to the same co-
homology class, and that there is an inverse map from cohomology classes to equivalence
classes of extensions. To produce the inverse, we use the following lemma.

Lemma. Let ¢ € Z%(G,M). Then there is a cochain 3 € C!(G,M) such that ¢ + d?y is
a normalised cocycle. Hence, every cohomology class can be represented by a normalised
cocycle.

Proof. Let (g) = —¢(1,g). Then

(¢ +d*P)(1,8) = (1,8 — (¢(1,8) — #(1,8) + ¢(1,1))
=o(1,8) —¢(1,1)
Similarly, we obtain
(p+d*P)(g, 1) = p(g, 1) — gp(1,1)
But we know that
d*p(1,1,8) = 0 = d’p(g,1,1)

since ¢ is a cocycle. Hence, one can check computationally that both equations above are
Zero. 0

We now take a normalised cocycle ¢ representing a given cohomology class. We construct
an extension

0 S M y E,

o 7 G 7 1

by
(my, 81) * (My, 85) = (Mg + g1m, + (81, 82), 81, 82)

For this to be a group operation, we use the fact that ¢ is normalised. This yields an extension

0 S M > E, —/> G 51

where 7 is the projection onto the second component. Note that if ¢’ is another normalised
2-cocycle representing the given cohomology class, then ¢ — ¢’ is a coboundary, so we can
define a map E, — E, by

(m,g) = (m+19(g),8)

One can check that this induces an equivalence of extensions. These constructions are in-
verses. O
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2.3. Central extensions

Example. Consider central extensions of Z2 by Z. We already know of two such extensions.
The first is

0 A > 73 > 72 >0

m —— (m,0,0)

(m’ r, S) H (V, S)
Let H denote the Heisenberg group

1 r m
H=3|l0 1 s ||r,s,m € mathbbZ
0 0 1
Then we have the extension
0 S Z S H S 72 50
1 0 m
mpPb—— |0 1 0
0 0 1
1 r m
01 s|+—— (rs)
0 0 1

Writing multiplicatively, let T = Z? be generated by a and b. We have the following free
resolution of the trivial ZT-module Z.

0 S ZT ﬁ}ZTZ ENZ7T —55 7 —3 0

where

B(z) = (z(Q - b),z(a - 1))
a(x,y) = x(a—1) +y(b—1)

and ¢ is the augmentation map. Apply Hom¢(—, Z) to obtain the chain complex

0 <— Hom(ZT,Z) {>— Hom(ZT? 7) <% — Hom(ZT,Z)
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We claim that «* and §* are both zero maps, and so
H%(T,Z) = Hom(ZT,Z) ~ Z
and the generator is represented by the augmentation map ¢ : ZT — Z.
Take a ZT-map f : ZT? — Z. Then
B*f)z) = f(B)(2)

= f(z(1 — b), z(a — 1))
= f(z —zb,0) + f(0,za — z)

=1 -b)f(z,0) + (a—1)f(0,2)
=0
where the last line holds as T acts trivially. Similarly, a* = 0.

Next, we interpret H(T, Z) in terms of 2-cocycles arising from the bar resolution. We con-
struct a chain map as follows.

zT{T®} —23 Z7{T0} _Ls Z0{TO} _£3 7 3 ¢

] ) o

ZT 3 S 7T? — ZT /A 50

To construct f; such that af; = d;, we need to give images of the symbols [a"b*| withr, s € Z.
We must have
[a"b’] » (xr,s’ yr,s) € ZT?

where
(X5, yrs) = di([@"b*]) = a"b® —1 = (a" = Db* + (b* - 1)

We define

l+a+--+a!

ifr>0

S(a,r) = g

textifr <0

Note that

S(a,r)(a—1)=ad" -1
for anyr € Z. Then

a(S(a,r)b%,S(b,s)) = S(a,r)b5(a —1) + S(b,s)(b—1)
= dy([a"b])

as required. So we may define

fi([a"b%]) = (S(a, nb*, 5(b, 5))
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To define f,, we need to give images of the symbols [a”b*|a’b*]. For each such symbol, we
find z, 5, ,, € ZT such that

fidy([a"b¥la'b*]) = B(zys,0.u)
We can explicitly calculate
Ry ([@b*latbt]) = fia b atb*] — [+ b+] - [a"b*])
= (a"b*S(a, t)b* — S(a,r + t)b5*t* + S(a, r)b*, a"b’S(b,u) — S(b, s + u) + S(b, s))

So defining
Zy st = S(a, r)b’S(b, u)

gives the required equation.
fH([a"b|a'b"]) = S(a, rb*S(b, u)

Now we find a cochain ¢ : T? — Zrepresenting the cohomology class p € Z = Homp(ZT,Z) =
H?(T, Z). Such a cochain is given by the composition

T2 2y 727 Py 7

Since ¢(S(a, r)) = r, we find
p(a"b®, a'b") = pe(zy ) = pru
The group structure on Z X T corresponding to this is
(m, a"b%) * (n,a'b*) = (m + n + pru,a"'ps+%)

This corresponds to the group of matrices

1 pr m
0O 1 s|ir,smeZ
0O 0 1

2.4. Generators and relations

Another approach to considering extensions, and in particular central extensions, is the use
of partial resolutions arising from generators and relations. Given a group G, for any gen-
erating set X there is a canonical map F — G where F is the free group on X. Let R be the
kernel of this map, and so we have a short exact sequence

1—S>R—3F —3%G —31

This is a presentation for G, where the subgroup R can be thought of as the set of relations.
Since it is a normal subgroup, F acts on it by conjugation. Often we take a set of generators
of R as a normal subgroup of F.
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Let Ry, = R/R, be the largest abelian quotient of R. We say that R’ is the derived subgroup
of R, and is given by the commutator subgroup [R, R] of F. It inherits an action of F, but R
acts trivially, so we have an induced action by G = E /R- Clearly R, is a Z-module, and it is
a ZG-module. This is called the relation module. We have an extension

1—> Ry —> L —>G6—>1

To get a central extension, we instead consider
1— Yrp— Yrp) —> G —> 1

where [R, F] is the commutator subgroup. There is not a largest or universal central exten-
sion, since we can always form the direct product with an abelian group, but this particular
central extension above does have some good properties that we will now explore.

Theorem. Let

1—S>R—3F —3%G—31

be a presentation of G. Let M be a left ZG-module. Then there is an exact sequence

Hl(FaM) H HomG(Rab’M) H HZ(G’M) H 0

Thus, any equivalence class of extensions of G by M corresponding to a cohomology class in
H?%(G, M) arises from a ZG-map R,, — M.

Note that M is a ZF-module via the map F — G.

Corollary. In the above situation, if M is a trivial ZG-module, then we have an exact se-
quence

Hom(F, M) —> HomG(R/[R, FpM) —> HX(G.M) — 0

Proof. M is a trivial ZF-module, so H'(F,M) = Hom(F, M), which is a set of group ho-
momorphisms to an abelian group, and any such morphism factors uniquely through the
abelianisation so this is equal to Hom(F,,, M). Similarly, Homg(R,,, M) = Homg (R/[ R F]’M )

2.5. Homology groups

There is also a connection with homology groups. Given a projective resolution of the trivial
ZG-module Z, we can apply the map Z ® ¢ — and obtain homology groups. The homology
groups do not depend on the choice of resolution, and are written H,(G, Z).

Definition. The Schur multiplier M(G) of a group G is the second homology group H,(G, Z).
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Theorem (universal coefficients theorem). Let G be a group and M be a trivial ZG-module.
Then there is a short exact sequence

0 — Ext'(Gyp, M) —> H*(G,M) — Hom(M(G),M) — 0
where Ext'(G,p, M) arises from applying Hom(—, M) to a projective resolution of the abelian
group Ggy,.
Corollary. Suppose that G = G’, and so G, = 1. Then H?(G, M) =~ Hom(M(G), M).

In some texts, the Schur multiplier is defined to be H?(G, CX), where C* is the a trivial
module written multiplicatively. This approach can be useful when considering projective
representations G — PGL(C). Such a map lifts to give a linear representation of central
extension of G.

Theorem (Hopf’s formula). Given a presentation

1—S>R—3SF

~
Q
~
[

we have ,
M(G) = Fn R/[R,F]

Note that this is not necessarily all of E /[ R,F) and this shows that I’ n R/[ R, F] is independ-
ent of the choice of presentation.
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1. Inaccessible cardinals

1. Inaccessible cardinals

1.1. Large cardinal properties

Modern set theory largely concerns itself with the consequences of the incompleteness phe-
nomenon. Given any ‘reasonable’ set theory T, Godel’s first incompleteness theorem shows
that there is a sentence ¢ such that T ¥ ¢ and T ¥ —¢. To be ‘reasonable’, the set of axioms
must be computably enumerable, among other similar restrictions. In particular, Godel’s
second incompleteness theorem shows that T ¥ Con(T), where Con(T) is the statement
that T is consistent. Hence,

WITEPCHIT+oE P}

We might say
T <consequence T + gD

so T has strictly fewer consequences than T + ¢. Modern set theory is about understanding
the relation < ,psequence @nd other similar relations. It turns out that large cardinal axioms
are the most natural hierarchy that we can use to measure the strength of set theories.

In this course we will not provide a definition for the notion of ‘large cardinal’, but we will
provide an informal description. A large cardinal property is a formula ® such that ®(x)
implies that x is a very large cardinal, so large that its existence cannot be proven in ZFC.
A large cardinal axiom is an axiom of the form Jx. ®(x), which we will abbreviate ®C. We
begin with some non-examples.

(i) xiscalled an aleph fixed point if x = R,.. Note that, for example, w, w;, and 8, are not
aleph fixed points. However, we have the following result. We say that F : Ord — Ord
is normal if « < B implies F(a) < F(B), and if 1 is a limit, F(1) = Uoc</1 F(a). One
can show that every normal ordinal operation has arbitrarily large fixed points, and
in particular that these fixed points may be enumerated by the ordinals. In particular,
since the operation o — N, is normal, it admits fixed points.

(ii) Let ®(x) be the property
x = R, A Con(ZFC)

Clearly ®C implies Con(ZFC), so ZFC ¥ ®C. We would like our large cardinal axioms
to be unprovable by ZFC because of the size of the cardinal in question, not because
of any other arbitrary reasons that we may attach to these axioms.

One source of large cardinal axioms is as follows. Consider the ordinal w; it is much larger
than any ordinal smaller than it. We can consider properties that encapsulate the notion that
w is much larger than any smaller ordinal, and use these as large cardinal properties.

(i) If n < w, then n* < w, where n* is the cardinal successor of n. We define

Ax) < Va.(a<x—->at <x)
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(i)

(iii)

where a? is the least cardinal strictly larger than a. Then, A(x) holds precisely when
x is a limit cardinal. These need not be very large, for example, X, is a limit cardinal,
and the existence of this cardinal is proven by ZFC.

If n < w, then 2" < w, where 2" is the size of the power set of n.
(k) <= Va.(x<x - 2% <x)

where 2% is the cardinality of P(«). Such cardinals are called strong limit cardinals.
We will show that these exist in all models of ZFC. Similarly to the aleph hierarchy,
we can define the beth hierarchy, denoted 2. This is given by

20 =Rg; g1 =275 = U Aa

a<l

Cantor’s theorem shows that 8, < 23,, and the continuum hypothesis is the assertion
that N; = 2,;. Note that x is a strong limit cardinal if and only if x = 2 for some limit
ordinal A. In particular, ZFC I 2C.

Ifs : n > wforn < w, then sup(s) = | Jran(s) < w. This gives rise to the following
definition.

Definition. Let A be a limit ordinal. We say that C C A is cofinal or unbounded if
JC = A. We define the cofinality of A, denoted cf(1), to be the cardinality of the
smallest cofinal subset. If 4 is a cardinal, then cf(1) < A. If this inequality is strict, the
cardinal is called singular; if this is an equality, it is called regular.

Note that if x is regular, then if 1 < x, and for each & < 4 we have a set X, C «x of

size |X,| < x, then |JX, # . It is easy to show that this property is equivalent to
regularity.

We have therefore shown that w is a regular cardinal. Note that X, is also regular,
since countable unions of countable sets are countable. This argument generalises to
all successor cardinals, so all successor cardinals ¥, ; are regular. The cardinal N,
is not regular, as it is the union of {¥X,, | n € N}, which is a subset of X, of cardinality
N, giving cf(R,) = R,. The cofinality of Ry is also ¥,. Limit cardinals are often
singular.

1.2. Weakly inaccessible and inaccessible cardinals

Motivated by these examples of properties of w, we make the following definition.

Definition. A cardinal x is called weakly inaccessible if it is an uncountable regular limit,
and (strongly) inaccessible if it is an uncountable regular strong limit. We write WI(x) to
denote that x is weakly inaccessible, and I(x) if «x is inaccessible.

To argue that these are large cardinal properties, we will show that they are very large, and
that the existence of such cardinals cannot be proven in ZFC. Note that we cannot actually
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prove this statement; if ZFC were inconsistent, it would prove every statement. Whenever
we write statements such as ZFC } IC, it should be interpreted to mean ‘if ZFC is consistent,
it does not prove I1C.

Many things in the relationship of WI and | are unclear: 2% is clearly not inaccessible as
it is not a strong limit, but it is not clear that this is not a limit. The generalised continuum
hypothesis GCH is that for all cardinals a, we have 2%« = X, and so X, = 2. Under this
assumption, the notions of limit and strong limit coincide, and so the notions of inaccessible
cardinals and weakly inaccessible cardinals coincide.

Proposition. Weakly inaccessible cardinals are aleph fixed points.

Proof. Suppose x is weakly inaccessible but ¥ < ¥,.. Fix a such that x = N, then o < x. As
x is a limit cardinal, « must be a limit ordinal. But then X, = < Np> S0 1N particular, the

set{Nz | B < a}is cofinal in x, but this set is of size |a| < x. Hence x is singular, contradicting
regularity. O

1.3. Second order replacement

We will now show that ZFC does not prove IC, and we omit the result for weakly inaccess-
ible cardinals. We could do this via model-theoretic means: we assume M E ZFC, and
construct a model N E ZFC + —IC. However, there is another approach we will take here.
By Godel’s second incompleteness theorem, under the assumption that ZFC is consistent,
we have ZFC ¥ Con(ZFC), so it suffices to show IC — Con(ZFC). Godel’s completeness
theorem states that Con(T') holds if and only if there exists a model M with M E T. Thus,
it suffices to show that under the assumption that there is an inaccessible cardinal, we can
construct a model of ZFC. Note that the metatheory in which the completeness theorem is
proven actually matters; both theories and models are actually sets in the outer theory.

Recall that the cumulative hierarchy inside a model of set theory is given by

Vo=@; Vg = -'P(Voc); V= U Vu

a<ld

(i) The axiom of foundation is equivalent to the statement that every set is an element of
V for some a.

(i) (V4. €) is a model of all of the axioms of set theory except for the axiom of infinity.
This collection of axioms is called finite set theory FST.

(iii) (Vgyies €) is a model of all of the axioms of set theory except for the axiom of replace-
ment. This theory is called Zermelo set theory with choice ZC. In fact, for any limit
ordinal A > w, ZFC proves that (V,, €) F ZC. That is, ZFC proves the existence of a
model of ZC, or equivalently, ZFC F Con(ZC). Hence, ZC cannot prove replacement,
since Godel’s second incompleteness theorem applies to ZC. In this way, replacement
behaves like a large cardinal axiom for ZC. The same holds for infinity and FST.
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We briefly discuss why replacement fails in V,,,,. Consider the set of ordinals w + n for
n < w; this set does not belong to V,,,, as its rank is w + w. However, the class function F
given by n —  + n is definable by a simple formula, and applying this to the setw € V.,
gives a counterexample to replacement. Our counterexample is thus a cofinal subset of V.,
whose union does not lie in V. In some sense, the fact that w + w is singular is the reason
why V., does not satisfy replacement.

Now, consider a = ¥, which is regular. Consider P(w) € V,,;, C V,,,. There is a definable
surjection from P(w) to w;, motivated by the proof of Hartogs’ lemma. Indeed, subsets of
can encode well-orders, and every countable well-order is encoded by a subset of w, so the
map

a if A codes a well-order of order type «

g AP )

0 otherwise
is a surjection P(w) — w;. This class function has cofinal range in w,, and so V,, does not
satisfy replacement.

We will prove that I(x) implies that V,, models replacement. A set M is said to satisfy second-
orderreplacement SOR if for every function F : M — M and everyx € M, theset{F(y) | y € x}
is in M. Any model of V, that satisfies second-order replacement is a model of ZFC, as
the counterexamples to replacement are special cases of violations of second-order replace-
ment.

Theorem (Zermelo). If x is inaccessible, then V,, satisfies second-order replacement.

We first prove the following lemmas.

Lemma. If x is inaccessible and 1 < x, then |V;] < x.

Proof. This follows by induction. Note |Vy| = 0 < k. If [V,| < %, then as « is a strong limit,

Vsl = [P(V)| = 2Val < x. If 1 is a limit and |V,| < x for all « < 4, then if [V,| = x, we
have written x as a union of less than «x sets of size less than «, contradicting regularity. [

Lemma. If x is inaccessible and x € V,, then |x| < «.

Proof. Suppose x € V,. = |, < Va- Then there exists o < x such thatx € V. Thenx C V,
as the V,, are transitive, but then |x| < [V,| < . O

We can now prove Zermelo’s theorem.

Proof. LetF : V, — V,, and x € V,; we must show that R = {F(y) | y € x} € V,.. By the
second lemma above, |x| < %, hence |R| < x. For each y € x, define a,, to be the rank of
F(y). This is an ordinal less than x. Consider A = {ocy ly € x}; its cardinality is bounded by
that of x, so |A| < x. But as x is regular, |A] is not cofinal, so there is y < x such that A C V.
By definition, R C V,,S0R €V, CV,,as required. O
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1. Inaccessible cardinals

The definition of inaccessibility is precisely what is needed for this proof to work. The fol-
lowing converse holds.

Theorem (Shepherdson). If V, satisfies second-order replacement, then x is inaccessible.

Proof. Suppose « is not inaccessible, so either « is singular or there is 1 < x such that 2% > .
If x is singular, then x = Ua</1 xq for A < x and x5 < x. Consider C = {x, | « < 1}; this
set is cofinal in %, but the cardinality of C is 4. Therefore, C ¢ V,. We simply take the
function F : o — x,, then the image of A under F is C ¢ V,, so F witnesses that V,. violates
second-order replacement.

Suppose there is 4 < x such that 2* > «. Let F : P(1) — «x be a surjection. Since 1 < x, we
must have P(1) € V;,, C V,. Then the image of (1) under F is x ¢ V,, as required. O

1.4. Countable transitive models of set theory

It is not generally the case that if V,, E ZFC then « is inaccessible. Moreover, the existence of
an inaccessible cardinal is strictly stronger than the consistency of ZFC. We will show this
second statement first.

Suppose « is inaccessible, so V,. F ZFC. A standard model-theoretic argument shows there
is a countable elementary substructure (N, €) < (V,, €). In particular, (N, €) F ZFC. The
proof of the downwards Lowenheim-Skolem theorem that we will use is a Skolem hull con-
struction, given by

No=@5 N =N UWWNR); N=| N
keN

where W(N,) is a set of witnesses for all formulas of the form Jx. ¢ with parameters in N.
The fact that this is an elementary substructure follows from the Tarski-Vaught test. We
will now explore this model in more detail.

Ifn € w, there is a formula ¢,, such that V. E ¢, (x) ifand only if x = n. Clearly, the formula
Jx. ¢, (x) has precisely one witness, so w C N;. Similarly, there are formulas ¢, 10> Pu.3
and so on. There is also a formula ¢, such that x = w; if and only if V,, E ¢, (x). As
before, because there is a unique witness to this formula in V,,, we must have w; € N;. But
since the model N is countable, there must be a gap in the ordinals at some point below w;.
By the same argument, the model contains w,, w5 and so on. Therefore, N is a nontransitive
model.

As (N, €) is well-founded and extensional, by Mostowski’s collapsing theorem there is a
unique transitive M such that (M, €) = (N, €). This fills all of the gaps in our model. As
this is an isomorphism, we obtain (M,€) < (N,€) < (V,,€), so (M, €) is a countable
transitive model of ZFC. In particular, its height « = Ord N M is a countable ordinal. There
is an elementary embedding of M into V,, given by the inverse of the Mostowski collapse. In
particular, some 8 < « has the property that M F ¢, ().
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Therefore, the property ‘x is a cardinal’ cannot be an absolute property between M and V,.
A property is said to be absolute between M and some larger structure N if it holds in M
precisely if it holds in N, where parameters are allowed to take values in the smaller struc-
ture M. If the truth of the property in the smaller structure implies the truth in the larger
structure, we say the property is upwards absolute; conversely, if truth in the larger structure
implies truth in the smaller one, we say the property is downwards absolute. The theory of
absoluteness concerns the following classes of formulas, among others.

(i) A, formulas, in which only bounded quantifiers are permitted, for example in ZFC, ‘x
is an ordinal’, ‘f is a function’, ‘x is a subset of y’, ‘x is w’.

(ii) X, formulas, which are A, formulas surrounded by a single existential quantifier.

(iii) II; formulas, which are A, formulas surrounded by a single universal quantifier, for
example ‘x is a cardinal’ or ‘x is the power set of y’.

One can show that A, formulas are absolute between transitive models. Further, Z; formulas
are upwards absolute and IT; formulas are downwards absolute. The example above shows
that ‘x is a cardinal’ cannot be A as it is not upwards absolute. Similarly, ‘x is the power
set of ¥’ cannot be A, because the object p that M believes is the power set of w must be
countable, and so cannot be the real power set in V,.. As being a subset is absolute, this
object p must consist of subsets of w, but must only contain very few of them.

Asbeing w is A, in fact all arithmetical statements (and therefore, by encoding, all syntactic
statements) are A,.

Theorem. IC - Con(ZFC) but Con(ZFC) » IC.

Proof. The forward direction has already been proven. Since IC proves the consistency of
ZFC, there is a countable transitive model M C V,, C V of ZFC. By absoluteness, M E
Con(ZFC), so M E ZFC" where we define ZFC™ = ZFC + Con(ZFC). We have thus proven

that IC implies the consistency of ZFC”. So, by the second incompleteness theorem, ZFC" ¥
IC. ]

1.5. Worldly cardinals
We now show that if V,, F ZFC, it is not necessarily the case that x is inaccessible.

Observe that M # V,, for any a. Clearly M # V,,. But |V ;| = [P(w)| = 2%, and [V, | > 280
for all « > w + 1. But M is countable, so it cannot be any of these.

Recall the definition of N by

No=@ Niaa=WWNp); N=[JNg
keN

We wish to create a similar structure that is of the form V,, for some a. We define

ay=0; oy =supfrank(x) | x € W(Vg, )} a=supia, | neN}
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1. Inaccessible cardinals

Note that N C V.

Theorem. V, <V, and o < «.

Proof. The first statement follows from the Tarski-Vaught test. To show a < %, we first show
by induction that o, < x. This is clearly true for k = 0. Now, if o < x, we have |Vak| <x
by a previous lemma. Thus,

|W(fok>| < NO ’ |V§1?| = |V<Xk' <x

where X <% is the set of finite sequences of elements of X. Hence {rank(x) | x € W(Vak)} is
a set of less than x ordinals less than x, so it must be bounded by regularity. Finally, as « is
a countable union of the «y, regularity again shows a < «. O

Remark. The ordinal a produced in this way has countable cofinality, so cannot be inaccess-
ible. In particular, V, F ZFC but « is not inaccessible.

Definition. We call an ordinal a worldly if V, E ZFC, and write Wor(«).

We have shown I(x) — Wor(x), but not the other way round given that a wordly cardinal
exists. In particular,

IC - WorC — Con(ZFC)
Theorem. If x is a wordly ordinal, x is a cardinal.

Proof. First, observe that x is a limit ordinal; otherwise, its predecessor would be the largest
ordinal in the model, but ZFC proves that there is no largest ordinal. Suppose x is not a
cardinal, so there is 4 < x such that there is a bijection 1 — x. In particular, A < x < A*.
By the proof of Hartogs’ lemma, there is a relation R C 4 X 4 such that (4,R) = (x, €).
Assuming Kuratowski’s definition of ordered pairs, an element of 4 X 4 is an element of V,
sOAXA €V, andR € V, ;. The pair (4, R) is an element of V3 C V,.. Thus V, contains
awell-order (4, R) of order type k. But ZFC proves that every well-ordering is isomorphic to
a unique ordinal, so we must have x € V,., which is a contradiction. O

1.6. The consistency strength hierarchy

Let B be a base theory; we will often use ZFC. If T, S are extensions of B, we say that T has
lower consistency strength than S, written T <, S, if B+ Con(S) — Con(T). We say that
T and S is equiconsistent, written T =¢o, S, if T <gop S and S <o T, and write T <, S if
T <con Sbut S £con T.

Remark. (i) If I is inconsistent, then T <., I for all T. All inconsistent theories are
equiconsistent. In particular, T is consistent if and only if T <, I. We typically write
1 for an inconsistent theory.
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(i) <cop is more than just ‘proving more theorems’. If ¢ is such that ZFC ¥ ¢ and ZFC ¥
-1, it is not necessarily the case that ZFC <., ZFC + ¢ or ZFC <., ZFC + —¢. For
example, ZFC + CH, ZFC + =~ CH, and ZFC are all equiconsistent.

(iii) The second incompleteness theorem shows, for suitably nice theories T, thatif T # L
then T <c,, T + Con(T). Note that it is possible that T is consistent but T + Con(T)
is inconsistent, so the incompleteness theorem does not necessarily give an infinite
chain of strict consistency strength inequalities. For example, consider

ZFC' = ZFC + = Con(ZFQ)
Since ZFC' D ZFC, we must have Con(ZFCT) — Con(ZFQ), but ZFC' — = Con(ZFQ),

so ZFC' + Con(ZFCT) is inconsistent.

In conclusion,
ZFC <con ZFC + Con(ZFC) <o ZFC + WorC <y, ZFC + IC

where the second inequality uses the same argument as IC — Con(ZFC + Con(ZFC)).

We will see that ZFC =, ZFC + =IC. Many large cardinal axioms have this property that
their negations are weak.

If x is the least inaccessible cardinal, then V,, is a model of ZFC, but we can show that it can-
not satisfy IC. Note that the statement ‘A is inaccessible’ is a IT; statement, so is downwards
absolute. Given a model with two inaccessible cardinals x, < x;, we have V, F ZFC+1(x,)
so in particular, V,, F ZFC + IC.

