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1 Measures
1.1 Definitions

Definition. Let 𝐸 be a (nonempty) set. A collection ℰ of subsets of 𝐸 is called a 𝜎-algebra if
the following properties hold:

• ∅ ∈ ℰ;
• 𝐴 ∈ ℰ ⟹ 𝐴𝑐 = 𝐸 ∖ 𝐴 ∈ ℰ;
• if (𝐴𝑛)𝑛∈ℕ is a countable collection of sets in ℰ,⋃𝑛∈ℕ 𝐴𝑛 ∈ ℰ.

Example. Let ℰ = {∅, 𝐸}. This is a 𝜎-algebra. Also, 𝒫(𝐸) = {𝐴 ⊆ 𝐸} is a 𝜎-algebra.

Remark. Since⋂𝑛 𝐴𝑛 = (⋃𝑛 𝐴𝑐
𝑛)

𝑐, any 𝜎-algebra ℰ is closed under countable intersections as well as
under countable unions. Note that 𝐵 ∖ 𝐴 = 𝐵 ∩𝐴𝑐 ∈ ℰ, so 𝜎-algebras are closed under set difference.

Definition. A set 𝐸 with a 𝜎-algebra ℰ is called a measurable space. The elements of ℰ are
calledmeasurable sets.

Definition. A measure 𝜇 is a set function 𝜇 ∶ ℰ → [0,∞], such that 𝜇(∅) = 0, and for a
sequence (𝐴𝑛)𝑛∈ℕ such that the 𝐴𝑛 are disjoint, we have

𝜇(⋃
𝑛∈ℕ

𝐴𝑛) = ∑
𝑛∈ℕ

𝜇(𝐴𝑛)

This is the countable additivity property of the measure.

Remark. If 𝐸 is countable, then for any 𝐴 ∈ 𝒫(𝐸) and measure 𝜇, we have

𝜇(𝐴) = 𝜇(⋃
𝑥∈𝐴

{𝑥}) = ∑
𝑥∈𝐴

𝜇({𝑥})

Hence, measures are uniquely defined by the measure of each singleton. This corresponds to the
notion of a probability mass function.

Definition. For a collection 𝒜 of subsets of 𝐸, we define the 𝜎-algebra 𝜎(𝐴) generated by 𝒜
by

𝜎(𝒜) = {𝐴 ⊆ 𝐸∶ 𝐴 ∈ ℰ for all 𝜎-algebras ℰ ⊇ 𝒜}
So it is the smallest 𝜎-algebra containing 𝒜. Equivalently,

𝜎(𝒜) = ⋂
ℰ⊇𝒜,ℰ a 𝜎-algebra

ℰ

1.2 Rings and algebras
To construct good generators, we define the following.
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Definition. 𝒜 ⊆ 𝒫(𝐸) is called a ring over 𝐸 if ∅ ∈ 𝒜 and 𝐴, 𝐵 ∈ 𝒜 implies 𝐵 ∖ 𝐴 ∈ 𝒜 and
𝐴 ∪ 𝐵 ∈ 𝒜.

Rings are easier to manage than 𝜎-algebras because there are only finitary operators.

Definition. 𝒜 is called an algebra over 𝐸 if ∅ ∈ 𝒜 and 𝐴, 𝐵 ∈ 𝒜 implies 𝐴𝑐 ∈ 𝒜 and
𝐴 ∪ 𝐵 ∈ 𝒜.

Remark. Rings are closed under symmetric difference 𝐴 △ 𝐵 = (𝐵 ∖ 𝐴) ∪ (𝐴 ∖ 𝐵), and are closed
under intersections 𝐴 ∩ 𝐵 = 𝐴 ∪ 𝐵 ∖ 𝐴 △ 𝐵. Algebras are rings, because 𝐵 ∖ 𝐴 = 𝐵 ∩ 𝐴𝑐 = (𝐵𝑐 ∪ 𝐴)𝑐.
Not all rings are algebras, because rings do not need to include the entire space.

Proposition (Disjointification of countable unions). Consider⋃𝑛 𝐴𝑛 for 𝐴𝑛 ∈ ℰ, where ℰ
is a 𝜎-algebra (or a ring, if the union is finite). Then there exist 𝐵𝑛 ∈ ℰ that are disjoint such
that⋃𝑛 𝐴𝑛 = ⋃𝑛 𝐵𝑛.

Proof. Define 𝐴𝑛 = ⋃𝑗≤𝑛 𝐴𝑗 , then 𝐵𝑛+1 = 𝐴𝑛 ∖ 𝐴𝑛−1.

Definition. A set function on a collection𝒜 of subsets of 𝐸, where∅ ∈ 𝒜, is a map 𝜇∶ 𝒜 →
[0,∞] such that 𝜇(∅) = 0. We say 𝜇 is increasing if 𝜇(𝐴) ≤ 𝜇(𝐵) for all 𝐴 ⊆ 𝐵 in 𝒜. We
say 𝜇 is additive if 𝜇(𝐴 ∪ 𝐵) = 𝜇(𝐴) + 𝜇(𝐵) for disjoint 𝐴, 𝐵 ∈ 𝒜 and 𝐴 ∪ 𝐵 ∈ 𝒜. We say
𝜇 is countably additive if 𝜇(⋃𝑛 𝐴𝑛) = ∑𝑛 𝜇(𝐴𝑛) for disjoint sequences 𝐴𝑛 where⋃𝑛 𝐴𝑛 and
each 𝐴𝑛 lie in 𝒜. We say 𝜇 is countably subadditive if 𝜇(⋃𝑛 𝐴𝑛) ≤ ∑𝑛 𝜇(𝐴𝑛) for arbitrary
sequences 𝐴𝑛 under the above conditions.

Remark. Ameasure satisfies all four of the above conditions. Countable additivity implies the other
conditions.

Theorem (Carathéodory’s theorem). Let 𝜇 be a countably additive set function on a ring 𝒜
of subsets of 𝐸. Then there exists a measure 𝜇⋆ on 𝜎(𝒜) such that 𝜇⋆|𝒜 = 𝜇.

We will later prove that this extended measure is unique.

Proof. For 𝐵 ⊆ 𝐸, we define the outer measure 𝜇⋆ as

𝜇⋆(𝐵) = inf {∑
𝑛∈ℕ

𝜇(𝐴𝑛), 𝐴𝑛 ∈ 𝒜, 𝐵 ⊆ ⋃
𝑛∈ℕ

𝐴𝑛}

If there is no sequence 𝐴𝑛 such that 𝐵 ⊆ ⋃𝑛∈ℕ 𝐴𝑛, we declare the outer measure 𝜇⋆(𝐵) to be∞. We
define the class

ℳ = {𝐴 ⊆ 𝐸 ∣ ∀𝐵 ⊆ 𝐸, 𝜇⋆(𝐵) = 𝜇⋆(𝐵 ∩ 𝐴) + 𝜇⋆(𝐵 ∩ 𝐴𝑐)}
This is the class of 𝜇⋆-measurable sets.
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Step 1. 𝜇⋆ is countably sub-additive on 𝒫(𝐸). It suffices to prove that for 𝐵 ⊆ 𝐸 and 𝐵𝑛 ⊆ 𝐸 such that
𝐵 ⊆ ⋃𝑛 𝐵𝑛 we have

𝜇⋆(𝐵) ≤ ∑
𝑛
𝜇⋆(𝐵𝑛) (†)

We can assume without loss of generality that 𝜇⋆(𝐵𝑛) < ∞ for all 𝑛, otherwise there is nothing to
prove. For all 𝜀 > 0 there exists a collection 𝐴𝑛,𝑚 such that 𝐵𝑛 ⊆ ⋃𝑚 𝐴𝑛,𝑚 and

𝜇⋆(𝐵𝑛) +
𝜀
2𝑛 ≥ ∑

𝑚
𝜇(𝐴𝑛,𝑚)

Now, since 𝜇⋆ is increasing, and 𝐵 ⊆ ⋃𝑛 𝐵𝑛 ⊆ ⋃𝑛⋃𝑚 𝐴𝑛,𝑚, we have

𝜇⋆(𝐵) ≤ 𝜇⋆(⋃
𝑛,𝑚

𝐴𝑛,𝑚) ≤ ∑
𝑛,𝑚

𝜇(𝐴𝑛,𝑚) ≤ ∑
𝑛
𝜇⋆(𝐵𝑛) +∑

𝑛

𝜀
2𝑛 = ∑

𝑛
𝜇⋆(𝐵𝑛) + 𝜀

Since 𝜀 was arbitrary in the construction, (†) follows by construction.
Step 2. 𝜇⋆ extends 𝜇. Let 𝐴 ∈ 𝒜, and we want to show 𝜇⋆(𝐴) = 𝜇(𝐴). We can write 𝐴 = 𝐴 ∪ ∅ ∪…,
hence 𝜇⋆(𝐴) ≤ 𝜇(𝐴) + 0 + ⋯ = 𝜇(𝐴) by definition of 𝜇⋆. We need to prove the converse, that
𝜇(𝐴) ≤ 𝜇⋆(𝐴). If 𝜇⋆ is infinite, there is nothing to prove. For the finite case, suppose there is a
sequence 𝐴𝑛 where 𝜇(𝐴𝑛) < ∞ and 𝐴 ⊆ ⋃𝑛 𝐴𝑛. Then, 𝐴 = ⋃𝑛(𝐴 ∩ 𝐴𝑛), which is a union of
elements of the ring𝒜. Since 𝜇 is a countably additive set function on𝒜, it is countably subadditive.
Hence 𝜇(𝐴) ≤ ∑𝑛 𝜇(𝐴 ∩ 𝐴𝑛) ≤ ∑𝑛 𝜇(𝐴𝑛). Since the 𝐴𝑛 were arbitrary, we have 𝜇(𝐴) ≤ 𝜇⋆(𝐴) as
required.

Step 3.ℳ ⊇ 𝒜. Let𝐴 ∈ 𝒜. Wemust show that for all 𝐵 ⊆ 𝐸, 𝜇⋆(𝐵) = 𝜇⋆(𝐵∩𝐴)+𝜇⋆(𝐵∩𝐴𝑐). We have
𝐵 ⊆ (𝐵∩𝐴)∪ (𝐵 ∩𝐴𝑐)∪∅∪…, hence by countable subadditivity (†), 𝜇⋆(𝐵) ≤ 𝜇⋆(𝐵 ∩𝐴)+𝜇⋆(𝐵 ∩𝐴𝑐).
It now suffices to prove the converse, that 𝜇⋆(𝐵) ≥ 𝜇⋆(𝐵 ∩ 𝐴) + 𝜇⋆(𝐵 ∩ 𝐴𝑐). We can assume 𝜇⋆(𝐵)
is finite, and assume there exists 𝐴𝑛 ∈ 𝒜 such that 𝐵 ⊆ ⋃𝑛 𝐴𝑛 and 𝜇⋆(𝐵) + 𝜀 ≥ ∑𝑛 𝜇(𝐴𝑛). Now,
𝐵∩𝐴 ⊆ ⋃𝑛(𝐴𝑛∩𝐴), and 𝐵∩𝐴𝑐 ⊆ ⋃𝑛(𝐴𝑛∩𝐴𝑐). All of themembers of these two unions are elements
of 𝒜, since 𝐴𝑛 ∩ 𝐴𝑐 = 𝐴𝑛 ∖ 𝐴. Therefore,

𝜇⋆(𝐵 ∩ 𝐴) + 𝜇⋆(𝐵 ∩ 𝐴𝑐) ≤ ∑
𝑛
𝜇(𝐴𝑛 ∩ 𝐴) +∑

𝑛
𝜇(𝐴𝑛 ∩ 𝐴𝑐)

≤ ∑
𝑛
[𝜇(𝐴𝑛 ∩ 𝐴) + 𝜇(𝐴𝑛 ∩ 𝐴𝑐)]

≤ ∑
𝑛
𝜇(𝐴𝑛) ≤ 𝜇⋆(𝐵) + 𝜀

Since 𝜀 was arbitrary, 𝜇⋆(𝐵) = 𝜇⋆(𝐵 ∩ 𝐴) + 𝜇⋆(𝐵 ∩ 𝐴𝑐) as required.
Step 4. ℳ is an algebra. Clearly ∅ lies inℳ, and by the symmetry in the definition ofℳ, comple-
ments lie inℳ. We need to checkℳ is stable under finite intersections. Let 𝐴1, 𝐴2 ∈ ℳ and let
𝐵 ⊆ 𝐸. We have

𝜇⋆(𝐵) = 𝜇⋆(𝐵 ∩ 𝐴1) + 𝜇⋆(𝐵 ∩ 𝐴𝑐
1) = 𝜇⋆(𝐵 ∩ 𝐴1 ∩ 𝐴2) + 𝜇⋆(𝐵 ∩ 𝐴1 ∩ 𝐴𝑐

2) + 𝜇⋆(𝐵 ∩ 𝐴𝑐
1)

We can write 𝐴1 ∩ 𝐴𝑐
2 = (𝐴1 ∩ 𝐴𝑐

2)𝑐 ∩ 𝐴1, and 𝐴𝑐
1 = (𝐴1 ∩ 𝐴2)𝑐 ∩ 𝐴𝑐

1. Hence

𝜇⋆(𝐵) = 𝜇⋆(𝐵 ∩ 𝐴1 ∩ 𝐴2) + 𝜇⋆(𝐵 ∩ (𝐴1 ∩ 𝐴2)𝑐 ∩ 𝐴1) + 𝜇⋆(𝐵 ∩ (𝐴1 ∩ 𝐴2)𝑐 ∩ 𝐴𝑐
1)

= 𝜇⋆(𝐵 ∩ 𝐴1 ∩ 𝐴2) + 𝜇⋆(𝐵 ∩ (𝐴1 ∩ 𝐴2)𝑐)
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which is the requirement for 𝐴1 ∩ 𝐴2 to lie inℳ.

Step 5. ℳ is a 𝜎-algebra and 𝜇⋆ is a measure onℳ. It suffices now to show thatℳ has countable
unions and the measure respects these countable unions. Let 𝐴 = ⋃𝑛 𝐴𝑛 for 𝐴𝑛 ∈ ℳ. Without
loss of generality, let the 𝐴𝑛 be disjoint. We want to show 𝐴 ∈ ℳ, and that 𝜇⋆(𝐴) = ∑𝑛 𝜇⋆(𝐴𝑛). By
(†), we have 𝜇⋆(𝐵) ≤ 𝜇⋆(𝐵 ∩ 𝐴) + 𝜇⋆(𝐵 ∩ 𝐴𝑐) + 0 + … so we need to check only the converse of this
inequality. Also, 𝜇⋆(𝐴) ≤ ∑𝑛 𝜇⋆(𝐴𝑛), so we need only check the converse of this inequality as well.
Similarly to before,

𝜇⋆(𝐵) = 𝜇⋆(𝐵 ∩ 𝐴1) + 𝜇⋆(𝐵 ∩ 𝐴𝑐
1)

= 𝜇⋆(𝐵 ∩ 𝐴1) + 𝜇⋆(𝐵 ∩ 𝐴𝑐
1 ∩ 𝐴2) + 𝜇⋆(𝐵 ∩ 𝐴𝑐

1 ∩ 𝐴𝑐
2)

= 𝜇⋆(𝐵 ∩ 𝐴1) + 𝜇⋆(𝐵 ∩ 𝐴2) + 𝜇⋆(𝐵 ∩ 𝐴𝑐
1 ∩ 𝐴𝑐

2)
= 𝜇⋆(𝐵 ∩ 𝐴1) + 𝜇⋆(𝐵 ∩ 𝐴2) + 𝜇⋆(𝐵 ∩ 𝐴𝑐

1 ∩ 𝐴𝑐
2 ∩ 𝐴3) + 𝜇⋆(𝐵 ∩ 𝐴𝑐

1 ∩ 𝐴𝑐
2 ∩ 𝐴𝑐

3)
= 𝜇⋆(𝐵 ∩ 𝐴1) + 𝜇⋆(𝐵 ∩ 𝐴2) + 𝜇⋆(𝐵 ∩ 𝐴3) + 𝜇⋆(𝐵 ∩ 𝐴𝑐

1 ∩ 𝐴𝑐
2 ∩ 𝐴𝑐

3)
= ⋯
= ∑

𝑛≤𝑁
𝜇⋆(𝐵 ∩ 𝐴𝑛) + 𝜇⋆(𝐵 ∩ 𝐴𝑐

1 ∩⋯ ∩ 𝐴𝑐
𝑁)

Since⋃𝑛≤𝑁 𝐴𝑛 ⊆ 𝐴, we have⋂𝑛≤𝑁 𝐴𝑐
𝑛 ⊇ 𝐴𝑐. 𝜇⋆ is increasing, hence, taking limits,

𝜇⋆(𝐵) ≥
∞
∑
𝑛=1

𝜇⋆(𝐵 ∩ 𝐴𝑛) + 𝜇⋆(𝐵 ∩ 𝐴𝑐)

By (†),
𝜇⋆(𝐵) ≥ 𝜇⋆(𝐵 ∩ 𝐴) + 𝜇⋆(𝐵 ∩ 𝐴𝑐)

as required. Henceℳ is a 𝜎-algebra. For the other inequality, we take the above result for 𝐵 = 𝐴.

𝜇⋆(𝐴) ≥
∞
∑
𝑛=1

𝜇⋆(𝐴 ∩ 𝐴𝑛) + 𝜇⋆(𝐴 ∩ 𝐴𝑐) =
∞
∑
𝑛=1

𝜇⋆(𝐴𝑛)

So 𝜇⋆ is countably additive onℳ and is hence a measure onℳ.

1.3 Uniqueness of extension

Definition. A collection 𝒜 of subsets of 𝐸 is called a 𝜋-system if ∅ ∈ 𝒜 and 𝐴, 𝐵 ∈ 𝒜 ⟹
𝐴∩ 𝐵 ∈ 𝒜.

Definition. A collection 𝒜 of subsets of 𝐸 is called a 𝑑-system if 𝐸 ∈ 𝒜, and if 𝐵1 ⊂ 𝐵2 are
elements of 𝒜, we have 𝐵2 ∖ 𝐵1 ∈ 𝒜, and if 𝐴𝑛 ∈ 𝒜 and 𝐴𝑛 is an increasing sequence of sets,
we have⋃𝑛 𝐴𝑛 ∈ 𝒜.

Proposition. A 𝑑-system which is also a 𝜋-system is a 𝜎-algebra.

Proof. Refer to the first example sheet.
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Lemma (Dynkin). Let 𝒜 be a 𝜋-system. Then any 𝑑-system that contains 𝒜 also contains
𝜎(𝒜).

Proof. We define
𝒟 = ⋂

𝒟′ is a 𝑑-system; 𝒟′⊇𝒜
𝒟′

We can show this is a 𝑑-system. It suffices to prove that 𝒟 is a 𝜋-system, because this is then a
𝜎-algebra. We now define

𝒟′ = {𝐵 ∈ 𝒟 ∣ ∀𝐴 ∈ 𝒜, 𝐵 ∩ 𝐴 ∈ 𝒟}
We can see that𝒟′ ⊇ 𝒜, as𝒜 is a 𝜋-system. We now show that𝒟′ is a 𝑑-system. Clearly 𝐸∩𝐴 = 𝐴 ∈
𝒜 ⊆ 𝒟′ hence 𝐸 ∈ 𝒟′. Let 𝐵1, 𝐵2 ∈ 𝒟′ such that 𝐵1 ⊆ 𝐵2. Then (𝐵2 ∖ 𝐵1) ∩ 𝐴 = (𝐵2 ∩ 𝐴) ∖ (𝐵1 ∩ 𝐴),
and since 𝐵𝑖 ∩𝐴 ∈ 𝒟 this difference also lies in𝒟, so 𝐵2 ∖𝐵1 ∈ 𝒟′. Now, suppose 𝐵𝑛 is an increasing
sequence converging to 𝐵, and 𝐵𝑛 ∈ 𝒟′. Then 𝐵𝑛 ∩𝐴 ∈ 𝒟, and𝒟 is a 𝑑-system, we have 𝐵 ∩𝐴 ∈ 𝒟,
so 𝐵 ∈ 𝒟′.

Hence 𝒟′ is a 𝑑-system that contains 𝒜, so 𝒟 ⊆ 𝒟′, and 𝒟′ ⊆ 𝒟 by construction of 𝒟′, giving
𝒟 = 𝒟′. We then define

𝒟″ = {𝐵 ∈ 𝒟 ∣ ∀𝐴 ∈ 𝒟, 𝐵 ∩ 𝐴 ∈ 𝒟}
Note that 𝒜 ⊆ 𝒟″, because𝒟′ = 𝒟 ⊇ 𝒜. Running the same argument as before, we can show that
𝒟″ = 𝒟, and so𝒟″ = 𝒟 is a 𝜋-system.

Theorem (Uniqueness of extension). Let 𝜇1, 𝜇2 be measures on a measurable space (𝐸, ℰ),
such that 𝜇1(𝐸) = 𝜇2(𝐸) < ∞. Suppose that 𝜇1 and 𝜇2 coincide on a 𝜋-system 𝒜, such that
ℰ ⊆ 𝜎(𝒜). Then 𝜇1 = 𝜇2 on 𝜎(𝒜), and hence on ℰ.

Proof. We define
𝒟 = {𝐴 ∈ ℰ ∣ 𝜇1(𝐴) = 𝜇2(𝐴)}

This collection contains 𝒜 by assumption. By Dynkin’s lemma, it suffices to prove 𝒟 is a 𝑑-system,
because then 𝒟 ⊇ 𝜎(𝒜) ⊇ ℰ giving 𝒟 = ℰ. Note that 𝐸 ∈ 𝒟 by assumption. By additivity and
finiteness of 𝜇𝑖, for 𝐵1 ⊆ 𝐵2 elements of𝒟, we have 𝜇1(𝐵2∖𝐵1) = 𝜇1(𝐵2)−𝜇1(𝐵1) = 𝜇2(𝐵2)−𝜇2(𝐵1) =
𝜇2(𝐵2 ∖ 𝐵1), where the subtractions are valid by finiteness of 𝜇, so set differences lie in𝒟.
Now suppose 𝐵𝑛 is an increasing sequence converging to 𝐵 for 𝐵𝑛 ∈ 𝒟. This implies that 𝐵 ∖ 𝐵𝑛 is
a decreasing sequence converging to ∅, and by a result from the first example sheet we have 𝜇𝑖(𝐵 ∖
𝐵𝑛) → 𝜇(∅) = 0. Since 𝜇𝑖 are finite, 𝜇𝑖(𝐵𝑛) → 𝜇𝑖(𝐵) as 𝑛 → ∞. Then, 𝜇1(𝐵) = lim𝑛∈ℕ 𝜇1(𝐵𝑛) =
lim𝑛∈ℕ 𝜇2(𝐵𝑛) = 𝜇2(𝐵), so𝒟 is closed under increasing sequences and hence is a 𝑑 system.

Remark. The above theorem applies to finite measures (𝜇 such that 𝜇(𝐸) < ∞) only. However, the
theorem can be extended to measures that are 𝜎-finite, for which 𝐸 = ⋃𝑛∈ℕ 𝐸𝑛 where 𝜇(𝐸𝑛) < ∞.
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1.4 Borel measures

Definition. Let (𝐸, 𝜏) be aHausdorff topological space. The 𝜎-algebra generated by the open
sets of 𝐸 is called the Borel 𝜎-algebra on 𝐸, denoted ℬ(𝐸) = 𝜎(𝜏). We write ℬ = ℬ(ℝ).
Members of ℬ(𝐸) are called Borel sets. A measure 𝜇 on (𝐸,ℬ(𝐸)) is called a Borel measure
on 𝐸. A Radon measure is a Borel measure 𝜇 on 𝐸 such that 𝜇(𝐾) < ∞ for all 𝐾 ⊆ 𝐸 compact.
Note that in a Hausdorff space, compact sets are closed and hence measurable.

1.5 Lebesgue measure
We will construct a unique Borel measure 𝜇 on ℝ𝑑 such that

𝜇(
𝑑
∏
𝑖=1

[𝑎𝑖, 𝑏𝑖]) =
𝑑
∏
𝑖=1

|𝑏𝑖 − 𝑎𝑖|

Initially, we will perform this construction for 𝑑 = 1, and later we will consider product measures to
extend this to higher dimensions.

