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1 Measures

1.1 Definitions

Definition. Let E be a (nonempty) set. A collection & of subsets of E is called a o-algebra if
the following properties hold:
s PECE
e A& = A°=E\AES
« if (A,)nen is @ countable collection of sets in &, Un enAn € E.
Example. Let & = {@, E}. This is a o-algebra. Also, P(E) = {A C E}is a o-algebra.
Remark. Since ﬂn A, = (Un A‘;l)c, any o-algebra € is closed under countable intersections as well as
under countable unions. Note that B\ A = BN A® € &, so o-algebras are closed under set difference.

Definition. A set E with a og-algebra € is called a measurable space. The elements of £ are
called measurable sets.

Definition. A measure y is a set function 4 : & — [0, o], such that u(@) = 0, and for a
sequence (A, ),en Such that the A,, are disjoint, we have

u( U An) = > uAy)
neN neN

This is the countable additivity property of the measure.

Remark. If E is countable, then for any A € P(E) and measure u, we have
K(A) = y(U {x}) = > uxp
X€EA X€EA
Hence, measures are uniquely defined by the measure of each singleton. This corresponds to the

notion of a probability mass function.

Definition. For a collection A of subsets of E, we define the g-algebra o(A) generated by A

by
o(A)={A CE: A € & for all o-algebras € D A}

So it is the smallest o-algebra containing .A. Equivalently,

o(A) = N g
EDA,E a o-algebra

1.2 Rings and algebras

To construct good generators, we define the following.



Definition. A C P(E) is called a ring over E if @ € A and A, B € A implies B\ A € A and
AUB€eA.

Rings are easier to manage than o-algebras because there are only finitary operators.

Definition. A is called an aigebra over E if @ € A and A,B € A implies A° € A and
AUB€e A.

Remark. Rings are closed under symmetric difference A A B = (B\ A) U (A \ B), and are closed
under intersections AN B = AU B\ A A B. Algebras are rings, because B\ A = BN A° = (B° U A)°.
Not all rings are algebras, because rings do not need to include the entire space.

Proposition (Disjointification of countable unions). Consider UnAn for A, € &, where &
is a o-algebra (or a ring, if the union is finite). Then there exist B, € £ that are disjoint such

that | J, A, = U,, B
Proof. Define A, = Uj<nAj’ then B,,; = A, \ A,_;. O

Definition. A setfunction on a collection A of subsets of E, where @ € A,isamapu: A —
[0, o] such that u(@) = 0. We say u is increasing if u(A) < u(B) for all A C Bin A. We
say u is additive if u(A U B) = u(A) + u(B) for disjoint A,B € A and AU B € A. We say
u is countably additive if,u(UnAn) = >, M(Ay,) for disjoint sequences A, where UnAn and
each A, lie in A. We say u is countably subadditive if u(lJ, An) < X, u(A,) for arbitrary
sequences A,, under the above conditions.

Remark. A measure satisfies all four of the above conditions. Countable additivity implies the other
conditions.

Theorem (Carathéodory’s theorem). Let u be a countably additive set function on a ring A
of subsets of E. Then there exists a measure u* on o(A) such that u*| ; = u.

We will later prove that this extended measure is unique.

Proof. For B C E, we define the outer measure u* as

w(B)=inf] ¥ u(A,), A€ ABC | An}

neN neN

If there is no sequence A,, such that B C Un on Ans> we declare the outer measure u*(B) to be co. We
define the class
M={ACE|VBCE,u*(B)=u*(BNA)+ u*(BnA°)}

This is the class of p*-measurable sets.



Step 1. u* is countably sub-additive on P(E). It suffices to prove that for B C E and B,, C E such that
B c J, B, we have

1 (B) < D u*(By) )

We can assume without loss of generality that u*(B,,) < oo for all n, otherwise there is nothing to
prove. For all ¢ > 0 there exists a collection A, ,, such that B, C |, A, and

3
/"*(Bn) + 2_" 2 Zﬂ(An,m)
m

Now, since u* is increasing, and B C | J, B, € |, U,,, An,m> We have

w(B) < #*(U An,m) < X HAnm) € Y0 B+ Y 57 = DI (B) +¢

n,m

Since ¢ was arbitrary in the construction, (f) follows by construction.

Step 2. u* extends u. Let A € A, and we want to show p*(A) = u(A). We can writeA =AU QU ...,
hence u*(A) < u(A) + 0 + --- = u(A) by definition of u*. We need to prove the converse, that
u(A) < u*(A). If u* is infinite, there is nothing to prove. For the finite case, suppose there is a
sequence A, where u(A,) < coand A C (J,A,. Then, A = [J,(A N A,), which is a union of
elements of the ring A. Since u is a countably additive set function on A4, it is countably subadditive.
Hence u(A) < Zn,u(A NA, < Zn u(A,). Since the A, were arbitrary, we have u(A) < u*(A) as
required.

Step 3. M 2 A. Let A € A. We must show thatforall B C E, u*(B) = u*(BNA)+u*(BNAS). We have
B C (BNA)U(BNA®)U@U ..., hence by countable subadditivity (1), u*(B) < u*(BNA) +u* (BN A°).
It now suffices to prove the converse, that u*(B) > u*(Bn A) + u*(B n A%). We can assume u*(B)
is finite, and assume there exists A, € A such that B C J, A, and u*(B) + € > 3} u(A,). Now,
BNnAC Un(An NA),and BNA¢ C Un(An NAS). All of the members of these two unions are elements
of A, since A, N A° = A,, \ A. Therefore,

K (BNA)+u (BNA) <Y A, NA) + Y (A, NAY)
< 20 (1A, N A) + p(A, NAY)]

< D u(Ap) S (B) +¢

Since ¢ was arbitrary, u*(B) = u*(BNA) + u*(B N A°) as required.