Lemma. If o is a limit ordinal, then the formula ‘A is inaccessible’ is absolute for V, and V.
In particular, V,, above does not satisfy IC.

Proof. By downwards absoluteness, it suffices to show that if V, E I(1) then I(1). Suppose
not, so A is singular or not a strong limit.

Let A be singular, so there is a cofinal set C C A with |C| = y < 4, so there is a bijection f :
y — C. Note that being singular is Z;, witnessed by C,y, f. We have C € V., ¥ € V;, and
f € V, 4,. All of these are subsets of V, so these witnesses exist in V.. Hence V,, believes
that C is a cofinal set of cardinality less than A, so it believes A is singular, contradicting
inaccessibility.

Now let A not be a strong limit. Let y < 4, and let f : P(y) — A be a surjection. Then
P(y) € Vy42 €V, C Vg, and so this function is an element of V;,, C V;. The statement
that it is a surjection is absolute, so V, believes f is a surjection from P(y) to 4, contradicting
its belief that A is a strong limit. O
Therefore, we have the following.

Theorem. Suppose ZFC + IC, and let x be the least inaccessible. Then V,. F ZFC + =IC.
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1. Inaccessible cardinals

Proof. Suppose V,. E ZFC +IC. Then there is 4 < x such that V,.  I(1), but by the previous
lemma this contradicts minimality of «. O

Therefore, we have the following.
ZFC + IC - there is a transitive model of ZFC + —IC

For any theory T, we write
T* =T+ Con(T)

We make the following remarks.

(i) Observe thatif S proves that there is a transitive model of T, then S - Con(T*) because
consistency statements are downwards absolute between transitive models.

(ii) Note also that if S proves every axiom of T, then Con(S) — Con(T).
(iii) If T is not equiconsistent with L, then Con(T) - Con(T*).

We can therefore show
Con(ZFC + —IC) » Con(ZFC + IC)

assuming that ZFC + =IC is consistent. We have that ZFC + IC yields a transitive model of
ZFC + =IC. Thus, by (i), ZFC + IC implies Con((ZFC + =IC)*). Hence Con(ZFC + IC) —
Con((ZFC + —1C)*), so if the given implication were to hold, it would contradict Godel’s
second incompleteness theorem. Thus, if ZFC + =IC is consistent,

ZFC 4+ 1lC <y ZFC+IC

Observe that none of the proofs given in this section work for weakly inaccessible cardinals,
so it is not clear that weakly inaccessible cardinals qualify as large cardinals. However, un-
der the generalised continuum hypothesis, we have 8, = 1, and so the notions of weakly
inaccessible cardinal and inaccessible cardinal coincide. In Part III Forcing and the Con-
tinuum Hypothesis, we see that if M = ZFC, there is L C M such that L is transitive in M, L
contains all the ordinals of M, and L F ZFC + GCH. Thus, given a model M E ZFC + WIC,
we obtain L F ZFC + IC, and thus the two axioms WIC and IC are equiconsistent.

Note that 2%0 is not a strong limit, but it is consistent that 20 is weakly inaccessible (un-
der suitable assumptions), so the notions of weakly inaccessible cardinals and inaccessible
cardinals do not coincide.
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2. Measurability and compactness

2.1. The measure problem

Let [ denote the unit interval [0,1] C R. A function u : P(I) — [is called a measure if
() u() = 1and u(@) = 0;

(ii) (translation invariance) if X Cl,r e R,and X +r ={x+r | x € X} C I, then u(X) =
u(X +r); and

(iii) (countable additivity) if (A,),en is @ family of pairwise disjoint subsets of [, then
/’{(UneNAn) = ZneN :u(An)-

The Lebesgue measure problem was the question of whether such a measure function exists.
Vitali proved that a measure cannot be defined on all of P(I). This proof requires the axiom
of choice nontrivially. In 1970, Solovay proved that if ZFC + IC is consistent, then, there is
a model of ZF in which all sets are Lebesgue measurable. In 1984, Shelah showed that the
inaccessible cardinal was necessary to construct this model.

Now, replace translation invariance with the requirement that for all x € [, we have u({x}) =
0, and call such measures Banach measures. Banach’s measure problem was the question of
whether a Banach measure exists. Note that every Lebesgue measure is a Banach measure. If
u({x}) > 0 for some x, then by translation invariance, every singleton has the same measure
u({x}) > 0. There is some natural number n such that nu({x}) > 1, but this contradicts
countable additivity using a set of n reals. Observe that for any ¢ > 0, there can be only
finitely many pairwise disjoint sets with measure at least e.

Banach and Kuratowski proved in 1929 that the continuum hypothesis implies that there are
no Banach measures on I. We can define Banach measures on any set S by also replacing
property (i) with the requirement that u(S) = 1 and u(@) = 0. Note that if |S| = |S’|, then
there is a Banach measure on S if and only if there is one on S’. Thus, having a Banach
measure is a property of cardinals.

For larger cardinals, it may not be natural to just consider countable additivity.

Definition. A Banach measure u is called A-additive if for all y < A and pairwise disjoint
families {A, | a < 7}, then

w(|JAq) = Sup{ > Ay

aeF

FCy ﬁnite}

Theorem. If x is the smallest cardinal that has a Banach measure, then that measure is
x-additive.
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2.2. Real-valued measurable cardinals

Definition. A cardinal x is real-valued measurable, written RVM(x), if there is a x-additive
Banach measure on x.

Proposition. Every real-valued measurable cardinal is regular.

Proof. Suppose that « is a real-valued measurable cardinal, and that C C x is cofinal with
|C| = 1 < x. We can write

C={rala<y}
where y,, is increasing in «. Consider
Ca={§|%x§§<7a+l}

Then (J a<y C, = x as C is cofinal, and the C, are disjoint. Note that |Cy| < [yu41] < .
Writing C, = |, ec,, {x}, we observe by x-additivity that u(C,) = 0. But again by x-additivity,
u(x) = 0, contradicting property (i). O

Proposition (the pigeonhole principle). Let x be regular, 1 < x, and f : ¥ — A. Then there
is some a € 1 such that |f~1(a)| = x.

Proof. We have

= )
aed
giving the result immediately by regularity of . O

Proposition. All successor cardinals are regular.
Proposition. If x4 is a Banach measure on S, and C is a family of pairwise disjoint sets of

positive u-measure, then C is countable.

Proof. Consider the collection

c%:{Aecﬂum)>%}

Observe that each C,, is finite, so C = C, must be countable. g

neN

Lemma (Ulam). For any cardinal 4, there is an Ulam matrix Af; indexed by « < A* and

& < Asuch that
(i) for a given &, the set {Ai | a < /1*'} is a pairwise disjoint family; and

(ii) for a given o, we have

o\ A

E<a

<A
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Proof. For each y < A%, fix a surjection f, : 4 — y + 1. Define

Aa={r1 [ =
It is clear that property (i) holds. For property (ii), suppose
yea\|JaAd
&<
Then y < A* and for all £, we have f,(§) # «. Hence
AT\ U Ai Ca
<1

so the size of this set is at most A. O

Theorem. Every real-valued measurable cardinal is weakly inaccessible.
Remark. If there is a Banach measure on [0, 1], then in particular 280 is weakly inaccessible.

Proof. We have already shown regularity. Suppose x is not a limit cardinal, so x = A*. Let
(Aé)m a+;6<2 be an Ulam matrix for 4. By (ii),

Zal <% Zo=20\|J 4G
&<
so by x-additivity, u(Z) = 0. Hence

u(UAi) =1

<1

This is a small union of sets of measure 1, so again by x-additivity there is some &, such that

/,L(Agf‘) > 0. Let f : A7 — 1 be the map a — &,. By the pigeonhole principle, there is some
& and aset A C AT with |A| = AT such that for all « € A, we have §, = &. By property (i),

the collection {Ai | x € A} is a collection of uncountable size A of pairwise disjoint sets, all

of which have positive measure, but we have already shown that such a collection must be
countable. O

2.3. Measurable cardinals
Definition. A Banach measure u is called two-valued if u takes values in {0, 1}.
This removes any mention of the real numbers from the definition of a Banach measure.

Remark. Two-valued measures correspond directly to ultrafilters. Recall that F is a filter on
S if
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(i) o ¢ F,S €F,
(ii) fACBthenA € F -> B€EF;
(iii) if A, Be FthenANB € F.

We say that F is an ultrafilter if A € For S\ A € F forall A C S. F is nonprincipal if for
all x € S, the singleton {x} is not in F. An ultrafilter is A-complete if for all y < 4 and all
families {A, | « <y} C F, we have [, < A, € F. In this way, the collection of sets of a
two-valued Banach measure u that are assigned measure 1 form a nonprincipal ultrafilter.
This filter is A-complete if and only if u is 1-additive.

Definition. An uncountable cardinal x is measurable, written M(x), if there is a x-complete
nonprincipal ultrafilter on .

Remark. (i) ZFC proves that there is an X,-complete nonprincipal ultrafilter on ¥, be-
cause Ny-completeness is equivalent to closure under finite intersections, which is
trivial.

(i) A cardinal x is called Ulam measurable if there is an N;-complete nonprincipal ultra-
filter on x. With this definition, the least Ulam measurable cardinal is measurable.
So the existence of an Ulam measurable cardinal is equivalent to the existence of a
measurable cardinal.

(iii) The theories ZFC + MC and ZFC + RVMC are equiconsistent. This can be shown
analogously to inaccessible and weakly inaccessible cardinals, this time using a variant
of Godel’s constructible universe.

Theorem. Every measurable cardinal is inaccessible.
Proof. We have already shown regularity in the real-valued measurable cardinal case. Let x
be measurable with ultrafilter U. Suppose it is not a strong limit, so there is 1 < x such that

2% > x. Then there is an injection f : x — B,, where B is the set of functions A — 2. Fix
some a < 4, then for each y < x, either

f)(@) =0or f(y)a) =1

Let
AG={r I f(nN(@) =0} AT ={r| f(N(x) =1}

These two sets are disjoint and have union «. So there is exactly one number b € {0, 1} such
that A} € U. Define ¢ € B; by c(«) = b. Then

Xa = A?(C{) (S U
This is a collection of A-many sets that are all in U, so by x-completeness, their intersection

(<1 X« also lies in U. Suppose y € [, _; Xq, so for all a < 4, we have y € Af . Equival-
ently, for all @ < 4, we have f(y)(«) = c(x). So y lies in this intersection if and only if f(y)
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is precisely the function c. Hence

() Xa {710}

a<i
So this intersection has either zero or one element, and in particular, it is not in the ultrafilter,

giving a contradiction. O

Nonprincipal ultrafilters on x are not x*-complete, because « itself is a union of x-many
singletons. Principal ultrafilters are complete for any cardinal. However, we can emulate
completeness for nonprincipal ultrafilters at the cardinal x* using the following method. If
(Ay)a<x is a sequence of subsets of «, its diagonal intersection is

Z&‘Aa =1§€x|f€ rWAAa

asK a<€
A filter on «x is called normal if it is closed under diagonal intersections.

Theorem. If x is measurable, then there is a k-complete normal nonprincipal ultrafilter on
x.

The proof will be given later, and is also on an example sheet.

2.4. Weakly compact cardinals

Let [X]" be the set of n-element subsets of X. A 2-colouring of N is a map ¢ : [N]? —
{red, blue}. Ramsey’s theorem states that for each 2-colouring c, there is an infinite subset
X C Nsuch that cl[X]2 is monochromatic (or homogeneous): each 2-element subset is given
the same colour under c.

This property is invariant under bijection, so this is really a property of the cardinal X,. In
Erdds’ arrow notation, we write
K = (Dm

if for every colouring ¢ : [x]" — m, there is a monochromatic subset X C x of size A:
le[[X]"]| =1

In this notation, Ramsey’s theorem becomes the statement
Ny = (Ro)3

We can now make the following definition.

Definition. An uncountable cardinal « is called weakly compact, written W(x), if x — (x)3.

The name will be explained later.

Theorem (Erdés). Every weakly compact cardinal is inaccessible.
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Proof. Suppose x is weakly compact but not regular. Then x = |J,, 1 Xq for a < x and
disjoint sets X, with |X,| < x. We define a colouring c as follows. A pair {y,d}isred if y,d
lie in the same X, and blue if they are in different X,,. Let H C x be a monochromatic subset
of size x for c. If H is red, then one of the X, is large, which is a contradiction. But if H is
blue, then 4 must be large, which also gives a contradiction.

Suppose that x is not a strong limit, so 2* > x for A < x. Let B, be the set of functions 1 — 2,
and give it the lexicographic order: we say that f < g if f(a) < g(a) at the first position o at
which f and g disagree. For this proof, we will use the combinatorial fact that this ordered
structure (B, <)) is a totally ordered set with no increasing or decreasing chains of length
x > A. The proof is on an example sheet.

If 24 > x, there is a family of pairwise distinct elements (f, )<, of B; of length x. Define a
colouring c of x as follows. A pair «a, 8 is red if the truth value of @ < B is the same as the
truth value of f, <jx fg. A pair is blue otherwise. Let H be a monochromatic set for c. If H
isred, then f, forms a <j.,-increasing sequence of length «. If H is blue, then f, forms a <;.,-
decreasing sequence of length x. Both results contradict the combinatorial result above. [

Theorem. Every measurable cardinal is weakly compact.

Proof. Let f : [x]*> — 2 be a colouring of a measurable cardinal x. Let

X5 ={B1f(a.ph =0k X{'={B|f({a B} =1}

For a given «a, these are disjoint, and X§ U X{* = x \ {a}, so precisely one of them lies in the
ultrafilter U. Define ¢ : ¥ — 2 be such that Xg‘(a) € U. Now, let

Xo={alc@ =0} X ={a|c(a)=1}
Precisely one of these two sets lies in U.

We claim that if X; € U, then there is a monochromatic set H for colour i with |H| = «.
Without loss of generality, we may assume i = 0. Define

_|X¢ ife(@=0
e ife(a)=1

Each of the Z, lie in the ultrafilter U. As we may assume U is normal, the diagonal intersec-
tion of the Z, also lies in U. So we can define

H=XNn AZ,eU

ask

and |H| = x. Lety < § withy,§ € H. Theny,6 € X;, so c(y) = 0 = ¢(6). Hence Z, = b'ed
and Zs = Xg . In particular,

5€ NZyC(2:C2 =X}

ask £<s

Hence f({y,6}) = 0. O
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The large cardinal axioms discussed so far fall into a linear hierarchy of consistency strength.
This is known as the linearity phenomenon.

2.5. Strongly compact cardinals

The compactness theorem for first-order logic says that for any first-order language Lg and
set of axioms ® C Lg,

® is satisfiable « (V®, C ®.|Dy| < R, — P, is satisfiable)

This result cannot work for languages with infinitary conjunctions and disjunctions. Indeed,
if we write

PF = \/ ®-ns @=n = there are precisely n elements; ¢, = there are at least n elements
ieN

then
{§02n |ne N} U{pr}

is finitely satisfiable but not satisfiable.
Definition. An £, -language is defined by
« aset of variables;
« aset S of function, relation, and constant symbols of finite arity;
« the logical symbols A, Vv, =, 3,V; and
« the infinitary logical symbols /\a < \/a < 34, VA for A < x.

We define the new syntactic rules as follows. If ¢, are Lg-formulas for « < 4, then so are
/\a <1 %o and \/a <1 ®Pa- I vis asequence of variables of length 4 and ¢ is an Lg-formula,
then 3*v. ¢ and V*v. ¢ are Lg-formulas.

We say that M is a model of \/ <1 Pa it M F @4 for all & < A. Similarly, M models Iv. @ if
there is a function a : 1 — M such that

. a(0)a(1)...a(§) ...

Uovl e U§ e

ME

Definition. An £, -language Lg satisfies compactness if for all ® C Lg,
® is satisfiable & (V®, C ®. |P,| < x — @ is satisfiable)

Note that if ¥ = w, we recover the standard notion of a first-order language, so all £, -
languages satisfy compactness.

Definition. An uncountable cardinal « is called strongly compact, denoted SC(x), if every
L,..-language satisfies compactness.
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Theorem (Keisler-Tarski theorem). Suppose « is a strongly compact cardinal. Then every
x-complete filter on x can be extended to a x-complete ultrafilter.

Proof. We define a language L extending the usual language of set theory by creating a con-
stant symbol c, for each A C x, giving 2¥-many symbols. Now let L* be L with an extra
constant symbol c. Let

M = (P(x), €,{A | A Cx})

S0 ¢4 is interpreted by A. Let ® = Th; (M) be the L-theory of M. In particular,
M E Vx.x € ¢4 — xisan ordinal
and
M E Vx.xisanordinal —» x € ¢4 VX € ¢\ 4

Now let
d*=dUf{cecy |AEF}

This is a subset of L*. We show that ®* is x-satisfiable. If (A, ), are subsets of x such that
¢ € ¢y, occurs in a x-small subset of ®*, then any element 7 € ) a<1 Ao can be chosen as
the interpretation of c. As F is x-complete, this intersection lies in F and so is nonempty as
required.

Hence, by strong compactness of x, the theory ®* is satisfiable. Let M be a model of ®*.
Define
U:{AlMIZCECA}

We claim that this is a k-complete ultrafilter extending F. The fact that U extends F holds
by construction of ®*. It is an ultrafilter because M believes that ¢ € c4 or ¢ € ¢\ 4. Itis
x-complete because if {A, | a <A} C U,letA =[], <1 A then

MFVX.(XECAH/\XECAO()

a<ad

As this holds in particular for ¢, we obtain A € U. O
Corollary. Every strongly compact cardinal is measurable.

Proof. Let
F={ACx||x\A| <x}

In the case x = w, this is known as the Fréchet filter. This is a x-complete filter on x. If U
extends F then U must be nonprincipal, so by the Keisler-Tarski theorem, F can be extended
to a x-complete nonprincipal ultrafilter on x as required. O
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3. Reflection

3.1. The Keisler extension property

Definition. A cardinal x has the Keisler extension property, written KEP(x), if there is x €
X 2V, transitive such that V,, < X.

Proposition. If x is inaccessible and satisfies the Keisler extension property, there is an

inaccessible cardinal 4 < x.

Proof. Fix X as in the Keisler extension property. As x is inaccessible, X F I(x) because
x € X and inaccessibility is downwards absolute for transitive models. Also, V,. E ZFC, so
X E ZFC as it is an elementary superstructure. Therefore, X F ZFC +1C,s0 V,, E ZFC + IC.
So as inaccessibility is absolute between V,. and V, there is an inaccessible 4 < x. O

The phenomenon that properties of X occur below x is called reflection. This argument can
be improved in the following sense. For a given « < «,

XEI1>all)
But as o € V,, elementarity gives
Ve E 3l > a.l(d)

So the set
A <x 1)}

is not only nonempty, but cofinal in x.

Corollary. Let A be the axiom
k. 1(x) A KEP(x%)

Then
ZFC+1C <oy ZFC+ A

Proof. Tt suffices to show that ZFC+ A E Con(ZFC +1C). We have seen that ZFC + A proves
the existence of (at least) two inaccessible cardinals below %, and in particular the larger of
the two is a model of ZFC + IC. O

Remark. This is the main technique for proving strict inequalities of consistency strength.
Given two large cardinal properties ®, ¥ with the appropriate amount of absoluteness prop-
erties, we show that ZFC + ®(x) proves that the set

{4 <x | P}

is cofinal in x. Then ZFC + ®C E Con(ZFC + ¥(C).
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3. Reflection

Example. Consider the proof that every inaccessible cardinal has a worldly cardinal below
it. In the construction, we produce a sequence of ordinals (;);e., and the worldly cardinal
is sup «;. But we can set oy = A + 1 for a given worldly cardinal 1 < x, so this gives a cofinal
sequence of worldly cardinals below every given inaccessible.

Theorem. Every strongly compact cardinal has the Keisler extension property.

Proof. We want to use the method of (elementary) diagrams to produce a model with V,, as
a substructure. However, we have no way to control whether such a model is well-founded
using standard first-order model-theoretic techniques. To bypass this issue, we will use in-
finitary operators.

Let ¢, be a constant symbol for each x € V,, and let L be the language with € and the c,.
Let
V=(V,&E{x|xeV,}

In first-order logic, Th(X) is the elementary diagram of V,, so if M E Th(X), then V,, C M.
Let L, be the £,,-language with the same symbols. Consider

P = V. \/ Vit € U;
i€Ew

This expresses well-foundedness (assuming AC). Writing @ = Thy_(V) for the L,-theory of
P, we must have i € ® since V,. is well-founded. Thus, if M E &, then M is a well-founded
model containing V,.. By taking the Mostowski collapse, we may also assume that any such
M is transitive.

Extend L, to L} with one extra constant ¢, and let
&t =dU{cisanordinal}U{c # ¢, | x € V,.}

Any model of ®* induces a transitive elementary superstructure of V,. that contains an or-
dinal at least %, so by transitivity, x is in this model.

We show that &7 is satisfiable by showing that it is x-satisfiable, using the fact that « is
strongly compact. Let ®° C ®* be a subset of size less than x. Then we can interpret ¢ as
some ordinal « greater than all ordinals 8 occurring in the sentences ¢ # cg in ®*. Then V,
together with this interpretation of c, is a model of @y,. O

Corollary.
ZFC+1C <oy ZFC + SCC

The proof above only used languages with at most k-many symbols. Let WC(x) be the axiom
that every £,,-language with at most x-many symbols satisfies x-compactness. Then we
have shown that WC(x) implies the Keisler extension property. One can show that

W(x) < WC(x)
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So the cardinals x that satisfy WC(x) are precisely the weakly compact cardinals. In partic-
ular,
ZFC+1C <oy ZFC+WCC

Note that in the proof that strongly compact cardinals are measurable, we used a language
with 2*-many symbols.

3.2. Ultrapowers of the universe

In order to avoid proper classes, we will consider ultrapowers of particular set universes.
Later, we will briefly explain how all of this could have been done in a proper class universe
such as V. For convenience, we will assume that x < 4 where x is measurable and A is
inaccessible, so V; E ZFC + MC. We will take the ultrapower of V.

Let U be a x-complete nonprincipal ultrafilter on %, and form the ultrapower of V, consist-
ing of equivalence classes of functions f : ¥ - V, where f ~ g when {« | f(a) = g(a)} €
U.

Vi = A1 f k= V)

The membership relation on the ultrapower is given by

[f1E[g] o {al| f(a) egl@)} €U

We have an embedding ¢ from V into the ultrapower by mapping x € V to the equivalence
class of its constant function ¢, : ¥ — V. This is an elementary embedding by Lo$’ theorem.
Hence

v =(Yy)

so they both model ZFC + MC, and in particular, [c, ] is a measurable cardinal.
X
Remark. (i) Suppose Va /7 E [f]is an ordinal. By Lo$’ theorem,
X ={a| f(a)is an ordinal} € U
We can define
fla) ifaeX
0 otherwise

f’(oc)={

Note that f ~ f’,so [f] = [f']. So without loss of generality, we can assume f is a
function into Ord N1 = 4, so f : ¥ = A. Since A is inaccessible, f cannot be cofinal,
so there is y < A such that f : x — y. Note also that, for example, we can define f + 1
by
(f+D(@) = flo)+1
o)
{a | (f + 1)(«) is the successor of f(a)} =x € U

hence by Lo$’ theorem, [ f + 1] is the successor of [ f].
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(i) If f : x > V, is arbitrary, the set
{rank f(a) | a € x}

cannot be cofinal in 4, so there is y < A such that f € V,.. However, the union of the
equivalence class [ f] is unbounded in V.

(iii) Given f, by (ii) we may assume f € V, for some y < 1. If [g] E [f], then
X={a|gla) e f(m}eU

Now we can define
gla) ifaeX

’ a) =
g 0 otherwise

Then g ~ g’ so [g] = [g'], and g’ € V,,.. Therefore,

gl 1 81 E [F1 < [V,] <2

x
Lemma. Y2 /U is E-well-founded.

Proof. Suppose not, so let {[ f,,] | n € N} be a strictly decreasing sequence, so

[fas1] E [fu]

By definition,
X, ={a] fn+1(“) € fn(a)} eU

(X.eU

But as U is x-complete,

neN
In particular, there must be an element a € ﬂn onXn- Hence, fy(a) is an €-decreasing
sequence in V,;, which is a contradiction. O

Note that we only used N;-completeness of U.

We can take the Mostowski collapse to produce a transitive set M such that

V X
- ( A/U,E>E(M,e)
Combining ¢ and 7, we obtain
j=mol : (Vi3,€) > (M, €)

given by
J(X) = 7(6(x)) = m([cx])

For convenience, will write (f) to abbreviate 7z([ f]), so j(x) = (cy).
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Lemma. M C V,.

Proof. Note that because 1 is inaccessible, V; = H;, where
H; = {x | [tcl(x)] < 4}

Since M is transitive, if |x| < A for each x € M, then M C H,. But remark (iii) above shows
precisely what is required. a

Lemma. Ordn M = A.

Proof. Under the elementary embedding j, ordinals in V; are mapped to ordinals in M. So
j restricts to an order-preserving embedding from A into a subset of 4. Thus this embedding
is unbounded, and therefore by transitivity, Ord N M = A. O

Lemma. j |VK = id, so in particular, V,, C M.

Proof. We show this by e-induction on V,. Suppose that x € V,, is such that forall y € x,
j(y) = y. For any y € x, by elementarity, j(y) € j(x), but j(y) = y soy € j(x) as required.
For the converse, suppose y € j(x). Then define f such that y = (f), so (f) € (c,). Hence

X={a| fl@) ec(n}={al fla) extelU

But
al f@ext=Jalfl@=2

zZEX

This is a union of |x|-many sets. By k-completeness, there must be some z € x such that
{al fla)=zteU

Hence f ~ c,. Therefore, (f) = j(z), and by the inductive hypothesis, j(z) = z. Hence
y E X. O

Lemma. j # id, as j(x) > x.

Proof. We know that j(x) = (c,). By the previous lemma, for each o < x, j(a) = (cp) = a.
Consider the identity map id, : ¥ — x. We have

(cq) < (idy) © {y I cq(y) <ide(P)} €U
o{yla<yleU

But by a size argument, {y | y < a} € U as U is nonprincipal, so we must have a < (id).
Also,

(idy) < (c) © {y |ide(y) < cx(N} € U
o{yly<xtelU
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This is certainly in U. So for all « < «,

a < (idy) < j(x)
giving

x < (idy) < j(x)

as required. O

Remark. (i) Thisimpliesthat j |V1c+1 # id, so the identity result above cannot be strengthened.
(ii) This also shows that many of the elements of M arise from non-constant functions.

