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1 Introduction

1.1 Course description
The course consists of four parts.
(i) The theory of sheaves on topological spaces.
(ii) The definitions of schemes and morphisms between them.

(iii) Properties of schemes, such as the algebraic geometry analogues of compactness and other
similar properties.

(iv) Rapid introduction to the cohomology of sheaves.

1.2 Motivation from moduli theory

In moduli theory, we study families of varieties instead of one at a time. In the extreme, we study all
varieties of a given ‘type’ simultaneously. For now, let

pr — IP?: _ cr+l \{0}/~

where x ~ Ax for nonzero 4,x. A variety is the vanishing locus V(S) of a set S of homogeneous
polynomials in n + 1 variables. These are subsets of P". We present some examples of moduli.

Example. The set of all lines in P2. A line in P? is given by
{aXO + le + CX2 = 0}

where not all of a, b, ¢ are zero. The set of all lines in P? are given by triples (a, b,c). Note that
(Aa, Ab, Ac) gives the same line as (a, b, ¢), so really lines in P? correspond exactly to points in P2, We
call the set of all lines in P? the dual space PZ_,;. This property is known as projective duality.

The same logic applies to the set of degree d hypersurfaces in P"; this space corresponds directly to
p("5 )1

There is an unfortunate consequence of this method of study. Some polynomials are of the form
f = fLf, for some non-constant f;, but then V(f) = V(f; f5). For example, (X, + X; + X;)? C P? is
a line not a conic. In particular, the limit of a sequence of conics may not be a conic. The solution is
to take the set

Uy C p("59)-1

in which [f] € U4 has no repeated factors. But then, U is ‘not compact’, as some points have been
removed.

We will now describe the impact of scheme theory on this situation. Fix some P", and we will produce
a ‘space’

Var(P") ¢ Hilb(P")
The set Var(P") bijects onto the set of varieties of P". The set Hilb(P") bijects onto the set of sub-
schemes of P", and is compact in the Euclidean topology. In particular, limits of varieties need
not be varieties, but limits of schemes are always schemes. One consequence is that in scheme the-

ory,
VX + X1 +X3), V(X + X1 +X3)%)

are not isomorphic as schemes in P2,



1.3 Motivation from the Weil conjectures
Fix some homogeneous polynomial f € Z[X, ..., X,;1]- First, consider
X = V(f) € Pt

and assume that X is smooth. As X is a compact topological space, we can find its Betti numbers
by(X), ..., by (X), where
b;(X) = rank H;(X; Z)

In particular, we can find its Euler characteristic.

x(X) =Y (-Dib;(X)

Second, fix a prime p and let N,,, be the number of solutions of f over Fpm. Define the Weil zeta

function
¢(X;t) =exp Z N tm
9 ~ m

One of the Weil conjectures states the following.

Theorem (Grothendieck). (i) ¢(X;t)is a rational function in ¢, so

Px (1)
Qx (1)

(ii) Further, {(X;t) can be written as a ratio of the form

BOB®) ... Bn(t)
R(OB(®) ... Bpa ()

(X0 =

where
degP(t) = b;(X)

The proof relies fundamentally on scheme theory: we need a space XX that interpolates between the
algebraic closure [, and C.

1.4 Summary of classical algebraic geometry

Letk = k be an algebraically closed field. The notation A} = A" denotes affine space of dimension
n over the field k. As a set, this is equal to k. An affine variety is a subset V' C A" of the form

V=V(S)={x A" |Vf €S, f(x)=0}

where S C k[X;, ..., X, ]. Note that V(S) = V(I(S)), where I(S) is the ideal generated by S. By Hilbert’s
basis theorem, or equivalently the fact that k[X] is Noetherian, V(S) is the vanishing locus of a finite

set (even a finite subset of S). In fact, V(I) = \/(\ﬁ > where

VIi={feklX]|3an>0, frel}

Note that \/f is an ideal, and is called the radical ideal of I. For example, in k[X], if I = (X?) then

\/7 = (X). Notice that an affine variety is a subset of A" for some n, so we have really defined varieties
with a chosen n; we have not defined an abstract variety.



A morphism between varieties V C A" and W C A™ is a set-theoretic map ¢ : V — W such that if
@(f1s ... » fim), €ach f; is the restriction of a polynomial in {Xj, ..., X,,} to V. Note that the polynomials
fi are not part of the definition; a given set-theoretic map may be represented by multiple polynomi-
als. This indicates that the ambient spaces A", A™ are not relevant to this definition. Isomorphisms
are those morphisms with two-sided inverses.

The basic correspondence of the theory of algebraic varieties is

{affine varieties over k}
isomorphism

« {finitely generated k-algebras without nilpotent elements}

We explain each direction of the correspondence. Given a variety V representing an isomorphism
class of affine varieties over k, we can write V as the vanishing locus of some radical ideal I C
k[X;, ..., X,,]. We can then produce the finitely generated k-algebra given by the quotient

KXy, X,

This is nilpotent-free as I is radical. In reverse, if A is a finitely generated nilpotent-free k-algebra,
then by definition we can write A as
kY, ....Y,
[ 1 m]/J

where J is radical, or at least up to isomorphism. Then we can produce the affine variety V = V(J).
One must show that the choices we made in the above explanation do not matter.

Note that, for example, k[X ]/(Xz) has a nilpotent element X. The theory of schemes explains the
relevance of these nilpotent elements, but the theory of varieties ‘ignores’ nilpotent elements.

The algebra associated to V is classically denoted k[ V], and is called the coordinate ring of V. There is
a bijection between morphisms V' — W and k-algebra homomorphisms k[W] — k[V]. In category
theoretic terminology, the category whose objects are affine varieties up to isomorphism is equivalent
to the category of finitely generated k-algebras up to isomorphism.

Let V = V(I) C A" be a variety with coordinate ring k[V']. The Zariski topology on V is defined such
that the closed sets are exactly those sets of the form V(S) where S C k[V']. One can show that this
really induces a topology. If V = W, then V and W are homeomorphic as topological spaces.

Let V be a variety and k[V] be its coordinate ring. For all points P € V, we can produce a homo-
morphism evp : k[V] — k mapping f to f(P); one can check that this is well-defined. Note that evp
is surjective by considering the constant functions. Thus the kernel of evp is a maximal ideal mp. We
thus obtain

{points of V} — {maximal ideals in k[V]}

Hilbert’s Nullstellensatz states, among other things, that this is a bijection.

1.5 Limitations of classical algebraic geometry

The description of varieties given above always retains information about its ambient affine space,
so we cannot define an abstract variety. Similarly to manifolds which locally look like vector spaces,
we want to consider ‘spaces’ that locally look like affine varieties. For example, projective space does
not live inside an affine space.

Let I = (X> + Y% +1) C R[X,Y]. Observe that V(I) is empty in R?, but I is prime and hence
radical. Hence the Nullstellensatz fails in this case. It is then natural to ask on which topological



space RX, Y]/(Xz +Y241) is naturally the set of functions. Similar questions can be asked about

Z or Z[X], for example.

Consider C = V(Y —X?) C A2 and D = V(Y). Then CnD = V(X% Y) = V(X,Y) = {(0,0)}. If
Ds = V(Y +6) for § € k, C n Dg is two points unless § = 0. This breaks a continuity property.
Therefore, the intersection of two affine varieties is not naturally an affine variety.

1.6 Spectrum of a ring

Let A be a commutative unital ring.
Definition. The Zariski spectrum of A is Spec A = {p < A prime}.

Remark. Given a ring homomorphism ¢ : A — B, we have an induced map of sets ¢! : Spec B —
Spec A given by q = ¢~1(q), as the preimage of a prime ideal is always prime. Note, however, that
this property would fail if we only considered maximal ideals, because the preimage of a maximal
ideal need not be maximal.

Given f € A and a point p € Spec A, we have an induced f € A/p obtained by taking the quotient.

We can think of this operation as ‘evaluating’ an f € A at a point p € Spec A, with the caveat that
the codomain of this evaluation depends on p.

Example. (i) Let A = Z. Then SpecA = SpecZ is the set {(p) | p prime} U {(0)}. Consider an
element of Z, say, 132. Given a prime p, we can ‘evaluate it at p’, giving 132 mod p € Z/pz.

Thus Spec Z is a space, 132 is a function on Spec Z, and 132 mod p is the value of this function
at p.

(i) Let A = R[X]. Then Spec A is naturally C modulo complex conjugation, together with the zero
ideal.

(ili) If A = C[X], then Spec A is naturally C, together with the zero ideal.
Definition. Let f € A. Then we define
V(f) ={p € SpecA | f = 0 mod p, or equivalently, f € p} C SpecA
Similarly, for J < A an ideal,
V(J) ={p € SpecA |Vf €J, f € p} ={p € SpecA | J C p}

Proposition. The sets V(J) C Spec A ranging over all ideals J < A form the closed sets of a
topology.

This topology is called the Zariski topology on A.

Proof. We have @ = V(1) and Spec A = V(0), so they are closed. Note that

)



It remains to show V(I;) U V(I,) = V(I; N I,). The containment V(I;) U V(I;) C V(I; N 1,) is clear.
Conversely, note I, I, C I N I,. If I; N I, C p, then by primality of p, either I; C porI, C p. O

Example. Consider Spec C[x,y]. The point (0) € Spec C[x, y] is dense in the Zariski topology, so

{(0)} = Spec C[x, y]. This is because all prime ideals in integral domains contain the zero ideal. (0)
is sometimes called the generic point.

Consider the prime ideal (y* — x*), and consider a maximal ideal m,j, = (x—a, y — b) corresponding
to the point (a, b). Then one can show that

mgyp € {2 —x3)} < b*=a’

In general, points are not closed.
1.7 Distinguished opens and localisation

Definition. Let f € A. Define the distinguished open corresponding to f to be
Uy = SpecA \ V(f)

Example. (i) Let A = C[x], and recall that Spec A is C U {(0)}, where the complex number a
represents the maximal ideal (x — a). Let f = x and consider

V(x) ={p | x € p}={(x)}
Hence U, = SpecA \ {(x)}, which is Spec A without the complex number 0.

(i) More generally, suppose we fix a, ..., a, € C. Then

U=SpecA\{(x—a)}_, =Usp f[= [[x=-a»
i=1

Lemma. The distinguished opens Uy, taken over all f € A, form a basis for the Zariski
topology on Spec A; that is, every open set in Spec A is a union of some collection of the Uy.

Proof. Let U = Spec A \ V(J) be an open set. Then

V() = v(Zm) =V

reJ feJ

So

U=UUf

feJ



Definition. Let f € A. The localisation of A at f is

_A
ap=Axli e 0)
Informally, we adjoin % to A.

Lemma. The distinguished open Uy C SpecA is naturally homeomorphic to Spec A via
the ring homomorphism j : A — Ay.

Proof. We will exhibit a bijection between the prime ideals in Ay and the prime ideals in A that do
not contain f, producing a homeomorphism as required. Given q C Ay prime, its contraction j~'(q)
is a prime ideal in A.