Step 4. M is an algebra. Clearly @ lies in M, and by the symmetry in the definition of M, comple-
ments lie in M. We need to check M is stable under finite intersections. Let A;,A, € M and let
B C E. We have

W (B) = W (BNAY +u (BNAS) = (BN A NA) + (BN Ay NAS) + (BN AS)
We can write A; N A5 = (4; NAS5)° N Ay, and A] = (A; N A,)° N AS. Hence

W (B) =pu (BNA NA) +u (BN(A; NA) NAY) +u (BN (A NAy)° NAT)
=u (BNA; NAy) +u* (BN (A NA))



which is the requirement for A; N A, to lie in M.

Step 5. M is a o-algebra and u* is a measure on M. It suffices now to show that M has countable
unions and the measure respects these countable unions. Let A = UnAn for A, € M. Without
loss of generality, let the A, be disjoint. We want to show A € M, and that u*(4) = > u*(A,). By
(1), we have u*(B) < u*(BNA) + u* (BN A°) + 0 + ... so we need to check only the converse of this
inequality. Also, u*(A) < ), u*(A,), so we need only check the converse of this inequality as well.
Similarly to before,

w(B) = p*(BNA;) +u*(BNAJ)
=u (BNA)+u (BNASNA,) + u*(BnA§NAS)
=u (BNA;) +u* (BNAy) +u* (BNATNAS)
= BNA)+u (BNA)+u (BNASNASNA;)+u (BNAfNASNAS)
=u (BNA)+u (BNA,y))+u*(BNAsz)+u* (BnAfnA5NAS)

= > W(BNA,)+u BNASN - NAR)
n<N

Since Un <NA,, C A, we have ﬂn <N A§, D A°. u* is increasing, hence, taking limits,

p(B) > Y u(BNA,) +u (BN A

n=1

By (1),
w(B) 2 u(BNA)+u*(BnA°)

as required. Hence M is a o-algebra. For the other inequality, we take the above result for B = A.

HHA) > D (ANAY) + U (ANAT) = D u*(Ay)
n=1 n=1
So u* is countably additive on M and is hence a measure on M. O

1.3 Uniqueness of extension

Definition. A collection A of subsets of E is called a 7z-system if @ € A and A,B € A =
ANBeA.

Definition. A collection A of subsets of E is called a d-system if E € A, and if B; C B, are
elements of A, we have B, \ B; € A, and if A, € A and A, is an increasing sequence of sets,
we have |J,, A, € A.

Proposition. A d-system which is also a 7z-system is a o-algebra.

Proof. Refer to the first example sheet. O



Lemma (Dynkin). Let A be a 7-system. Then any d-system that contains .A also contains
o(A).

Proof. We define
D= N D’
D' is ad-system; D' DA
We can show this is a d-system. It suffices to prove that D is a w-system, because this is then a

o-algebra. We now define
D'={BeD|VAeABNAE D}

We can see that D' D A, as A is a r-system. We now show that D’ is a d-system. Clearly ENA = A €
A C D" henceE € D'. Let B;,B, € D’ such that B; C B,. Then (B, \ Bj) NA = (B, NnA)\ (Bj NA),
and since B; N A € D this difference also lies in D, so B, \ B; € D’. Now, suppose B, is an increasing
sequence converging to B, and B, € D'. Then B,NA € D, and D is a d-system, we have BN A € D,
soBeD'.

Hence D' is a d-system that contains A, so D C D’, and D' C D by construction of D', giving
D = D'. We then define
D"={BeD|VAeD,BnAeD}

Note that A C D”, because D' = D D A. Running the same argument as before, we can show that
D" = D,and so D" = D is a 7w-system. O

Theorem (Uniqueness of extension). Let u;, 4, be measures on a measurable space (E, ),
such that y;(E) = u,(E) < oo. Suppose that ¢; and u, coincide on a 7-system .A, such that
& C a(A). Then u; = u, on o(A), and hence on &.

Proof. We define
D ={A € &| m(A) = p(A)}

This collection contains .A by assumption. By Dynkin’s lemma, it suffices to prove D is a d-system,
because then D 2 o(A) 2 & giving D = &. Note that E € D by assumption. By additivity and
finiteness of y;, for B; C B, elements of D, we have u;(B,\B;) = u1(By)—u1(By) = Uy(By)—puz(By) =
H2(B, \ By), where the subtractions are valid by finiteness of y, so set differences lie in 2.

Now suppose B, is an increasing sequence converging to B for B, € 2. This implies that B \ B, is
a decreasing sequence converging to @, and by a result from the first example sheet we have p;(B \
B,) = u(®) = 0. Since y; are finite, u;(B,) — w;(B) asn — oo. Then, y;(B) = lim,ey u1(By) =
lim,,en #5(B,) = U5 (B), so D is closed under increasing sequences and hence is a d system. O

Remark. The above theorem applies to finite measures (u such that u(E) < oo0) only. However, the

theorem can be extended to measures that are o-finite, for which E = Un o En Where u(E,) < oo.



1.4 Borel measures

Definition. Let (E, 7) be a Hausdorff topological space. The o-algebra generated by the open
sets of E is called the Borel o-algebra on E, denoted B(E) = o(7). We write B = B(R).
Members of B(E) are called Borel sets. A measure u on (E, B(E)) is called a Borel measure
on E. A Radon measure is a Borel measure u on E such that u(K) < oo for all K C E compact.
Note that in a Hausdorff space, compact sets are closed and hence measurable.

1.5 Lebesgue measure

We will construct a unique Borel measure x on R¢ such that

d d
F‘(H[ai’bi]> = H b; — a
i=1 i=1

Initially, we will perform this construction for d = 1, and later we will consider product measures to
extend this to higher dimensions.

