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1 Mathematical background
1.1 Motivation
In classical computation, the elementary unit of information is the bit, which takes a value in {0, 1}.
This gives the result of a single binary decision problem, where the zero and one correspond to differ-
ent answers to the problem. Binary strings of length greater than one are used to provide more than
2 answers to a problem; if we have 𝑛 bits, we can encode 2𝑛 different messages.
Classical computation is understood to be the processing of information: taking an initial bit string
and and updating it by a prescribed sequence of steps. The steps are taken to be the action of local
Boolean logic gates, such as conjunction, disjunction, or negation. At each step, a small number of
bits in prescribed locations are edited.

Information in the real world must be tied to a physical representation. For example, bits in a pro-
cessor are often represented by different voltages of specific components. Importantly, there is no
informationwithout representation. Performing a computation classicallymust therefore involve the
evolution of a physical system over time, which is coverned by the laws of classical physics.

However, nature does not abide by classical physics at subatomic levels, and we must use quantum
mechanics to accurately model such behaviours. One such behaviour modelled by quantum mech-
anics is the superposition principle, that the corresponding quantum analog of the bit need not be
in precisely one state. Quantum entanglement is the phenomenon where particles can be linked
in such a way that their states can be manipulated even at a distance. Quantum measurement is
probabilistic and alters the underlying system.

Quantum information and computation therefore exploits these features of quantum mechanics to
address issues of information storage, communication, computation, and cryptography. The features
of quantum mechanics seem to allow us benefits which are beyond the limits of classical informa-
tion and computation, even in principle. Note that a quantum computer cannot perform any task
that cannot in principle be performed classically. We only hope that quantum techniques allow a
reduction in the complexity of certain algorithms.

1.2 Benefits of quantum information and computation
In complexity theory, we study the hardness of a certain computational task. One must consider the
resources required for the task; which in classical computation are normally limited to time (meas-
ured in number of computational steps) and space (amount of memory required).

If an algorithm takes time bounded by a polynomial function in the input size 𝑛, we say the al-
gorithm is polynomial-time. Otherwise, we say it is an exponential-time algorithm. Polynomial-
time algorithms are typically taken to be computable in practice, but exponential-time algorithms
are usually considered only computable in principle. Quantum mechanical techniques can provide
polynomial-time algorithms that have only exponential-time classical versions. One example is Shor’s
integer factorisation algorithm.

Quantum states of physical sytems can be used to encode information, such as spin states of electrons.
There are certain tasks possible with such quantum states which are impossible in classical physics;
one example is quantum teleportation.

There are also some technological issues with classical physics. Components of processors have be-
come minified to atomic scale, and therefore they cannot be shrunk much further without dealing
with the effects of quantummechanics. Conversely, there are technological challengeswith quantum
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physics. Quantum systems are very fragile, and modern quantum computers typically require tem-
peratures close to absolute zero to reduce noise.

Quantumsupremacy refers to the hypotheticalmoment atwhich a programmable quantumcomputer
can first solve a problem in practice that a classical computer cannot. At the time of writing, there is
no concensus that quantum supremacy has been achieved.

1.3 Hilbert spaces
Every quantum mechanical system is associated with a Hilbert space 𝒱, a complex inner product
space that is a complete metric space with respect to the distance function induced by the inner
product. We use Dirac’s bra-ket notation: a vector is represented by |𝑣⟩ ∈ 𝒱, and its conjugate trans-
pose is denoted ⟨𝑣| ∈ 𝒱⋆. If 𝒱 = ℂ𝑛, we write

|𝜓⟩ = (
𝑎1
⋮
𝑎𝑛
) ; ⟨𝜓| = (𝑎⋆

1 ⋯ 𝑎⋆
𝑛)

The inner product of 𝜓 and 𝜙 is written ⟨𝜓|𝜙⟩. Recall that an inner product satisfies
• ⟨𝜓|𝜓⟩ ≥ 0, and equal to zero if and only if |𝜓⟩ = 0;
• linearity in the second argument, so ⟨𝜓|𝑎𝜙1 + 𝑏𝜙2⟩ = 𝑎 ⟨𝜓|𝜙1⟩ + 𝑏 ⟨𝜓|𝜙2⟩;
• antilinearity in the first argument, so ⟨𝑎𝜓1 + 𝑏𝜓2|𝜙⟩ = 𝑎⋆ ⟨𝜓1|𝜙⟩ + 𝑏⋆ ⟨𝜓2|𝜙⟩;
• skew-symmetry, so ⟨𝜓|𝜙⟩⋆ = ⟨𝜙|𝜓⟩;

and induces a norm ‖𝜓‖ = ‖|𝜓⟩‖ = √⟨𝜓|𝜓⟩. In this course, we will often consider 𝒱 = ℂ2 and
define

|0⟩ = (10) ; |1⟩ = (01)

For an arbitrary |𝑣⟩ ∈ ℂ2, we can write |𝑣⟩ = 𝑎 |0⟩ + 𝑏 |1⟩, giving

|𝑣⟩ = (𝑎𝑏) ; ⟨𝑣| = (𝑎⋆ 𝑏⋆)

If |𝑤⟩ = 𝑐 |0⟩ + 𝑑 |1⟩, then ⟨𝑣|𝑤⟩ = 𝑎⋆𝑐 + 𝑏⋆𝑑.
We can also compute the outer product of two vectors, defined to be |𝜓⟩⟨𝜙|. If 𝒱 = ℂ𝑛, the outer
product is an 𝑛 × 𝑛 matrix. An orthonormal basis (|𝑖⟩)𝑛𝑖=1 for 𝒱 is called complete if∑𝑛

𝑖=1 |𝑖⟩⟨𝑖| is the
identity matrix.

If 𝒱 has a complete orthonormal basis, we can write |𝜓⟩ = ∑𝑛
𝑖=1 𝑐𝑖 |𝑖⟩ for some 𝑐𝑖. If ⟨𝜓|𝜓⟩ = 1, we

say |𝜓⟩ is normalised. In this case,∑|𝑐𝑖|
2 = 1, and the |𝑐𝑖|

2 form a discrete probability distribution.
We call the 𝑐𝑖 the probability amplitudes.
Let 𝒱,𝒲 be vector spaces, where dim𝒱 = 𝑛, dim𝒲 = 𝑚. Let |𝑣⟩ ∈ 𝒱, |𝑤⟩ ∈ 𝒲. Suppose |𝑣⟩ =
(𝑎1 ⋯ 𝑎𝑛)

⊺, and |𝑤⟩ = (𝑏1 ⋯ 𝑏𝑚)
⊺. Then, |𝑣⟩⊗|𝑤⟩ is the tensor product of |𝑣⟩ and |𝑤⟩, defined
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by

|𝑣⟩ ⊗ |𝑤⟩ =

⎛
⎜
⎜
⎜
⎜
⎝

𝑎1𝑏1
⋮

𝑎1𝑏𝑚
𝑎2𝑏1
⋮

𝑎𝑛𝑏𝑚

⎞
⎟
⎟
⎟
⎟
⎠

∈ 𝒱 ⊗𝒲

If (|𝑒𝑖⟩)
𝑛
𝑖=1 is a complete orthonormal basis for 𝒱 and (||𝑓𝑗⟩)

𝑚
𝑗=1 is a complete orthonormal basis for

𝒲, then (|𝑒𝑖⟩ ⊗ ||𝑓𝑗⟩)
𝑛,𝑚
𝑖,𝑗=1 is a complete orthonormal basis for 𝒱 ⊗𝒲. We sometimes write |𝑣⟩ ⊗ |𝑤⟩

as |𝑣⟩ |𝑤⟩ or |𝑣𝑤⟩.
If |𝛼⟩ ∈ 𝒱, we can write |𝛼⟩ = ∑𝑎𝑖 |𝑒𝑖⟩, and similarly if |𝛽⟩ ∈ 𝒲, we can write |𝛽⟩ = ∑𝑏𝑗 ||𝑓𝑗⟩. Then,
|𝛼𝛽⟩ = ∑𝑎𝑖𝑐𝑗 ||𝑒𝑖𝑓𝑗⟩.
We say |Ψ⟩ ∈ 𝒱 ⊗𝒲 is a product vector if |Ψ⟩ = |𝜓⟩ ⊗ |𝜙⟩ for some 𝜓, 𝜙. Vectors that are not product
vectors are called entangled vectors.

Let 𝒱 = ℂ2 = 𝒲. Define |𝜙+⟩ = 1
√2
(|00⟩ + |11⟩). Suppose |𝜙+⟩ = |𝜓⟩ ⊗ |𝜙⟩ = (𝑎 |0⟩ + 𝑏 |1⟩) ⊗ (𝑐 |0⟩ +

𝑑 |1⟩). Then, |𝜙+⟩ = 𝑎𝑐 |00⟩+𝑎𝑑 |01⟩+𝑏𝑐 |10⟩+𝑏𝑑 |11⟩. So one of 𝑎 and 𝑑, and one of 𝑏 and 𝑐 is equal
to zero, contradicting the assumption, so |𝜙+⟩ is entangled.
We define the inner product on the product space by defining

⟨𝜙1|𝜓2⟩ = (⟨𝛼1| ⟨𝛽1|)(|𝛽2⟩ |𝛼2⟩) = ⟨𝛼1|𝛼2⟩ ⟨𝛽1|𝛽2⟩

where |𝜓𝑖⟩ = |𝛼𝑖⟩ |𝛽𝑖⟩. In the general case, |𝐴⟩ = ∑𝑎𝑖𝑗 |𝑒𝑖⟩ ||𝑓𝑗⟩ , |𝐵⟩ = ∑𝑏𝑖𝑗 |𝑒𝑖⟩ ||𝑓𝑗⟩, andwedefine

⟨𝐴|𝐵⟩ = (∑𝑎⋆
𝑖𝑗 ⟨𝑒𝑖| ⟨𝑓𝑗 ||)(∑𝑏𝑖𝑗 |𝑒𝑖⟩ ||𝑓𝑗⟩) = ∑𝑎⋆

𝑖𝑗𝑏𝑖𝑗𝛿𝑖𝑖′𝛿𝑗𝑗′ = ∑𝑎⋆
𝑖𝑗𝑏𝑖𝑗

where 𝛿 is the Kronecker 𝛿 symbol.
We define the 𝑘-fold tensor power of a vector space 𝒱 by

𝒱⊗𝑛 = 𝒱 ⊗⋯⊗𝒱⏟⎵⎵⏟⎵⎵⏟
𝑛 times

If 𝒱 = ℂ2, this has dimension 2𝑘, and complete orthonormal basis |𝑖1…𝑖𝑘⟩ for 𝑖𝑗 ∈ {0, 1}. Note that
|𝑣⟩ |𝑤⟩ ≠ |𝑤⟩ |𝑣⟩.

1.4 First postulate: quantum states
In this course, we will restrict our attention to finite-dimensional vector spaces, and finite time evol-
ution. We describe the postulates for quantum mechanics that we will work under.

The first postulate is that, given an isolated quantummechanical system 𝑆, we can associate a finite-
dimensional vector space 𝒱. The physical state of the system is given by a unit vector |𝜓⟩ in 𝒱. More
precisely, the state is given by a ray, an equivalence class of vectors 𝑒𝑖𝜃 |𝜓⟩ for 𝜃 ∈ ℝ. No meas-
urements can distinguish states in a given equivalence class. Note that states 𝑎 |𝜓1⟩ + 𝑏 |𝜓2⟩ and
𝑎 |𝜓1⟩ + 𝑏𝑒𝑖𝜃 |𝜓2⟩ can be distinguished by measurement, since the phase difference is relative, not
global.
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Example. Let 𝒱 = ℂ2 with (complete orthonormal) basis |0⟩ , |1⟩. The elementary unit of quantum
information is known as the qubit, which is any quantum system with 𝒱 = ℂ2. The spin of an
electron, which is some superposition of spin-up and spin-down, can be modelled by ℂ2. A property
of the polarisation of a photon, such as vertical or horizontal, or right-circular or left-circular, can
also be modelled in this way.

Define |+⟩ = 1
√2
(|0⟩ + |1⟩) and |−⟩ = 1

√2
(|0⟩ − |1⟩). This is another complete orthonormal basis for

𝒱, sometimes called the conjugate basis.

1.5 Second postulate: composite systems
The second postulate of quantum mechanics is that two quantum systems 𝑆1, 𝑆2 with associated
vector spaces 𝒱1, 𝒱2 can be composed into the composite system with vector space 𝒱1 ⊗𝒱2.
Example. Consider𝒱⊗𝑛, the space of 𝑛 qubits. An orthonormal basis is |𝑖1…𝑖𝑛⟩where 𝑖𝑗 ∈ {0, 1}. A
vector in 𝒱⊗𝑛 can be written∑𝑎𝑖1…𝑖𝑛 |𝑖1…𝑖𝑛⟩. There are 2𝑛 different amplitudes 𝑎𝑖1…𝑖𝑛 , providing
exponential growth in information. However, in a product state, we obtain only linear growth in
information.

1.6 Observables
An observable is a property of a physical system which can, in theory, be measured. Mathematically,
these are modelled by linear self-adjoint (or Hermitian) operators.

The action of a linear operator𝐴 on a state space𝒱 is awritten𝐴 |𝜓⟩. By linearity, wehave𝐴(𝑎 |𝜓⟩ + 𝑏 |𝜙⟩) =
𝑎𝐴 |𝜓⟩ + 𝑏𝐴 |𝜙⟩ for 𝑎, 𝑏 ∈ ℂ. For any operator 𝐴 acting on 𝒱, there is a unique linear operator 𝐴†
such that ⟨𝑣|𝐴𝑤⟩ = ⟨𝐴†𝑣||𝑤⟩, called the adjoint of 𝐴; operators equal to their adjoints are called self-
adjoint.

We can easily show that (𝐴𝐵)† = 𝐵†𝐴†. By convention, we define |𝜓⟩† = ⟨𝜓|, so for a self-adjoint
operator 𝐴, we have (𝐴 |𝜓⟩)† = ⟨𝜓| 𝐴. There are four important operators which act on the single-
qubit space ℂ2.

𝜎0 = (1 0
0 1) ; 𝜎𝑥 = (0 1

1 0) ; 𝜎𝑦 = (0 −𝑖
𝑖 0 ) ; 𝜎𝑧 = (1 0

0 −1)

𝜎0 is the identity matrix, and 𝜎𝑥, 𝜎𝑦, 𝜎𝑧 are called the Pauli matrices. The actions of these matrices on
the basis vectors |0⟩ and |1⟩ are

𝜎0 |0⟩ = |0⟩ ; 𝜎0 |1⟩ = |1⟩ ; 𝜎𝑥 |0⟩ = |1⟩ ; 𝜎𝑥 |1⟩ = |0⟩ ;

𝜎𝑦 |0⟩ = 𝑖 |1⟩ ; 𝜎𝑦 |1⟩ = −𝑖 |0⟩ ; 𝜎𝑧 |0⟩ = |0⟩ ; 𝜎𝑧 |1⟩ = − |1⟩
Note that

𝜎𝑥𝜎𝑦 = 𝑖𝜎𝑧; 𝜎𝑦𝜎𝑧 = 𝑖𝜎𝑥; 𝜎𝑧𝜎𝑥 = 𝑖𝜎𝑦
Intuitively, 𝜎𝑥 is a bit flip, 𝜎𝑦 is a phase flip, and 𝜎𝑧 is a combined bit and phase flip.

1.7 Dirac notation for linear operators
Let |𝑣⟩ = 𝑎 |0⟩ + 𝑏 |1⟩, and |𝑤⟩ = 𝑐 |0⟩ + 𝑑 |1⟩. The outer product is

𝑀 = |𝑣⟩⟨𝑤| = (𝑎𝑏) (𝑐
⋆ 𝑑⋆) = (𝑎𝑐

⋆ 𝑎𝑑⋆

𝑏𝑐⋆ 𝑏𝑑⋆)
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which is a linear map on 𝒱 = ℂ2. One can show that 𝑀 |𝑥⟩ = (|𝑣⟩⟨𝑤|) |𝑥⟩ = |𝑣⟩ ⟨𝑤|𝑥⟩, which is the
scalar product of the vector |𝑣⟩ with the inner product ⟨𝑤|𝑥⟩. Such outer products yield the linear
maps from ℂ2 to ℂ2 that have rank 1, and the kernel of 𝑀 is the subspace of vectors orthogonal to
|𝑤⟩. Note that

|0⟩⟨0| = (1 0
0 0) ; |0⟩⟨1| = (0 1

0 0) ; |1⟩⟨0| = (0 0
1 0) ; |1⟩⟨1| = (0 0

0 1)

Hence, we can write

𝐴 = (𝑎 𝑏
𝑐 𝑑) ⟹ 𝐴 = 𝑎 |0⟩⟨0| + 𝑏 |0⟩⟨1| + 𝑐 |1⟩⟨0| + 𝑑 |1⟩⟨1|

In particular, |0⟩⟨0| , |0⟩⟨1| , |1⟩⟨0| , |1⟩⟨1| forms a basis for the vector space 𝒱 ⊗ 𝒱⋆ of linear maps on 𝒱.
Note also that ⟨𝑤|𝑣⟩ = Tr |𝑣⟩⟨𝑤|.