(iii) The set
{j(x) | x € V3}

is isomorphic to V;. Therefore, there is a (non-transitive) copy of V that sits strictly
inside M.

(iv) Let f : ¥ — x be a function such that for all y < x, id,(y) < f(y). Then (id,) < (f).
For example, the functions f,(y) = y - 2 and f3(y) = y - 3 satisfy (id,.) < (f3) < (f3)-

(v) At the moment, we do not know whether (id,) = x. Consider

y—1 ifyisasuccessor
fn) = y

if y is a limit
Then
(f) < (dy) « {a| aisalimit} ¢ U

We will discuss this in more detail later.

3.3. Properties above the critical point

Definition. Let j : V; — M be an elementary embedding such that M C V) is transitive.
An ordinal y is called the critical point of j, written crit(j), if j # id and u is the least ordinal
a. such that j(a) > a.

Note that if j # id, it moves the rank of some set, so moves some ordinal. Therefore, if j # id,
it has a critical point.

In this terminology, the critical point of the embedding j above is «.
Remark. (i) M is closed under finite intersections: if A,B € M, then AN B € M.
(i) V,. € M. To show this, we claim that the set

W={yeM|MFEranky < x}

is equal to V,.. Then, since M models ZFC, the set W is V],XI ,soW € M.
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If x € V,, thenrankx = a < x, so j(x) = x. By elementarity, rank x = rank j(x) =
j(a) = a as required. Conversely, suppose that M F ranky = y for y < x. There is
f such that y = (f), and without loss of generality we can take f : ¥ — V,,;. But
|Vy+1| < x, and so by the argument in the lemma proving j |V;< = id, there is some
x € V4 such that {a | f(a) = x} € U. Hence f ~ ¢y, andsoy = j(x) = x.

Lemma. V,,; C M.

Note that j|vx+1 # id.

Proof. Let A € V,,1,50 A C V,. We claim that A = j(A) N V,. Then, by the two remarks
above, this implies A € M.

Suppose x € A C V,.. By elementarity, j(x) € j(A), but x = j(x), so x € j(A). Conversely,
suppose x € j(A) N V,. Then x = j(x), so j(x) € j(A). So by elementarity in the other
direction, x € A. O

Lemma. V; E |j(x)| < 2%.

Proof. Recall that if f € V,, then |(f)| < [V,|. Soif (f) € j(x) = (cy), We can assume
f 1 ¥ — x, and there are only 2*-many such functions. O
In particular, V, believes that j(x) is not a strong limit cardinal. Hence,

Lemma. M # V;.

Proof. M believes that j(x) is measurable, so in particular it believes j(x) is a strong limit.
Hence M # V. O

There is a strengthening of this result which exhibits a witness to M € V, discussed on
the example sheets. Namely, we can show that U ¢ M. In order to show this, we prove
that for arbitrary transitive N C V, with U € N, we have N F |j(x)| < 2*. In particular,
Vieta -¢— M.

Note that M might still believe that x is measurable, even though U ¢ M. There could be
some other U’ € V., which is k-complete and nonprincipal.

Recall that the Keisler extension property for a transitive model X is the statement that there
is x € X such that V,, < X. Properties of X reflect down into V,.: ifa € Ord"* and @ is a
property such that X E ®(x), then

XEJu.a<uAdu)

o)
Ve EJu.a < uAdu)

hence
Co={y<x|@(y)}Cx
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is cofinal in x. Now, if ® is any property such that M E ®(x), then for any « < «,

M E Ju. jla) < p < jx) A D(1)

By elementarity,
ViEJu.a<u<xAd(u)

Note that a = j(a). So
Co ={y <x| @(y)}

is cofinal in x.

Example. (i) Let ®(x) = I(x) be the statement that x is inaccessible. By absoluteness,
M E I(x), so

C={yr<x|I}
is cofinal. So if x is measurable, it is the xth inaccessible cardinal.

(i) Let ®(x) = W(x) be the statement that x is weakly compact. We show that M = W(x).
Letc : [x]?> — 2 be a colouring in M; we find H € [x]* in M that is monochromatic
for c. By the fact that V; E W(x), we obtain H as above in V. But this H is a subset of
%, so is an element of V,.,; C M as required. By the reflection argument,

Cw ={y <x | W)}
is cofinal in x. So the least weakly compact cardinal is not measurable.

Definition. A property @ is called 3-stable if for all transitive models M and all x, if ®(x)
holds and V,, g3 C M then M F ®(x).

Remark. (i) Weak compactness is 1-stable, and 1-stable properties of measurable cardin-
als reflect at a measurable cardinal.

(i) Measurability is 2-stable, because the property E of being a x-complete nonprincipal
ultrafilter is absolute, but the existence of the ultrafilter requires two power set opera-
tions:

M(x) < 3U € V,,,.E(U)

Example. Suppose that M E M(x). Then by the same reflection argument, the set Cy, is
cofinal in x, so «x is the xth measurable cardinal, and so is not the least.

Definition. A cardinal « is called surviving, written Surv(x), if there is A > x inaccessible, a

X
x-complete nonprincipal ultrafilter on x, a transitive model M such that M = Va /p and j
is the elementary embedding derived from U, where M E M(x).

By the example above, if x is the first surviving cardinal, it is the xth measurable. Under
sufficient consistency assumptions, we have the following.

Corollary. MC <., SurvC.
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Proof. Let x be a surviving cardinal. By the previous results, we can find 1; < 4; < x such
that 1y, 4, are both measurable. Then 4, is inaccessible, so V,, F ZFC+M(4,) by 2-stability
of measurability and the fact that V; ,, CV;,. O

3.4. The fundamental theorem on measurable cardinals
Theorem. Suppose 1 is inaccessible and ¥ < 1. Then the following are equivalent.
(i) xis measurable.
(ii) There is a transitive model M of ZFC with V,.,; C M and an elementary embedding

j i V3 = M such that j # id and x = crit(}).

Proof. We have already shown that (i) implies (ii). For the converse, we define an ultrafilter
U by
U={ACx|xe jlA}

Note that if A C x, then j(A) C j(x), so it could in fact be the case that ¥ € j(A). We show
that U is a x-complete nonprincipal ultrafilter.

« We have x € U precisely if x € j(x), but this is true as x is the critical point of j.
+ @ € U precisely if x € j(@), but j(@) = @ as j is an elementary embedding.

« IfA € Uand B D A, then x € j(A), but j(B) 2 j(A) by elementarity, so x € j(B)
giving B e U.

Suppose A ¢ U. Then x ¢ j(A). We want to show k¥ \ A € U, or equivalently,
x € j(x \ A). By elementarity, j(x \ A) = j(x) \ j(A). Butx € j(x) \ j(A) as required.

We show U is nonprincipal. Let « € k. Then {a} € U precisely when x € j({a}) =
{j(@)}. But a < x, so j(a) = a # x, hence U cannot be principal.

« Finally, we show x-completeness; this will also show the finite intersection property
required for U tobe afilter. Lety < x, and fix (A4 )<y such thatA, € Uforeacha <y.
Thenx € j(A,) foralla < y. Then ﬂa<yA“ € Uifandonlyifx € j(ﬂa<yAa). Note
that being an element of ], <yAy is a formula that says that A is a sequence of objects
A, the ath element of this sequence is A, and f is an element of each element of the
sequence. Therefore g € j (ﬂ a< ,,Aa) if and only if 8 is an element of all elements of

the sequence j(A). Clearly, j(A) is a sequence of subsets of j(x) of length j(y) = y.
Since A, is the ath element of A, j(A,) is the j(a)th element of j(A), but j(a) = a.
Hence j(A) is the sequence (j(A4))x<y- Then

j(ﬂ Aa> = 1A

a<y a<y

giving x-completeness as required.
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O]

Remark. Given a sequence A of subsets of x of length y, then j(A) is a sequence of subsets of
Jj(x) of length j(y). Moreover, if A, is the ath element of A, then j(A,) is the j(cr)th element
of j(A). In the situation above, y < x,s0 j(y) = y and j(a) = a, s0 j(A) = {j(A,) | @ < y}. If,
for example, y = x, then j(A) is a sequence of length j(x), which is strictly longer. Despite
this, the first x-many elements of the sequence are still j(A,) for « < x. Beyond x, we do not
know what the elements of j(A) look like. This remark suffices for the following result.

Proposition. For arbitrary embeddings j with critical point x, the ultrafilter U; constructed

above is normal.

Proof. Suppose A, € Uj for each a < x, or equivalently, x € j(A,). We must show x €
j(Aa<x(Aa))' We have

fe A o be()Aa

a<xk O(<§

oVa<ébeA,

= j( A (Acx)) o Va<§.§ e j(A)jw

a<xk
Substitute « for £ and obtain

K € j( A (Aa)) o Va <x.x € j(A)jw

a<k
o Va<xx € jlA)y
o Va<x.x € jlAy)

which holds by assumption. O
Remark. (i) This gives an alternative proof of the existence of a normal ultrafilter on a
measurable cardinal.

(ii) The operations U ~ jy and j — Uj are not inverses in general. In particular, if U is
notnormal, U, # U.

Proposition. Let U be a x-complete nonprincipal ultrafilter on x. Then the following are
equivalent.

(i) U is normal;
(i) (id) = «.

This proposition provides an alternative view of reflection. Suppose that the ultrafilter U on
x is normal. If M E ®(x), then M F ®((id)). By Lo$’ theorem,

{a<x|®(idla))} e U
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So @ reflects not only on a set of size x, but on an ultrafilter set. In particular, if ® = M and
M E M(x), so if x is surviving, then the set of & that are measurable is in U. Using this result,
we can characterise the surviving cardinals in a more elegant way.

Theorem. xissurvivingif and only if there is a normal ultrafilter on x such that{a < x | M(a)} €
U.

Proof. We have just shown one direction. For the converse, suppose theset C = {a < x | M(«)}
isin U. Then for each @ € C, one can find an a-complete nonprincipal ultrafilter on « called
Uy. Define

U, ifaeC

F@=12" taec

Thus the set of a such that f(«) is an a-complete nonprincipal ultrafilter on ¢ is C, so in U.
Equivalently, the set of a such that f(«) is an id(cr)-complete nonprincipal ultrafilter on id(cr)
isin U. So by Lo$’ theorem, M believes that (f) is an (id)-complete nonprincipal ultrafilter
on (id). So (f) witnesses that x is measurable in M. O

This shows that whether a cardinal x is surviving depends only on V,.,,, and is therefore a
2-stable property.

Definition. If U, U’ are normal ultrafilters on x, we write U <, U’ if
C={a|Ma}eU
and there is a sequence of ultrafilters U, on o € C such that
AeU «{a|AnaelU,}eU

This is known as the Mitchell order.

Then « is surviving if and only if there are U, U’ on x such that U <, U’, because of the fact
that if h(a) = A N a then (h) = A. Note that talking about sequences of Mitchell-ordered
ultrafilters is also 2-stable.
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4. Towards inconsistency

4.1. Strong cardinals

Definition. A large cardinal axiom ®C is called an embedding axiom if ®(x) holds if and
only if there is a transitive model M and elementary embedding j : V; — M with critical
point x with certain additional properties.

M(x) is the simplest embedding axiom. The remaining large cardinal axioms in this course
will take the form of embedding axioms.

Definition. Anembedding j : V; — M with critical point x is called B-strong if V,., g C M.
A cardinal x is called 8-strong if there is a §-strong embedding with critical point x.

B-stable properties are preserved by f-strong embeddings. In particular, by the reflection
argument, if @ is 3-stable and «x is 3-strong with ®(x), then x is the xth cardinal with property
d.

Note that x is measurable if and only if x is 1-strong, and if x is 2-strong then {a < x | M(«)}
and {a < x | Surv(a)} are of size x. If we write 8—S(x) to denote that x is 3-strong, then

SurvC <o 2—S(%)

This also gives an example of jUj # j, as the ultrapower embedding of any ultrafilter is never
2-strong.

Definition. A large cardinal property @ is said to have witness objects of rank f3 if there is a
formula ¥ that is downwards absolute for transitive models such that

O(x) < Vx.3y € Vyip. ¥(X, y, %)

Any large cardinal property with witness objects of rank g is §-stable.

Example. (i) Weakly compact cardinals have witness objects of rank 1: for all colourings,
there exists a homogeneous setin V, ;.

(ii) Measurable cardinals have witness objects of rank 2: there is a x-complete nonprin-
cipal ultrafilter on x. The initial Vx quantifier is not needed in this case.

(iii) Surviving cardinals also have witness objects of rank 2, namely, a pair of ultrafilters.

In particular, inaccessibility is 0-stable, weak compactness is 1-stable, and measurability and
survivability are 2-stable.

Remark. If -strong cardinals have witness objects, they cannot be of rank (3, because then
they would reflect below. Witness objects for strength exist and are called extenders, and if u
is the least 21 fixed point larger than |Vx+,6’ , then the witness object for §-strength has rank
at most u.

Definition. A cardinal « is called strong if it is 8-strong for all § < A.
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Importantly, the quantifiers are
VE.3j.Viyg CM

This does not say that there exists an embedding where all of the V,, g are subsets of the
same M. This notion cannot have a single witness object of a fixed rank, since otherwise,
strength would reflect strength.

4.2. Removing the inaccessible

The ultrapower constructions used an inaccessible cardinal above a measurable cardinal, so
that we could obtain a set-sized universe containing a measurable cardinal. When trying to
do this with the real universe, we encounter several problems.

(i) The definition of ultrapowers requires a set model.

(ii) In the fundamental theorem of measurable cardinals, we have a quantification over j
and M. If these are proper classes, this quantification cannot be expressed in the usual
language of set theory.

(iii) Also, in the fundamental theorem of measurable cardinals, we use the notion of an
elementary embedding, which is only definable for set models.

To solve problem (i), we would like to construct VK/NU. Note that V* is a well-defined class;
it is the class of all functions with domain k. For such functions, it is easy to define the
equivalence relation ~;;. However, the equivalence classes [f]y = {g € V¥ | f ~y g}areall
proper classes. So VK/NU is no longer a standard class; classes containing proper classes are
typically not allowed. This can be resolved using Scott’s trick. If C is a nonempty class, then
there is a minimal  such that CNV,, # @. This is a nonempty set. Define scott(C) = CNV,
for this a. Hence, if [f]y # [gly, we have scott([f]yy) # scott([g]).- We can therefore
define

V74 = fscott([f]y) | dom f = x}

X
To obtain our model M, we took the Mostowski collapse of Va /- Therefore, we need a
class version of the Mostowski collapse. Recall that a relation E C C X C is set-like if for all
x € C,theclass{y € C | y E x}is a set.

Theorem. Let C be aclass, and let E C C X C be a binary relation on C that is well-founded,
extensional, and set-like. Then there is a unique transitive class T such that (T, €) = (C, E).

This may be proven in an almost identical fashion to Mostowski’s collapsing theorem for
sets.

For problems (ii) and (iii), recall that the fundamental theorem of measurable cardinals was
that M(x) is equivalent to the statement that there is an elementary embedding j : V; - M
with critical point x. Measurability is witnessed at x + 2, but the elementary embedding is
not witnessed anywhere below 4, so we cannot extend this definition to the usual universe.
We can solve this by extending our set theory to an appropriate class theory. Standard class
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4. Towards inconsistency

theories include von Neumann-Bernays—-Gdodel or NBG, and Morse-Kelley or MK. These the-
ories have very different notions of class. NBG set theory is based upon the idea that defin-
able formulas give the classes. It is a ‘minimal class theory’ where all classes are definable.
MK is based on the idea that Ord behaves externally like in inaccessible cardinal. In this
theory, there could be undefinable classes, and more classes than sets.

This resolves problem (ii), as we are permitted to work in a language in which we may
quantify over proper classes. However, this does not solve problem (iii). Elementarity can-
not be expressed as a single formula, but becomes a schema. This causes additional problems
as we need the existential over j and M to be part of each formula. This could be solved by
extending the language to add symbols for j and M. Another resolution is to observe that
>, -elementarity suffices, as is explored in Kanamori’s book The Higher Infinite on page 45.
This can be defined using a single formula, therefore solving problem (iii).

4.3. Supercompact cardinals
Definition. M is closed under u-sequences if M# C M.
Theorem. If x is measurable and j : V; — M is the ultrapower embedding, then M is

closed under x-sequences but not x*-sequences.

Proof. Let S = {(fy) | @ < x} € M*. We must show that S € M. Find h such that (h) = x.
For £ € «, define g(£) to be a function with domain k() such that for all « € h(§),

8(&) (@) = fo (&)

Then
{£|domg(®) =h()}=xeU

By Lo$’ theorem, dom(g) = (h) = x. Further,

{€ | Va € dom g(§). g(§)(x) = fa(§)} =x € U
so again by Lo$’ theorem, if « € dom(g) = «, then (g)(«x) = (f,). Hence (g) = S.

Let
T ={j(a) | @« < xt} € M*"

We claim that T ¢ M. To prove this, we first show that T is unbounded in j(x*), which
is equal to j(x)* by elementarity. Indeed, consider an arbitrary (f) < j(x*). Then j(x*) =
(c,e+ ), so without loss of generality we can assume f : ¥ — x*. Asxt isregular, f is bounded
by some a < x*,s0 f : ¥ — a. Then (f) < (cgq) = j(a) € T.

Now, note that j(x*) = j(x)" is a regular cardinal, so cannot have small unbounded subsets.
But |T| = x* < j(x)*,s0 T & M. O

Definition. An embedding j is called u-supercompact if M# C M. A cardinal « is called u-
supercompact if there is a u-supercompact embedding with critical point «.
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VI. Large Cardinals

Therefore, the theorem above shows that if x is measurable, then it is x-supercompact, and
the ultrapower embedding is not x*-supercompact, although there could be other embed-
dings that are.

Definition. A cardinal « is called supercompact if it is u-supercompact for all u < A.

As with strong cardinals, the quantifiers are in the order
Yu.3j.M* C M

If x is 2¥-supercompact, then x is 2-strong. First note that V,,, = P(Vyy1) and |V | =
|P(V,)| = 2. Every A € V,,, is a 2¥-sequence of elements of M, so if every 2*-length
sequence lies in M, then A € M as required. In general, if x is |VK+5| = 4 p-Supercompact,
then x is (8 + 1)-strong. In particular,

Corollary. Every supercompact cardinal is strong.

4.4. The upper limit
We now consider reversing the quantifier order in the definition of a strong cardinal.

Definition. A cardinal x is called Reinhardt if there is an embedding j such that for all 3, we
have V,., g3 C M, or equivalently, M = V;. In other words, there is an elementary embedding
j : V, = V, with critical point x.

Theorem (Kunen). ZFC proves that there are no Reinhardt cardinals.
Itis an open problem whether ZF without AC proves there are no Reinhardt cardinals.

Proof. Suppose j : V; — M has critical point k. Find the least j-fixed point above x, by
defining
Ko =% Ky = j(Kk); R= U i
lew
so j(R) = ®. We will show that V;,; € M, which is a result called Kunen’s lemma. This
contradicts the assumption that M = V.

We need a combinatorial lemma due to Erdés and Hajnal. For a cardinal 8, we say that f :
[6]® — & is w-Jonsson if for every X C & such that [X| = §, we have {f(A) | A € [X]?} = 6.
The lemma states that every cardinal § has an w-Jénsson function.

Suppose that Vi,; C M. Let f : [#]® — & be an w-Jénsson function for €. Then M believes
that j(f) is an w-Jonsson function for j(®) = k. Define

X ={j(@) |« €k} € Vpy

We claim that X ¢ M, finishing the proof. Suppose X € M. Clearly |X| = &, so then
M E |X| = ®. We can apply the definition of an w-Jénsson function in M, which shows that

ME{j(f)A) |A € [X]*} =%
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4. Towards inconsistency

Any A € [X]? is of the form {j(«;) | i € w} for some a = {a; | i € w} € [£]®. Then j(a) =
{i(ap) |1 € w}=A.

In general, if g(x) = y, then g is a function, x € domg, and (x,y) € g. Applying j, we
have that j(g) is a function, j(x) € dom j(g), and (j(x), j(»)) € j(g). So j(&)(j(x)) = j(¥) =
J(8(x)). Therefore, we obtain j(f)(A) = j(f)(j(a)) = j(f(a)). But f(a) € %, s0 j(f(a)) € X.
Therefore,

ME=={j(f)A)|Ae[X]*}CcX

But this cannot be true, for example because x ¢ X but x € %. O

Remark. (i) The combinatorial lemma was proven using AC, and it is not known whether
the proof works without it.

(i) To prove Kunen’s lemma, we did not need that 4 is inaccessible. More explicitly, if
j i V4 = M is an elementary embedding with critical point x such that ® + 2 < a (to
guarantee that f € V), then V., € M.

Corollary. For any ordinal J, there is no elementary embedding j : Vs,, — Vg, with
critical point less than § + 2.

Proof. Observe that if x < & + 2 is the critical point, we cannot have x = § orx = § + 1,
because 6 and § + 1 are definable in Vs, ,. Then j(x) < &, so by induction all of the iterated
images of x under j are less than §, so & < §. Thus € + 2 < § + 2, so by remark (ii),
Vis1 € Vsyo, giving a contradiction. O

The axiom stating the existence of an analogous j : Vs,; — Vs, is called I1, and the
existence of j : Vs — V; iscalled I3; there is an axiom I2 in between. Clearly,if j : Vs, —
Vs, is elementary, then so is j le : Vs — Vg, s0 I1 implies I3. It has been hypothesised
that I1 and I3 are inconsistent, but we do not yet have a proof.
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VI. Large Cardinals

Diagram of large cardinal properties

Under suitable consistency assumptions, large cardinal properties that appear in higher po-
sitions on this diagram have strictly higher consistency strength than properties appearing

lower down the diagram.

medium

medium

x Reinhardt <

g
Kk supercompact

v
x strongly compact

x weakly compact

~

~N

/

x inaccessible ——— x weakly inaccessible

~

x worldly

The ‘small large cardinals’ are usually considered those cardinals consistent with V = L, and
such large cardinal properties are usually downwards absolute. Note that L has no measur-
able cardinals. Indeed, if V = L and U is a x-complete nonprincipal ultrafilter on x, then
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4. Towards inconsistency

the ultrapower embedding j;; : L — M must map to an inner model strictly smaller than L,
but such an inner model cannot exist.

There are certain large cardinals called Woodin cardinals which sit between strong and
strongly compact cardinals. They represent another boundary between sizes of large car-
dinal axioms, just like measurable cardinals; smaller large cardinals are sometimes called
‘medium-sized large cardinals’, and the others are called ‘large large cardinals’. Woodin car-
dinals are crucial for understanding the connection between large cardinals and infinite
games. We know very little about large cardinal axioms beyond Woodin cardinals.
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VII. Forcing and the Continuum Hypothesis

1. Set theoretic preliminaries

1.1. Introduction to independence results
Independence results are found across mathematical disciplines.

(i) The parallel postulate is independent from the other four postulates of Euclidean geo-
metry. It states that for any given point not on a line, there is a unique line passing
through that point that does not intersect the given line. In the 19th century, it was
shown that the other four postulates are satisfied by hyperbolic geometry, but this pos-
tulate is not satisfied. This shows that the other four axioms are insufficient to prove
the parallel postulate.

(ii) Let ¢ be the statement in the language of fields describing the existence of a square
root of 2. We know that Q is a field satisfying —1¢, and Q[\/E] satisfies ¢. The fields

Q and @[\/5] are models of the theory of fields, one of which satisfies ¢, and one of
which satisfies =i¢. This shows that the theory of fields does not prove ¢ or =p. A
similar result holds for the statement ¢ that says that there are no roots of x* = —1.

(iii) Godel’s incompleteness theorem implies that there must always be an independence
result in a sufficiently powerful consistent set theory.

We will show that there are other independence results in set theory that are not self-referential
like the Godel incompleteness theorems.

Theorem (Cantor). |N| < |P(N)|.

The continuum hypothesis is that there are no sets of cardinality strictly between |N| and
[P(N)| = |R].

Definition. The continuum hypothesis CH states that if X C P(N) is infinite, then either
IX| = IN| or |X| = |P(N)], or equivalently,

2NO = Nl

Progress was made on the continuum hypothesis in the 19th and 20th centuries.
(i) In 1883, Cantor showed that any closed subset of R satisfies CH.
(ii) In 1916, Alexandrov and Hausdorff showed that any Borel set of R satisfies CH.
(iii) In 1930, Suslin strengthened this result to analytic subsets of R.
(iv) In 1938, Godel showed that if ZF is consistent, then so is ZFC + CH.
(v) However, in 1963, Cohen showed that if ZF is consistent, then so is ZFC + = CH.

In this course, we will prove results (iv) and (v), thus establishing the independence of the
continuum hypothesis from ZFC.

336



1. Set theoretic preliminaries

1.2. Systems of set theory

The language of set theory £ = L is a first-order predicate logic with equality and member-
ship as primitive relations. We assume the existence of infinitely many variables vy, v,, ...
denoting sets. We will only use the logical connectives Vv and — as well as the existential quan-
tifier 3. Conjunction, implication, and universal quantification can be defined in terms of
disjunction, negation, and existential quantification.

We say that an occurrence of a variable x is bound in a formula ¢ if is in a quantifier 3x
or lies in the scope of such a quantifier. An occurrence is called free if it is not bound. We
write FV(p) for the set of free variables of ¢. We will write ¢(u,, ..., u,) to emphasise the
dependence of p on its free variables uy, ... , u,,. By doing so, we will allow ourselves to freely
change the names of the free variables, and assume that substituted variables are free. The
syntax @(uy, ... , u,) does not imply that u; occurs freely, or even at all.

Some of the most common axioms of set theory are as follows.

(i) Axiom of extensionality.

Vx.Vy.(Vz.(zEx o x€y) > x =)

(ii) Axiom of empty set.
Ax.Vyex.y#y

(iii) Axiom of pairing.
Vx.Vy.3dz.(x €z Ay € 2)

(iv) Axiom of union.
Va.Ix.Vy.(y Ex o Iz € a.y € 2)

(v) Axiom of foundation.