Theorem (Construction of the Lebesgue measure). There exists a unique Borel measure 𝜇
on ℝ such that

𝑎 < 𝑏 ⟹ 𝜇((𝑎, 𝑏]) = 𝑏 − 𝑎

Proof. Consider the subsets of ℝ of the form

𝐴 = (𝑎1, 𝑏1] ∪ ⋯ ∪ (𝑎𝑛, 𝑏𝑛]

where the intervals in question are disjoint. The set𝒜 of such sets forms a ring and a𝜋-systemof Borel
sets. This generates the same𝜎-algebra as that generated by finite unions of open intervals, by the first
example sheet. Open intervals with rational endpoints generate ℬ, so 𝜎(𝐴) ⊇ ℬ. We define the set
function 𝜇 on𝒜 by 𝜇(𝐴) = ∑𝑛

𝑖=1(𝑏𝑖−𝑎𝑖). 𝜇 is additive, and well-defined since if𝐴 = ⋃𝑗 𝐶𝑗 = ⋃𝑘 𝐷𝑘
for distinct disjoint unions, we can write 𝐶𝑗 = ⋃𝑘(𝐶𝑗 ∩ 𝐷𝑘) and 𝐷𝑘 = ⋃𝑗(𝐷𝑘 ∩ 𝐶𝑗), giving

𝜇(𝐴) = 𝜇(⋃
𝑗
𝐶𝑗) = ∑

𝑗
𝜇(𝐶𝑗) = ∑

𝑗
𝜇(⋃

𝑗
(𝐶𝑗 ∩ 𝐷𝑘)) = ∑

𝑗
∑
𝑘
𝜇(𝐶𝑗 ∩ 𝐷𝑘) = 𝜇(⋃

𝑘
𝐷𝑘)

To prove the existence of 𝜇 on ℬ, we apply Carathéodory’s extension theorem, and therefore must
check that 𝜇 is countably additive on 𝒜. Equivalently, by a question on an example sheet, it suffices
to show that for all sequences 𝐴𝑛 ∈ 𝒜 such that 𝐴𝑛 decreases to ∅, we have 𝜇(𝐴𝑛) → 0. Suppose
this is not the case, so there exist 𝜀 > 0 and 𝐵𝑛 ∈ 𝒜 such that 𝐵𝑛 decreases to ∅ but 𝜇(𝐵𝑛) ≥ 2𝜀 for
infinitely many 𝑛 (and so without loss of generality for all 𝑛). We can approximate 𝐵𝑛 fromwithin by
a sequence 𝐶𝑛. Suppose 𝐵𝑛 = ⋃𝑁𝑛

𝑖=1(𝑎𝑛𝑖, 𝑏𝑛𝑖], then define 𝐶𝑛 = ⋃𝑁𝑛
𝑖=1(𝑎𝑛𝑖 +

2−𝑛𝜀
𝑁𝑛

, 𝑏𝑛𝑖]. Note that the
𝐶𝑛 lie in 𝒜, and 𝜇(𝐵𝑛 ∖ 𝐶𝑛) ≤ 2−𝑛𝜀 Since 𝐵𝑛 is decreasing, we have 𝐵𝑁 = ⋂𝑛≤𝑁 𝐵𝑛, and

𝐵𝑁 ∖ (𝐶1 ∩⋯ ∩ 𝐶𝑁) = 𝐵𝑛 ∩ (⋃
𝑛≤𝑁

𝐶𝑐
𝑛) = ⋃

𝑛≤𝑁
𝐵𝑁 ∖ 𝐶𝑛 ⊆ ⋃

𝑛≤𝑁
𝐵𝑛 ∖ 𝐶𝑛
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Since 𝜇 is increasing,

𝜇(𝐵𝑁 ∖ (𝐶1 ∩⋯ ∩ 𝐶𝑁)) ≤ 𝜇(⋃
𝑛≤𝑁

𝐵𝑛 ∖ 𝐶𝑛) ≤ ∑
𝑛≤𝑁

𝜇(𝐵𝑛 ∖ 𝐶𝑛) ≤ ∑
𝑛≤𝑁

2−𝑁𝜀 ≤ 𝜀

Since in addition 𝜇(𝐵𝑁) ≥ 2𝜀, additivity implies that 𝜇(𝐶1∩⋯∩𝐶𝑁) ≥ 𝜀. Thismeans that𝐶1∩⋯∩𝐶𝑁
cannot be empty. We can add the left endpoints of the intervals, giving𝐾𝑁 = 𝐶1∩⋯∩𝐶𝑁 . ByAnalysis
I, 𝐾𝑁 is a nested sequence of nonempty closed intervals and therefore there is a point 𝑥 ∈ ℝ such
that 𝑥 ∈ 𝐾𝑁 for all 𝑁. But 𝐾𝑁 ⊆ 𝐶𝑁 ⊆ 𝐵𝑁 , so 𝑥 ∈ ⋂𝑁 𝐵𝑛, which is a contradiction since⋂𝑁 𝐵𝑁 is
empty. Therefore, a measure 𝜇 on ℬ exists.

Now we prove uniqueness. Suppose 𝜇, 𝜆 are measures such that the measure of an interval (𝑎, 𝑏] is
𝑏 − 𝑎. We define new measures 𝜇𝑛(𝐴) = 𝜇(𝐴 ∩ (𝑛, 𝑛 + 1]) and 𝜆𝑛(𝐴) = 𝜆(𝐴 ∩ (𝑛, 𝑛 + 1]). These
new measures are finite with total mass 1. Hence, we can use the uniqueness of extension theorem
to show 𝜇𝑛 = 𝜆𝑛 on ℬ. We find

𝜇(𝐴) = 𝜇(⋃
𝑛
𝐴 ∩ (𝑛, 𝑛 + 1]) = ∑

𝑛∈ℤ
𝜇(𝐴 ∩ (𝑛, 𝑛 + 1]) = ∑

𝑛∈ℤ
𝜇𝑛(𝐴) = ∑

𝑛∈ℤ
𝜆𝑛(𝐴) = ⋯ = 𝜆(𝐴)

Definition. A Borel set 𝐵 ∈ ℬ is called a Lebesgue null set if 𝜇(𝐵) = 0.

Remark. A singleton {𝑥} can bewritten as⋂𝑛 (𝑥 −
1
𝑛
, 𝑥], hence𝜇(𝑥) = lim𝑛

1
𝑛
= 0. Hence singletons

are null sets. In particular, 𝜇((𝑎, 𝑏)) = 𝜇((𝑎, 𝑏]) = 𝜇([𝑎, 𝑏)) = 𝜇([𝑎, 𝑏]). Any countable set𝑄 = ⋃𝑞 {𝑞}
is a null set. Not all null sets are countable; the Cantor set is an example.

The Lebesgue measure is translation-invariant. Let 𝑥 ∈ ℝ, then the set 𝐵 + 𝑥 = {𝑏 + 𝑥 ∣ 𝑏 ∈ 𝐵} lies
in ℬ if and only if 𝐵 ∈ ℬ, and in this case, it satisfies 𝜇(𝐵 + 𝑥) = 𝜇(𝐵). We can define the translated
Lebesguemeasure 𝜇𝑥(𝐵) = 𝜇(𝐵+𝑥) for all 𝐵 ∈ ℬ, but since the Lebesguemeasure is unique, 𝜇𝑥 = 𝜇.
The class of outer measurable setsℳ used in Carathéodory’s extension theorem is here called the
class of Lebesgue measurable sets. This class can be shown to be

ℳ = {𝑀 = 𝐴 ∪ 𝑁,𝐴 ∈ ℬ,𝑁 ⊆ 𝐵, 𝐵 ∈ ℬ, 𝜇(𝐵) = 0} ⊋ ℬ

1.6 Existence of non-measurable sets
Assuming the axiom of choice, there exists a non-measurable set of reals. Consider 𝐸 = (0, 1] with
addition defined modulo one. By the same argument as before, the Lebesgue measure is translation-
invariantmodulo one. Consider the subgroup𝑄 = 𝐸∩ℚ of (𝐸, +). We define 𝑥 ∼ 𝑦 if 𝑥−𝑦 ∈ 𝑄. Then,
this gives equivalence classes [𝑥] = {𝑦 ∈ 𝐸∶ 𝑥 ∼ 𝑦} for all 𝑥 ∈ 𝐸. Assuming the axiom of choice, we
can select a representative of [𝑥] for each 𝑥 ∈ 𝐸, and denote by 𝑆 the set of such representatives. We
can partition 𝐸 into the union of its cosets, so 𝐸 = ⋃𝑞∈𝑄(𝑆 + 𝑞) is a disjoint union.

Suppose 𝑆 is a Borel set. Then 𝑆 + 𝑞 is also a Borel set. We can therefore write

1 = 𝜇(𝐸) = 𝜇(⋃
𝑞∈𝑄

(𝑆 + 𝑞)) = ∑
𝑞∈𝑄

𝜇(𝑆 + 𝑞) = ∑
𝑞∈𝑄

𝜇(𝑆)
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But no value for 𝜇(𝑆) ∈ [0,∞] can be assigned to make this equation hold. Therefore 𝑆 is not a Borel
set.

One can further show that 𝜇 cannot be extended to all subsets 𝒫(𝐸).

Theorem (Banach, Kuratowski). Assuming the continuumhypothesis, there exists nomeas-
ure 𝜇 on the set 𝒫((0, 1]) such that 𝜇((0, 1]) = 1 and 𝜇({𝑥}) = 0 for 𝑥 ∈ (0, 1].

1.7 Probability spaces

Definition. If a measure space (𝐸, ℰ, 𝜇) has 𝜇(𝐸) = 1, we call it a probability space, and
instead write (Ω,ℱ, ℙ). We call Ω the outcome space or sample space, ℱ the set of events,
and ℙ the probability measure.

The axioms of probability theory (Kolmogorov, 1933), are

(i) ℙ (Ω) = 1;
(ii) 0 ≤ ℙ (𝐸) ≤ 1 for all 𝐸 ∈ ℱ;
(iii) if 𝐴𝑛 are a disjoint sequence of events in ℱ, then ℙ (⋃𝑛 𝐴𝑛) = ∑𝑛 ℙ (𝐴𝑛).
This is exactly what is required by our definition: ℙ is a measure on a 𝜎-algebra.

Definition. Events 𝐴𝑖, 𝑖 ∈ 𝐼 are independent if for all finite 𝐽 ⊆ 𝐼, we have

ℙ(⋂
𝑗∈𝐽

𝐴𝑗) =∏
𝑗∈𝐽

ℙ (𝐴𝑗)

𝜎-algebras 𝒜𝑖, 𝑖 ∈ 𝐼 are independent if for any 𝐴𝑗 ∈ 𝒜𝑗 where 𝐽 ⊆ 𝐼 is finite, the 𝐴𝑗 are
independent.

Kolmogorov showed that these definitions are sufficient to derive the law of large numbers.

Proposition. Let 𝒜1, 𝒜2 be 𝜋-systems of sets in ℱ. Suppose ℙ (𝐴1 ∩ 𝐴2) = ℙ (𝐴1) ℙ (𝐴2) for
all 𝐴1 ∈ 𝒜1, 𝐴2 ∈ 𝒜2. Then the 𝜎-algebras 𝜎(𝒜1), 𝜎(𝒜2) are independent.

This follows by uniqueness.

1.8 Borel–Cantelli lemmas

Definition. Let 𝐴𝑛 ∈ ℱ be a sequence of events. Then the limit superior of 𝐴𝑛 is

lim sup
𝑛

𝐴𝑛 =⋂
𝑛

⋃
𝑚≥𝑛

𝐴𝑚 = {𝐴𝑛 infinitely often}
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The limit inferior of 𝐴𝑛 is

lim inf
𝑛

𝐴𝑛 =⋃
𝑛

⋂
𝑚≥𝑛

𝐴𝑚 = {𝐴𝑛 eventually}

Lemma (First Borel–Cantelli lemma). Let 𝐴𝑛 ∈ ℱ be a sequence of events such that
∑𝑛 ℙ (𝐴𝑛) < ∞. Then ℙ (𝐴𝑛 infinitely often) = 0.

Proof. For all 𝑛, we have

ℙ(lim sup
𝑛

𝐴𝑛) = ℙ(⋂
𝑛

⋃
𝑚≥𝑛

𝐴𝑚) ≤ ℙ(⋃
𝑚≥𝑛

𝐴𝑚) ≤ ∑
𝑚≥𝑛

ℙ (𝐴𝑚) → 0

This proof did not require that ℙ be a probability measure, just that it is a measure. Therefore, we
can use this for arbitrary measures.

Lemma (Second Borel–Cantelli lemma). Let 𝐴𝑛 ∈ ℱ be a sequence of independent events,
and∑𝑛 ℙ (𝐴𝑛) = ∞. Then ℙ (𝐴𝑛 infinitely often) = 1.

Proof. By independence, for all 𝑁 ≥ 𝑛 ∈ ℕ and using 1 − 𝑎 ≤ 𝑒−𝑎, we find

ℙ(
𝑁

⋂
𝑚=𝑛

𝐴𝑐
𝑚) =

𝑁
∏
𝑚=𝑛

(1 − ℙ (𝐴𝑚)) ≤
𝑁
∏
𝑚=𝑛

𝑒−ℙ(𝐴𝑚) = 𝑒−∑𝑁
𝑚=𝑛 ℙ(𝐴𝑚)

As 𝑁 → ∞, this approaches zero. Since ⋂𝑁
𝑚=𝑛 𝐴𝑐

𝑚 decreases to ⋂∞
𝑚=𝑛 𝐴𝑐

𝑚, by countable additivity
we must have ℙ (⋂∞

𝑚=𝑛 𝐴𝑐
𝑚) = 0. But then

ℙ (𝐴𝑛 infinitely often) = ℙ(⋂
𝑛

⋃
𝑚≥𝑛

𝐴𝑚) = 1 − ℙ(⋃
𝑛

⋂
𝑚≥𝑛

𝐴𝑐
𝑚) ≥ 1 −∑

𝑛
ℙ(⋂

𝑚≥𝑛
𝐴𝑐
𝑚) = 1

Hence this probability is equal to one.

2 Measurable functions
2.1 Definition

Definition. Let (𝐸, ℰ), (𝐺, 𝒢) be measurable spaces. A function 𝑓∶ 𝐸 → 𝐺 is called ℰ-𝒢-
measurable if when 𝐴 ∈ 𝒢, we have 𝑓−1(𝐴) ∈ ℰ.

Informally, the preimage of a measurable set under a measurable function is measurable.
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If𝐺 = ℝ and 𝒢 = ℬ, we can just say that 𝑓∶ (𝐸, ℰ) → 𝐺 is measurable. Moreover, if 𝐸 is a topological
space and ℰ = ℬ(𝐸), we say 𝑓 is Borel measurable.
Note that preimages 𝑓−1 commute with many set operations such as intersection, union, and com-
plement. This implies that {𝑓−1(𝐴) ∣ 𝐴 ∈ 𝒢} is a 𝜎-algebra over 𝐸, and likewise, {𝐴 ∣ 𝑓−1(𝐴) ∈ ℰ} is a
𝜎-algebra over 𝐺. Hence, if𝒜 is a collection of subsets of 𝐺 generating 𝒢 such that 𝑓−1(𝐴) ∈ ℰ for all
𝐴 ∈ 𝒜, the class {𝐴 ∣ 𝑓−1 ∈ ℰ} is a 𝜎-algebra that contains𝒜 and hence that contains 𝒢. In particular,
it suffices to check 𝑓−1(𝐴) ∈ ℰ for all elements of a generator to conclude that 𝑓 is measurable.
If 𝑓∶ (𝐸, ℰ) → ℝ, the collection𝒜 = {(−∞, 𝑦]∶ 𝑦 ∈ ℝ} generatesℬ as is shown on the first example
sheet. Hence 𝑓 is measurable whenever 𝑓−1((−∞, 𝑦]) = {𝑥 ∈ 𝐸 ∣ 𝑓(𝑥) ≤ 𝑦} ∈ ℰ for all 𝑦 ∈ ℝ.
If 𝐸 is a topological space and ℰ = ℬ(𝐸), then if 𝑓∶ 𝐸 → ℝ is continuous, the preimages of open sets
𝐵 are open, and hence Borel sets. The open sets in ℝ generate the 𝜎-algebra ℬ. Hence, continuous
functions to the real line are measurable.

Example. Consider the indicator function 𝟙𝐴 of a set 𝐴. This is measurable if and only if 𝐴 is meas-
urable, or equivalently 𝐴 ∈ ℰ.
Example. The composition of measurable functions is measurable. Measurability is preserved un-
der addition,multiplication, countable infimum, countable supremum, countable limit inferior, count-
able limit superior, and someother operations. Note that given a collection ofmaps {𝑓𝑖 ∶ 𝐸 → (𝐺, 𝒢) ∣ 𝑖 ∈ 𝐼},
we canmake themallmeasurable by takingℰ to be a large enough𝜎-algebra, for instance𝜎({𝑓−1𝑖 (𝐴) ∣ 𝐴 ∈ 𝒢, 𝑖 ∈ 𝐼}).

2.2 Monotone class theorem

Theorem. Let𝒜 be a 𝜋-system that generates the 𝜎-algebra ℰ over 𝐸. Let𝒱 be a vector space
of bounded maps from 𝐸 to ℝ such that
(i) 𝟙𝐸 ∈ 𝒱;
(ii) 𝟙𝐴 ∈ 𝒱 for all 𝐴 ∈ 𝒜;
(iii) if 𝑓 is bounded and 𝑓𝑛 ∈ 𝒱 are nonnegative functions that form an increasing sequence

that converge pointwise to 𝑓 on 𝐸, then 𝑓 ∈ 𝒱.
Then 𝒱 contains all bounded measurable functions 𝑓∶ 𝐸 → ℝ.

Proof. Define 𝒟 = {𝐴 ∈ ℰ ∣ 𝟙𝐴 ∈ 𝒱}. This contains 𝒜 by hypothesis, as well as 𝐸 itself. We show
𝒟 is a 𝑑-system, so that by Dynkin’s lemma, ℰ = 𝒟. Indeed, 𝐸 ∈ 𝒟 by assumption. For 𝐴 ⊆ 𝐵
and 𝐴, 𝐵 ∈ 𝒟, we have 𝟙𝐵∖𝐴 = 𝟙𝐵 − 𝟙𝐴 which is well-defined and lies in 𝒱 as 𝒱 is a vector space.
Finally, if𝐴𝑛 ∈ 𝒟 increases to𝐴, we have 𝟙𝐴𝑛 increases pointwise to 𝟙𝐴, which lies in𝒱 by the second
hypothesis. Hence ℰ = 𝒟.
Let 𝑓∶ 𝐸 → ℝ be a bounded measurable function, which we will assume at first is nonnegative. We
define

𝑓𝑛 =
𝑛2𝑛

∑
𝑗=0

𝑗
2𝑛 𝟙𝐴𝑛𝑗

; 𝐴𝑛𝑗 = {{𝑥 ∈ 𝐸 ∣ 𝑗
2𝑛

< 𝑓(𝑥) ≤ 𝑗+1
2𝑛
} = 𝑓−1 (( 𝑗

2𝑛
, 𝑗+1
2𝑛
]) ∈ ℰ if 𝑗 ≠ 𝑛2𝑛

{𝑥 ∈ 𝐸 ∣ 𝑛 < 𝑓(𝑥)} = 𝑓−1((𝑛,∞)) if 𝑗 = 𝑛2𝑛

Since 𝑓 is bounded, for 𝑛 > ‖𝑓‖∞, we have 𝑓𝑛 ≤ 𝑓 ≤ 𝑓𝑛 + 2−𝑛. Hence |𝑓𝑛 − 𝑓| ≤ 2−𝑛 → 0. By
assumption, the limit of the 𝑓𝑛, which is exactly 𝑓, also lies in 𝒱.
Now, by separating any bounded measurable function 𝑓 into its positive and negative parts, we find
that these two parts lie in 𝒱, and so 𝑓 ∈ 𝒱 as required.
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2.3 Image measures

Definition. Let 𝑓∶ (𝐸, ℰ) → (𝐺, 𝒢) be a measurable function, and 𝜇 is a measure on (𝐸, ℰ).
Then the image measure 𝜈 = 𝜇 ∘ 𝑓−1 is obtained from assigning 𝜈(𝐴) = 𝜇(𝑓−1(𝐴)) for all
𝐴 ∈ 𝒢.

Lemma. Let 𝑔∶ ℝ → ℝ be an increasing, right-continuous function, and set 𝑔(±∞) =
lim𝑧→±∞ 𝑔(𝑧). On 𝐼 = (𝑔(−∞), 𝑔(+∞)) we define the generalised inverse

𝑓(𝑥) = inf {𝑦 ∈ ℝ ∣ 𝑥 ≤ 𝑔(𝑦)}

for 𝑥 ∈ 𝐼. Then 𝑓 is increasing, left-continuous, and 𝑓(𝑥) ≤ 𝑦 if and only if 𝑥 ≤ 𝑔(𝑦) for all
𝑥 ∈ 𝐼, 𝑦 ∈ ℝ.

Remark. 𝑓 and 𝑔 form a Galois connection.

Proof. Let 𝐽𝑥 = {𝑦 ∈ ℝ ∣ 𝑥 ≤ 𝑔(𝑦)}. Since 𝑥 > 𝑔(−∞), 𝐽𝑥 is nonempty and bounded below. Hence
𝑓(𝑥) is a well-defined real number. If 𝑦 ∈ 𝐽𝑥, then 𝑦′ ≥ 𝑦 implies 𝑦′ ∈ 𝐽𝑥 since 𝑔 is increasing.
Further, if 𝑦𝑛 converges from the right to 𝑦, and all 𝑦𝑛 ∈ 𝐽𝑥, we can take limits in 𝑥 ≤ 𝑔(𝑦𝑛) to
find 𝑥 ≤ lim𝑛 𝑔(𝑦𝑛) = 𝑔(𝑦) since 𝑔 is right-continuous. Hence 𝑦 ∈ 𝐽𝑥. So 𝐽𝑥 = [𝑓(𝑥),∞). Hence
𝑓(𝑥) ≤ 𝑦 ⟺ 𝑥 ≤ 𝑔(𝑦) as required.
If 𝑥 ≤ 𝑥′, we have 𝐽𝑥 ⊇ 𝐽𝑥′ by definition, so 𝑓(𝑥) ≤ 𝑓(𝑥′). Similarly, if 𝑥𝑛 converges from the left to 𝑥,
we have 𝐽𝑥 = ⋂𝑛 𝐽𝑥𝑛 , so 𝑓(𝑥𝑛) → 𝑓(𝑥) as 𝑥𝑛 → 𝑥.

Theorem. Let 𝑔∶ ℝ → ℝ be an increasing, right-continuous function, and set 𝑔(±∞) =
lim𝑧→±∞ 𝑔(𝑧). Then there exists a unique Radon measure 𝜇𝑔 on ℝ such that 𝜇𝑔((𝑎, 𝑏]) =
𝑔(𝑏) − 𝑔(𝑎) for all 𝑎 < 𝑏. Further, all Radon measures can be obtained in this way.

Proof. Wewill show that the generalised inverse 𝑓 as defined above is measurable. For all 𝑧 ∈ ℝ, we
find 𝑓−1((−∞, 𝑧]) = {𝑥∶ 𝑓(𝑥) ≤ 𝑧} = {𝑥∶ 𝑥 ≤ 𝑔(𝑧)} = [−𝑔(∞), 𝑔(𝑧)] which is measurable. Since ℬ
is generated by these such sets, 𝑓 is ℬ(𝐼)-ℬ measurable as required. Therefore, the image measure
𝜇𝑔 = 𝜇 ∘ 𝑓−1, where 𝜇 is the Lebesgue measure on 𝐼, exists. Then for any −∞ < 𝑎 < 𝑏 < ∞, we have

𝜇𝑔((𝑎, 𝑏]) = 𝜇(𝑓−1((𝑎, 𝑏]))
= 𝜇({𝑥∶ 𝑎 < 𝑓(𝑥) ≤ 𝑓(𝑏)})
= 𝜇({𝑥∶ 𝑔(𝑎) < 𝑥 ≤ 𝑔(𝑏)})
= 𝑔(𝑏) − 𝑔(𝑎)

This uniquely determines 𝜇𝑔 by the same argument as shown previously for the Lebesgue measure
𝜇 on ℝ. Since 𝑔maps into ℝ, 𝑔(𝑏) − 𝑔(𝑎) ∈ ℝ so any compact set has finite measure as it is a subset
of a closed bounded interval.