1.8 Projection operators
Suppose that |𝑣⟩ is a normalised vector, so ⟨𝑣|𝑣⟩ = 1. Then,Π𝑣 = |𝑣⟩⟨𝑣| is the projection operator onto
𝑣, satisfying Π𝑣Π𝑣 = Π𝑣 and Π†

𝑣 = Π𝑣. In Dirac notation, one can see that

Π𝑣Π𝑣 = |𝑣⟩⟨𝑣| |𝑣⟩⟨𝑣| = |𝑣⟩ ⟨𝑣|𝑣⟩ ⟨𝑣| = |𝑣⟩⟨𝑣| = Π𝑣

If |𝑎⟩ is orthogonal to |𝑣⟩, then Π𝑣 |𝑎⟩ = |𝑣⟩ ⟨𝑣|𝑎⟩ = 0. Therefore, Π𝑣 |𝑥⟩ is the vector obtained by
projection of |𝑥⟩ onto the one-dimensional subspace of 𝒱 spanned by |𝑣⟩.
Now suppose ℰ is any linear subspace of some vector space 𝒱, and |𝑒1⟩ ,… , |𝑒𝑑⟩ is any orthonormal
basis of ℰ. Then,

Πℰ = |𝑒1⟩⟨𝑒1| + ⋯ + |𝑒𝑑⟩⟨𝑒𝑑|
is the projection operator into ℰ. This property can be checked by extending |𝑒1⟩ ,… , |𝑒𝑑⟩ into an
orthonormal basis of 𝒱.
Note that if |𝑥⟩ = 𝐴 |𝑣⟩, then ⟨𝑥| = (𝐴 |𝑣⟩)† = |𝑣⟩† 𝐴† = ⟨𝑣| 𝐴†. Therefore, when constructing inner
products, we can write ⟨𝑎|𝑀|𝑏⟩ as ⟨𝑎|𝑥⟩ or ⟨𝑦|𝑏⟩ where |𝑥⟩ = 𝑀 |𝑏⟩ or |𝑦⟩ = 𝑀† |𝑎⟩ (so that we have
⟨𝑦| = ⟨𝑎|𝑀).

1.9 Tensor products of linear maps
Suppose 𝐴, 𝐵 are linear maps ℂ2 → ℂ2. Then, we define 𝐴⊗𝐵∶ ℂ2⊗ℂ2 → ℂ2⊗ℂ2 by its action on
the basis (𝐴 ⊗ 𝐵) |𝑖⟩ |𝑗⟩ = 𝐴 |𝑖⟩ 𝐵 |𝑗⟩. In particular, for product vectors we obtain (𝐴 ⊗ 𝐵)(|𝑣⟩ |𝑤⟩) =
𝐴 |𝑣⟩ ⊗ 𝐵 |𝑤⟩.
The 4×4matrix of components of𝐴⊗𝐵 has a simple block form, which can be seen by writing down
its action on basis states.

𝐴 = (𝑎 𝑏
𝑐 𝑑) ; 𝐵 = (𝑝 𝑞

𝑟 𝑠) ⟹ 𝐴⊗ 𝐵 = (𝑎𝐵 𝑏𝐵
𝑐𝐵 𝑑𝐵) =

⎛
⎜
⎜
⎝

𝑎𝑝 𝑎𝑞 𝑏𝑝 𝑏𝑞
𝑎𝑟 𝑎𝑠 𝑏𝑟 𝑏𝑠
𝑐𝑝 𝑐𝑞 𝑑𝑝 𝑑𝑞
𝑐𝑟 𝑐𝑠 𝑑𝑟 𝑑𝑠

⎞
⎟
⎟
⎠
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Note that 𝐴 ⊗ 𝐼 and 𝐼 ⊗ 𝐴 can be thought of as acting only on one of the subspaces. Consider
|Φ⟩ = 1

√2
(|00⟩ + |11⟩), and define 𝐴 as above. Then,

(𝐴 ⊗ 𝐼) |Φ⟩ = 1
√2

[(𝐴 |0⟩) |0⟩ + (𝐴 |1⟩) |1⟩]

= 1
√2

[(𝑎 |0⟩ + 𝑐 |1⟩) |0⟩ + (𝑏 |0⟩ + 𝑑 |1⟩) |1⟩]

= 1
√2

[𝑎 |00⟩ + 𝑏 |01⟩ + 𝑐 |10⟩ + 𝑑 |11⟩]

(𝐼 ⊗ 𝐴) |Φ⟩ = 1
√2

[|0⟩ (𝐴 |0⟩) + |1⟩ (𝐴 |1⟩)]

= 1
√2

[|0⟩ (𝑎 |0⟩ + 𝑐 |1⟩) + |1⟩ (𝑏 |0⟩ + 𝑑 |1⟩)]

= 1
√2

[𝑎 |00⟩ + 𝑐 |01⟩ + 𝑏 |10⟩ + 𝑑 |11⟩]

1.10 Third postulate: physical evolution of quantum systems
The third postulate of quantum mechanics is that any physical finite-time evolution of a closed
quantum system is represented by a unitary operation on the corresponding vector space of states.
Recall that the following are equivalent for a linear operator 𝑈 :

• 𝑈 is unitary, so 𝑈−1 = 𝑈†;

• 𝑈 maps an orthonormal basis to an orthonormal set of vectors;

• the columns (or rows) of 𝑈 form an orthonormal set of vectors.

If a system is in a state |𝜓(𝑡1)⟩ at a time 𝑡1 and later in a state |𝜓(𝑡2)⟩ at a time 𝑡2, then |𝜓(𝑡2)⟩ =
𝑈(𝑡1, 𝑡2) |𝜓(𝑡1)⟩ for some unitary map 𝑈(𝑡1, 𝑡2) which depends only on 𝑡1, 𝑡2. This operator is derived
from the Schrödinger equation, which is

𝑖ℏ 𝜕𝜕𝑡 |𝜓(𝑡)⟩ = 𝐻 |𝜓(𝑡)⟩

where𝐻 is a self-adjoint operator known as theHamiltonian. In particular, if𝐻 is time-independent,
we have

𝑈(𝑡1, 𝑡2) = 𝑒−
𝑖
ℏ𝐻(𝑡2−𝑡1)

In the more general case,
𝑈(𝑡1, 𝑡2) = 𝑒−

𝑖
ℏ ∫𝑡2𝑡1 𝐻(𝑡)d𝑡

The unitary evolution of a closed system is deterministic.

1.11 Partial inner products
A vector |𝑣⟩ ∈ 𝒱 defines a linear map 𝒱 ⊗𝒲 →𝒲 called the partial inner product with |𝑣⟩, defined
on the basis |𝑒𝑖⟩ ||𝑓𝑗⟩ of𝒱⊗𝒲 by |𝑒𝑖⟩ ||𝑓𝑗⟩ ↦ ⟨𝑣|𝑒𝑖⟩ ||𝑓𝑗⟩. Similarly, for any |𝑤⟩ ∈ 𝒲, we obtain a partial
inner product 𝒱 ⊗𝒲 → 𝒱. If 𝒱,𝒲 are isomorphic, we must specify which partial inner product is
intended.
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1.12 Fourth postulate: quantummeasurement
Consider a system 𝑆 with state space 𝒱, and let 𝐴 be an observable. 𝐴 can be written as its spectral
projection 𝐴 = ∑𝑘 𝑎𝑘𝑃𝑘 where 𝐴 |𝜑𝑘⟩ = 𝑎𝑘 |𝜑𝑘⟩. If 𝑎𝑘 is nondegenerate, 𝑃𝑘 = |𝜑𝑘⟩⟨𝜑𝑘|. If 𝑎𝑘 is
degenerate of multiplicity𝑚, then 𝑃𝑘 = ∑𝑚

𝑖=1 ||𝜑𝑖𝑘⟩⟨𝜑𝑖𝑘||.
The fourth postulate is that when an observable is measured, the resulting measurement will be an
eigenvalue 𝑎𝑗 , with probability 𝑝(𝑎𝑗) = ⟨𝜓|𝑃𝑗 |𝜓⟩. Then, |𝜓⟩ is replaced with the post-measurement
state

𝑃𝑗 |𝜓⟩

√𝑝(𝑎𝑗)

This is known as Born’s rule. Such a measurement is called a projective measurement (or some-
times a von Neumann measurement), since the post-measurement state is given by a projection oper-
ator.

Suppose𝐴, 𝐵 are operators that do not commute, so [𝐴, 𝐵] = 𝐴𝐵−𝐵𝐴 ≠ 0. Then, themeasurement of
𝐴will influence the outcome probabilities of a subsequent measurement of 𝐵. For instance, suppose
|𝜓⟩ = |+⟩ , 𝐴 = 𝜎𝑧, 𝐵 = 𝜎𝑥.

1.13 Complete and incomplete projective measurements
Let |𝜓⟩ ∈ 𝒱 be a state in a state space of dimension 𝑛. Let ℬ = {|𝑒𝑖⟩} be a set of 𝑛 orthogonal basis
vectors for 𝒱. Then |𝜓⟩ = ∑𝑎𝑗 ||𝑒𝑗⟩ where 𝑎𝑘 = ⟨𝑒𝑘|𝜓⟩. If the outcomes of a measurement are the
indices of the basis vectors 𝑗 = 1,… , 𝑛, we have 𝑝(𝑗) = ⟨𝜓|𝑃𝑗 |𝜓⟩ where 𝑃𝑗 = ||𝑒𝑗⟩⟨𝑒𝑗 ||. Therefore,
𝑝(𝑗) = ||⟨𝜓||𝑒𝑗⟩||

2 = ||𝑎𝑗 ||
2. If the outcome is 𝑗, the post-measurement state is

𝑃𝑗 |𝜓⟩
√𝑝(𝑗)

=
||𝑒𝑗⟩ ⟨𝑒𝑗 ||𝜓⟩
√𝑝(𝑗)

= ||𝑒𝑗⟩

Hence the state collapses to a basis vector. Taking another measurement immediately in the same
basis, we obtain the result 𝑗 with probability 1. Such a measurement is called a complete projective
measurement; it is called complete as all 𝑃𝑗 are of rank 1. When we measure a state |𝜓⟩ in a basis, it
is often helpful to consider an orthogonal decomposition of 𝒱 using the basis vectors.

Conversely, an incomplete projective measurement corresponds to an arbitrary orthogonal decom-
position of 𝒱. Consider a decomposition of 𝒱 into 𝑑 mutually orthogonal subspaces ℰ1,… , ℰ𝑑, so
𝒱 = ℰ1 ⊕⋯⊕ ℰ𝑑, and dim𝒱 = ∑ dimℰ𝑗 . Let Π𝑖 be a projection operator onto ℰ𝑖. Since the spaces
are mutually orthogonal, Π𝑖Π𝑗 = 𝛿𝑖𝑗Π𝑖. Consider a measurement with outcomes 1,… , 𝑑 represent-
ing a particular subspace. The probability of observing outcome 𝑖 is ⟨𝜓|Π𝑖|𝜓⟩. If the outcome is 𝑖, |𝜓⟩
is replaced with Π𝑖 |𝜓⟩

√𝑝(𝑖)
. In this case, the Π𝑖 are no longer rank 1 projection operators. If ℰ𝑖 has basis

{||𝑓𝑗⟩}, we can write Π𝑖 = ∑ ||𝑓𝑗⟩⟨𝑓𝑗 ||.
Incomplete projective measurement is a generalisation of complete projective measurement. One
can refine an incompletemeasurement into a completemeasurement by first considering a complete
measurement, and then summing the relevant outcome probabiilities to obtain a description of the

incomplete measurement probabilities. Let {||𝑒
(𝑗)
𝑘 ⟩}

𝑑𝑗

𝑘=1
be a basis for ℰ𝑗 for each 𝑗. Then𝒱 = ⨁𝑑

𝑖=1 ℰ𝑗
has orthonormal basis {||𝑒

(𝑗)
𝑘 ⟩}

𝑗,𝑘
. Then, ⟨𝑒(𝑘1)𝑖

||𝑒
(𝑘2)
𝑗 ⟩ = 𝛿𝑖𝑗𝛿𝑘1𝑘2 .
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Consider a two-bit string 𝑏1𝑏2. The parity of this string is 𝑏1⊕𝑏2, where⊕ represents additionmodulo
2. Consider the orthogonal decomposition of 𝒱 into ℰ0⊕ℰ1, where ℰ0 = span {|00⟩ , |11⟩} is the even
parity subspace, and ℰ1 = span {|01⟩ , |10⟩} is the odd parity subspace. The outcomes of an incomplete
measurement are then the labels 0 and 1 of the subspaces ℰ0 and ℰ1. Note that {|00⟩ , |01⟩ , |10⟩ , |11⟩}
is a complete orthonormal basis for 𝒱, so we can consider the complete projective measurement.
⟨𝜓|𝑃00|𝜓⟩ is the probability of outcome 00 for the complete measurement, where 𝑃00 = |00⟩⟨00|. For
the incomplete measurement, 𝑝(0) = ⟨𝜓|Π0|𝜓⟩ is the probability of outcome 0, whereΠ0 = 𝑃00+𝑃11.
So 𝑝(0) = ⟨𝜓|𝑃00|𝜓⟩ + ⟨𝜓|𝑃11|𝜓⟩.

1.14 Extended Born rule
Let 𝑆1, 𝑆2 be quantum systems with state spaces 𝒱,𝒲 with dimensions 𝑚, 𝑛, and we consider the
composite system 𝑆1𝑆2. Let {|𝑒𝑖⟩} be a complete orthonormal basis of 𝒱, and let {||𝑓𝑗⟩} be a complete
orthonormal basis of 𝒲. Suppose the composite system is in an initial state |𝜓⟩ = ∑𝑎𝑖𝑗 |𝑒𝑖⟩ ||𝑓𝑗⟩.
Suppose now that we want to measure |𝜓⟩ in the basis {|𝑒𝑖⟩}; this amounts to an incomplete meas-
urement with subspaces ℰ𝑖 = span {|𝑒𝑖⟩ ⊗ |𝜑⟩ ∣ |𝜑⟩ ∈ 𝒲} for 1 ≤ 𝑖 ≤ 𝑚. The outcomes of such a
measurement are {1,… ,𝑚}, and the ℰ𝑖 are mutually orthogonal. The probability of a given outcome
is 𝑝(𝑘) = ⟨𝜓|𝑃𝑘 ⊗ 𝐼|𝜓⟩, where 𝑃𝑘 = |𝑒𝑘⟩⟨𝑒𝑘|. Hence,

𝑝(𝑘) = (∑𝑎⋆
𝑖′𝑗′ ⟨𝑒′𝑖|| ⟨𝑓′𝑗 ||)(|𝑒𝑘⟩⟨𝑒𝑘| ⊗ 𝐼)(∑𝑎𝑖𝑗 |𝑒𝑖⟩ ||𝑓𝑗⟩) =

𝑛
∑
𝑗=1

𝑎⋆
𝑘𝑗𝑎𝑘𝑗

If the outcome is 𝑘, then the post-measurement state is given by

|𝜓after⟩ =
(𝑃𝑘 ⊗ 𝐼) |𝜓⟩

𝑝(𝑘) =
∑𝑗 𝑎𝑘𝑗 |𝑒𝑘⟩ ||𝑓𝑗⟩

√∑𝑗 ||𝑎𝑘𝑗 ||
2

Using partial inner products, one can show that |𝜓after⟩ is normalised. These rules are referred to as
the extended Born rule.

Consider a quantum system 𝑆 with state space 𝒱. A measurement relative to any basis 𝒞 can be
performed by first performing a unitary operator, then performing a measurement in a fixed basisℬ.
Let ℬ = {|𝑒𝑖⟩}, and 𝒞 = {||𝑒′𝑖⟩}. Let 𝑈 be a unitary operator such that ||𝑒′𝑖⟩ = 𝑈 |𝑒𝑖⟩. Then, 𝑈† = 𝑈−1

has the property that 𝑈−1 ||𝑒′𝑖⟩ = |𝑒𝑖⟩. Suppose we have a state |𝜓⟩ ∈ 𝒱. Let |𝜓⟩ = ∑𝑐𝑖 ||𝑒′𝑖⟩. Applying
𝑈−1 to |𝜓⟩, we obtain 𝑈−1 |𝜓⟩ = ∑𝑐𝑖 |𝑒𝑖⟩ by linearity. We can then measure |𝜓′⟩ = 𝑈−1 |𝜓⟩ in the
basisℬ. By the Born rule, 𝑝(𝑖) = ⟨𝜓′|𝑃𝑖|𝜓′⟩ = ⟨𝜓|𝑈𝑃𝑖𝑈† |𝜓⟩where 𝑃𝑖 = |𝑒𝑖⟩⟨𝑒𝑖|, as we are performing
a complete projective measurement. If the outcome is 𝑖, then the post-measurement state is ||𝜓′after⟩ =
𝑃𝑖 ||𝜓′⟩
𝑝(𝑖)

.

1.15 Standard measurement on multi-qubit systems
Consider a system of 𝑛 qubits. The state space is (ℂ2)⊗𝑛. The computational basis or standard basis is
ℬ = {|𝑖1…𝑖𝑛⟩ ∣ 𝑖𝑗 ∈ {0, 1}}. The labels of the elements of the standard basis are labelled by bit strings
of length 𝑛.
Suppose we are measuring a subset of 𝑘 qubits of the 𝑛-qubit system. Let 𝑛 = 3, and let

|𝜓⟩ = 𝑖
2 |000⟩ +

1 + 𝑖
2√2

|001⟩ − 1
2 |101⟩ +

3
10 |110⟩ −

2𝑖
5 |111⟩
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The standard measurement of any of the three qubits will always have the outcome zero or one.
Suppose we perform a standard measurement on the first qubit. By the extended Born rule, we
obtain

𝑝(1)(1) = ⟨𝜓| 𝑃1 ⊗ 𝐼 ⊗ 𝐼 |𝜓⟩ = ⟨𝜓| (|1⟩⟨1| ⊗ 𝐼 ⊗ 𝐼) |𝜓⟩ = 1
4 +

9
100 +

4
25 =

1
2

If we measure the outcome 1, the post-measurement state is |𝜓after⟩ =
(𝑃1⊗𝐼⊗𝐼)|𝜓⟩

√𝑝(1)(1)
.

1.16 Reliably distinguishing states
Note that the measurement postulate implies that states with guaranteed (with probability 1) differ-
ent measurement outcomes always lie in mutually orthogonal subspaces. We say that two states are
reliably distinguishable if there exists ameasurement which outputs two distinct outcomes with prob-
ability 1 when applied to the two states. Therefore, two states |𝜓⟩ , |𝜑⟩ are reliably distinguishable if
and only if they are orthogonal, so ⟨𝜓|𝜑⟩ = 0.
Let |𝜓⟩ and |𝜑⟩ be orthogonal. Let ℬ = {|𝜓⟩ , |𝑓1⟩ ,… , |𝑓𝑚−1⟩} be a complete orthonormal basis for 𝒱.
Then ⟨𝜓||𝑓𝑗⟩ = 0 and ⟨𝑓𝑗 ||𝑓𝑘⟩ = 𝛿𝑗𝑘. Measuring |𝜓⟩ in this basis, 𝑝(1) = ⟨𝜓| 𝑃1 |𝜓⟩ where 𝑃1 = |𝜓⟩⟨𝜓|,
so the probability is 1. Measuring |𝜑⟩ in this basis, 𝑝(1) = ⟨𝜓|𝜑⟩ ⟨𝜑|𝜓⟩ = 0. This is an example of a
measurement which can reliably distinguish |𝜓⟩ and |𝜑⟩.
Vectors |𝑣⟩ = |𝜓⟩ and |𝑣′⟩ = 𝑒𝑖𝜃 |𝜓⟩ are not distinguishable. For any measurement, the probability
of obtaining a particular outcome when measuring |𝑣⟩ is always the same as the probability when
measuring |𝑣′⟩.