Now suppose p C A is a prime ideal, and let py = j(p) - Ar. We show that j(p) - Ay is a prime ideal
if and only if f & p, giving the result. If f € p, then the unit f lies in p;. Thus p; = (1), so is not
prime. If f & p, observe that

Ap,=(M): T=r+»

]—c§
But then,
(V5); < FE(%4)

Since p is prime, A/p is an integral domain, so its fraction field is well-defined. So p; is a prime

ideal. One can then check that our two constructions are inverse to each other, providing a bijection
between prime ideals as required. O

Remark. (i) UpNUy = Uy,. Indeed, if p € Uy, then fg & p, so clearly neither f nor g can lie in
p; conversely, if p € Uy N U, then f ¢ p and g € p, so by primality, fg & p.

(i) The distinguished opens U do not uniquely define an element f € A. For instance, one can
easily show that Uy» = Uy for all n > 1, using the properties of prime ideals.

(iii) In line with (ii), the localisations Ay and A¢» are homeomorphic in a natural way. If

Af — Alx]

Vg -1y A=V

yfr-1)

then consider the inverse A-algebra homomorphisms given by

X [Py yext
1 nep 1 1 1\"
Informally, we map 7 to f T and — to (—) .

f

(iv) The containment Uy C U; holds if and only if f" is a multiple of g for some n > 1. First, if f"
is a multiple of g, then the claim holds by (i). Now suppose Uy C Uy, so V(f) 2 V(g). Hence,
all prime ideals that contain g also contain f. But since

Vi= [ v

p prime2I]



we must have

YGENE

Remark. For a fixed ring A, we have made an assignment

giving the result.

{distinguished opens in Spec A} - Rng

givenby Uy — Ay, where Rng denotes the class of rings. This association is functorial: if Uy, C Uy,,
there is a natural map Ap, = Ag, which should be viewed as the restriction map from functions
defined on Uy, to those defined on f;. This produces a sheaf; we now explore these in more general-
ity.

2 Sheaves

2.1 Presheaves

Definition. Let X be a topological space. Let Open X be the set of open sets on X, and AbGp
be the class of abelian groups. A presheaf F on X of abelian groups is an association

OpenX — AbGp
and for open sets U C V, a restriction map
res'[/] P F (V) - F(U)

such that

U_ 7. 1% w
res;; = id; res;; ores

— w
v = resU

Example. For any topological space X, the presheaf of real-valued continuous functions on X is
defined by
FWU)={f : U—- R| f continuous}

and

res;;(f) = f

U

One can also define presheaves of rings, sets, or other objects by simply replacing the words ‘abelian
groups’ in the definition.

Definition. A morphism ¢ of presheaves F,G on X is, for each open set U in X, a homo-
morphism

pU) : F(U) - 5(U)



such that

res{/]
FU —% FV

rp(U)\L \Lrp(V)

U —> 9V
U

res

commutes.

Remark. A presheaf on a topological space X is just a functor (Open X)°? — AbGp, where AbGp is
the category of abelian groups, and Open X is the category where the objects are the open sets in X,
and there is a morphism U — V if and only if U C V. A morphism of presheaves is just a natural
transformation between two such functors. Replacing AbGp with an arbitrary category C, we can
define presheaves on X of objects in C.

Definition. A morphism ¢ : F — § of presheaves is injective (respectively surjective) if
o(U) : F(U) - G(U) is injective (respectively surjective) for all open sets U of X.

2.2 Sheaves

Definition. A sheaf on X is a presheaf # on X such that
(i) if U C X is open and {U;} is an open cover of U, then for s € F(U), if resg_ s = 0 for all
i, then s = 0; and

(ii) if U,{U;} are as in (i), given s; € F(U;) such that res!

U
Uinu; Si = Tes

j ) -
Uiny; S; for all i, j,

then there exists s € F(U) such that resg_ s = ;.
1

Remark. These two axioms imply that F(@) = 0.
A morphism of sheaves is a morphism of the underlying presheaves.
Example. (i) Let X be a topological space. Then the presheaf F given by
FWU)={f : U— R| f continuous}
is a sheaf.
(i) Let X = C with the usual Euclidean topology, and let
FWU)={f : U—- C| f bounded and holomorphic}

Then ¥ is not a sheaf, because the functions idy; on bounded open sets U do not glue together
to a bounded holomorphic function on all of C. This is a failure of locality in our definition of
F; whether f is bounded is a global condition.

(iii) Let G be a group and set F(U) = G, giving the constant presheaf. This is not in general a sheaf.
For example, if U;, U, are disjoint, then F(U; UU,) ~ G X G. Instead, we can give G the discrete
topology, and define

FWU)={f : U—- G| fcontinuous} = {f : U —» G| f locally constant}

This is now a sheaf, called the constant sheaf.

10



(iv) Let V be an irreducible variety over k. Let
Op(U)={f € k(V)|Vp € U, fregular at p}

where a function f is regular at p precisely if it can be represented as a quotient % in a neigh-

bourhood of p on which h is nonzero. This is called the structure sheaf of V; it is a sheaf since
regularity is a local condition.

2.3 Stalks

Definition. Let ¥ be a presheaf. A section of F over U is an element s € F(U).

Definition. Let p € X, and F a presheaf on X. Then the stalk of F at p is
_{U,s)|seFU),peU
7, (U9 |seFWU)peU),
where
(U,s) ~(V,s') < IW C UnYV openwith p € W such that resg, s = resLVV s

Elements of 7, are called germs.

Example. Let A! be the affine line, and let @41 be the sheaf of regular functions. Its stalk at 0 is

_{&

Proposition. Let f : ¥ — G be a morphism of sheaves on X. Suppose that for all p € X,
the induced map f, : 7, — G, given by

Jp((U,9) = (U, fu(s))

is an isomorphism. Then f is an isomorphism.

Proof. We will show that f; : F(U) — G(U) are isomorphisms for each U, then define f~! by
(f o =)™

To show fy is injective, consider s € F(U) with fi;(s) = 0. Since f, is injective, (U, s) = 0 in , for
every point p € U. Thus for each p € U, there exists an open neighbourhood U, C U such that

resg s =0. Thesets {U, | p € U} cover U, so as F is a sheaf, s = 0.
14

To show fi; is surjective, let t € G(U). For each p € U, there is an element (q,,sp) € 7, such that
Jo((Uy, 8p)) = (U, t) € Gp. By shrinking Uj, if necessary, we can assume fUp (sp) = resgp t. For points
p,p €U,

U, Uy
p p AN U _ U —
Jvpnu, <resupnup, § Iy, S) =1e8y,u, L~ 18S0,ay, £ =0
Thus U
U, ’
p _ p A
resUanp, s resUanp, =0



U

by injectivity of fUanp, . So there exists a section s of & over U such that resp S = Sp. We now show

fu(s) = t. Consider

resgp fuls) = fUp (resgp s) = fUp(sp) = resgp t
Thus f;(s) = t. O
Remark. (i) Consider the map F(U) — HpeU Fp given by s = (U, s))pey- This is injective by

the first sheaf axiom.

(ii) Given two morphisms of sheaves ¢,% : ¥ = G with ¢, = 9, for all p € X, we have p = 9.
2.4 Sheafification

Definition. Let F be a presheaf on X. Then a morphism sh : # — #*" to a sheaf 7" is a
sheafification if for any map ¢ : ¥ — G where G is a sheaf, ¢ factors uniquely through sh.

F sh : .?Sh

|
PN\ v
g

Remark. (i) As this is a definition by a universal property, 7" along with the map sh : & — F*"
are unique up to unique isomorphism if they exist.

(ii) A morphism of presheaves ¥ — G induces a morphism of sheaves F" — Gsh,
T sh 1 ?sh

~
9 sh 1 95h

®

Proposition. Every presheaf admits a sheafification.

Corollary. The stalks of # and #*" coincide.

Proof. Suppose (U, f) is a germ of 75" at p € X. Then f(p) € Fpisagerm of ¥ at p. If (U, s) € Fp,
we can produce the germ (U, (U, s)pev) of F sh at p € X. These are inverse operations, and hence
give a bijection of stalks. O

12



2.5 Kernels and cokernels

Let ¢ : ¥ — G be a morphism of presheaves. Then we can define presheaves ker ¢, coker ¢, im ¢
by

(kerp)(U) = ker gy
(coker p)(U) = coker ¢y
(imp)(U) = im gy

One can check that these are indeed presheaves.

Proposition. The presheaf kernel for a morphism of sheaves is a sheaf.

Proof. Letg : ¥ — G be amorphism of sheaves, let U C X be open, and let {U,};; be an open cover
of U. Let f € (ker ¢)(U) be such that resgi f =0foreach f. Then as f € F(U), we can use the fact
that # is a sheaf to conclude f = 0.

Now suppose f; € (ker p)(U;) agree on their intersections. Then they can be glued as elements of
F(U;) into f € F(U). As py,(f;) = 0foreachi €1,

0= <0Ui(resgi = resgi pu(f)
So as G is a sheaf, ¢;(f) = 0in G(U). O

However, the presheaf cokernel of a morphism of sheaves is not in general a sheaf.

Example. Consider X = C with the Euclidean topology, and let Ox be the sheaf of holomorphic
functions on X under addition. Let Ox be the sheaf of nowhere vanishing holomorphic functions
under multiplication. We have a morphism of sheaves

exp : Ox = Ox

given by
f € 0x(U) » exp(f) € O%
The kernel of exp is 27iZ, where Z is the constant sheaf. The cokernel is not a sheaf. To show this,

consider the cover

Uy =C\[0,0); U,=C\(—0,0]
and take U = Uy U U, = C\ {0}. Let f(z) = z,s0 f € Ox(U), but f is not in the image of
exp : Ox(U) — Ox(U) as there is no single-valued logarithm on C \ {0}. Hence f defines a nonzero
section of (coker exp)(U). However, restricting to U}, a single-valued branch of logarithm is defined,
so f isin the image of exp : Ox(U;) - Ox(U;). Thus resgi f =1,but f # 1, violating the first sheaf
axiom.

Similarly, the image presheaf may not be a sheaf.

Definition. Let ¢ : ¥ — G be a morphism of sheaves. We define the sheaf cokernel and
the sheaf image of ¢ to be the sheafifications of the presheaf cokernel and presheaf image
respectively.

13



Remark. It turns out that the sequence

; exp
0 —— 27iZ > Ox > O > 1
is an exact sequence of sheaves. In particular,

kerexp = 27iZ; cokerexp =1

Remark. ker ¢, coker ¢ satisfy the category-theoretic definitions of kernels and cokernels. For ker-
nels, the universal property to be satisfied is

vy
a7 0
L l"bx
i

0

For cokernels, we reverse the arrows.

Definition. We say that ¥ is a subsheaf of G, written ¥ C G, if there are inclusions F(U) C
G(U) compatible with the restriction maps.

Kernels are examples of subsheaves.

2.6 Moving between spaces

Let f : X — Y be a continuous map of topological spaces, and let ¥ and G be sheaves on X and Y
respectively.

Definition. The presheaf pushforward or direct image f, F is the presheaf on Y given by

LFWO) =7 (f~1(U)
Proposition. The presheaf pushforward of a sheaf is a sheaf.