Theorem (Construction of the Lebesgue measure). There exists a unique Borel measure p
on R such that
a<b = u((a,b])=b—a

Proof. Consider the subsets of R of the form
A= (al’ bl] Uu--u (an’ bn]

where the intervals in question are disjoint. The set.A of such sets forms a ring and a 7z-system of Borel
sets. This generates the same o-algebra as that generated by finite unions of open intervals, by the first
example sheet. Open intervals with rational endpoints generate B, so g(A) 2 B. We define the set
function ¢ on A by u(A) = Z?zl(bi —a;). u is additive, and well-defined since if A = iG= Uy Dk
for distinct disjoint unions, we can write C; = Uk(Cj N D) and D, = Uj(Dk N Cj), giving

K(A) = u(LJJ c,-) = ;u(cj) = ;u(LjJ(c,- n Dk)) = ;;mq NDy) = #(ij Dk)

To prove the existence of u on B, we apply Carathéodory’s extension theorem, and therefore must
check that u is countably additive on A. Equivalently, by a question on an example sheet, it suffices
to show that for all sequences A,, € A such that A,, decreases to &, we have u(4,) — 0. Suppose
this is not the case, so there exist ¢ > 0 and B,, € A such that B, decreases to @ but u(B,,) > 2¢ for
infinitely many n (and so without loss of generality for all n). We can approximate B, from within by

a sequence C,. Suppose B, = U]i\inl(ani, b,i], then define C,, = U]i\i"l(ani + 2N_"s b,;]. Note that the

n
C, liein A, and u(B, \ C,,) < 27 "¢ Since By, is decreasing, we have By = ﬂn<N B,,and

BN\<cm---ncN>=Bnn(U cz)= Usv\cic UB.\Cn

n<N n<N n<N



Since u is increasing,

uBN \ (C1 NN CN)) SN(U Bn\cn) < Z u(By \ Cp) < Z 2 Ne<e

n<N n<N n<N

Since in addition u(By) > 2¢, additivity implies that u(C;N---NCy) > €. Thismeans that C;N---NCy
cannot be empty. We can add the left endpoints of the intervals, giving Ky = C;N---NCp. By Analysis
I, Ky is a nested sequence of nonempty closed intervals and therefore there is a point x € R such

that x € K forall N. But Kyy C Cyy C By,50x € () ~ Brns Which is a contradiction since [ By is
empty. Therefore, a measure x4 on B exists.

Now we prove uniqueness. Suppose u, 4 are measures such that the measure of an interval (a, b] is
b — a. We define new measures u,(A) = u(A N (n,n + 1]) and 1,(4) = A(A N (n,n + 1]). These
new measures are finite with total mass 1. Hence, we can use the uniqueness of extension theorem
to show u,, = 4,, on B. We find

u(A)=u<UAn(n,n+1]> = D AN +1]) = D) pa(A) = D) A(A) = - = A(A)

nezZ nez nezZ

Definition. A Borel set B € 3B is called a Lebesgue null set if u(B) = 0.

Remark. Asingleton {x}can be written as ﬂn (x — l, x], hence u(x) = lim,, L — 0. Hence singletons
n n

are null sets. In particular, u((a, b)) = u((a, b]) = u([a, b)) = u([a, b]). Any countable set Q = Uq {q}
is a null set. Not all null sets are countable; the Cantor set is an example.

The Lebesgue measure is translation-invariant. Let x € R, then the set B+ x = {b+ x | b € B} lies
in B if and only if B € B, and in this case, it satisfies u(B + x) = u(B). We can define the translated
Lebesgue measure u,(B) = u(B+ x) for all B € B, but since the Lebesgue measure is unique, u, = u.

The class of outer measurable sets M used in Carathéodory’s extension theorem is here called the
class of Lebesgue measurable sets. This class can be shown to be

M={M=AUN,A€e BLNCB,Be B,u(B)=0}2 3B

1.6 Existence of non-measurable sets

Assuming the axiom of choice, there exists a non-measurable set of reals. Consider E = (0, 1] with
addition defined modulo one. By the same argument as before, the Lebesgue measure is translation-
invariant modulo one. Consider the subgroup Q = ENQ of (E, +). We define x ~ yifx—y € Q. Then,
this gives equivalence classes [x] = {y € E: x ~ y}for all x € E. Assuming the axiom of choice, we
can select a representative of [x] for each x € E, and denote by S the set of such representatives. We
can partition E into the union of its cosets, so E = Uq EQ(S + q) is a disjoint union.

Suppose S is a Borel set. Then S + q is also a Borel set. We can therefore write

1=M(E)=#<U(S+Q)) = D uS+q =Y, uS)

qeqQ qeQ qeQ



But no value for u(S) € [0, o] can be assigned to make this equation hold. Therefore S is not a Borel
set.

One can further show that y cannot be extended to all subsets P(E).

Theorem (Banach, Kuratowski). Assuming the continuum hypothesis, there exists no meas-
ure u on the set P((0, 1]) such that u((0,1]) = 1 and u({x}) = 0 for x € (0, 1].

1.7 Probability spaces

Definition. If a measure space (E, &, u) has u(E) = 1, we call it a probability space, and
instead write (Q, F,P). We call Q the outcome space or sample space, F the set of events,
and [P the probability measure.

The axioms of probability theory (Kolmogorov, 1933), are
O P =1
(ii)) 0<P(E)<1forallE € F;
(iii) if A, are a disjoint sequence of events in F, then P(|J, A,) = X, P (A,).

This is exactly what is required by our definition: [® is a measure on a o-algebra.

Definition. Events A;,i € I are independent if for all finite J C I, we have

(o)

jers JEJ

o-algebras A;,i € I are independent if for any A; € A; where J C I is finite, the A; are
independent.

Kolmogorov showed that these definitions are sufficient to derive the law of large numbers.

Proposition. Let A, A, be 7-systems of sets in F. Suppose P (4; NA,) = P(A4;) P (A,) for
all A; € A;,A, € A,. Then the o-algebras (A, ), o(A,) are independent.

This follows by uniqueness.