Conversely, let 𝜈 be a Radon measure on ℝ. Define

𝑔(𝑦) = {𝜈((0, 𝑦]) if 𝑦 ≥ 0
−𝜈((𝑦, 0]) if 𝑦 < 0
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This is an increasing function in 𝑦, since 𝜈 is a measure. Since we are using right-closed intervals, 𝑔
is right-continuous. Finally, 𝜈((𝑎, 𝑏]) = 𝑔(𝑏)−𝑔(𝑎)which can be seen by case analysis and additivity
of the measure 𝜈. By uniqueness as before, this characterises 𝜈 in its entirety.

Remark. Such image measures 𝜇𝑔 are called Lebesgue–Stieltjes measures, where 𝑔 is the Stieltjes dis-
tribution.

Example. The Dirac measure at 𝑥, written 𝛿𝑥, is defined by

𝛿𝑥(𝐴) = {1 if 𝑥 ∈ 𝐴
0 otherwise

This has Stieltjes distribution 𝑔(𝑥) = 𝟙[𝑥,∞).

2.4 Random variables

Definition. Let (Ω,ℱ, ℙ) be a probability space, and (𝐸, ℰ) be a measurable space. An 𝐸-
valued random variable 𝑋 is an ℱ-ℰ measurable map 𝑋 ∶ Ω → 𝐸. When 𝐸 = ℝ or ℝ𝑑 with
the Borel 𝜎-algebra, we simply call 𝑋 a random variable or random vector.
The law or distribution 𝜇𝑋 of a random variable𝑋 is given by the imagemeasure 𝜇𝑋 = ℙ∘𝑋−1.
When 𝐸 is the real line, this measure has a distribution function

𝐹𝑋(𝑧) = 𝜇𝑋((−∞, 𝑧]) = ℙ(𝑋−1(−∞, 𝑧]) = ℙ ({𝜔 ∈ Ω ∣ 𝑋(𝜔) ≤ 𝑧}) = ℙ (𝑋 ≤ 𝑧)

This uniquely determines 𝜇𝑋 by the 𝜋-system argument given above.

Using the properties of measures, we can show that any distribution function satisfies:

(i) 𝐹𝑋 is increasing;

(ii) 𝐹𝑋 is right-continuous;

(iii) lim𝑧→−∞ 𝐹𝑋(𝑧) = 𝜇𝑋(∅) = 0;
(iv) lim𝑧→∞ 𝐹𝑋(𝑧) = 𝜇𝑋(ℝ) = ℙ (Ω) = 1.
Given any function 𝐹𝑋 satisfying each property, we can obtain a random variable 𝑋 on (Ω,ℱ, ℙ) =
((0, 1), ℬ((0, 1)), 𝜇) by 𝑋(𝜔) = inf {𝑥 ∣ 𝜔 ≤ 𝑓(𝑥)}, and then 𝐹𝑋 is the distribution function of 𝑋 .

Definition. Consider a countable collection (𝑋𝑖 ∶ (Ω,ℱ, ℙ) → (𝐸, ℰ)) for 𝑖 ∈ 𝐼. This col-
lection of random variables is called independent if the 𝜎-algebras 𝜎({𝑋−1

𝑖 (𝐴)∶ 𝐴 ∈ ℰ}) are
independent.

For (𝐸, ℰ) = (ℝ,ℬ) we show on an example sheet that this is equivalent to the condition

ℙ (𝑋1 ≤ 𝑥1,… , 𝑋𝑛 ≤ 𝑥𝑛) = ℙ (𝑋1 ≤ 𝑥1)…ℙ (𝑋𝑛 ≤ 𝑥𝑛)

for all finite subsets {𝑋1,… , 𝑋𝑛} of the 𝑋𝑖.
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2.5 Constructing independent random variables
Wenow construct an infinite sequence of independent random variables with prescribed distribution
functions on (Ω,ℱ, ℙ) = ((0, 1), ℬ, 𝜇)with 𝜇 the Lebesguemeasure on (0, 1). We start with Bernoulli
random variables.

Any 𝜔 ∈ (0, 1) has a binary representation given by (𝜔𝑖) ∈ {0, 1}ℕ, which is unique if we exclude
infinitely long tails of zeroes from the binary representation. We can then define the 𝑛th Rademacher
function 𝑅𝑛(𝜔) = 𝜔𝑛 which extracts the 𝑛th bit from the binary expansion. Since each 𝑅𝑛 can be
given as the sum of 2𝑛−1 indicator functions on measurable sets, they are measurable functions and
are hence random variables. Their distribution is given by ℙ (𝑅𝑛 = 1) = 1

2
= ℙ (𝑅𝑛 = 0), so we have

constructed Bernoulli random variables with parameter 1
2
. We show they are independent. For a

finite set (𝑥𝑖)𝑛𝑖=1,

ℙ (𝑅1 = 𝑥1,… , 𝑅𝑛 = 𝑥𝑛) = 2−𝑛 = ℙ (𝑅1 = 𝑥1)…ℙ (𝑅𝑛 = 𝑥𝑛)

Therefore, the 𝑅𝑛 are all independent, so countable sequences of independent random variables
indeed exist. Now, take a bijection 𝑚∶ ℕ2 → ℕ and define 𝑌𝑛𝑘 = 𝑅𝑚(𝑛,𝑘), which are independ-
ent random variables. We can now define 𝑌𝑛 = ∑𝑘 2−𝑘𝑌𝑛𝑘. This converges for all 𝜔 ∈ Ω since
|𝑌𝑛𝑘| ≤ 1, and these are still independent. We show the 𝑌𝑛 are uniform random variables, by show-
ing the distribution coincides with the uniform distribution on the 𝜋-system of intervals ( 𝑖

2𝑚
, 𝑖+1
2𝑚+1 ]

for 𝑖 = 0,… , 2𝑚 − 1, which generates ℬ.

ℙ(𝑌𝑛 ∈ ( 𝑖
2𝑚 ,

𝑖 + 1
2𝑚 ]) = ℙ( 𝑖

2𝑚 < ∑
𝑘
2−𝑘𝑌𝑛𝑘 ≤

𝑖 + 1
2𝑛 ) = 2−𝑚 = 𝜇 ( 𝑖

2𝑚 ,
𝑖 + 1
2𝑚+1 ]

Hence 𝜇𝑌𝑛 = 𝜇|(0,1) by the uniqueness theorem, and so we have constructed an infinite sequence of
independent uniform randomvariables𝑌𝑛. If𝐹𝑛 are probability distribution functions, taking the gen-
eralised inverse, we see that the 𝐹−1𝑛 (𝑌𝑛) are independent and have distribution function 𝐹𝑛.

2.6 Convergence of measurable functions

Definition. We say that a property defining a set𝐴 ∈ ℰ holds 𝜇-almost everywhere if 𝜇(𝐴𝑐) =
0 for a measure 𝜇 on ℰ. If 𝜇 = ℙ, we say a property holds ℙ-almost surely or with probability
one, if ℙ(𝐴) = 1.

Definition. If 𝑓𝑛 and 𝑓 are measurable functions on (𝐸, ℰ, 𝜇), we say 𝑓𝑛 converges to 𝑓 𝜇-
almost everywhere if 𝜇({𝑥 ∈ 𝐸 ∣ 𝑓𝑛(𝑥) ↛ 𝑓(𝑥)}) = 0. We say 𝑓𝑛 converges to 𝑓 in 𝜇-measure
if for all 𝜀 > 0, 𝜇({𝑥 ∈ 𝐸 ∣ |𝑓𝑛(𝑥) − 𝑓(𝑥)| > 𝜀}) → 0 as 𝑛 → ∞. For random variables, we
say 𝑋𝑛 → 𝑋 ℙ-almost surely or in ℙ-probability, written 𝑋𝑛 →𝑝 𝑋 , respectively. If 𝑋𝑛, 𝑋 take
values in ℝ, we say 𝑋𝑛 → 𝑋 in distribution, written 𝑋𝑛 →𝑑 𝑋 if ℙ (𝑋𝑛 ≤ 𝑥) → ℙ (𝑋 ≤ 𝑥) at all
points 𝑥 for which the limit 𝑥 ↦ ℙ (𝑋 ≤ 𝑥) is continuous.

We can show that 𝑋𝑛 →𝑝 𝑋 ⟹ 𝑋𝑛 →𝑑 𝑋 .

15



Theorem. Let 𝑓𝑛 ∶ (𝐸, ℰ, 𝜇) → ℝ be measurable functions. Then,
(i) if 𝜇(𝐸) < ∞, then 𝑓𝑛 → 0 almost everywhere implies that 𝑓𝑛 → 0 in measure;
(ii) if 𝑓𝑛 → 0 in measure, 𝑓𝑛𝑘 → 0 almost everywhere on some subsequence.

Proof. Let 𝜀 > 0.

𝜇(|𝑓𝑛| < 𝜀) ≥ 𝜇(⋂
𝑚≥𝑛

{|𝑓𝑚| ≤ 𝜀})

The sequence (⋂𝑚≥𝑛 {|𝑓𝑚| ≤ 𝜀})
𝑛
increases to⋃𝑛⋂𝑚≥𝑛 {|𝑓𝑚| ≤ 𝜀}. So by countable additivity,

𝜇(⋂
𝑚≥𝑛

{|𝑓𝑚| ≤ 𝜀}) → 𝜇(⋃
𝑛

⋂
𝑚≥𝑛

{|𝑓𝑚| ≤ 𝜀})

= 𝜇(|𝑓𝑛| ≤ 𝜀 eventually)
≥ 𝜇(|𝑓𝑛| → 0) = 𝜇(𝐸)

Hence,
lim inf

𝑛
𝜇(|𝑓𝑛| ≤ 𝜀) ≥ 𝜇(𝐸) ⟹ lim sup

𝑛
𝜇(|𝑓𝑛| > 𝜀) ≤ 0 ⟹ 𝜇(|𝑓𝑛| > 𝜀) → 0

For the second part, by hypothesis, we have

𝜇(|𝑓𝑛| >
1
𝑘) < 𝜀

for sufficiently large 𝑛. So choosing 𝜀 = 1
𝑘2
, we see that along some subsequence 𝑛𝑘 we have

𝜇(||𝑓𝑛𝑘 || >
1
𝑘) ≤

1
𝑘2

Hence,
∑
𝑘
𝜇(||𝑓𝑛𝑘 || >

1
𝑛) < ∞

So by the first Borel–Cantelli lemma, we have

𝜇(||𝑓𝑛𝑘 || >
1
𝑘 infinitely often) = 0

so 𝑓𝑛𝑘 → 0 almost everywhere.

Remark. Condition (i) is false if𝜇(𝐸) is infinite: consider𝑓𝑛 = 𝟙(𝑛,∞) on (ℝ,ℬ, 𝜇), since𝑓𝑛 → 0 almost
everywhere but 𝜇(𝑓𝑛) = ∞. Condition (ii) is false if we do not restrict to subsequences: consider in-
dependent events𝐴𝑛 such thatℙ (𝐴𝑛) =

1
𝑛
, then 𝟙𝐴𝑛 → 0 in probability sinceℙ (𝟙𝐴𝑛 > 𝜀) = ℙ (𝐴𝑛) =

1
𝑛
→ 0, but∑𝑛 ℙ (𝐴𝑛) = ∞, and by the second Borel–Cantelli lemma, ℙ (𝟙𝐴𝑛 > 𝜀 infinitely often) =

1, so 𝟙𝐴𝑛 ↛ 0 almost surely.
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Example. Let (𝑋𝑛)𝑛∈ℕ be a sequence of independent exponential random variables distributed by
ℙ (𝑋1 ≤ 𝑥) = 1 − 𝑒−𝑥 for 𝑥 ≥ 0. Define 𝐴𝑛 = {𝑋𝑛 ≥ 𝛼 log𝑛} where 𝛼 > 0, so ℙ (𝐴𝑛) = 𝑛−𝛼, and in
particular,∑𝑛 ℙ (𝐴𝑛) < ∞ if and only if 𝛼 > 1. By the Borel–Cantelli lemmas, we have for all 𝜀 > 0,

ℙ( 𝑋𝑛
log𝑛 ≥ 1 infinitely often) = 1; ℙ ( 𝑋𝑛

log𝑛 ≥ 1 + 𝜀 infinitely often) = 0

In other words, lim sup𝑛
𝑋𝑛
log𝑛

= 1 almost surely.

2.7 Kolmogorov’s zero-one law
Let (𝑋𝑛)𝑛∈ℕ be a sequence of random variables. We can define 𝒯𝑛 = 𝜎(𝑋𝑛+1, 𝑋𝑛+2,… ). Let 𝒯 =
⋂𝑛∈ℕ 𝒯𝑛 be the tail 𝜎-algebra, which contains all events in ℱ that depend only on the limiting beha-
viour of (𝑋𝑛).

Theorem. Let (𝑋𝑛)𝑛∈ℕ be a sequence of independent random variables. Let 𝐴 ∈ 𝒯 be an
event in the tail 𝜎-algebra. Thenℙ (𝐴) = 1 orℙ (𝐴) = 0. If 𝑌 ∶ (Ω,𝒯) → (ℝ,ℬ) is measurable,
it is constant almost surely.

Proof. Define ℱ𝑛 = 𝜎(𝑋1,… , 𝑋𝑛) to be the 𝜎-algebra generated by the first 𝑛 elements of (𝑋𝑛). This
is also generated by the 𝜋-system of sets 𝐴 = (𝑋1 ≤ 𝑥1,… , 𝑋𝑛 ≤ 𝑥𝑛) for any 𝑥𝑖 ∈ ℝ. Note that the
𝜋-system of sets 𝐵 = (𝑋𝑛+1 ≤ 𝑥𝑛+1,… , 𝑋𝑛+𝑘 ≤ 𝑥𝑛+𝑘), for arbitrary 𝑘 ∈ ℕ and 𝑥𝑖 ∈ ℝ, generates 𝒯𝑛.
By independence of the sequence, we see that ℙ (𝐴 ∩ 𝐵) = ℙ (𝐴)ℙ (𝐵) for all such sets 𝐴, 𝐵, and so
the 𝜎-algebras 𝒯𝑛, ℱ𝑛 generated by these 𝜋-systems are independent.
Letℱ∞ = 𝜎(𝑋1, 𝑋2,… ). Then,⋃𝑛 ℱ𝑛 is a 𝜋-system that generatesℱ∞. If 𝐴 ∈ ⋃𝑛 ℱ𝑛, we have 𝐴 ∈ ℱ𝑛
for some 𝑛, so there exists 𝑛 such that 𝐵 ∈ 𝒯𝑛 is independent of 𝐴. In particular, 𝐵 ∈ ⋂𝑛 𝒯𝑛 = 𝒯. By
uniqueness, ℱ∞ is independent of 𝒯.

Since 𝒯 ⊆ ℱ∞, if 𝐴 ∈ 𝒯, 𝐴 is independent from 𝐴. So ℙ (𝐴) = ℙ (𝐴 ∩ 𝐴) = ℙ (𝐴)ℙ (𝐴), so ℙ (𝐴)2 −
ℙ (𝐴) = 0 as required.
Finally, if 𝑌 ∶ (Ω,𝒯) → (ℝ,ℬ), the preimages of {𝑌 ≤ 𝑦} lie in 𝒯, which give probability one or zero.
Let 𝑐 = inf {𝑦 ∣ 𝐹𝑌 (𝑦) = 1}, so 𝑌 = 𝑐 almost surely.

3 Integration
3.1 Notation
Let 𝑓∶ (𝐸, ℰ, 𝜇) → ℝ be an ‘integrable’ function, a notion we will define. We will then define the
integral with respect to 𝜇, either written 𝜇(𝑓) or ∫𝐸 𝑓 d𝜇 = ∫𝐸 𝑓(𝑥) d𝜇(𝑥). If 𝑋 is a random variable,
we will define its expectation 𝔼 [𝑋] = ∫Ω 𝑋 dℙ = ∫Ω 𝑋(𝜔) dℙ(𝜔).

3.2 Definition
We say that a function 𝑓∶ (𝐸, ℰ, 𝜇) → ℝ is simple if it is of the form

𝑓 =
𝑚
∑
𝑘=1

𝑎𝑘𝟙𝐴𝑘 ; 𝑎𝑘 ≥ 0; 𝐴𝑘 ∈ ℰ; 𝑚 ∈ ℕ
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Definition. The 𝜇-integral of a simple function 𝑓 defined as above is

𝜇(𝑓) =
𝑚
∑
𝑘=1

𝑎𝑘𝜇(𝐴𝑘)

which is independent of the choice of representation of the simple function.

Remark. We have 𝜇(𝛼𝑓 + 𝛽𝑔) = 𝛼𝜇(𝑓) + 𝛽𝜇(𝑔) for all nonnegative coefficients 𝛼, 𝛽 and simple
functions 𝑓, 𝑔. If 𝑔 ≤ 𝑓, 𝜇(𝑔) ≤ 𝜇(𝑓), so 𝜇 is increasing. If 𝑓 = 0 almost everywhere, 𝜇(𝑓) = 0.
For a general non-negative function 𝑓∶ (𝐸, ℰ, 𝜇) → ℝ, we define its 𝜇-integral to be

𝜇(𝑓) = sup {𝜇(𝑔) ∣ 𝑔 ≤ 𝑓, 𝑔 simple}

which agrees with the above definition for simple functions. This operator takes values in the ex-
tended non-negative real line [0,∞]. Now, for 𝑓∶ (𝐸, ℰ, 𝜇) → ℝ measurable but not necessar-
ily non-negative, we define 𝑓+ = max(𝑓, 0) and 𝑓− = max(−𝑓, 0), so that 𝑓 = 𝑓+ − 𝑓− and
|𝑓| = 𝑓+ + 𝑓−.

Definition. A measurable function 𝑓∶ (𝐸, ℰ, 𝜇) → ℝ is 𝜇-integrable if 𝜇(|𝑓|) < ∞. In this
case, we define its integral to be

𝜇(𝑓) = 𝜇(𝑓+) − 𝜇(𝑓−)

which is a well-defined real number.

3.3 Monotone convergence theorem

Theorem. Let 𝑓𝑛, 𝑓∶ (𝐸, ℰ, 𝜇) → ℝ be measurable and non-negative such that 𝑓𝑛 increases
pointwise to 𝑓, so 𝑓𝑛(𝑥) ≤ 𝑓𝑛+1(𝑥) ≤ 𝑓(𝑥) and 𝑓𝑛(𝑥) → 𝑓(𝑥) as 𝑛 → ∞. Then, 𝜇(𝑓𝑛) → 𝜇(𝑓)
as 𝑛 → ∞.

Remark. This is a theorem that allows us to interchange a pair of limits, 𝜇(𝑓) = 𝜇(lim𝑛 𝑓𝑛) =
lim𝑛 𝜇(𝑓𝑛). Also, 𝑔𝑛 ≥ 0, 𝜇(∑𝑛 𝑔𝑛) = ∑𝑛 𝜇(𝑔𝑛).

If we consider the approximating sequence 𝑓𝑛 = 2−𝑛⌊2𝑛𝑓⌋, as defined in themonotone class theorem,
then this is a non-negative sequence converging to 𝑓. So in particular, 𝜇(𝑓) is equal to the limit of
the integrals of these simple functions.

It suffices to require convergence of 𝑓𝑛 → 𝑓 almost everywhere, the general argument does not
need to change. The non-negativity constraint is not required if the first term in the sequence 𝑓0 is
integrable, by subtracting 𝑓0 from every term.

Proof. Recall that 𝜇(𝑓) = sup {𝜇(𝑔) ∣ 𝑔 ≤ 𝑓, 𝑔 simple}. Since 𝑓𝑛 is an increasing sequence of non-
negative functions, 𝜇(𝑓𝑛) is an increasing sequence of nonnegative functions. So it converges to its
(extended non-negative real) supremum 𝑀 = sup𝑛 𝜇(𝑓𝑛). Since 𝑓𝑛 ≤ 𝑓, 𝜇(𝑓𝑛) ≤ 𝜇(𝑓), so taking su-
prema, 𝑀 ≤ 𝜇(𝑓). If 𝑀 is finite, sup𝑛 𝜇(𝑓𝑛) = lim𝑛 𝜇(𝑓𝑛) ≤ 𝜇(𝑓). If 𝑀 is infinite, we are already
done.

18



Now, we need to show 𝜇(𝑓) ≤ 𝑀, or equivalently, 𝜇(𝑔) ≤ 𝑀 for all simple 𝑔 such that 𝑔 ≤ 𝑓, so
that taking suprema, 𝜇(𝑓) = sup𝑔 𝜇(𝑔) ≤ 𝑀. We define 𝑔𝑛 = min(𝑓𝑛, 𝑔), where 𝑓𝑛 is the 𝑛th
approximation of 𝑓𝑛 by simple functions from the monotone class theorem. Now, since 𝑓𝑛 increases
to 𝑓, 𝑓𝑛 increases to 𝑓. In particular, 𝑔𝑛 = min(𝑓𝑛, 𝑔) increases to min(𝑓, 𝑔) = 𝑔. Since 𝑓𝑛 ≤ 𝑓𝑛 by
definition, we have 𝑔𝑛 ≤ 𝑓𝑛 for all 𝑛.
Now let 𝑔 be an arbitrary simple function of the form 𝑔 = ∑𝑚

𝑘=1 𝑎𝑘𝟙𝐴𝑘 where 𝑎𝑘 ≥ 0 and the 𝐴𝑘 ∈ ℰ
are disjoint. For 𝜀 > 0, we define sets 𝐴𝑘(𝑛) = {𝑥 ∈ 𝐴𝑘 ∣ 𝑔𝑛(𝑥) ≥ (1 − 𝜀)𝑎𝑘}. Since 𝑔 = 𝑎𝑘 on 𝐴𝑘, and
since 𝑔𝑛 increases to 𝑔, we must have 𝐴𝑘(𝑛) increases to 𝐴𝑘 for all 𝑘. Since 𝜇 is a measure, 𝜇(𝐴𝑘(𝑛))
increases to 𝜇(𝐴𝑘) by countable additivity.

We have 𝑔𝑛𝟙𝐴𝑘 ≥ 𝑔𝑛𝟙𝐴𝑘(𝑛) ≥ (1 − 𝜀)𝑎𝑘𝟙𝐴𝑘(𝑛) on 𝐸. Moreover, 𝑔𝑛 = ∑𝑚
𝑘=1 𝑔𝑛𝟙𝐴𝑘 since the 𝐴𝑘

are disjoint and support 𝑔𝑛. Hence, 𝑔𝑛 ≥ ∑𝑚
𝑘=1(1 − 𝜀)𝑎𝑘𝟙𝐴𝑘(𝑛), and in particular, 𝜇(𝑔𝑛) ≥ (1 −

𝜀)∑𝑚
𝑘=1 𝑎𝑘𝜇(𝐴𝑘(𝑛)). The right hand side increases to (1 − 𝜀)∑𝑚

𝑘=1 𝑎𝑘𝜇(𝐴𝑘) = (1 − 𝜀)𝜇(𝑔). Hence

𝜇(𝑔) ≤ 1
1 − 𝜀 lim sup

𝑛
𝜇(𝑔𝑛) ≤

1
1 − 𝜀 lim sup

𝑛
𝜇(𝑓𝑛) ≤

𝑀
1 − 𝜀

Since 𝜀 was arbitrary, this completes the proof.

3.4 Linearity of integral

Theorem. Let 𝑓, 𝑔∶ (𝐸, ℰ, 𝜇) → ℝ be nonnegativemeasurable functions. Then 𝜇(𝛼𝑓+𝛽𝑔) =
𝛼𝜇(𝑓) + 𝛽𝜇(𝑔) for all 𝛼, 𝛽 ≥ 0. Further, if 𝑔 ≤ 𝑓, then 𝜇(𝑔) ≤ 𝜇(𝑓). Finally, 𝑓 = 0 almost
everywhere if and only if 𝜇(𝑓) = 0.

Proof. If 𝑓𝑛, ̃𝑔𝑛 are the approximations of 𝑓 and 𝑔 by simple funtions from the monotone class the-
orem, 𝛼𝑓𝑛 increases to 𝛼𝑓 and 𝛽 ̃𝑔𝑛 increases to 𝛽𝑔, so 𝛼𝑓𝑛 + 𝛽 ̃𝑔𝑛 increases to 𝛼𝑓 + 𝛽𝑔. Integrating
both sides and using themonotone convergence theorem, the result follows, since linearity of simple
functions is simple to prove.