Proof. Let {U;};.; be an open cover of U, and let s € f,F(U) with resg, s = 0 for each U;. Then

{f‘l(Ul-)}ieI is an open cover of f~1(U) and satisfies res§:1gg_)) s=0in F(f~Y(U;)). Sos =0 as F is
a sheaf.

Similarly, if s; € f,F(U) are compatible sections, then they can be glued into an element of F(f~1(U)).
But this is precisely an element of f, #(U), as required. O

14



Definition. The inverse image presheaf (f~'G)P'™ is the presheaf on X given by
(Frgpe) = (o, U [ f(V) S U,sy € S(U)},

where ~ identifies pairs that agree on a smaller open set containing f(V'). The inverse image

sheaf is f7'G = ((f ' G)Pre)™.

Example. The inverse image presheaf need not be a sheaf, even when f is an open map. Let Y be a
topological space, and let X = Y U Y. Take G = Z the constant sheaf, and F = (f “lgyre LetUCY
be open, and let V = f~1(U). Then (V) = G(U) = Z, assuming U is connected. But V = U L U, so
FMV) = GU) x §(U) = 2*.

Example. Let ¥ be a sheaf on X, and let 7z be the map from X to a point. Then f, ¥ is a sheaf on a
point, which is just an abelian group, specifically F(7~1({+})) = F(X).

We will use the notation
FX) =T(X,¥)=HX, %)

where T is called the global sections, and Hj, is called the O0th cohomology with coefficients in F.

Forp e X,i : {p} — X. Let G be a sheaf on {p}, which is an abelian group A. Consider the sheafi, G
on X, defined by

0 ifpgU

L.9U) = {A fpeU

This is called the skyscraper at p with value A.

3 Schemes

We will now use the notation f|; for res‘{] f-

3.1 Localisation

Definition. Let A be aring and S C A be a multiplicatively closed set. The localisation of A

atSis
s-14 ={(a,9) | a eA,seS}/N

where

(a,s) ~(d',s') < 3" €S,s"(as’ —a's)=0€ A

Examples of multiplicatively closed sets include the set of powers of a fixed element, or the comple-
ment of a prime ideal. The pair (a, s) represents g The extra s” term represents a unit in this new

ring, which may be needed in rings that are not integral domains.

Remark. The natural map A — S~1A need not be injective, for example, if S contains a zero divisor.
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3.2 Sheaves on a base

Definition. Let X be a topological space and B be a basis for the topology. A sheaf on the
base B consists of assignments B; — F(B;) of abelian groups, with restriction maps resgi' :
J
F(B;) — F(B;j) whenever B; C B; such that,
6)) resg: = idg,;
(ii) resgi oresg; = resﬁ;'(
with the additional axioms that
(i) if B=JB; with B, B; € B and f, g € F(B) such that lei = ngi for all i, then f = g;
(i) if B = [J B; as above, with f; € F(B;) such that for all i, j and B’ C B; N B; with B’ € B,
filg = fj|B,,then there exists f € F(B) with f[p = f;.

This is very similar to the definition of a sheaf, but only specified on the basis.

Proposition. Let F be a sheaf on a base B of X. This determines a sheaf # on X such that
F(B) = F(B) for all B € B, agreeing with restriction maps. Moreover, F is unique up to
unique isomorphism.

Proof. We first define the stalks using F:
#,=16s.B) | pEB € B,sy EFB)},

We then use a sheafification idea to define #(U). The elements are the dependent functions f €
HpeU Fp such that for each p € U, there exists a basic open set B containing p and a section s € F(B)

such that s, = f; in F for all ¢ € B. This is then clearly a sheaf. The natural maps F(B) — F(B) are
isomorphisms by the sheaf axioms. O

3.3 The structure sheaf

Recall that the distinguished opens U ¢, Ug coincide if and only if f, g are powers of some h € A. Also,
if Uy =0, then Ap 2 Ag. T herefore, the assignment Up > Agis well-defined.

Proposition. The assignment Uy +— Ay defines a sheaf of rings on the base {Uf} of the
topological space Spec A.

Remark. If {Ufz }ieI covers Spec A, there exists a finite subcover. Indeed, since the Uy, cover Spec A,
there is no prime ideal p C A containing all (f;);e;. Equivalently, 37, (f;) = (1). In particular,
1=73,;a;f;forJ CIfinite. So ;. _;(f;) = (1), and thus {Ufi}ie] covers Spec A. We say that Spec A

is quasi-compact; traditionally the word ‘compact’ is reserved for Hausdorff spaces in the context of
algebraic geometry.

Proof. We will check the axioms for the basic open set B = Spec A; the general case follows by ap-
plying this result to a localisation. Suppose Spec A = U:lzl Uy,; this union is finite by the previous
remark. Let s € A be such that s|Ul_ = 0 for all i. By the definition of localisation, as the set {Ufi} is
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finite there exists m such that f/"s = 0 for all i. But note that (1) = (f{™)!L, for any m > 0 because
n n
the {Uy, }i=1 cover Spec A. Thus {Uf;n} | cover SpecA.

i=
1 =Zrifl-m B s=2rl~fims=0
Now suppose Spec A = Ul. o1 Ur»and s; € Ay, are elements that agree in A, £ We need to build an
element in A with these restrictions.
First, suppose I is finite. On U £ We have chosen J% S Afi;we write g; = fig", noting that U £ = Uy

1

On the overlaps, by hypothesis we have
(8igj)™i(a;gj — a;g)) =0
Rewriting this using the fact that Uy = Uy« for all k > 0, and assuming m = m;; by taking the

largest, we obtain
m+1

b =aig"; hi=g
b;
so on each Uy, we have chosen an element h—l Now, as the Uy, = Uy, cover SpecA, we have 1 =

1
> r;h; for some r; € A. We can thus construct r = Y, r;b; with the r; as above. This construction
. b; .
then has the correct restrictions to h—‘ in Uy,.
i

When [ is infinite, choose (f;)[~; such that the U fi fori € {1,...,n} form a cover, and use the fi-
nite case to build r € A. This has the correct restrictions to the Uy, fori € {1,...,n}. Given
(fis s fur fo) = A, the same construction gives a new ' € A, but then by the first sheaf axiom,
r=r. N

Definition. The structure sheaf on Spec A is the sheaf Ogp. 4 associated to the sheaf on the
base of distinguished opens mapping Uy to Ay.

Remark. The stalk Ogpec 4,p is equal to Ay,.
3.4 Definitions and examples

Definition. A ringed space (X, Ox) is a topological space X with a sheaf of rings Ox. An
isomorphism of ringed spaces (X, Ox) — (Y, Oy) is a homeomorphism 7 : X — Y and an
isomorphism Oy — 7, Ox of sheaves on Y.

Note that for U C X open, U is naturally a ringed space with Oy (V) = Ox (V).

Definition. An affine scheme is a ringed space (X, Ox) that is isomorphic to (Spec A, Ogpec 4)-

Definition. A scheme is a ringed space (X, Ox) where every point p € X has a neighbour-
hood U, such that the ringed space (U, OUp) is isomorphic to some affine scheme.

17



Proposition. Let X be a scheme, U C X an open set, and i : U » X be the inclusion map.
Then, the ringed space (U, O;) is a scheme, where

OU = Ox‘ = i_IOX
U

For example, take X = SpecAand U = U forsome f € A. Then (U, Oy) = (SpecAy, OspecAf).

Proof. Let p € U C X. Since X is a scheme, we can find (I{,, OXle) inside X with p € , such

that 1} is isomorphic to an affine scheme. Then take J, n U C U with structure sheaf given by the
inclusion map. Note that }, 1 U may not be affine, but I, = Spec B, and the distinguished opens in
Spec B form a basis. This reduces the problem to the example of a distinguished open set above. [J

Definition. Affine space of dimension n over k is defined to be

A} = Speck[xy, ..., xy]

Example. Let
U= Agz \ {det(xij) = 0}

which is the open set representing GL,,(k). We will show that the multiplication map U X U — U is
a morphism of schemes.

Example. Let U = A \ (x,y). This is a scheme representing a plane without an origin. We claim
that U is not an affine scheme. Suppose that U were affine; we aim to calculate O (U). Write

U =V(x) CA}; U, =V(y)° CA;
These two open sets cover U, and
U N Uy, = Uy, = AF \ V(xy)
Then,
Ou(U) = klx,x"Lyl;  Oy(U,) = klx, 3,57y Ou(UnUy) = klx,x~", y,y7"]

The restriction maps Oy (Uy) — Oy(Uyy,) and Oy (Uy) — Oy (Uyy) are the obvious ones. By the sheaf
axioms,

Ou(U) = klx,x ", yI nk[x,y,y~'] C k[x,x7",y,y7']
Thus, Oy(U) = k[x,y]. This is a contradiction: one way to see this is that there exists a maximal
ideal (x, y) in the ring of global sections in (U, Oy) with empty vanishing locus.

In general, if X isascheme, f € I'(X, Ox) = Ox(X), and p € X, then there is a well-defined stalk OX,p
at p, which is of the form Ay, up to isomorphism, where p is a prime ideal. To say this, we are using
an isomorphism of an open set ¥, containing p to Spec A. In particular, A, has a unique maximal

ideal, namely pA,. We say that f vanishes at p if its image in Axyp Ay or equivalently, f € pAy. As
a consequence, the vanishing locus V(f) C X is well-defined.

18



3.5 Gluing sheaves

Let X be a topological space with a cover {U, }. Let {#,} be sheaves on {U, }, with isomorphisms

Pap : -Ta

UanUp UanUp

such that

Paa = id; Pap = QDE;{; PBy °Pap = Pay
The last equation is called the cocycle condition. This combination of conditions resembles the defin-
ition of an equivalence relation, with reflexivity, symmetry, and transitivity.

We will construct a sheaf F on X. Given V' C X open, we define

§00c,6’(sa ) =8
VnUenUsg

F is a presheaf. Indeed, given (s,) € F(V) and W C V open, we take

F(V) = [(sa) € [[#UxnV)

VnUanUﬁ}

(Sa)

VNnUg
y = (resWnUa(sa))a
This lies in (W) by the sheaf axioms. One check easily check that this is a sheaf.

Proposition. F |U,, and 7, are canonically isomorphic as sheaves on U,.

Proof. First, we construct a map #, — & |Uy. Let V C U, and s € 7, (V). Define its image in & |Uy

( V )
UD!

We must check that this tuple lies in F |Uy V) =FV).

VnUgnUpg

[o4

Pap © §0ya(3 )
VnUanUs

3.6 Gluing schemes

Let (X, Ox) and (Y, Oy) be schemes with open sets U C X,V C Y, and let ¢ : (U, Ox|y,) —
(V, Oyl;,) be an isomorphism. The topological spaces X, Y can be glued on U, V using ¢.