1.8 Borel-Cantelli lemmas

Definition. Let A,, € F be a sequence of events. Then the limit superior of A,, is

limsupA, = A,, = {A, infinitely often}
n n m U m n

n m2n

10



The limit inferior of A, is

lin}1 infA, = U ﬂ Ay, = {A,, eventually}

n mz2n

Lemma (First Borel-Cantelli lemma). Let A,, € F be a sequence of events such that
2.n P (Ay) < oo. Then P (A, infinitely often) = 0.

Proof. For all n, we have

[P’(limsupAn>:[P’(ﬂ UAM)SP(UAm)S > P(Am) =0

n n m>n m>n m>n

O

This proof did not require that P be a probability measure, just that it is a measure. Therefore, we
can use this for arbitrary measures.

Lemma (Second Borel-Cantelli lemma). Let A,, € F be a sequence of independent events,
and ), P(A,) = co. Then P (A, infinitely often) = 1.

Proof. By independence, for all N > n € N and using 1 —a < e™%, we find

N N N
N
P( () 45 )= I1 0 -P ) < [T e = & Zmen P
m=n m=n m=n

As N — oo, this approaches zero. Since ﬂZ:nAﬁq decreases to ﬂ:no:n Af,, by countable additivity
we must have P (ﬂ:zn A‘;n) = 0. But then

P(Aninﬁnitelyoften):lp(ﬂ UAm):l—IP(U ﬂAgn) >1— P(ﬂAfn) -1

n m2n n m2n m2>n

Hence this probability is equal to one. O

2 Measurable functions

2.1 Definition

Definition. Let (E, &), (G, G) be measurable spaces. A function f: E — G is called &-G-
measurable if when A € G, we have f~1(A) € &.

Informally, the preimage of a measurable set under a measurable function is measurable.

11



IfG=Rand G = B,wecanjustsaythat f : (E,&) —» G is measurable. Moreover, if E is a topological
space and & = B(E), we say f is Borel measurable.

Note that preimages f~! commute with many set operations such as intersection, union, and com-
plement. This implies that {f~1(4) | A € G}is a g-algebra over E, and likewise, {A | f~1(4) € &}isa
o-algebra over G. Hence, if A is a collection of subsets of G generating G such that f~1(4) € & for all
A € A, theclass {A |fte& } is a o-algebra that contains A and hence that contains G. In particular,
it suffices to check f~!(A) € & for all elements of a generator to conclude that f is measurable.

Iff: (E, &) — R, the collection A = {(—o0,y] : y € R} generates B as is shown on the first example
sheet. Hence f is measurable whenever f~!((—c0,y]) = {x € E | f(x) <y} € Eforally € R.

If E is a topological space and € = B(E), then if f : E — R is continuous, the preimages of open sets
B are open, and hence Borel sets. The open sets in R generate the o-algebra B. Hence, continuous
functions to the real line are measurable.

Example. Consider the indicator function 14 of a set A. This is measurable if and only if A is meas-
urable, or equivalently A € €.

Example. The composition of measurable functions is measurable. Measurability is preserved un-

der addition, multiplication, countable infimum, countable supremum, countable limit inferior, count-

able limit superior, and some other operations. Note that given a collection of maps{f; : E - (G,G) | i € I},

we can make them all measurable by taking € to be a large enough o-algebra, for instance o({f;"(A) | A € G,i € I}).

2.2 Monotone class theorem

Theorem. Let A be a -system that generates the o-algebra £ over E. Let V be a vector space
of bounded maps from E to R such that
() 1z € V;
(ii) 14, e Vforall A € A;
(iii) if f isbounded and f,, € V are nonnegative functions that form an increasing sequence
that converge pointwise to f on E, then f € V.
Then V contains all bounded measurable functions f : E — R.

Proof. Define D = {A € £ | 14 € V}. This contains A by hypothesis, as well as E itself. We show
D is a d-system, so that by Dynkin’s lemma, € = D. Indeed, E € D by assumption. For A C B
and A,B € D, we have 1g\4 = I — 14 which is well-defined and lies in V as V is a vector space.
Finally, if A, € D increasesto A, we have 14, increases pointwise to 1,, which lies in V by the second
hypothesis. Hence & = D.

Let f : E — R be a bounded measurable function, which we will assume at first is nonnegative. We
define

2t ] j+1 ({4 it e oon
D IS | e ithoter s e b
j:02 J J {x€E|n<f(x)}:f—1((n,oo)) ifj=}’l2n

Since f is bounded, for n > ||, we have f, < f < f, + 27". Hence |f, — f| < 27" — 0. By
assumption, the limit of the f,,, which is exactly f, also lies in V.

Now, by separating any bounded measurable function f into its positive and negative parts, we find
that these two parts lie in V, and so f € V as required. O

12



2.3 Image measures

Definition. Let f: (E,&) — (G, §) be a measurable function, and y is a measure on (E, &).
Then the image measure v = u o f~! is obtained from assigning v(A) = u(f~'(A)) for all
A€eqg.

Lemma. Let g: R — R be an increasing, right-continuous function, and set g(+o0) =
lim,_, 4 g(2). OnI = (g(—0), g(+o0)) we define the generalised inverse

J(x) =inf{y e R | x < g)}

for x € I. Then f is increasing, left-continuous, and f(x) < y if and only if x < g(y) for all
xel,yeR.

Remark. f and g form a Galois connection.

Proof. LetJ, = {y e R| x < g(y)}. Since x > g(—o), J, is nonempty and bounded below. Hence
f(x) is a well-defined real number. If y € J, then y' > y implies y' € J, since g is increasing.
Further, if y, converges from the right to y, and all y,, € J, we can take limits in x < g(y,) to
find x < lim, g(y,) = g(y) since g is right-continuous. Hence y € J,. So J. = [f(x), ). Hence
f(x) <y < x < g(y)asrequired.

If x < x', we have J, D J,» by definition, so f(x) < f(x’). Similarly, if x,, converges from the left to x,
we have J, = ﬂnjxn, so f(x,) = f(x)asx, — x. O

Theorem. Let g: R — R be an increasing, right-continuous function, and set g(+o) =
lim,_, . g(z). Then there exists a unique Radon measure u, on R such that ug((a,b]) =
g(b) — g(a) for all a < b. Further, all Radon measures can be obtained in this way.