The second part 𝑔 ≤ 𝑓 ⟹ 𝜇(𝑔) ≤ 𝜇(𝑓) has already been proven. Now, if 𝑓 = 0 almost everywhere,
its approximation 0 ≤ 𝑓𝑛 increases to 𝑓 almost everywhere, so must be exactly zero for all 𝑛. So
𝜇(𝑓𝑛) = 0 so 𝜇(𝑓) = 0. Conversely, if 𝜇(𝑓) = 0, then 0 ≤ 𝜇(𝑓𝑛) → 0 gives 𝜇(𝑓𝑛) = 0 so 𝑓𝑛 = 0 almost
everywhere. Since 0 = 𝑓𝑛 increases almost everywhere to 𝑓, 𝑓 is zero almost everywhere.

Remark. Functions such as 𝟙ℚ are integrable and have integral zero. They are ‘identified’ with the
zero element in the theory of integration.

Theorem. Let 𝑓, 𝑔∶ (𝐸, ℰ, 𝜇) → ℝ be integrable functions. Then 𝜇(𝛼𝑓+𝛽𝑔) = 𝛼𝜇(𝑓)+𝛽𝜇(𝑔)
for all 𝛼, 𝛽 ∈ ℝ; if 𝑔 ≤ 𝑓, then 𝜇(𝑔) ≤ 𝜇(𝑓); and if 𝑓 = 0 almost everywhere, we have 𝜇(𝑓) = 0.

Proof. Clearly, if 𝑓 is integrable, so is 𝛼𝑓, and 𝜇(−𝑓) = −𝜇(𝑓), by definition of the integral for a
general function. We can explicitly check that for 𝛼 ≥ 0, we have 𝜇(𝛼𝑓) = 𝜇((𝛼𝑓)+) − 𝜇((𝛼𝑓)−) =
𝛼𝜇(𝑓+)−𝛼𝜇(𝑓−) = 𝛼𝜇(𝑓). Define ℎ = 𝑓+𝑔. Then ℎ++𝑓−+𝑔− = ℎ−+𝑓++𝑔+, so by the previous
theorem, 𝜇(ℎ+) + 𝜇(𝑓−) + 𝜇(𝑔−) = 𝜇(ℎ−) + 𝜇(𝑓+) + 𝜇(𝑔+) and the result holds.
Finally, if 0 ≤ 𝑓−𝑔, we have 0 ≤ 𝜇(0) ≤ 𝜇(𝑓−𝑔) = 𝜇(𝑓)−𝜇(𝑔) so the result follows. If 𝑓 = 0 almost
everywhere, 𝑓+ = 0 and 𝑓− = 0 almost everywhere, so 𝜇(𝑓) = 0.
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3.5 Fatou’s lemma

Lemma. Let 𝑓𝑛 ∶ (𝐸, ℰ, 𝜇) → ℝ be nonnegativemeasurable functions. Then 𝜇(lim inf𝑛 𝑓𝑛) ≤
lim inf𝑛 𝜇(𝑓𝑛).

Remark. Recall that lim inf𝑛 𝑥𝑛 = sup𝑛 inf𝑚≥𝑛 𝑥𝑚 and lim sup𝑛 𝑥𝑛 = inf𝑛 sup𝑚≥𝑛 𝑥𝑚. In particu-
lar, lim sup𝑛 𝑥𝑛 = lim inf𝑛 𝑥𝑛 implies that lim𝑛 𝑥𝑛 exists and is equal to lim sup𝑛 𝑥𝑛 and lim inf𝑛 𝑥𝑛.
Hence, if the 𝑓𝑛 converge to some measurable function 𝑓, we must have 𝜇(𝑓) ≤ lim inf𝑛 𝜇(𝑓𝑛).

Proof. We have inf𝑚≥𝑛 𝑓𝑚 ≤ 𝑓𝑘 for all 𝑘 ≥ 𝑛, so by taking integrals, 𝜇(inf𝑚≥𝑛 𝑓𝑚) ≤ 𝜇(𝑓𝑘). Thus,

𝜇( inf
𝑚≥𝑛

𝑓𝑚) ≤ inf
𝑘≥𝑛

𝜇(𝑓𝑘) ≤ sup
𝑛

inf
𝑘≥𝑛

𝜇(𝑓𝑘) = lim inf
𝑛

𝜇(𝑓𝑛)

Note that inf𝑚≥𝑛 𝑓𝑚 increases to sup𝑛 inf𝑚≥𝑛 𝑓𝑚 = lim inf𝑛 𝑓𝑛. By the monotone convergence the-
orem,

𝜇(lim inf
𝑛

𝑓𝑛) = lim
𝑛
𝜇( inf

𝑚≥𝑛
𝑓𝑚) ≤ lim inf

𝑛
𝜇(𝑓𝑛)

as required.

3.6 Dominated convergence theorem

Theorem. Let 𝑓𝑛, 𝑓∶ (𝐸, ℰ, 𝜇) bemeasurable functions such that |𝑓𝑛| ≤ 𝑔 almost everywhere
on 𝐸, and the dominating function 𝑔 is 𝜇-integrable, so 𝜇(𝑔) < ∞. Suppose 𝑓𝑛 → 𝑓 pointwise
(or almost everywhere) on 𝐸. Then 𝑓𝑛 and 𝑓 are also integrable, and 𝜇(𝑓𝑛) → 𝜇(𝑓) as 𝑛 → ∞.

Proof. Clearly 𝜇(|𝑓𝑛|) ≤ 𝜇(𝑔) < ∞, so the 𝑓𝑛 are integrable. Taking limits in |𝑓𝑛| ≤ 𝑔, we have |𝑓| ≤ 𝑔,
so 𝑓 is also integrable by the same argument. Now, 𝑔 ± 𝑓𝑛 is a nonnegative function, and converges
pointwise to 𝑔 ± 𝑓. Since limits are equal to the limit inferior when they exist, by Fatou’s lemma, we
have

𝜇(𝑔) + 𝜇(𝑓) = 𝜇(𝑔 + 𝑓) = 𝜇(lim inf
𝑛

(𝑔 + 𝑓𝑛)) ≤ lim inf
𝑛

𝜇(𝑔 + 𝑓𝑛) = 𝜇(𝑔) + lim inf
𝑛

𝜇(𝑓𝑛)

Hence 𝜇(𝑓) ≤ lim inf𝑛 𝜇(𝑓𝑛). Likewise, 𝜇(𝑔)−𝜇(𝑓) ≤ 𝜇(𝑔)− lim inf𝑛 𝜇(𝑓𝑛), so 𝜇(𝑓) ≥ lim sup𝑛 𝜇(𝑓𝑛),
so

lim sup
𝑛

𝜇(𝑓𝑛) ≤ 𝜇(𝑓) ≤ lim inf
𝑛

𝜇(𝑓𝑛)

But since lim inf𝑛 𝜇(𝑓𝑛) ≤ lim sup𝑛 𝜇(𝑓𝑛), the result follows.

Example. Let 𝐸 = [0, 1]with the Lebesguemeasure. Let 𝑓𝑛 → 𝑓 pointwise and the 𝑓𝑛 are uniformly
bounded, so sup𝑛 ‖𝑓𝑛‖∞ ≤ 𝑔 for some 𝑔 ∈ ℝ. Then since 𝜇(𝑔) = 𝑔 < ∞, the dominated convergence
theorem implies that 𝑓𝑛, 𝑓 are integrable and 𝜇(𝑓𝑛) → 𝜇(𝑓) as 𝑛 → ∞. In particular, no notion of
uniform convergence of the 𝑓𝑛 is required.
Remark. The proof of the fundamental theorem of calculus requires only the fact that

∫
𝑥+ℎ

𝑥
d𝑡 = ℎ
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This is a fact which is obviously true of the Riemann integral and also of the Lebesgue integral. There-
fore, for any continuous function 𝑓∶ [0, 1] → ℝ, we have

∫
𝑥

0
𝑓(𝑡) d𝑡

⏟⎵⎵⏟⎵⎵⏟
Riemann integral

= 𝐹(𝑥) = ∫
𝑥

0
𝑓(𝑡) d𝜇(𝑡)

⏟⎵⎵⎵⏟⎵⎵⎵⏟
Lebesgue integral

So these integrals coincide for continuous functions. We can show that all Riemann integrable func-
tions are 𝜇⋆-measurable, where 𝜇⋆ is the outer measure of the Lebesgue measure, as defined in the
proof of Carathéodory’s theorem. However, there exist certain Riemann integrable functions that are
not Borel measurable. We can find that a bounded 𝜇⋆-measurable function is Riemann integrable if
and only if

𝜇({𝑥 ∈ [0, 1] ∣ 𝑓 is discontinuous at 𝑥}) = 0
The standard techniques of Riemann integration, such as substitution and integration by parts, ex-
tend to all bounded measurable functions by the monotone class theorem.

Theorem. Let𝑈 ⊆ ℝ be an open set and (𝐸, ℰ, 𝜇) be a measure space. Let 𝑓∶ 𝑈 ×𝐸 → ℝ be
amap such that 𝑥 ↦ 𝑓(𝑡, 𝑥) is measurable, and 𝑡 ↦ 𝑓(𝑡, 𝑥) is differentiable where ||

𝜕𝑓
𝜕𝑡
|| < 𝑔(𝑥)

for all 𝑡 ∈ 𝑈 , and 𝑔 is 𝜇-integrable. Then

𝐹(𝑡) = ∫
𝐸
𝑓(𝑡, 𝑥) d𝜇(𝑥) ⟹ 𝐹′(𝑡) = ∫

𝐸

𝜕𝑓
𝜕𝑡 (𝑡, 𝑥) d𝜇(𝑥)

Proof. By the mean value theorem,

𝑔ℎ(𝑥) =
𝑓(𝑡 + ℎ, 𝑥) − 𝑓(𝑡, 𝑥)

ℎ − 𝜕𝑓
𝜕𝑡 (𝑡, 𝑥) ⟹ |𝑔ℎ(𝑥)| =

|||
𝜕𝑓
𝜕𝑡 ( ̃𝑡, 𝑥) −

𝜕𝑓
𝜕𝑡 (𝑡, 𝑥)

||| ≤ 2𝑔(𝑥)

Note that 𝑔 is 𝜇-integrable. By differentiability of 𝑓, we have 𝑔ℎ → 0 as ℎ → 0, so applying the
dominated convergence theorem, 𝜇(𝑔ℎ) → 𝜇(0) = 0. By linearity of the integral,

𝜇(𝑔ℎ) =
∫𝐸 𝑓(𝑡 + ℎ, 𝑥) − 𝑓(𝑡, 𝑥) d𝜇(𝑥)

ℎ −∫
𝐸

𝜕𝑓
𝜕𝑡 (𝑡, 𝑥) d𝜇(𝑥)

Hence, 𝐹(𝑡+ℎ)−𝐹(𝑡)
ℎ

− 𝐹′(𝑡) → 0.

Example. For a measurable function 𝑓∶ (𝐸, ℰ, 𝜇) → (𝐺, 𝒢), if 𝑔∶ 𝐺 → ℝ is a nonnegative function,
we show on an example sheet that

𝜇 ∘ 𝑓−1(𝑔) = ∫
𝐺
𝑔 d𝜇 ∘ 𝑓−1 = ∫

𝐸
𝑔(𝑓(𝑥)) d𝜇(𝑥) = 𝜇(𝑔 ∘ 𝑓)

On a probability space (Ω,ℱ, ℙ) and a 𝐺-valued random variable 𝑋 , we then compute

𝔼 [𝑔(𝑋)] = 𝜇𝑋(𝑔) = ∫
Ω
𝑔(𝑋(𝜔)) dℙ(𝜔) = ∫

Ω
𝑔 dℙ

Example (measures with densities). If 𝑓∶ (𝐸, ℰ, 𝜇) → ℝ is a nonnegative measurable function, we
can define 𝜈𝑓(𝐴) = 𝜇(𝑓𝟙𝐴) for anymeasurable set𝐴, which is again ameasure on (𝐸, ℰ) by themono-
tone convergence theorem. In particular, if 𝑔∶ (𝐸, ℰ) → ℝ ismeasurable, 𝜈𝑓(𝑔) = ∫𝐸 𝑔(𝑥)𝑓(𝑥) d𝜇(𝑥) =
∫𝐸 𝑔 d𝜈(𝑓). We call 𝑓 the density of 𝜈𝑓 with respect to 𝜇. If its integral is one, it is called a probability
density function.
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4 Product measures
4.1 Integration in product spaces
Let (𝐸1, ℰ1, 𝜇1), (𝐸2, ℰ2, 𝜇2) be finite measure spaces. On 𝐸 = 𝐸1 × 𝐸2, we can consider the 𝜋-system
of ‘rectangles’ 𝒜 = {𝐴1 × 𝐴2 ∣ 𝐴1 ∈ ℰ1, 𝐴2 ∈ ℰ2}. Then we define the 𝜎-algebra ℰ1 ⊗ ℰ2 = 𝜎(𝒜)
on the product space. If the 𝐸𝑖 are topological spaces with a countable base, then ℬ(𝐸1 × 𝐸2) =
ℬ(𝐸1) ⊗ ℬ(𝐸2).

Lemma. Let 𝐸 = 𝐸1 × 𝐸2, ℰ = ℰ1 ⊗ ℰ2. Let 𝑓∶ (𝐸, ℰ) → ℝ be measurable. Then for all
𝑥1 ∈ 𝐸1, the map (𝑥2 ↦ 𝑓(𝑥1, 𝑥2))∶ (𝐸2, ℰ2) → ℝ is ℰ2-measurable.

Proof. Let
𝒱 = {𝑓∶ (𝐸, ℰ) → ℝ ∣ 𝑓 bounded, measurable, conclusion of the lemma holds}

This is aℝ-vector space, and it contains 𝟙𝐸, 𝟙𝐴 for all𝐴 ∈ 𝒜, since 𝟙𝐴 = 𝟙𝐴1(𝑥1)𝟙𝐴2(𝑥2). Now, let 0 ≤ 𝑓𝑛
increase to 𝑓, 𝑓𝑛 ∈ 𝒱. Then (𝑥2 ↦ 𝑓(𝑥1, 𝑥2)) = lim𝑛(𝑥2 ↦ 𝑓𝑛(𝑥1, 𝑥2)), so it is ℰ2-measurable as a
limit of a sequence of measurable functions. Then by the monotone class theorem, 𝒱 contains all
bounded measurable functions. This extends to all measurable functions by truncating the absolute
value of 𝑓 to 𝑛 ∈ ℕ, then the sequence of such bounded truncations converges pointwise to 𝑓.

Lemma. Let 𝐸 = 𝐸1 × 𝐸2, ℰ = ℰ1 ⊗ ℰ2. Let 𝑓∶ (𝐸, ℰ) → ℝ be measurable such that
(i) 𝑓 is bounded; or
(ii) 𝑓 is nonnegative.

Then the map 𝑥1 ↦ ∫𝐸2 𝑓(𝑥1, 𝑥2) d𝜇2(𝑥2) is 𝜇1-measurable and is bounded or nonnegative
respectively.

Remark. In case (ii), the map on 𝑥1 may evaluate to infinity, but the set of values

{𝑥1 ∈ 𝐸1
|
|
|
∫
𝐸2
𝑓(𝑥1, 𝑥2) d𝜇2(𝑥2) = ∞}

lies in ℰ1.

Proof. Let
𝒱 = {𝑓∶ (𝐸, ℰ) → ℝ ∣ 𝑓 bounded, measurable, conclusion of the lemma holds}

This is a vector space by linearity of the integral. 𝟙𝐸 ∈ 𝒱, since 𝟙𝐸1𝜇2(𝐸2) is nonnegative and bounded.
𝟙𝐴 ∈ 𝒱 for all 𝐴 ∈ 𝒜, because 𝟙𝐴1(𝑥1)𝜇2(𝐴2) is ℰ1-measurable, nonnegative, and bounded since it
is at most 𝜇2(𝐸2) < ∞. Now let 𝑓𝑛 be a sequence of nonnegative functions that increase to 𝑓, where
𝑓𝑛 ∈ 𝒱. Then by the monotone convergence theorem,

∫
𝐸2

lim
𝑛→∞

𝑓𝑛(𝑥1, 𝑥2) d𝜇2(𝑥2) = lim
𝑛→∞

∫
𝐸2
𝑓𝑛(𝑥1, 𝑥2) d𝜇2(𝑥2)

is an increasing limit of ℰ1-measurable functions, so is ℰ1-measurable. It is bounded by 𝜇2(𝐸2)‖𝑓‖∞,
or nonnegative as required. So 𝑓 ∈ 𝒱. By the monotone class theorem, the result for bounded
functions holds. In case (ii), we can take a bounded approximation in 𝒱 of an arbitrary measurable
function 𝑓 to conclude the proof.
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Theorem (product measure). Let (𝐸1, ℰ1, 𝜇1), (𝐸2, ℰ2, 𝜇2) be finite measure spaces. There
exists a uniquemeasure 𝜇 = 𝜇1⊗𝜇2 on (𝐸1×𝐸2, ℰ1⊗ℰ2) such that 𝜇(𝐴1×𝐴2) = 𝜇1(𝐴1)𝜇2(𝐴2)
for all 𝐴1 ∈ ℰ1, 𝐴2 ∈ ℰ2.

Proof. 𝒜 generates ℰ ⊗ ℰ2, so by the uniqueness theorem, there can only be one such measure. We
define

𝜇(𝐴) = ∫
𝐸1
(∫

𝐸2
𝟙𝐴(𝑥1, 𝑥2) d𝜇2(𝑥2)) d𝜇1(𝑥1)

We have

𝜇(𝐴1 × 𝐴2) = ∫
𝐸1
(∫

𝐸2
𝟙𝐴1(𝑥1)𝟙𝐴2(𝑥2) d𝜇2(𝑥2)) d𝜇1(𝑥1)

= ∫
𝐸1
𝟙𝐴1(𝑥1)𝜇2(𝐴2) d𝜇1(𝑥1)

= 𝜇1(𝐴1)𝜇2(𝐴2)

Clearly 𝜇(∅) = 0, so it suffices to show countable additivity. Let 𝐴𝑛 be disjoint sets in ℰ1⊗ℰ2. Then

𝟙(⋃𝑛 𝐴𝑛) = ∑
𝑛
𝟙𝐴𝑛 = lim

𝑛→∞

𝑛
∑
𝑖=1

𝟙𝐴𝑛

Then by the monotone convergence theorem and the previous lemmas,

𝜇(⋃
𝑛
𝐴𝑛) = ∫

𝐸1
(∫

𝐸2
lim
𝑛→∞

𝑛
∑
𝑖=1

𝟙𝐴𝑖 d𝜇2(𝑥2)) d𝜇1(𝑥1)

= ∫
𝐸1
( lim
𝑛→∞

∫
𝐸2

𝑛
∑
𝑖=1

𝟙𝐴𝑖 d𝜇2(𝑥2)) d𝜇1(𝑥1)

= lim
𝑛→∞

∫
𝐸1
(∫

𝐸2

𝑛
∑
𝑖=1

𝟙𝐴𝑖 d𝜇2(𝑥2)) d𝜇1(𝑥1)

= lim
𝑛→∞

𝑛
∑
𝑖=1

∫
𝐸1
(∫

𝐸2
𝟙𝐴𝑖 d𝜇2(𝑥2)) d𝜇1(𝑥1)

= lim
𝑛→∞

𝑛
∑
𝑖=1

𝜇(𝐴𝑖)

=
∞
∑
𝑛=1

𝜇(𝐴𝑛)
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4.2 Fubini’s theorem

Theorem. Let (𝐸, ℰ, 𝜇) = (𝐸1×𝐸2, ℰ1⊗ℰ2, 𝜇1⊗𝜇2) be a finitemeasure space. Let 𝑓∶ 𝐸 → ℝ
be a nonnegative measurable function. Then

𝜇(𝑓) = ∫
𝐸
𝑓 d𝜇

= ∫
𝐸1
(∫

𝐸2
𝑓(𝑥1, 𝑥2) d𝜇2(𝑥2)) d𝜇1(𝑥1)

= ∫
𝐸2
(∫

𝐸1
𝑓(𝑥1, 𝑥2) d𝜇1(𝑥1)) d𝜇2(𝑥2)

Now, let 𝑓∶ 𝐸 → ℝ be a 𝜇-integrable function (on the product measure). Let

𝐴1 = {𝑥1 ∈ 𝐸1
|
|
|
∫
𝐸2
|𝑓(𝑥1, 𝑥2)| d𝜇2(𝑥2) < ∞}

Define 𝑓1 by 𝑓1(𝑥1) = ∫𝐸2 𝑓(𝑥1, 𝑥2) d𝜇2(𝑥2) on 𝐴1 and zero elsewhere. Then 𝜇1(𝐴𝑐
1) = 0 and

𝜇(𝑓) = 𝜇1(𝑓1) = 𝜇1(𝑓1𝟙𝐴1), and defining 𝐴2 symmetrically, 𝜇(𝑓) = 𝜇2(𝑓2) = 𝜇2(𝑓2𝟙𝐴2).

Remark. If 𝑓 is bounded, 𝐴1 = 𝐸1. Note, for 𝑓(𝑥1, 𝑥2) =
𝑥21−𝑥22

(𝑥21+𝑥22)2
on (0, 1)2, we have 𝜇1(𝑓1) ≠ 𝜇2(𝑓2),

but 𝑓 is not Lebesgue integrable on (0, 1)2.

Proof. By the construction of the product measure 𝜇(𝐴) for rectangles 𝐴 = 𝐴1 × 𝐴2 in the 𝜋-system
𝒜 generating ℰ, the identities in the first part of the theorem clearly hold for 𝑓 = 𝟙𝐴. By uniqueness,
this extends to 𝟙𝐴 for all 𝐴 ∈ ℰ. Then, by linearity of the integral, this extends to simple functions.
By the monotone convergence theorem, the first part of the theorem follows.

Now let 𝑓 be 𝜇-integrable. Let ℎ(𝑥1) = ∫𝐸2 |𝑓(𝑥1, 𝑥2)| d𝜇2(𝑥2). Then by the first part, 𝜇1(|ℎ|) ≤
𝜇(|𝑓|) < ∞. So 𝑓1 is 𝜇1-integrable. We have 𝜇1(𝐴𝑐

1) = 0, otherwise, we could compute a lower
bound 𝜇1(|ℎ|) ≥ 𝜇1(|ℎ|𝟙𝐴𝑐

1
) = ∞, but it must be finite. Note that 𝑓±1 = ∫𝐸2 𝑓

±(𝑥1, 𝑥2) d𝜇2(𝑥2), and
𝜇(𝑓1) = 𝜇1(𝑓+1 )−𝜇1(𝑓−1 ). Hence, by the first part, 𝜇(𝑓) = 𝜇(𝑓+)−𝜇(𝑓−) = 𝜇1(𝑓+1 )−𝜇1(𝑓−1 ) = 𝜇1(𝑓1)
as required.

Remark. The proofs above extend to 𝜎-finite measures 𝜇.
Let (𝐸𝑖, ℰ𝑖, 𝜇𝑖) be measure spaces with 𝜎-finite measures. Note that (ℰ1⊗ℰ2) ⊗ ℰ3 = ℰ1⊗ (ℰ2⊗ℰ3),
by a 𝜋-system argument using Dynkin’s lemma. So we can iterate the construction of the product
measure to obtain a measure 𝜇1 ⊗…𝜇𝑛, which is a unique measure on (∏

𝑛
𝑖=1 𝐸𝑖⨂

𝑛
𝑖=1 ℰ𝑖) with the

property that themeasure of a hypercube 𝜇(𝐴1×𝐴𝑛) is the product of themeasures of its sides 𝜇𝑖(𝐴𝑖).