First, take S = X U Y/U ~ V- By definition of the quotient topology, the images of X and Y in S form
an open cover, and their intersection is the image of U, or equivalently, the image of V. Now, we can
glue the structure sheaves on these open sets as described in the previous subsection. Note that in
this case, there is no cocycle condition.
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Example (the bug-eyed line; the line with doubled origin). Let k be a field. Let X = Spec k[¢] and
Y = Speck[u]. Let

U = Speck[t,t™!] = Speck|[t]; = U; € X; V = Speck[u,u"!] = Speck[u], =U, CY

We define the isomorphism ¢ : U — V given by ¢t < u. Technically, we define an isomorphism of
rings k[u, u™'] — k[t,t7'] by u — t and then apply Spec. At the level of topological spaces, X = A}
andY = AL, so U = A; \ {(t)} and V = Al \ {(w)}. Gluing along this isomorphism, we obtain a
scheme S which is a copy of A} but with two origins. Note that the generic points in X and Y lie in
U and V respectively, and thus are glued into a single generic point in S.

Consider the open sets in S. Open sets entirely contained within X and Y yield open sets in S. We
also have open sets of the form W = S\ {p;, ..., b} where p; is contained in U or V. One example
is W = S; we can calculate Og(S) using the sheaf axioms, and one can show that it is isomorphic to
k[t]. We can conclude that S is not an affine scheme, because there is a maximal ideal in k[t] where
the vanishing locus is precisely two points.

Example (the projective line). LetX = Speck[t]and Y = Speck[s], and define U = Speck[t,t7],V =
Spec k[s, s7!] as above. We glue these schemes using the isomorphism s — t~1, giving the projective
line P}.

Proposition. Op1 (Py) = k.

Proof sketch. We use the same idea as in the previous example. The only elements of k[t,t~!] that
are both polynomials in t and ! are the constants. O

In particular, [P’i is not an affine scheme.

Example. We can similarly build a scheme S which is a copy of AZ with a doubled origin. This has
the interesting property that there exist affine open subschemes U;, U, C S such that U; n U, is not
affine; we can take U; and U, to be S but with one of the origins deleted. Note that Ai without the
origin is affine.

Let {X;};c; be schemes, X;; C X; be open subschemes, and f;; : X;; — Xj; be isomorphisms such
that

fui=idx; fij=fi% fu=fijefij
where the last equality holds whenever it is defined. Then there is a unique scheme X with an open

cover by the X;, glued along these isomorphisms. This is an elaboration of the above construction,
which is discussed on the first example sheet.

c
Let Abe aring, and letX; = SpecA[x—O, e x—"] LetX;; = \/(X—J> C X;. We define the isomorphisms
Xi Xi Xi

xi) . The resulting glued scheme is called projective n-space, denoted

Xk Xk
X;; - X by 2% ZK(Z
Y Jt y Xi Xj xj
n
[P)A.
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3.7 The Proj construction

Definition. A Z-grading on a ring A is a decomposition
A=Pa
iez

as abelian groups, such that A;A; C A; ;.

Example. Let A = k[x,...,X,], and let A; be the set of degree d homogeneous polynomials, to-
gether with the zero polynomial.

Example. LetI C k[xy, ..., X, | be a homogeneous ideal; that is, an ideal generated by homogeneous

elements of possibly different degrees. Then, for A = k[x, ..., x,], the ring A/I is also naturally
graded.

Note that by definition, A is a subring of A. For simplicity, we will always assume in this course that
the degree 1 elements of a graded ring generate A as an algebra over A,. We also typically assume
that A; = 0 for i < 0. We define

i>1

This forms an ideal in A, called the irrelevant ideal. If A is a polynomial ring with the usual grading,
the irrelevant ideal corresponds to the point 0 in the theory of varieties. This aligns with the definition
of projective space in classical algebraic geometry, in which the point 0 is deleted.

A homogeneous element f € A is an element contained in some A;. An ideal I of A is called homo-
geneous if it is generated by homogeneous elements.

Definition. Let A be a graded ring. Proj A is the set of homogeneous prime ideals in A that
do not contain the irrelevant ideal. If I C A is homogeneous, we define

V(I) = {p € ProjA | I C p}

The Zariski topology on Proj A is the topology where the closed sets are of the form V(I) where
I'is a homogeneous ideal.

The Spec construction allows us to convert rings into schemes; the Proj construction allows us to
convert graded rings into schemes. Unlike Spec, the construction of Proj is not functorial.

Let f € A; and Uy = ProjA \ V(f). Observe that the set {U } covers Proj A, because the f

feA,
generate the unit ideal. The ringA[%] = Ay is naturally Z-graded by defining deg % = —deg f. Note

that Ay may have negatively graded elements, even though A does not.

Example. Let A = k[x(, x;] and f = x;. Then in A[%] = k[xg, X1, X5 '], the degree zero elements
X1 X7

2 2

. +X1X X
include k and elements such as =, ===%. There are degree one elements such as —L.

X0 X5 Xo

21



Proposition. There is a natural bijection

{homogeneous prime ideals in A that miss f} < {prime ideals in (Af)o}

Note also that the set of homogeneous prime ideals in A that miss f are naturally in bijection with
the homogeneous prime ideals in Ay.

Proof. Suppose q is a prime ideal in <A[H) . Then let 1(q) be the ideal
0

¢(q)=(U{a eAd‘j% eq}gA)

d>0

One can check that this is prime. Now suppose p is a homogeneous prime ideal missing f. Define

P(p) to be o(p) = (p Ao <AH>>

One can easily check that ¢ o 9 is the identity. For the other direction, suppose p is a homogeneous
prime ideal missing f; we show that p = ¥(¢(p)) by antisymmetry. Ifa € p € Ay, then fid € ¢(p), so

This ideal is also prime.

a € P(e(p)) by construction. Conversely, if a € P(¢(p)), then fid € ¢(p) for some d, so there exists

b € p such that f% = f% inA[H. Hence for some k > 0, we have f*(f?b — f°a) = 0, and f¢** & p.
But by primality, a € p, as required. O

The bijection constructed is compatible with ideal containment, so is a homeomorphism of topolo-
gical spaces
Uy < Spec(Af)o

Thus Proj A is covered by open sets homeomorphic to an affine scheme. If f,g € A;, then Uy N U,
is naturally homeomorphic to

1

e [£]- s,

Take the open cover {U f} with structure sheaf Ogyec(a o O each Uy, and isomorphisms on Uy N Uy
by the condition above. The cocycle condition follows from the formal properties of the localisation.
Therefore, Proj A is a scheme.

If A = k[x,, ..., x,,] with the standard grading, we write P} for Proj A.

4 Morphisms

4.1 Morphisms of ringed spaces

Let (X, Ox) be a scheme. The stalks Ox y, are local rings: they have a unique maximal ideal, which
is the set of all non-unit elements. Given f € Ox(U), we can meaningfully ask whether f vanishes
at p; that is, if the image of f in Oy, is contained in the maximal ideal.
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Definition. A morphism of ringed spaces f : (X, Ox) — (Y, Oy) consists of a continuous
function f : X — Y and a morphism f* : Oy — f,Ox between sheaves of rings on Y.

f* represents function composition with f~1, although the ring ©Ox may not be a ring of functions.
It is possible to find a morphism (f, f %) between schemes (X, Ox) and (Y, Oy) such that there exists
q € U C Yand h € Oy(U) such that h vanishes at g but f#(h) € Ox(f~1(U)) does not vanish at
some p € X with f(p) = q. This motivates the definition of a morphism of schemes.

Let f : X — Y be a morphism of ringed spaces. Given any point p € X, there is an induced map
f* Oy, f(p) = Ox,p- Explicitly, given s € Oy (), we can represent it by (sy, U) where U is open,

f(p) € U, and sy € Oy(U). Now, f(syy) € Ox(f~1(U)), so the pair (f*(sy), f~(U)) defines an
element of Oy .

Definition. A ringed space (X, Ox) is called a locally ringed space if for all p € X, the stalk
Ox p is is a local ring. A morphism of locally ringed spaces (f, A (X,05) - (Y,0y)
is a morphism of ringed spaces such that if m, denotes the maximal ideal in Oy, then

fﬂ(mf(p)) c m,.

This encapsulates the idea that functions vanishing on the codomain must also vanish on the domain
after the inverse image, as the maximal ideal represents functions vanishing at the point.

4.2 Morphisms of schemes

Note that all schemes are locally ringed spaces.

Definition. A morphism of schemes X — Y is a morphism of locally ringed spaces X — Y.

Theorem. There is a natural bijection

{morphisms of schemes Spec B — Spec A} > {homomorphisms of rings A — B}

Proof. First, recall that a section s of a sheaf # on U is a coherent collection of elements of the stalks
s(p) € F, for all p € U. We will construct a map of schemes Spec B — SpecA for every ring
homomorphism A — B, and then show that every morphism of schemes arises in this way.

Letp : A — B be aring homomorphism. Let ¢~! : Spec B — SpecA be the map of topological
spaces; this is a continuous function. We now build

goﬁ : OSpecA - qa*_lOSpecB

At the level of stalks, the map A,-1(p) — By, is induced by ¢ by mapping % to %. This is well-defined,
as for s & @~ 1(p), then ¢(s) & p. Observe that this is automatically a local homomorphism.

We must now show that this choice of maps on stalks extends to a map between sheaves. Given
U C Spec A, we need to define

q)ﬁ : OSpecA(U) - OSpecB((qo_l)_l(U))
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An element s € Ogpec4(U) is a collection of assignments (p = s(p))pev for p € U and s(p) € Ay,
We then define ¢ by

(= sPpev = (@ = a(s(@™ (DN)ge@-1)-1v)
One can check that the gluing conditions are satisfied.

Conversely, suppose (f, f*) : SpecB — SpecA is a morphism of schemes. Using the fact that we
have a map of global sections Ogpec 4(SpecA) — Ospec p(Spec B), we obtain a ring homomorphism
g : A —» B. We must check that g™! : SpecB — SpecA gives the correct map f on topological
spaces, and that the construction above yields the correct map f % on sheaves. The maps on stalks are
compatible with restriction, so the following diagram commutes for all p € Spec B.

F(SpeCA9 OSpecA) H F(SpeCB9 OSpecB)

¢ ¢

OSPECA:f(P) % OSpecB,p

Equivalently, the following diagram commutes for all p € Spec B.

A—>B

Lo

App)y — By

Since the morphism is local, (f ’j)‘l(po) = f(P)Asp)- As the above diagram commutes, gl =
f as maps of topological spaces, and the maps of structure sheaves agree at the level of stalks by
construction so they must agree everywhere. O

4.3 Immersions

Definition. Let X, Y be schemes. A morphism of schemes f : X — Y is an open immersion
if f induces an isomorphism of X onto an open subscheme (U, OY|U) of Y. A morphism
f : X — Y isa closed immersion if f is a homeomorphism onto a closed subset of Y, and
gﬁ : Oy — 8,0y is surjective.

Kk[t]

/(tz). The induced map Spec klt]

Example. Let k[t] - /(tz) — Speck[t] is a closed immersion.

More generally, let A be a ring and I be an ideal in A. Then the induced map SpecA/I — SpecAisa
closed immersion.

Definition. Let Y be a scheme. A closed subscheme of Y is an equivalence class of closed
immersions X — Y, wherewesay f : X —» Y and f' : X’ - Y are equivalent if there is a
commutative triangle

X — = vx

Nt
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4.4 Fibre products

The notion of fibre product will simultaneously generalise the notions of product, intersections of
closed subschemes, and inverse images of subschemes (such as points) along morphisms.