Proof. We will show that the generalised inverse f as defined above is measurable. For all z € R, we
find f~'((—c0,z]) = {x: f(x) <z} ={x: x < g(2)} = [-g(), g(z)] which is measurable. Since B
is generated by these such sets, f is B(I)-B measurable as required. Therefore, the image measure
Mg = o f~1, where u is the Lebesgue measure on I, exists. Then for any —co < a < b < oo, we have

Hg((a,b]) = u(f~'((a, b])
=u(x: a< f(x) < fB)Y
= u({x: gla) < x < g(b)})
= g(b) — g(a)
This uniquely determines p, by the same argument as shown previously for the Lebesgue measure

©on R. Since g maps into R, g(b) — g(a) € R so any compact set has finite measure as it is a subset
of a closed bounded interval.

Conversely, let v be a Radon measure on R. Define

) = v((0,y]) ify>0
—v((y,0]) ify<o0
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This is an increasing function in y, since v is a measure. Since we are using right-closed intervals, g
is right-continuous. Finally, v((a, b]) = g(b) — g(a) which can be seen by case analysis and additivity
of the measure v. By uniqueness as before, this characterises v in its entirety. O

Remark. Such image measures u, are called Lebesgue-Stieltjes measures, where g is the Stieltjes dis-
tribution.

Example. The Dirac measure at x, written &, is defined by

1 ifxeA
0 otherwise

6x(A) = {
This has Stieltjes distribution g(x) = T[y ).
2.4 Random variables

Definition. Let (Q,F,P) be a probability space, and (E, £) be a measurable space. An E-
valued random variable X is an F-£ measurable map X : Q — E. When E = R or R¢ with
the Borel o-algebra, we simply call X a random variable or random vector.

The law or distribution ux of a random variable X is given by the image measure uy = PoX™!.
When E is the real line, this measure has a distribution function

Fx(2) = ux((=00,z]) = PX!(~00,2z]) = P({lw € @ | X(w) < z}) =P (X < 2)

This uniquely determines ux by the 7-system argument given above.

Using the properties of measures, we can show that any distribution function satisfies:
(i) Fx isincreasing;
(ii) Fy isright-continuous;
(iii) lim,_,_q Fx(2) = ux(@) = 0;
(iv) lim,_, o Fx(z) = ux(R) = P(Q) = 1.
Given any function Fx satisfying each property, we can obtain a random variable X on (Q, ¥, P) =

((0,1), B((0,1)), u) by X(w) = inf{x | @ < f(x)}, and then Fx is the distribution function of X.

Definition. Consider a countable collection (X;: (Q,F,P) — (E,&)) fori € I. This col-
lection of random variables is called independent if the o-algebras o({X;'(4) : A € &}) are
independent.

For (E, &) = (R, B) we show on an example sheet that this is equivalent to the condition
IP(XI S xl, ,Xn S xn) = P(Xl S xl) . Ip(Xn S xn)

for all finite subsets {Xj, ..., X},} of the X;.
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2.5 Constructing independent random variables

We now construct an infinite sequence of independent random variables with prescribed distribution
functions on (Q, F, P) = ((0, 1), B, u) with u the Lebesgue measure on (0, 1). We start with Bernoulli
random variables.

Any w € (0,1) has a binary representation given by (w;) € {0, 1}N, which is unique if we exclude
infinitely long tails of zeroes from the binary representation. We can then define the nth Rademacher
function R,(w) = w, which extracts the nth bit from the binary expansion. Since each R,, can be
given as the sum of 2"~! indicator functions on measurable sets, they are measurable functions and

are hence random variables. Their distribution is given by P(R,, = 1) = ; =P (R, = 0), so we have

constructed Bernoulli random variables with parameter % We show they are independent. For a
finite set (x;)-,

I]:D(Rl = xl, ,Rn = xn) = 2_n = P(Rl = xl) P(Rn = xn)

Therefore, the R,, are all independent, so countable sequences of independent random variables
indeed exist. Now, take a bijection m: N> — N and define Y, = Rpn(n,ky» Which are independ-
ent random variables. We can now define ¥, = >, 27Ky, This converges for all w € Q since
|Y,k| < 1, and these are still independent. We show the Y;, are uniform random variables, by show-
iT i+l ]

ing the distribution coincides with the uniform distribution on the 7z-system of intervals <2—m pr—e

fori =0,...,2"™ — 1, which generates 3.
i it i L i+1\ i i+1
P<Y”E(2_m’2_m]>=P(2_m<zk:2 Yk < o )=2m=“(z—m’m]

Hence uy, = ,u|(0 1 by the uniqueness theorem, and so we have constructed an infinite sequence of
independent uniform random variables Y;,. If F;, are probability distribution functions, taking the gen-
eralised inverse, we see that the F; !(Y;,) are independent and have distribution function F,.

2.6 Convergence of measurable functions

Definition. We say that a property defining a set A € € holds u-almost everywhere if u(A¢) =
0 for a measure y on €. If u = P, we say a property holds P-almost surely or with probability
one, if P(A) = 1.

Definition. If f, and f are measurable functions on (E, &, u), we say f,, converges to f u-
almost everywhere if u({x € E | f,(x) » f(x)}) = 0. We say f,, converges to f in u-measure
ifforalle > 0, u({x € E | |f,,(x) — f(x)| >€}) — 0asn — oo. For random variables, we
say X,, » X P-almost surely or in P-probability, written X,, —P X, respectively. If X,,, X take
values in R, we say X,, — X in distribution, written X,, -9 X if P (X,, < x) - P (X < x) atall
points x for which the limit x — P (X < x) is continuous.