2 Quantum states as information carriers
2.1 Using higher Hilbert spaces
Quantum information is encoded in the states of a quantum system. Classical information is en-
coded in states chosen from an orthonormal set, since all distinct classical messages can be distin-
guished. Given a quantum system 𝑆 and a quantum state |𝜓⟩, we can perform this sequence of oper-
ations.

• (ancilla) Consider an auxiliary system 𝐴 in a fixed state |𝐴⟩ ∈ 𝒱𝐴. The composite system 𝑆𝐴
has vector space 𝒱𝑆 ⊗ 𝒱𝐴. The initial joint state is |𝜓⟩ |𝐴⟩. This results in an embedding of
quantum information in a higher dimensional space.

• (unitary) Consider the action of a unitary operator 𝑈 on 𝑆𝐴 (or on 𝑆), modelling the time
evolution of the quantum system.

• (measure) We can performmeasurements on 𝑆𝐴 (or on 𝑆). The post-measurement state of 𝑆 is
retained, and the auxiliary system 𝐴 is discarded.

This process is sometimes known as ‘going to the church of the higher Hilbert space’. The presence
of the ancilla allows for entanglement with other quantum systems.

2.2 No-cloning theorem
Classically, information can be easily copied by measuring all relevant information and reproducing
it. Quantum copying involves three systems:
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• a system 𝐴 containing some quantum information to be copied;

• a system 𝐵 with 𝒱𝐵 ≃ 𝒱𝐴 initially in some fixed state |0⟩where the information is to be copied;
• a system 𝑀 which represents any physical machinery in some ‘ready’ state |𝑀0⟩ required for
performing the copy.

The initial state of this composite system𝐴𝐵𝑀 is |𝜓⟩ |0⟩ |𝑀0⟩. Note that the |𝜓⟩ and |0⟩ |𝑀0⟩ are uncor-
related in this state, as we are using the tensor product to combine them. Suppose that the cloning
process is performed using some unitary operator 𝑈 , so 𝑈 |𝜓𝐴⟩ |0⟩ |𝑀0⟩ = |𝜓𝐴⟩ |𝜓𝐵⟩ ||𝑀𝜓⟩. This clon-
ing process may be required to work either for all states of 𝐴, or for some subset of 𝐴.

Theorem. Let 𝒮 be any set of states of the system 𝐴 that contains at least one pair of distinct
non-orthogonal states. Then there does not exist any unitary operator𝑈 that clones all states
in 𝒮.

Proof. Let |𝜉⟩ , |𝜂⟩ be distinct non-orthogonal states in𝒮, so ⟨𝜉|𝜂⟩ ≠ 0. Suppose such aunitary operator
𝑈 exists. Then, we must have

𝑈 |𝜉𝐴⟩ |0𝐵⟩ |𝑀0⟩ = |𝜉𝐴⟩ |𝜉𝐵⟩ ||𝑀𝜉⟩ ; 𝑈 |𝜂𝐴⟩ |0𝐵⟩ |𝑀0⟩ = |𝜂𝐴⟩ |𝜂𝐵⟩ ||𝑀𝜂⟩

Unitary operators preserve inner products. Hence,

⟨𝜉𝐴|𝜂𝐴⟩ ⟨0𝐵|0𝐵⟩ ⟨𝑀0|𝑀0⟩ = ⟨𝜉𝐴|𝜂𝐴⟩ ⟨𝜉𝐵|𝜂𝐵⟩ ⟨𝑀𝜉||𝑀𝜂⟩

Hence, ⟨𝜉|𝜂⟩ = (⟨𝜉|𝜂⟩)2 ⟨𝑀𝜉||𝑀𝜂⟩. By taking the absolute value, |⟨𝜉|𝜂⟩| = |⟨𝜉|𝜂⟩|2||⟨𝑀𝜉||𝑀𝜂⟩||. Since
𝜉 ≠ 𝜂, we must have 0 < |⟨𝜉|𝜂⟩| < 1, and 0 ≤ ||⟨𝑀𝜉||𝑀𝜂⟩|| ≤ 1. Therefore, 1 = |⟨𝜉|𝜂⟩|||⟨𝑀𝜉||𝑀𝜂⟩|| < 1,
which is a contradiction.

If quantum cloning were possible, superluminal (indeed, instantaneous) communication would also
be possible. Suppose we have a state ||𝜓+𝐴𝐵⟩ =

1
√2
(|00⟩ + |11⟩) ∈ ℂ2 ⊗ ℂ2. Let 𝐴, 𝐵 be the entangled

parts of this quantum state, and suppose that we send qubit 𝐴 to Alice and 𝐵 to Bob, far apart from
each other.

If we want to send the bit ‘yes’ fromAlice to Bob, wemeasure the qubit𝐴 in the basis {|0⟩ , |1⟩}, which
gives outcomes 0, 1with probability 1

2
. If the outcome is 0, the final state of𝐵 is |0⟩, and if the outcome

is 1, the final state of 𝐵 is |1⟩. If we want to send ‘no’, we instead measure 𝐴 in the basis {|+⟩ , |−⟩},
which gives the outcomes +,− with probability 1

2
. Similarly, the final state of 𝐵 is |+⟩ or |−⟩.

We claim that these ‘yes’ (|0⟩ , |1⟩) and ‘no’ (|+⟩ , |−⟩) preparations of qubit 𝐵 are indistinguishable by
Bob with any local action on the qubit. That is, they each give exactly the same probability distribu-
tion of outcomes of any measurement. In fact, the distribution matches the prior distribution before
qubit 𝐴 was measured.

LetΠ𝑖 be the projection operator for outcome 𝑖 on qubit 𝐵. Suppose that ‘yes’ was sent. Then,

𝑝yes(𝑖) =
1
2 ⟨0|Π𝑖|0⟩ +

1
2 ⟨1|Π𝑖|1⟩ =

1
2 Tr [Π𝑖(|0⟩⟨0| + |1⟩⟨1|)] = 1

2 TrΠ𝑖

In the ‘no’ case,

𝑝no(𝑖) =
1
2 ⟨+|Π𝑖|+⟩ +

1
2 ⟨−|Π𝑖|−⟩ =

1
2 Tr [Π𝑖(|+⟩⟨+| + |−⟩⟨−|)] = 1

2 TrΠ𝑖
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These probability distributions match.

Suppose that cloning were possible. We clone the qubit 𝐵 multiple times after the message was sent,
to produce one of the states |0⟩… |0⟩ , |1⟩… |1⟩ , |+⟩… |+⟩ , |−⟩… |−⟩. We now measure each qubit in
the basis |0⟩ , |1⟩ separately. If the ‘yes’ message was sent, all measurements will result in 0 or 1. If ‘no’
was sent, it is possible that twomeasurements would differ. In expectation, half of themeasurements
would result in the outcome 0 and half would result in the outcome 1. Therefore, the ‘yes’ and ‘no’
errors can be distinguished with probability of error 2−𝑁+1 if we make 𝑁 copies of 𝐵.

2.3 Distinguishing non-orthogonal states
Suppose you know a state |𝜓⟩ has state |𝛼0⟩ or |𝛼1⟩ with probability

1
2
, where ⟨𝛼0|𝛼1⟩ ≠ 0. Since the

states are non-orthogonal, we cannot perfectly distinguish the states, but must allow some error rate.
The simplest possibility is to not make a measurement and guess randomly; in which case, the guess
is correct with probability 1

2
.

Suppose we append an auxiliary system |𝐴⟩ to |𝛼𝑖⟩. Note that ⟨𝐴| ⟨𝛼𝑖|𝛼𝑖⟩ |𝐴⟩ = ⟨𝛼𝑖|𝛼𝑖⟩ as |𝐴⟩ is norm-
alised. If we apply a unitary operator 𝑈 to |𝛼𝑖⟩ then perform a projective measurement in the basis
{Π0, Π1}, our action corresponds to simply performing ameasurementΠ′

0 = 𝑈†Π0𝑈 orΠ′
1 = 𝑈†Π1𝑈 ,

which leads to the same probabilities of outcomes. Indeed,

𝑝(𝑖) = ⟨𝑈𝜉|Π𝑖|𝑈𝜉⟩ = ⟨𝜉|𝑈†Π𝑖𝑈|𝜉⟩ = ⟨𝜉|Π′
𝑖|𝜉⟩

Therefore, in this particular problem, we gain no benefit from moving to a larger Hilbert space or
applying unitary operators.

We now describe the state estimation or state discrimination process. Wewill consider a two-outcome
measurement {Π0, Π1}, where Π0 + Π1 = 𝐼. The average success probability is

𝑝𝑆(Π0, Π1) =
1
2ℙ (0 ∣ |𝜓⟩ = |𝛼0⟩) +

1
2ℙ (1 ∣ |𝜓⟩ = |𝛼1⟩)

= 1
2 ⟨𝛼0|Π0|𝛼0⟩ +

1
2 ⟨𝛼1|Π1|𝛼1⟩

= 1
2 +

1
2 Tr [Π0(|𝛼0⟩⟨𝛼0| − |𝛼1⟩⟨𝛼1|)]

as Tr(𝐴 |𝜓⟩⟨𝜓|) = ⟨𝛼|𝐴|𝛼⟩. The optimal choice of measurement maximises the average success prob-
ability 𝑝𝑆. Note that Δ = |𝛼0⟩⟨𝛼0| − |𝛼1⟩⟨𝛼1| is self-adjoint, and we can write 𝑝𝑆 = 1

2
+ 1

2
Tr(Π0Δ).

Therefore, the eigenvalues of Δ are real, and the eigenvectors form an orthonormal basis. For a state
|𝛽⟩ orthogonal to both |𝛼0⟩ and |𝛼1⟩, we have Δ |𝛽⟩ = 0. Therefore, Δ acts nontrivially only in the
vector space spanned by |𝛼0⟩ and |𝛼1⟩, and hence has at most two nonzero eigenvalues, and its eigen-
vectors lie in span {|𝛼0⟩ , |𝛼1⟩}.
Now, TrΔ = 0 so the eigenvalues are 𝛿 and −𝛿 for some 𝛿 ∈ ℝ. Let |𝑝⟩ be the eigenvector for 𝛿, and
|𝑚⟩ be the eigenvector for −𝛿, so ⟨𝑝|𝑚⟩ = 0. We can write Δ in its spectral decomposition, giving
Δ = 𝛿 |𝑝⟩⟨𝑝| − 𝛿 |𝑚⟩⟨𝑚|.
Let ||𝛼⟂0 ⟩ ∈ span {|𝛼0⟩ , |𝛼1⟩} be a normalised vector such that ⟨𝛼⟂0 ||𝛼0⟩ = 0. Then, {|𝛼0⟩ , ||𝛼⟂0 ⟩} is an
orthonormal basis. Hence, we can write |𝛼1⟩ = 𝑐0 |𝛼0⟩ + 𝑐1 ||𝛼⟂0 ⟩. In this basis,

Δ = (1 0
0 0) + (−|𝑐0|

2 −𝑐0𝑐⋆
1

−𝑐⋆
0𝑐1 −|𝑐1|

2) = (1 − |𝑐0|
2 −𝑐0𝑐⋆

1
−𝑐⋆

0𝑐1 −|𝑐1|
2) = ( |𝑐1|

2 −𝑐0𝑐⋆
1

−𝑐⋆
0𝑐1 −|𝑐1|

2)
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which has eigenvalues 𝛿 = |𝑐1|, −𝛿 = −|𝑐1|. Since |𝑐0| = |⟨𝛼0|𝛼1⟩| = cos 𝜃 where 𝜃 ≥ 0, we have
𝛿 = sin 𝜃. Then,

𝑝𝑆(Π0, Π1) =
1
2 +

1
2 Tr(Π0Δ)

= 1
2 +

1
2 Tr(Π0[sin 𝜃 |𝑝⟩⟨𝑝| − sin 𝜃 |𝑚⟩⟨𝑚|])

= 1
2 +

sin 𝜃
2 [ ⟨𝑝|Π0|𝑝⟩ − ⟨𝑚|Π0|𝑚⟩]

Note that for any |𝜑⟩, we have 0 ≤ ⟨𝜑|Π|𝜑⟩ ≤ 1, so themeasurement ismaximisedwhen ⟨𝑝|Π0|𝑝⟩ = 1
and ⟨𝑚|Π0|𝑚⟩ = 0. We therefore define Π0 = |𝑝⟩⟨𝑝|. Then, the optimal average success probability
is

𝑝⋆
𝑆 =

1
2 +

sin 𝜃
2

Theorem (Holevo–Helstrom theorem for pure states). Let |𝛼0⟩ , |𝛼1⟩ be equally likely states,
with |⟨𝛼0|𝛼1⟩| = cos 𝜃, 𝜃 ≥ 0. Then, the probability 𝑝𝑆 of correctly identifying the state by any
quantum measurement satisfies

𝑝𝑆 ≤
1
2 +

sin 𝜃
2

and this bound can be attained.

In the case of orthogonal states, the theorem implies that 𝑝𝑆 ≤ 1 and the bound can be attained,
which was shown before.

2.4 No-signalling principle
Suppose we have a possibly entangled state |𝜙𝐴𝐵⟩ ∈ 𝒱𝐴 ⊗ 𝒱𝐵 shared between two agents Alice (𝐴)
and Bob (𝐵). Suppose we perform a complete projective measurement on |𝜙𝐴⟩. By the extended
Born rule, each measurement outcome will lead to an instantaneous change of |𝜙𝐵⟩. If this change
in state could be detected by measuring |𝜙𝐵⟩, instantaneous communication between𝐴 and 𝐵 would
be possible.

Consider ||𝜙+𝐴𝐵⟩ =
1
√2
(|00⟩ + |11⟩). Suppose qubit𝐴 is measured in the standard basis {|0⟩ , |1⟩}.

outcome probability post-measurement state final state of 𝐵
0 1

2
|00⟩ |0⟩

1 1
2

|11⟩ |1⟩

Suppose qubit 𝐵 is subsequently measured in {|𝑏0⟩ , |𝑏1⟩}. If 𝐵 is in the state |0⟩, we can write |0⟩ =
𝑐0 |𝑏0⟩ + 𝑐1 |𝑏1⟩, and 𝑝|0⟩(𝑖) = |𝑐𝑖|

2 = |⟨𝑏𝑖|0⟩|
2. If 𝐵 is in the state |1⟩, we write |1⟩ = 𝑑0 |𝑏0⟩ + 𝑑1 |𝑏1⟩,

and 𝑝|1⟩(𝑖) = |𝑑𝑖|
2 = |⟨𝑏𝑖|1⟩|

2. Therefore, 𝑝(𝑖) = 1
2
|⟨𝑏𝑖|0⟩|

2 + 1
2
|⟨𝑏𝑖|1⟩|

2 = 1
2
. The two outcomes

for this measurement are equally likely, regardless of the choice of complete orthonormal basis
{|𝑏0⟩ , |𝑏1⟩}.
Suppose instead 𝐴 is not measured, but we perform the same measurement on 𝐵. The initial state
is ||𝜙+𝐴𝐵⟩, so by the extended Born rule, 𝑝(𝑖) = ⟨𝜙+𝐴𝐵||(𝐼𝐴 ⊗ |𝑏𝑖⟩⟨𝑏𝑖|)||𝜙+𝐴𝐵⟩ =

1
2
. We can therefore not

detect through measuring 𝐵 whether a measurement was performed at 𝐴. This is the no-signalling
principle.
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We now prove the more general case. Let |𝜙𝐴𝐵⟩ ∈ 𝒱𝐴 ⊗ 𝒱𝐵 be an arbitrary possibly entangled
state.

Suppose we measure 𝐵 in a complete orthonormal basis {|𝑏⟩}dim𝒱𝐵
𝑏=1 , which is a complete projective

measurement on 𝐵. Let {|𝑎⟩}dim𝒱𝐴
𝑎=1 be a complete orthonormal basis for 𝒱𝐴. Then, expanding |𝜙𝐴𝐵⟩,

in this basis, we can write |𝜙𝐴𝐵⟩ = ∑𝑎,𝑏 𝑐𝑎𝑏 |𝑎⟩ |𝑏⟩. We obtain outcome 𝑏 with probability 𝑝(𝑏) =
⟨𝜙𝐴𝐵|(𝐼𝐴 ⊗ 𝑃𝑏)|𝜙𝐴𝐵⟩ = ∑dim𝒱𝐴

𝑎=1 |𝑐𝑎𝑏|
2. The post-measurement state is ||𝜙′𝐴𝐵⟩.