Definition. Consider a diagram
X

l

Y — S

The fibre product is a scheme X Xg Y making the following diagram commute:

XxgY 223 x

Al

Y — S

such that for any other scheme Z together with morphisms qx, gy completing the square,
there is a unique factorisation through X Xg Y, making the following diagram commute.

n <— X

Note that as this is a definition by universal property, if X Xg Y exists, it is unique up to unique
isomorphism. The fibre product is schemes is the category-theoretic pullback.

Example. (i) In the category of sets, the fibre product of the diagram

X
I
Y —— S

is the set
XxsY ={(x,y) €EX XY | rx(x) = ry(y)}

(ii) In the category of topological spaces, the fibre product is defined to be the same set, assigning
X Xs Y the subspace topology as a subset of X X Y.

(iii) Letry : X — S be a map of sets, and let Y = {x} with ry(x) = s € S. Then
X XgY =rg'(s)

(iv) Letry : X > Sandry : Y — S be inclusions of subsets. Then

XXsY=XNY
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Theorem. Fibre products of schemes exist.

Proof sketch. Step 1. Let X,Y, S be affine schemes, with associated rings A, B,R. Then the fibre
product X XgY exists, and is isomorphic to Spec(A®z B). Note that the tensor product is the category-
theoretic pushout in the category of rings. We must now check that the universal property of the fibre
product is satisfied. Consider the commutative square

NN
n&— X

—
—
If Z is an affine scheme, the result holds. It is a general fact that a map of schemes Z — Spec(A ®z B)
is the same data as a map A @z B — ['(Z, Oy).

Step 2. Let X, Y, S be arbitrary schemes. If X Xg Y exists and U C X is an open subscheme, then
U X Y also exists, by taking the inverse image of U under the projection X X Y — X endowed with
the structure of an open subscheme.

Step 3. If X is covered by open subschemes {X;}, then if X; Xg Y exists for all i, then X Xg Y exists,
by gluing each of the X; X5 Y together. Note that the ability to glue these schemes together relies on
Step 2, and the fact that there is no cocycle condition.

Step 4. If Y and S are affine, then X Xg Y exists by Step 3, by covering X by affine subschemes. As X
and Y are interchangeable, X X Y exists for any X and Y as long as S is affine.

Step 5. Now, cover S by affine subschemes {S;}. Let X;,Y; be the preimages of of S; in X and Y
respectively. Now, X; X, Y; exists. Observe by the universal property that X; Xg, Y; = X; X SY ;.
Finally, gluing gives X Xg Y as required. O

Example. (i) We have
PE = P% Xgpecz SpecC

where the map Spec C — Spec Z is induced by the ring homomorphism Z — C, and the map
P% — SpecZ is induced locally by the inclusion Z — Z[x—o, s x—"] Note also that

Xi Xi

Z[X] ®Z C= C[X]

(ii) Let C = Spec €%y ]/(y _ x?)and L = Spec Clx,y ]/(y). We have natural closed immersions
C - AZ and L — AZ. One can show that

CXp2 L= SpecC[x]/(xz)

representing the intersection.
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4.5 Schemes over a base

In scheme theory, we often fix a scheme S called the base scheme, and consider other schemes with
a fixed map to S. These form a category of schemes over S, where the morphisms are the morphisms
of schemes f : X — Y such that the following diagram commutes.

X % Y
S

This is known as Grothendieck’s relative point of view. Typically, S is the spectrum of a field or a ring.
Note that every scheme has a unique morphism to Spec Z, so the category of schemes is isomorphic
to the category of schemes over Spec Z. The product of X and Y in the category of schemes over S is
the fibre product X X5 Y. Analogously, in commutative algebra, we often consider algebras of a fixed
ring, and the category of rings is isomorphic to the category of Z-algebras.
4.6 Separatedness
Recall that a topological space X is Hausdorff if and only if the diagonal Ay C X X X is closed.

Definition. Let X — S be a morphism of schemes. Then the diagonal is the morphism
Axs © X = X Xg X induced using the universal property by the following diagram.

v — X

We write A for Ay/g if X and S are clear from context.

Remark. If U,V are open subschemes of X and S = Speck for a field k, then

AW UxgV)=UNV

Definition. A morphism X — S is separated if Ax;s : X — X Xg X is a closed immersion.

Example. Let X = SpecC[t], let S = SpecC, and induce the map X — S by the C-algebra homo-
morphism C — C[t]. Then
X Xg X = Spec(C[t] ®¢ C[t])

and the diagonal map A is induced by the multiplication map
C[t] ®c C[t] = C[¢]

Note that A is closed, as the map C[t] ®c C[t] — C[t] is surjective.
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Proposition. Letg : X — S be a morphism of schemes. Then there is a factorisation of Ay /g

as follows.
U
closed immersy‘ % immersion

X — VXXX

Ax/s

We say that g : X — Sis alocally closed immersion.

Proof. Let S be covered by open affine subschemes {V;}, and suppose X is covered by open affine
subschemes {Ul- j}, where for some fixed i, the U;; cover g }(V;). We have morphisms U; i= Vi
induced by

Uj —> &g '(V) —> V;
]
X— 35

where the commutative square is a fibre product. Observe that U;; Xy, U
X Xg X, and their union contains the image of the diagonal Ax/s. Also,

ij is affine and open in

AN (U;j %y, Ugj) =U;; € X

Let U be the union of the U;; Xy, U;; over all i, j. Then the second map in the statement is clearly
an open immersion. Observe that to check if f : T — T’ is a closed immersion, it suffices to check
locally on the codomain. For each Ujj, the diagonal is a map U;; — U;; Xy, U;;, which one can
show is a closed immersion. O

Proposition. If X — S is a morphism of affine schemes, then Ay g is a closed immersion.

Proof. Let X = SpecA, S = Spec B, and let the map X — S be given by a map B — A. Then the map
A ®p A — Ais surjective as required. O

Thus every morphism of affine schemes is separated.

Corollary. Let X — S be a morphism of schemes. If the image of Ay/s is closed as a topolo-
gical subspace, then X — S is separated.

Proof. A locally closed immersion onto a closed subset is a closed immersion. O

Example. (i) Recall the bug-eyed line
A UA,

where if U = A} \ {0} C A} and V is defined similarly, we define the isomorphism V' — U by
the map u — t : k[u,u™!] — k[t,t~!]. We claim that the bug-eyed line is not separated over
Spec k. We can compute X Xg X by the gluing construction of the fibre product. This is a plane
with doubled axes and four origins. The diagonal only contains two of the four origins, and
this is not a closed subset.
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(ii) Open and closed immersions are are always separated.
(iii) All monomorphisms are separated.
(iv) Compositions of separated morphisms are separated.

(v) Suppose X — S is separated and S’ — S is an embedding. Then the map X xg S’ — S’ that
comes from

X Xg S’ H X
S —> S
is also separated. This is called a base extension: the right-hand side of the diagram is the

original morphism X — S, and the left-hand side can be thought of as the same morphism
under a base change.

Proposition. Let R be a ring. The morphism P} — SpecR is separated.

Proposition. We want to show that the map A in the following diagram is closed, where the
commutative square is a fibre product.

Pg —25 P xg Pp — P2

! !

PR — SpecR

It suffices to check this result on an open cover of PE Xp Pg. Let A = R[Xy, ..., X, ] with the
usual grading, so ProjA = PE. Then let U; = Spec (A[i]) . These U; form an open cover
Xi 0

of P%. Now,

Ui XR U] = SpeCR

Xo  Xn Yo y_]

Xi e Yj Yj

Observe that the restriction of A to A™(U; xg Uj) is
UanJﬁUlXRUJ

given on rings by the map

X, X Xi X X
R —0,...,—””—‘] <—R[—O,...,—”,y—°,...,y—”
X xj xj Xi Xi y] y]

by changing y into x;. This is surjective, and the U; Xg U; cover Pk Xg Pg, so A is closed.

Definition. Let k = k be an algebraically closed field. Let X — Speck be a scheme over
Spec k. We say that X is of finite type over Spec k if there is a cover of X by affines {U,},, such
that Ox(U,) is finitely generated k-algebra. We say that X is reduced if for all open U C X,
Ox(U) has no nilpotent elements.
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Definition. A morphism X — Speck is a variety if it is reduced, of finite type, and separated.

4.7 Properness

Definition. Let f : X — S be a morphism. Then f is of finite type if there exists an affine
cover of S by open {V,}_, where V;; = SpecA,, and covers {Uaﬁ} . of f~1(V,) by open affine
subschemes with U,z = Spec Byg, such that B, is a finitely generated A, -algebra, and {U, 8} 5
can be chosen to be finite.

Definition. A moprhism f : X — S is closed if it is closed as a map of topological spaces.
It is universally closed if for any S’ — S, the induced map X Xg S’ — S’ is also closed. f is
proper if it is separated, of finite type, and universally closed.

Example. (i) Closed immersions are proper.

(ii) The obvious map A} — Speck is not proper, because it is not universally closed. Indeed, con-
sider the fibre product

AL — A

L

A}, — Speck

Consider Z C A? = Spec k[x, y] given by the vanishing locus of xy — 1. Then the projection of
Z onto each axis is not Zariski closed.

(ili) The bug-eyed line is neither separated nor universally closed.

Remark. If X — S is universally closed, then any base extension X Xg S’ — S’ is also universally
closed. Similarly, separatedness, properness and being of finite type are stable under base extension.

Proposition. Let R be a commutative ring. Then the morphism P — SpecR is proper.

Proof. We have already shown that P} — SpecR is separated. It is of finite type by construction. It
suffices to prove that the morphism is universally closed for R = Z, because P = P7 Xspec 7 Spec R.
We must show that for any Y — Spec Z, the base extension P} Xg,.z Y — Y is closed. But Y is
covered by affine schemes of the form Spec R, and closedness is local on the codomain, it suffices to
show that P} — SpecR is closed.

Let Z C P} be Zariski closed, so Z is the vanishing locus of homogeneous polynomials {g;, g,, ... }-
We want to show that if 77 is the map P — Spec R, then 77(Z) is closed. We need to find equations for
7(Z), or equivalently, we need to characterise the prime ideals p of R such that 7~}(p)NZ is nonempty.
Let k(p) = FF(R/p). We have a morphism Spec k(p) — SpecR. Let Z, = Z Xgpecg Spec k(p); we
want to know for which p this scheme is nonempty. If we take the equations g;, g,, ... and reduce
modulo p, we obtain equations g;, g,, ... which are homogeneous polynomials in k(p). Thus Zj, is
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nonempty if and only if g, g,, ... cut out more than the origin in AZ(";) In particular, Z,, is nonempty
if and only if
(8,8 ) 2 (xg, ..., X); PR = ProjR[xo, ..., X,]

Equivalently, for all positive integers d,

(x07 ’xn)d g— (§17§2: )

Write A = R[x] with the usual grading. The non-containment condition above holds if and only if
the map
@Ad—deggi - Ad
i

given by f; — f;g; in the ith factor is not surjective modulo p, or equivalently in k(p), for all degrees
d. This condition is given by the maximal minors of the matrix associated to @iAd_deg a — Ad
which is a set of infinitely many polynomials, each in the coefficients of the g;.