We can show that X, -P X = X" —»? X.
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Theorem. Let f, : (E, &, u) — R be measurable functions. Then,
(i) if u(E) < o0, then f,, — 0 almost everywhere implies that f,, — 0 in measure;
(i) if f, — 0 in measure, f,, — 0 almost everywhere on some subsequence.

Proof. Lete > 0.

p(lfal <) 2 #( () {lfml < s})

m2n

The sequence (ﬂmZn {lfinl < E})n increases to | J,, msn Ufml < €. So by countable additivity,

#( () tll < e}) - #(U () {1l < s})

m>n n m>n
= u(|f.| < € eventually)
2 u(lful = 0) = u(E)

Hence,
liminfu(|f,| <) 2 W(E) = limsupu(|ful >€) <0 = u(|ful >€) >0
n n

For the second part, by hypothesis, we have
1
w(lful > ) <

for sufficiently large n. So choosing € = %, we see that along some subsequence n; we have

1 1
Wl > 5) < @
Hence, )
Z'u<|f”k| > E) <®
K
So by the first Borel-Cantelli lemma, we have
|
u<| Jarl > T infinitely often) =0
SO fy, — 0 almost everywhere. O

Remark. Condition (i) is false if u(E) is infinite: consider f, = 1) on (R, B, w), since f, — 0almost

everywhere but u(f,) = oo. Condition (ii) is false if we do not restrict to subsequences: consider in-

dependent events A, such that P (4,,) = l, then1,, — 0in probability since P (11 A, > s) =P, =
n

150, but >, P (A,) = o0, and by the second Borel-Cantelli lemma, P (14, > ¢ infinitely often) =
n
1,80 1,4, » 0 almost surely.
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Example. Let (X,,),cn be a sequence of independent exponential random variables distributed by
PX; <x)=1-—e*forx > 0. Define A,, = {X,, > alogn} where a > 0, s0 P(4,) = n~%, and in
particular, }; P (A,) < co ifand only if « > 1. By the Borel-Cantelli lemmas, we have for all £ > 0,

P( Xn > 1 infinitely 0ften> =1 P (i > 1 + ¢ infinitely often) =0
logn logn

Xn

logn

In other words, lim sup,, = 1 almost surely.

2.7 Kolmogorov’s zero-one law

Let (X,,)nen be a sequence of random variables. We can define 7, = o(X,,,1,X,42,--- ). Let T =
N nen Jn be the tail o-algebra, which contains all events in F that depend only on the limiting beha-
viour of (X,,).

Theorem. Let (X},),cn be a sequence of independent random variables. Let A € J be an
eventin the tail o-algebra. ThenP(A) = 1orP(A) = 0. IfY : (Q,7) — (R, B) is measurable,
it is constant almost surely.

Proof. Define #,, = o(Xj, ..., X},,) to be the o-algebra generated by the first n elements of (X,,). This
is also generated by the z-system of sets A = (X; < xy, ..., X, < x,,) for any x; € R. Note that the

m-system of sets B = (Xj11 < Xp415 -+ » Xnak < X4k ), fOr arbitrary k € N and x; € R, generates J;,.
By independence of the sequence, we see that P (A N B) = P (A) P (B) for all such sets A, B, and so
the o-algebras 7,,, #,, generated by these 7-systems are independent.

Let 7, = 0(X1, X5, ... ). Then, | J, 7, is a r-system that generates 7. If A € | J, #,,, we have A € F,
for some n, so there exists n such that B € J3 is independent of A. In particular, B € ﬂn J,=T.By
uniqueness, 7, is independent of 7.

Since J° C ¥, if A € T, A is independent from A. So P (A) = P(ANA) = P(A)P(A), so [P’(A)2 -
P (A) = 0 as required.

Finally, if Y : (Q,7) — (R, B), the preimages of {Y < y} lie in J, which give probability one or zero.
Let c = inf{y | Fy(y) = 1}, so Y = c almost surely. O

3 Integration

3.1 Notation

Let f: (E,& 1) — R be an ‘integrable’ function, a notion we will define. We will then define the
integral with respect to u, either written u(f) or f; fdu = 5 f(x)du(x). If X is a random variable,
we will define its expectation E [X] = f, X dP = [, X(w) dP(w).

3.2 Definition

We say that a function f: (E, &, 1) — R is simple if it is of the form

m
f=2ak1]Ak; a,>0; A, €& meN
k=1
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Definition. The u-integral of a simple function f defined as above is

m
u(f) = D au(Ag)
k=1
which is independent of the choice of representation of the simple function.

Remark. We have u(af + fg) = au(f) + fu(g) for all nonnegative coefficients «, 8 and simple
functions f,g. If g < f, u(g) < u(f), so u is increasing. If f = 0 almost everywhere, u(f) = 0.

For a general non-negative function f : (E, &, u) — R, we define its u-integral to be

u(f) = sup{u(g) | g < f,g simple}

which agrees with the above definition for simple functions. This operator takes values in the ex-
tended non-negative real line [0, 0]. Now, for f: (E,& u) — R measurable but not necessar-
ily non-negative, we define f* = max(f,0) and f~ = max(—f,0), so that f = f* — f~ and
Ifl=r*+f.

Definition. A measurable function f: (E,&,u) — R is u-integrable if u(|f|) < oco. In this
case, we define its integral to be

u(f) = u(f*) —u(f)

which is a well-defined real number.

3.3 Monotone convergence theorem

Theorem. Let f,, f: (E,&,u) — R be measurable and non-negative such that f,, increases
pointwise to f, s0 f,(x) < fp41(x) < f(x) and f,(x) — f(x) as n — co. Then, u(f,) = u(f)

asn — oo.

Remark. This is a theorem that allows us to interchange a pair of limits, u(f) = u(lim, f,) =
limy, u(f). Also, g, 2 0, (X, 8n) = 2, 4(8n)-

If we consider the approximating sequence f, = 27| 2" f|, as defined in the monotone class theorem,
then this is a non-negative sequence converging to f. So in particular, u(f) is equal to the limit of
the integrals of these simple functions.