Vx.(y.yex - Iyex.nIzex.z €Y)

(vi) Axiom scheme of separation. For any formula ¢,

Va.3x.Vy.(y € x & (y € a A @(y)))

(vii) Axiom of infinity.
da.(Ix.(x €a)AVx€a.IyEea.x €Y)

(viii) Axiom of power set.

Va.3x.Vy.(y e x © Vz.(z€y — z € a))
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VII. Forcing and the Continuum Hypothesis

(ix) Axiom scheme of replacement. For any formula ¢,

Va.(Vx € a.y. p(x,y) — Ib.Vx € a.3y € b. p(x,y))

(ix") Axiom scheme of collection. For any formula ¢,

Va.(Vx € a.3y.p(x,y) —» Ib.Vx € a. Iy € b. p(x, y))

(x) Axiom of choice.

vX.(2 X - 3f : (X > UX).Va €X.f(a) €a)

(x") Well-ordering principle.

Va.3R.R is a well-ordering of a

Some common set theories are as follows.

« Zermelo set theory Z consists of axioms (i) to (viii). Axioms (ix) and (ix’) are equivalent
relative to Z.

o Zermelo-Fraenkel set theory ZF consists of axioms (i) to (ix). Axioms (x) and (x') are
equivalent relative to ZF.

o Zermelo-Fraenkel set theory with choice ZFC consists of axioms (i) to (x).

« Zermelo-Fraenkel set theory without power set ZF~ consists of axioms (i) to (vii), with
the axiom of collection (ix") instead of replacement (ix); it has been shown that (ix) is
weaker than (ix’) in the presence of axioms (i) to (vii).

« Zermelo-Fraenkel set theory with choice and without power set ZFC™ consists of axioms
(i) to (vii), with the axiom of collection (ix") and the well-ordering principle (x’).

In this course, our main metatheory will be ZF, and we will be explicit about the use of
choice.

We say that a class X is definable over M if there exists a formula ¢ and sets ay, ...,a, € M
such that for all z € M, we have z € X if and only if ¢(z, a4, ..., a,). A class is proper over
M ifitis not a setin M.

Under suitable hypotheses, there is a countable transitive model M of ZFC. In this case,
|R N M| is countable, so there exists a real v that is not in M. Hence, v is a proper class over
M. However, it is not definable, and we cannot ‘talk about it’ in the language of set theory.
The only proper classes that affect our theory are the definable ones.

In this course, we will assume that all mentioned classes are definable. We can then use
formulas of the form
AC.(CisaclassAVx € C.p)
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by defining it to mean that there is a formula 6 giving a class C satistying Vx € C.¢. For
example, the universe class V = {x | x = x}, the Russell class R = {x | x ¢ x}, and the class
of ordinals Ord are all definable. Any set is a definable class. Classes are heavily dependent
on the underlying model: if M = 2 then Ord = 2 = M, and if M = 3 U {1} then Ord = 3 #
M.

Suppose that M is a set model of ZF; that is, M is a set. Let D be the collection of definable
classes over M. Then one can show that D is a set in our metatheoretic universe V, and
(M, D) is a model of a second-order version of ZF, known as Gédel-Bernays set theory.

1.3. Adding defined functions

Often in set theory, we use symbols such as 0,1,C,N, A, V; they do not exist in our lan-
guage.

Definition. Suppose that £ C £’ and T is a set of sentences in £. We say that P is a defined
n-ary predicate symbol over T if there is a formula ¢ in £ such that

TEYx, s X0 (P(Xq, o s %) © (X1, .n0 5 X))

Similarly, we say that f is a defined n-ary function symbol over T if there is a formula ¢ in £
such that
f(xq,....,x,) =yifand only if T F ¢(x1, ..., Xx,,y)

and
TEVX, .y Xy Ay @(X1, o5 X0, Y)

We say that a set of sentences T’ of £’ is an extension by definitions of T over £L when T’ =
TuSandS ={p;|se L'\ L'} and each ¢y is a definition of s in the language £ over T.

Commonly used symbols such as 0,1, C, N, P, | J are defined over ZF.

Theorem. Suppose that £ C £’, and that T is a set of £-sentences and T’ is an extension
by definitions of T to £’. Then

(i) (conservativity) If ¢ is a sentence of £,then T+ ¢ & T’ - .

(ii) (abbreviations) If ¢ is a formula of £’, then there exists a formula ¢ of £ whose free
variables are exactly those of ¢, such that T’ F Vx. (¢ < §).

Example. The intersection a N b can be defined as the unique set c such that
Vx.(xEc < x€aAx€ED)
This definition makes sense only if there is a unique c satisfying this formula ¢(a, b, ). If
M ={a,c,d,{a},{a,b},{a,b,c},{a,b,d}}

then it is easy to check that both {a} and {a, b} satisfy ¢({a, b, ¢}, {a, b, d}, —), so intersection
cannot be defined.
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1.4. Absoluteness

It is often the case that definitions appear to give the same set regardless of which model we

are working inside. For example, {x | x # x}is theemptysetinanymodel,and{x | x = a Vv x = b}
gives a pair set. Other definitions need not, for example P(N), which need not be the true
power set in a given transitive model. To quantify this behaviour, we need to define what it
means for ¢ to hold in an arbitrary structure; this concept is called relativisation.

Definition. The quantifier Vx € a.g is an abbreviation of Vx.(x € a) — ¢. Similarly,
dx € a. ¢ is an abbreviation of 3x. (x € a) A ¢. Let W be a class; we define by recursion the
relativisation " of ¢ as follows.

xeyW=xey
x=y"=x=y
@vP¥ =" vy
()" =¥
Ax.e)¥ =3Ix e W.p%

One can easily show that

@A) =" AW
(=P =" - ¥
(Vx.p) =Vx € W.p"¥

Proposition. Suppose that M C N and M is a definable class over N. Then the relation
M E ¢ is first-order expressible in N.

Proof. Suppose M is defined by 6, so
VzEN.6(z) o zEM

We claim that (N, €) = ¢™ ifand only if (M, €) = ¢. We proceed by induction on the length
of formulae. For example,

NE(xeyMiffNExeyandx,y € Miff6(x),8(y),MEx €y
The case for equality is similar, and disjunction and negation are simple. Finally,
NE @x. )M iff N E Ix. x € M A M (x)

which holds precisely when there is some x € N such that N = x € M and N E ¢™(x), but
N E x € M if and only if 6(x), giving the result as required. O]

Thus, relativisation is a way to express truth in definable classes.
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Definition. Suppose that M C N are classes and ¢(uy, ..., u,) is a formula. Then g is called

(i) upwards absolute for M, N if

VX1, .o X € ML (@M(xq, ..., ) = 0N (Xq, ..., X))

(ii) downwards absolute for M, N if

VX1, .o X € ML (@N(xq, ..., X)) = oM(xq, ..., Xp))

(iii) absolute for M, N if it is both upwards and downwards absolute, or equivalently,

VX1, .o X € ML (@M(x1, ..., X)) < N (Xq, ..., X))

If N = V, we simply say that ¢ is (upwards or downwards) absolute for M. If T is a set
of formulas, we say that I is (upwards or downwards) absolute for M, N if and only if ¢ is
(upwards or downwards) absolute for M, N for each ¢ € T'. Suppose T is a set of sentences
and f is a defined function by ¢. Then for M C N models of T, we say that f is absolute for
M, N precisely when ¢ is absolute for M, N.

Example. If M C N both satisfy extensionality, then the empty set is absolute for M, N by
the formula Vx € a.(x # x). The power set of 2 is not absolute between 4 and V, because in
4, it has only two elements.

Example. ¢ < 3 does not imply o™ < M. Let ¢(v) be the statement Vx. (x & v); in ZF
this defines @. Now, the following are two ways to express 0 € z.

P(z) =3y.(p(Y) Ay € 2); 6(2) =Vy.(p(y) >y € 2)

Note that if there exists a unique y such that ¢(y), then these are equivalent. However, this
is often not the case, for example if

a=0; b={0} c={{0}} M ={a,b,c}

then ¢ (a) holds, so yp™(b), but ™ (c) also holds, so 8M(b) fails.

The main obstacle to absoluteness for basic statements turns out to be transitivity of the
model.

Definition. Given classes M C N, we say that M is transitive in N if

Vx,yeE N.(xeMAyeEXx—>y€eEM)

1.5. The Lévy hierarchy

Definition. The class of formulas A, is the smallest class I' closed under the following
conditions.
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(i) if ¢ is atomic, ¢ € T (thatis, (v; € v;) € I'and (v; = v;) € I);
(i) ifp,9p € T, thenp vy € T'and =¢p € T; and
(iii) if € T, then (Vv; € vj.9) € I'and (Fv; € vj.p) €T.

That is, A, is the class of formulas generated from atomic formulas by Boolean operations
and bounded quantification.

Definition. We proceed by induction to define X,, and II,, as follows.
(i) Zp =Tp = Ap;
(ii) if @ isI1,,_; then Av;. p is Z,;
(iii) if pis Z,,_; then Vu;. p is I1,,.

Example. The formula Vv,. 3v,.VYv;. (v, = v3) is II5. But (Vv,.0; = v,) A U3 = v, is not
IT, or X, for any n.

Definition. Given an £c-theory T, let =1 be the class of formulas I such that forany ¢ € T,
there exists ) € 2, such that T - ¢ < 3. We define II% analogously. A formula is in AT if
there exists ) € ¥, and 6 € Il,, suchthat TF p » Ypand T + ¢ « 6.

Note that A,, only makes much sense with respect to some theory T for n > 0.

Lemma. If ¢ and 3 are in X2, then so are
.o; eVY; @AY T €V YU €V

If p is in 24F, then —g is in TT4". Further, for every ¢, there exists n such that ¢ is in £2F, and
if p is in X2F, then ¢ is in 22§ for all m > n.

Remark. 3x,.Vx,.3x;.Vy.(y € v > v # v) is X4, but is logically equivalent to the statement
Vy € v.v # v, whichis X,. The fact that Z2F is closed under bounded quantification depends
on the axiom of collection. In particular, in Zermelo set theory, there is a 2 formula ¢ such
that Vx € a.¢ is not 4. In intuitionistic logic, these classes are very badly behaved; for
instance, we could have a IT{ formula ¢ such that ¢ is not =¥ .

‘We can now show absoluteness for A, formulas between transitive models.

Theorem. Let M be transitive in N and M C N, and let ¢(u) be a Ay-formula. Then, for
anya € M,
M E ¢p(a) if and only if N F ¢(a)

Proof. We prove this by induction on the class Ay. The cases of atomic formulas and pro-
positional connectives are immediate, so it suffices to show the result for 3x € a. ¢ where ¢
is absolute between M and N. Suppose M F 3x € a.p(x), so there exists b € M such that
M E b € a A p(b). Then we also have N F b € a A ¢(b) by absoluteness of ¢, as required.
Conversely, suppose N E 3x € a. ¢(x), so there exists b € N such that N E b € a A p(b).
Since M is transitive in N, we obtain b € M, so M E b € a A ¢(b) by absoluteness of . [
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Proposition. The following are A5F, and therefore absolute between transitive models.
@ xCy;
(i) a = {x,y} (the unordered pair);
(iii) a = (x,y) (the ordered pair);
(iv) a=xxy;
v) a=Jb;
(vi) ais a transitive set;
(vii) x = @;
(viii) ris a relation;
(ix) risafunction;
(x) risarelation with domain a and range b;
(xi) x is the pointwise image of r on a, denoted r"a = {y | 3x € a.(x,y) € r};
(xii) rl,.
Remark. The following are not absolute between transitive models, and thus not A5F.
(i) the cofinality function a — cf(x);
(ii) being a cardinal;
(iii) wy;
(iv) y = P(x).
Lemma. The statement that a given set a is finite is AZF.

Proposition. Let M be transitive in N and M C N. Then X; formulas are upwards absolute
between M and N, and IT; formulas are downwards absolute between M and N.

Corollary. A#F formulas are absolute between transitive models.

Lemma. (ZF) The statement that « is an ordinal is absolute.

Proof. First, note that a is an ordinal in ZF if and only if it is a transitive set of transitive sets.
This can be written as

VpeaVyepByea)an(Vea.VyeB.Vsey.6 €p)
which is Ay, as required. O

We can give a slightly better rephrasing of this lemma.

Lemma. The statement that r is a strict total ordering of a is A,.
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Proof. The statement that r is a transitive relation on a is that
Vxyz € a.({x,y) erA(y,z) €Er = (x,2) EF)

Trichotomy is
Vxy € a.((x,y) Erv{y,x) Ervx=y)

Irreflexivity is
Vx €a.(x,x)&r

O
Corollary. The statement that x is a transitive set totally ordered by € is A, and thus being
an ordinal is Ag.

Lemma. (ZF) The statement that r is well-founded on a is A%,

Proof. The II, formula is
risarelationona A [VX.(3x € X.(z=2)AX Ca) > Ix e X.Vy € X.(y,2) & r]

For the 2, formula, we first show that a relation is well-founded on a if and only if there exists
a function a — Ord such that (y, x) € r implies f(y) € f(x). Suppose r is well-founded;
we then define f : a — Ord by f(x) = sup{f(y) + 1| (y,x) € r}, and one can show that
this satisfies the required property. For the other direction, let X C a be a nonempty subset,
and consider the pointwise image f”X. This has a minimal element «, then for any z € X,
if f(z) = o then for all y € X, we have f(y) > a, so (y,z) & r. We then define well-
foundedness with a %; formula as follows.

Af.(f is a function AVu € ran f.(u € Ord) AVxy € a.((y,x) € r — f(y) € f(x)))

Proposition. The following are A5
(i) xisalimit ordinal,;
(ii) xis a successor ordinal;
(iii) x is a finite ordinal,
(iv) x = w;
(v) x = n for any finite ordinal n.

Proposition. The following are IT¥F and hence downwards absolute between transitive
models.

(i) xis a cardinal,

(ii) x is regular;
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(iii) x is a limit cardinal;
(iv) x is a strong limit cardinal.
Lemma. (ZF) Let W be a nonempty transitive class. Then the axioms of extensionality,

empty set, and foundation all hold in W.

Proof. For extensionality, the relativisation of
Vx.Vy.(Vz.(z€xo x€EY) > x=Y)

to W is
VxeW.VyeW.(VzeW.zexoxey) »x=Y)

Suppose x € W,y € W, but x # y. Then by extensionality in the metatheory, without loss
of generality we can fix z € x with z ¢ y. But since W is transitive, we must have z € W,
contradicting x = y, as required.

As W is nonempty, we can use foundation to fix x € W such that x n W = @. Since W is
transitive, x C W, and therefore x = @ € W. Moreover, the statement that x = @ is Ay and
therefore absolute.

O]

Lemma. (ZF) Let W be a transitive class. Then

(i) if for any pair x,y € W, the real pair set {x, y} lies in W, then the axiom of pairing
holds in W;

(ii) if for any set x € W, the union | J x lies in W, then the axiom of union holds in W;
(iii) if w € W, then the axiom of infinity holds in W;

(iv) if, for every formula ¢ with free variables in {x, a, v, ..., v, }, we have
Va,vy,...,v, e Wx €al o¥(x,a,v,...,0,)} €W
then the axiom of separation holds in W;

(v) if, for every formula ¢ with free variablesin {x, y, a, vy, ... ,v,}, forall a, vy, ... ,v, € W,
if
Vx € a.3ly € W.o%(x,y,a,01, ..., 0y)

then
IbewylIxeap”(xyauv,..,0,)}Ch

then the axiom of replacement holds in W;

(vi) if, for every a € W, there exists b € W such that ’(a) N W = b, then the axiom of
power set holds in W.

Corollary. (ZF) If W is a nonempty transitive class satisfying the conditions of the previous
lemma, it is a model of ZF.
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1.6. Transfinite recursion

Definition. Arelation R is set-like on a class A iffor all x € A, the collection of R-predecessors
of x is a set.

Example. € is set-like on V, but 3 is not set-like on V.

Let A be a class, and let ¢ be such that A = {x | ¢(x)}. Then A" = {x | " (x)}. We say that
A is absolute for W if A% = A n W. Viewing a class relation R C V X V as a collection of
ordered pairs {(x,y) | (x, y)}, we have R" = {(x, ) | " (x,y)}, and say that R is absolute
for W if R = RnW?2. Observe that if R is a class function, we can only refer to the function
RY if we first check that (Vx. 3!y. p(x, y))". In this case, we have RY : W — W, and we
say that R is an absolute function for W iff R = R|y,.

We briefly recall the transfinite recursion theorem.

Theorem. Let R be a relation which is well-founded and set-like on a class A. Let F :
A XV — V be a class function. Given x € A, let pred(A4, x,R) = {y € A | y R x} be the set
of R-predecessors of x in A. Then there is a unique function G : A — V such that for all
X €A,

G(x) = F(x, G )
pred(A,x,R)
We now prove the absoluteness of transfinite recursion.

Theorem. Let R be a relation which is well-founded and set-like on a class A. Let F :
A XV — Vbeaclass function, and let G : A — V be the unique function given by applying
transfinite recursion to F. Suppose that W is a transitive model of ZF, and suppose that the
following hold.

(i) A and F are absolute for W;
(i) R is absolute for W and (R is set-like on A)";
(iii) forall x € W, pred(4, x,R) C W.

Then G is absolute for W.

Proof. By absoluteness, AY = An W and R¥ = R n W2. Hence, every nonempty subset
of A¥ has an R% -minimal element. In particular, (R is well-founded on A)"*. We can then
apply transfinite recursion in W to define a unique function G¥ : A" — W such that for
all x € A%,

GY(x) = FW<x, GY )
predW(AW,x,RW)

To prove absoluteness for G, it suffices to show that GY = G| 4w - We show this by transfinite
induction in W. Suppose that for all y R x, we have G (y) = G(y). By absoluteness, (iii),
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and the inductive hypothesis, we obtain

GY(x) = FW(x, GY ) = F(x, G
predW(AW,x,RW)

) = G(x)

pred(A,x,R)

Corollary. The following are absolute for transitive models of ZFC:
(i) the rank function;
(ii) the transitive closure of a set;

(iii) the addition and multiplication operations of ordinal arithmetic.

1.7. The reflection theorem
In this subsection, we will not use choice.

Recall the Tarski-Vaught test: if M is a substructure of V' with universes M and N respect-
ively, then the following two statements are equivalent.

(i) M is an elementary substructure of V;

(ii) for any formula p(v,w) and a € M, if there exists b € N such that N" E ¢(b, a), then
there exists ¢ € M such that M E ¢(c, a).

Definition. A finite list of formulas ¢ = ¢y, ..., ¢, is said to be subformula closed if every
subformula of the ¢; is contained on the list.

We can now state a version of the Tarski-Vaught test for classes.

Lemma. Let ¢ be a subformula closed list of formulas, and suppose W C Z are nonempty
classes. Then the following two statements are equivalent.

(i) each formula in ¢ is absolute for W and Z;

(if) whenever g; is of the form Jx. ¢;(x, y) where the free variables of ¢; are equal to x or
contained in y, then

Vy € W. (Elx € Z.¢f(x,y) > Ix e W. qp]Z(x,y))

Proof. (i) implies (ii). Suppose that each formula in ¢ is absolute. Let ¢; be of the form
3x.¢j(x,y), and fixy € W. Then PZ(y)is Ix € Z. goJZ (x,y). If this holds, by absoluteness
@V (y) holds, so there is x € W such that goJW(x, y). Finally, W C Z and absoluteness of ¢;
gives 3x € W. 97 (x,y).

(ii) implies (i). We show this by induction on the length of ¢;. The result if ¢; is atomic

or of the form ¢; V @i or -p; is immediate. Suppose ¢; is of the form 3x.¢;(x,y), and
fixy € W. Then ¢#(y) is equivalent to the statement 3x € Z. gon (x,y). By (ii), this gives
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Ax € W. 97 (x,y). Since W C Z, the reverse implication is trivial. But 3x € W.¢%(x,y) is
equivalent to the statement that ¢! (y) holds, as required. O

Theorem (reflection theorem). Let W be a nonempty class, and suppose that there is a class
function Fy such that for any ordinal «, Fy- (o) = W, € V. Suppose that

(i) ifa < B, then W, C Wg;
(ii) if A is a limit ordinal, then W ; = U ,_, Was

(i) W = Uqeom We-

Then for any finite list of formulas ¢ = ¢y, ..., ¢,,, ZF proves that for every a there is a limit
ordinal 8 > a such that the ¢; are absolute between W g and W.

One example of such a class function is W, = V.

Corollary (Montague-Lévy reflection). For any finite list of formulas ¢ = ¢, ..., ¢,, ZF
proves that for every « there is a limit ordinal 8 > «a such that the ¢; are absolute for V.

We now prove the reflection theorem.

Proof. Let @ = ¢, ..., 9, be a finite list of formulas. By extending the list and taking logical
equivalences if necessary, we will assume that this list is subformula-closed and that there
are no universal quantifiers. For i < n, we will define a function G; : Ord — Ord as follows.
If ¢; is of the form 3x.¢;(x,y) where y is a tuple of length k;, we will define a function
F, : Wk - Ord by setting

0 if-Ixew. goJW(x,y)

Fl(Y) = . . w
n where 7 is the least ordinal such that 3x € W;. ¢;" (x,y)

‘We set .
Gi(6) = sup{F(y) |y € Ws'}

If ¢; is not of this form, we set G;(6) = 0 for all . Finally, we let
K(8) = max{d + 1, G{(9), ..., G,()}

Note that the F; work in an analogous way to Skolem functions, but does not require choice.
The F; are well-defined, and, using replacement in V, since W s is a set, F}’ W: "is also a set
in V, so G; and K are both defined and take values in Ord. Also, G; is monotone: if § < &’
then G;(6) < G(&").

We claim that for every « there is a limit ordinal § > a such thatforall § < fand i < n, we
have G;(8) < f; thatis, 8 is closed under this process of finding witnesses. Set 1, = a and let
Ary1 = K(4;). Then we set 8 = sup, ., 4;, which is a limit ordinal as it is the supremum of a
strictly increasing sequence of ordinals. If § < (8, then § < A; for some ¢, so G;(8) < G;(4;)
by monotonicity, but G;(4;) < K(4;) = 4,41 < B as required.
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To complete the theorem, it suffices to consider ¢; of the form 3x. ¢;(x,y) by the Tarski-
Vaught test for classes above. Fixy € W g, and suppose there exists x € W such that
goJW(x,y). Since § is a limit ordinal and y is a finite sequence in W g, we must havey € W,
for some y < 8. Thus

0<F{y)<Gi(y)<p

so by construction, there exists a witness x € W g such that (pJW(x,y). Hence ¢ is absolute
between W g and W as required. O

Remark. This is a theorem scheme; for every choice of formulas ¢, it is a theorem of ZF that
¢ are absolute for some Vg. We cannot prove that for every collection of formulas ¢, for
all ordinals a there exists 8 > « such that ¢ is absolute for W g, W. Note that even if ¢ is
absolute for W g and W, we need not have "5,

If ¢ is any finite list of axioms of ZF, then there are arbitrarily large 8 such that ¢ holds
in Vg. If 8 is a limit ordinal, Vg F Z(C), so we may restrict our attention to instances of
replacement.

Corollary. Let T be an extension of ZF in £, and let ¢y, ..., @, be a finite list of axioms
\
from T. Then T proves that for every « there exists 8 > a such that ( /\:l=1 goi) g

Corollary. (ZFC) Let W be a class and let ¢y, ..., ¢, be a finite list of formulas in £c. Then
ZFC proves that for every transitive x C W, there exists some transitive y 2D x such that the
@; are absolute between y and W, and |y| < max{w, |x|}.

Taking x = w and W =V gives the following result.

Corollary. Let T be any set of sentences in £ such that T -+ ZFC. Let ¢;, ..., ¢, € T. Then
T proves that there is a transitive set y of cardinality N, such that ( /\?=1 gol-) .

Corollary. Let T be any consistent set of sentences in £ such that T = ZF. Then T is not
finitely axiomatisable. That is, for any finite set of sentences I" in £ such that T + T, there
exists a sentence ¢ such that T - g but " ¥ ¢.

This only holds for first-order theories without classes; for example, Godel-Bernays set the-
ory is finitely axiomatisable.

Proof. Let ¢4, ..., ¢, be a set of sentences such that T /\';=1 @;. Suppose that /\?=1 ®;
proves every axiom of T. By reflection, T proves that for every a there is § > «a such that
the g; hold in Vg if and only if they hold in V. Since they hold in V, they must hold in some

v,
Vg. Fix 8, to be the least ordinal such that /\?=1 ®; #o_Then all of the axioms of T hold in
Vg,,80 Vg = T. Since T extends ZF, our basic absoluteness results hold, so in particular, if
a € Vg, then

VA v AV, =V
a — Va Bo— Va
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So V, is absolute for Vg . Note that T proves that there exists a such that /\;l=1 qp\il"‘, but as
Vg, satisfies every axiom of T, this must be true in Vg, That is, there must be o < 3, such

that /\?=1 go\i/“. This contradicts minimality of . O

1.8. Cardinal arithmetic

In this subsection, we will use the axiom of choice. We recall the following basic definitions
and results.

Definition. The cardinality of a set x, written |x|, is the least ordinal « such that there is a
bijection x — «a.

This definition only makes sense given the well-ordering principle.
Definition. The cardinal arithmetic operations are defined as follows. Let x, 4 be cardinals.
G x+A= {0} xxuU{l} x4;
(i) x-A=|xx4;
(iii) x* = |x*, the cardinality of the set of functions 1 — x;
(iv) x<* = sup {x® | @ < A, a a cardinal}.

Theorem (Hessenberg). If x, A are infinite cardinals, then

x+A=x-1=max{x,1}

Lemma. Ifx, A, u are cardinals, then

)ATH = A gk (Kﬂ)u = K

Definition. A map between ordinals o — f is cofinal if supran f = 5. The cofinality of an
ordinal y, written cf(y), is the least ordinal that admits a cofinal map to y. A limit ordinal y
is singular if cf(y) < y, and regular if cf(y) = y.

Remark. (i) Since the identity map is always cofinal, we have cf(y) < y.
(i) w = cf(w) = cf(w + w) = cf(R,).
(iii) cf(y) <yl
Theorem. Let y be a limit ordinal. Then
(i) ify isregular, y is a cardinal;
(ii) the cardinal successor y™ is a regular cardinal;
(iii) cf(cf(y)) = cf(y), so cf(y) is regular;

(iv) N, isregular whenever o = 0 or a successor;
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(v) if Ais a limit ordinal, cf(X;) = cf(1).