4.8 Valuative criteria

From here, we will assume that all schemes are Noetherian; that is, it has a finite cover by spectra of
Noetherian rings.

Definition. A discrete valuation ring is a local principal ideal domain.

Example. (i) C[t] is a discrete valuation ring.
(ii) Op1p0 = {% 'g(o) # 0} is a discrete valuation ring.
(iii) Similarly, Z(py, Z,, are discrete valuation rings, where Zp) denotes the localisation of Z at the
prime ideal (p), and Z,, denotes the p-adic integers.
We will often drop the word ‘discrete’.

Remark. Let A be avaluation ring. In discrete valuation rings, every nonzero prime ideal is maximal,
so Spec A consists of two points, (0) and the unique maximal ideal m. The topology on SpecA =
{(0), m} has the property that (0) is dense and m is closed. This is called the Sierpinski topology.

Any generator 7 for m is called a uniformiser or a uniformising parameter. For example, in C[[t],
every power series with nonzero constant term is a unit, and ¢ is a uniformiser.

Given a uniformiser, any nonzero element a € A can be written as ur® where u is a unit and k is a
unique natural number called the valuation of a. This gives a map A \ {0} — N mapping a value a to
its valuation; this is independent of the choice of uniformiser.

The field of fractions of A is a valued field K = FF(A); the valuation extends to a multiplicative
function K \ {0} — Z given by the difference of valuations of the numerator and denominator.

Example. Let A = k[¢], then K = k(t) is the field of Laurent series in one variable in k. The
valuation is the order of vanishing at zero.

One can consider the open immersion Spec K — Spec A as the inclusion from a disc with a punctured
origin to a disc.
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Theorem. Let f : X — Y be a morphism of schemes. Then f is separated if and only if for
any (discrete) valuation ring A with function field K and diagram

SpecK — X

(N

SpecA — Y

then there exists at most one lift Spec A — X that makes the following diagram commute.

SpecK — X

E
L.

SpecA — Y

Similarly, f is universally closed if and only if there exists at least one lift SpecA — X that
makes the diagram commute.

In particular, a morphism is proper if and only if there is a unique lift, and the morphism is of finite
type. The proof is omitted.

Remark. (i) The map P} — SpecR is proper.
(ii) The map A} — SpecR is not proper, but is separated.
(iii) Closed immersions are proper. In particular, if Z — P} is closed, then Z — Spec R is proper.
(iv) Compositions of proper (respectively separated) morphisms are proper (separated).
(v) If f : X — Y is proper, then for any Y’ — Y, the base extension X Xy Y’ — Y’ is also proper.

Example. We show that AL — Speck is not proper by showing it is not universally closed. Write
A}{ = Spec k[x], and consider A = k[¢]] and K = k().

Spec k(t) % A}

1 !

Speck[[t] —— Speck

The map Spec k[[¢]] — Spec k is the obvious morphism. Let ¢ be induced by the map on rings k[x] —
k(t) given by x +— % Then the map does not factor through Spec k[[t] — Speck(t), as required.

However, if we replace A}{ with IP}C, there is always an affine chart in P! such that @ is of the form
X Pt
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5 Modules over the structure sheaf

5.1 Definitions

Example. Let CP" be the variety C"*! \ {0} modulo scaling by C. We have a structure sheaf Ocpn,
where if U C CP" is Zariski open, we define

Ocpn(U) = {% ’ P, Q homogeneous of the same degree, and the ratio is regular atall p € U}
For any integer d, we can consider a sheaf O¢pn(d) given by

P(x)
Q(x)
This is a sheaf of groups, but not a sheaf of rings as it is not closed under multiplication for d # 0.
Note that Ocpn(d)(U) is a module over O¢cpn(U), and the multiplication commutes with restriction.

Ocprn(A)(U) = { ’P, Q homogeneous, degP —degQ = d, and regular atall p € U}

Example. Let A be a ring, and let M be an A-module. We define the sheaf #); = M*" on Spec A as
follows. If U C Spec A is a distinguished open U = Uy, then we set

which is the module M localised at f. This defines a sheaf on a base, and hence extends to a unique
sheaf on Spec A.

Definition. Let (X, Ox) be a ringed space. A sheaf of Ox-modules on X is a sheaf F of
abelian groups together with a multiplication F(U) X Ox(U) — F(U) that makes F(U) into
an Ox(U)-module, that is compatible with restriction.

FV) X Ox(V) —=> F(V)

! 1

F(U) x Ox(U) —> F(U)

Similarly, we can define a sheaf of Ox-algebras. A morphism between sheaves of modulesg : ¥ — G
on X is a homomorphism of sheaves of abelian groups that is compatible with multiplication.

Given morphisms of sheaves of modules on X, we can locally take kernels, cokernels, images, direct
sums, tensor products, hom functors, and all of these extend to sheaves of modules. In the case of
cokernels, images, and tensor products, we require a sheafification step. For example, the presheaf
tensor product 5 ®g, G associated to an open set U C X is given by F(U) ®o, (v) §(U); the sheaf
tensor product is given by sheafification.

Given a morphism of ringed spaces or schemes f : X — Y, the pushforward of an Ox-module
F is the sheaf of abelian groups f,#. As a morphism of ringed spaces, we also have a map f¥ :
Oy - f.0Ox, giving f,.F an Oy-module structure. Given an openset U C Y, a € Oy(U), and
m e £.F(U) = F(f~1(U)), we define a - m = f#(a) - m, where f#(a) € Ox(f~1(U)).

Conversely, if G is a sheaf of Oy-modules, we define
'G5 =f"9®s10, Ox

where the f~1©y-module structure on Oy is defined via the adjoint to f¥.
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5.2 Quasi-coherence

Definition. A quasi-coherent sheaf F on a scheme X is a sheaf of Ox-modules such that
there exists a cover of X by affines {U;} such that & |Ui is the sheaf associated to a module

over the ring Ox(U;). If these modules can be taken to be finitely generated, we say F is
coherent.

Example. (i) On any scheme X, Oy is quasi-coherent (and, in fact, coherent).
(i) P ; Ox is quasi-coherent, but not coherent if I is infinite.

(iii) Ifi : X — Y is a closed immersion, then i, Oy is a quasi-coherent Oy-module. Let U C Y be
an affine open set, so U = SpecA. Then X N U — U gives an ideal I C A which is the kernel
of the surjection Oy (U) — Ox(X N U). On U, i,Ox|, is the sheaf associated to the A-module

A/I'

Proposition. An Ox-module ¥ is quasi-coherent if and only if for any affine open U C X
with U = Spec A, 7|, is the sheaf associated to a module over A.

We first prove the following key technical lemma.

Lemma. Let X = SpecA, f € A, and F a quasi-coherent Ox-module. Let s € I'(X, F). Then
(i) If s restricts to 0 on Uy, then f"s = 0 for some n > 1.
(ii) Ift € F(Uy), then f"t is the restriction of a global section of  over X for some n > 1.

Proof. There exists some cover of X by schemes of the form SpecB = V, such that 7|, = M for
M a B-module. We can cover each such V by distinguished affines of the form U, for some g € A.
Then F |Ug =(M ®p Ag)Sh, as F|,, is quasi-coherent. But recall that Spec A is quasi-compact: every
open cover has a finite subcover. So finitely many U, will suffice to cover X by open sets such that
F restricts to M5 on Ug,- Then the lemma follows from formal properties of localisation. O

We now prove the main proposition.

Proof. Given U C X, observe that 7|, is also quasi-coherent. We can thus reduce the statement to
the case where X = Spec A. Now we take M = I'(X, F), and let M sh be the associated sheaf. We claim
that M*" =~ F. Let a : M*" — ¥ be the map given by restriction (for example via stalks). Then « is
an isomorphism at the level of stalks by the above lemma, so is an isomorphism globally. O

In particular, the quasi-coherent sheaves of modules over Spec A are precisely the modules over
A. The coherent sheaves of modules over Spec A are precisely the finitely-generated modules over
A.

Proposition. (i) Images, kernels, and cokernels of maps of (quasi-)coherent sheaves re-
main (quasi-)coherent.
(i) If f : X — S is a morphism of schemes and ¥ is a (quasi-)coherent sheaf of modules
on S, then f*# is also (quasi-)coherent.
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(iii) If f : X — S is a morphism of schemes and G is a quasi-coherent sheaf on X, then f, G
is also quasi-coherent.

The proofs are omitted and non-examinable. Note that (iii) need not hold for coherent sheaves: let
f : AL — Speck be the obvious map, and consider f*O/_\Ilc . This is a quasi-coherent sheaf on Speck,

so is a k-vector space, which is k[t]. As a module, this is not finitely generated. Observe that if
f: IP}C — Speck, then f*OPll{ is the sheaf associated to k. In general, if G is a coherent sheaf on X
and f : X — Sis proper, then f, G is coherent.

Let A be a graded ring, with the usual assumptions on its generators. To build Proj A, we consider

the cover by Spec (A[ %] ) for f € A;. We can produce a similar construction for modules.
0

Let M be a graded A-module, that is,

M= My

dez

where each M, is an abelian group, M is an A-module, and A;M; C M, ;. Consider the sheaf determ-
ined by the association

ProjA2 Uy — (M[%DO

To each Uy = V(f), we associate the degree zero elements of the localisation of M at f. This gives
a quasi-coherent sheaf on Proj A by identical arguments as in the Proj construction.

Definition. Let X be a scheme and F be a quasi-coherent Ox-module. We say that F is
@) free,if F ~ O}?I for some set I;
(ii) an (algebraic) vector bundle or locally free if there exists an open cover {U;} such that
F |Ui is free;
(iii) a line bundle or an invertible sheaf if it is a vector bundle that is locally isomorphic to
OX.

Note that such sheaves are coherent if and only if the index sets I can be taken to be finite.
5.3 Coherent sheaves on projective schemes

Definition. Let A be a graded ring, and let M be a graded A-module. For d € Z, we define
M(d), called M twisted by d, to be the module such that

M(d))k = My4q

Definition. Let X = ProjA where A is a graded ring and let d € Z. The sheaf Ox(d) is
defined to be the sheaf associated to the graded module A(d). In particular, Ox(1) is called
the twisting sheaf.

Remark. Ox(d) = Ox(1)®%. Note that the tensor product of graded modules is additive in the grad-
ing.
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Example. Consider Proj k[xo, ..., x,] = P§. The global sections of Opﬁ(d) are homogeneous degree
d polynomials in the x;. In particular, if d < 0, then T'(P}, Opn (d)) =0.

Definition. An Ox-module F is called globally generated or generated by global sections if
it is a quotient of (.‘);?r for some 7; that is, is there is a surjective map of coherent sheaves

O;‘?r — F. Equivalently, there exist elements sy, ..., s, € I['(X,¥) such that {s;} generate the
stalks 7, over Ox ,, for all p € X.

Theorem. Leti : X — P} be a closed immersion. Let Ox (1) be the restriction of Opg(l), SO
0x(1) = i*Opﬁ(l). Let F be a coherent sheaf on X. Then there exists an integer d,, such that
for alld > d,,, the sheaf

F(d) = F Qoy Ox(d)

is globally generated.