It suffices to require convergence of f, — f almost everywhere, the general argument does not
need to change. The non-negativity constraint is not required if the first term in the sequence f, is
integrable, by subtracting f, from every term.

Proof. Recall that u(f) = sup{u(g) | g < f,gsimple}. Since f, is an increasing sequence of non-
negative functions, u(f,) is an increasing sequence of nonnegative functions. So it converges to its
(extended non-negative real) supremum M = sup, u(f,). Since f, < f, u(f,) < u(f), so taking su-
prema, M < u(f). If M is finite, sup, u(f,) = lim, u(f,) < u(f). If M is infinite, we are already
done.

18



Now, we need to show u(f) < M, or equivalently, u(g) < M for all simple g such that g < f, so
that taking suprema, u(f) = sup, u(g) < M. We define g, = min(f,,g), where f, is the nth
approximation of f,, by simple functions from the monotone class theorem. Now, since f,, increases
to f, f, increases to f. In particular, g, = min(f,,g) increases to min(f,g) = g. Since f, < f, by
definition, we have g,, < f,, for all n.

Now let g be an arbitrary simple function of the form g = ZIT:I aily, where g > 0and the Ay € €
are disjoint. For € > 0, we define sets A, (n) = {x € Ay | g,(x) > (1 — €)ay}. Since g = a; on Ay, and
since g,, increases to g, we must have A, (n) increases to A, for all k. Since y is a measure, u(A,(n))
increases to u(Ay) by countable additivity.

We have g,14, > gnla,(n) = (1 — €)agla, ) on E. Moreover, g, = Zlel 8nla, since the Ay

are disjoint and support g,. Hence, g, > ka=1(1 — €)ayla, (n), and in particular, u(g,) > (1 —
€) ka=1 ai (A (n)). The right hand side increases to (1 — ¢) Z:l:l ai(Ar) = (1 —e)u(g). Hence

! lim sup u(g,) < ! lilrnsupﬂ(fn)<l
€ n € n

<
u(g)_l_ T <i{—s

Since € was arbitrary, this completes the proof. O
3.4 Linearity of integral

Theorem. Let f,g: (E, &, 1) — Rbe nonnegative measurable functions. Then u(af+£g) =
au(f) + pu(g) for all o, B > 0. Further, if g < f, then u(g) < u(f). Finally, f = 0 almost
everywhere if and only if u(f) = 0.

Proof. If f,, 8, are the approximations of f and g by simple funtions from the monotone class the-
orem, af, increases to af and 88, increases to g, so af, + B8, increases to af + Bg. Integrating
both sides and using the monotone convergence theorem, the result follows, since linearity of simple
functions is simple to prove.

The second part g < f = u(g) < u(f) has already been proven. Now, if f = 0 almost everywhere,
its approximation 0 < f, increases to f almost everywhere, so must be exactly zero for all n. So
u(f,) = 0so u(f) = 0. Conversely, if u(f) = 0, then 0 < u(f) =0 gives u(f,) = 05so f, = 0 almost
everywhere. Since 0 = f, increases almost everywhere to f, f is zero almost everywhere. O

Remark. Functions such as 1g are integrable and have integral zero. They are ‘identified’ with the
zero element in the theory of integration.

Theorem. Let f,g: (E, &, u) — Rbeintegrable functions. Then u(af +8g) = au(f)+Lulg)
foralla,f € R;ifg < f, then u(g) < u(f); and if f = 0 almost everywhere, we have u(f) = 0.

Proof. Clearly, if f is integrable, so is af, and u(—f) = —u(f), by definition of the integral for a
general function. We can explicitly check that for ¢ > 0, we have u(af) = u((af)*) — u((af)™) =
au(ft)—au(f~) = au(f). Define h = f +g. Then ht + f~ +g~ = h™ + f* + g*, so by the previous
theorem, u(h*) + u(f~) + u(g™) = u(h™) + u(f*) + u(g*) and the result holds.

Finally, if 0 < f — g, we have 0 < u(0) < u(f —g) = u(f) — u(g) so the result follows. If f = 0 almost
everywhere, f* = 0 and f~ = 0 almost everywhere, so u(f) = 0. O
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3.5 Fatou’s lemma

Lemma. Let f,, : (E,&, 1) — R be nonnegative measurable functions. Then u(liminf, f,,) <
lim inf,, u(f,).

Remark. Recall that liminf, x, = sup, inf,>, x,, and limsup, x,, = inf, sup,, X,. In particu-
lar, limsup, x, = liminf, x,, implies that lim, x,, exists and is equal to lim sup, x, and liminf, x,,.
Hence, if the f,, converge to some measurable function f, we must have u(f) < liminf, u(f,).

Proof. We have inf,,, f,, < fi forall k > n, so by taking integrals, u(inf,,5, f,) < u(fi). Thus,
{ 1nf i) < inf () < sup fnf u(fi) = liminfu(s,)
m>n k>n n k=n n

Note that infy,>, f,, increases to sup, inf,,>, f, = liminf, f,. By the monotone convergence the-
orem,

,u(lim inffn) = lim,u( inf fm) < liminfu(f,)
n n m2n n

as required. O
3.6 Dominated convergence theorem

Theorem. Let f,,, f : (E, &, ) be measurable functions such that | f,,| < g almost everywhere
on E, and the dominating function g is u-integrable, so u(g) < o. Suppose f,, = f pointwise
(or almost everywhere) on E. Then f, and f are also integrable, and u(f,,) - u(f) asn - oo.