In particular, we have constructed the Lebesgue measure 𝜇𝑛 = ⨂𝑛
𝑖=1 𝜇 on ℝ𝑛. Applying Fubini’s

theorem, for functions 𝑓 that are either nonnegative and measurable or 𝜇𝑛-integrable, we have

∫
ℝ𝑛

𝑓 d𝜇𝑛 = ∫⋯∫
ℝ…ℝ

𝑓(𝑥1,… , 𝑥𝑛) d𝜇(𝑥1)… d𝜇(𝑥𝑛)
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4.3 Product probability spaces and independence

Proposition. Let (Ω,ℱ, ℙ), and (𝐸, ℰ) = (∏𝑛
𝑖=1 𝐸𝑖,⨂

𝑛
𝑖=1 ℰ𝑖). Let 𝑋 ∶ (Ω,ℱ) → (𝐸, ℰ) be a

measurable function, and define 𝑋(𝜔) = (𝑋1(𝜔), 𝑋2(𝜔),… , 𝑋𝑛(𝜔)). Then the following are
equivalent.
(i) 𝑋1,… , 𝑋𝑛 are independent random variables;
(ii) 𝜇𝑋 =⨂𝑛

𝑖=1 𝜇𝑋𝑖 ;
(iii) for all bounded and measurable 𝑓𝑖 ∶ 𝐸𝑖 → ℝ, 𝔼 [∏𝑛

𝑖=1 𝑓𝑖(𝑋𝑖)] = ∏𝑛
𝑖=1 𝔼 [𝑓𝑖(𝑋𝑖)].

Proof. (i) implies (ii). Consider the 𝜋-system𝒜 of rectangles 𝐴 = ∏𝑛
𝑖=1 𝐴𝑖 for 𝐴𝑖 ∈ ℰ𝑖. Since 𝜇𝑋 is an

image measure, Then

𝜇𝑋(𝐴1 ×⋯× 𝐴𝑛) = ℙ (𝑋1 ∈ 𝐴1,… , 𝑋𝑛 ∈ 𝐴𝑛) = ℙ (𝑋1)…ℙ (𝐴𝑛) =
𝑛
∏
𝑖=1

𝜇𝑋𝑖 (𝐴𝑖)

So by uniqueness, the result follows.

(ii) implies (iii). By Fubini’s theorem,

𝔼 [
𝑛
∏
𝑖=1

𝑓𝑖(𝑋𝑖)] = 𝜇𝑋(
𝑛
∏
𝑖=1

𝑓𝑖(𝑥𝑖))

= ∫
𝐸
𝑓(𝑥) d𝜇(𝑥)

= ∫⋯∫
𝐸𝑖
(

𝑛
∏
𝑖=1

𝑓𝑖(𝑥𝑖)) d𝜇𝑋1(𝑥1)… d𝜇𝑋2(𝑥2)

=
𝑛
∏
𝑖=1

∫
𝐸𝑖
𝑓𝑖(𝑥𝑖) d𝜇𝑋𝑖 (𝑥𝑖)

=
𝑛
∏
𝑖=1

𝔼 [𝑓𝑖(𝑋𝑖)]

(iii) implies (i). Let 𝑓𝑖 = 𝟙𝐴𝑖 for any 𝐴𝑖 ∈ ℰ𝑖. These are bounded and measurable functions. Then

ℙ (𝑋1 ∈ 𝐴1,… , 𝑋𝑛 ∈ 𝐴𝑛) = 𝔼 [
𝑛
∏
𝑖=1

𝟙𝐴𝑖 (𝑋𝑖)] =
𝑛
∏
𝑖=1

𝔼 [𝟙𝐴𝑖 (𝑋𝑖)] =
𝑛
∏
𝑖=1

ℙ (𝑋𝑖 ∈ 𝐴𝑖)

So the 𝜎-algebras generated by the 𝑋𝑖 are independent as required.
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5 Function spaces and norms
5.1 Norms

Definition. A norm on a real vector space is a map ‖ ⋅ ‖𝑉 ∶ 𝑉 → ℝ such that
(i) ‖𝜆𝑣‖ = |𝜆| ⋅ ‖𝑣‖;
(ii) ‖𝑢 + 𝑣‖ ≤ ‖𝑢‖ + ‖𝑣‖;
(iii) ‖𝑣‖ = 0 if and only if 𝑣 = 0.

Definition. Let (𝐸, ℰ, 𝜇) be a measure space. We define 𝐿𝑝(𝐸, ℰ, 𝜇) = 𝐿𝑝(𝜇) = 𝐿𝑝 for the
space of measurable functions 𝑓∶ 𝐸 → ℝ such that ‖𝑓‖𝑝 is finite, where

‖𝑓‖𝑝 = {(∫𝐸 |𝑓(𝑥)|
𝑝 d𝜇(𝑥))

1
𝑝 1 ≤ 𝑝 < ∞

ess sup |𝑓| = inf {𝜆 > 0 ∣ |𝑓| ≤ 𝜆 almost everywhere} 𝑝 = ∞

We must check that ‖ ⋅ ‖𝑝 as defined is a norm. Clearly (i) holds for all 1 ≤ 𝑝 ≤ ∞. Property (ii)
holds for 𝑝 = 1 and 𝑝 = ∞, and we will prove later that this holds for other values of 𝑝. The last
property does not hold: 𝑓 = 0 implies ‖𝑓‖𝑝 = 0, but ‖𝑓‖𝑝 = 0 implies only that |𝑓|𝑝 = 0 almost
everywhere, so 𝑓 is zero almost everywhere on 𝐸. Therefore, to rigorously define the norm, we must
construct the quotient space ℒ𝑝 of functions that coincide almost everywhere. We write [𝑓] for the
equivalence class of functions that are equal almost everywhere. The functional ‖ ⋅ ‖𝑝 is then a norm
on ℒ𝑝.

Proposition (Chebyshev’s inequality, Markov’s inequality). Let 𝑓∶ 𝐸 → ℝ be nonnegative
and measurable. Then for all 𝜆 > 0,

𝜇({𝑥 ∈ 𝐸 ∣ 𝑓(𝑥) ≥ 𝜆}) = 𝜇(𝑓 ≥ 𝜆) ≤ 𝜇(𝑓)
𝜆

Proof. Integrate the inequality 𝜆𝟙{𝑓≥𝜆} ≤ 𝑓, which holds on 𝐸.

Definition. Let 𝐼 ⊆ 𝑅 be an interval. Then we say a map 𝑐∶ 𝐼 → ℝ is convex if for all 𝑥, 𝑦 ∈ 𝐼
and 𝑡 ∈ [0, 1], we have 𝑐(𝑡𝑥 + (1 − 𝑡)𝑦) ≤ 𝑡𝑐(𝑥) + (1 − 𝑡)𝑐(𝑦). Equivalently, for all 𝑥 < 𝑡 < 𝑦
and 𝑥, 𝑦 ∈ 𝐼, we have 𝑐(𝑡)−𝑐(𝑥)

𝑡−𝑥
≤ 𝑐(𝑦)−𝑐(𝑡)

𝑦−𝑡
.

Since a convex function is continuous on the interior of the interval, it is Borel measurable.

Lemma. Let 𝐼 ⊆ 𝑅 be an interval, and let 𝑚 ∈ 𝐼∘. If 𝑐 is convex on 𝐼, there exist 𝑎, 𝑏 such
that 𝑐(𝑥) ≥ 𝑎𝑥 + 𝑏, and 𝑐(𝑚) = 𝑎𝑚 + 𝑏.

Proof. Define 𝑎 = sup { 𝑐(𝑚)−𝑐(𝑥)
𝑚−𝑥

∣ 𝑥 < 𝑚, 𝑥 ∈ 𝐼}. This exists in ℝ by the second definition of con-

vexity. Let 𝑦 ∈ 𝐼, and 𝑦 > 𝑚. Then 𝑎 ≤ 𝑐(𝑦)−𝑐(𝑚)
𝑦−𝑚

, so 𝑐(𝑦) ≥ 𝑎𝑦 − 𝑎𝑚 + 𝑐(𝑚) = 𝑎𝑦 + 𝑏 where we
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define 𝑏 = 𝑐(𝑚) − 𝑎𝑚. Similarly, for 𝑦 < 𝑚, by definition of the supremum, 𝑐(𝑚)−𝑐(𝑦)
𝑚−𝑦

≤ 𝑎, we have
𝑐(𝑦) ≥ 𝑎𝑦 + 𝑏.

Theorem (Jensen’s inequality). Let𝑋 be a randomvariable taking values in an interval 𝐼 ⊆ ℝ,
such that 𝔼 [|𝑋|] < ∞. Let 𝑐∶ 𝐼 → ℝ be a convex function. Then 𝑐(𝔼 [𝑋]) ≤ 𝔼 [𝑐(𝑋)].

Note that the integral 𝔼 [𝑐(𝑋)] is defined as 𝔼 [𝑐+(𝑋)] − 𝔼 [𝑐−(𝑋)], and this is well-defined and takes
values in (−∞,∞].

Proof. Define𝑚 = 𝔼 [𝑋] = ∫𝐼 𝑧 d𝜇𝑋(𝑧). If𝑚 ∉ 𝐼∘, 𝑋 must equal𝑚 almost surely, and then the result
follows. Now let𝑚 ∈ 𝐼∘. Applying the previous lemma, we find 𝑎, 𝑏 such that 𝑐−(𝑋) ≤ |𝑎| ⋅ |𝑋| + |𝑏|.
Hence, 𝔼 [𝑐−(𝑋)] ≤ |𝑎|𝔼 [|𝑋|] + |𝑏| < ∞, and 𝔼 [𝑐(𝑋)] = 𝔼 [𝑐+(𝑋)] − 𝔼 [𝑐−(𝑋)] is well-defined in
(−∞,∞]. Integrating the inequality from the lemma, and using linearity of the integral,

𝔼 [𝑐(𝑋)] ≥ 𝑎𝔼 [𝑋] + 𝑏 = 𝑎𝑚 + 𝑏 = 𝑐(𝑚) = 𝑐(𝔼 [𝑋])

Remark. If 1 ≤ 𝑝 < 𝑞 < ∞, 𝑐(𝑥) = |𝑥|
𝑞
𝑝 is a convex function. If 𝑋 is a bounded random variable (so

lies in 𝐿∞(ℙ)), we then have

‖𝑋‖𝑝 = 𝔼 [|𝑋𝑝|]
1
𝑝 = 𝑐(𝔼 [|𝑋|𝑝])

1
𝑞 ≤ 𝔼 [𝑐(|𝑋|𝑝)]

1
𝑞 = ‖𝑋‖𝑞

Using the monotone convergence theorem, this extends to all 𝑋 ∈ 𝐿𝑞(ℙ) when ‖𝑋‖𝑞 is finite. In
particular, 𝐿𝑞(ℙ) ⊆ 𝐿𝑝(ℙ) for all 1 ≤ 𝑝 ≤ 𝑞 ≤ ∞.

Theorem (Hölder’s inequality). Let 𝑓, 𝑔 be measurable functions on (𝐸, ℰ, 𝜇). If 𝑝, 𝑞 are
conjugate, so 1

𝑝
+ 1

𝑞
= 1 and 1 ≤ 𝑝, 𝑞 ≤ ∞, we have

𝜇(|𝑓𝑔|) = ∫
𝐸
|𝑓(𝑥)𝑔(𝑥)| d𝜇 ≤ ‖𝑓‖𝑝 ⋅ ‖𝑔‖𝑞

Remark. For 𝑝 = 𝑞 = 2, this is exactly the Cauchy–Schwarz inequality on 𝐿2.

Proof. The cases 𝑝 = 1 or 𝑝 = ∞ are obvious. We can assume 𝑓 ∈ 𝐿𝑝 and 𝑔 ∈ 𝐿𝑞 without loss of
generality since the right hand side would otherwise be infinite. We can also assume 𝑓 is not equal
to zero almost everywhere, otherwise this reduces to 0 ≤ 0. Hence, ‖𝑓‖𝑝 > 0. Then, we can divide
both sides by ‖𝑓‖𝑝 and then assume ‖𝑓‖𝑝 = 1.

𝜇(|𝑓𝑔|) = ∫
𝐸
|𝑔| 1
|𝑓|𝑝−1

|𝑓|𝑝𝟙{|𝑓|>0} d𝜇

Note that we can set |𝑓|𝑝 d𝜇 = dℙ, and since 𝐿𝑞(ℙ) ⊆ 𝐿1(ℙ),

∫
𝐸
|𝑔| 1
|𝑓|𝑝−1

|𝑓|𝑝𝟙{|𝑓|>0} d𝜇 ≤ (∫ |𝑔|𝑞 1
|𝑓|𝑞(𝑝−1)

|𝑓|𝑝 d𝜇⏟⎵⏟⎵⏟
dℙ

)

1
𝑞

= (∫
𝐸
|𝑔|𝑞 d𝜇)

1
𝑞
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Theorem (Minkowski’s inequality). Let 𝑓, 𝑔∶ (𝐸, ℰ, 𝜇) → ℝ be measurable functions. Then
for all 1 ≤ 𝑝 ≤ ∞, we have ‖𝑓 + 𝑔‖𝑝 ≤ ‖𝑓‖𝑝 + ‖𝑔‖𝑝.

Proof. The results for 𝑝 = 1,∞ are clear. Suppose 1 < 𝑝 < ∞. We can assume without loss of
generality that 𝑓, 𝑔 ∈ 𝐿𝑝. We can integrate the pointwise inequality |𝑓 + 𝑔|𝑝 ≤ 2𝑝(|𝑓|𝑝 + |𝑔|𝑝) to
deduce that ‖𝑓 + 𝑔‖𝑝𝑝 ≤ 2𝑝(‖𝑓‖𝑝𝑝+‖𝑔‖

𝑝
𝑝) < ∞ so 𝑓+𝑔 ∈ 𝐿𝑝. We assume that 0 < ‖𝑓 + 𝑔‖𝑝, otherwise

the result is trivial. Now, using Hölder’s inequality with 𝑞 conjugate to 𝑝,

‖𝑓 + 𝑔‖𝑝𝑝 = ∫
𝐸
|𝑓 + 𝑔|𝑝−1|𝑓 + 𝑔| d𝜇

≤ ∫
𝐸
|𝑓 + 𝑔|𝑝−1|𝑓| d𝜇 +∫

𝐸
|𝑓 + 𝑔|𝑝−1|𝑔| d𝜇

≤ (∫
𝐸
|𝑓 + 𝑔|𝑞(𝑝−1) d𝜇)

1
𝑞
(‖𝑓‖𝑝 + ‖𝑔‖𝑝)

≤ (∫
𝐸
|𝑓 + 𝑔|𝑝 d𝜇)

1
𝑞
(‖𝑓‖𝑝 + ‖𝑔‖𝑝)

≤ ‖𝑓 + 𝑔‖
𝑝
𝑞
𝑝 (‖𝑓‖𝑝 + ‖𝑔‖𝑝)

Dividing both sides by ‖𝑓 + 𝑔‖
𝑝
𝑞
𝑝 , we obtain ‖𝑓 + 𝑔‖𝑝 ≤ ‖𝑓‖𝑝 + ‖𝑔‖𝑝.

So the 𝐿𝑝 spaces are indeed normed spaces.

5.2 Banach spaces

Definition. A Banach space is a complete normed vector space.

Theorem (ℒ𝑝 is a Banach space). Let 1 ≤ 𝑝 ≤ ∞, and let 𝑓𝑛 ∈ 𝐿𝑝 be a Cauchy sequence, so
for all 𝜀 > 0 there exists 𝑁 such that for all 𝑚, 𝑛 ≥ 𝑁, we have ‖𝑓𝑚 − 𝑓𝑛‖𝑝 < 𝜀. Then there
exists a function 𝑓 ∈ 𝐿𝑝 such that 𝑓𝑛 → 𝑓 in 𝐿𝑝, so ‖𝑓𝑛 − 𝑓‖𝑝 → 0 as 𝑛 → ∞.

Proof. For this proof, we assume 𝑝 < ∞; the other case is already proven in IBAnalysis and Topology.
Since 𝑓𝑛 is Cauchy, using 𝜀 = 2−𝑘 we extract a subsequence 𝑓𝑁𝑘 of 𝐿𝑝 functions such that

𝑆 =
∞
∑
𝑘=1

‖
‖𝑓𝑁𝑘+1 − 𝑓𝑁𝑘

‖
‖𝑝 ≤

∞
∑
𝑘=1

2−𝑘 < ∞

By Minkowski’s inequality, for any 𝐾, we have

‖
‖‖‖

𝐾
∑
𝑘=1

||𝑓𝑁𝑘+1 − 𝑓𝑁𝑘
||
‖
‖‖‖𝑝
≤

𝐾
∑
𝑘=1

‖
‖𝑓𝑁𝑘+1 − 𝑓𝑁𝑘

‖
‖𝑝 ≤ 𝑆 < ∞
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By themonotone convergence theoremapplied to ||∑
𝐾
𝑘=1 ||𝑓𝑁𝑘+1 − 𝑓𝑁𝑘

||||
𝑝
which increases to ||∑∞

𝑘=1 ||𝑓𝑁𝑘+1 − 𝑓𝑁𝑘
||||
𝑝
,

we find
‖
‖‖‖

∞
∑
𝑘=1

||𝑓𝑁𝑘+1 − 𝑓𝑁𝑘
||
‖
‖‖‖𝑝
≤ 𝑆 < ∞

Since the integral is finite, we see that∑∞
𝑘=1 ||𝑓𝑁𝑘+1 − 𝑓𝑁𝑘

|| is finite almost everywhere. Then∑𝐾
𝑘=1(𝑓𝑁𝑘+1(𝑥)−

𝑓𝑁𝑘(𝑥)) = 𝑓𝑁𝑘+1(𝑥) − 𝑓𝑁1(𝑥) converges in the real line for all 𝑥 in a set 𝐴 that has full measure, so
𝜇(𝐴𝑐) = 0. In particular, 𝑓𝑁𝑘(𝑥) is a Cauchy sequence of reals, so by completeness of the real line, we
can define the limit

𝑓(𝑥) = {lim𝑘→∞ 𝑓𝑁𝑘(𝑥) 𝑥 ∈ 𝐴
0 𝑥 ∈ 𝐴𝑐

so 𝑓𝑁𝑘 → 𝑓 as 𝑘 → ∞ almost everywhere. Now, by Fatou’s lemma,

‖𝑓𝑛 − 𝑓‖𝑝𝑝 = 𝜇(|𝑓𝑛 − 𝑓|𝑝) = 𝜇(lim
𝑘
||𝑓𝑛 − 𝑓𝑁𝑘

||
𝑝) ≤ lim inf

𝑘
𝜇(||𝑓𝑛 − 𝑓𝑁𝑘

||
𝑝)

Since the 𝑓𝑛 are Cauchy,
‖𝑓‖𝑝 ≤ ‖𝑓 − 𝑓𝑁‖𝑝⏟⎵⎵⏟⎵⎵⏟

≤𝜀

+‖𝑓𝑁‖𝑝⏟
<∞

< ∞

so 𝑓 ∈ 𝐿𝑝, and ‖𝑓𝑛 − 𝑓‖𝑝𝑝 ≤ 𝜀𝑝 for 𝑛,𝑁𝑘 ≥ 𝑁, so 𝑓𝑛 → 𝑓 in 𝐿𝑝.

Remark. If 𝑉 is any of the spaces

𝐶([𝑎, 𝑏]); {𝑓 simple}; {𝑓 a linear combination of indicators of intervals}

then 𝑉 is dense in 𝐿1(𝜇) where 𝜇 is the Lebesgue measure on ℬ([𝑎, 𝑏]). So the completion (𝑉, ‖ ⋅ ‖)
is exactly 𝐿1(𝜇).

5.3 Hilbert spaces

Definition. A symmetric bilinear form ⟨ ⋅ , ⋅ ⟩ ∶ 𝑉 ×𝑉 → ℝ on a real vector space𝑉 is called
an inner product if ⟨𝑣, 𝑣⟩ ≥ 0 and ⟨𝑣, 𝑣⟩ = 0 implies 𝑣 = 0. In this case, we can define a norm
‖𝑣‖ = √⟨𝑣, 𝑣⟩. If (𝑉, ⟨ ⋅ , ⋅ ⟩) is complete, we say that it is a Hilbert space.

Corollary. The space ℒ2 is a Hilbert space for the inner product ⟨𝑓, 𝑔⟩ = ∫𝐸 𝑓𝑔 d𝜇.

Example. An analog of the Pythagorean theorem holds. Let 𝑓, 𝑔 ∈ 𝐿2, then ‖𝑓 + 𝑔‖22 = ‖𝑓‖22 +
2 ⟨𝑓, 𝑔⟩ + ‖𝑔‖22. We say 𝑓 is orthogonal to 𝑔 if ⟨𝑓, 𝑔⟩ = 0. 𝑓 and 𝑔 are orthogonal if and only if
‖𝑓 + 𝑔‖22 = ‖𝑓‖22 + ‖𝑔‖22. For centred (mean zero) random variables 𝑋, 𝑌 , we have ⟨𝑋, 𝑌⟩ = 𝔼 [𝑋𝑌] =
𝔼 [(𝑋 − 𝔼 [𝑋])(𝑌 − 𝔼 [𝑌])] = Cov (𝑋, 𝑌) which vanishes when 𝑋 and 𝑌 are orthogonal.

Example. The parallelogram identity holds: ‖𝑓 + 𝑔‖22 + ‖𝑓 − 𝑔‖22 = 2(‖𝑓‖22 + ‖𝑔‖22)
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Definition. Let 𝑉 ⊆ 𝐿2(𝜇). We define its orthogonal complement to be

𝑉⟂ = {𝑓 ∈ 𝐿2(𝜇) ∣ ∀𝑔 ∈ 𝑉, ⟨𝑓, 𝑔⟩ = 0}

We say that a subset 𝑉 of ℒ2 is closed if any sequence 𝑓𝑛 ∈ 𝑉 that converges in ℒ2, its limit 𝑓
coincides almost everywhere with some 𝑣 ∈ 𝑉 .

Theorem. Let 𝑉 be a closed linear subspace of ℒ2(𝜇). Then for all 𝑓 ∈ ℒ2, there exists an
orthogonal decomposition 𝑓 = 𝑣+𝑢where 𝑣 ∈ 𝑉 and 𝑢 ∈ 𝑉⟂ such that ‖𝑓 − 𝑣‖2 ≤ ‖𝑓 − 𝑔‖2
for all 𝑔 ∈ 𝑉 with equality only if 𝑣 = 𝑔 almost everywhere. We call 𝑣 the projection of 𝑓 onto
𝑉 .

Proof. In this proof, we set 𝑝 = 2 for all norms. We define 𝑑(𝑓, 𝑉) = inf𝑔∈𝑉 ‖𝑔 − 𝑓‖, and let 𝑔𝑛 ∈ 𝑉
be a sequence of functions such that ‖𝑔𝑛 − 𝑓‖ converges to 𝑑(𝑓, 𝑉). By the parallelogram law,

2‖𝑓 − 𝑔𝑛‖
2 + 2‖𝑓 − 𝑔𝑚‖

2 = ‖2𝑓 − (𝑔𝑛 + 𝑔𝑚)‖
2 + ‖𝑔𝑛 − 𝑔𝑚‖

2

= 4
‖
‖‖‖‖
𝑓 − 𝑔𝑛 + 𝑔𝑚

2⏟⎵⏟⎵⏟
∈𝑉

‖
‖‖‖‖

2

+ ‖𝑔𝑛 − 𝑔𝑚‖
2

≥ 4𝑑(𝑓, 𝑉)2 + ‖𝑔𝑛 − 𝑔𝑚‖
2

Taking the limit superior as 𝑛,𝑚 → ∞, lim sup𝑚,𝑛 ‖𝑔𝑛 − 𝑔𝑚‖
2 ≤ 4𝑑(𝑓, 𝑉) − 4𝑑(𝑓, 𝑉) = 0. So the

sequence 𝑔𝑛 is Cauchy in 𝐿2, so by completeness, it converges to some 𝑣 ∈ 𝐿2. Since 𝑉 is closed,
𝑣 ∈ 𝑉 . In particular, 𝑑(𝑓, 𝑉) = inf𝑔∈𝑉 ‖𝑔 − 𝑓‖ = ‖𝑣 − 𝑓‖.

Note that 𝑑(𝑓, 𝑉)2 ≤ 𝐹(𝑡) = ‖𝑓 − (𝑣 + 𝑡ℎ)‖2 where 𝑡 ∈ ℝ and ℎ ∈ 𝑉 . So we obtain the first-order
condition 𝐹′(0) = 2 ⟨𝑓 − 𝑣, ℎ⟩ = 0 for all ℎ. Defining 𝑓 − 𝑣 = 𝑢, we have 𝑓 = 𝑢+ 𝑣 and 𝑢 ∈ 𝑉⟂ since
ℎ was arbitrary.
For uniqueness, suppose 𝑓 = 𝑤 + 𝑧 with 𝑤 ∈ 𝑉 and 𝑧 ∈ 𝑉⟂. Then 𝑣 − 𝑤 + 𝑢 − 𝑧 = 𝑓 − 𝑓 = 0, so
taking norms, 0 = ‖𝑣 − 𝑤 + 𝑢 − 𝑧‖2 = ‖𝑣 − 𝑤‖2 + ‖𝑢 − 𝑧‖2 so 𝑣 = 𝑤 and 𝑢 = 𝑧 (almost everywhere)
by orthogonality.