Proof. By formal properties, it is equivalent to show the statement for i, F; that is, i, #(d) is globally
generated on Pg{. Write P§ = Proj[xy, ..., X, ], and cover P§ by U; = Spec B; where B; = R[i—o .
We know that F| U = MiSh, and M; is a finitely generated B;-module. Let {Si j} be generators for M;.
We claim that the sections {x?si j}j of F (d)lUi (U;) are restrictions of global sections ¢;; of #(d) for
sufficiently large d. Such d can be chosen to be independent of i and j. Indeed, if s;; is an element of
M; = F(U;) and x; € Ox(1) = Opn(1), we can show that x?sij € (F ® 0(d))(U;) is a restriction of
a global section.

Now, on U, the s;; generate M;P, but we have a morphism of sheaves # — #(d), mapping s to x{s :=
s® x‘l-i. This map is globally defined, but on U; this restricts to an isomorphism F |Ui - F (d)|U,- as
x; is invertible on U;. Since the {si j} generate F |Ui’ the x?sj generate F (d)|Ui. Thus, the ¢;; globally
generate F(d). O

Corollary. Leti : X — Pg be a closed immersion. Let F be a coherent sheaf on X. Then F
is a quotient of O(—d)®N for some sufficiently large N and some d € Z.

6 Divisors

6.1 Height and dimension

Recall that for a prime ideal p in R, its height is the largest n such that there exists a chain of inclusions
of prime ideals

PO G &hp=Pp
For example, if R is an integral domain, a prime ideal is of height 1 if and only if no nonzero prime
ideal is strictly contained within it.

Example. (i) In any integral domain, (0) has height 0.
(ii) In C[x,y], the ideal (x) has height 1, and the ideal (x, y) has height 2.
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It can be shown that in a unique factorisation domain, every prime ideal of height 1 is principal.

We will globalise the notion of height 1 prime ideals, giving Weil divisors, and also the notion of
principal ideals, giving Cartier divisors. In the case of Weil divisors, we will assume that the ambient
scheme X is Noetherian, integral, separated, and regular in codimension 1.

If X is integral and U = Spec A is an open affine, then the ideal (0) C A is called the generic point of
X. Each open affine is dense as they are irreducible, so they have a nontrivial intersection, including
their generic points. The generic points given by each U therefore coincide in X. This point is often
denoted by 7 or nx.

Definition. Let X be a scheme.
(i) The dimension of X is the length n of the longest chain of nonempty closed irreducible
subsets
ZoGZ1 G G Z

(i) LetZ C X be closed and irreducible. The codimension of X is the length n of the longest
chain
L2=20G 2 G G2y

(iii) If X is a Noetherian topological space, so every decreasing sequence of closed subsets
stabilises, then every closed Z C X has a decomposition into finitely many irreducible
closed subsets.

(iv) Suppose X is Noetherian, integral, and separated. We say that X is regular in codimen-
sion 1 if for every subspace Y C X that is closed, irreducible, and of codimension 1, if ny
denotes the generic point of Y, then Ox ,, is a discrete valuation ring, or equivalently
a local principal ideal domain.

6.2 Weil divisors

Definition. Let X be Noetherian, integral, separated, and regular in codimension 1. A prime
divisor on X is an integral closed subscheme of codimension 1. A Weil divisor on X is an
element of the free abelian group Div(X) generated by the prime divisors.

We will write D € Div(X) as )}, ny,[Y;] where the Y; are prime divisors.
Definition. A Weil divisor )}, ny,[Y ;] is effective if all ny, are nonnegative.

If X is integral, for SpecA = U C X, the local ring Ox,isa field, as it is in particular the fraction
field of A. Indeed, because 7 is contained in every open affine, Ox , permits arbitrary denominat-
ors.

Let f € Ox,, = k(X) be nonzero. Since for every prime divisor Y’ C X, the ring Oy, is a dis-
crete valuation ring, we can calculate the valuation vy (f) of f in this ring. We thus define the di-
visor

dv()= Y w(DIY]

Y CX prime

We claim that this is a Weil divisor; that is, the sum is finite.
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Proposition. The sum

Y w(NIY]

YCX prime

is finite.

Proof. Let f € k(X)*, and choose A such that U = Spec A is an affine open, so FF(A) = k(X). We
can also require that f € A by localising at the denominator, so f is regular on U. Then X \ U is
closed and of codimension at least 1, so only finitely many prime Weil divisors Y of X are contained
inX \ U. On U, as f is regular, vy(f) > 0 for all Y. But vy (f) > 0 if and only if Y is contained in
V(f) C U, and by the same argument, there are only finitely many such Y. O

Definition. A Weil divisor of the form div(f) is called principal. In Div(X), the set of prin-
cipal divisors form a subgroup Prin(X), and we define the Weil divisor class group of X to be

ClX) = DiV(X)/Prin(X )

Remark. (i) Let A be a Noetherian domain. Then A is a unique factorisation domain if and only
if A is integrally closed and CI(Spec A) is trivial. This is related to the fact that in unique fac-
torisation domains, all primes of height 1 are principal. In particular, there exist rings with
nontrivial class groups of their spectra.

(if) CI(AR) =0.
(iii) CI(Py) = Z; we will prove this shortly.

(iv) Let Z C X isclosed, and let U = X \ Z. Then there is a surjective map CI(X) » CI(U), defined
by [Y] — [Y n U], but instead mapping [Y] to zero if Y N U = @. This is well-defined, as
k(X) and k(U) are naturally isomorphic, so principal divisors are mapped to principal divisors.
For surjectivity, note that given a prime Weil divisor D C U, its closure D in X is a prime Weil
divisor that restricts to D under the map.

(v) If Z has codimension at least 2, then CI(X) - CI(U) is an isomorphism. This is because Z does
not enter the definition of C1(X).

(vi) If Z C X is integral, closed, and of codimension 1, there is an exact sequence

7 28 o) — ) — o

called the excision exact sequence. Indeed, the kernel of C1(X) — CI(U) are exactly the divisors
in X contained in Z.

Proposition. Let k be a field. Then, CI(P}) = Z.

Proof. LetD C P"beintegral, closed, and of codimension 1. Then D = V(f)where f ishomogeneous
of some degree d; we will define deg(D) = d. We extend linearly to obtain a homomorphism deg :
Div(P;;) — Z. We claim that this gives an isomorphism CI(P}}) — Z. First, this is well defined on

classes, since if f = % is a rational function, then g and h are homogeneous polynomials of the same
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degree, so deg(div(f)) = 0. This is surjective, by taking H = V(x,) for x, homogeneous linear. For
injectivity, suppose D = )’ ny,[Y ;] with 3} ny, deg(Y;) = 0. Write Y; = V(g;), and let f = Hg:ly".
Now f is a homogeneous rational function of degree zero. O

6.3 Cartier divisors

Let X be a scheme. Consider the presheaf on X given by mapping U = Spec A to S™!A where S is the
set of all elements that are not zero divisors. Sheafification yields the sheaf of rings K'x. Define Ky, C
XKx to be the subsheaf of invertible elements; this is a sheaf of abelian groups under multiplication.
If X is integral, then Kx is the constant sheaf, where the constant field is Ox ,, = FF(A) for any
affine open Spec A.

Similarly, let Ox C Oy be the subsheaf of invertible elements. Thus, every section of 7@}/0;( can be
prescribed by {(U;, f;)} where U; is a cover of X, f; is a section of X% (U;), and that on U; N U}, the
ratio J v, liesin 03(U; N U;).

Definition. A Cartier divisor is a global section of the sheaf K)*f/o;(.

X X
We have a surjective sheaf homomorphism X5 — X /(9)}’ but a global section of X /(9)*( is not
necessarily the image of a global section of K.

Definition. The image of I'(X, X ) in F(X , 7(;(/03() is the set of principal Cartier divisors.
The Cartier class group is the quotient

F(X’ x;{/o;f )/im I'(X, X%)

A section D € F(X, :K;(/O}*() can be specified by {(U;, f;)} where the {U;} form an open cover and
fi € Xx(U;), such that on U; N U}, the quotient % lies in Ox(U; N Uj).
j

Let X be Noetherian, integral, separated, and regular in codimension 1. Given a Cartier divisor D €
F(X R JC)*(/O;{), we obtain a Weil divisor as follows. If Y C X is a prime Weil divisor and its generic

point is ny, we represent D by {(U;, f;)} and set ny to be vy (f;) for some U; containing 7y. Then
we obtain the Weil divisor
>, nylY]

Ycx

This is well-defined: if 7y is contained in both U; and U, the valuations of f; and f; differ by Vy<%),
J

but fi is a unit, so has valuation zero. Similarly, one can show that this is independent of the choice

J
of representative of D.

Proposition. Let X be Noetherian, integral, separated, and regular in codimension 1. Sup-
pose that all local rings Oy , are unique factorisation domains. Then the association of a
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Weil divisor to each Cartier divisor is a bijection, and furthermore, is a bijection of principal
divisors.

Proof sketch. If R is a unique factorisation domain, then all height 1 prime ideals are principal. If
x € X, then Oy , is a unique factorisation domain by hypothesis, so given a Weil divisor D, we can
restrict it to Spec Ox , — X. But on Spec Ox ,, D is given by V(f,) as Ox  is a unique factorisation
domain. f, extends to some neighbourhood U, containing x, then the f, can be glued to form a
Cartier divisor. This can be checked to be bijective. O

Given a Cartier divisor D on X with representative {(U;, f;)}, we can define L(2D) C Kx to be the sub-
Ox-module generated on U; by f;"!. Note that if X = Spec A where A is integral, and D = {(X, )}
where f € A, then Ay C FF(A) is an A-module.

Proposition. The sheaf L(D) is a line bundle.

Proposition. On U;, we have an isomorphism Oy, — L(D)|Ui givenby 1 — f;71.

Consider X = Py, and let D be the Weil divisor V(x,). Let D be the corresponding Cartier divisor.
One can show that Opz(l) ~ L(D).

Remark. A line bundle L on X has an ‘inverse’ under the tensor product; that is, defining 't =
Homg, (L, Ox), we obtain L ®oy L1 = Oy. Tensor products of line bundles are also line bundles. If
all Weil divisors are Cartier, then L(D + &) = L(D) ® L(E).

Definition. The Picard group of X is the set of line bundles on X up to isomorphism, which
forms an abelian group under the tensor product.

Under mild assumptions, for example assuming that X is integral, the map D — L(D) is surjective,
and the kernel is exactly the set of principal Cartier divisors.

7 Sheaf cohomology

7.1 Introduction and properties

We have previously seen that if X = A2\{(0,0)}, then Ox(X) = Ox2(A?) = k[x, y]. Given a topological
space X and a sheaf F of abelian groups, there is a series of cohomology groups H'(X, ¥) fori € N.
The definition will be omitted. These groups have the following features.

(i) The group H°(X, ¥) is precisely I'(X, F).
(ii) If f : Y — X is continuous, there is an induced map f* : H\(X,F) — H\(Y, f~1F).