Suppose that we first measure 𝐴 in a complete orthonormal basis {|𝑎⟩}dim𝒱𝐴
𝑎=1 , and then perform the

measurement {|𝑏⟩}dim𝒱𝐵
𝑏=1 on 𝐵. The outcome of the first measurement is 𝑎 with probability 𝑝(𝑎) =

⟨𝜙𝐴𝐵|(𝑃𝑎 ⊗ 𝐼𝐵)|𝜙𝐴𝐵⟩ = ∑dim𝒱𝐵
𝑏=1 |𝑐𝑎𝑏|

2. We denote the post-measurement state of the joint system by
||𝜙″𝐴𝐵⟩ =

(𝑃𝑎⊗𝐼𝐵)|𝜙𝐴𝐵 ⟩
√𝑝(𝑎)

. Then, the outcome of the second measurement is 𝑏 with probability

𝑝(𝑎 ∣ 𝑏) = ⟨𝜙″𝐴𝐵||(𝐼𝐴 ⊗ 𝑃𝑏)||𝜙″𝐴𝐵⟩

= 1
𝑝(𝑎) ⟨𝜙𝐴𝐵|(𝑃𝑎 ⊗ 𝐼𝐵)(𝐼𝐴 ⊗ 𝑃𝑏)(𝑃𝑎 ⊗ 𝐼𝐵)|𝜙𝐴𝐵⟩

= 1
𝑝(𝑎) ⟨𝜙𝐴𝐵|(𝑃𝑎 ⊗ 𝑃𝑏)|𝜙𝐴𝐵⟩

𝑝(𝑎, 𝑏) = 𝑝(𝑎)𝑝(𝑎 ∣ 𝑏) = ⟨𝜙𝐴𝐵|(𝑃𝑎 ⊗ 𝑃𝑏)|𝜙𝐴𝐵⟩ = |𝑐𝑎𝑏|
2

Hence 𝑝(𝑏) = ∑dim𝒱𝐴
𝑎=1 |𝑐𝑎𝑏|

2, which is exactly the distribution we obtained when no measurement
on 𝐴 was performed. This proves the no-signalling principle.

2.5 The Bell basis
Let ℂ2 ⊗ ℂ2 model a quantum system representing the spins of two electrons. Consider ||𝜙+𝐴𝐵⟩ =
1
2
(|00⟩ + |11⟩) ∈ ℂ2 ⊗ℂ2. This is amaximally entangled state; we have information about the whole

system, but no information about the individual states.

||𝜙±𝐴𝐵⟩ =
1
√2

(|00⟩ ± |11⟩); ||𝜓±𝐴𝐵⟩ =
1
√2

(|01⟩ ± |10⟩)

{||𝜙±𝐴𝐵⟩ , ||𝜓±𝐴𝐵⟩} forms a complete orthonormal basis ofℂ2⊗ℂ2. This is called the Bell basis. The basis
vectors are sometimes known as EPR states, after Einstein, Podolsky, and Rosen.

One bit of classical information can be encoded in a single qubit, and two bits can be encoded in a
pair of qubits in the Bell basis. The Bell states have a parity 0 or 1, representing parallel {||𝜙±⟩} or
antiparallel {||𝜓±⟩} spins. The states also have a phase, which can be positive {|𝜙+⟩ , |𝜓+⟩} or negative
{|𝜙−⟩ , |𝜓−⟩}. For example, we can encode the classical message 01 using the state |𝜙−⟩.
We can perform a complete projective measurement on both qubits in the Bell basis to recover the
encoded information with certainty. For instance, 𝑃00 = |𝜙+⟩⟨𝜙+|. If we prepare a pair of electrons
|𝜙⟩ in the state |𝜙−⟩ for example, we obtain 𝑝(00) = 𝑝(10) = 𝑝(11) = 0 and 𝑝(01) = 1.

2.6 Superdense coding
Suppose Alice wants to send a classical message to Bob. Two bits of classical information can be sent
reliably via a single qubit, provided that Alice and Bob share an entangled state, using superdense
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coding or quantum dense coding. Let

𝑋 = 𝜎𝑥; 𝑍 = 𝜎𝑧; 𝑌 = 𝑖𝜎𝑦 = ( 0 1
−1 0)

One can check that the Bell basis vectors satisfy

|𝜙+⟩ = (𝐼 ⊗ 𝐼) |𝜙+⟩ = (𝐼 ⊗ 𝐼) |𝜙+⟩
|𝜙−⟩ = (𝑍 ⊗ 𝐼) |𝜙+⟩ = (𝐼 ⊗ 𝑍) |𝜙+⟩
|𝜓+⟩ = (𝑋 ⊗ 𝐼) |𝜙+⟩ = (𝐼 ⊗ 𝑋) |𝜙+⟩
|𝜓−⟩ = (𝑌 ⊗ 𝐼) |𝜙+⟩ = −(𝐼 ⊗ 𝑌) |𝜙+⟩

Suppose we have shared the entangled Bell state ||𝜙+𝐴𝐵⟩ between Alice and Bob. The superdense
coding protocol is

Alice’s message local action on 𝐴 final state of 𝐴𝐵
00 𝐼 |𝜙+⟩
01 𝑍 |𝜙−⟩
10 𝑋 |𝜓+⟩
11 𝑌 |𝜓−⟩

Then, Alice sends qubit 𝐴 to Bob, so Bob has the entire state 𝐴𝐵. Bob performs a Bell measurement,
which distinguishes between the four Bell states, thus recovering Alice’s message. Since the state is
maximally entangled, an eavesdropper who may intercept Alice’s transmission cannot recover any
part of the message.

2.7 Quantum gates
A quantum gate is given by a unitary operator acting on some qubits. Such gates have matrix repres-
entations in the computational basis.

(i) The Hadamard gate is

𝐻 = 1
√2

(1 1
1 −1)

One can show that

𝐻 |0⟩ = |+⟩ ; 𝐻 |1⟩ = |−⟩ ; 𝐻 |+⟩ = |0⟩ ; 𝐻 |−⟩ = |1⟩

Note that 𝐻⊺ = 𝐻† = 𝐻 and 𝐻2 = 𝐼. As an orthogonal transformation in ℝ2, it acts as a
reflection by an angle of 𝜋

8
to the positive 𝑥 axis. This gate is drawn

𝐻
In general, by linearity we obtain

𝑎 |0⟩ + 𝑏 |1⟩ 𝐻 𝑎 |+⟩ + 𝑏 |−⟩
(ii) The 𝑋, 𝑍 gates are given by

𝑋 |𝑘⟩ = |𝑘 ⊕ 1⟩ ; 𝑍 |𝑘⟩ = (−1)𝑘 |𝑘⟩

where⊕ denotes addition modulo 2. They 𝑋, 𝑍, 𝑌 gates are drawn
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𝑋 ; 𝑍 ; 𝑋 𝑍
(iii) The phase gate is

𝑃𝜃 = (1 0
0 𝑒𝑖𝜃)

Note that 𝑍 = 𝑃𝜋.
(iv) The controlled-X gate, also called a CNOT gate, is

𝐶𝑋 =
⎛
⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟
⎟
⎠
= (𝐼 0

0 𝑋)

Note that 𝐶𝑋 |𝑖⟩ |𝑗⟩ = |𝑖⟩ |𝑖 ⊕ 𝑗⟩. The first qubit is called the control qubit, and the second is
called the target qubit. If 𝑖 = 0, there is no action on the second qubit. If 𝑖 = 1, 𝑋 is performed
on the second qubit. In general, 𝐶𝑋 |0⟩ |𝜓⟩ = |0⟩ |𝜓⟩, and 𝐶𝑋 |1⟩ |𝜓⟩ = |1⟩ (𝑋 |𝜓⟩). The circuit
diagram is as follows.

|𝑖⟩ • |𝑖⟩

|𝑗⟩ |𝑖 ⊕ 𝑗⟩
One can show that

•

= 𝐻 • 𝐻

𝐻 𝐻
(v) The controlled-Z gate, also called a CZ gate, is

𝐶𝑍 = (𝐼 0
0 𝑍)

So 𝐶𝑍 |0⟩ |𝜓⟩ = |0⟩ |𝜓⟩ and 𝐶𝑍 |1⟩ |𝜓⟩ = |1⟩ (𝑍 |𝜓⟩). 𝐶𝑍 is symmetric in its action on the two
qubits; for example, 𝐶𝑍12 |0⟩ |1⟩ = 𝐶𝑍21 |0⟩ |1⟩. This gate is drawn

•

𝑍

or •

•

2.8 Quantum teleportation
Suppose Alice and Bob share the Bell state |𝜙+⟩𝐴𝐵, and that Alice wants to send the state of qubit
|𝜓⟩𝐶 to Bob, but only classical communication between them is possible. It is possible to transfer the
information about the state of |𝜓⟩𝐶 without physically transferring qubit 𝐶 to Bob. This state transfer
can be accomplished in such a way that is unaffected by any physical process in the space between
Alice and Bob, since it relies only on classical communication.
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The initial state of 𝐶𝐴𝐵 is |Ψ⟩ = |𝜓⟩𝐶 ⊗ |𝜙+⟩𝐴𝐵, assuming |𝜓⟩𝐶 is uncorrelated with |𝜙+⟩𝐴𝐵. Let
|𝜓⟩𝐶 = 𝑎 |0⟩𝐶 + 𝑏 |1⟩𝐶 , so

|Ψ⟩ = |𝜓⟩𝐶 ⊗ |𝜙+⟩𝐴𝐵 =
1
√2

[𝑎 |000⟩ + 𝑎 |011⟩ + 𝑏 |100⟩ + 𝑏 |111⟩]

Alice sends 𝐶 and 𝐴 through a 𝐶𝑋 gate. Now,

|Ψ⟩ = |𝜑1⟩ =
1
√2

[𝑎 |000⟩ + 𝑎 |011⟩ + 𝑏 |110⟩ + 𝑏 |101⟩]

She now sends 𝐶 through a Hadamard gate.

|Ψ⟩ = |𝜑2⟩ =
1
√2

[𝑎 |+00⟩ + 𝑎 |+11⟩ + 𝑏 |−10⟩ + 𝑏 |−01⟩]

= 1
2[ |00⟩ |𝜓⟩ + |01⟩ (𝑋 |𝜓⟩) + |10⟩ (𝑍 |𝜓⟩) + |11⟩ (−𝑌 |𝜓⟩)]

Alice nowmeasures 𝐶𝐴 in the computational basis ofℂ2⊗ℂ2. The probability of each outcome is 1
4
,

irrespective of the values of 𝑎 and 𝑏 and hence of |𝜓⟩. She then sends the result of her measurement
to Bob. If Alice measures outcome 𝑖𝑗, 𝐵 is in state 𝑋𝑗𝑍𝑖 |𝜓⟩. Then, Bob can act on 𝐵 using 𝑍𝑖𝑋𝑗 , as
𝑋 and 𝑍 are involutive, giving |𝜓⟩ as desired. This process can be represented with the following
diagram, where double-struck wires are classical, and the meter symbol denotes a measurement of
the quantum state.

|𝜓⟩𝐶 • 𝐻 


 •

|𝜙+⟩𝐴 


 •

|𝜙+⟩𝐵 𝑋 𝑍 |𝜓⟩
Note that after the measurement of 𝐶𝐴, the entanglement between 𝐶𝐴 and 𝐵 is broken. No-cloning
is not violated, as the original state |𝜓⟩𝐶 is destroyed.
Note that the first steps of this process including Alice’s measurement correspond to performing a
Bell measurement on 𝐶𝐴. This is because the action of 𝐶𝑋𝐶𝐴 then 𝐻𝐶 corresponds to a rotation of
the Bell basis to the standard basis.

3 Quantum cryptography
3.1 One-time pads
We can use quantum information theory to securely transmit messages between agents Alice and
Bob, who may be in distant locations, without the possibility that an eavesdropper Eve can recover
the message that was sent.

We will assume that Alice and Bob have an authenticated classical channel through which they can
send classical information; Alice and Bob can verify that any particularmessage on the channel came
from a particular sender. We also assume that Eve cannot block the channel or modify any messages
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transmitted, but she can monitor the channel freely. Hence, Alice and Bob can receive messages
from each other without error.

In the classical setting, there exists a provably secure classical scheme for private communications,
called the one-time pad. This requires that Alice and Bob share a private key 𝐾, which is a binary
string. 𝐾 must have been created beforehand, and must be chosen uniformly at random from the set
of binary strings of the same length as the message𝑀. Suppose𝑀,𝐾 ∈ {0, 1}𝑛.
The protocol is as follows. First, Alice computes the encrypted message 𝐶 = 𝑀⊕𝐾. She then sends
𝐶 to Bob through the classical channel. Bob can then compute 𝐶 ⊕ 𝐾 = 𝑀 ⊕ 𝐾 ⊕ 𝐾 = 𝑀 to obtain
the message that was sent by Alice. Eve cannot learn any information about the message (apart from
its length), as she has no knowledge of 𝐾. In general, the probability that a particular 𝐾 was chosen
is 2−𝑛. This scheme cannot be broken.
Suppose that Alice and Bob use the same key 𝐾 to send twomessages𝑀1,𝑀2. Eve can obtain𝑀1⊕𝐾
and 𝑀2 ⊕ 𝐾, and can therefore compute (𝑀1 ⊕ 𝐾) ⊕ (𝑀2 ⊕ 𝐾) = 𝑀1 ⊕ 𝑀2, which gives some
information about the messages that were sent. Any key must only be used once, so the one-time
pad protocol is inefficient. To solve this problem, we will construct methods for distributing keys,
using techniques from quantum information theory.

3.2 The BB84 protocol
Quantum key distribution allows Alice and Bob to generate a private key without needing to physic-
ally meet. This key can then be used to send messages over the one-time pad protocol. In addition
to a classical channel, we assume that Alice and Bob also have access to a quantum channel through
which they can send qubits. We will show that Eve cannot gain information about the key that Alice
and Bob generate without being detected.

Consider the bases ℬ0 = {|0⟩ , |1⟩}, ℬ1 = {|+⟩ , |−⟩}. These are examples of mutually unbiased bases;
a pair of bases such that if any basis vector is measured relative to the other basis, all outcomes are
equally likely. For example, measuring |+⟩ relative to ℬ0 gives probability

1
2
for outcomes 0 and

1.

First, Alice generates two 𝑚-bit strings 𝑥 = 𝑥1…𝑥𝑚 ∈ {0, 1}𝑚, 𝑦 = 𝑦1…𝑦𝑚 ∈ {0, 1}𝑚 uniformly at
random. She then prepares the𝑚-qubit state ||𝜓𝑥𝑦⟩ = ||𝜓𝑥1𝑦1⟩ ⊗⋯⊗ ||𝜓𝑥𝑚𝑦𝑚⟩ where

||𝜓𝑥𝑖𝑦𝑖 ⟩ =
⎧⎪
⎨⎪
⎩

|0⟩ 𝑥𝑖 = 0; 𝑦𝑖 = 0
|1⟩ 𝑥𝑖 = 1; 𝑦𝑖 = 0
|+⟩ 𝑥𝑖 = 0; 𝑦𝑖 = 1
|−⟩ 𝑥𝑖 = 1; 𝑦𝑖 = 1

Alice sends the qubits ||𝜓𝑥𝑦⟩ to Bob with 𝑚 uses of the quantum channel. The qubits received are
not necessarily in the state ||𝜓𝑥𝑦⟩ due to noise or malicious manipulation of the channel. Bob then
generates an 𝑚-bit string 𝑦′ = 𝑦′1…𝑦′𝑚 ∈ {0, 1}𝑚 uniformly at random. If 𝑦′𝑖 = 0, he measures the
𝑖th qubit in the basis ℬ0 = {|0⟩ , |1⟩}. If 𝑦′𝑖 = 1, he acts on the 𝑖th qubit by the Hadamard gate and
then measures in ℬ0. Equivalently, he measures the 𝑖th qubit in the basis ℬ1 = {|+⟩ , |−⟩}. Let the
sequence of outcomes be 𝑥′ = 𝑥′1…𝑥′𝑚 ∈ {0, 1}𝑚.
If 𝑦′𝑖 = 𝑦𝑖, we have 𝑥′𝑖 = 𝑥𝑖. Indeed, suppose 𝑦′𝑖 = 0 = 𝑦𝑖. Then ||𝜋𝑥𝑖𝑦𝑖 ⟩ ∈ ℬ0, and Bob measures in
basis ℬ0, so he can determine 𝑥𝑖 with probability 1. If 𝑦′𝑖 = 1 = 𝑦𝑖, ||𝜋𝑥𝑖𝑦𝑖 ⟩ ∈ ℬ1, and Bob measures
in basis ℬ1.
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Now, Alice and Bob compare their values of 𝑦 and 𝑦′ over the classical channel, and discard all 𝑥𝑖
and 𝑥′𝑖 for which 𝑦𝑖 ≠ 𝑦′𝑖. The remaining 𝑥𝑖 and 𝑥′𝑖 match, given that Bob receives ||𝜓𝑥𝑦⟩ exactly, and
this forms the shared private key ̃𝑥 = ̃𝑥′. The average length of ̃𝑥 is 𝑚

2
.

In the case 𝑚 = 8, suppose 𝑥 = 01110100 and 𝑦 = 11010001. Alice prepares ||𝜓𝑥𝑦⟩ and sends
the qubits to Bob. Suppose that Bob receives ||𝜓𝑥𝑦⟩ exactly, and he generates 𝑦′ = 01110110. Bob
measures qubit 1 in the basis ℬ0, but the qubit is in state |+⟩, so he obtains both outcomes for 𝑥′1
with equal probability. He measures qubit 2 in the basis ℬ1, and the qubit is in state |−⟩, so after
applying𝐻 andmeasuring, he obtains the correct outcome𝑥′2 = 1with probability 1. After discarding
mismatched 𝑦𝑖, the obtained private key is ̃𝑥 = 110.
In the general case, however, there may be noise or malicious activity on the channel. We therefore
include the further step of information reconciliation at the end of the BB84 protocol. Alice and Bob
want to estimate the bit error rate, which is the proportion of bits in ̃𝑥 and ̃𝑥′ that differ. They can
publicly compare a random sample of their bits, and discard the bits used in the test. They assume
that the bit error rate in the sample is approximately the same as the bit error rate of ̃𝑥 and ̃𝑥′.

Suppose that Alice and Bob have estimated the bit error rate to be 1
7
, and now have strings 𝑎, 𝑏 of

length 7. They can use classical error correcting code techniques to fix any remaining errors. They
publicly agree to act on 𝑎, 𝑏 by a matrix

𝐻 = (
0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

)

which is the check matrix of a Hamming code. Alice computes the syndrome for 𝑎, given by 𝑠𝐴 =
(𝑠𝐴1 , 𝑠𝐴2 , 𝑠𝐴3 )⊺ = 𝐻𝑎⊺, and sends this to Bob on the public channel. Bob computes the syndrome 𝑠𝐵 for
𝑏, and calculates 𝑠 = 𝑠𝐵 − 𝑠𝐴. There is a unique bit string 𝑣 with at most one nonzero entry such that
𝐻𝑣⊺ = 𝑠; he can therefore recover 𝑎.
The estimation of the bit error rate and the transmission of the syndrome can reveal some information
on the public channel. Alice and Bob want to estimate the maximum amount of information that an
eavesdropper could gain about the remaining bits, using privacy amplification. This depends on the
choice of action that Eve takes.