Theorem. Let x be a regular cardinal. If F is a family of sets with |#| < x and each |X| < x
for X € &, then ||J F| < x.

Proof. We show this by induction on |[¥| = y < x. Suppose the claim holds for y, and
consider ¥ = {X, | @ < y + 1}. Then, assuming the sets involved are infinite,

U7 = U UXa,|XV}<K

a<y a<y
Now suppose y is a limit, and suppose the claim holds forall < y. Let F = {X, | a <y},
and define g : y —» x by

Uxaux,|=
a<y

+1X,| = max{

g® = Xs
a<f
But « is regular and y < x, so this map is not cofinal. Hence g"y = | J F| < «. O

We can generalise the notions of cardinal sum and product as follows.

Definition. Let (x;);c; be an indexed sequence of cardinals, and let (X;);c; be a sequence
of pairwise disjoint sets with |X;| = x; for all i € I. Then the cardinal sum of (x;) is

D= UXi

iel iel

The cardinal product is
-
iel

where [],_, X; denotes the set of functions f : I —

Ix

iel

iy i such that f(i) € X; for each i.
The following theorem generalises Cantor’s diagonal argument.
Theorem (Konig’s theorem). Let I be an indexing set, and suppose that x; < A; foralli € I.
Then

< TT4

iel iel

Proof. Let(B;);cr be asequence of disjoint sets with |B;| = 4;,and let B = [ [, _; B;. Itsuffices
to show that for any sequence (A;);c; of subsets of B such that for all i € I, |A;| = x;, then

Jai#B

iel
Given such a sequence, we let S; be the projection of A; onto its ith coordinate.

Si={f@1|feA}
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Then by definition, S; C B;, and
1Si| < Ail =1 < 4; = |By

Fixt; € B; \ S;. Finally, we define g € B by g(i) = t;; by construction, we have g & A; for all
i,soge€ Bbutg & J, ;A O

Corollary. If x > 2 and A is infinite, then
1t > 1

Proof.

A=Y 1<[]2=2" <«

a<ad a<ld

Corollary. cf(2%) > 1.

Proof. Let f : A — 2%, we show that || J f”4| < 2*. Since for all i € I, we have f(i) < 2%, we

deduce
U s D 1rwl < ]2 = @) =244 =22

i<d i<4

Corollary. 2% # x for any x of cofinality R,. In particular, 280 # R,
Corollary. x“9 > « for every infinite cardinal x.
We can prove very little in general about cardinal exponentiation given ZFC.

Definition. The generalised continuum hypothesis is the statement that 2¥ = x* for every
infinite cardinal x. Equivalently, 28« = R ;.

Under this assumption, we can show the following.
Theorem. (ZFC + GCH) Let x, A be infinite cardinals.
(i) ifx < A, then x* = 1F;
(ii) if cf(x) < A < x, then x* = x+;
(iii) if A < cf(x), then x* = «.

When we construct models with certain properties of cardinal arithmetic, we will often want
to start with a model satisfying GCH so that we have full control over cardinal exponentiation.
Without this assumption, we know much less. The following theorems are essentially the
only restrictions that we have on regular cardinals that are provable in ZFC.

Theorem. Let x, A be cardinals. Then
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(i) ifx < A, then 2* < 24;
(ii) cf(2*) > x;
(i) if x is a limit cardinal, then 2% = (2<¥)f09),
Theorem. Let x, A be infinite cardinals. Then
(i) ifx < A, then xt = 24;
(i) if u < xis such that u* > x, then x* = u?;
(iii) if x > 2 and u* < x for all u < x, then
(a) if cf(x) > A, then x* = x;
(b) if cf(x) < A, then 1 = (9,

Theorem (Silver). Suppose that x is a singular cardinal such that cf(x) > R, and 2% = a*
for all « < x. Then 2% = «t.

This theorem therefore states that the generalised continuum hypothesis cannot first break
at a singular cardinal with cofinality larger than N,

Remark. It is consistent (relative to large cardinals, such as a measurable cardinal) to have
2% =W, foralln € w, but 2% = R ,,.

Theorem (Shelah). Suppose that 2% < R, for all n € w, so R, is a strong limit cardinal.
Then 28« <N, .

It is not known if this bound can be improved, but it is conjectured that 2% < N, .
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2. Constructibility

In this section, we will prove

Con(ZF) — Con(ZFC + GCH)

2.1. Definable sets

Recall that the V, hierarchy has the property that V,.; = P(V,). We will construct a uni-
verse L in which we restrict to the ‘nice’ subsets.

Definition. A set x is said to be definable over (M, €) if there exist a;,...,a, € M and a
formula ¢ such that
x={zeM|WM,e)FE ¢p(z,a,...,a,)}

We write
Def(M) = {x C M | x is definable over M}
Remark. (i) M € Def(M).
(ii) M C Def(M) C P(M).

This definition involves a quantification over infinitely many formulas, so is not yet fully
formalised. One method to do this is to code formulas as elements of V,,, called Gddel
codes. We can then use Tarski’s satisfaction relation to define a formula Sat, and can then
prove

Sat(M, €,7¢7, X1, ..., Xp) < (M, €) F o(x1, ..., X;,)

where "¢ € V,, is the Godel code for ¢. We will later use a different method to formalise it,
but for now we will assume that this is well-defined.

2.2. Defining the constructible universe

We define the L, hierarchy by transfinite recursion as follows.

Lo=@ Lo =Def(Le); Li=|JLs L= ] La
a<i aeO0rd
Lemma. For any ordinals «, (3,
(i) if 3 < athen Lg C Lg;
(ii) if 8 < athen Lg € Lg;
(iii) L, is transitive;
(iv) the ordinals of L, are precisely «;

(v) Lis transitive and Ord C L.
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Definition. Let T be a set of axioms in £, and let W be a class. Then W is called an inner
model of T if

(i) W is a transitive class;

(i) Ord C W;

(iii) TV is true; that is, for every formula ¢ in T, we have ¢

w

Theorem. L is an inner model of ZF.

This is a theorem scheme; for every axiom of ZF, we can prove its relativisation to L.

Proof. By the previous lemma, it suffices to check that ZF" holds.

Since L is transitive, L satisfies extensionality and foundation.
For the axiom of empty set, we use the fact that @* = @ = L, € L.

For pairing, given a, b € L, we must show {a, b} € L. Fix a such that a,b € L,. Then

{a,b} ={x €L, | (Ly €) Ex=aVx=b}e Def(L,)

For union, let a € L,. By transitivity, | Ja C L. Then

Ja={x €Ly | (s, €) F 3z.(z € a A x € 2)} € Def(Ly)

For infinity, note that

w={nekL,| (L, €) EneoOrd} € Def(L,)

Consider separation. Let ¢ be a formula, and let a,u € L,. We claim that
b={xeal|¢(x,u)}eL

This implicitly uses the fact that L is definable. Using the reflection theorem, there is
B > asuch that
ZF - Vx € Lg. (¢"(x, u) & ¢"#(x,u))

Moreover, ¢"“4(x, ) holds if and only if (Lg, €) F ¢(x,u). We thus obtain

{xealp(x,wl={xealpx,w}={xeLs|(Ls€)F p(x,u) Ax € a} € Def(Lp)

« We now consider replacement. It suffices to show thatifa € Land f : a —» Lisa

definable function, then there exists y € Ord such that f”a C L,, since then we can
use separation. First, observe that for every x € a, there exists § € Ord such that
f(x) € Lg. Using replacement in V, there exists an ordinal y such that for all x € a,
there exists 8 < y such that f(x) € Lg. As Lg C L,, we thus obtain for all x € a that

f(x) € L,.
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« Finally, consider the axiom of power set. It suffices to prove that if x € L then P(x) n
L € L. Take x € L. Using replacement in V, we can fix an ordinal y such that P(x) n
L CL,. Then
P(x)NnL={ze€L, | (L €)FzCx}e Def(L,)

2.3. Godel functions

We will now formally define L. For clarity, we will define the ordered triple {a, b, ¢) to be

(a,(b,c)).
Definition. The Godel functions are the following collection of functions on two variables.
@ Flx,y) = {x, y};
(i) F(x,y) = U X;
(i) F(x,y)=x\y;
(iv) Falx,y) = x X y;
(v) F5(x,y) =domx = {m(z) | z € x A z is an ordered pair};
(vi) Fe(x,y) =ranx = {m,(2) | z € x A z is an ordered pair};
(vii) F7(x,y) = {{u, v,w) | (u,v) € x,w € y};
(viii) Fg(x,y) = {(u, w,v) | (w,v) € x,w € y}
(ix) Fo(x,y) = {(v,u) €y X x | u = v}
) Fio(x,y) ={(v,u) €y X x |u € v}

Proposition. The following can all be written as a finite combination of Godel functions
(1)-(vii).

{xh xuy; xny; (Y (xY,z)
Proposition. Foreveryi € {1, ..., 10}, the statement z = F;(x, y) can be written using a A,

formula. Hence, these formulas are absolute.

Lemma (Godel normal form). For every A, formula ¢(x,, ..., x,) with free variables con-
tained in {xq, ..., x,}, there is a term 5‘}/) built from the symbols 77, ..., F1 such that

ZF = Vay, ..., 0, F5(ay, ., @) = {{(Xps oo, X1) € @y X - X @y | 9(Xy, .05 X))

Remark. (i) The reversed order of the free variables is done purely for technical reasons.

(i) F, will correspond to disjunction for A, formulas, intersection will correspond to con-
junction, F3 will give negation, and ¥4 and F;, will give atomic formulas.
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(iii) &, and Fg will deal with ordered n-tuples. For example, the triple (x;, x,, x3) is formed
using x; and (x,, x3), but it cannot be formed using (x;, x,) and x; without F; or F;.

Proof. We show this by induction on the class A,. We call a formula ¢ a termed formula if the
conclusion of the lemma holds for ¢; we aim to show that every Ay-formula is a termed for-
mula. We will only use the logical symbols A, Vv, =1, 3, and the only occurrence of existential
quantification will be in formulas of the form

P(X15 e s Xp) = X1 € X P(Xq5 o0 5 Xppi1)

where j < m < n. For example, we allow Ix3 € x;.(X; € X, A X3 = X;), but we disallow
dx; € x,.9 and Ax3 € x;. (X3 € X, AIxy € X;.9). Every Ay-formula is equivalent to one of
this form. We allow for dummy variables, so ¢(x;, x;) = x; € X, and @(x;, X, X3) = X; €
X, are distinct. This proof will take place in four parts: first some logical points, then we
consider propositional formulas, then atomic formulas, and finally bounded existentials.

Part (i): logical points. We make the following remarks.

o If ZF F ¢o(x) < 1(x) and ¢(x) is a termed formula, then 7 is also a termed formula.
This is immediate from the definition, since we can let & v =Ty

« For all m, n, if o(x,, ..., x,) = P(x1, ..., X,,,) and 9 is a termed formula, then so is ¢. If
n > m, we can show this by induction on n. The base case n = m is trivial. For the
inductive step, suppose

X1, s Xpy1) = POX1, e s Xn)
Then, we can write
P(X15 eee s Xppy1) = O(X1, ey Xp)

where 9 is a termed formula. Then

Fo@rs oy Ay Apg1) = Apyy X Fo(ay, ..., ay) = Fylans1, Folay, ..., ap))

giving the result by the inductive hypothesis. This is the reason for reversing the order:
because the ordered triple (x, y, z) is (x, (y, z)), the map

{(x1,x2) € a1 X ay | 6(x1, %)} = {(x1, X2, X3) € a1 X a3 X a3 | 6(xy, x,)}
is much more complicated to implement in Godel functions. We prove the casen < m
by induction; if
PX15 en s Xpo1) = (X1, 05 Xi)

then
P(X1y e s Xpq) = 0(Xq, en 5 Xp)

and
{0} = {F3(a1, 1)} = F1(F3(ar, @), F3(ar, a1))
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VII. Forcing and the Continuum Hypothesis

Then

Fo(ars s ap_) = {{Xpo1s o5 X1) € @y X oo Xy | @(X1, -0, X1}
= I‘an({(O, xn_l, .ee ,x1> (S {0} X an_l X - X al | e(xl, .es ,xn_l, 0)})
= F6(Folay, ..., ay_1, F1(F5(ay, a1), F3(ay, 1)), aq)

o If (xy,...,x,)is a termed formula and

P(X15 eee s Xpg1) = P(X1s vy X5 X1/ X5)

then ¢ is a termed formula. First, if n = 1, we have a termed formula ¥(x;) and
consider ¥(x,/x;). Then

Folar, ay) = {{x2, 1) € a; X a; | P(x,)}
={(x2x1) | X €1 A X, € 7¢(az)}
=Fylay) X a4
= 3:4(3rz,b(az)’ a)

If n > 1, we have

Folay, s apy1) = {<xn+1’ e X1) | X € @y AXpg1s X155 X1) € Fylay, ... ’an—lvan+1)}
= ?s(fzp(ab vy Qp_15 A1), Q)

o If 9(x;, x,) is a termed formula, and
P(X1, e s Xp) = P(Xp_1/X1, X/ X3)
then ¢ is a termed formula. This is trivial if n = 2, so we assume n > 2. Then
Fop(@r, oo ) = {(Xpy oo X1) € @y X - Xy | (X, Xppm1) € Fyp(@n_1, ap)}
= F9(Fy(an_1,ap), @p_p X -+ X a;)
Part (ii): propositional connectives.

« If p is a termed formula, then so is —¢.

Ty, s ay) = (ap X - X a)) \ Fo(ay, ..., ay)

+ If ¢, are termed formulas, then so is ¢ V .

Fovp(@r, - an) = Fpay, ..., ay) U Fylay, ..., ap)

It is easy to see that unions can be formed using Godel functions.
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« Conjunctions are similar to disjunctions.

Fornp(@rs - an) = Fop(ay, ..., ay) N Fylay, ..., ap)

Part (iii): atomic formulas.

« Consider ¢(xy, ..., X,) = x; = x;. We show that this is a termed formula for all i, j < n.
Suppose i = 1 and j = 2. In this case,

Fo(ay,az) = {{x2,X%1) € a, X a1 | X1 = X,}

so0 ¥, is formed using 5 and the discussion on dummy variables. Now suppose j > i.
We prove this by induction. First, ifi = j, then

?¢ = {(xn’---’x1> € a}’l X - X a]_ | xi = xi} = al’l X oo X al
Now, if j =i + 1, we let
6(x1, ,xi+1) = (xl = xZ)[xi/xl,xi+1/x2]

This is a termed formula by the result on substitutions. We thus obtain ¥, by adding
the required dummy variables. Now suppose we have ¢(xy, ..., X,) = X; = Xj;;. Then
we can write

o(x1, ... ,xj+1) = (x;, xj)[xj+1’ xj]

which is a termed formula by substitution. This concludes the case i < j by induction.
Finally, suppose i > j. As x; = X; is logically equivalent to x; = x;, which is a termed
formula, ¢ is also a termed formula.

+ Now consider ¢(x, ..., X,) = X; € x;. As with equality, we first consider the case
i =1, j = 2. In this case, we can form F;, with dummy variables. If i = j, the formula
is always false, so we have

Folar, s ap) = @ =a; \ a1 = F3(a3,a4)
Now, let
Y(X1s s Xpg2) = (X5 = X)) A (X = Xpi2) A (X1 € Xpy2)

We note that x,,; € Xx,,, is a termed formula as it is given by the substitution (x; €
X)) Xpt1/X1, Xpnaa/X5]. The equalities are termed formulas as above, so 3 is a termed
formula. Then

Folay, ..., ap) = ranran{(xp 4z, ..., X1) X @ X @; X @, X - X @ |
Xi = Xpp1 AXj = Xpypa AXpy1 € Xpy2}
= F6(F6(Fylay, ..., ay), ar), a;)
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Part (iv): bounded quantifiers. We required that the only occurrence of 3 was in the form

(X1, v s Xp) = X1 € X P(X15 e s Xppg1)

where j < m < n. Due to this restriction, it suffices to show that if {(x, ..., x,,1) is a termed
formula, then so is the formula

(X175 ee s Xp) = X1 € X P(Xq5 o005 Xppi1)

Let 6(xy, ..., Xp41) = Xp41 € X;j. Then 6 A 9 is a termed formula. Now

Fonp(@s - an, Fr(aj, a;)) = T9A¢(a1, ey Oy U aj>
= {(an, X)) € (U ;) X @y X - X ay |
Xpt1 € Xj AVk < n.x € ai AP(xy, ... ,xn+1)}

So

ran(Fony(ar .. ay, U a;)) = {(xn, w X)) Eay XX a |
(U, X e X1) € Fopg(arsooer s | aj)}
= {(xn, s X1) €E Ay X - X ay |
Ixp41 € Xj. Y1, - ,xn+1)}

O]

Definition. A class C is closed under Godel functions if whenever x,y € C,we have ¥;(x,y) €
Cfori e {1,...,10}. Given a set b, we let cl(b) be the smallest set C containing b as a subset
that is closed under Godel functions.

For example, cl(@) = @, a, b € cl({a, b}), and cl(b) = cl(cl(b)).
Definition. Let b be a set. Define D"(b) inductively by

DO(b) =b; D™(b) ={Fi(x,y) | x,y € D™(b),i €{1,...,10}}

One can easily check that cl(b) = | D"(b).

new

Lemma. If M is a transitive class that is closed under Godel functions, then M satisfies
Ay-separation.

Proof. Let ¢(xq, ..., x,) be a Ayp-formula, and let a, by, ..., b;_1,bjyq, ..., b, € M. Let

Y ={x; € a| @by, ....bi_1,%;, biy1, ..., by)}
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We must show Y € M. Let Fo be the formula built from Gddel’s normal form theorem.
Then for any ¢y, ..., ¢, € M, we have

FolCrsnsn) = {{Xps oo X1) €y X oo X 01 | @(Xq, .0, X)) EM
Hence, as {b;} = #1(b;, b;) € M, we obtain
Fo({br}, . {bia} ar{biys} ... {bp})) €M
Then, we can show that Y € M by taking the range 4 a total of n — i times and then taking
the domain 7. 0
Theorem. For every transitive set M, the collection of definable subsets is
Def(M) = cl(M U {M}) n P(M)
Proof. We first prove the forward direction. Let ¢ be a formula. Then ¢™ is A, so there is a
term G built from the Gédel functions 77, ... , #1¢ such that for a,, ..., a,, € M, we have
xeM| M, €e)Epx,a,..,ap)t={x e M| M(x,ay,...,a,)} = M, ay, ..., a,) € cl(MU{M})

‘We now show the converse. We first claim that if G is built from the Godel functions, then
for any x, a,, ... , a,, the formulas

x=9(a;,....a,); xe€9(ay,...,a,)

are Aq. This can be proven inductively using the iterative construction of cl(M U {M}). For
example, if X,Y € D¥(ay, ..., a,), then x = F;(X, Y) is equivalent to the statement

Vzexz=Xvz=Y)A(Qwexw=X)AFwex.w=Y)

so the result holds for #;; very similar proofs show the result for both equality and member-
ship for all other Godel functions.

Let Z € cl(M U {M}) n P(M). Since Z € cl(M U {M}), we can fix a term G built from the
Fi, ... FrosuchthatZ = G(M, a4, ..., a,). Letpbea Ay formulasuch thatx € G(M, a4, ..., a,)
if and only if ¢(x,M, a, ...,a,). Then G(M,ay,...,a,) = {x € M | ¢(x,M, ay, ...,a,)} as
Z C M. Tt therefore remains to prove that there is a formula ¢ such that

WM(x,aq,...,a,) < o(x,M,ay, ..., a,)
For example, we can define 3 from ¢ by the following replacements.
(i) Jv; e M - vy
() vieM - v; =v;;
({iii)) M =M - vy = vg;
(iv) M e M\M € v;,M =v; — Uy # V.
Finally, we obtain

Z=G9M,ay,...,a,) ={x € M | PM(x,ay, ..., a,)} € Def(M)
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VII. Forcing and the Continuum Hypothesis

2.4. The axiom of constructibility

Definition. The axiom of constructibility is the statement V = L. Equivalently, Vx.3a €
Ord. (x € L,).

We will show that if ZF is consistent, then so is ZF + (V = L), by demonstrating that L is a
model of ZF + (V = L). To do this, we will show that being constructible is absolute.

Lemma. Z = cl(M)is A%F.

Proof. Thell,; definition is simply being the smallest set closed under Gédel functions. More
explicitly,

VW, (MU{M} CWAVx,y EW. /\ Fi(x,y) € W) SZCW
i<10
The Z; definition will use the inductive definition of the closure.

IW. W is a function Adom W = w A Z = UranW
AWO)=MAWm) CWh+1)

A (Vx,y € W(n). /\ Fi(x,y) e W(n+ 1))

i<10

A (Vz € W(n+1).3x,y € W(n). \/ z= fi(x,y))

i<10

Lemma. The function mapping o — L, is absolute between transitive models of ZF.

Proof. Define G : Ord X V — V by

cl(x(B)u{x(B)}) ifa=pF+1and xisafunction with domain
Gla,x) = Uﬁ<a x(B) if ot is a limit
(%) otherwise
All of these conditions and constructions are absolute, so G is an absolute function. There-

fore, by transfinite recursion, there exists F : Ord - V where F : a — G(x, F| a). By
absoluteness of transfinite recursion, F is absolute. Finally, F(a) = L, for all ordinal a«. [J

Theorem. (i) L satisfies the axiom of constructibility.

(ii) Listhe smallest inner model of ZF. That is, if M is an inner model of ZF, then L C M.
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2. Constructibility

Proof. Part (i). We must show
(Vx.3a € Ord. x € L))"
which is
Vx € L.3a € Ord. x € (L,)"

Since the L, hierarchy is absolute, x € (L,)" if and only if x € L,. As L contains every
ordinal, if x € L then x € L, for some «, and thus x € (L,)". Hence L a € LA x € L.

Part (ii). Let M be an arbitrary inner model of ZF. We construct L inside M to give LM,
By absoluteness, for every @ € M n Ord, we have L, = (Ly)™. Thus L, C M for every
a € M N Ord = Ord. Hence L. C M as required. O

2.5. Well-ordering the universe

We will show that L satisfies a strong version of the axiom of choice, namely that there is
a definable global well-order. We will define well-orderings <, on L, such that <, end-
extends <,:ify € Ly and x € Ly, \ Ly, theny <4, x. Then we set <; = Ua <g

Theorem. There is a well-ordering of L.
Proof. For each ordinal «, we will construct a well-order <, on L, such that if & < 3, the
following hold:

(i) if x <4 y then x <g y; and

(i) if x € Ly and y € Lg \ Ly, then x <z y.

<7:U<V

a<y

For limit cases, we take unions:

We now describe the construction of <, ;. To do this, we consider the ordering on L, and
append the singleton {L,}. We then follow that by the elements of D(L, U{Ly}) \ (Lg U{Lg}).
We then add D%(L, U{L,}) \ D(L, U{L,}), and so forth. In order to do this, we define <%,
for n € w as follows.
(i) <9,, is the well-ordering of L, U {L,} given by making {L,} the maximal element.
(ii) Suppose that <", is defined. We end-extend <", ; to form <"t} as follows. Suppose
X,y & DMLy U{Ly}). We say x <t y if either

(a) the leasti < 10 such that Ju,v € D"(L, U {L,}) with x = F;(u,v) is less than
the least i < 10 such that Ju, v € D"(L, U {L,}) with y = F;(u, v); or

(b) these indices i are equal, and the <[ ;-least u € D"(L, U {L,}) such that there
exists v € D"(L, U {Lg}) with x = F;(u,v) is less than the <7, -least u €
D"(L, U {Lg}) such that there exists v € D"(L, U {L,}) with y = F;(u,v); or
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VII. Forcing and the Continuum Hypothesis
(c) both of these coincide, and <}, ;-least v € D"(L, U {L,}) with x = F;(u,v) is
less than the least v € D"(L, U {L,}) with y = F;(u,v).
O

The restriction of <; to any set x € L is a well-ordering of x. Since every set can be well-
ordered, the axiom of choice holds.

Lemma. The relation <y, is £,-definable. Moreover, for every limit ordinal § and y € Ls,
we have x <; yifand onlyif x € Ls and (Ls, €) F x <y, ).

2.6. The generalised continuum hypothesis in L
Lemma. (ZFC)
(i) Foralln € w,we have L,, = V,,.
(ii) If M is infinite, then |M| = |Def(M))|.
(iii) If o is an infinite ordinal, then |Ly| = ||.

Lemma (Godel’s condensation lemma). For every limit ordinal 8, if (M, €) < (Ls, €), then
there exists some § < & such that (M, €) = (Lg, €).

Proof. Letm : (M, €) - (N, €) be the Mostowski collapse, and set § = N N Ord. Since N is
transitive, 8 € Ord. We will prove that 8 < § and N = Lg.

First, suppose § < . Then § € N, so 7~}(§) € M. Since being an ordinal is absolute
between transitive models, N = § € Ord, so M & 771(5) € Ord. Note that this does not
immediately imply that 7=!(5) is an ordinal in V since M is not necessarily transitive. But
as M < Lgs, we obtain Ls = 771(8) € Ord, and since Lj is transitive, 771(8) is an ordinal in
V.

Also, M E x € 7~1(8) ifand only if N E 7(x) € &. Hence,
(@ (&)NM)—= 6§

is an isomorphism. Therefore, the order type of 771(§) "M is 8. Let f : 6 - 7= }{() N M
be a strictly increasing enumeration. Then, for any a € §, we must have a < f(a) < 771(6).
Hence § < 7~1(5). On the other hand, 771(8§) € M < Ls, so 7~ 1(8) < &. This gives a
contradiction.

We now show 8 > 0. Since
Ls EIx.Vyex.(y #y)

the elementary substructure M must also believe this statement, and so N does. In particular,
since N believes in the existence of an empty set, we must have @ € NNOrd = §8 as required.
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We show f is a limit. We know that
LsEVaeOrd.Ix.x=a+1

So M and hence N believe this statement. Let « € § = N N Ord, then by absoluteness,
a+1€eN.

Now we show Lg C N.
Ls EVa e Ord.Jy.y =L,

So N satisfies this sentence. Since the L, hierarchy is absolute, for alla € N n Ord = 3, we
have L, € N.