5.4 Convergence in probability and uniform integrability

Theorem (bounded convergence). Let 𝑋𝑛 be random variables on (Ω,ℱ, ℙ) such that |𝑋𝑛| ≤
𝐶 < ∞ and they converge in probability to 𝑋 . Then 𝑋𝑛 → 𝑋 in 𝐿1(ℙ).

Proof. We know that 𝑋𝑛𝑘 → 𝑋 almost surely along a subsequence 𝑛𝑘. So |𝑋| = lim𝑘 ||𝑋𝑛𝑘 || ≤ 𝐶 < ∞
almost surely. Then

𝔼 [|𝑋𝑛 − 𝑋|] = 𝔼 [|𝑋𝑛 − 𝑋|(𝟙{|𝑋𝑛−𝑋|>
𝜀
2 }
+ 𝟙{|𝑋𝑛−𝑥|≤

𝜀
2 }
)]

≤ 2𝐶ℙ (|𝑋𝑛 − 𝑋| ≥ 𝜀
2) +

𝜀
2

< 𝜀
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for sufficiently large 𝑛.

If 𝑋 ∈ 𝐿1(ℙ), then as 𝛿 → 0,

𝐼𝑋(𝛿) = sup {𝔼 [|𝑋|𝟙𝐴] ∣ ℙ (𝐴) ≤ 𝛿} ↓ 0

Suppose this does not hold. Then there exists 𝜀 > 0 and a sequence of events 𝐴𝑛 ∈ ℱ such that
ℙ (𝐴𝑛) ≤ 2−𝑛 but 𝔼 [|𝑋|𝟙𝐴𝑛] ≥ 𝜀. Since∑𝑛 ℙ (𝐴𝑛) < ∞, by the first Borel–Cantelli lemma, we have
ℙ (⋂𝑛⋃𝑚≥𝑛 𝐴𝑚) = 0. But 𝔼 [|𝑋|𝟙𝐴𝑛] ≤ 𝔼 [|𝑋|𝟙⋃𝑚≥𝑛 𝐴𝑚]. Note that 𝟙⋃𝑚≥𝑛 𝐴𝑚 → 𝟙⋂𝑛⋃𝑚≥𝑛 𝐴𝑛 , so
𝔼 [|𝑋|𝟙⋃𝑚≥𝑛 𝐴𝑚] → 𝔼 [|𝑋|𝟙⋂𝑛⋃𝑚≥𝑛

] by the dominated convergence theorem, but this is equal to zero,
giving a contradiction.

Definition. For a collection𝒳 ⊆ 𝐿1(ℙ) of random variables, we say𝒳 is uniformly integrable
if it is bounded in 𝐿1(ℙ), and

𝐼𝒳(𝛿) = sup {𝔼 [|𝑋|𝟙𝐴] ∣ ℙ (𝐴) ≤ 𝛿, 𝑋 ∈ 𝒳} ↓ 0

Remark. Note that 𝑋𝑛 = 𝑛𝟙[0, 1𝑛 ]
for the Lebesgue measure 𝜇 on [0, 1] is bounded in 𝐿1(ℙ) but not

uniformly integrable. If 𝒳 is bounded in 𝐿𝑝(ℙ) for 𝑝 > 1, then by Hölder’s inequality,

𝔼 [|𝑋|𝟙𝐴] ≤ ‖𝑋‖𝑝⏟
bounded

⋅ ℙ (𝐴)
1
𝑞⏟⎵⏟⎵⏟

≤𝛿
1
𝑞→0

Lemma. 𝒳 ⊆ 𝐿1(ℙ) is uniformly integrable if and only if sup𝑋∈𝒳 𝔼 [|𝑋|𝟙{|𝑋|>𝐾}] → 0 as
𝐾 → ∞.

Proof. Let 𝒳 be uniformly integrable. Applying Markov’s inequality, as 𝐾 → ∞,

ℙ (|𝑋| > 𝐾) ≤ 𝔼 [|𝑋|]
𝐾 = 𝔼 [|𝑋|𝟙Ω]

𝐾 ≤ 𝐼𝒳(1)
𝐾 → 0

Using the uniform integrability property using 𝐴 = {|𝑋| > 𝐾}, we obtain the required limit. Con-
versely, we have

𝔼 [|𝑋|] = 𝔼 [|𝑋|(𝟙{|𝑋|≤𝐾} + 𝟙{|𝑋|>𝐾})] ≤ 𝐾 + 𝜀
2

for sufficiently large 𝐾. So 𝒳 is bounded in 𝐿1(ℙ) as required. Then for 𝐴 such that ℙ (𝐴) ≤ 𝛿,

𝔼 [|𝑋|𝟙𝐴(𝟙{|𝑋|≤𝐾} + 𝟙{|𝑋|>𝐾})] ≤ 𝐾ℙ (𝐴) + 𝔼 [|𝑋|𝟙{|𝑋|>𝐾}] ≤ 𝐾𝛿 + 𝜀
2 < 𝜀

for sufficiently small 𝛿.

Theorem. Let 𝑋𝑛, 𝑋 be random variables on (Ω,ℱ, ℙ). Then the following are equivalent.
(i) 𝑋𝑛, 𝑋 ∈ 𝐿1(ℙ) and 𝑋𝑛 → 𝑋 in 𝐿1(ℙ).
(ii) {𝑋𝑛 ∣ 𝑛 ∈ ℕ} is uniformly integrable, and 𝑋𝑛 → 𝑋 in probability.
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Proof. (i) implies (ii). Using Markov’s inequality,

ℙ (|𝑋𝑛 − 𝑋| > 𝜀) ≤ 𝔼 [|𝑋𝑛 − 𝑋|]
𝜀 → 0

so 𝑋𝑛 → 𝑋 in probability. Since any finite collection is uniformly integrable, so are 𝑋 along with
𝑋1,… , 𝑋𝑁 for each 𝑁. For the indices larger than 𝑁, we have

𝔼 [|𝑋𝑛|𝟙𝐴] ≤ 𝔼 [|𝑋𝑛 − 𝑋|𝟙𝐴] + 𝔼 [|𝑋|𝟙𝐴] ≤
𝜀
2 +

𝜀
2

for sufficiently large 𝑁 and sufficiently small 𝛿, so all 𝑋𝑛 are uniformly integrable.
(ii) implies (i). Along a subsequence, 𝑋𝑛 → 𝑋 almost surely. So

𝔼 [|𝑋|] = 𝔼 [lim inf
𝑘

||𝑋𝑛𝑘 ||] ≤ lim inf
𝑘

𝔼 [||𝑋𝑛𝑘 ||] ≤ 𝐼𝒳(1) < ∞

almost surely, so 𝑋 ∈ 𝐿1(ℙ). Next, we define random variables 𝑔(𝑋𝑛) = 𝑋𝐾
𝑛 = max(−𝐾,min(𝐾, 𝑋𝑛))

and 𝑔(𝑋) = 𝑋𝐾 = max(−𝐾,min(𝐾, 𝑋)), where 𝑔 is continuous. Then for some 𝜀′ > 0,

ℙ (|𝑔(𝑋𝑛) − 𝑔(𝑋)| > 𝜀) ≤ ℙ (|𝑋𝑛 − 𝑋| > 𝜀′) → 0

as 𝑛 → ∞, since 𝑋𝑛 → 𝑋 in probability and 𝑔 is continuous. Then by bounded convergence, 𝑋𝐾
𝑛 →

𝑋𝐾 in 𝐿1, and so

𝔼 [|𝑋𝑛 − 𝑋|] ≤ 𝔼 [||𝑋𝑛 − 𝑋𝐾
𝑛 ||] + 𝔼 [||𝑋𝐾

𝑛 − 𝑋𝐾 ||] + 𝔼 [||𝑋𝐾 − 𝑋||]
= 𝔼 [|𝑋𝑛|𝟙{|𝑋𝑛|>𝑘}] + 𝔼 [||𝑋𝐾

𝑛 − 𝑋𝐾 ||] + 𝔼 [|𝑋|𝟙{|𝑋|>𝐾}]
< 𝜀

by choosing sufficiently large 𝐾 and 𝑛.

6 Fourier analysis
6.1 Fourier transforms
In this section, we will write 𝐿𝑝(ℝ𝑑) for the set of measurable functions 𝑓∶ ℝ𝑑 → ℂ such that

‖𝑓‖𝑝 = (∫ℝ𝑑 |𝑓(𝑥)|𝑝 d𝑥)
1
𝑝 < ∞. We can extend the integral as a complex linear map 𝐿1(ℝ) → ℂ

by defining
∫
ℝ
(𝑢 + 𝑖𝑣)(𝑥) d𝑥 = ∫

ℝ
𝑢(𝑥) d𝑥 + 𝑖∫

ℝ
𝑣(𝑥) d𝑥

Note that for some 𝑢 + 𝑖𝑣 = 𝛼 ∈ ℂ with |𝛼| = 1,

|||∫ℝ𝑑
𝑓(𝑥) d𝑥||| = ∫

ℝ𝑑
𝛼𝑓(𝑥) d𝑥 = ∫

ℝ𝑑
𝑢(𝑥) d𝑥 + 𝑖∫

ℝ𝑑
𝑣(𝑥) d𝑥

But since the left hand side is real-valued, the 𝑖 ∫ℝ𝑑 𝑣(𝑥) d𝑥 term vanishes. So

|||∫ℝ𝑑
𝑓(𝑥) d𝑥||| = ∫

ℝ𝑑
𝑢(𝑥) d𝑥 ≤ ∫

ℝ𝑑
|𝑓(𝑥)| d𝑥
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Definition. Let 𝑓 ∈ 𝐿1(ℝ𝑑). We define the Fourier transform ̂𝑓 by

̂𝑓(𝑢) = ∫
ℝ𝑑

𝑓(𝑥)𝑒𝑖⟨𝑢,𝑥⟩ d𝑥

where ⟨𝑢, 𝑥⟩ = ∑𝑑
𝑖=1 𝑢𝑖𝑥𝑖.

Remark. Note that || ̂𝑓(𝑢)|| ≤ ‖𝑓‖1. Also, if 𝑢𝑛 → 𝑢, then 𝑒𝑖⟨𝑢𝑛,𝑥⟩ → 𝑒𝑖⟨𝑢,𝑥⟩. By the dominated conver-
gence theorem with dominating function |𝑓|, we have ̂𝑓(𝑢𝑛) → ̂𝑓(𝑢), so ̂𝑓 is a continuous bounded
function.

Definition. Let 𝑓 ∈ 𝐿1(ℝ𝑑) such that ̂𝑓 ∈ 𝐿1(ℝ𝑑). Then we say that the Fourier inversion
formula holds for 𝑓 if

𝑓(𝑥) = 1
(2𝜋)𝑑 ∫ℝ𝑑

̂𝑓(𝑢)𝑒−𝑖⟨𝑢,𝑥⟩ d𝑢

almost everywhere in ℝ𝑑.

Definition. Let 𝑓 ∈ 𝐿1(ℝ𝑑) ∩ 𝐿2(ℝ𝑑). Then the Plancherel identity holds for 𝑓 if

‖
‖ ̂𝑓‖‖2 = (2𝜋)

𝑑
2 ‖𝑓‖2

We will show that the Fourier inversion formula holds whenever ̂𝑓 ∈ 𝐿1(ℝ𝑑), and the Plancherel
identity holds for all 𝑓 ∈ 𝐿1(ℝ𝑑) ∩ 𝐿2(ℝ𝑑).
Remark. Given the Plancherel identity, the Fourier transform is a linear isometry of 𝐿2(ℝ𝑑), by ap-
proximating any function in 𝐿2(ℝ𝑑) by integrable functions.

Definition. Let 𝜇 be a finite Borel measure on ℝ𝑑. We define the Fourier transform of the
measure by

𝜇̂(𝑢) = ∫
ℝ𝑑

𝑒𝑖⟨𝑢,𝑥⟩ d𝜇(𝑥)

Note that |𝜇̂(𝑢)| ≤ 𝜇(ℝ𝑑), and 𝜇̂ is continuous by the dominated convergence theorem. If 𝜇 has a
density 𝑓 with respect to the Lebesgue measure, 𝜇̂ = ̂𝑓.

Definition. Let 𝑋 be an ℝ𝑑-valued random variable. The characteristic function 𝜑𝑋 is given
by

𝜑𝑋(𝑢) = 𝔼 [𝑒𝑖⟨𝑢,𝑋⟩] = 𝜇̂𝑋(𝑢)
where 𝜇𝑋 is the law of 𝑋 .
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6.2 Convolutions

Definition. Let 𝑓 ∈ 𝐿1(ℝ𝑑) and 𝜈 be a probability measure on ℝ𝑑. We define their convolu-
tion 𝑓 ∗ 𝜈 by

(𝑓 ∗ 𝜈)(𝑥) = {∫ℝ𝑑 𝑓(𝑥 − 𝑦) d𝜈(𝑦) if (𝑦 ↦ 𝑓(𝑥 − 𝑦)) ∈ 𝐿1(𝜈)
0 else

Remark. If 1 ≤ 𝑝 < ∞, by Jensen’s inequality,

∫
ℝ𝑑

(∫
ℝ𝑑

|𝑓(𝑥 − 𝑦)| d𝜈(𝑦))
𝑝
d𝑥 ≤ ∫

ℝ𝑑
∫
ℝ𝑑

|𝑓(𝑥 − 𝑦)|𝑝 d𝜈(𝑦) d𝑥

= ∫
ℝ𝑑

∫
ℝ𝑑

|𝑓(𝑥 − 𝑦)|𝑝 d𝑥 d𝜈(𝑦)

= ∫
ℝ𝑑

∫
ℝ𝑑

|𝑓(𝑥)| d𝜈(𝑦) d𝑥

= ∫
ℝ𝑑

|𝑓(𝑥)| d𝑥

= ‖𝑓‖𝑝𝑝

So 𝑓 ∈ 𝐿𝑝(ℝ𝑑), we have (𝑦 ↦ 𝑓(𝑥−𝑦)) ∈ 𝐿𝑝(𝜈) almost everywhere, and again by Jensen’s inequality,

‖𝑓 ∗ 𝜈‖𝑝𝑝 = ∫
ℝ𝑑

|||∫ℝ𝑑
𝑓(𝑥 − 𝑦) d𝜈(𝑦)|||

𝑝
d𝑥 ≤ ∫

ℝ𝑑
(∫

ℝ𝑑
|𝑓(𝑥 − 𝑦)| d𝜈(𝑦))

𝑝
d𝑥 ≤ ‖𝑓‖𝑝𝑝

Hence 𝑓 ↦ 𝑓 ∗ 𝜈 is a contraction on 𝐿𝑝(ℝ𝑑).
In the casewhere 𝜈 has a density 𝑔with respect to the Lebesguemeasure, wewrite 𝑓∗𝑔 = 𝑓∗𝜈.

Definition. For probability measures 𝜇, 𝜈 on ℝ𝑑, their convolution 𝜇 ∗ 𝜈 is a probability
measure onℝ𝑑 given by the law of 𝑋 +𝑌 where 𝑋, 𝑌 are independent random variables with
laws 𝜇 and 𝜈, so

(𝜇 ∗ 𝜈)(𝐴) = ℙ (𝑋 + 𝑌 ∈ 𝐴)

= ∫
ℝ𝑑×ℝ𝑑

𝟙𝐴(𝑥 + 𝑦) d(𝜇 ⊗ 𝜈)(𝑥, 𝑦)

= ∫
ℝ𝑑

∫
ℝ𝑑

𝟙𝐴(𝑥 + 𝑦) d𝜈(𝑦) d𝜇(𝑥)

If 𝜇 has density 𝑓 with respect to the Lebesgue measure, 𝜇 ∗ 𝜈 has density 𝑓 ∗ 𝜈 with respect to the
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Lebesgue measure. Indeed,

(𝜇 ∗ 𝜈)(𝐴) = ∫
ℝ𝑑

∫
ℝ𝑑

𝟙𝐴(𝑥 + 𝑦)𝑓(𝑥) d𝑥 d𝜈(𝑦)

= ∫
ℝ𝑑

∫
ℝ𝑑

𝟙𝐴(𝑣)𝑓(𝑣 − 𝑦) d𝑣 d𝜈(𝑦)

= ∫
ℝ𝑑

𝟙𝐴(𝑣)∫
ℝ𝑑

𝑓(𝑣 − 𝑦) d𝜈(𝑦) d𝑣

= ∫
ℝ𝑑

𝟙𝐴(𝑣)(𝑓 ∗ 𝜈)(𝑣) d𝑣

Proposition. 𝑓 ∗ 𝜈(𝑢) = ̂𝑓(𝑢) ̂𝜈(𝑢).

Proposition. 𝜇 ∗ 𝜈(𝑢) = 𝔼 [𝑒𝑖⟨𝑢,𝑋+𝑌⟩] = 𝔼 [𝑒𝑖⟨𝑢,𝑋⟩𝑒𝑖⟨𝑢,𝑌⟩] = 𝜇̂(𝑢) ̂𝜈(𝑢).

6.3 Fourier transforms of Gaussians

Definition. The normal distribution 𝑁(0, 𝑡) is given by the probability density function

𝑔𝑡(𝑥) =
1

√2𝜋𝑡
𝑒−

𝑥2
2𝑡

If𝜑𝑋 is the characteristic function of a standardnormal randomvariable, by integration by parts,
d
d𝑢𝜑𝑋(𝑢) =

d
d𝑢 ∫ℝ

𝑒𝑖𝑢𝑥𝑔1(𝑥) d𝑥

= ∫
ℝ
𝑔1(𝑥)

d
d𝑢𝑒

𝑖𝑢𝑥 d𝑥

= 𝑖
√2𝜋

∫
ℝ
𝑒𝑖𝑢𝑥⏟
𝑣
𝑥𝑒−

𝑥2
2⏟

𝑤′
d𝑥

= 𝑖2

√2𝜋
∫
ℝ
𝑢𝑒𝑖𝑢𝑥𝑒−

𝑥2
2 d𝑥

= −𝑢𝜑𝑋(𝑢)
Hence,

d
d𝑢(𝑒

𝑢2
2 𝜑𝑋(𝑢)) = 𝑢𝑒

𝑢2
2 𝜑𝑋(𝑢) − 𝑒

𝑢2
2 𝑢𝜑𝑋(𝑢) = 0

In particular, 𝜑𝑋(𝑢) = 𝜑𝑋(0)𝑒−
𝑢2
2 = 𝑒−

𝑢2
2 . In other words, ̂𝑔1(𝑢) = √2𝜋𝑔1(𝑢).

In ℝ𝑑, consider a Gaussian random vector 𝑍 = (𝑍1,… , 𝑍𝑑) with independent and identically distrib-
uted entries 𝑍𝑖 ∼ 𝑁(0, 1). Then, the joint probability density function of√𝑡𝑍 is

𝑔𝑡(𝑥) =
𝑑
∏
𝑗=1

1
√2𝜋𝑡

𝑒−
𝑥2𝑗
2𝑡 = (2𝜋𝑡)−

𝑑
2 𝑒−

‖𝑥‖2

2𝑡
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The Fourier transform of 𝑔𝑡 is

̂𝑔𝑡(𝑢) = 𝔼 [𝑒𝑖⟨𝑢,√𝑡𝑍⟩] = 𝔼[
𝑑
∏
𝑗=1

𝑒𝑖𝑢𝑗√𝑡𝑧𝑗] =
𝑑
∏
𝑗=1

𝔼 [𝑒𝑖𝑢𝑗√𝑡𝑧𝑗 ] =
𝑑
∏
𝑗=1

𝑒−𝑢
2
𝑗
𝑡
2 = 𝑒−

‖𝑢‖2𝑡
2

which implies that in general, ̂𝑔𝑡(𝑢) = (2𝜋)
𝑑
2 𝑡

𝑑
2 𝑔 1

𝑡
(𝑢). Taking the Fourier transform with respect to

𝑢, ̂̂𝑔𝑡 = (2𝜋)𝑑𝑔𝑡, and since 𝑔𝑡(−𝑥) = 𝑔𝑡(𝑥) and the Lebesgue measure is translation invariant, we
have

𝑔𝑡(𝑥) =
1

(2𝜋)𝑑
̂̂𝑔𝑡(𝑥) =

1
(2𝜋)𝑑 ∫ℝ𝑑

𝑒−𝑖⟨𝑢,𝑥⟩ ̂𝑔𝑡(𝑢) d𝑢

so the Fourier inversion theorem holds for such Gaussian random vectors.

Definition. We say that a function on ℝ𝑑 is a Gaussian convolution if it is of the form

𝑓 ∗ 𝑔𝑡(𝑥) = ∫
ℝ𝑑

𝑓(𝑥 − 𝑦)𝑔𝑡(𝑦) d𝑦

where 𝑥 ∈ ℝ𝑑, 𝑡 > 0, 𝑓 ∈ 𝐿1(ℝ𝑑).

We can show that 𝑓∗𝑔𝑡 is continuous onℝ𝑑, and ‖𝑓 ∗ 𝑔𝑡‖1 ≤ ‖𝑓‖1. Note that 𝑓 ∗ 𝑔𝑡(𝑢) = ̂𝑓(𝑢)𝑒−
‖𝑢‖2𝑡
2 ,

so ‖‖𝑓 ∗ 𝑔𝑡
‖
‖∞ ≤ ‖𝑓‖1, giving

‖
‖𝑓 ∗ 𝑔𝑡

‖
‖1 ≤ ‖𝑓‖1(2𝜋)

𝑑
2 𝑡−

𝑑
2 < ∞.

Lemma. The Fourier inversion theorem holds for all Gaussian convolutions.

Proof. We can use the Fourier inversion theorem for 𝑔𝑡(𝑦) to see that

(2𝜋)𝑑𝑓 ∗ 𝑔𝑡(𝑥) = (2𝜋)𝑑∫
ℝ𝑑

𝑓(𝑥 − 𝑦)𝑔𝑡(𝑦) d𝑦

= ∫
ℝ𝑑

𝑓(𝑥 − 𝑦)∫
ℝ𝑑

𝑒−𝑖⟨𝑢,𝑦⟩ ̂𝑔𝑡(𝑢) d𝑢 d𝑦

= ∫
ℝ𝑑

𝑒−𝑖⟨𝑢,𝑥⟩∫
ℝ𝑑

𝑓(𝑥 − 𝑦)𝑒𝑖⟨𝑢,𝑥−𝑦⟩ d𝑦 ̂𝑔𝑡(𝑢) d𝑢

= ∫
ℝ𝑑

𝑒−𝑖⟨𝑢,𝑥⟩∫
ℝ𝑑

𝑓(𝑧)𝑒𝑖⟨𝑢,𝑧⟩ d𝑧 ̂𝑔𝑡(𝑢) d𝑢

= ∫
ℝ𝑑

𝑒−𝑖⟨𝑢,𝑥⟩ ̂𝑓(𝑢) ̂𝑔𝑡(𝑢) d𝑢

= ∫
ℝ𝑑

𝑒−𝑖⟨𝑢,𝑥⟩𝑓 ∗ 𝑔𝑡(𝑢) d𝑢

Remark. If 𝜇 is a finite measure, then 𝜇 ∗ 𝑔𝑡 = 𝜇 ∗ 𝑔 𝑡
2
∗ 𝑔 𝑡

2
with 𝜇 ∗ 𝑔 𝑡

2
∈ 𝐿1, so is also a Gaussian

convolution.
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Lemma (Gaussian convolutions are dense in 𝐿𝑝). Let 𝑓 ∈ 𝐿𝑝 where 1 ≤ 𝑝 < ∞. Then
‖𝑓 ∗ 𝑔𝑡 − 𝑓‖𝑝 → 0 as 𝑡 → 0.