As an example, suppose 𝑎⋆ = (𝑎1, 𝑎2, 𝑎3) ∈ {0, 1}3, and suppose Eve knows at most one bit of this
string. Let 𝑐 = (𝑎1 ⊕ 𝑎3, 𝑎2 ⊕ 𝑎3). We claim that Eve has no knowledge about 𝑐. Indeed, we can
explicitly enumerate all possibilities of 𝑎⋆ and the corresponding values of 𝑐, and show that Eve’s
knowledge about any of the bits of 𝑎⋆ does not change the distribution of 𝑐.
One strategy for Eve, called the intercept and resend strategy, is to intercept the qubits as they are
transferred to Bob, measure them, and retransmit the post-measurement state. The best possible
measurement she can perform is in the Breidbart basis {|𝛼0⟩ , |𝛼1⟩} where

|𝛼0⟩ = cos 𝜋8 |0⟩ − sin 𝜋8 |1⟩ ; |𝛼1⟩ = sin 𝜋8 |0⟩ + cos 𝜋8 |1⟩

Note that
|⟨𝛼0|0⟩|

2 = |⟨𝛼0|+⟩|
2 = cos2 𝜋8 ; |⟨𝛼1|1⟩|

2 = |⟨𝛼1|−⟩|
2 = cos2 𝜋8

The |𝛼𝑖⟩ provide the best possible simultaneous approximations of |0⟩ , |+⟩ and |1⟩ , |−⟩. Suppose 𝑦′𝑖 =
𝑦𝑖, and suppose Eve intercepts the 𝑖th qubit andmeasures it in the Breidbart basis. Her outcomes are
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0 or 1, and she learns the correct value of 𝑥𝑖 with probability cos2
𝜋
8
≈ 0.85. If she measures 0, she

transmits |𝛼0⟩ to Bob, and if she measures 1, she transmits |𝛼1⟩ to Bob.
The probability that Bob makes an incorrect inference of the value of the 𝑖th bit after this manip-
ulation is 1

4
, regardless of the state of the qubit transmitted by Alice. Suppose ||𝜓𝑥𝑖𝑦𝑖 ⟩ = |0⟩, so

𝑥𝑖 = 0, 𝑦𝑖 = 0. Then,

ℙ (𝑥′𝑖 ≠ 𝑥𝑖) = ℙ (𝐵 measures 1 ∣ 𝐴 sent |0⟩)
= ℙ (𝐸 sent |𝛼0⟩ ∣ 𝐴 sent |0⟩) ℙ (𝐵 measures 1 ∣ 𝐸 sent |𝛼0⟩)
+ ℙ (𝐸 sent |𝛼1⟩ ∣ 𝐴 sent |0⟩) ℙ (𝐵 measures 1 ∣ 𝐸 sent |𝛼1⟩)
= |⟨𝛼0|0⟩|

2|⟨𝛼0|1⟩|
2 + |⟨𝛼1|0⟩|

2|⟨𝛼1|1⟩|
2

= 1
4

4 Quantum computation
4.1 Classical computation
A computational task takes an input bit string and produces an output bit string.

A decision problem is a computational task that produces an output of length 1. Let 𝐵 = 𝐵1 = {0, 1}
and denote 𝐵𝑛 = {0, 1}𝑛. Define 𝐵⋆ = ⋃𝑛≥1 𝐵𝑛. A language is a subset 𝐿 ⊆ 𝐵⋆. A decision problem
corresponds to the problem of checking whether a word 𝑤 ∈ 𝐵⋆ lies in a language 𝐿. For example,
the set of primes, expressed in binary, forms a language 𝑃 ⊆ 𝐵⋆, and there is a corresponding decision
problem to check if a given binary string represents a prime.

More generally, the output of a computational task can be of any length. For example, the task
𝖥𝖠𝖢𝖳𝖮𝖱(𝑥) takes the input𝑥 and produces a bit string containing a factor of𝑥, or 1 if𝑥 is prime.
There are various models of computation, but we restrict to the circuit or gate array model. In this
model, we have an input 𝑥 = 𝑏1…𝑏𝑛 ∈ 𝐵𝑛, and extend it with some trailing zeroes to add scratch
space to perform computations. We then perform some computational steps, an application of des-
ignated Boolean gates 𝑓∶ 𝐵𝑛 → 𝐵𝑚 on preassigned bits. For each 𝑛, we have a circuit 𝐶𝑛, which is
a prescribed sequence of computational steps that performs a given task for all inputs of size 𝑛. The
output to the computation is a designated subsequence of the extended bit string.

Suppose that, in addition to extending the input bit string with zeroes, we also add 𝑘 random bits,
which have values set to 0 or 1 uniformly at random. The output of the computation will now be
probabilistic. The probability that the output is 𝑦 is 𝑎2−𝑘, where 𝑎 is the number of bit strings 𝑟 that
produce the desired outcome. We typically require that the output is correct with some prescribed
probability.

4.2 Classical complexity
The time complexity is a measure of the amount of computational steps required for a particular
algorithm for an input of size 𝑛. In the circuit model, we define 𝑇(𝑛) to be the total number of
gates in the circuit 𝐶𝑛, known as the size of the circuit or runtime of the algorithm.
For a positive function 𝑇(𝑛), we write 𝑇(𝑛) = 𝑂(𝑓(𝑛)) if there exist positive constants 𝑐, 𝑛0 such
that for all 𝑛 > 𝑛0, we have 𝑇(𝑛) ≤ 𝑐𝑓(𝑛). If 𝑇(𝑛) = 𝑂(𝑛𝑘) for some 𝑘 > 0, we say that 𝑇(𝑛)
is 𝑂(poly(𝑛)), and the corresponding algorithm is a poly-time algorithm. The class of languages for
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which themembership problemhas a classical poly-time algorithm is called𝖯. The class of languages
for which the membership problem has a randomised classical poly-time algorithm that gives the
correct answer with probability at least 2

3
is called 𝖡𝖯𝖯, short for bounded-error probabilistic poly-

time. The problem 𝖥𝖠𝖢𝖳𝖮𝖱(𝑀,𝑁)which determines if there is a nontrivial factor of𝑁 that is at most
𝑀 does not lie in 𝖡𝖯𝖯. The best known runtime is 𝑇(𝑛) = 𝑂(𝑛

1
3 (log𝑛)

2
3 ).

A black box promise problem is a computational task where the input is a black box or oracle which
can compute a Boolean function 𝑓∶ 𝐵𝑚 → 𝐵𝑛, and there is an a priori promise on 𝑓 restricting the
possible values of 𝑓. For example, the black box promise problem for constant vs. balanced functions
takes a function 𝑓∶ 𝐵𝑛 → 𝐵 such that 𝑓 is constant or balanced, in which case 𝑓 is equal to zero for
exactly half of the 2𝑛 possible inputs.
The corresponding complexity is called query complexity, which counts the amount of times we need
to query the black box. We typically wish to minimise the query complexity.

4.3 Quantum circuits
In a quantum circuit, we have qubit inputs |𝑏1⟩… |𝑏𝑛⟩ |0⟩… |0⟩ analogously to the classical case. The
input size 𝑛 is the number of qubits. The addition of randomness to classical computation needs no
analogue in the quantum case, since randomness is obtained by measurement. For instance, if we
have a qubit |0⟩, we can generate a uniform Bernoulli random variable by sending the qubit through
a Hadamard gate and then measuring in the computational basis.

The computational steps are gates or unitary operators, which act on a prescribed set of qubits, con-
stituting a quantum circuit𝐶𝑛. The output is obtained by performing ameasurement on a prescribed
set of qubits. One can show that any circuit involving arbitrarily many measurements is equivalent
to a circuit that only performs a single measurement at the end of the computation.

4.4 Quantum oracles
Note that all quantum gates are invertible, as they are represented with unitary operators, but not
all classical gates are invertible. Any 𝑓∶ 𝐵𝑚 → 𝐵𝑛 can be expressed in an equivalent invertible form
𝑓∶ 𝐵𝑚+𝑛 → 𝐵𝑚+𝑛 by defining 𝑓(𝑏, 𝑐) = (𝑏, 𝑐 ⊕ 𝑓(𝑏)). If we can compute 𝑓 we can also compute 𝑓,
and conversely given 𝑓 we can find 𝑓(𝑏) = 𝑓(𝑏, 0). This is self-inverse.

𝑓(𝑓(𝑏, 𝑐)) = 𝑓(𝑏, 𝑐 ⊕ 𝑓(𝑏)) = (𝑏, 𝑐 ⊕ 𝑓(𝑏) ⊕ 𝑓(𝑏)) = (𝑏, 𝑐)

Aquantumoracle for a function𝑓∶ 𝐵𝑚 → 𝐵𝑛 is the quantumgate𝑈𝑓 acting on𝑚+𝑛 qubits such that
𝑈𝑓 |𝑥⟩ |𝑦⟩ = |𝑥⟩ |𝑦 ⊕ 𝑓(𝑥)⟩ for |𝑥⟩ , |𝑦⟩ states in the computational basis. In other words, its action on
the computational basis is 𝑓. We say that |𝑥⟩ is the input register and |𝑦⟩ is the output register.
One can show that𝑈𝑓 is always a unitary operator. We can show this directly by considering𝑈𝑓 |𝑥′⟩ |𝑦′⟩ =
|𝑥′⟩ |𝑦′ ⊕ 𝑓(𝑥′)⟩, and we can take the inner product with 𝑈𝑓 |𝑥⟩ |𝑦⟩ = |𝑥⟩ |𝑦 ⊕ 𝑓(𝑥)⟩. An easier way
to show this is to consider 𝑓∶ 𝐵𝑘 → 𝐵𝑘 as a permutation on 𝐵𝑘 where 𝑚 + 𝑛 = 𝑘. We can write
𝑈𝑓 |𝑥⟩ |𝑦⟩ = 𝑈𝑓 |𝑖1…𝑖𝑘⟩ = ||𝑓(𝑖1…𝑖𝑘)⟩. Since 𝑓 is a permutation, 𝑈𝑓 is therefore represented by a
permutation matrix, which has a single 1 in each row and column. All permutation matrices are
unitary.

In contrast to a classical oracle, a quantum oracle can act on a superposition of input registers. Let
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𝑓∶ 𝐵𝑚 → 𝐵𝑛, and consider the equal superposition state |𝜑𝑚⟩ =
1

√2𝑚
∑𝑥∈𝐵𝑚 |𝑥⟩. We can find

𝑈𝑓 |𝜑𝑚⟩ |𝑦⟩ = 𝑈𝑓(
1

√2𝑚
∑

𝑥∈𝐵𝑚
|𝑥⟩) |𝑦⟩ = 1

√2𝑚
∑

𝑥∈𝐵𝑚
𝑈𝑓 |𝑥⟩ |𝑦⟩ = ||𝜓𝑓⟩

In a single use of the oracle, we obtain a final state which depends on the value of 𝑓 corresponding
to all possible inputs. One can easily create such an equal superposition state |𝜑𝑚⟩ by sending the
𝑚-qubit state |0⟩… |0⟩ through 𝑚 Hadamard gates 𝐻 ⊗ ⋯ ⊗ 𝐻. We have (𝐻 |0⟩)⊗𝑚 = (|+⟩)⊗𝑚 =
|𝜑𝑚⟩. This creates a superposition of exponentially many terms using a linear amount of Hadamard
gates.

4.5 Deutsch–Jozsa algorithm
Consider the black box problem for balanced vs. constant functions. Classically, one needs 2𝑛−1 + 1
queries to solve the problem in the worst case. This amount of queries is clearly sufficient; even
if 𝑓 is balanced, the first 2𝑛−1 queries could have equal outcomes, but the subsequent query must
have a different outcome. Suppose that there exists an algorithm that can solve the problem in 2𝑛−1
queries. An adversary that controls the oracle can respond with 0 for every query, and subsequently
choose a function 𝑓 that agrees with the earlier query results but is balanced or constant as required
to cause the algorithm to produce an error. Therefore, classically we require a query complexity of
𝑂(exp(𝑛)).
Suppose we have a quantum oracle 𝑈𝑓 with 𝑈𝑓 |𝑥⟩ |𝑦⟩ = |𝑥⟩ |𝑦 ⊕ 𝑓(𝑥)⟩, where |𝑥⟩ is an 𝑛-qubit state
and |𝑦⟩ is a 1-qubit state. Set each qubit to state |0⟩, then act by 𝐻⊗𝑛 ⊗ (𝐻 ⋅ 𝑋) on |𝑥⟩ |𝑦⟩. We then
obtain the state |𝐴⟩ = 1

√2𝑛
∑𝑥∈𝐵𝑛 |𝑥⟩ |−⟩. Send this state through the oracle to obtain 𝑈𝑓 |𝐴⟩ =

1
√2𝑛

𝑈𝑓∑𝑥∈𝐵𝑛 |𝑥⟩ |−⟩. Note that

𝑈𝑓 |𝑥⟩ |−⟩ =
1
√2

𝑈𝑓(|𝑥⟩ |0⟩ − |𝑥⟩ |1⟩)

= 1
√2

(|𝑥⟩ |𝑓(𝑥)⟩ − |𝑥⟩ |𝑓(𝑥)𝑐⟩)

= {
1
√2
|𝑥⟩ (|0⟩ − |1⟩) = |𝑥⟩ |−⟩ if 𝑓(𝑥) = 0

1
√2
|𝑥⟩ (|1⟩ − |0⟩) = − |𝑥⟩ |−⟩ if 𝑓(𝑥) = 1

= (−1)𝑓(𝑥) |𝑥⟩ |−⟩
The method of encoding all information into a phase is called phase kickback. Hence,

𝑈𝑓 |𝐴⟩ =
1

√2𝑛
𝑈𝑓 ∑

𝑥∈𝐵𝑛
|𝑥⟩ |−⟩ = 1

√2𝑛
( ∑
𝑥∈𝐵𝑛

(−1)𝑓(𝑥) |𝑥⟩) |−⟩

We can then easily discard the last qubit, as it is now in a product state. We obtain

|𝑓⟩ = 1
√2𝑛

∑
𝑥∈𝐵𝑛

(−1)𝑓(𝑥) |𝑥⟩

If 𝑓 is constant,
|𝑓⟩ = ± 1

√2𝑛
∑
𝑥∈𝐵𝑛

|𝑥⟩ = ±(𝐻 |0⟩)⊗𝑛
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If we apply 𝐻⊗𝑛 to |𝑓⟩, we obtain ± |0⟩⊗𝑛. If 𝑓 is balanced, writing |𝜑𝑛⟩ =
1

√2𝑛
∑𝑦∈𝐵𝑛 |𝑦⟩,

⟨𝑓|𝜑𝑛⟩ =
1
2𝑛 ∑

𝑥,𝑦∈𝐵𝑛
(−1)𝑓(𝑥) ⟨𝑦|𝑥⟩ = 1

2𝑛 ∑
𝑥∈𝐵𝑛

(−1)𝑓(𝑥) = 0

In this case, |𝑓⟩ is orthogonal to |𝜑𝑛⟩. Applying 𝐻⊗𝑛 to |𝑓⟩, we have that 𝐻⊗𝑛 |𝑓⟩ is orthogonal to
𝐻⊗𝑛 |𝜑𝑛⟩ = |0⟩⊗𝑛.

After obtaining |𝑓⟩, we apply 𝐻⊗𝑛 and measure in the computational basis. If 𝑓 is constant, we
measure 0…0 with probability 1, and if 𝑓 is balanced, we measure 0…0 with probability 0. This
allows us to infer whether 𝑓 is constant or balanced with probability 1.

|0⟩1 𝐻

𝑈𝑓

𝐻 


 𝑥1

|0⟩2 𝐻 𝐻 


 𝑥2

⋮ ⋮

|0⟩𝑛 𝐻 𝐻 


 𝑥𝑛

|0⟩ 𝑋 𝐻 discard
For this algorithm, we use one query and 3𝑛 + 2 further operations.
Suppose we permit a probability 𝜀 > 0 of error. In the quantum case, we only need one query. In
the classical case, there is a randomised algorithmwhich solves the problemwith a constant number
𝑂(log 1

𝜀
) of queries for all 𝑛. Choose 𝑘 inputs each chosen uniformly at random, and evaluate 𝑓(𝑥)

for each 𝑥 in this set. If 𝑓(𝑥) is constant for all of these 𝑘 inputs, we infer 𝑓 is constant; otherwise we
infer it is balanced. An error can only occur when the function is balanced but we infer it is constant.
The probability of error is 2

2𝑘
= 2−𝑘+1. Hence, we can take 𝜀 < 2−𝑘+1, so 𝑘 = 𝑂(log 1

𝜀
).

4.6 Simon’s algorithm
Consider a function 𝑓∶ 𝐵𝑛 → 𝐵𝑛 with the promise that either 𝑓 is injective, or 𝑓(𝑥) = 𝑓(𝑦) if and
only if 𝑦 = 𝑥 or 𝑦 = 𝑥 ⊕ 𝜉 for a fixed 0 ≠ 𝜉 ∈ 𝐵𝑛. The problem is to determine with bounded error
whether 𝑓 is in the 1-1 form or the 2-1 form, and in the latter case, to find the constant 𝜉. Note that
𝑓(𝑥 ⊕ 𝜉) = 𝑓(𝑥) is the statement that 𝑓 has period 𝜉.
Classically, the query complexity is 𝑂(exp(𝑛)). In order to solve the problem, we need to find two
distinct 𝑥, 𝑦 inputs for which 𝑓(𝑥) = 𝑓(𝑦), or show that this is not possible. However, there is a
quantum algorithm with query complexity 𝑂(𝑛).
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4.7 Quantum Fourier transform
Let 𝒱𝑁 be a state space, and ℬ𝑁 = {|0⟩ , |1⟩ ,… , |𝑁 − 1⟩} be an orthonormal basis for 𝒱𝑁 . Write ℤ𝑁
for integers modulo 𝑁, and let 𝜔 = 𝑒

2𝜋𝑖
𝑁 . For |𝑘⟩ ∈ ℬ𝑁 , we define

𝑄𝐹𝑇𝑁 |𝑘⟩ =
1
√𝑁

𝑁−1
∑
ℓ=0

𝑒
2𝜋𝑖
𝑁 𝑘ℓ |ℓ⟩ = 1

√𝑁

𝑁−1
∑
ℓ=0

𝜔𝑘ℓ |ℓ⟩

The quantum Fourier transform can be viewed as a generalisation of the Hadamard operator, as
𝑄𝐹𝑇2 = 𝐻.
We show that this is a unitary operator.