Finally, we show N C Lg.
Ls FVx.dy.3z.y €OrdAz=L,Ax €z
As N satisfies this sentence, for a fixed a € N there are y € N and z € N such that
NEy€eOrdAaz=L,Aa€Ez

By absoluteness, a € L, CLgas required. O
Theorem. If V = L, then 2%« = X, for every ordinal a. In particular, GCH holds.

Proof. We will show that P(w) C L, ,,. Then, as |L,,_, | = Ny, the proof follows. To do
this, it suffices to show that if X C w,, then there exists some y < wq,; such that X € L,.

Let X C w, and let 6 > w, be a limit ordinal such that X € Ls. Let M be an elementary
submodel of Ls such that w, € M, X € M, and [M| = X,. This exists by the downward
Lowenheim-Skolem theorem. By Godel’s condensation lemma, if N is the Mostowski col-
lapse of M, then there is a limit ordinal y < & such that N = L,. As |N| = [M| = X, we
have |L,| = N, 50 7 < wg4. Finally, as w, C M, the collapsing map is the identity on w,.
Thus, the map fixes X, and so X € L,. O
This gives the following theorem.

Theorem. Con(ZF) implies Con(ZFC + V = L + GCH).
Proof. We have shown that there is a definable class L such that ZF proves
(ZFC+V =L+ GCH)"
Suppose that ZFC + V = L + GCH were inconsistent. Then fix ¢ such that
ZFC+V=L+GCHF oA —p

Then
ZF F (p A ﬁgp)L

By relativisation, ¥ A —=(p%). Hence ZF is inconsistent. O
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VII. Forcing and the Continuum Hypothesis

Lemma (Shepherdson). There is no class W such that

ZFC + W is an inner model A (=CH)"

Therefore, the technique of inner models does not let us prove the independence of CH from
ZFC. In order to do this, we will introduce the notion of forcing.

2.7. Combinatorial properties

Definition. Let Q be either a regular cardinal or the class of all ordinals. A subclass C C Q
is said to be a club, or closed and unbounded, if it is

(i) closed: for all y € Q, we have sup(C ny) € C;
(ii) unbounded: for all « € Q there exists § € C with § > «a.
A class S C Q is stationary if it intersects every club.
Note that being a stationary class for Ord is not first-order definable.

The property ¢ states that there is a single sequence of length w; which can approximate
any subset of w; in a suitable sense.

Definition. We say that the diamond principle ¢ holds if there is a sequence (Ay) <, Such
that

(i) foreach a < w;, we have A, C a; and

(ii) forall X C w,, the set {or | X N a = A,} is stationary.
Lemma. ZF - ¢ — CH.
Proof. If (Ag)a<w, is @ ©-sequence, then for all X C w, there is « > w such that X = A,.
Thus {A, | @ € w; AAy C w} = P(w). O
Theorem. If V = L, then ¢ holds.

Remark. ¢ isused in many inductive constructions in L to build combinatorial objects such
as Suslin trees.

Definition. Let x be an uncountable cardinal. Then the square principle O, is the assertion
that there exists a sequence (C,) indexed by the limit ordinals « in x*, such that

(i) C,isaclub subset of a;
(i) if B is a limit ordinal of C, then Cg = C, N B; and
(iii) if cf(a) < x then |Cy| < x.

Theorem (Jensen). If V = L, then [J, holds for every uncountable cardinal x.
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Lemma. If 0, , then there exists a stationary set S C {§ € w, | cf(8) = w} such that for all
a € w, with cf(a) = wy, S N is not stationary in a.

Remark. If x is a weakly compact cardinal, then every stationary subset of x reflects: there
is a € x such that S N a is stationary in a. In fact, the claim that every stationary subset of
{B € w, | cf(B) = w} reflects at a point of cofinality w; is equiconsistent with ZFC together
with the assertion that there is a Mahlo cardinal.

367



VII. Forcing and the Continuum Hypothesis

3. Forcing

3.1. Introduction

The idea behind forcing is to widen a given model of ZFC to ‘add lots of reals’. But if we
work over V, we already have added all of the sets, so there is nothing left to add. Instead,
we will work over countable transitive set models of ZFC. However, this means that we will
not immediately get Con(ZF) — Con(ZFC + ~CH). We will then use the reflection theorem
to obtain this result.

If M is such a countable transitive model, we want to add w}!-many reals to M. We will try
to do this in a ‘minimal way’; for example, we do not want to add any ordinals. This gives
us much more control over the model that we build.

Recall the argument that the sentence ¢(x) = 3x.x? = 2 is independent of the axioms of
fields: we began with a field in which the sentence failed, namely Q, and then extended it in

a minimal way to @[\/E] The model @[\/5] does not just contain QU {\/E}, it also contains

everything that can be built from Q and V2 using the axioms of fields. The field Q[\/E] is
the minimal field extension of Q satisfying ¢.

We may encounter some difficulties when adding arbitrary reals to our model. Suppose that
M is of the form L, where y is a countable ordinal. Then y can be coded as a subset ¢ of w,
which can be viewed as a real. If we added c to M, we could decode it to form y = Ord N M.
This would violate the principle of not adding any new ordinals.

Suppose we enumerate all formulas as {¢,, | n € w}. Letr = {n | M E ¢, }. If we added r to
M, we could then build a truth predicate for M. This would cause self-referential problems
discussed by Tarski.

The main issues we must overcome are the following.
(i) We need a method to choose the w)!-many subsets of M to be added.
(ii) Given these, we need to ensure that the extension satisfies ZFC.
(i) We must ensure that »? and w}! are still cardinals in the extension.

We will build these reals from within M itself. Note that if r is a real, then each of its finite
decimal approximations is already in M. The issue is that from within M, we do not know
what the real we want to add is. So we may not know from within M which reals we will add.
Instead, we will add a generic real. To be generic, we will not specify any particular digits,
but its decimal expansion will contain every finite sequence. We will call a specification
dense if any finite approximation can be extended to one satisfying the specification. For
example, ‘beginning with a 7’ is not dense, but ‘containing the subsequence 746’ is dense.
We will define that a real is generic precisely when it meets every dense specification.

Note that there are explicit, absolute bijections f : P(w) - w%, g : @ - 2% h : 2° > R
and so on. So if M E ZFC, knowledge of PM(w) gives us (w®)M, (2°)M,RM, Because of
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this, by a ‘real’ we mean either an element of R, a function @ — w, a function w — 2, or
a subset of w. In formal arguments, reals will normally be either subsets of w or functions
w— 2.

The axiom of choice is not needed in the basic machinery of forcing, so we will work primar-
ily over ZF and state explicitly where choice is used.

3.2. Forcing posets
Definition. A preorder is a pair (P, <) such that
« P is nonempty;
« <isabinary relation on P;
« <istransitive,so p < gand q < r implies p < r;
« <isreflexive, so p < p.
A preorder is called a partial order if < is antisymmetric, so p < gand q < p implies p = q.

Definition. A forcing poset is a triple (P, <p, Ip), where (P, <p) is a preorder and 1p is a
maximal element. Elements of P are called conditions, and we say q is stronger than p or an
extension of p if ¢ < p. We say that p, q are compatible, written p ||p g, if there exists r such
that r <p p, q. Otherwise, we say they are incompatible, written p L q.

Remark. In some texts, the partial order is reversed. This is called Jerusalem notation.

The notation P € M abbreviates (P, <p, Ip) € M. Note that by transitivity if P is an element
of M, then 1p € M, but we do not necessarily have <p € M.

Definition. A preorder is separative if whenever p # q, exactly one of the following two
cases holds:

(i) g<pandp £ q;or
(ii) there exists r < g such thatr L p.
Proposition. (i) If (P, <) is a separative preorder, it is a partial order.

(i) If (P, <) is a poset, then it is separative if and only if whenever q £ p, thereisr < q
such thatr L p.

Proposition. Suppose that (P, <) is a preorder. Define p ~ q by
p~qeVreP.(rlper|q
Then there is a separative preorder on P/ such that
[Pl Llgl < plq

and if P has a maximal element, so does P/N.
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Example. For sets I,J, we let Fn(I,J) denote the set of all finite partial functions from I to
J.

Fn(I,J) ={p | |p| < w A pisafunction Adomp CIAranp CJ}

We let < be the reverse inclusion on Fn(I,J), so q < p ifand only if ¢ O p. The maximal ele-
ment 1 is the empty set. Then (Fn(,J), 2, @) is a forcing poset, and moreover, the preorder
is separative.

Remark. When « is an ordinal, the forcing poset Fn(a X w,2) is often written Add(w, «),
denoting the idea that we are adding a-many subsets of w.

3.3. Chains and A-systems
Definition. Let P be a forcing poset.
(i) A chainisasubset C C P such that for every p,q € C, either p < qorq < p.

(i) An antichain is a subset A C P such that for every p,q € A, either p=qorp 1L q. An
antichain is maximal if it is not strictly contained in any other antichain.

(iii) We say that [P has the countable chain condition if every antichain is countable.

Example. (i) Consider the tree Fn(w,2). A chain is a branch through the tree, and an
antichain is a collection of points on different branches.

(ii) The set of functions {{(0, 0), (1, n)} | n € w} forms an antichain of length w in Fn(I, w)
if{0,1} C I.

Definition. A family of sets A forms a A-system with root Rwhen X NY = RforallX #Y
in A.

Example. If R = @, then A is a family of pairwise disjoint sets.

Definition. Let A be a set and 6 a cardinal. Then we write [A]® for the set of subsets of A
of size 6.

[AP ={x CA||x| = 6}
We write [A] < for the set of subsets of A of size strictly less than 6.
[A]° ={x CA||x| < 6}

Similarly, [A]56 = [4]° U [A]<C.

Recall that for regular cardinals x, if # is a family of sets of size less than x and each element
of F has size less than «, then  F has size less than «.

Lemma (A-system lemma). (ZFC) Let k¥ be an uncountable regular cardinal, and let A be
a family of finite sets with |4| = k. Then there exists B € [A]* that forms a A-system.
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Proof. To begin, we construct € € [A]* such that all elements of C have the same cardinality.
By assumption, each element of A is finite, and so we can define Y,, = {X € A | |X| = n}, and
suppose each of the Y, had size less than x. Then 4| = ||J Y;,| < , giving a contradiction.

Fixn € wsuch that C = Y, hassize x. We show byinductiononnthatifC = {X € A | |X| = n},
then there is B C C of size x that forms a A-system. If n = 1, we have a collection of pairwise
disjoint singletons, so € is already a A-system with root @ as required. Now suppose n > 1
and the claim holds for n — 1. For each p € [J G, let C, = {X € C | p € X}. There are two
cases to consider.

Suppose |Cy| = x for some p € | €. Then for such a p, we set D = {X \ {p} | X € G,}. This
set has size x, and each element of D has size n — 1. By the inductive hypothesis, we can
find some & € [D]* such that € forms a A-system with root R. Then {Y U{b}|Y € E}isa
A-system with root R U {p}.

Now suppose all of the C,, have size less than x. Then as « is regular, for any set S of size less
than x,
xecelxns#at=[JG
pEeS
hassize less than x. Therefore, there exists some X € C such that X NS = @. We recursively
choose X, € € for each a < x such that X, N U[3<aXﬁ =@. Then{X, |a<x} €[C]*isa
A-system with empty root. g

We can show that assumptions in the above lemma were required.

Proposition. Suppose x is w or singular. Then there exists a family A of finite sets with
|A| = x butno B € [A]* forms a A-system.

Lemma. (ZFC) Fn(I,J) has the countable chain condition if and only if I is empty or J is
countable.

Proof. First, we observe that if I or J are empty, then Fn(l,J) is empty and so trivially has
the countable chain condition. Now let us assume that both I and J are nonempty.

Suppose that J is uncountable. Then for any i € I, the set

{@ 1 Jjeds
is an uncountable antichain.

Now suppose J is countable, and let {p, | « € w;} be a collection of distinct elements of
Fn(1,J). Let A = {dom p, | @ € w,}, which is a collection of w,-many finite sets. By the A-
system lemma, we can find an uncountable subset B C .4 with a root R C I. By definition,
R C dom(p,) for all dom p, € B, the root R must be finite. Since J is countable, there are
only countably many functions R — J. Therefore, as B is uncountable, there are o« # 8
such that dom p, and dom pg are both in B and p,|, = p5| z- But then since R is a root,
dom p, Ndom pg = R, 80 p, || pg, witnessed by their union p, U pg. So the {p, | @ € w,}
cannot form an antichain. O
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3.4. Dense sets and genericity

Definition. Let ® be a forcing poset.
(i) D C Pis dense if for all p € P there exists q € D such that g < p.
(i) D CPisopenifforallp e Dandq € P,ifq < pthenq € D.

A set of conditions is dense if every condition can be extended to one in that set, and a set is
open if it is closed under strengthening conditions.

Example. Let I be infinite and J nonempty. Then for all i € I and j € J, the following are
dense.

(i) D; ={q € Fn(1,J) | i € dom q};
(i) Rj ={q € Fn(I,J) | j € rangq}.
Definition. A subset G of a forcing poset P is a filter if
(i) 1eG;
(ii) for all p,q € G thereisr € Gsuch thatr < pandr < g;
(iii) forall p,q € G,ifq < pand q € G then p € G.
A filter G is P-generic over M if G N D is nonempty for every P-dense subset D € M.

Lemma (generic filter existence lemma). Let M be an arbitrary countable set, and let P € M
be a forcing poset. Then for any condition p € P, there is a filter G C [P containing p which
is P-generic over M.

Proof. Let (Dy),e. enumerate all dense subsets of P which lie in M. We inductively define
X CPbyX ={q, | n € w} as follows. Let q, = p, and given q,,, we choose q,,; € D, such
that q,,,1 < qp. Finally,let G = {r € P | 3n.q,, < r}. Then G is a filter as the q,, form a chain,
and it is clearly generic. O

Definition. A condition p € P is minimal if whenever q < p, we have q = p.

Lemma. Let M be a countable transitive model of ZF, and let P € M be a separative partial
order. Then either [® has a minimal element, or for every filter G which is P-generic over M,
we have G &€ M.

Proof. Suppose P has no minimal element. Let G be a P-generic filter over M. We show
that if F C P is a filter in M, then the set D = P\ F € M is a dense set. Then G N Dy, is
nonempty for all filters F, so G cannot be equal to any filter F € M.

Fix p € P. If p ¢ F, then p € Df as required. Otherwise, suppose p € F. As p is not
minimal, we can fix some q € F with g < p. Then p £ q, so by separativity, thereisr < p
such that r L q. But all conditions in F are compatible, so one of r and q is not in F. O
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Proposition. For sets I,J such that [I| > w and |J| > 2, the forcing poset Fn(I,J) is a

separative partial order without a minimal element.

Proposition. (ZFC) Let P € M be a forcing poset, and let G C P. Then the following are
equivalent.

(i) G is P-generic over M, that is, for all dense sets D € M, we have G N D # @;
(ii) forall p € Gand D € M, if D is dense below p in P, then GN D # @;
(iii) for all open dense sets D € M, we have G N D # ;

(iv) for all D € M that are maximal antichains in P, we have G N D # @.

3.5. Names

Definition. Let P be a forcing poset. We define the class of P-names M" recursively as
follows.

(i) M§ = @;
(i) Mgy, = PM(P x MY);
(iii) at limit stages 1, M}, = |J

P.
a<ld MO"

(iv) M = M.

aelrd “ &

Being a P-name is absolute for transitive models. P-names are denoted with overdots, such
asin x.

Definition. The range of a P-name X is

ran(x) ={y | 3p € P.(p,y) € X}

Remark. Alternatively, by transfinite recursion on rank, we could define the class of P-
names over V in the following way. If rankx = a, then x is a P-name if and only if it is
a relation such that for all (p,y) € x, we have p € P and y is a P-name in V,. Finally,
M" =VP nM.

Definition. The P-rank of a name X, written rankp X, is the least o such that X C PP x MY,.

Definition. Let X be a P-name and G be an arbitrary subset of P. We define the interpreta-
tion of X by G recursively by

%6 = {y° | 3p € G.(p. ) € %}

Definition. The forcing extension of M by G, written M[G], is

M[G] = {xC | x € M"}
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Example. If @ € M, then @€ = @. Let

x = {(p, @), (r. {(q: DX}

If p,q,r € G, then

%@ = {(p.oNC. (. la. @)
={2.{¢a. 20}
={o.{o}}

If p,r ¢ G, then

Ifr € Gbut p,q ¢ G, then
%% ={(q. 2)°} = {2}

Finally, if p € G butr € G, then
¢ = (o}
We aim to show the following major theorem.

Theorem (generic model theorem). Let M be a countable transitive model of ZF, let P be a
forcing poset, and let G be a P-generic filter. Then

(i) M[G]is a transitive set;
(i) [M[G]| = Ry;
(iii) M[G] F ZF, and if M E AC then M[G] E AC;
(iv) ord” = OrdM[G];
(v) M € M[G];

(vi) M[G] is the smallest countable transitive model of ZF such that M C M[G] and Gisa
set in M[G].

Countability is only needed to show the existence of a generic filter, so parts (i) and (iii)—(vi)
of this theorem hold without this assumption.

3.6. Canonical names

We can prove some parts of the generic model theorem by introducing the notion of canon-
ical names.

Definition. Given a forcing poset (P, <, 1) and a set x € M, we define the canonical name
of x by

x={(1y)|y€x}
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The symbol X is pronounced x-check.

Lemma. If M is a transitive model of ZF, P € M, and 1 € G C P, then
« forallx € M, ¥ € MF and %€ = x;
« M C M[G];
« M|[G] is transitive.

Proof. Part(i). We show X € M" by induction, using the definition of P-names by transfinite
recursion. Hence

¥ ={C|yex}={ylyext=x
Part (ii) follows directly from part (i).

Part (iii). Suppose that x € y and y € M[G]. By definition, y = y© for some P-name y. By
construction, any element of y is of the form 26, soin particular, x = xS for some P-name
x e M. O

Remark. Even if G &€ M, we can still define a name for G in M. From this, it follows that if
G ¢ M, then M[G] # M.

Proposition. Let
G={p,p) | pEP}
Then G° = G.

Proof.
Ge={p°|peG}={plpeG=G

3.7. Verifying the axioms: part one
We can define unordered and ordered pairs of names, with sensible interpretations.

Definition. Given P-names X, y, let

up(xay) = {<1]’x>’ <1],J’>}

and
op(x, ) = up(up(x, X), up(%, y))

Proposition. For x,y € M"” and1 € G C P,

(up(x, y)° = {x%, y°}

and
(op(x, )¢ = (x, y©)
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Lemma. Suppose M is a transitive model of ZF and P € M is a forcing poset. If 1 € G C P,
then M[G] is a transitive model of extensionality, empty set, foundation, and pairing.

Lemma. Suppose that M is a transitive model of ZF and P € M is a forcing poset. Let G C P
be such that 1 € G. Then

(i) rank(x®) < rank x for all x € MF;
(i) ord™ = ord™!°,
(i) |M[G]| = |M]|.

Proof. Part (i). We show this result by induction on x. @° = @, and both have rank 0. We
have

rank(x%) = sup {ranku + 1 | u € %%}
< sup{rank(y©) + 1| y € ran x}
<sup{ranky+1 |y € ranx}
<supf{ranku+1|u € x}
<rankx

Part (ii). Since M C M[G] and being an ordinal is absolute, ord” ¢ ord™!°!. For the reverse
inclusion, suppose & € M[G] is an ordinal, and fix a name x € M" such that & = x°. Then
a is an ordinal in the universe, so

a =ranka < rank x

. . .\ M
so since M is transitive, « € Ord .

Part (iii). Since any element of M[G] is of the form x© for some x € M” C M C M[G], we
must have
IM[G]| < [MP| < [M| < |M[G]]

so the inequalities must be equalities. O

Corollary. M[G] satisfies the axiom of infinity.

Proof. w € ord™ so w € ord"°! C M[G]. O
Lemma. Suppose M is a transitive model of ZF, P € M is a forcing poset, and G C P is
such that T € G. Then if N is another transitive model of ZF with M C N a definable class

in Nand G € N, then M[G] C N.

Proof. We carry out the construction of M[G] in N. Namely, we will show that for all P-
names X, we have X6 € N, from which it follows that M [G] € N. We proceed by induction
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on x. As the axiom of empty set holds in N and it is a transitive set, @° = @ € N. Moreover,
since
MP =VPnMCcVPNN=NP

if X is a P-name of M, it must be a P-name of M. In particular, x € N. Now, suppose that for
every (p,y) € X, we have y° € N. Then

&N =3¢ | Ip e G.(p.y) € %}

{ON | 3p € G.(p,y) € X)N}
={y°13peG.(p,y) € %}
= xC

Thus X¢ € N as required. O

To prove the generic model theorem, it now suffices to prove the remaining axioms of ZF,
which are union, power set, replacement, and separation. We can prove the axiom of union
Now.

Lemma. Suppose M is a transitive model of ZF, P € M is a forcing poset, and G C P is
such that 1 € G. Additionally, suppose that G is a filter. Then M[G] satisfies the axiom of
union.

Proof. Tt suffices to prove that for all aeEM [G], there is some b € M[G] such that | Ja = b.
Fix @ € M such that a® = a, and let b be the following name.

b={p,z)| Hqgy)€a.IreP.(r,z)€YAp<T,q}

Observe that b is a P-name in M: since ¢ is a P-name, any y € rana is a P-name, so b
consists of pairs (p, Z) where p € P and zZ € rany for some y € rand. Thus z is a P-name
in V. Moreover b € M since b € P X tcl(ad).

We claim that | Ja C bC. Letw € |Ja, so w € v for some v € a. Since M[G] is transitive,
we can fix names y, Z and conditions gq,7 € G such that

G _ .G

y v, z°=w;, (qy)ea (r,z)ey
As G is a filter, by directedness there is a condition p < q,r in G. Then, by definition, (p.2) €
b, and w = z€ € bO.

For the converse, we claim that b¢ C Ua. Let(p,z) € b% so p € G and 26 = c. By
definition, we can fix (q, y) € d and r € P such that (r,zZ) € y and p < g, r. Using the fact
that G is a filter, we must have g, € G. Hence 2¢ € y° and y© € a©, so ¢ € y© for some
-G

y¥ €ea. O

Example (motivation for genericity). Note that P, G € M[G]. If M[G] models any reason-
able theory, we should have P \ G € M[G]. We will try to build a name for P \ G. A natural
name to consider is

¢={q.P) | p.qeP,pLq}
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Then
¢“={plIqeG.pLlq}

If G is a filter, its elements are pairwise compatible, so GN ¢® = @. But we still need to show
that G U ¢© = P. For each condition p, set
D,={qeP|plqvq<p}

It is easy to check that D, € M is dense. Now, if G is P-generic, we could fix some g € GND,
for any given p. Then if p L g, by definition p € ¢©, and if g < p, then p € G by upwards
closure. From this, it follows that G U ¢¢ = P.

In fact, we have the following.

Proposition. Let M be a countable transitive model of ZF. Then there exists a forcing poset
P € M and a (non-generic) filter G C P such that P\ G ¢ M[G].

3.8. The forcing relation

To show separation, we need to show that if (x,y) is a formula and @, b are P-names,
then _
C =1{29 € a% | (2%, b))} € M[G]

This is unclear, even for simple formulas such as ¢(x,y) = x ¢ y. We will build a way to
formally reason about M[G] from within M, without having to rely on G. To do this, we
will define a relation p I+ ¢ between conditions p € P and names in V”. Its relativisation
(p I+ )M will provide a way to work in M. Our aim is to define I such that p I+ ¢(zt) if and
only if for every generic subset G C P with p € G, we have M[G] E ¢(11°).

Naively, we might say that if (p,X) € y then p I X € y. The converse cannot be made
to hold. Consider x = {(p, @)} where p # 1. Then p I @ € Xx. Suppose q L p, then we
have q I X = @. Therefore, we should have q |- x € 1. If we enforce the converse above,
we would have (g, x) € 1, which is incorrect since 1 = {(1,@)}. Instead, we will define
the forcing relation in terms of dense sets, leveraging the fact that generics meet all dense
sets.

Definition. Let P be a forcing poset. The P-forcing language ¥ Lp is the class of logical
formulas formed using the binary relation € and constant symbols from V",

Definition. Let P be a forcing poset and let p € P. Let X, y, & be P-names in V. We define
the forcing relation p I+ ¢(u) recursively as follows.

(1) p Ik @) A () if and only if p I+ ¢(at) and p I+ P(in);
(i) p Ik —@(w) if and only if there is no q < p such that q I+ ¢(w);
(iii) p IF 3x.e(x,u)if and only if the set
lq<p|3Ix e VP.ql- o(x,0)}

is dense below p;
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(iv) p I x € y if and only if the set
q<p|I;rzyepy.q<rA(qlFx =2)}

is dense below p;

(v) plFx C yifand only if for all (q;, Z;) € X, the set
r<plr<qi - qu2) €y.r <@ A(rl-2z; = 2,)}

is dense below p; and
(vi) plkx=yifandonlyifpl-FxCyandpl-y C x.

Remark. (i) The definitions for C and = are defined recursively, and thus require transfin-
ite recursion to define formally.

(ii) All of the clauses except for the existential use only absolute notions. In particular, it
does not depend on M. When relativising to a model, (p I 3x. p(x))M precisely when
the set

{g<p|3x e MP.ql- o(x,0)}

is dense below p.

Proposition. Let p be a condition, ¢ be an FLp-formula, and X, ..., X,, be P-names in V.
Then the following are equivalent.

@ plE Xy, ... %n);
(ii) forallg < p, q I+ @(x4, ... , X,,);
(iii) thereisno g < p such that q I ~¢(X4, ..., X,);
(iv) theset{r | r I ¢(x, ..., X,)} is dense below p.
Proof. (ii) implies (iii). If (iii) did not hold, there would be some q < p such that q I+ —¢.
Then there is no r < g such that r I ¢. So in particular, g ¥ ¢, contradicting (ii).

(iii) implies (iv). Suppose that there is no g < p such that q I+ —=¢p. Take ¢ < p. Then by
assumption, g ¥ =g, so there is r < g such that r I ¢, so the set is dense as required.

(i) implies (ii). We show this by induction on formula complexity.

+ For atomic formulas, let (0 be either € or C. Then p I+ x O y if and only if some set A
is dense below p. Take g < p, then A is dense below q. Then g I+ x O y as required.

o If p Ik =g, then there is no r < p such that r I+ . Then there is no r < g such that
r I+ @, so by definition, q I —¢p.