Proof. One can easily show that the space 𝐶𝑐(ℝ𝑑) of continuous functions of compact support is
dense in 𝐿𝑝. Hence, for all 𝜀 > 0, there exists ℎ ∈ 𝐶𝑐(ℝ𝑑) such that ‖𝑓 − ℎ‖𝑝 <

𝜀
3
, and by properties

of the convolution, we also obtain

‖𝑓 ∗ 𝑔𝑡 − ℎ ∗ 𝑔𝑡‖𝑝 = ‖(𝑓 − ℎ) ∗ 𝑔𝑡‖𝑝 ≤ ‖𝑓 − ℎ‖𝑝 <
𝜀
3

So
‖𝑓 ∗ 𝑔𝑡 − 𝑓‖𝑝 ≤ ‖𝑓 ∗ 𝑔𝑡 − ℎ ∗ 𝑔𝑡‖𝑝 + ‖ℎ ∗ 𝑔𝑡 + ℎ‖𝑝 + ‖ℎ − 𝑓‖𝑝 <

𝜀
2 + ‖ℎ ∗ 𝑔𝑡 − ℎ‖𝑝

so it suffices to prove the result for 𝑓 = ℎ ∈ 𝐶𝑐(ℝ𝑑). We define a new map

𝑒(𝑦) = ∫
ℝ𝑑

|ℎ(𝑥 − 𝑦) − ℎ(𝑥)|𝑝 d𝑥

Since ℎ is bounded on its bounded support, the dominated convergence theorem implies that 𝑒 is
continuous at 𝑦 = 0. Note that 𝑒(𝑦) ≤ 2𝑝+1‖ℎ‖𝑝𝑝. Hence, by Jensen’s inequality,

‖ℎ ∗ 𝑔𝑡 − ℎ‖𝑝𝑝 = ∫
ℝ𝑑

|||∫ℝ𝑑
(ℎ(𝑥 − 𝑦) − ℎ(𝑥))𝑔𝑡(𝑦) d𝑦

|||

𝑝
d𝑥

≤ ∫
ℝ𝑑

∫
ℝ𝑑

|ℎ(𝑥 − 𝑦) − ℎ(𝑥)|𝑝 d𝑥 𝑔𝑡(𝑦) d𝑦

= ∫
ℝ𝑑

𝑒(𝑦)𝑔𝑡(𝑦) d𝑦

= ∫
ℝ𝑑

𝑒(√𝑡𝑧)⏟⎵⏟⎵⏟
→𝑒(0)=0 as 𝑡→0

𝑔1(𝑧) d𝑧

→ 0

Theorem (Fourier inversion). Let 𝑓 ∈ 𝐿1(ℝ𝑑) be such that ̂𝑓 ∈ 𝐿1(ℝ𝑑). Then for almost all
𝑥 ∈ ℝ𝑑,

𝑓(𝑥) = 1
(2𝜋)𝑑 ∫ℝ𝑑

𝑒−𝑖⟨𝑢,𝑥⟩ ̂𝑓(𝑢) d𝑢

Remark. This proves that the Fourier transform is injective; ̂𝑓 = ̂𝑔 implies 𝑓 − 𝑔 = 0 so by Fourier in-
version, 𝑓 = 𝑔 almost everywhere. The identity holds everywhere onℝ𝑑 for the (unique) continuous
representative 𝑓 in its equivalence class.

Proof. The Fourier inversion theorem holds for the following Gaussian convolution for all 𝑡.

𝑓 ∗ 𝑔𝑡(𝑥) =
1

(2𝜋)𝑑 ∫ℝ𝑑
𝑒−𝑖⟨𝑢,𝑥⟩ ̂𝑓(𝑢)𝑒

−|𝑢|2𝑡
2 d𝑢 = 𝑓𝑡(𝑥)
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Now, since Gaussian convolutions are dense, 𝑓 ∗ 𝑔𝑡 → 𝑓 in 𝐿1, so 𝑓 ∗ 𝑔𝑡 → 𝑓 in measure by Markov’s
inequality. Hence, along a subsequence, 𝑓 ∗ 𝑔𝑡𝑘 → 𝑓 almost everywhere. On the other hand, by
the dominated convergence theorem with dominating function || ̂𝑓||, the right hand side converges to

1
(2𝜋)𝑑

∫ℝ𝑑 𝑒−𝑖⟨𝑢,𝑥⟩ ̂𝑓(𝑢) d𝑢. So this is equal to lim𝑡𝑘→0 𝑓𝑡𝑘 almost everywhere by uniqueness of limits.

Theorem (Plancherel). Let 𝑓 ∈ 𝐿1(ℝ𝑑) ∩ 𝐿2(ℝ𝑑). Then ‖𝑓‖2 = (2𝜋)−
𝑑
2 ‖‖ ̂𝑓‖‖2.

Remark. By the Pythagorean identity, ⟨𝑓, 𝑔⟩ = (2𝜋)−𝑑 ⟨ ̂𝑓, ̂𝑔⟩.

Proof. Initially, we assume ̂𝑓 ∈ 𝐿1. In this case, 𝑓, ̂𝑓 ∈ 𝐿∞, and (𝑥, 𝑢) ↦ 𝑓(𝑥) ̂𝑓(𝑢) is integrable for the
product Lebesgue measure d𝑥 ⊗ d𝑢 on ℝ𝑑 ×ℝ𝑑, so Fubini’s theorem for bounded functions applies.

(2𝜋)𝑑‖𝑓‖22 = (2𝜋)𝑑∫
ℝ𝑑

𝑓(𝑥)𝑓(𝑥) d𝑥

= ∫
ℝ𝑑

(∫
ℝ𝑑

𝑒−𝑖⟨𝑢,𝑥⟩ ̂𝑓(𝑢) d𝑢)𝑓(𝑥) d𝑥

= ∫
ℝ𝑑

̂𝑓(𝑢)∫
ℝ𝑑

𝑒𝑖⟨𝑢,𝑥⟩𝑓(𝑥) d𝑥 d𝑢

= ∫
ℝ𝑑

̂𝑓(𝑢) ̂𝑓(𝑢) d𝑢

= ‖
‖ ̂𝑓‖‖

2

2

To extend this result to general 𝑓, we take the Gaussian convolutions 𝑓 ∗ 𝑔𝑡 = 𝑓𝑡 such that 𝑓𝑡 → 𝑓 in

𝐿2. By the continuity of the norm, ‖𝑓𝑡‖2 → ‖𝑓‖2. Since
|||
̂𝑓(𝑢)𝑒−

|𝑢|2𝑡
2
|||

2

increases to || ̂𝑓(𝑢)||
2
, we have by

monotone convergence that ‖‖ ̂𝑓𝑡‖‖
2

2
↑ ‖‖ ̂𝑓‖‖

2

2
. Therefore, since the Plancherel identity holds for the 𝑓𝑡,

‖𝑓‖22 = lim
𝑡→0

‖𝑓𝑡‖
2
2 = lim

𝑡→0
(2𝜋)−𝑑‖‖ ̂𝑓𝑡‖‖

2

2
= (2𝜋)−𝑑‖‖ ̂𝑓‖‖

2

2

Remark. Since 𝐿1 ∩ 𝐿2 is dense in 𝐿2, we can extend the linear operator 𝐹0(𝑓) = (2𝜋)−
𝑑
2 ̂𝑓 to 𝐿2 by

continuity to a linear isometry 𝐹 ∶ 𝐿2 → 𝐿2 known as the Fourier–Plancherel transform. One can
show that 𝐹 is surjective with inverse 𝐹−1 ∶ 𝐿2 → 𝐿2.
Example. Consider the Dirac measure 𝛿0 on ℝ, so ̂𝛿0(𝑢) = ∫ℝ 𝑒𝑖𝑢𝑥 d𝛿0(𝑥) = 1. But the inverse
Fourier transform would be 1

2𝜋
∫ℝ 𝑒𝑖𝑢𝑥 d𝑢 which is not a Lebesgue integrable function.

Theorem. Let 𝑋 be a random vector in ℝ𝑑 with law 𝜇𝑋 . Then the characteristic function
𝜑𝑋 = 𝜇̂𝑋 uniquely determines 𝜇𝑋 . In addition, if 𝜑𝑋 ∈ 𝐿1, then 𝜇𝑋 has a probability density
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function 𝑓𝑋 which can be computed almost everywhere by 1
(2𝜋)𝑑

∫ℝ𝑑 𝑒−𝑖⟨𝑢,𝑥⟩𝜑𝑋(𝑢) d𝑢.

Proof. Let 𝑍 = (𝑍1,… , 𝑍𝑑) be a vector of independent and identically distributed random variables,
independent of𝑋 , with𝑍𝑗 ∼ 𝑁(0, 1). Then√𝑡𝑍 has probability density function 𝑔𝑡. Then𝑋+√𝑡𝑍 has
probability density function 𝑓𝑡 = 𝜇𝑋 ∗𝑔𝑡. This is a Gaussian convolution since 𝜇𝑋 ∗𝑔𝑡 = 𝜇𝑋 ∗𝑔 𝑡

2
∗𝑔 𝑡

2
.

Hence,

𝑓𝑡(𝑥) =
1

(2𝜋)𝑑 ∫ℝ𝑑
𝑒𝑖⟨𝑢,𝑥⟩𝜑𝑋(𝑢)𝑒−

|𝑢|2𝑡
2 d𝑢

which is uniquely determined by 𝜑𝑋 . We show on an example sheet that two Borel probability meas-
ures 𝜇, 𝜈 on ℝ𝑑 coincide if and only if 𝜇(𝑔) = 𝜈(𝑔) for all 𝑔∶ ℝ𝑑 → ℝ that are bounded, continuous,
and have compact support. Now,

∫
ℝ𝑑

𝑔(𝑥)𝑓𝑡(𝑥) d𝑥 = 𝔼[𝑔(𝑋 + √𝑡𝑍)⏟⎵⎵⏟⎵⎵⏟
→𝑋 a.s.

]

Since ||𝑔(𝑋 + √𝑡𝑍)|| ≤ ‖𝑔‖∞ < ∞, by the bounded convergence theorem, this converges to 𝔼 [𝑔(𝑋)] =
∫ℝ𝑑 𝑔(𝑥) d𝜇𝑋(𝑥). So by uniqueness of limits, 𝜑𝑋 determines 𝜇𝑋 .
If𝜑𝑋 ∈ 𝐿1, by dominated convergence, 𝑓𝑡(𝑥) converges everywhere to some function𝑓𝑋 . In particular,
since 𝜇𝑋 ∗𝑔𝑡 ≥ 0, the limit 𝑓𝑋 is also nonnegative onℝ𝑑. Then, for any bounded continuous function
on compact support 𝑔 ∈ 𝐶𝑏

𝑐 (ℝ𝑑),

∫
ℝ𝑑

𝑔(𝑥)𝑓𝑋(𝑥) d𝑥 = ∫
ℝ𝑑

𝑔(𝑥) lim
𝑡→0

𝑓𝑡(𝑥)⏟
‖𝜑𝑋 ‖1

d𝑥 = lim
𝑡→0

∫
ℝ𝑑

𝑔(𝑥)𝑓𝑡(𝑥) d𝑥 = ∫
ℝ𝑑

𝑔(𝑥) d𝜇𝑋(𝑥)

by the dominated convergence theorem, since 𝑔 has compact support.

Definition. A sequence (𝜇𝑛)𝑛∈ℕ of Borel probability measures on ℝ𝑑 converges weakly to a
Borel probability measure 𝜇 if 𝜇𝑛(𝑔) → 𝜇(𝑔) for all 𝑔∶ ℝ𝑑 → ℝ bounded and continuous. If
(𝑋𝑛)𝑛∈ℕ, 𝑋 are random vectors with laws (𝜇𝑋𝑛), 𝜇𝑋 such that 𝜇𝑋𝑛 converges weakly to 𝜇𝑋 , we
say (𝑋𝑛) converges weakly to 𝑋 .

Remark. If 𝑑 = 1, weak convergence is equivalent to convergence in distribution; this is proven on
an example sheet. One can also show that convergence of 𝜇𝑛(𝑔) to 𝜇(𝑔) for all 𝑔 ∈ 𝐶∞

𝑐 (ℝ𝑑) suffices to
show weak convergence, where 𝐶∞

𝑐 (ℝ𝑑) is the space of smooth functions of compact support. This
is equivalent to the notion of weak-⋆ convergence on the function space 𝐶𝑏(ℝ𝑑).

Theorem (Lévy’s continuity theorem). Let 𝑋𝑛, 𝑋 be random vectors in ℝ𝑑, such that
𝜑𝑋𝑛(𝑢) → 𝜑𝑋(𝑢) for all 𝑢, as 𝑛 → ∞. Then 𝜇𝑋𝑛 → 𝜇𝑋 weakly.

Remark. The converse holds by definition of weak convergence, testing against the complex expo-
nentials in the Fourier transform.
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Proof. Let 𝑍 = (𝑍1,… , 𝑍𝑑) be a vector of standard normal random variables, independent from each
other, 𝑋𝑛, and 𝑋 . Let 𝑔 ∈ 𝐶∞

𝑐 (ℝ𝑑). Then 𝑔 ∈ 𝐿1(ℝ𝑑), and is Lipschitz by the mean value theorem, as
its first derivative is bounded. Let |𝑔(𝑥) − 𝑔(𝑦)| ≤ ‖𝑔‖Lip|𝑥 − 𝑦|. Let 𝜀 > 0. Let 𝑡 > 0 be sufficiently
small such that√𝑡‖𝑔‖Lip𝔼 [|𝑍|] <

𝜀
3
. Then,

||𝜇𝑋𝑛(𝑔) − 𝜇𝑋(𝑔)|| = |𝔼 [𝑔(𝑋𝑛)] − 𝔼 [𝑔(𝑋)]|
≤ 𝔼 [||𝑔(𝑋𝑛) − 𝑔(𝑋𝑛 +√𝑡𝑍)||] + 𝔼 [||𝑔(𝑋) − 𝑔(𝑋 + √𝑡𝑍)||]

+ ||𝔼 [𝑔(𝑋𝑛 +√𝑡𝑍) − 𝑔(𝑋 + √𝑡𝑍)]||
≤ 2‖𝑔‖Lip√𝑡𝔼 [|𝑍|] + ||𝔼 [𝑔(𝑋𝑛 +√𝑡𝑍) − 𝑔(𝑋 + √𝑡𝑍)]||

≤ 2𝜀
3 + ||𝔼 [𝑔(𝑋𝑛 +√𝑡𝑍) − 𝑔(𝑋 + √𝑡𝑍)]||

We show that the remaining term can be made less than 𝜀
3
as 𝑛 → ∞. Let 𝑓𝑡,𝑛(𝑥) = 𝑔𝑡 ∗ 𝜇𝑋𝑛 . Then,

by Fourier inversion for Gaussian convolutions,

𝔼 [𝑔(𝑋𝑛 +√𝑡𝑍)] = ∫
ℝ𝑑

𝑔(𝑥)𝑓𝑡,𝑛(𝑥) d𝑥

= 1
(2𝜋)𝑑 ∫ℝ𝑑

𝑔(𝑥)∫
ℝ𝑑

𝑒−𝑖⟨𝑢,𝑥⟩𝜑𝑋𝑛(𝑢)𝑒
− |𝑢|2𝑡

2 d𝑢 d𝑥

Since characteristic functions are bounded by 1, we can apply the dominated convergence theorem

with dominating function |𝑔(𝑥)|𝑒−
|𝑢|2𝑡
2 to find

𝔼 [𝑔(𝑋𝑛 +√𝑡𝑍)] → 1
(2𝜋)𝑑 ∫ℝ𝑑

𝑔(𝑥)∫
ℝ𝑑

𝑒−𝑖⟨𝑢,𝑥⟩𝜑𝑋(𝑢)𝑒−
|𝑢|2𝑡
2 d𝑢 d𝑥

= ∫
ℝ𝑑

𝑔(𝑥)𝑓𝑡(𝑥) d𝑥

= 𝔼 [𝑔(𝑋 + √𝑡𝑍)]

where 𝑓𝑡 = 𝑔𝑡 ∗ 𝜇𝑋 . So as 𝑛 → ∞, the difference between these two terms can be made less than 𝜀
3

as required.

Theorem (central limit theorem). Let 𝑋1,… , 𝑋𝑛 be independent and identically distributed
random variables with 𝔼 [𝑋𝑖] = 0 and Var (𝑋𝑖) = 1. Let 𝑆𝑛 = ∑𝑛

𝑖=1 𝑋𝑛. Then

1
√𝑛

𝑆𝑛
weakly−−−−→ 𝑍 ∼ 𝑁(0, 1)

In particular,

ℙ( 1
√𝑛

𝑆𝑛 ≤ 𝑥) → ℙ (𝑍 ≤ 𝑥)

Proof. Let 𝑋 = 𝑋1. The characteristic function 𝜑(𝑢) = 𝜑𝑋(𝑢) = 𝔼 [𝑒𝑖𝑢𝑋] satisfies 𝜑(0) = 1, 𝜑′(𝑢) =
𝑖𝔼 [𝑋𝑒𝑖𝑢𝑋],𝜑″(𝑢) = 𝑖2𝔼 [𝑋2𝑒𝑖𝑢𝑋]. We can find𝜑′(0) = 𝑖𝔼 [𝑋] = 0 and𝜑″(0) = −𝔼 [𝑋2] = −Var (𝑋) =
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−1. By Taylor’s theorem, 𝜑(𝑣) = 1 − 𝑣2

2
+ 𝑜(𝑣2) as 𝑣 → 0. Now, denoting 𝜑𝑛(𝑢) = 𝜑 1

√𝑛
𝑆𝑛
(𝑢), we can

write

𝜑𝑛(𝑢) = 𝔼 [𝑒𝑖
𝑢
√𝑛

(𝑋1+⋯+𝑋𝑛)]

=
𝑛
∏
𝑗=1

𝔼 [𝑒𝑖
𝑢
√𝑛

𝑋𝑗]

= [𝜑( 𝑢
√𝑛

)]
𝑛

= [1 − 𝑢2
2𝑛 + 𝑜( 1𝑛)]

𝑛

The complex logarithm satisfies log(1 + 𝑧) = 𝑧 + 𝑜(𝑧), so by taking logarithms, we find

log𝜑𝑛(𝑢) = 𝑛 log (1 − 𝑢2
2𝑛 + 𝑜( 1𝑛)) = −𝑢

2

2

Hence, 𝜑𝑛(𝑢) → 𝑒−
|𝑢|2

2 = 𝜑𝑍(𝑢). So by Lévy’s continuity theorem, the result follows.

Remark. This theorem extends to ℝ𝑑 by using the next proposition, using the fact that 𝑋𝑛 → 𝑋
weakly in ℝ𝑑 if and only if ⟨𝑋𝑛, 𝑣⟩ → ⟨𝑋, 𝑣⟩ weakly in ℝ for all 𝑣 ∈ ℝ𝑑.

Definition. A random variable 𝑋 inℝ𝑑 is called a Gaussian vector if ⟨𝑋𝑛, 𝑣⟩ are Gaussian for
each 𝑣 ∈ ℝ𝑑.

Proposition. Let 𝑋 be a Gaussian vector inℝ𝑑. Then 𝑍 = 𝐴𝑋 +𝑏 is a Gaussian vector inℝ𝑚

where𝐴 is an𝑚×𝑑matrix and 𝑏 ∈ ℝ𝑚. Also,𝑋 ∈ 𝐿2(ℝ𝑑), and𝜇 = 𝔼 [𝑋] and𝑉 = Cov (𝑋𝑖, 𝑋𝑗)
exist and determine 𝜇𝑋 . The characteristic function is

𝜑𝑋(𝑢) = 𝑒𝑖⟨𝜇,𝑢⟩−
⟨𝑢,𝑉𝑢⟩

2

If 𝑉 is invertible, then 𝜇𝑋 has a probability density function

𝑓𝑋(𝑥) = (2𝜋)−
𝑑
2 (det𝑉)−

1
2 exp{− ⟨𝑥 − 𝜇, 𝑉−1(𝑥 − 𝜇)⟩}

Subvectors 𝑋(1), 𝑋(2) of 𝑋 are independent if and only if Cov (𝑋(1), 𝑋(2)) = 0.

Proposition. Let 𝑋𝑛 → 𝑋 weakly in ℝ𝑑 as 𝑛 → ∞. Then,
(i) if ℎ∶ ℝ𝑑 → ℝ𝑘 is continuous, then ℎ(𝑋𝑛) → ℎ(𝑋) weakly;
(ii) if |𝑋𝑛 − 𝑌𝑛| → 0 in probability, then 𝑌𝑛 → 𝑋 weakly;
(iii) if 𝑌𝑛 → 𝑐 in probability where 𝑐 is constant on Ω, then (𝑋𝑛, 𝑌𝑛) → (𝑋, 𝑐) weakly in

ℝ𝑑 × ℝ𝑑.

Remark. Combining parts (iii) and (i), 𝑋𝑛 + 𝑌𝑛 → 𝑋 + 𝑐 weakly if 𝑌𝑛 → 𝑐 in probability. If 𝑑 = 1,
then in addition 𝑋𝑛𝑌𝑛 → 𝑐𝑋 weakly.
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Proof. Part (i). This follows from the fact that 𝑔ℎ is continuous for any test function 𝑔.
Part (ii). Let 𝑔∶ ℝ𝑑 → ℝ be bounded and Lipschitz continuous. Then

|𝔼 [𝑔(𝑌𝑛)] − 𝔼 [𝑔(𝑋)]| ≤ |𝔼 [𝑔(𝑋𝑛)] − 𝔼 [𝑔(𝑋)]|⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟
< 𝜀
3

+𝔼 [|𝑔(𝑋𝑛) − 𝑔(𝑌𝑛)|]

where the bound on 𝔼 [𝑔(𝑋𝑛)] − 𝔼 [𝑔(𝑋)] holds for sufficiently large 𝑛. Then the remaining term is
upper bounded by

𝔼 [|𝑔(𝑋𝑛) − 𝑔(𝑌𝑛)|] (𝟙{|𝑋𝑛−𝑌𝑛|≤
𝜀

3‖𝑔‖Lip
}
+ 𝟙

{|𝑋𝑛−𝑌𝑛|>
𝜀

3‖𝑔‖Lip
}
)

≤ ‖𝑔‖Lip
𝜀

3‖𝑔‖Lip
+ 2‖𝑔‖∞ℙ(|𝑋𝑛 − 𝑌𝑛| >

𝜀
3‖𝑔‖Lip

) < 2𝜀
3

for sufficiently large 𝑛.
Part (iii). |(𝑋𝑛, 𝑐) − (𝑋𝑛, 𝑌𝑛)| = |𝑌𝑛 − 𝑐| → 0 in probability. Also, 𝔼 [𝑔(𝑋𝑛, 𝑐)] → 𝔼 [𝑔(𝑋, 𝑐)] for all
bounded continuous maps 𝑔∶ ℝ𝑑 × ℝ𝑑 → ℝ, so (𝑋𝑛, 𝑐) → (𝑋, 𝑐) weakly. Hence, by (ii), (𝑋𝑛, 𝑌𝑛) →
(𝑋, 𝑐) weakly.

7 Ergodic theory
7.1 Laws of large numbers

Proposition. Let (𝑋𝑛)𝑛∈ℕ be independent and identically distributed random variables such
that 𝔼 [𝑋𝑛] = 0 and Var (𝑋𝑛) = 𝜎2 < ∞. Then 1

𝑛
∑𝑛

𝑖=1 𝑋𝑖 → 0 in probability as 𝑛 → ∞.

Proof. By Chebyshev’s inequality,

ℙ(
||||
1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖
||||
> 𝜀) ≤ 1

𝑛2𝜀2 Var (
𝑛
∑
𝑖=1

𝑋𝑖) ≤
𝜎2
𝑛𝜀2 → 0

So 1
𝑛
∑𝑛

𝑖=1 𝑋𝑖 → 𝔼[𝑋1] in probability.

This is known as the weak law of large numbers. However, this result has several weaknesses, and
we can provide stronger results.

Proposition. Let (𝑋𝑛)𝑛∈ℕ be independent random variables such that 𝔼 [𝑋𝑛] = 𝜇 and
𝔼 [𝑋4

𝑛] ≤ 𝑀 for all 𝑛. Then 1
𝑛
∑𝑛

𝑖=1 𝑋𝑖 → 𝜇 almost surely as 𝑛 → ∞.