(𝑄𝐹𝑇)𝑗𝑘 = ⟨𝑗| 𝑄𝐹𝑇 |𝑘⟩ = 1
√𝑁

𝑁−1
∑
ℓ=0

𝜔𝑘ℓ ⟨𝑗|ℓ⟩ = 1
√𝑁

𝜔𝑗𝑘

𝑄𝐹𝑇 = 1
√𝑁

⎛
⎜
⎜
⎜
⎝

1 1 1 1 ⋯
1 𝜔 𝜔2 𝜔3 ⋯
1 𝜔2 𝜔4 𝜔6 ⋯
1 𝜔3 𝜔6 𝜔9 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

⎞
⎟
⎟
⎟
⎠

Let 𝑆𝑗 be the sum of the 𝑗th row or column. If 𝑗 = 0, 𝑆𝑗 =
1
√𝑁

𝑁. Otherwise,

𝑆𝑗 =
1
√𝑁

(1 + 𝜔𝑗 +⋯+ 𝜔𝑗(𝑁−1)) = 1
√𝑁

⋅ 1 − 𝜔𝑗𝑁
1 − 𝜔𝑗 = 0

We can use this to prove that (𝑄𝐹𝑇†𝑄𝐹𝑇)𝑗𝑘 = 𝛿𝑗𝑘, so it is a unitary operator.
Suppose we have a periodic function 𝑓∶ ℤ𝑁 → 𝑌 , where typically 𝑌 = ℤ𝑀 for some 𝑀. Let 𝑟 be
the smallest integer in ℤ𝑁 for which 𝑓(𝑥 + 𝑟) = 𝑓(𝑥) for all 𝑥 ∈ ℤ𝑁 , so 𝑓 is periodic with period 𝑟.
Suppose further that 𝑓 is injective in each period. We wish to find 𝑟 with a particular probability of
error.

There is a classical algorithm with query complexity 𝑂(√𝑁) = 𝑂(2log𝑁
1
2 ) = 𝑂(2

1
2 log𝑁). In the

quantum case, for any error probability 𝜀 ∈ (0, 1), there is an algorithm with query complexity
𝑂(log log𝑁), which provides an exponential speed increase.
We first describe an attempt to construct such an algorithmwithout using the quantumFourier trans-
form. Begin with the uniform superposition state |𝜓𝑁⟩ =

1
√𝑁

∑𝑁−1
𝑥=0 |𝑥⟩. Consider the quantum or-

acle 𝑈𝑓 corresponding to 𝑓∶ ℤ𝑁 → ℤ𝑀 , defined by 𝑈𝑓 |𝑥⟩ |𝑦⟩ = |𝑥⟩ |𝑦 + 𝑓(𝑥)⟩, where addition is
performed modulo 𝑀. Set the output register |𝑦⟩ to |0⟩, and then compute |𝑓⟩ = 𝑈𝑓 |𝜓𝑁⟩ |0⟩. We
obtain

|𝑓⟩ = 𝑈𝑓 |𝜓𝑁⟩ |0⟩ =
1
√𝑁

𝑁−1
∑
𝑥=0

𝑈𝑓 |𝑥⟩ |0⟩ =
1
√𝑁

𝑁−1
∑
𝑥=0

|𝑥⟩ |𝑓(𝑥)⟩

Since 𝑟 is the period, we have 𝑟 ∣ 𝑁, so let𝐴 = 𝑁
𝑟
∈ ℕ be the number of periods. We nowmeasure the

second register, giving an outcome 𝑦 = 𝑓(𝑥0) for some 𝑥0 ∈ {0,… , 𝑟 − 1}. Note that 𝑦 = 𝑓(𝑥0 + 𝑗𝑟)
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for any 𝑗 ∈ {0,… ,𝐴 − 1}. The terms in |𝑓⟩ which contribute to the outcome 𝑦 = 𝑓(𝑥0) are

1
√𝑁

𝐴−1
∑
𝑗=0

|𝑥0 + 𝑗𝑟⟩ |𝑓(𝑥0)⟩

Hence, the probability of obtaining a particular outcome𝑓(𝑥0) is
𝐴
𝑁
= 1

𝑟
. Then, the post-measurement

state of the input register is

|per⟩ = 1
√𝐴

𝐴−1
∑
𝑗=0

|𝑥0 + 𝑗𝑟⟩

The state |per⟩ is periodic. If we measure the input register, we obtain |𝑥0 + 𝑗0𝑟⟩ for some 𝑗0 ∈
{0,… ,𝐴 − 1}, selected uniformly at random. The probability that the outcome of this second meas-
urement is 𝑥0 + 𝑗0𝑟 is

1
𝐴
. Therefore, no information about 𝑟 is obtained.

We resolve this issue by utilising the quantum Fourier transform. Instead of measuring the input
register, we act on |per⟩ by 𝑄𝐹𝑇𝑁 . Since

𝑄𝐹𝑇𝑁 |𝑥⟩ =
1
√𝑁

𝑁−1
∑
𝑦=0

𝜔𝑥𝑦 |𝑦⟩

we find

𝑄𝐹𝑇𝑁 |per⟩ =
1
√𝐴

𝑁−1
∑
𝑦=0

𝑄𝐹𝑇𝑁 |𝑥0 + 𝑗𝑟⟩

= 1
√𝐴

1
√𝑁

𝐴−1
∑
𝑗=0

𝑁−1
∑
𝑦=0

𝜔(𝑥0+𝑗𝑟)𝑦 |𝑦⟩

= 1
√𝑁𝐴

𝑁−1
∑
𝑦=0

𝜔𝑥0𝑦 [
𝐴−1
∑
𝑗=0

(𝜔𝑟𝑦)𝑗]
⏟⎵⎵⎵⏟⎵⎵⎵⏟

𝑆

|𝑦⟩

Note that

𝑆 = {
𝐴 if 𝜔𝑟𝑦 = 1
1−𝜔𝑟𝑦𝐴

1−𝜔𝑟𝑦 = 0 otherwise

Note that 𝜔𝑟𝑦 = 1 if 𝑦 = 𝑘𝐴 = 𝑘𝑁
𝑟
for 𝑘 ∈ {0,… , 𝑟 − 1}. Hence, we obtain

𝑄𝐹𝑇𝑁 |per⟩ =
𝐴

√𝑁𝐴

𝑟−1
∑
𝑘=0

𝜔𝑥0
𝑘𝑁
𝑟 |||

𝑘𝑁
𝑟 ⟩ = 1

√𝑟

𝑟−1
∑
𝑘=0

𝜔𝑥0
𝑘𝑁
𝑟 |||

𝑘𝑁
𝑟 ⟩

The value of 𝑥0 is no longer present in a ket, and has been converted into phase information. It there-
fore does not affect measurement outcomes. The periodicity in 𝑟 has been inverted into periodicity
in 1

𝑟
. The resulting state is still periodic, but each period begins at 0 instead of 𝑥0.

Now, when measuring this register, the outcome is 𝑐 = 𝑘0𝑁
𝑟

for some 𝑘0 ∈ {0,… , 𝑟 − 1}. Each
outcome occurs with probability 𝑟. Note that 𝑘0

𝑟
= 𝑐

𝑁
, and 𝑐

𝑁
is known after performing the meas-

urement; we wish to know the value of 𝑟.
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Suppose first that 𝑘0 is coprime to 𝑟. In this case, we can cancel 𝑐
𝑁
to its lowest form, then the

denominator is 𝑟. If 𝑘0 is not coprime to 𝑟, the denominator ̃𝑟 will instead be a factor of 𝑟. To solve
this, we can compute the reduced denominator and then evaluate 𝑓(0), 𝑓( ̃𝑟); if they are equal, ̃𝑟 = 𝑟,
and otherwise, ̃𝑟 ∣ 𝑟. We would like to know the probability that a randomly chosen 𝑘0 is coprime to
the true periodicity 𝑟.

Theorem (coprimality theorem). Let 𝜑(𝑟) denote the number of integers less than 𝑟 that are
coprime to 𝑟. Then there exist 𝑐 > 0, 𝑟0 > 0 such that for all 𝑟 ≥ 𝑟0, 𝜑(𝑟) ≥ 𝑐 𝑟

log log 𝑟
. In

particular, 𝜑(𝑟) = Ω( 𝑟
log log 𝑟

).

This theorem implies that since 𝑘0 is chosen uniformly at random, the probability that 𝑘0 is coprime
to 𝑟 is𝑂( 1

log log 𝑟
). We claim that if we repeat this process𝑂(log log 𝑟) times, wewill obtain an outcome

𝑐 such that after cancellation, 𝑐
𝑁
= 𝑘0

𝑟
where 𝑘0 is coprime to 𝑟 in at least one case, with a constant

probability. This claim follows from the following lemma.

Lemma. Suppose that a single trial has success probability 𝑝, and the trial is repeated 𝑀
times independently, for any 𝜀 ∈ (0, 1), the probability of at least one success is greater than
1 − 𝜀 if𝑀 = − log 𝜀

𝑝
.

Therefore, to achieve a constant probability 1 − 𝜀 of success, we need 𝑂( 1
𝑝
) trials. In the algorithm

above, 𝑝 = 𝑂( 1
log log 𝑟

), so we need 𝑂(𝑝) = 𝑂(log log 𝑟) < 𝑂(log log𝑁) trials to achieve the desired
result.

In each invocation of the algorithm, we query 𝑓 three times: once to construct the state |𝑓⟩, and
twice to check if ̃𝑟 is the true periodicity. We also need to apply the quantum Fourier transform
𝑄𝐹𝑇𝑁 , which has implementations in 𝑂((log𝑁)2) steps. We must also perform standard arithmetic
operations such as to cancel denominators, which are computable in𝑂(poly(log𝑁)) steps. Therefore,
we succeed in determining the period with any constant probability of success 1−𝜀with𝑂(log log𝑁)
queries and 𝑂(poly(log𝑁)) additional steps.

4.8 Efficient implementation of quantum Fourier transform
We can implement a quantum Fourier transform using 𝑂(poly(log𝑁)) gates if 𝑁 = 2𝑛. In this case,
𝑄𝐹𝑇𝑁 acts on 𝑛 qubits. If 𝑁 ≠ 2𝑛, we do not have an efficient implementation; in this case, we
approximate 𝑁 by 2𝑘 for some 𝑘 ∈ ℤ. In the case 𝑁 = 2𝑛, we demonstrate a quantum circuit of size
𝑂(𝑛2).
If 𝑥 ∈ ℤ𝑛 = {0,… , 2𝑛 − 1}, note that

𝑄𝐹𝑇𝑁 |𝑥⟩ =
1
√𝑁

𝑁−1
∑
𝑦=0

𝜔𝑥𝑦 |𝑦⟩
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We can represent 𝑥 and 𝑦 by 𝑛-bit strings.

𝑥 = (𝑥0, 𝑥1,… , 𝑥𝑛−1); 𝑥 =
𝑛−1
∑
𝑖=0

2𝑖𝑥𝑖

Now, 𝜔𝑥𝑦 = exp [ 2𝜋𝑖
2𝑛
𝑥𝑦].

𝑥𝑦
2𝑛 = 1

2𝑛 [(𝑥0 + 2𝑥1 +⋯+ 2𝑛−1𝑥𝑛−1)(𝑦0 + 2𝑦1 +⋯+ 2𝑛−1𝑦𝑛−1)]

Retaining only the fractional terms of 𝑥𝑦
2𝑛
, as integral parts do not contribute to the final result, we

obtain
𝑦𝑛−1(.𝑥0) + 𝑦𝑛−2(.𝑥1𝑥0) +⋯ + 𝑦0(.𝑥𝑛−1…𝑥0)

where for instance .𝑥1𝑥0 =
𝑥1
2
+ 𝑥0

22
. Hence,

𝑄𝐹𝑇 |𝑥⟩ = 1
√2𝑛

∑
𝑦0,…,𝑦𝑛−1∈{0,1}

exp [2𝜋𝑖𝑥𝑦2𝑛 ] |𝑦𝑛−1⟩… |𝑦0⟩

= ( 1
√2

∑
𝑦𝑛−1∈{0,1}

exp [2𝜋𝑖𝑦𝑛−1(.𝑥0)] |𝑦𝑛−1⟩)⋯( 1
√2

∑
𝑦0∈{0,1}

exp [2𝜋𝑖𝑦0(.𝑥𝑛−1…𝑥0)] |𝑦0⟩)

= 1
√2

(|0⟩ + 𝑒2𝜋𝑖(.𝑥0) |1⟩)… 1
√2

(|0⟩ + 𝑒2𝜋𝑖(.𝑥𝑛−1…𝑥0) |1⟩)

To implement the quantum Fourier transform, we will use the Hadamard gate, the 1-qubit phase
gate, and the 2-qubit controlled phase gate. Note that we can write

𝐻 |𝑥⟩ = 1
√2

[|0⟩ + 𝑒2𝜋𝑖(.𝑥) |1⟩]

For any 𝑑 ∈ ℤ+, the phase gate is given by

𝑅𝑑 = (
1 0
0 exp[ 𝑖𝜋

2𝑑
]) = (

1 0

0 exp[2𝜋𝑖(. 0…0⏟
𝑑 zeroes

1)])

Note that 𝑅𝑑 |0⟩ = |0⟩ and 𝑅𝑑 |1⟩ = 𝑒2𝜋𝑖(.0…01) |1⟩. In the case 𝑑 = 1, we obtain 𝑅1 |1⟩ = 𝑒2𝜋𝑖(.01) |1⟩ =
𝑖 |1⟩. The two-qubit controlled phase gate, denoted 𝐶𝑅𝑑, is drawn

|𝜓⟩ 𝑅𝑑

|𝜑⟩ •
If |𝜑⟩ = |0⟩, 𝐶𝑅𝑑 |0⟩ |𝜓⟩ = |0⟩ |𝜓⟩. If |𝜑⟩ = |1⟩, 𝐶𝑅𝑑 |1⟩ |𝜓⟩ = |1⟩ 𝑅𝑑 |𝜓⟩. We will now describe the
quantum circuit for 𝑄𝐹𝑇8, so 𝑁 = 8 and 𝑛 = 3.

|𝑥2⟩ 𝐻 𝑅1 𝑅2 |𝑦0⟩

|𝑥1⟩ • 𝐻 𝑅1 |𝑦1⟩

|𝑥0⟩ • • 𝐻 |𝑦2⟩
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Applying the given gates to |𝑥2⟩, we obtain

|𝑥2⟩
𝐻−→ 1

√2
[|0⟩ + 𝑒2𝜋𝑖(.𝑥2) |1⟩]

𝑅1−−→ 1
√2

[|0⟩ + 𝑒2𝜋𝑖(.𝑥2)𝑒2𝜋𝑖(.0𝑥1) |1⟩]

𝑅2−−→ 1
√2

[|0⟩ + 𝑒2𝜋𝑖(.𝑥2)𝑒2𝜋𝑖(.0𝑥1)𝑒2𝜋𝑖(.00𝑥0) |1⟩]

= 1
√2

[|0⟩ + 𝑒2𝜋𝑖(.𝑥2𝑥1𝑥0) |1⟩] = |𝑦0⟩

as required. Typically, after applying the above circuit, we will swap the states |𝑦0⟩ , |𝑦1⟩ , |𝑦2⟩ to be in
reverse order; this takes 𝑂(𝑛) gates.
In this implementation, we used 3 Hadamard gates, and 2 + 1 = 3 controlled phase gates. If 𝑁 = 2𝑛,
we need 𝑛 Hadamard gates and 𝑛(𝑛−1)

2
= 𝑂(𝑛2) controlled phase gates.

4.9 Grover’s algorithm
Suppose we have a large unstructured database of 𝑁 items, in which we aim to locate a particular
‘good’ item. Suppose that given an item, we can easily check if it is the ‘good’ item. We wish to
construct an algorithm to locate this good item with success probability at least 1− 𝜀. Each access to
the database is considered a query.

In the classical case, we need𝑂(𝑁) queries: if we find a bad item, it gives us no information about the
location of the good item. The probability that any item is good is 1

𝑁
. Given𝑀 queries, the probability

of success is 𝑀
𝑁
≥ 1 − 𝜀, so𝑀 ≥ (1 − 𝜀)𝑁 gives𝑀 = 𝑂(𝑁). In the quantum case, 𝑂(√𝑁) queries are

necessary and sufficient. This is not an exponential speedup but a quadratic speedup.

Let𝒱 be a vector space, and let |𝑣⟩ ∈ 𝒱. Wedefine the rank 1 projection operatorΠ|𝛼⟩ = |𝛼⟩⟨𝛼|, and the
reflection operator 𝐼|𝛼⟩ = 𝐼−2 |𝛼⟩⟨𝛼|. Note that 𝐼|𝛼⟩ |𝛼⟩ = − |𝛼⟩. Let |𝜓⟩ ∈ 𝒮⟂|𝑣⟩ = span {|𝛽⟩ ∈ 𝒱 ∣ ⟨𝛼|𝛽⟩ = 0}
. Then 𝐼|𝛼⟩ |𝜓⟩ = |𝜓⟩ − |𝛼⟩ ⟨𝛼|𝜓⟩ = |𝜓⟩.

For any unitary operator 𝑈 acting on 𝒱, we have 𝑈Π|𝛼⟩𝑈† = 𝑈 |𝛼⟩⟨𝛼| 𝑈† = Π𝑈|𝛼⟩. Note also that
𝑈𝐼|𝛼⟩𝑈† = 𝑈(𝐼 − 2 |𝛼⟩⟨𝛼|)𝑈† = 𝐼 − 2 |𝑈𝛼⟩⟨𝑈𝛼| = 𝐼𝑈|𝛼⟩.