« If pl- @A then p I+ ¢ and p I+ 3, so by the inductive hypothesis, q I ¢ and q I+ 9,
giving q I- ¢ A 3.
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« If p I 3x. p(x), then A is dense below p for some set A, but then A is dense below g,

so q I 3x. p(x).

(iv) implies (i). Again, we show this by induction.

« For atomic formulas, let [J be either € or C. To prove that p I x O y, we must
show that some set A is dense below p. By assumption, the set {r | r I x O y}is dense
below p. Fix g < p, then there is 7 < g such that r I x O y. Hence there is some
s £r £ q < psuch that s € A. Therefore p I+ X O y as required. The proof for

existentials is the same.

» Suppose that {r | r I @ A ¢} is dense below p. So {r | r I~ ¢} and {r | r I ¢} are also

dense below p. By the inductive hypothesis, p I ¢ and p I+ 3. Hence p I+ ¢ A 3.

» Suppose that {r | r I ¢} is dense below p. To show p I —¢, we fix ¢ < p and
suppose q I~ . By the fact that (i) implies (iii), there is no r < q such that r I+ =g,

contradicting density of the set {r | r I —¢p}.

Proposition. Let P be a forcing poset, let p,q € P, and let ¢, b € VF. Then
(G plFa=g;
(i) if(q,b) € aand p < q,then p I- b € &

(iii) if M is a transitive model of ZF and P € M, then for any ¢, ¥,
@, %) [{g, Xy € an(q - p()M} e M

and
laeP|(qFyp@)M}eM

(iv) p I+ @ Vv 9 ifand only if
lg<plql-gporql-d}
is dense below p;
(v) plk ¢ — 9 ifand only if there is no q < p such that q I+ ¢ and q I+ —y;
(vi) pIF Vx.@(x) if and only if for all x € VP, p I ¢(%);

(vii) for any ¢, the set
{fpeP|pl-gporpl- g}

is a dense open set;

(viii) there is no p and formula ¢ such that

plFp A

380

g



3. Forcing

3.9. The forcing theorem

Theorem (the forcing theorem). Suppose M be a transitive model of ZF, P € M is a forcing
poset, p(u) is a formula, and G is P-generic over M. Then for any x € M?,

(i) if p € G and (p IF p(x))M, then M[G] E ¢(x°); and
(ii) if M[G] E @(x©), then there is a condition p € G such that (p I+ p(x))M.
Once we have shown this theorem, we will have the following result.

Corollary. Suppose that M is a countable transitive model of ZF, P € M is a forcing poset,
and ¢(u) is a formula. Then for any name x € M",

(p I+ 9(x))M < for any P-generic filter G with p € G, M[G] E ¢(x°)

The only reason we need countability is so that every condition is contained in a generic
filter.

Proof. The forward direction is part (i) of the forcing theorem. For the backward direction,
suppose that (p ¥ ¢(x))™. Then, by definition, there is some q < p such that (q I- =g(x))M.
Let G be a P-generic filter over M such that g € G. Then, since G is upwards closed, p € G.
Hence M[G] E ¢(x®) by assumption. But as ¢ € G, by the forcing theorem we obtain
M[G] E —¢(x®). This contradicts part (viii) of the proposition above by the forcing theorem.

O

Definition. Suppose M is a countable transitive model of ZF, P € M is a forcing poset,
X1,...,X, € M®, p € P, and ¢(vy, ..., v,,) is a formula. Then we can define a relation =5 M
by

p IFpar @(Xy5 .05 X0)

if and only if M[G] E @(x¥, ..., x$) for all G C P such that p € G and G is a [P-generic filter.
Corollary. pl-¢ < plp o @.

We will now prove the forcing theorem.

Proof. We show the result by induction on the complexity of formulas. Note that we need
to work with relativised formulas with parameters (p I+ ¢(v))™, but this only changes the
existential case, so for all other cases we will suppress the relativisation and the parameters.
We write ¥(¢) for the claim that for any name x € M”, if p € G and (p I+ ¢(x))M, then
M[G] E ¢(x©), and if M[G] = ¢(x©), then there exists p € G such that (p I+ p(x))M.

Part (i): negations. Suppose ¥(¢) holds. Let p € G and p I —¢. Suppose for a contradiction
that M[G] E ¢, or equivalently, oM [G]. Then as W(¢) holds, there is g € G such that q I .
As Gisafilter, thereisr € Gsuchthatr < p,q. Thenr I+ ¢, which contradicts the definition
of p I =. Hence ~(MIS), so by definition (-g)MIC], so M[G] E —¢.
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VII. Forcing and the Continuum Hypothesis

For the converse, suppose M[G]| E —g. Let
D={peP|plFpVpl--¢}

Then D is dense, because if g ¥ ¢, then there is p < g such that p I+ =g, and p € D. So as
G is generic, we can fix p € G N D. If p I ¢, then by ¥(¢) we must have M[G] F ¢, but we
assumed M[G] E —¢. Hence p I+ —¢.

Part (ii): conjunctions. Suppose ¥(¢) and ¥(3). Suppose p I+ ¢ A 3 for some p € G, so by
definition, p I ¢ and p I+ ¥. By ¥(¢) and ¥(¢), we have M[G] E ¢ and M[G] F 3. So
M[G]E ¢ A Y.

For the converse, suppose M[G] E ¢ A . Then M[G] E ¢ and M[G] E 1, so there are
p.q € G such that p I+ ¢ and q I+ 3. But G is a filter, so there is r < p,q such thatr I+ ¢
and r I 9. Hence r I+ ¢ A 9, as required.

Part (iii): existential quantifiers. For this case, we will not suppress relativisation and para-
meters. Suppose ¥(p(%)); we show ¥(3x. ¢(x)). To be more precise, for all names x € MP,
we assume the forcing theorem holds for ¢(x). Suppose p € G is such that (p I+ 3x. p(x))M.
Let

D=(g<p|Ixe VP (qF o))" ={g< p| 3t e MP.(qIF p(x)M} e M

By definition of forcing existentials, D is a dense set. Since G is generic, there is some q €
G N D. Then we can fix some P-name x such that (q I+ ¢(x))M. Since the forcing theorem
holds for p(x), we have M[G] E ¢(x®). Hence M[G] E 3x. p(x).

Now suppose M[G] E 3x.¢(x). We can fix x € M” such that M[G] E ¢(x©). By the fact
that W(p(%)) holds, there is a condition p such that (p I+ ¢(x)). Then

{a<pl(qFeE)M}
is dense. Hence, by definition, (p £ 3x. p(x))M.
Part (iv): equality. Recall that p I x = y if and only if

(a) forall{q,z;) € X, {r < pl|lr<q = 3qy,2;) €y.r < q, A(r I+ 2z, = Z,)} is dense be-
low p; and

(b) forall{(q,,z,) €y, {r<plr<q, - Hqi,z,) € X.r < q; A(r I+ 2Z; = Z,)} is dense be-
low p.

We show that for any x, y, we have ¥(x = y). We will show this by transfinite induction on
the pair (X, y) ordered lexicographically.

Suppose that p |- x = y and p € G. We show M[G] E x® C y©; the converse holds by
symmetry, and then we obtain M[G] E x¢ = y© by extensionality. Any element of %€ is
of the form z{ where (q;,2,) € X and q; € G. Since G is a filter, we can fix s € G such
that s < p,q;. Then, as s < p, we have s I x = y, so the set in (a) above is dense below
s. Hence there is r € G such that r < s < q; and there exists (q,,Z,) € y such thatr < q,

382



3. Forcing

and r I z; = z,. As G is a filter, q, € G, so z§ € y©. By using the inductive hypothesis on
(21, 2,), asr € G we have M[G] E 2¥ = x§. Hence z¥ € y©, s0 xC C y©.

For the converse, M[G] E x© = yC. Define D to be the set of r € P such that at least one of
the following hold.

©) riFx=y;

(a’) there exists {q;,2;) € X such that r < q; and for all {(g,,2,) € yand s € P, if s < g,
and sl 2z, = 2, thens L r;

(b') there exists (q,, Z,) € y such that r < g, and for all (q;,2,) € Xand s € P, ifs < q;
and sl 2, =z, thens Lr.

Note that by separation in M and absoluteness, D is a set in M. We claim that D is dense. Fix
p € P, and suppose p ¢ X = y. Then at least one of (a) and (b) above fails. Suppose that
the set in (a) fails; the result for (b) holds by symmetry. Then there is (q;, Z;) € X such that

{r<plr<qi — Haqz22) €y.r @ A(rl- 2y = 2,)}

is not dense below p. Then there is s < p such that for all » < s, we have r < q;, and for all
(q2,2,) € y such that =((r I+ z; = 2z,) Ar < q). In particular, this gives s < q;. Now, if
(q1,2,) € ¥, v £ q,, and r I+ Z; = Z,, then it must be the case that s L r, as any common
extension of s and r would contradict the fact that the set in (a) was not dense. Thus s < p
and s satisfies (a’). Hence D is dense.

D is dense below p € G and G is P-generic so we can fix r € G N D. We will show that r
satisfies (0), which finishes the proof. Suppose not, so suppose r satisfies (a") without loss
of generality. Then we can fix (q;, Z;) € X such that r < q; and for all (q,, Z,) € y such that
foralls € Pwiths < gqyands I+ 2, = z,, wehaves L r. Sincer € Gandr < q;, we
must have q; € G by upwards closure. Therefore, M[G] E z¥ € % = y©. So we can fix
(@2, 2,) € y such that q, € G and M[G] E z¥ = z$. By the inductive hypothesis, we can fix
p’ € G such that p’ Iz, = z,. Since G is a filter and both p’, q, € G, we obtain s € G with
s < p',q,- Hence s I+ z; = Z,. Hence, by (a'), we have s L r. Buts,r € G,so s | r, giving a
contradiction.

Part (v): membership. Suppose that p I- X € y for p € G. Let
D={q<p|;Hr,2)€p.q<rA(qlFx=2)}

By definition, D is dense. We can fix g € G N D. Since q € D, we may also fix (r, Z) € y such
that ¢ < rand q I- X = 2. As q € G, by the forcing theorem for equality, M[G] E x© = zC.
Since G is a filter and q < r, then r € G and so z° € y©. Hence M[G] E x© € y©.

Now suppose M[G] E x¢ € yC. Fix (r,z) € y such thatr € G and z¢ = x°. Now, by
the forcing theorem for equality, there is ¢ € G such that q I X = Z. Since G is a filter
and q,r € G,wecan fix p € Gsuchthat p < q,r. Thenp |2 € yand p I+ X = z. So
forall s < p, we have s < rand s I+ X = Z, so D is dense below p. Hence p I+ X € y, as
required. O
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VII. Forcing and the Continuum Hypothesis

3.10. Verifying the axioms: part two

Lemma. Suppose that M is a countable transitive model of ZF, P € M is a forcing poset,
and G C P is a generic filter. Then M[G] models separation.

Proof. Let ¢(x, v) be a formula with free variables x, v. It suffices to show that for any a, v €
MI[G],

={x € a| M[G] F ¢(x,v)} € M[G]
Fix names d, 0 such that @° = a and V¢ = v. Any member of dC is of the form x© where
(p,x) € dand p € G. Then

b={x%|3p € G.(p,x) € a AM[G] E p(x°,0)}
We define
={(p, %) | {p, %) € a A (p - @(x, )M} € M”
Thus, b € M[G], so it suffices to show b® = b. We have x € b€ if and only if there is some
P-name X in M and p € G such that x¢ = x, (p, X) € 4, and (p I+ ¢(x, 0))M. By the forcing

theorem, this is equivalent to the statement x € a° and M[G] E ¢(x, v), which is precisely
the statement x € b. O

The arguments for collection and power set will follow the same pattern.
Lemma. Suppose that M is a countable transitive model of ZF, P € M is a forcing poset,

and G C P is a generic filter. Then M[G] models collection.

Proof. Let ¢(x,y,v) be a formula with free variables x, y,v. Fix a,v € M[G] with names
a,0. Suppose M[G] E Vx € a.3y.¢(x,y,v). We claim that there is b € M[G] such that
M[G] E Vx € a.3y € b.¢(x,y,v). Let

={(p.x) | peEPAX Erana Ady € M".(p I+ p(x,y, v))M}

Then for all {p, X) € C, thereis y € M" such that (p I+ ¢(x, y, 0))™. Note that the collection
of such y might not form a set, for example with the formula ¢(x,y) = x € y. However,
using collection in M, we may form a set B € M such that B C M" and

¥(p,%) € C.3y € B.(p I+ o(x,y,0))M

Finally, set

b={1y)|yeBeM
We show that b = b satisfies the required property. Fix some x € a, then by definition
there is <q, %) € asuch that ¢ € G and x® = x. By assumption, M[G] E 3y € b.¢(x,y,v).
So fix 2% such that M[G] E ¢(x,z,v). By the forcing theorem, there is p € G such that
(p I+ ¢(x,2,0)). Hence (p,x) E C. So we can fix y € B such that (p I+ @(x,y,0))M.
Therefore, (1,y) € b. Since 1 € G, y© € bC. By the forcing theorem again,

MI[G] E y© € b A (%%, 5, v)

Hence, collection holds. O
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3. Forcing

Note that since power set has not been used in any of the previous proofs, if M = ZF ", then
M[G| E ZF .
Lemma. Suppose that M is a countable transitive model of ZF, P € M is a forcing poset,

and G C P is a generic filter. Then M|[G] models the axiom of power set.

Proof. By separation, it suffices to show that if a € M[G], then
Pl@NM[G]={xeM[G]|xCa}Ch

for some set b € M[G]. Fix a € M[G] with name x € M", and define

S ={x € M"” |ranx C rana} = P(P x rana)™
and let

b={1x)|xeSeMP
Let ¢ € P(a) N M[G]; we must show that ¢ € bS. Let ¢ € MP be a name for ¢, and let
x={(p,z)|z€ranan(pl-ze)M}eSs

G G

We claim x¢ = ¢C = c. First, we show x¢ C c. Fix 2¢ € x©. By definition, we can fix p € G
such that (p, Z) € x. From this, it follows that Z € rand and p I+ Z € ¢. Since p € G, by the
forcing theorem, M[G] E 2€ € ¢©, as required.

Conversely, since M[G] E ¢ C aC, every element of c is of the form z© for {(q, z) € d with
q € G. Also, if M[G] E 2C € c, then by the forcing theorem, there is p such that p I z € ¢.
Then {p, z) € %, s0 26 € xC. O

Lemma. Suppose that M is a countable transitive model of ZFC™, P € M is a forcing poset,
and G C P is a generic filter. Then M[G] models the well-ordering principle, and hence
models ZFC .

Proof. 1t suffices to show that any a € M[G] can be well-ordered in M|[G]. Fix a name a for
a. Using the well-ordering principle in M, we can enumerate the elements of ran g as

{Xq | @ < 6}

Let
f=1{1,0p(& xx)) | & < 8} € M

So in M[G],
fC={a,x§) | a <8}

Hence f© is a function with domain &, and a C ran f6. We can now define a well-order <
on a by defining that x < y if and only if

min{a < 8| f%a) = x} <min{a < 8| f%a) = y}
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VII. Forcing and the Continuum Hypothesis

Remark. (i) f€ may not be injective, since we could have x§ = xg fora # .

(i) ran f© may not equal a. Elements of ¢ are conditions (p, X,), and if p ¢ G, we may
not have x§ € a.

(iii) For power set, it sufficed to find a set of names which contained enough names to
represent all possible subsets of a. However, there are a proper class of names for the
empty set, so we could not produce a set of all such names.

(iv) The statement M[G]| E ¢ should be considered a ternary relation between M, G, and
@. It is possible that G and H are both generic, but M[G] E ¢ and M[H] E —g.

(v) The relativisation (p I+ @) will be dropped when clear in subsequent sections.

Lemma. Let M be a countable transitive model of ZFC and let P € M be a forcing poset.
Let ¢, 3 be FLp-formulas. Then, for any p € P and x € M”,

(i) if ZFC  Vv. p(v) = ¥(v) then (p IF ()M = (p IF P(x))M; and

(ii) if ZFC F Vu. p(v) < ¥(v) then (p I- ()M < (p IF p(x)M.
Informally, forcing is closed under logical equivalence.
Proof. Clearly (ii) follows from (i). Suppose that ZFC F Vv. p(v) — %(v) and (p I+ p(x))M.
Since M is countable, we can let G be a P-generic filter over M such that p € G. By the
forcing theorem, M[G] E ¢(x®). Since M[G] & ZFC, we have M[G] E ¥(x®). Hence, by

the forcing theorem in the reverse direction, as this is true for all generics containing p we
have (p IF p(x)M. O

386



4. Forcing and independence results

4. Forcing and independence results

4.1. Independence of the constructible universe

In this subsection, we show Con(ZFC+V # L), and thus V # L is independent of the axioms
of ZFC.

Theorem. Let M be a countable transitive model of ZFC. Then there is a countable transit-

ive model N D M such that N E ZFC +V # L.

Proof. Let M be a countable transitive model of ZFC, and let P € M be any atomless forcing
poset (that is, it has no minimal elements), for example Fn(w, 2). Since M is countable, we
can let G be a P-generic filter over M. As P is atomless, G ¢ M. Hence M ¢ M|[G] E ZFC.

We show that M[G] E V # L. We have
Loanm = LM € M ¢ M([G]

By the generic model theorem, Ord N M = Ord N M[G], so M[G] # Lorinm(c] = LMIG] I
particular, we have (V # L)MIC], O

We will now discuss how to remove the assumption that we have a countable transitive
model of ZFC.

Theorem. If Con(ZFC), then Con(ZFC + V # L). Hence, ZFC ¥ V = L.

Proof. Suppose that ZFC + V # L gives rise to a contradiction. Then, from a finite set of
axioms I' C ZFC +V # L, we can find 3 such that T F % A =3. By following the previous
proofs, there is a finite set of axioms A C ZFC such that ZFC proves that if there is a countable
transitive model of A, then there is a countable transitive model of I'. This set A should be
sufficient to do the following:

(i) to prove basic properties of forcing and constructibility;

(ii) to prove the necessary facts about absoluteness, such as absoluteness of finiteness,
partial orders and so on;

(iii) to prove facts about forcing, including the forcing theorem; and

(iv) if M is a countable transitive model of A with P € M and G is P-generic over M, then
A proves that M[G] E T.

As A is finite and a subset of the axioms of ZFC, then by the reflection theorem there is a
countable transitive model of A. Hence, there is a countable transitive model N of I'. But
T+ A, s0N E P A . Hence (3 A =)V, so in ZFC we can prove PN A =gV, so ZFC
is inconsistent. U]

Remark. Gunther, Pagano, Sanchez Terraf, and Steinberg recently completed a formalisa-
tion of the countable transitive model approach to forcing in the interactive theorem prover
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Isabelle. To obtain Con(ZFC) — Con(ZFC + —CH), they used ZC together with 21 instances
of replacement, which are explicitly enumerated in the paper.

4.2. Cohen forcing
Fix a countable transitive model M of ZFC. Recall that for I,J € M,

(i) Fn(I,J) = {p| pis afinite partial function I — J}, together with 2 and @, has the
structure of a forcing poset.

(ii) Fn(I,J)is always a set in M.
(iii) Fn(I,J) has the countable chain condition if and only if I is empty or J is countable.

(iv) The sets D; = {q € Fn(I,J) | i € dom g} and R; = {q € Fn(l,J) | i € ran g} are dense
forallieIand j €J.

Now, suppose that G C Fn(I,J) is generic over M. Since G is a filter, if p,q € G then
pNnq € G. Hence, if p,q € G, then p, q agree on the intersection of their domains. Let
fo = UG. Then fg is a function with domain contained in I and range contained in J.
Note that this function has name

f={p,op(L, ) | p € P,{i, j) € p}

Since D;, R; are dense, we obtain G N D; # @, so we must have i € dom fs. Similarly,
J € ran fg. We therefore obtain the following.

Proposition. Let G C Fn(I,J) be a generic filter over M, and suppose I,J are nonempty.
Then M[G] E fg : I — Jis a surjection.

Proposition. Suppose that I,J are nonempty sets, at least one of which is infinite. Then

[Fn(Z, )| = max(|1], |J])
In particular, |[Fn(w, 2)| = N,.

Proof. Each condition p € Fn(I,J) is a finite function, so from this it follows that
Fn(I,J) C (I X J)<®

Hence
Fn(1,J) C |(I X J)<®| = |I x J| = max(|I|, |J])

For the reverse direction, if we fix i, € I and j, € J, then
{Go, /) | j € BU{(i, jo) |1 €T}

is a collection of |I U J|-many distinct elements of Fn(Z,J). Thus
max(|I|, |J|) = |[TuJ| < Fn(,J)

as required. O
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We aim to provide a model in which CH fails. To do this, we will consider the forcing poset
Fn(w) x w,2). We may consider fg : @} X w — 2,and let g, : w — 2 be the function
defined by g,(n) = fs(a, n). This provides w}!-many reals in M[G]. To show that M[G] k&
ZFC + —=CH, we must show that all of the g, are distinct, and that

M([G] M.  M[G] M
C()l = Cl)l N wz == C()z

It will turn out that the countable chain condition guarantees that all cardinals in M remain
cardinals in M[G].

Example. Let x be an uncountable cardinal in M, and consider Fn(w, x), which does not
satisfy the countable chain condition. Then in M[G], the function fg : w — xisasurjection.
Hence, x has been collapsed into a countable ordinal in M[G].

4.3. Preservation of cardinals

Definition. Let P € M be a forcing poset. We say that P preserves cardinals if and only if
for every generic filter G C P over M and every ¥ € Ord N M,

(x is a cardinal)™ « (x is a cardinal)M[C]
Also, P preserves cofinalities if and only if for every generic filter G C P over M,

™ (y) = %)

for all limit ordinals y.

Recall that being a cardinal is IT;-definable so downwards absolute. In particular, cardin-
als of M[G] are automatically cardinals of M. Also, note that finiteness and being w are
absolute.

Lemma. Let P € M be a forcing poset. Then

(i) P preserves cofinalities if and only if for every generic filter G, for all limit ordinals 8
withw < 8 < Ord N M,

(B is regular) — (8 is regular)MI[C]
and

(ii) if P preserves cofinalities, then P preserves cardinals.

The converse of (ii) is not true. Note that the definition of regularity did not require being a
cardinal, but is a consequence.

Proof. Part (i). Suppose P preserves cofinalities and G is P-generic. Fix a limit ordinal §
such that w < § < Ord N M. Then if § is regular in M, we have

g = () = ™ B)
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Hence S is regular in M[G]. Conversely, suppose y is a limit ordinal such that w < y <
OrdNM. Letp = of™ (y). Then B is a regular cardinal in M. Let f € M be a strictly
increasing cofinal function 8 — y. If § is uncountable in M, then f§ is regular in M[G] by
assumption. Otherwise, 8 = w, and then 8 = wM[S] by absoluteness, and so again g is
regular in M[G]. As f € M, also f € M|[G], so there is a strictly increasing cofinal map

B — yin M[G], so
%) = By = g = cM(y)

Part (ii). Suppose that P preserves cofinalities. Let x be a cardinal in M. One of three cases
occur.

(a) Ifx < w, then (x < w)MIC] 50 x is a cardinal in M[G];
(b) Ifxisregular in M, then x is regular in M[G] by (i), so it is a cardinal in M[G].

(c) Suppose « is singular in M. In this case, one can show that « is the supremum of a set
S of regular cardinals in M. One way to show this is that if x is the supremum of a set
T of cardinals, we can set S = {At | 1 € T}. Since P preserves regular cardinals, every
element of S is regular in M[G], and in particular they are cardinals. Hence x is the
supremum of a set of cardinals, and is therefore a cardinal.

O]

Lemma (the approximation lemma). Let A, B,[P € M, and suppose that (P has the count-
able chain condition)™. Let G be P-generic over M. Then for any function f € M[G] with
f : A - B, thereisafunction F € M with F : A — PM(B) such that for all a € A, we have
f(a) € F(a) and (|F(a)| < Rp)M.

This proof requires that M is countable. Note that the relativisation of the countable chain
condition to M ensures that the hypothesis is non-vacuous, as any forcing poset in M is
externally countable.

Proof. Suppose that M[G] F f : A — B. Since A,B € M, we have canonical names
A,B € M". Let f be a name for f. By the forcing theorem, there is a condition p € G such
that

pl- f : A — Bisafunction

Define F : A — PM(B) by
F(a)={b€B|3q< p.ql- f(a) = b}
Note that F(a) € M by the definability of the forcing relation, so as A € M, the set
F ={a,F(a))| a € A}

is a set in M. We now show that this definition has the desired properties. Observe that as
F is a function in M, it is also a function in V. We show that f(a) € F(a). Suppose that
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M[G] E f(a) = b for b € B. By the forcing theorem, there is q € G such that q I f(d) = b.
As G is a filter, there is ¥ < p, q with r € G witnessing b € F(a) as required.

We now show that |F(a)| < N,. Working in M, and in particular using the axiom of choice
in M, for each b € F(a) there is a condition g, < p such that g, I f(d) = b. It suffices to
show that q; L q. for b # c, because then they form an antichain, so by the countable chain
condition we may conclude |F(a)| < X,. Suppose not, so let r < g, q.. Then

ri-f:A— Bisafunction A f(d) =bA f(d) =EAD # ¢
Let H be a generic filter with r € H; this exists by countability of M. Then r < p and
M[H|E f : A—> BisafunctionA f(a) =bA f(aA) =cAb#c
But M[H] E ZFC, giving a contradiction. O

Theorem. If P € M is a forcing poset and (P has the countable chain condition)™, then P
preserves cofinalities and hence cardinals.

Proof. Using the previous lemma, it suffices to show that [P preserves regular cardinals. That
is,ifw < f < OrdNM and g is a limit, then if 8 is a regular cardinal in M, then 8 is a regular
cardinal in M[G]. Suppose this is not the case, so there is such a § that is a regular cardinal
in M but singular in M[G]. In M[G], we can fix a cofinal map f : a — f for some ordinal
a < B. Asa, f € M, we can use the approximation lemma to find a function F : a — PM(B)
in M such that for all y € a, we have f(y) € F(y) and |F(y)| < ¥,. Working in M, let
X = Uy <o F(7). This is a union of countable sets indexed by a < 8. So X C § and is a subset
of less than 3-many countable sets. Hence X # 3 as 8 is a regular cardinal in M. But f was

cofinal, so § = Uy <« J(¥) € X, giving a contradiction. O

4.4. The failure of the continuum hypothesis

Theorem. Let « < Ord N M, and let x = (N,)M. Let P = Fn(x X w,2), and let G be P-
generic over M. Then M[G] contains a x-length sequence of distinct elements of 2“. Hence,
M[G] E ZFC 4+ (R, = x < 2%0),

Proof. Let f = JG € M[G]. Then f is a function x X w — 2. For < x,let gz : w — 2 be
the function given by gg(n) = f(B, n). We claim that for « # 8, we have g, # gg. Define a
dense set E, g € M as follows.