Proof. Let 𝑌𝑛 = 𝑋𝑛 − 𝜇. Then 𝔼 [𝑌𝑛] = 0, and 𝔼 [𝑌4
𝑛 ] ≤ 24(𝔼 [𝑋4

𝑛] + 𝜇4) < ∞. So we can assume
𝜇 = 0. For distinct indices 𝑖, 𝑗, 𝑘, ℓ, by independence and the Cauchy–Schwarz inequality, we have

0 = 𝔼 [𝑋𝑖𝑋𝑗𝑋𝑘𝑋ℓ] = 𝔼 [𝑋2
𝑖 𝑋𝑗𝑋𝑗] = 𝔼 [𝑋3

𝑖 𝑋𝑗] ; 𝔼 [𝑋2
𝑖 𝑋2

𝑗 ] ≤ √𝔼 [𝑋4
𝑖 ]√𝔼 [𝑋4

𝑗 ] ≤ 𝑀
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So we can compute

𝔼[(
𝑛
∑
𝑖=1

𝑋𝑖)
4

] = 𝔼[
𝑛
∑
𝑖=1

𝑋4
𝑖 ] + 6𝔼 [∑

𝑖<𝑗
𝑋2
𝑖 𝑋2

𝑗 ] ≤ 𝑛𝑀 + 3𝑛(𝑛 − 1)𝑀 ≤ 3𝑛2𝑀

Let 𝑆𝑛 = ∑𝑛
𝑖=1 𝑋𝑖. Then,

𝔼 [
∞
∑
𝑛=1

(𝑆𝑛𝑛 )
4
] ≤

∞
∑
𝑛=1

1
𝑛4 3𝑛

2𝑀 < ∞

Hence∑∞
𝑛=1 (

𝑆𝑛
𝑛
)
4
< ∞ almost surely. But then (𝑆𝑛

𝑛
)
4
→ 0 almost surely, so 𝑆𝑛

𝑛
→ 0 almost surely.

7.2 Invariants
Let (𝐸, ℰ, 𝜇) be a 𝜎-finite measure space.

Definition. A measurable transformation Θ∶ 𝐸 → 𝐸 is measure-preserving if 𝜇(Θ−1(𝐴)) =
𝜇(𝐴) for all 𝐴 ∈ ℰ.

In this case, for any integrable function 𝑓 ∈ 𝐿1(𝜇), we have ∫𝐸 𝑓 d𝜇 = ∫𝐸 𝑓 ∘ Θ d𝜇.

Definition. A measurable map 𝑓∶ 𝐸 → ℝ is called Θ-invariant if 𝑓 ∘ Θ = 𝑓. A set 𝐴 ∈ ℰ is
Θ-invariant if Θ−1(𝐴) = 𝐴, or equivalently, 𝟙𝐴 is Θ-invariant.

The collection ℰΘ of Θ-invariant sets forms a 𝜎-algebra over 𝐸. A function 𝑓∶ 𝐸 → ℝ is invariant if
and only if 𝑓 is ℰΘ-measurable; this is a question on an example sheet.

Definition. Θ is called ergodic if theΘ-invariant sets𝐴 satisfy either 𝜇(𝐴) = 0 or 𝜇(𝐸∖𝐴) = 0.

If 𝑓 is Θ-invariant and Θ is ergodic, then one can show that 𝑓 is constant almost everywhere on
𝐸.
Example. Consider (𝐸, ℰ) = ((0, 1], ℬ) with the Lebesgue measure 𝜇. The maps Θ𝑎(𝑥) = 𝑥 + 𝑎
modulo 1 and Θ(𝑥) = 2𝑥 modulo 1 are both measure-preserving, and ergodic unless 𝑎 ∈ ℚ. This is
a question on an example sheet.

Lemma (maximal ergodic lemma). Let (𝐸, ℰ, 𝜇) be a 𝜎-finite measure space. Let Θ∶ 𝐸 → 𝐸
be measure-preserving. For 𝑓 ∈ 𝐿1(𝜇), we define 𝑆0(𝑓) = 0 and 𝑆𝑛(𝑓) = ∑𝑛−1

𝑘=0 𝑓 ∘ Θ𝑘. Let
𝑆⋆ = 𝑆⋆(𝑓) = sup𝑛≥0 𝑆𝑛(𝑓). Then ∫{𝑆⋆>0} 𝑓 d𝜇 ≥ 0.

Proof. Define 𝑆⋆
𝑛 = max𝑘≤𝑛 𝑆𝑘. Then clearly 𝑆⋆

𝑛 ↑ 𝑆⋆, and 𝑆𝑘 ≤ 𝑆⋆
𝑛 for all 𝑘 ≤ 𝑛. Note that 𝑆𝑘+1 =

𝑆𝑘 ∘ Θ + 𝑓 ≤ 𝑆⋆
𝑛 ∘ Θ + 𝑓.

Define 𝐴𝑛 = {𝑆⋆
𝑛 > 0}, so 𝐴𝑛 ↑ {𝑆⋆ > 0}. On 𝐴𝑛, we have

𝑆⋆
𝑛 = max

1≤𝑘≤𝑛
𝑆𝑘 ≤ max

0≤𝑘≤𝑛
𝑆𝑘+1 ≤ 𝑆⋆

𝑛 ∘ Θ + 𝑓
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since 𝑆0 = 0. We can integrate this inequality to find

∫
𝐴𝑛

𝑆⋆
𝑛 d𝜇 ≤ ∫

𝐴𝑛

𝑆⋆
𝑛 ∘ Θ d𝜇 +∫

𝐴𝑛

𝑓 d𝜇

On the complement 𝐴𝑐
𝑛, we must have 𝑆⋆

𝑛 = 0 ≤ 𝑆⋆
𝑛 ∘ Θ. Hence,

∫
𝐸
𝑆⋆
𝑛 d𝜇 ≤ ∫

𝐸
𝑆⋆
𝑛 ∘ Θ d𝜇 +∫

𝐴𝑛

𝑓 d𝜇

Since Θ is measure-preserving,

∫
𝐸
𝑆⋆
𝑛 d𝜇 ≤ ∫

𝐸
𝑆⋆
𝑛 d𝜇 +∫

𝐴𝑛

𝑓 d𝜇

so we obtain
∫
𝐴𝑛

𝑓 d𝜇 ≥ 0

Since 𝑓𝟙𝐴𝑛 → 𝑓𝟙{𝑆⋆>0} pointwise, and ||𝑓𝟙𝐴𝑛
|| ≤ |𝑓| ∈ 𝐿1(𝜇), we can apply the dominated convergence

theorem to show that
∫
{𝑆⋆>0}

𝑓 d𝜇 = lim
𝑛→∞

∫
𝐴𝑛

𝑓 d𝜇 ≥ 0

as required.

7.3 Ergodic theorems

Theorem (Birkhoff). Let (𝐸, ℰ, 𝜇) be a 𝜎-finite measure space. Let Θ∶ 𝐸 → 𝐸 be measure-
preserving. For 𝑓 ∈ 𝐿1(𝜇), we define 𝑆0(𝑓) = 0 and 𝑆𝑛(𝑓) = ∑𝑛−1

𝑘=0 𝑓 ∘ Θ𝑘. Then there exists
a Θ-invariant integrable function 𝑓 ∈ 𝐿1(𝜇) with 𝜇(||𝑓||) ≤ 𝜇(|𝑓|) such that 𝑆𝑛(𝑓)

𝑛
→ 𝑓 almost

everywhere.

The proof of Birkhoff’s ergodic theorem is non-examinable.

Proof (non-examinable). Note that

lim sup
𝑛

𝑆𝑛(𝑓)
𝑛 = lim sup

𝑛

𝑆𝑛(𝑓) ∘ Θ
𝑛

and the same holds for lim inf𝑛. Hence lim sup𝑛
𝑆𝑛(𝑓)
𝑛

and lim inf𝑛
𝑆𝑛(𝑓)
𝑛

are invariant functions. So
they are ℰΘ-measurable. Hence

𝐷 = 𝐷𝑎,𝑏 = {lim inf
𝑛

𝑆𝑛(𝑓)
𝑛 < 𝑎 < 𝑏 < lim sup

𝑛

𝑆𝑛(𝑓)
𝑛 }

are measurable and invariant sets. Without loss of generality, let 𝑏 > 0. Let 𝐵 ∈ ℰ, where 𝐵 ⊆ 𝐷
such that 𝜇(𝐵) < ∞. Let 𝑔 = 𝑓 − 𝑏𝟙𝐵 ∈ 𝐿1(𝜇). Then,

𝑆𝑛(𝑔) = 𝑆𝑛(𝑓) − 𝑏𝑆𝑛(𝟙𝐵) ≥ 𝑆𝑛(𝑓) − 𝑏𝑛
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which is positive on 𝐷 for some 𝑛 by the definition of lim sup𝑛. We will apply the maximal ergodic
lemma with 𝐸 = 𝐷 and 𝜇 = 𝜇|𝐷; Θ is still measure-preserving on this new measure since

𝜇|||𝐷
(𝐴) = 𝜇(𝐴 ∩ 𝐷) = 𝜇(Θ−1(𝐴 ∩ 𝐷)) = 𝜇(Θ−1(𝐴) ∩ Θ−1(𝐷)) = 𝜇(Θ−1(𝐴) ∩ 𝐷) = 𝜇|||𝐷

(Θ−1(𝐴))

Note that {𝑆⋆ > 0} ⊆ 𝐷 as we restrict our measure space to 𝐷, but by the previous inequality, 𝑆⋆ > 0
on 𝐷. So 𝐷 = {𝑆⋆ > 0}. Then the maximal ergodic lemma gives

0 ≤ ∫
𝑆⋆>0

𝑔 d𝜇 = ∫
𝐷
𝑔 d𝜇 = ∫

𝐷
𝑓 d𝜇 − 𝑏𝜇(𝐵)

Hence, 𝑏𝜇(𝐵) ≤ ∫𝐷 𝑓 d𝜇. By 𝜎-finiteness, this inequality extends to 𝐷; one can choose an approxim-
ating sequence 𝐵𝑛 ↑ 𝐷 where 𝜇(𝐵𝑛) < ∞, then take limits to show 𝑏𝜇(𝐷) = 𝑏 lim𝑛 𝜇(𝐵𝑛) ≤ ∫𝐷 𝑓 d𝜇.
Repeating the above argument for−𝑓 and−𝑎, we obtain−𝑎𝜇(𝐷) ≤ ∫𝐷 −𝑓 d𝜇. Combining these two
inequalities gives

𝑏𝜇(𝐷) ≤ ∫
𝐷
𝑓 d𝜇 ≤ 𝑎𝜇(𝐷)

But 𝑎 < 𝑏, so 𝜇(𝐷) = 0 or∞, but 𝑓 is integrable, so 𝜇(𝐷) = 0. Now, define

Δ = {lim inf
𝑛

𝑆𝑛(𝑓)
𝑛 < lim sup

𝑛

𝑆𝑛(𝑓)
𝑛 } = ⋃

𝑎<𝑏∈ℚ
𝐷𝑎,𝑏

By countable additivity,

𝜇(Δ) = 𝜇( ⋃
𝑎<𝑏∈ℚ

𝐷𝑎,𝑏) = ∑
𝑎<𝑏∈ℚ

𝜇(𝐷𝑎,𝑏) = 0

On Δ𝑐, 𝑆𝑛
𝑛
converges in [−∞,∞]. We define the invariant function 𝑓 by

𝑓 = {lim𝑛
𝑆𝑛
𝑛

𝑥 ∈ Δ𝑐

0 𝑥 ∈ Δ

so 𝑆𝑛
𝑓
→ 𝑓 almost everywhere as 𝑛 → ∞. Since 𝜇(||𝑓 ∘ Θ𝑛−1||) = 𝜇(|𝑓|), we have 𝜇(|𝑆𝑛|) ≤ 𝑛𝜇(|𝑓|)

and thus
𝜇(||𝑓||) = 𝜇(lim inf

𝑛
|||
𝑆𝑛
𝑛
|||) ≤ lim inf

𝑛
𝜇(|||

𝑆𝑛
𝑛
|||) ≤ 𝜇(|𝑓|)

which is one of the results required by the theorem. In particular, 𝜇(||𝑓||) < ∞ so ||𝑓|| < ∞ almost
everywhere.

Theorem (von Neumann). Let (𝐸, ℰ, 𝜇) be a finite measure space (not 𝜎-finite). LetΘ∶ 𝐸 →
𝐸 be measure-preserving. Let 𝑓 ∈ 𝐿𝑝(𝐸) with 1 ≤ 𝑝 < ∞. Then 𝑆𝑛(𝑓)

𝑛
→ 𝑓 in 𝐿𝑝.

Proof. Since Θ is measure-preserving, we have

‖
‖𝑓 ∘ Θ𝑖‖‖

𝑝

𝑝
= ∫

𝐸
|𝑓|𝑝 ∘ Θ𝑖 d𝜇 = ∫

𝐸
|𝑓|𝑝 d𝜇 = ∫

𝐸
|𝑓|𝑝 d𝜇 = ‖𝑓‖𝑝𝑝
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Thus, by Minkowski’s inequality, for all 𝑓 ∈ 𝐿𝑝 we have

‖
‖‖
𝑆𝑛(𝑓)
𝑛

‖
‖‖𝑝
≤ 1
𝑛

𝑛−1
∑
𝑖=0

‖
‖𝑓 ∘ Θ𝑖‖‖𝑝 = ‖𝑓‖𝑝

So 𝑆𝑛(𝑓)
𝑛

is a contraction in 𝐿𝑝. For each 𝐾 > 0, we define 𝑓𝐾 = max(min(𝑓, 𝐾), −𝐾). Then

‖𝑓 − 𝑓𝐾‖
𝑝
𝑝 = ∫

𝐸
|𝑓 − 𝑓𝐾 |

𝑝𝟙|𝑓|>𝐾 d𝜇

Since 𝟙|𝑓|>𝐾 converges to zero pointwise, and |𝑓 − 𝑓𝐾 | ≤ 2|𝑓|𝑝 ∈ 𝐿1, we find ‖𝑓 − 𝑓𝐾‖𝑝 < 𝜀
3
by

dominated convergence, for sufficiently large 𝐾 = 𝐾𝜀. As |𝑓𝐾 | ≤ 𝐾, we have ||
𝑆𝑛(𝑓𝐾 )

𝑛
|| ≤ 𝐾. Since

𝜇 is finite, 𝑓𝐾 ∈ 𝐿1(𝜇), so by Birkhoff’s ergodic theorem, 𝑆𝑛(𝑓𝐾 )
𝑛

→ 𝑓𝐾 almost everywhere for some

invariant function 𝑓𝐾 . Note that 𝑓𝑘 is bounded by 𝐾 as 𝑆𝑛(𝑓𝐾 )
𝑛

is bounded by 𝐾. By the bounded
convergence theorem, we deduce that ‖‖

𝑆𝑛(𝑓𝐾 )
𝑛

− 𝑓𝐾
‖
‖ → 0 as 𝑛 → ∞. Further, this holds in 𝐿𝑝 since

‖
‖‖
𝑆𝑛(𝑓𝐾)
𝑛 − 𝑓𝐾

‖
‖‖𝑝
≤ (2𝐾)

𝑝−1
𝑝 ‖
‖‖
𝑆𝑛(𝑓𝐾)
𝑛 − 𝑓𝐾

‖
‖‖1
< 𝜀
3

where the last inequality holds for sufficiently large 𝑛. Since 𝜇 is a finite measure, 𝐿𝑝(𝜇) ⊆ 𝐿1(𝜇),
hence by Birkhoff’s ergodic theorem, 𝑆𝑛(𝑓)

𝑛
→ 𝑓 almost everywhere as 𝑓 → ∞. Then, by the contrac-

tion property applied to 𝑓 − 𝑓𝐾 ,

‖
‖𝑓 − 𝑓𝐾

‖
‖
𝑝

𝑝
= ∫

𝐸
||𝑓 − 𝑓𝐾 ||

𝑝
d𝜇

= ∫
𝐸
lim inf

𝑛
|||
𝑆𝑛(𝑓) − 𝑆𝑛(𝑓𝐾)

𝑛
|||
𝑝
d𝜇

≤ lim inf
𝑛

∫
𝐸

|||
𝑆𝑛(𝑓) − 𝑆𝑛(𝑓𝐾)

𝑛
|||
𝑝
d𝜇

= lim inf
𝑛

∫
𝐸

|||
𝑆𝑛(𝑓 − 𝑓𝐾)

𝑛
|||
𝑝
d𝜇

≤ lim inf
𝑛

‖𝑓 − 𝑓𝐾‖
𝑝
𝑝

= ‖𝑓 − 𝑓𝐾‖
𝑝
𝑝 < ( 𝜀3)

𝑝

So in particular, 𝑓 ∈ 𝐿𝑝. Then by the triangle inequality,

‖
‖‖
𝑆𝑛(𝑓)
𝑛 − 𝑓‖‖‖𝑝

≤ ‖
‖‖
𝑆𝑛(𝑓) − 𝑆𝑛(𝑓𝐾)

𝑛
‖
‖‖𝑝
+ ‖
‖‖
𝑆𝑛(𝑓𝐾)
𝑛 − 𝑓𝐾

‖
‖‖𝑝
+ ‖
‖𝑓 − 𝑓𝐾

‖
‖𝑝

< ‖
‖‖
𝑆𝑛(𝑓) − 𝑆𝑛(𝑓𝐾)

𝑛
‖
‖‖𝑝
+ 2𝜀

3

≤ ‖𝑓 − 𝑓𝐾‖𝑝 +
2𝜀
3 = 𝜀

for sufficiently large 𝑛.
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7.4 Infinite product spaces
Let 𝐸 = ℝℕ = {𝑥 = (𝑥𝑛)𝑛∈ℕ} be the space of real sequences. Consider

𝒞 = {𝐴 =
∞
∏
𝑛=1

𝐴𝑛
||||
𝐴𝑛 ∈ ℬ, ∃𝑁 ∈ ℕ, ∀𝑛 > 𝑁,𝐴𝑛 = ℝ}

This forms a 𝜋-system, which generates the cylindrical 𝜎-algebra 𝜎(𝒞). One shows that 𝜎(𝒞) =
𝜎({𝑓𝑛 ∣ 𝑛 ∈ ℕ}) where 𝑓𝑛(𝑥) = 𝑥𝑛 are the coordinate projection functions on 𝐸. We can also show
𝜎(𝒞) = ℬ(ℝℕ) for the product topology. Let (𝑋𝑛)𝑛∈ℕ be a sequence of independent and identically
distributed random variables defined on (Ω,ℱ, ℙ) with marginal distributions 𝜇𝑋𝑛 = 𝑚 for all 𝑛;
this exists by an earlier theorem. We define a map 𝑋 ∶ Ω → 𝐸 by 𝑋(𝜔)𝑛 = 𝑋𝑛(𝜔). This is ℱ–𝜎(𝒞)
measurable, since for all 𝐴 ∈ 𝒞, we have

𝑋−1(𝐴) = {𝜔 ∣ 𝑋1(𝜔) ∈ 𝐴1,… , 𝑋𝑁(𝜔) ∈ 𝐴𝑛} =
𝑁

⋂
𝑛=1

𝑋−1
𝑛 (𝐴𝑛) ∈ ℱ

We denote 𝜇 = ℙ ∘ 𝑋−1, which is the unique product probability measure in ℝℕ satisfying

𝜇(
∞
∏
𝑛=1

𝐴𝑛) = lim
𝑁→∞

𝜇(
𝑁
∏
𝑛=1

𝐴𝑛)

= lim
𝑁→∞

ℙ (𝑋1 ∈ 𝐴1,… , 𝑋𝑁 ∈ 𝐴𝑁)

= lim
𝑁→∞

ℙ (𝑋1 ∈ 𝐴1)⋯ℙ (𝑋𝑁 ∈ 𝐴𝑁)

=
∞
∏
𝑛=1

ℙ (𝑋𝑛 ∈ 𝐴𝑛)

=
∞
∏
𝑛=1

𝑚(𝐴𝑛)

Note that we need to use finiteness of 𝑁 to exploit independence of the 𝑋𝑖. We call (𝐸, ℰ, 𝜇) =
(ℝℕ, 𝜎(𝒞),𝑚ℕ) the canonical model for an infinite sequence of random variables of law𝑚.

Theorem. The shift map Θ∶ 𝐸 → 𝐸 defined by Θ(𝑥)𝑛 = 𝑥𝑛+1 is measure preserving and
ergodic.

Proof. For 𝐴 ∈ 𝒞,

𝜇(𝐴) = ℙ (𝑋1 ∈ 𝐴1,… , 𝑋𝑁 ∈ 𝐴𝑁)
= ℙ (𝑋1 ∈ 𝐴1)⋯ℙ (𝑋𝑁 ∈ 𝐴𝑁)

=
𝑁
∏
𝑛=1

𝑚(𝐴𝑛)

= ℙ (𝑋2 ∈ 𝐴1)⋯ℙ (𝑋𝑁+1 ∈ 𝐴𝑁)
= 𝜇(Θ−1(𝐴))
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so Θ is measure-preserving. Recall that the tail 𝜎-algebra is defined by 𝒯 = ⋂𝑛 𝒯𝑛 where 𝒯𝑛 =
𝜎({𝑋𝑘 ∣ 𝑘 ≥ 𝑛 + 1}). Note that for all 𝐴 ∈ 𝒞, we have

Θ−𝑛(𝐴) = {𝑥 ∈ ℝℕ ∣ (𝑥𝑛+1, 𝑥𝑛+2,… ) ∈ 𝐴} ∈ 𝒯𝑛
Now, if 𝐴 is invariant, 𝐴 = Θ−𝑛(𝐴) ∈ 𝒯𝑛 for all 𝑛, so 𝐴 ∈ 𝒯. By Kolmogorov’s zero-one law, 𝜇(𝐴) = 0
or 𝜇(𝐴) = 1 as required for ergodicity.

We can apply Birkhoff’s ergodic theorem to Θ. If 𝑓 ∈ 𝐿1(𝜇), then 𝑆𝑛(𝑓)
𝑛

→ 𝑓 ∈ 𝐿1(𝜇) almost surely.
Since 𝑓 is invariant and Θ is ergodic, 𝑓 is almost surely constant. By von Neumann’s 𝐿𝑝-ergodic
theorem, convergence holds in fact in 𝐿1.

7.5 Strong law of large numbers

Theorem. Let ∫ℝ |𝑥| d𝑚(𝑥) < ∞, and let ∫ℝ 𝑥 d𝑚(𝑥) = 𝜈. Then

𝜇({𝑥 ∈ ℝℕ ||
𝑥1 + 𝑥2 +⋯+ 𝑥𝑛

𝑛 → 𝜈}) = 1

Proof. Let 𝑓(𝑥) = 𝑥1. Then 𝑓 ∈ 𝐿1(𝜇), since ∫𝐸 |𝑓| d𝜇 = ∫ℝ |𝑥| d𝑚(𝑥) < ∞. So by Birkhoff’s ergodic
theorem,

𝜇({𝑥1 +⋯+ 𝑥𝑛
𝑛 → 𝜈}) = 𝜇({𝑆𝑛(𝑓)𝑛 → 𝑓}) = 1

where we also use von Neumann’s ergodic theorem to deduce that

𝑓 = 𝜇(𝑓) = lim
𝑛
𝜇(𝑆𝑛(𝑓)𝑛 ) = 𝑛

𝑛𝜈 = 𝜈

Theorem (strong law of large numbers). Let (𝑋𝑛)𝑛∈ℕ be independent and identically distrib-
uted random variables such that 𝔼 [|𝑋1|] < ∞. Then 1

𝑛
∑𝑛

𝑖=1 𝑋𝑖 → 𝔼[𝑋] almost surely.

Proof. Inject 𝑋 from Ω to 𝐸 = ℝℕ as before, and notice that

ℙ(1𝑛
𝑛
∑
𝑖=1

𝑋𝑖 → 𝔼[𝑋]) = 𝜇({𝑥 ||
𝑥1 +⋯+ 𝑥𝑛

𝑛 → 𝜈}) = 1

Remark. The hypothesis𝔼 [|𝑋|] < ∞ cannot beweakened; we see on an example sheet that 1
𝑛
∑𝑛

𝑖=1 𝑋𝑖
can exhibit various behaviours. Note that this notion of convergence is stronger than the weak con-
vergence seen in the central limit theorem. The law of the iterated logarithm is that

lim sup
𝑛

𝑋1 +⋯+ 𝑋𝑛
√2𝑛 log log𝑛

= 1

almost surely, and −1 for the limit inferior. In particular, the central limit theorem does not hold
almost surely.
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Corollary. By von Neumann’s ergodic theorem, in the strong law of large numbers, we have
𝔼 [||

1
𝑛
∑𝑛

𝑖=1 𝑋𝑖 − 𝔼 [𝑋]||] → 0 as 𝑛 → ∞.
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