If𝒱 = ℂ2, for all |𝛼⟩ ∈ 𝒱, let ||𝛼⟂⟩ be orthogonal to |𝛼⟩. For all |𝑣⟩ ∈ 𝒱, we canwrite |𝑣⟩ = 𝑎 |𝛼⟩+𝑏 ||𝛼⟂⟩,
so Π|𝛼⟩ |𝑣⟩ = 𝑎 |𝛼⟩ and 𝐼|𝛼⟩ |𝑣⟩ = −𝑎 |𝛼⟩ + 𝑏 ||𝛼⟂⟩.
Let𝑁 = 2𝑛, so we can label each item in the database with an 𝑛-bit binary string. We will convert the
search problem into a black-box promise problem. The database corresponds to the Boolean function
𝑓∶ 𝐵𝑛 → 𝐵 where 𝑓(𝑥0) = 1 for a particular 𝑥0 ∈ 𝐵𝑛, and 𝑓(𝑥) = 0 otherwise. The corresponding
quantum oracle is 𝑈𝑓 |𝑥⟩ |𝑦⟩ = |𝑥⟩ |𝑦 ⊕ 𝑓(𝑥)⟩, where |𝑥⟩ ∈ (ℂ2)⊗𝑛 and |𝑦⟩ ∈ ℂ2. The fact that the
database is unstructured corresponds to the fact that the quantum oracle 𝑈𝑓 is a black box. We will
use the operator 𝐼𝑥0 , which has the following action on the basis vectors.

𝐼𝑥0 |𝑥⟩ = {+ |𝑥⟩ if 𝑥 ≠ 𝑥0
− |𝑥⟩ if 𝑥 = 𝑥0
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If 𝑥0 = 0…0 ∈ 𝐵𝑛, we define 𝐼0 = 𝐼𝑥0 . Note that 𝐼𝑥0 can be implemented using 𝑈𝑓; indeed,

𝑈𝑓 |𝑥⟩ |−⟩ =
1
√2

𝑈𝑓 |𝑥⟩ (|0⟩ − |1⟩)

= 1
√2

(|𝑥⟩ |𝑓(𝑥)⟩ − |𝑥⟩ |𝑓(𝑥)𝑐⟩)

= {
1
√2
|𝑥⟩ (|0⟩ − |1⟩) if 𝑥 ≠ 𝑥0

1
√2
|𝑥⟩ (|1⟩ − |0⟩) if 𝑥 = 𝑥0

= {+ |𝑥⟩ |−⟩ if 𝑥 ≠ 𝑥0
− |𝑥⟩ |−⟩ if 𝑥 = 𝑥0

Hence, 𝑈𝑓 |𝑥⟩ |−⟩ = (𝐼𝑥0 |𝑥⟩) |−⟩. So if |𝜓⟩ ∈ (ℂ2)⊗𝑛, |𝜓⟩ = 𝑎0 |𝑥0⟩ + ∑𝑥≠𝑥0 𝑎𝑥 |𝑥⟩ gives 𝑈𝑓 |𝜓⟩ |−⟩ =
(𝐼𝑥0 |𝜓⟩) |−⟩ = −𝑎0 |𝑥0⟩ + ∑𝑥≠𝑥0 𝑎𝑥 |𝑥⟩.

Given a black box which computes 𝐼𝑥0 for some 𝑥0 ∈ 𝐵𝑛, we wish to determine 𝑥0 with the least
amount of queries. We will now describe Grover’s algorithm. We begin with the equal superposition
state |𝜓0⟩ =

1
√2𝑛

∑𝑥∈𝐵𝑛 |𝑥⟩. Consider Grover’s iteration operator 𝑄 = −𝐻𝑛𝐼0𝐻𝑛𝐼𝑥0 where 𝐻𝑛 = 𝐻⊗𝑛.
Note that𝑄 is real-valued, so acts geometrically on the real-valued vector |𝜓0⟩ in real Euclidean space.
It has the following properties.

(i) In the plane 𝒫(𝑥0) spanned by |𝑥0⟩ and |𝜓0⟩, 𝑄 acts as a rotation through an angle 2𝛼 where
sin𝛼 = 1

√2𝑛
.

(ii) In the plane orthogonal to 𝒫(𝑥0), 𝑄 acts as −𝐼.
We repeatedly apply 𝑄 to |𝜓0⟩ to obtain the rotated vector |𝜓′0⟩, and then measure in the computa-
tional basis.

|𝜓′0⟩ = 𝑎0 |𝑥0⟩ + ∑
𝑥𝑖≠𝑥0

∑𝑎𝑖 |𝑥𝑖⟩

Hence, the probability that the outcome is 𝑥0 is |𝑎0|
2 = |⟨𝑥0|𝜓′0⟩|

2 = |cos 𝛿|2 ≈ 1where 𝛿 is the angle
between |𝜓′0⟩ and |𝑥0⟩.

If 𝑛 is large, |𝜓0⟩ is almost orthogonal to |𝑥0⟩, with ⟨𝑥0|𝜓0⟩ =
1

√2𝑛
= cos 𝛽. By property (i), 𝑄 acting

on |𝜓0⟩ rotates the state by 2𝛼, where sin𝛼 =
1

√2𝑛
. Let𝑚 be the number of iterations needed to rotate

|𝜓0⟩ close to |𝑥0⟩. Then

𝑚 = 𝛽
2𝛼 =

arccos ( 1
√2𝑛

)

2 arcsin ( 1
√2𝑛

)

Since sin𝛼 ≈ 𝛼, this implies that 2𝛼 ≈ 2 sin𝛼 = 2
√2𝑛

. Then 2𝛼𝑚 ≈ 𝜋
2
, so 𝑚 ≈ 𝜋

4𝛼
= 𝜋

4
√𝑁. The

number of iterations is independent of |𝑥0⟩; it depends only on 𝑛.

Example. Consider a database with four items, so 𝑛 = 2,𝑁 = 4. Here, sin𝛼 = 1
2
, so 𝛼 = 𝜋

6
. 𝑄

causes a rotation through 2𝛼 = 𝜋
3
. The initial state is

|𝜓0⟩ = |++⟩ = 1
2(|00⟩ + |01⟩ + |10⟩ + |11⟩)
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For any 𝑥0 ∈ 𝐵2, we have cos 𝛽 = ⟨𝑥0|𝜓0⟩ =
1
2
so 𝛽 = 𝜋

3
. Therefore, we need precisely one iteration,

which rotates |𝜓0⟩ to |𝑥0⟩ exactly. Performing a measurement in the computational basis, we obtain
𝑥0 with certainty.
We now prove the geometric properties of 𝑄. First, note that 𝑄 = −𝐻𝑛𝐼0𝐻𝑛𝐼𝑥0 = −𝐼|𝜓0⟩𝐼|𝑥0⟩. If
|𝛼⟩ , |𝑣⟩ ∈ 𝒱 and |𝑣⟩ ∈ 𝒫(𝑥0), we have

• 𝐼|𝑥0⟩ |𝑣⟩ = |𝑣⟩ − 2 ⟨𝑥0|𝑣⟩ |𝑥0⟩;
• 𝐼|𝜓0⟩ |𝑣⟩ = |𝑣⟩ − 2 ⟨𝜓0|𝑣⟩ |𝜓0⟩.

These operators are reflections about lines perpendicular to |𝑥0⟩ and |𝜓0⟩ respectively. Thus, 𝒫(𝑥0)
is stable under the action of 𝐼|𝑥0⟩ and 𝐼|𝜓0⟩.
Let𝑀1,𝑀2 be lines in the Euclidean plane, intersecting at 𝑂. Let 𝜃 be the angle between𝑀1 and𝑀2.
Then, reflection about𝑀1 then𝑀2 acts as an anticlockwise rotation by 2𝜃 about 𝑂.
In our case, the angle between the lines perpendicular to |𝑥0⟩ and |𝜓0⟩ is 𝛽. Therefore, 𝐼|𝜓0⟩𝐼|𝑥0⟩ is an
anticlockwise rotation by an angle of 2𝛽. For any real unit vector 𝑣 ∈ ℝ2, we have −𝐼𝑣 = 𝐼𝑣⟂ where
𝑣⟂ is a unit vector orthogonal to 𝑣. Hence, −𝐼|𝜓0⟩𝐼|𝑥0⟩ = 𝐼||𝜓⟂0 ⟩𝐼|𝑥0⟩, which is an anticlockwise rotation
by an angle of 2𝛼, as 𝛼 + 𝛽 = 𝜋

2
. This proves property (i).

Now consider |𝜉⟩ ∈ 𝒫(𝑥0)⟂ perpendicular to |𝜓0⟩ and to |𝑥0⟩. Clearly 𝐼|𝑥0⟩ |𝜉⟩ = |𝜉⟩ and 𝐼|𝜓0⟩ |𝜉⟩ = |𝜉⟩.
So 𝑄 |𝜉⟩ = − |𝜉⟩, giving property (ii).

Grover’s algorithm achieves an unstructured search for a unique good item in approximately 𝜋
4
√𝑁

queries, and there is no algorithm that has smaller asymptotic query complexity. Any quantum al-
gorithm that achieves this search in an unstructured database of size 𝑁 must use 𝑂(√𝑁) queries.
Moreover, it can be shown that 𝜋

4
(1 − 𝜀)√𝑁 queries are insufficient for each 𝜀, so Grover’s algorithm

is tight.

4.10 Grover’s algorithm for multiple items
Consider the case where there are 𝑟 ≥ 1 good items, and 𝑟 is known. Here, 𝑓(𝑥𝑖) = 1 if 𝑖 = 1,… , 𝑟,
and 𝑓(𝑥) = 0 otherwise, where 𝑥1,… , 𝑥𝑟 are the binary labels for the good items. We want to find
any of the good items. Then, define

𝐼𝐺 |𝑥⟩ = 𝐼 − 2
𝑟
∑
𝑖=1

|𝑥𝑖⟩⟨𝑥𝑖| = {+ |𝑥⟩ 𝑥 ∉ {𝑥1,… , 𝑥𝑟}
− |𝑥⟩ 𝑥 ∈ {𝑥1,… , 𝑥𝑟}

Note that 𝐼𝐺 is not of the form 𝐼|𝑣⟩ for a single vector |𝑣⟩. Now, define 𝑄𝐺 = −𝐻𝑛𝐼0𝐻𝑛𝐼𝐺 = −𝐼|𝜓0⟩𝐼𝐺.
Let |𝜓𝐺⟩ =

1
√𝑟
∑𝑟

𝑖=1 |𝑥𝑖⟩ be an equal superposition of the good states, and |𝜓𝐵⟩ =
1

√𝑁−𝑟
∑𝑁

𝑖=𝑟+1 |𝑥𝑖⟩ be
an equal superposition of the bad states. Note that ⟨𝜓𝐺|𝜓𝐵⟩ = 0. Begin with the equal superposition
state.

|𝜓0⟩ = (𝐻 |0⟩)⊗𝑁 = √𝑟
√𝑁

|𝜓𝐺⟩ +
√𝑁 − 𝑟
√𝑁

|𝜓𝐵⟩

Consider the plane 𝒫𝐺 spanned by |𝜓𝐺⟩ and |𝜓0⟩, which contains |𝜓𝐵⟩. Let 𝛼 be the angle between
|𝜓𝐺⟩ and ||𝜓⟂0 ⟩.

We show that in the plane𝒫𝐺,𝑄𝐺 acts as a rotation through an angle 2𝛼where sin𝛼 = ⟨𝜓0|𝜓𝐺⟩ =
√𝑟
√𝑁

.
The states |𝜓𝐺⟩ , |𝜓𝐵⟩ form an orthonormal basis for 𝒫𝐺. We find 𝐼𝐺(𝑎 |𝜓𝐺⟩ + 𝑏 |𝜓𝐵⟩) = −𝑎 |𝜓𝐺⟩ +
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𝑏 |𝜓𝐵⟩; indeed, restricting to the plane 𝒫𝐺, the action of 𝐼𝐺 is precisely the action of 𝐼|𝜓𝐺⟩. Hence, as
before, 𝑄𝐺 causes the desired rotation through 2𝛼 in this plane. The probability of finding a single
good item is |⟨𝜓|𝜓𝐺⟩|

2, as |𝜓⟩ = 𝑎 |𝜓𝐺⟩ + 𝑏 |𝜓𝐵⟩.
Suppose now that 𝑟 is unknown. In this case, we start with |𝜓0⟩ and repeatedly apply𝑄 to rotate |𝜓0⟩
to |𝜓𝐺⟩ as before. However, we do not know how many iterations of 𝑄 to apply, since this depends
on 𝑟.
If 𝑟 ≪ 𝑁, we choose 𝐾 uniformly at random in (0, 𝜋

4
√𝑁), and apply 𝐾 iterations of 𝑄. We measure

the final state ||𝜓𝐾⟩ to obtain 𝑥, and check if 𝑓(𝑥) = 1 or not. Note that each iteration causes a rotation
of 2𝛼where sin𝛼 = √𝑟

√𝑁
so 2𝛼 ≈ 2 √𝑟

√𝑁
. Choosing𝐾 therefore implicitly chooses a random angle in the

range (0, 𝜋
2
√𝑟). Now, if the final rotated state |𝜓⟩makes an anglewithin±𝜋

4
with |𝜓0⟩, the probability

of locating a good item is |⟨𝜓|𝜓0⟩|
2 ≥ cos2 𝜋

4
= 1

2
. Since for every quadrant in the plane𝒫𝐺, half of the

angles are within ±𝜋
4
from the 𝑦-axis, the randomised procedure using 𝑂(√𝑁) queries will locate a

good item with probability approximately 1
4
. The procedure can then be repeated to reduce the error

probability to an acceptable level.

4.11 𝖭𝖯 problems
A verifier 𝑉 for a language 𝐿 is a computation with two inputs 𝑤, 𝑐 such that
(i) if 𝑤 ∈ 𝐿, there exists a certificate of membership 𝑐 such that 𝑉(𝑤, 𝑐) halts in an accepting state;

and

(ii) if 𝑤 ∉ 𝐿, for any 𝑐, 𝑉(𝑤, 𝑐) halts in a rejecting state.
𝑉 is a poly-time verifier if for all inputs 𝑤, 𝑐, the algorithm 𝑉 runs in polynomial time in 𝑛, where 𝑛
is the size of the input 𝑤. A problem in the non-deterministic polynomial-time complexity class 𝖭𝖯 is
easy to verify, but may be hard to solve. More precisely, a language 𝐿 is in 𝖭𝖯 if it has a polynomial
time verifier 𝑉 .
Alternatively, consider a computer operating non-deterministically; at each binary choice, the com-
puter duplicates itself and performs both branches in parallel. We require that all possible paths
eventually halt with either an accepting or rejecting state. The running time of a given algorithm
is the length of the longest path. The computation is defined to accept its input if at least one path
accepts it, and rejects its input if all paths reject it. One can check that 𝖭𝖯 is precisely the class of lan-
guages that are decided by a non-deterministic computation with polynomial running time.

Let 𝑓∶ 𝐵𝑛 → 𝐵 be a Boolean formula. The Boolean satisfiability problem 𝖲𝖠𝖳 seeks an assignment
of the variables 𝑥1,… , 𝑥𝑛 such that 𝑓(𝑥1,… , 𝑥𝑛) = 1. Any such assignment is called a satisfying
assignment. This problem clearly lies in 𝖭𝖯; if 𝑓 is satisfiable, then 𝑐 is any assignment for which
𝑉(𝑓, 𝑐) = 1 where 𝑉(𝑓, 𝑐) = 𝑓(𝑐). Brute-force methods have 𝑂(2𝑛) runtime.
Searching for arbitrarilymany good items in anunstructured database corresponds to𝖲𝖠𝖳. Assuming
that there are few satisfying assignments, we can run the randomised Grover’s algorithm to give a
quantum algorithm for solving 𝖲𝖠𝖳 in 𝑂(√2𝑛) time with low probability of error. Any 𝖭𝖯 problem
can be converted into an application of 𝖲𝖠𝖳; we say 𝖲𝖠𝖳 is𝖭𝖯-complete. Grover’s algorithm can hence
be applied to any 𝖭𝖯 problem to provide a quadratic speedup.
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4.12 Shor’s algorithm
Suppose 𝑁 is a positive integer and 𝑛 = ⌈log𝑁⌉ is the number of bits in a binary representation of
𝑁. We wish to factorise 𝑁. We will describe an algorithm which, given 𝑁 and a fixed acceptable
probability of error, outputs a factor 1 < 𝑘 < 𝑁, or outputs 𝑁 if 𝑁 is prime. This algorithm runs in
polynomial time in 𝑛; there is no classical algorithm with this property.

We first use results from number theory to convert the problem into a periodicity determination
problem. Then, we apply the quantum period-finding algorithm using the quantum Fourier trans-
form.

Choose an integer 1 < 𝑎 < 𝑁 uniformly at random, and compute 𝑏 = gcd(𝑎, 𝑁). If 𝑏 > 1, then 𝑏 ∣ 𝑁
so is a factor; in this case we simply output 𝑏. If 𝑏 = 1, then 𝑎,𝑁 are coprime.

Theorem (Euler’s theorem). Let 𝑎,𝑁 be coprime. Then there exists 1 < 𝑟 < 𝑁 such that
𝑎𝑟 ≡ 1mod 𝑁. A minimal such 𝑟 is called the order of 𝑎modulo 𝑁.

Consider the modular exponentiation function 𝑓∶ ℤ → ℤ⟋𝑛ℤ such that 𝑓(𝑘) = 𝑎𝑘 mod 𝑁. This
function satisfies 𝑓(𝑘1 + 𝑘2) = 𝑓(𝑘1)𝑓(𝑘2). 𝑓 is periodic with period 𝑟, and is injective within each
period.

Suppose that we can find 𝑟, and suppose 𝑟 is even. Then 𝑎𝑟 − 1 ≡ (𝑎
𝑟
2 + 1)(𝑎

𝑟
2 − 1) ≡ 0 mod 𝑁.