Eyp ={q € P | 3n.(B,n),{(ax,n) € domq A q((B,n)) # q({a, n))}

To show this is dense, fix p € P. Since p is finite, there is some m such that (8, m), (o, m) &
dom p. Define q < p with q : dom p U {(8, m), (&, m)} — 2 by

p(z) ifzedomp
q(z) = {1 ifz = (8, m)
0 ifz = {a,m)
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Since G is P-generic, we can fix ¢ € G N E4 g. Then

gg(m) = f(B,m) = q((B, m)) # q({ar,m)) = f(a,m) = go(m)
Hence g, # gg. Finally, since P has the countable chain condition in M, it preserves cardin-
als, so it preserves the N hierarchy. O
In particular, if & = 2, the model M[G] satisfies =CH.
Theorem. If ZFC is consistent, then so is ZFC + = CH.
The proof proceeds in the same way as the independence of V = L.

Definition. The gg defined above are called Cohen reals. More precisely, we say that ¢ :
w — 2isaCohen real over M if there exists H which is Fn(w, 2)-generic over M and ¢ = | J H.

4.5. Possible sizes of the continuum

We have a way to add Cohen reals into a model M, but in general this process will add many
more reals. In this subsection, we determine the possible sizes that the continuum can be.
Recall that by K6nig’s theorem, 280 # x for any x with cofinality ¥,. We will show that this
is the only restriction on the possible sizes of the continuum. Note that under GCH, for any
x, cf(x) # w if and only if ¥* = x.

Recall that in our proof that the axiom of power set holds in M[G], given a name ¢ € M”,
the set P(P X ran @) is a name for its power set. We will show that there is a better name that
gives a tighter bound on the sizes of power sets.

Theorem. Let M be a transitive model of ZFC, and assume (x = N, A x* = )M, Let
P = Fn(x X , 2), and let G be P-generic over M. Then M[G] E 2% = R, = x.

o

Proof. We have already shown that M[G] E ZFC and M[G] E x = R, < 2%0; it therefore
remains to show that 2% < R_,. Let X be a name for a subset of w. For n € w, let

Ein={p€eP|(plFnex)v(pl-n¢&x)}

This is dense in P. For each n € w, choose a maximal antichain Ay, ,, C Ey ,. This is shown
to be possible on an example sheet using the axiom of choice. Define

ze=|J{(p.) I pEA ADIF T E X

new

Such names are called nice. We will show that z; and x are both names for the same subset
of w, and since we can produce a bound on the amount of nice names, we can bound the
size of 2%,

We claim that 1 I+ x = 2. To do this, it suffices to prove that for all n € w,

Din={q€E;n|(qlFri€x) o (ql-ri€ zy)}
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is dense. Fixn € w and p € P. Since E;, , is dense, we can fix p, < p such that p, € Ej ,.
As Ay ,, is a maximal antichain, there is g, € Ay, such that p, || qo. Fixr < pg, qo. We will
prove thatr € Dy ,. If r I- 71 € X, then qo |- 11 € X as qy € Ex . Hence, (qo, ) € Zy by
definition, so r I 71 € Z. For the converse, suppose r I 7i € z;. By definition,

{s<r|3,q;,m €zs<q A(sIFm=n)}

is dense below r. This can only happen if there is some q; with (q,, 1) € Z, such thatr || q;.
Therefore, by definition, q; € Ay ,. Since Ay , is an antichain containing q, and q; which
are both compatible with r, we must have q, = q;. Hence, (q, 1) € X. Thus q, IF 71 € X by
definition, so since r < qo, we have r I 71 € x. Therefore Dy, ,, is dense as required.

The total number of subsets of w is therefore bounded by the number of nice names. First,
note that |P| = x. Furthermore, since P has the countable chain condition, each Ay, , is
countable. Therefore, the amount of nice names is bounded by (x®)® X (2*)® = k. As every
subset of w has a nice name, M[G] E 2% < «. O

Corollary. Con(ZFC) implies Con(ZFC+ (2% = R,)), and (for example) Con(ZFC+ (2% =
Nwl ))'

Corollary. The following are equiconsistent.
(i) ZFC + there exists a weakly inaccessible cardinal;
(i) ZFC + GCH + there exists a strongly inaccessible cardinal;
(iii) ZFC + 2% is weakly inaccessible;

(iv) ZFC + there exists a cardinal that is weakly inaccessible but not strongly inaccessible.

Proof. To show (i) implies (ii) we move to L. To show (iii) implies (iv), we note that 2%° is not
strongly inaccessible. It is trivial that (iv) implies (i). It therefore suffices to show that the
continuum can be weakly inaccessible given (ii), which follows by considering the forcing
P = Fn(x X w, 2). O

Remark. When building models of ZFC + (2% = x), we often assume GCH for convenience.
This can normally be done without loss of generality because we are usually only concerned
with consistency results.

Example. Consider P = Fn(XY x w, 2). Let G be a P-generic filter. Then in M[G], we must
have 2% > X . By K6nig’s theorem, this inequality must be strict. For convenience, assume
GCH holds. Under this assumption, if cf(x) = w, then k¥ = x*, so there must be at most
x*-many nice names. Hence M[G] E R, < 2% < RF which gives M[G] E 2% =N ;.

Remark. (i) Note that it is possible that 2% < R, but N3O = NE"H = N, 4, without GCH.
This can be proven using large cardinals.

(i) fMF2% =R, >Ngand P = Fn(N%’I X ,2), then M[G] E 2% = R,,.
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VII. Forcing and the Continuum Hypothesis

(iii) The following are equiconsistent.
g q
(a) ZFC + there exists a measurable cardinal + CH;
(b) ZFC + there exists a measurable cardinal + - CH.

The same holds for other large cardinal axioms such as huge cardinals and 10 to I3.
We may also replace CH with GCH and the same holds.

(iv) The proper forcing axiom, which is a combinatorial axiom about forcing posets, implies
that 2% = N, under ZFC.

4.6. Larger chain conditions

We now discuss generalised Cohen forcing. Suppose that we want a model of ZFC + CH +
(2% = N;). Naively, we might consider the forcing poset Fn(w; X w;,2), but we can show
that CH fails in this model.

Proposition. Let M be a countable transitive model of ZFC + GCH, and let (x = N, Ax® =
M. Let P = Fn(x X w,2). Then, for any cardinal 4 in M such that g < 1 < x, then in
M[G] we have

x ifcfx>A

xt ifcfx <A

2t =

There is a natural bijection between w; X w and w5 X w;, and from this it follows that 2% =
2N1 = N3.

Definition. Let I,J be sets and let x be a regular cardinal. Define Fn,(1,J) to be the partial
functions I — J of size less than x. Its maximal element is @ under the order q < p if and
onlyif p C q.

Remark. (i) Fny,(I,J) = Fn(I,J).

(ii) The reason that Fn(I,J) was absolute is that finite objects are absolute. In general,
Fn,(I,J)is not absolute. Moreover, if M is a countable transitive model, then Fn,.(I,J) &
M. We instead need to consider the relativisation (Fn,(I,J))M.

(iii) If x > wand I,J # @, Fn,(I,J) does not have the countable chain condition.
(iv) If G is Fn,(I,J)-generic over M, then f = | J G is a function I — J.

Let P = Fn, (4 X x,2) where 1 > x and « is regular. Suppose also that 7 = 1. By a similar
argument to the w case, if f = |JG and h, : x — 2 is defined by h,(8) = f(a, ), then
this gives a sequence of A-many distinct functions x — 2. Similarly, by the nice names
argument, there are precisely 1-many functions ¥ — 2 because A* = 1. We need to explicitly
check that we have preserved all cardinals, using a generalisation of the countable chain
condition. Once we have shown this, we will obtain M[G] E 2* = A.
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Definition. For a cardinal x, we say that P has the x-chain condition if every antichain has
cardinality less than x.

The countable chain condition is equivalent to the X;-chain condition. All of the proofs
above immediately generalise to the x-chain condition.

Definition. We say that P preserves cofinalities above x if and only if for all *-generic filters
G and limit ordinals y € Ord N M with o™ (¥) = x, we have o™ (y) = cfM1E] ).

Lemma. Let P € M be a forcing poset and (x is regular)™. Then

(i) P preserves cofinalities above « if and only if for all P-generic filters G and all limit
ordinals 8 with x < 8 € Ord N M, we have (8 is regular)” — (g is regular)M[CI;

(ii) If P preserves cofinalities above x, then P preserves cardinals above x.

Lemma. Let A, B,P € M, let (x is regular), let (P has the x-chain condition)™, and let G
be a P-generic filter over M. Then for any f : A — Bin M[G], thereisF : A - P(B)in M
such that for all a € A, we have f(a) € F(a) and (|[F(a)| < ©)M.

Theorem. Let P € M be a forcing poset such that (x is regular) and (P has the x-chain
condition)™. Then P preserves cofinalities above x, and hence cardinals above .

On the example sheet, we show that for any infinite cardinal x, Fn,(I,J) has the (|J |<K)+-
chain condition. In particular, Fn, (1 X x, 2) has the (2<*)*-chain condition. We will show
a different version of this theorem.

Lemma. Let x be a regular cardinal in M, and suppose that (2<* = x)M. Then, if (1 < |J| <
2<% the forcing poset P = Fn,(I,J))M has the x*-chain condition.

Proof. If I is empty, the result is trivial, so we may assume I is nonempty. Let W be an
antichain in P. To show that |[W| < x, we will construct chains (Ag)q<, in I and (W) qex
such that

(i) foralla < 8 <x,wehave A, CAg Cland W, C W3 CW;

(i) for limit ordinals y, we have Ay, = [J,;_, Agand W, = [, Wg;
(i) W =U,_, Wi
(iv) foralla < x, |A4| < x and |W,| < k.

The result then follows by regularity of k*. Set A, = W, = @. It remains to define successor
cases. Suppose we have constructed A,, W,. For each p € P with dom p C A,, using the
axiom of choice we choose q, € W such that p = g, | " if it exists. Note that if dom p C Ag

for any 8 < a, we will choose g, to coincide with the g, chosen at stage 5. Then define
Wory = W U{gy | dom p C A}

and
Agy1 = U {domgq | q € W44}
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Finally,setA = J,_, Aq-

We claim that W = |J,_, Ws- By construction, we have |J,_, W, € W. Forany q € W,
note thatdom gNA # @, otherwise take q; € W}, anddom q; C A,soifdomg;ndomq = @,
then q; || g, contradicting q;,q € W. Since domqnN A = @ and |[dom q| < x, we must have
domgnA = domqn A, for some o < x. Define p = q| A, BY definition, there is some
q' € Wy, such that q'| a, = P- Since domq C A,wehaveq || q'. As W is an antichain, this

is only possibleifq = q’,s0q € Ua<x W.

We now show that for all @ < x, the sets W, and A, have size at most x. We show this by
induction on a. The result for limit cases follows from regularity. If |W,, | < x, then clearly
|Aqs1l < x, so it remains to show |W,, ;| < x. Since every condition q that is added to W is
chosen from some condition p with dom p C A,, then

[War1] < [Wal + |{p € P | dom p C Ay
As|A,| £ x and |dom p| < x, then
[AL]<¥] < x<% = 2<% =«
Hence |W,, | < x as required. O

Hence, if P = Fn, (4 X x,2), then M[G] E 2* = 1 and all cardinals at least x* are pre-
served.

4.7. Closure and distributivity

Definition. A poset P is < x-closed if for every § < «, every decreasing sequence of length
¢ in P has a lower bound.

Definition. P is < x-distributive if the intersection of less than x-many open dense sets is
an open dense set.

Lemma. If Pis < x-closed then P is < x-distributive.
Lemma. If x is regular in M, then Fn,(I,J WM is < x-closed.

Theorem. Let A,B,P € M, let x be a cardinal in M with (|JA| < x)M, and suppose P is
< x-distributive in M. Let G be P-generic. Then if f € M[G] with f : A - B, then f € M.

Informally, forcing over a distributive poset cannot add any new small functions.

Proof. Tt suffices to prove the statement for A = § where § < k. Suppose that M[G] E f :
§ — B. By the forcing theorem, there is p € G such that p I+ f :  — B. For a < &, let

D,={q<pl3IxeB.ql f(&) = x}

These sets are clearly open, and they are dense below p because p forces that f is a function.

Since P is < x-distributive, their intersection D = ﬂa <5 Do 1s also (open and) dense below p.
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Let ¢ € DN G. Now, in M, for each a < &, we can choose X, € B such that q I+ f(&) = X,
so we may defineg : § - Bby a — x,. This g lies in M. But for any a < &, we have
q - f(&) = Xo = §(d), soM[G] F f =g. 0

Theorem. Let I,J,x € M. Suppose that « is a regular cardinal in M, and (2<% = x A |[J| <
©)M. Then Fn, (I, J)M preserves cofinalities and hence cardinals.

Proof. Recall that it suffices to show that for every limit ordinal 8 € Ord N M, if § is regular
in M then S is regular in M[G]. Let 8 be regular in M.

Suppose that 8 > . Since |J| < x = 2<¥ in M, the forcing poset Fn,(I,J)" has the x*-
chain condition. So it preserves all cofinalities and cardinals at least x*, so in particular, 3
is regular in M[G].

Now suppose that 8 < k. Suppose that § is singular in M[G]. Fix § < § and a cofinal map
f 1 6 - fin M[G]. Note that § € M. Since P is < x-closed, it is < x-distributive, so f € M,
contradicting the assumption that 3 is regular in M. O

Theorem. Let x, A be cardinals in M such that 8; < ¥ < A. Suppose that x is regular,
2<% = x,and A = 1in M. Let P = Fn, (4 X x, 2), and let G be P-generic. Then P preserves
cardinals, and M[G] F 2* = A.

We can use this to fix multiple sizes of power sets at once.

Theorem. Let M be a countable transitive model of ZFC + GCH. Then there is a countable
transitive model of ZFC satisfying any of the following statements.

(i) CH + 2% = R;;
(ii) 2% =28 =R and 2M2 = N, ;
(iii) forafixed n € w, forallm < n, 28 =R, 5.
Proof. Part (i). Let P = Fny, (w3 X @, 2)M_ If G is P-generic, then M[G] E 281 = R;. As P
is w;-closed, it does not add any new functions w — 2, so CH still holds in M[G].

Part (ii). Let Py = Fny, (w445 X @,,2)™. Let G, be Py-generic. By closure, 2<% = R, in
M[G,], and Rs"! = . Then let P, = Fny, (s X ©,2)M[G0]. Let G, be P;-generic. Then
M[G,] E 2% = 281 = X, where the latter equality is due to the fact that if M is a model of
ZFC + GCH and G is Fn(x X w, 2)-generic, then for any cardinal 1 € M with 8}, < 1 < «,
the value of 2% in M[G] is x if cf(x) > A and x* if cf(x) < A. Also, M[G;] E 282 = N, by
preservation of cardinals.

Part (iii) is similar; we first make 2% = N, 5, then make 2%m-1 = N5 (m-1)+3, and continue
downwards. O]

Remark. (i) It is necessary to start at the largest cardinal and work downwards; this en-
sures that the cardinal arithmetic in our forcing models remains correct.
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(i) The iterative approach works for any finite number of cardinals. We will see later how
we can force 28 = N, .5 foralln € w.

We give an example to show that the order described in (i) is necessary.

Proposition. Let M be a countable transitive model of ZFC with M E 28 = R,. Let
P = Fny, (x X ¥;,2) for some x > 1. Then if G is P-generic, M[G] F CH, and all cardinals &

of M with ®; < § < N, in M are no longer cardinals in M[G]. In particular, RY N{.‘f[G].

This is on the example sheets.

4.8. The mixing lemma

Recall that p I+ 3x. p(x) if and only if
{g<pl3teVP.ql- ()}

is dense below p. In most cases, the witness x does not depend on G. For example, in
p - 3x.(d € x Ab € x), we can find a name X = op(ad, b) without needing to know G.
Informally, the mixing lemma says that this is always the case, as long as M has AC.

Theorem (the mixing lemma). (ZFC) Suppose that (p I+ 3x. ¢(x))M. Then there is a name
x € M" such that (p I+ g(x))M.
Proof. Since

lg<pl3xeMP.ql- p()

is dense below p, it contains a maximal antichain D. Now, for each q € D, choose some X,
such that q I+ @(%g). Without loss of generality, we may assume that if (r,y) € X,, then
r < q. This is because

(i) ifr L q, then q I- %q = (X4 \ (r,»)); and

(ii) ifr | g, then define
Xg =g \(ry)U{(s,y) | s <r.q}

L
s0 q I xq4 = Xg.

Now, if q,q' € D are such that g # q', we must have q L ¢’ as D is an antichain. So
q I+ %q = @. We ‘mix’ the X, together to form

i=|J{%1q€D}

Then if g € D, we have q I+ % = x,. By the forcing theorem, g I+ ¢(x).

It remains to show that p I- @(%). Suppose otherwise, so there is 7 < p such that r I =¢p(x).
As D is a maximal antichain of conditions below p, there is a condition g € D such thatq | r.
Now if s < g, r, we have s I+ ¢(X) and s I =¢(X), giving a contradiction. O
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4.9. Forcing successor cardinals

We would now like to find forcing posets that collapse x < A such that A = x*. Observe that
this can only happen if 1 is regular in M. This is because if f : « — A4 is cofinal with o < 1
and f € M, then f € M[G], so

M) < M) < ja™I < 2

Assuming GCH in the ground model, this is the only restriction. We will prove this in the
case where A is a successor cardinal, and in the case where A is strongly inaccessible; given
GCH, these are the only options.

Theorem. Let x be a regular cardinal in M, and let § > x be a cardinal in M. Let A = 6% in
M. Let G be Fn,(x, §)-generic over M. Then in M[G],

@) 6] =1x;

(ii) every cardinal o < x in M remains a cardinal in M[G];

(iii) if 5<* = § then every cardinal ¢ > § in M remains a cardinal in M|[G].
In particular, if 5<% = §, then M[G] E 1 = «*.
Observe that if § is a cardinal in M and § > |P| in M, then & remains a cardinal in M[G].
This is because P has the ||]3>|+—chain condition.
Proof. Part (i). Note that | JG : x — & is a surjection, so |§| = |x| in M[G]. In particular,
there are no cardinals between § and A.
Part (ii). Since x is regular, Fn,(x, 8) is < x-closed, so every cardinal a < « is preserved.
Part (iii). Finally, if 5<* = &, then |Fn,(x, )| = &, so Fn,(x, §) has the §*-chain condition,
so every cardinal o > ¢ (in particular, 1) is preserved. O
We can force inaccessible cardinals A to become successor cardinals. To do this, we will use
a forcing poset called the Lévy collapse.

Definition. Let A > «x be infinite ordinals. Then Col(x, < 1) consists of all functions p such
that

(i) pisa partial function from x X A — 4;
(ii) |dom p| < x;
(iii) p(a,pB) < B for each (a, ) € dom p.
We make this into a forcing poset by writing q < p if and only if q extends p as a function.
Informally, for each 8 < 4, we add a surjection ¥ — f3.

Theorem (Lévy). Letx be aregular cardinal in M, and suppose 4 > x is strongly inaccessible
in M. Let G be Col(x, < 1)-generic over M. Then in M[G],

399



VII. Forcing and the Continuum Hypothesis

(i) every ordinal 8 with ¥ < 8 < 4 has cardinality x; and

(ii) every cardinal at most x or at least A remains a cardinal.
In particular, M[G] FE 1 = x*.
Proof. If B < A, we can define Gg : x — B by Gg(a) = (|J G)(a, B). By density, this is a
surjection, so if k < 8 < A, we have M[G] F || = |x|.

Note that Col(x, < 4) is < x-closed, so preserves cardinals at most x. In particular, x remains
a cardinal.

Now, |Col(x, < )] = A. Therefore, Col(x, < A) has the A*t-chain condition and therefore
preserves cardinals at least A*.

Finally, we show that A is still a cardinal in M[G], which follows from the A-chain condition.
Given p € Col(x, < 1), define the support of p to be

sp(p) = {B | a.{(a, B) € dom p}

As |p| < x, we must have |sp(p)| < x. Let W be an antichain. We will construct chains
(Ag)a<x and (Wy)q <, such that

(i) foroc<ﬁ<K,AagA5 CAland W, C WgCW,;
(i) if y < xis a limit, then A, = J
(i) W = Uy Wi
(iv) forall a < x, |Aql, |[Wy| < 4.

oc<yA0‘ and % = Uoc<y Wars

Assuming this can be done, since 4 is regular, we have |W| = 'Ua < Wa| < A. To do this,
first set A, = W, = @&. To define successor cases, suppose A, W, are defined. Suppose
that p € Col(x, < 1) has sp(p) C A,. Using the axiom of choice, choose g, € W such that

p= qp|KXSp(p) if this exists. Define

W = {ap | SP(D) C Aai  Aair = | J1sp(@) | g € Wi}
One can showthat W = Ua < W in the same way that we proved this for Fn,(1,J). We show
by induction that for a < x, |A,|, |W,| < A. Limit cases follow by regularity. If |W, | < 4,
then |A,,1| < x-4 = A. Suppose |A,| < A. Then, since every q added in stage a + 1 is chosen
from some condition with support contained in A,, we must have

<K
[War| < |Ad|

Then as 4 is a strong limit, |Aa|<K <A O

Remark. (i) The requirement that x was regular allowed us to deduce x-closure.
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(ii) Suppose A is weakly inaccessible and 280 > A. Then Col(X;, < 1) has an antichain
of length 2% 50 will not satisfy the A-chain condition. Indeed, for A C w, we define
Pa : {w} X [w, 0 +w) — 2 by

om0 inea
a,w n)=
Pa 1 ifngA

Then if A # B, the functions p4, pg are incompatible.

(iii) One can show that A is weakly compact if and only if it is inaccessible and satisfies the
tree property. We claim that if G is Col(X,, < 1)-generic, then in M[G], ¥, has the tree
property. In general, we can use forcing to add combinatorial properties from large
cardinals to N;.

(iv) This shows that A4 being a limit cardinal is not absolute between M and N, even if 4
being a cardinal is absolute for M, N.

Corollary. If ZFC + IC is consistent, then so is ZFC + (XY is inaccessible in L).

Proof. Start with a model of V = L where A is inaccessible, and let G be Col(w;, < 4)-generic.
Then M[G] E A = Xy, but also M[G] k& (4 is inaccessible)*. O

Remark. If V i ZFC + x is measurable, then for example, R} is inaccessible in L.

4.10. Product forcing

In this subsection, we will show that is consistent that, for example, each n € w satisfies
2% = N, . 5. We have already shown that for a fixed N € w, it is consistent that all n < N
have 2% = R,, ;. However, we cannot get this result using the iterated forcing process
described in previous sections, and will instead use product forcing. This technique will
allow us to exactly determine the restrictions on the continuum function F : Card — Card
given by F(R,) = 2%a,

Definition. Suppose (P, <p)and (Q, <g) are posets. The product order < on PxQis defined
by

(P1q1) < (Po>90) < P1 <p Po A q1 <a 4o

Given a P x Q-generic filter G over M, we can produce the projections
Go={pe€P|3qeQ.{p,q) € G}
Gi={qeQ|3peP.(p,q € G}

Lemma. Let M be a transitive model of ZFC with P,Q € M. Let G C P and H C Q. Then
the following are equivalent.

(i) G x H is P X Q-generic over M;
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(ii) G is P-generic over M and H is Q-generic over M[G];

(iii) H is Q-generic over M and G is P-generic over M[H].
Moreover, when this is the case, M[G X H| = M[G][H] = M[H][G].
Proof. The first part is left as an exercise. For the last part, recall that the generic model
theorem shows that if N is a transitive model of ZF containing M as a definable class and
containing G as a set, then M[G] C N. Since M C M[G][H], and G X H is an element of

MJ[G][H], we obtain M[G X H|] C M[G][H]. For the other direction, G € M[G X H] and
M C M[GxH]|soM[G] C M[GxH],butalso H € M[G X H|so M[G]|[H] € M[GxH]. O

Recall that we started with a model of ZFC + GCH and forced with
Go is Fn(w; X w,2)M-generic; G, is Fn(ws X w;, 2)MCol-generic
and found that M[G,][G;] & CH. But if instead we used
Go is Py = Fn(ws X w1, 2)M-generic; G, is P; = Fn(w; X w, 2)MIGolgeneric

then we obtain M[G,][G,] E 2% = R; + 2% = R,. However, P, is < w;-closed, so does
not add new sequences of length w. Thus P; = Fn(w; X w, 2)™. We can therefore define the
forcing poset Py X P;-over M, and G, X G; is Py X P;-generic over M. To simultaneously
force 2%n = W,,,, 5, we use the poset

P= H ann(w2n+3 X wp,2)

new
Easton’s theorem shows that this works.

Theorem (Easton’s theorem for sets). Let M be a countable transitive model of ZFC + GCH.
Let S be a set of regular cardinalsin M, and letF : S — Card™ be a function in M such that
forallxk < Ain S,

(i) F(x) > x (Cantor’s theorem);
(i) F(x) < F(4) (monotonicity);
(iii) cf(F(x)) > x (Konig’s theorem).

Then there is a generic extension M[G] of M such that M, M[G] have the same cardinals,
and for all x € S, M[G] E 2* = F(x).

The proof is non-examinable.

By essentially the same proof, this result can be generalised to proper classes of M, and
in particular S = RegM. This needs a notion of class forcing, as P is a proper class. The
main obstacle with class forcing is that M[G] need not be a model of ZFC. For example,
consider Fn(Ord X w, 2), which makes 2% a proper class. Alternatively, consider Fn(w, Ord),
which creates a surjection | J G : @ — Ord. In fact, the forcing relation I+ may not even be
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definable. However, one can show that the particular forcing poset used in Easton’s theorem
also satisfies all of the required results for the proofs to work. In conclusion, we can say
almost nothing about the values of the continuum function.
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