(iii) Given a short exact sequence of sheaves

0 > F > F' > F > 0
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we obtain a long exact sequence

0 — H'(X,¥) —> H'(X,F') —> H(X,F")
HY(X,¥) — H(X,¥') —> H(X,F")

HX(X, ) ~— -

(iv) If X is an affine scheme and ¥ is a quasi-coherent sheaf, then H:(X, ) = 0 for all i > 0.
(v) Cohomology commutes with taking direct sums of sheaves.

(vi) If X is a Noetherian separated scheme, then H!(X, ¥) can be computed from the sections of ¥
on an open affine cover {U;} and from the data of the restrictions to #(U;nU;), #(U;nU ;nUy)
and so on. This can be done by considering Cech cohomology.

7.2 Cech cohomology

Let X be a topological space, and let 7 be a sheaf on X. Let U = {U;};; be a fixed open cover of
X, indexed by a well-ordered set I. In this course, we will take I = {1,..., N}, and write Uig...i =
Ui, N--NUj,. Cech cohomology attaches data to the triple (X, F, U). The group of Cech p-cochains
is

cru, )= [ FWy..s)

. . p
ig<-++<ip

There is a differential
d: CcP(U,F) - CPYI(U, F)

where the iy, ..., i,4; component of da is given by

p+l
_ k .
(dDiy...ipyy = kZ(—l) Xy fpeenipsn
=0

ig--ip1

where i denotes that the element ij, of the sequence is omitted. One can easily show that d? : CP —
CP*2 is the zero map. Thus, {CP(U, F )}p has the structure of a cochain complex.

Definition. The ith Cech cohomology of (X, F, U) is the ith cohomology group of the cochain
complex:

. d ..
HiX,F) = ker(CH(U, F) — CHN(U, F))

im(Ci-1(U, F) & Ci(u,¥))

Example. Let X = S! be the usual circle. Let F be the constant sheaf Z; on any connected open set
this sheaf has value Z, and for a general open set with n connected components, this sheaf has value
7". Let U = {U,V} where U,V are obtained by deleting disjoint closed intervals from the circle,
giving an open cover with U, V =~ R. We have

cou,2)=2
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as there is one copy of Z for U and one for V. Also,
Cl(u,2) = 72
given by Z(U n V). The differential is (a,b) = (b — a,b — a), so
HO(U,Z) =~ Z = kerd

and
HY(U,Z) = Z = cokerd

Remark. (i) These Cech cohomology groups are equal to the corresponding singular cohomology
groups of S1.

(i) Note that H is typically only well-behaved when U is also well-behaved. That is, H'(U, F)
depends on U and not just X. In the example above, we could have chosen U = {Sl}, and in
this case, H'(U, Z) = 0. Also note that Z is not a quasi-coherent sheaf.

(iii) LetX =P, U=X\{0},V =X \{oo}, U ={U, V}. Then

HO(U,0x)=k; HY (U,0x)=0

(iv) Let X be Noetherian and separated, and let {U;},; be an affine cover of X, so all Ui...i, are
affine. Let F be a quasi-coherent sheaf on X. Then

HP(U,F) = HP(X, F)

and the isomorphism is natural. Thus, in this particular case, the cohomology is easy to calcu-
late by going via Cech cohomology.

Theorem. Let X = P} and ¥ = P dez Op%(d). Then there are isomorphisms of graded
k-vector spaces
(i) HX,F) = k[xg, ..., X, ];
(i) H"X,¥) = — k[xg?, ..., x;10;
(iii) HP(X,F) = 0 for p # 0, n.
In particular, H°(P¥, ©(d)) has dimension (";d), and H™(P?, O(d)) has dimension (_C;_l).

Proof. We prove this result using Cech cohomology. Part (i) follows from earlier discussions, as
HY(X,F) = @, ., T(P}, O(d)).

Part (ii). Consider the standard cover U of P}, by affines U; = V(x;)°. Observe that

FU ) =k[xg, ..., Xp]

i()...ip xio...xip

This k-module is spanned by monomials xgo xﬁ" where k
are nonnegative. In the associated Cech complex, we have

i+ s kl-p € Z and the other coefficients

n
el = @ klxo, ..., xn]xo...fci..‘xn; C" = kl[xg, ..., xn]xo...x,,l
i=0
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Since U contains only n + 1 elements, C"*1 vanishes. Thus,
H"(PY,F) = H"(U, F)
(:wn
im(Crn-1 - Cn)
span, {xlgo o X | k; € Z}

span, {xléo x’fl” | at least one k; > 0}

as required.

Part (iii). We will use the long exact sequence associated to a short exact sequence of sheaves and
use induction on the dimension n. First, observe that [P’,’C’_1 is isomorphic to the closed subscheme
V(xo) C PR Leti : PE~' — P} be the inclusion. Recall that Op;(z(—l) = L(—H) where H = V(x).
By a result on the example sheets, we obtain the ideal sheaf sequence

0 — Opp(-1) — Opp —> L.Opp1 —> 0

where the map Opﬁ(—l) — Opn is given by multiplication by x,. This is analogous to the fact that
for an ideal I of a ring A, we have a short exact sequence

0—>I —3>A—34 —0

We obtain an associated long exact sequence for the homology. Assuming the result for dimension
up to n — 1, we can break this into three smaller exact sequences.

0 = HOPLF) 33 HOPY, F) — HO(P™Y, Fpp1) — HA(PY, ) X H(@PLF) =0 (a)

where Fpn-1 = By, Opn-1(d);

0 — HP(PEF) —2% HP(PLF) — 0 (b)
forl1< p<n-—1;and

0 = H" (P, F) =% H'U(PRF) = H L PL Fppr) = HYPLF) =3 H'(PLF) — 0
©

By using (a) and (c), we observe that (b) is also exact for p = 1 and p = n — 1 by explicit computation
in the Cech complex. Now, multiplication by x, makes HP(P?, ¥) into a k[x,]-module. We will

calculate the localisation HP(P?, ¥ )xo. As localisation is exact, HP(P?, ¥ )x0 = HP(UO, F |Uo)' But
the right-hand side vanishes for p > 0 as U is affine. Hence, for any « € HP(P}, ¥), there exists
k such that xlgoc = 0. But multiplication by x, is an isomorphism on cohomology by (b), so in fact
HP(PE,F)=0foralll<p<n-—1. O

Given the exact sequence

0 — Opp(=1) —> Opp — 1. Opp1 —> 0
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taking the tensor product with Opyp (d), one can show that we obtain an exact sequence
0 — Opp(d —1) — Opp(d) —> i*OPﬁ_l(d) — 0

Note that Opﬁ(d) is locally free.
Let X be proper over Spec k and let F be a coherent sheaf on X.

Remark. (i) We have observed that H°(X, ¥) is a finite-dimensional k-vector space. The same
holds for all HP(X, F).

(ii) If X has dimension n, then HP(X, F) vanishes for p > n. Thus, given (X, F), there are finitely
many numbers hP (X, F) = dim;, HP(X, F).

Definition. The Euler characteristic of F is

X(F) = D (~1PhP(X, F)
p=0

Suppose that
0 > F > F' > F > 0

is an exact sequence of such sheaves. Then the associated long exact sequence gives

X(F) = x(F) + x(F")

7.3 Choice of cover

Given a Noetherian separated scheme X, a quasi-coherent sheaf 7 on X, and an open affine cover U
which we typically take to be finite, we can construct the Cech cohomology H:(U, ). In this subsec-
tion, we show that the Cech cohomology is independent of the choice of cover in this case.

Theorem. Let X be affine and let # be quasi-coherent. For any finite cover U of X by affine
opens, the groups H(U, F) vanish for i > 0.

Proof. Define the ‘sheafified’ Cech complex as follows.

e = [ i s—f(
fp<-++<ip Uip...ip

wherei : U;, . i, > Xis the inclusion. Then the CP(¥F) are quasi-coherent sheaves. By taking global
sections,
I'(X, CP(F)) = CP(F)

where CP(¥) is the usual group of Cech p-cochains. The same formula used to build the Cech com-
plex gives differentials
CP(F) — CPHL(F)

as a morphism of sheaves. We intend to show that the usual Cech complex

CoU(F) — CU(F) — CHF) — -
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is exact. By a result on the example sheet, on affines, taking local sections preserves exactness. Thus,
it suffices to prove that

COF) — CYF) — C¥F) — -

is an exact sequence of sheaves. However, the exactness of this sequence can be checked locally on
stalks. Let g € X, and suppose q € U;. Now define the map on stalks « : eh(F) — G,’;_l(}" ), where
for a cochain a, the (i ... i,_; )-component of k() is equal to the (jij ... i,_1)-component of a, where
by convention if jij ... i,_; is not in increasing order, but o € Sp,,; brings it into increasing order and
o has sign —1, we instead take the negation of the component. By direct calculation, one can show
that dx + xd = id on CP for all p.

We can now verify exactness at each stalk. We know that im(CP~! — @P) C ker(GP — CP*1).
Conversely, if ¢ € ker(CP — CP*1), then

a = (xd + dx)(a) = d(xa) € im(CP~! — @P)

Lemma. Let X be a scheme and let ¥ be a quasi-coherent sheaf on X. Let U = {U), ..., Uy}
and U = {Uy, ..., Uy}. That H'(U, F) and H'(U, F) are naturally isomorphic.

Proof sketch. Let CP(F) and CP(¥) be the cochain groups for U, U respectively. There are maps
CP(F) — CP(¥) given by dropping the U, data. To make this precise, observe that & € CP(¥) can be
viewed as a pair (a, ap) where a € CP(F) and «, in CP~! for the sheaf F |U0 with open cover 7,(|U0.

These maps commute with the differentials, so we have an induced map H{(U, ) — H!(U, F). By
reducing to a calculation on the affine Uy, we can deduce using the previous result that this induced
map is surjective and injective. O

Corollary. H'(U, ¥) is independent of the choice of U.

Proof. If U, U are two finite open covers by affines, we can interpolate between them by using U U U
and use the previous result. O

7.4 Further topics in cohomology

(i) Let Xy C P} be the vanishing locus of a homogeneous polynomial fy of degree d # 2. Then
Xy is not isomorphic to a product over Spec k of schemes of dimension 1. Conversely, X, can
be isomorphic to IP’}{ Xspeck IP}{, using the Segre embedding. This is a consequence of the sheaf
Kiinneth formula, and in particular, the fact that hl(Xd, Ox d) =0.

(ii) The different X; are non-isomorphic as schemes. This follows from calculating y(X).

(iii) One next direction in cohomology is duality theory. Given a closed immersioni : Z C X, the
ideal sheaf I is the kernel of the map i* : Ox — Oz, which is a coherent sheaf on X. The
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conormal sheaf to the closed immersion i, denoted N  , is given by i* Iz, ), where I% is the
X 1z

sheafification of the presheaf U + I,(U)?. If X — S is separated, then the cotangent sheaf is

Qx, =N}
X/s AX/S

A scheme X over Speck is called nonsingular if Qx is locally free. The dualising sheaf wy is
the sheafification of U — /\dlmX Qx(0).

Theorem (Serre duality). If X is as above and has dimension n, then if F is a locally
free Ox-module, there is an isomorphism of cohomology groups

H{(X,F) - H1(C,FY @ wx)V

where
.l)fv = Homox(f, OX)
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