Note that 𝑁 ∤ (𝑎
𝑟
2 − 1) since 𝑟 was minimal such that 𝑎𝑟 ≡ 1 mod 𝑁. If 𝑁 ∤ (𝑎

𝑟
2 + 1), then 𝑁 must

have some prime factors in (𝑎
𝑟
2 +1) and some in (𝑎

𝑟
2 −1). We can use Euclid’s algorithm to compute

gcd(𝑎
𝑟
2 + 1,𝑁) and gcd(𝑎

𝑟
2 − 1,𝑁), which are factors of 𝑁. Thus, we find factors of 𝑁 provided 𝑟 is

even and 𝑎
𝑟
2 + 1 ≢ 0mod 𝑁.

Consider 𝑁 = 15, 𝑎 = 7. Then 𝑓(𝑘) = 7𝑘 mod 15 takes values 1, 7, 4, 13, so has period 𝑟 = 4. This is
even, so we canwrite 𝑎𝑟−1 = (𝑎

𝑟
2 +1)(𝑎

𝑟
2 −1) = 50⋅48. 𝑁 = 15 does not divide 50, so gcd(50, 𝑁) = 5

is a factor, and gcd(48, 15) = 3 is a factor.

Theorem. Let𝑁 be odd and not a prime power. Then, choosing 𝑎 uniformly at random such
that gcd(𝑎, 𝑁) = 1, the probability that 𝑟 is even and (𝑎

𝑟
2 + 1) ≢ 0mod 𝑁 is at least 1

2
.

This implies that if 𝑁 is odd and not a prime power, we obtain a factor of 𝑁 with probability at least
1
2
. We repeat this process until the probability of not finding a factor is acceptably low. If 𝑁 is even,

we simply output 2 as a factor.

Lemma. Let 𝑁 = 𝑐ℓ for some 𝑐, ℓ ∈ ℕ. There is a classical polynomial-time algorithm that
computes 𝑐.

Shor’s algorithm can be summarised as follows.

(i) Test if 𝑁 is even; if so, output 2 and halt.

(ii) Run the classical algorithm to test if 𝑁 is of the form 𝑐ℓ with ℓ > 1; if so, output 𝑐 and halt.
(iii) Choose 1 < 𝑎 < 𝑁 uniformly at random and compute 𝑏 = gcd(𝑎, 𝑁). If 𝑏 > 1, output 𝑏 and

halt.
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(iv) Find the period 𝑟 of the modular exponentiation function 𝑓(𝑘) = 𝑎𝑘mod𝑁. If this fails, return
to step (iii).

(v) If 𝑟 is even and (𝑎
𝑟
2 + 1) ≢ 0 mod 𝑁, compute 𝑡 = gcd(𝑎

𝑟
2 + 1,𝑁); if 1 < 𝑡 < 𝑁, output 𝑡 and

halt. Otherwise, return to step (iii).

We now describe the method to compute the period of the modular exponentiation function. Note
that 𝑓∶ ℤ → ℤ, not ℤ𝑁 → ℤ𝑀 ; we therefore cannot directly use the algorithm discussed previously.
We must first truncate the domain ℤ to some ℤ𝑀 . If 𝑟 is unknown, 𝑓 will not necessarily be periodic
onℤ𝑀 . However, if𝑀 is𝑂(𝑁2), the single incomplete period has a negligible effect on the periodicity
determination. We will define𝑀 = 2𝑚 for some𝑚 and use 𝑄𝐹𝑇𝑀 .
Consider a finite domain 𝐷 = {0,… , 2𝑚 − 1}, where 𝑚 is the smallest integer such that 2𝑚 > 𝑁2.
Suppose 2𝑚 = 𝐵𝑟 + 𝑏 where 0 ≤ 𝑏 < 𝑟, so 𝐵 = ⌊ 2

𝑚

𝑟
⌋. We start with the equal superposition state

|𝜓𝑚⟩ =
1

√2𝑚
∑𝑥∈𝐷 |𝑥⟩. Consider the quantum oracle 𝑈𝑓 corresponding to the modular exponenti-

ation function 𝑓. Then

|Ψ⟩ = 𝑈𝑓 |𝜓𝑚⟩ |0⟩

= 1
√2𝑚

∑
𝑥∈𝐷

|𝑥⟩ |𝑓(𝑥)⟩

= 1
√2𝑚

𝑏−1
∑
𝑥0=0

𝐵
∑
𝑗=0

|𝑥0 + 𝑗𝑟⟩ |𝑓(𝑥0)⟩ +
1

√2𝑚

𝑟
∑
𝑥0=𝑏

𝐵−1
∑
𝑗=0

|𝑥0 + 𝑗𝑟⟩ |𝑓(𝑥0)⟩

Measuring the second register, we obtain an outcome 𝑦 = 𝑓(𝑥0). In the case 𝑥0 < 𝑏, 𝑓(𝑥0) =
𝑓(𝑥0 + 𝑗𝑟) for 𝑗 ∈ {0,… , 𝐵}. If 𝑥0 ≥ 𝑏, 𝑓(𝑥0) = 𝑓(𝑥0 + 𝑗𝑟) for 𝑗 ∈ {0,… , 𝐵 − 1}.

If 𝑦 = 𝑓(𝑥0) for 𝑥0 < 𝑏, the probability of measuring 𝑦 is 𝐵+1
2𝑚

. The post-measurement state of the

first register is |per⟩ = 1
√𝐵+1

∑𝐵
𝑗=0 |𝑥0 + 𝑗𝑟⟩. In the case 𝑥0 ≥ 𝑏, we have |per⟩ = 1

√𝐵
∑𝐵−1

𝑗=0 |𝑥0 + 𝑗𝑟⟩.
In both cases,

|per⟩ = 1
√𝐴

𝐴−1
∑
𝑗=0

|𝑥0 + 𝑗𝑟⟩

where 𝐴 = 𝐵 + 1 if 𝑦 = 𝑓(𝑥0) with 𝑥0 < 𝑏 and 𝐴 = 𝐵 if 𝑦 = 𝑓(𝑥0) with 𝑥0 ≥ 𝑏. We act on |per⟩ by
𝑄𝐹𝑇2𝑚 to obtain

𝑄𝐹𝑇2𝑚 |per⟩ = 1
√𝐴

1
√2𝑛

𝐴−1
∑
𝑗=0

2𝑚−1
∑
𝑐=0

𝜔(𝑥0+𝑗𝑟)𝑐 |𝑐⟩

= 1
√𝐴

1
√2𝑛

2𝑚−1
∑
𝑐=0

𝜔𝑥0𝑐 [
𝐴−1
∑
𝑗=0

(𝜔𝑐𝑟)𝑗]
⏟⎵⎵⏟⎵⎵⏟

𝑆

|𝑐⟩

where 𝜔 = 2
2𝜋𝑖
𝑀 where 𝑀 = 2𝑚. 𝑆 is a geometric series. If 𝑀

𝑟
∉ ℤ, 𝛼𝐴 ≠ 1. We claim that a

measurement on 𝑄𝐹𝑇2𝑚 |per⟩ yields an integer 𝑐 which is close to a multiple of 𝑀
𝑟
with high probab-

ility.
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Consider 𝑘 2
𝑚

𝑟
for 𝑘 = 0,… , 𝑟 − 1. Each of these multiples is within 1

2
of a unique integer; indeed,

2𝑚 = 𝐵𝑟 + 𝑏 so 𝑟 < 2𝑚, giving that 𝑘 2
𝑚

𝑟
cannot be a half integer. Consider the values of 𝑐 such that

||𝑐 − 𝑘 2
𝑚

𝑟
|| <

1
2
for 𝑘 = 0,… , 𝑟 − 1.

Theorem. Suppose that 𝑄𝐹𝑇2𝑚 |per⟩ = ∑2𝑚−1
𝑐=0 𝑔(𝑐) |𝑐⟩, and that we measure the state and

receive an outcome 𝑐. Let 𝑐𝑘 be the unique integer such that ||𝑐𝑘 − 𝑘 2
𝑚

𝑟
|| < 1

2
. Then

ℙ (𝑐 = 𝑐𝑘) >
𝛾
𝑟
for a fixed constant 𝛾 (which can be shown to be 4

𝜋2
). Moreover, the prob-

ability that 𝑘, 𝑟 are coprime is Ω( 1
log log 𝑟

) by the coprimality theorem.

Thus, with 𝑂(log log𝑁) > 𝑂(log log 𝑟) repetitions, we obtain a good 𝑐 value with high probability.
Suppose that we measure 𝑐 such that ||𝑐 − 𝑘 2

𝑚

𝑟
|| <

1
2
, so ||

𝑐
2𝑚

− 𝑘
𝑟
|| <

1
2𝑚+1 . Recall that 𝑟 < 𝑁 and𝑚 is

minimal such that 2𝑚 > 𝑁2. Then ||
𝑐
2𝑚

− 𝑘
𝑟
|| <

1
2𝑁2 . Note that

𝑐
2𝑚

is known.

We show that there is at most one fraction 𝑘
𝑟
with denominator 𝑟 < 𝑁 such that ||

𝑐
2𝑚

− 𝑘
𝑟
|| <

1
2𝑁2 .

Suppose 𝑘′

𝑟′
, 𝑘

″

𝑟″
both satisfy this requirement. Then

|||
𝑘′
𝑟′ −

𝑘″
𝑟″
||| =

|𝑘′𝑟″ − 𝑘″𝑟′|
𝑟′𝑟″ ≥ 1

𝑟′𝑟″ > 1
𝑁2

But ||
𝑐
2𝑚

− 𝑘′

𝑟′
||, ||

𝑐
2𝑚

− 𝑘′

𝑟′
|| <

1
2𝑁2 , contradicting the triangle inequality. This result is the reason for

choosing 𝑚 minimal such that 2𝑚 > 𝑁2. Therefore, we have with high probability that 𝑐
2𝑚

is close

to a unique fraction 𝑘
𝑟
.

Example. Let 𝑁 = 39 and choose 𝑎 = 7; note that 7 and 39 are coprime. Let 𝑟 be the period of
𝑓(𝑘) = 𝑎𝑘 mod 39. Note that 210 < 𝑁2 < 211, so set 𝑚 = 11. Suppose that 𝑄𝐹𝑇211 |per⟩ gives a
measurement of 𝑐. Then ||𝑐 − 𝑘 2

11

𝑟
|
| <

1
2
with probability 𝛾

𝑟
.

Suppose 𝑐 = 853. One can explicitly check all fractions of the form 𝑎
𝑏
to find one that satisfies

||
𝑎
𝑏
− 853

2048
|| <

1
212
. This is consistent with 𝑎

𝑏
= 5

12
, 10
24
; as we are constrained by coprimality we must

choose 𝑟 = 12. One can check that 712 ≡ 1 mod 39, hence 𝑟 = 12. Note that 𝑂(𝑁2) = 𝑂(exp(𝑛))
computations are needed for this calculation; there is a more efficient way to compute 𝑎, 𝑏 using
continued fractions.

A rational number 𝑠
𝑡
can be written in the form of a continued fraction

𝑠
𝑡 =

1
𝑎1 +

1
𝑎2+

1
⋯+ 1

𝑎ℓ

= [𝑎1,… , 𝑎ℓ]

where 𝑎1,… , 𝑎ℓ are positive integers. We canwrite
𝑠
𝑡
= 1

𝑡
𝑠
= 1

𝑎1+
𝑠1
𝑡1

, and so on. For example, if 𝑠
𝑡
= 13

35
,

we can find 𝑎1 = 2, 𝑎2 = 2, 𝑎3 = 1, 𝑎4 = 1, 𝑎5 = 2 and ℓ = 5. Since the sequence 𝑡𝑘 is decreasing, the
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expansion will always terminate. For each 𝑘 = 1,… , ℓ, we can truncate the computation at level 𝑘.
This gives the sequence of rational numbers

𝑝1
𝑞1

= [𝑎1],
𝑝2
𝑞2

= [𝑎1, 𝑎2],… , 𝑝ℓ𝑞ℓ
= [𝑎1,… , 𝑎ℓ] =

𝑠
𝑡

𝑝𝑘
𝑞𝑘
is the 𝑘th convergent of the continued fraction 𝑠

𝑡
.

Lemma. Let 𝑎1,… , 𝑎ℓ be positive reals, and let 𝑝0 = 0, 𝑞0 = 1, 𝑝1 = 1, 𝑞1 = 𝑎1. Then,
(i) [𝑎1,… , 𝑎𝑘] =

𝑝𝑘
𝑞𝑘
where 𝑝𝑘 = 𝑎𝑘𝑝𝑘−1 + 𝑝𝑘−2 and 𝑞𝑘 = 𝑎𝑘𝑞𝑘−1 + 𝑞𝑘−2;

(ii) if the 𝑎𝑘 are integers, then so are the 𝑝𝑘 and 𝑞𝑘, with 𝑞𝑘𝑝𝑘−1 − 𝑝𝑘𝑞𝑘−1 = (−1)𝑘 for
𝑘 ≥ 1, and moreover gcd(𝑝𝑘, 𝑞𝑘) = 1.

Theorem. Consider a continued fraction 𝑠
𝑡
= [𝑎1,… , 𝑎ℓ], and let

𝑝𝑘
𝑞𝑘

be the 𝑘th convergent.
If 𝑠 and 𝑡 are given by𝑚-bit integers, then the length ℓ of the continued fraction is 𝑂(𝑚), and
the continued fraction and its convergents can be computed in 𝑂(𝑚3) time.

Proof sketch. We have 𝑎𝑘 ≥ 1 and 𝑝𝑘, 𝑞𝑘 ≥ 1. Part (i) of the above lemma implies that (𝑝𝑘) and
(𝑞𝑘) are increasing sequences. If 𝑘 is even, 𝑝𝑘 ≥ 2𝑝𝑘−2 and 𝑞𝑘 ≥ 2𝑞𝑘−2 hence 𝑝𝑘, 𝑞𝑘 ≥ 2

𝑘
2 . Thus, in

general, 𝑝𝑘, 𝑞𝑘 ≥ 2⌊
𝑘
2 ⌋. We therefore need atmost ℓ = 𝑂(𝑚) iterations to obtain 𝑠

𝑡
exactly, since 𝑞𝑘, 𝑝𝑘

are coprime and each are at least 2⌊
𝑘
2 ⌋. The computation of each successive 𝑎𝑘 value involves division

of 𝑂(𝑚)-bit integers and converting it into an integer and remainder term; these computations can
be performed in 𝑂(𝑚2) time. Hence, the entire computation requires only 𝑂(𝑚3) time.

Theorem. Let 𝑥 ∈ ℚ with 0 < 𝑥 < 1. Let 𝑝
𝑞
∈ ℚ such that |||𝑥 −

𝑝
𝑞
||| <

1
2𝑞2

. Then 𝑝
𝑞
is a

convergent of the continued fraction expansion of 𝑥.

In our situation, we have 𝑐 such that

|||
𝑐
2𝑚 − 𝑘

𝑟
||| <

1
2𝑁2 ; 𝑟 < 𝑁

In particular, ||
𝑐
2𝑚

− 𝑘
𝑟
|| <

1
2𝑟2
, andwehave seen that there is atmost one fraction 𝑘

𝑟
such that this holds.

Note that 0 < 𝑐 < 2𝑚, so 0 < 𝑐
2𝑚

< 1. Hence, 𝑘
𝑟
is a convergent of 𝑐

2𝑚
. Note that 2𝑚 > 𝑁2 > 2𝑚−1,

so 𝑐, 2𝑚 are 𝑂(𝑚)-bit integers, and hence the sequence of convergents (and in particular 𝑘
𝑟
) can be

computed in 𝑂(𝑚3) time. We can then explicitly check for each convergent 𝑘
𝑟
if ||

𝑐
2𝑚

− 𝑘
𝑟
|| <

1
2𝑁2 and

𝑟 < 𝑁 hold.

Example. Consider again 𝑁 = 39 and 2𝑚 = 211 = 2048. Suppose 𝑐 = 853. Then one can explicitly
compute

𝑐
2𝑚 = 853

2048 = [2, 2, 2, 42, 4]
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Its convergents are
1
2 ;

2
5 ;

5
12 ;

212
509 ;

853
2048

Only 5
12
satisfies ||

𝑐
2𝑚

− 𝑘
𝑟
|| <

1
2𝑁2 and 𝑟 < 𝑁. So 𝑟 = 12 is the period.

A classical factoring algorithm takes 𝑂(exp(𝑛
1
3 )) time; we analyse the time complexity of Shor’s

algorithm. Consider the case when 𝑁 is odd and not a prime power, and let 𝑛 = log𝑁. The modular
exponentiation function requires 𝑂(𝑚) = 𝑂(𝑛) multiplications, each of which take 𝑂(𝑚2) = 𝑂(𝑛2)
time, so this algorithm takes 𝑂(𝑛3) time. The construction of the equal superposition state requires
𝑚 = 𝑂(𝑛) Hadamard gates, and applying the quantum oracle gives the state 1

2𝑚
∑𝑥∈𝐵𝑚 |𝑥⟩ |𝑓(𝑥)⟩

in 𝑂(𝑛3) steps. We measure the second register which contains 𝑂(𝑛) qubits, hence requiring 𝑂(𝑛)
single-qubit measurements. The first register is then in state |per⟩. We then apply the quantum
Fourier transform 𝑄𝐹𝑇2𝑚 , which can be implemented in 𝑂(𝑚2) = 𝑂(𝑛2) steps. We then measure
the first register to obtain 𝑐, requiring𝑂(𝑛) single-qubit measurements. Then, we find 𝑟 from 𝑐 using
the continued fraction algorithm, requiring 𝑂(𝑛3) steps. A good 𝑐 value is obtained with probability
1 − 𝜀 with 𝑂(log log𝑁) = 𝑂(log𝑛) repetitions. Then, 𝑡 = gcd(𝑎

𝑟
2 + 1,𝑁) is computed using Euclid’s

algorithm, taking𝑂(𝑛3) steps. If 𝑟 is odd or is even but 𝑡 = 1, then we return to the start, and the case
where 𝑟 is even and 𝑡 ≠ 1 occurs with probability at least 1−𝜀 if we perform log 1

𝜀
repetitions.
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