Proof. Clearly u(|f,|) < u(g) < o0, so the f, are integrable. Taking limits in | f,| < g, we have |f]| < g,
so f is also integrable by the same argument. Now, g + f, is a nonnegative function, and converges
pointwise to g = f. Since limits are equal to the limit inferior when they exist, by Fatou’s lemma, we
have

u(@) + u(f) =puEg+f) = M(lirgl inf(g + fn)> < liminfu(g + fp) = u(g) + lim inf u(f,)

Hence u(f) < liminf, u(f,). Likewise, u(g) — u(f) < u(g) —liminf, u(f,), so u(f) 2 limsup, u(f,),
SO

limsup u(f,) < u(f) < lim infu(fy)
n
But since lim inf,, u(f,) < limsup,, u(f,), the result follows. O

Example. Let E = [0, 1] with the Lebesgue measure. Let f,, — f pointwise and the f,, are uniformly
bounded, so sup,, [ full,, < g for some g € R. Then since u(g) = g < oo, the dominated convergence
theorem implies that f,, f are integrable and u(f,) — u(f) asn — oo. In particular, no notion of
uniform convergence of the f,, is required.

Remark. The proof of the fundamental theorem of calculus requires only the fact that

x+h
f dt=nh
x
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This is a fact which is obviously true of the Riemann integral and also of the Lebesgue integral. There-
fore, for any continuous function f : [0,1] - R, we have

x x

| e =re= [ g0
0 0

Riemann integral Lebesgue integral

So these integrals coincide for continuous functions. We can show that all Riemann integrable func-
tions are p*-measurable, where ¢* is the outer measure of the Lebesgue measure, as defined in the
proof of Carathéodory’s theorem. However, there exist certain Riemann integrable functions that are
not Borel measurable. We can find that a bounded ¢ *-measurable function is Riemann integrable if
and only if
u({x €[0,1] | f is discontinuous at x}) = 0

The standard techniques of Riemann integration, such as substitution and integration by parts, ex-
tend to all bounded measurable functions by the monotone class theorem.

Theorem. Let U C R be an open set and (E, &, u) be a measure space. Let f: UXE — R be
amap such that x — f(t, x) is measurable, and ¢t — f(¢, x) is differentiable where )%| < g(x)
forallt € U, and g is u-integrable. Then

F(t) = f Ft.x) du(x) = F'(t) = f ) dut)
E E

Proof. By the mean value theorem,

g0 = LD IO ) — gyl = |20 - Fwo] <250

Note that g is u-integrable. By differentiability of f, we have g, — 0 as h — 0, so applying the
dominated convergence theorem, u(g,) — ©(0) = 0. By linearity of the integral,

h,x) — f(t,x)d
gy = TR SEO%C) fE%“”‘) o)

Hence,

w —F'(t) - . O

Example. For a measurable function f : (E, &, u) — (G, G),if g: G — R is a nonnegative function,
we show on an example sheet that

po s = [ gduef = [ gt = ge )
G E
On a probability space (Q, F,P) and a G-valued random variable X, we then compute

E [500)] = px(g) = f 2(X(@)) dP(e) = f gdp

Q Q

Example (measures with densities). If f: (E, &, u) — R is a nonnegative measurable function, we

can define v;(A) = u(f14) for any measurable set A, which is again a measure on (E, €) by the mono-
tone convergence theorem. In particular, ifg : (E, &) — Rismeasurable, v((g) = f5 8(x)f(x)du(x) =
J gdv(f). We call f the density of v, with respect to w. If its integral is one, it is called a probability

density function.
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4 Product measures

4.1 Integration in product spaces

Let (Eq, &1, 1), (Es, €5, Uy) be finite measure spaces. On E = E; X E,, we can consider the 7z-system
of ‘rectangles’ A = {A; XA, | A] € &;,A, € &}. Then we define the o-algebra & ® &, = o(A)
on the product space. If the E; are topological spaces with a countable base, then B(E; X E,) =
B(E;) @ B(E,).

Lemma. LetE = E; X E,,& = & ® &,. Let f: (E,E) — R be measurable. Then for all
X; € E;, the map (x, = f(x1,x3)): (Ey, &) = Ris &-measurable.

Proof. Let
VY ={f: (E,&) - R| f bounded, measurable, conclusion of the lemma holds}

This is a R-vector space, and it contains 15, 1 forall A € A, since 14 = T4, (x,)la,(x,)- Now, let0 < f,
increase to f, f, € V. Then (x, ~ f(x1,x;)) = lim,(x; ~ f,(x1,X,)), so it is £,-measurable as a
limit of a sequence of measurable functions. Then by the monotone class theorem, V contains all
bounded measurable functions. This extends to all measurable functions by truncating the absolute
value of f to n € N, then the sequence of such bounded truncations converges pointwise to f. [

Lemma. LetE = E; X E,, & =& ® &,. Let f: (E,E) —» R be measurable such that

(i) f is bounded; or

(ii) f is nonnegative.
Then the map x; — sz f (1, x5) duy(x,) is up-measurable and is bounded or nonnegative
respectively.

Remark. In case (ii), the map on x; may evaluate to infinity, but the set of values

{xl €L,

J(x1, x2) duy(x,) = 00}
E;

lies in &;.

Proof. Let
Y ={f: (E,&) - R | f bounded, measurable, conclusion of the lemma holds}

This is a vector space by linearity of the integral. 15 € V, since 1g, u,(E,) is nonnegative and bounded.
14 € Viorall A € A, because 14, (x;)u,(A) is & -measurable, nonnegative, and bounded since it
is at most p,(E,) < 0. Now let f,, be a sequence of nonnegative functions that increase to f, where
fn € V. Then by the monotone convergence theorem,

f lim f,Gep, x2) dia(x) = lim f Fuers x2) dan ()
B, 1% n—oo Jp,

is an increasing limit of £;-measurable functions, so is £;-measurable. It is bounded by u,(E;)| fl,»
or nonnegative as required. So f € V. By the monotone class theorem, the result for bounded
functions holds. In case (ii), we can take a bounded approximation in V of an arbitrary measurable
function f to conclude the proof. O
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Theorem (product measure). Let (E;, &, U11), (Ey, E, Uy) be finite measure spaces. There
exists a unique measure u = y; @ U, on (E; X E,, £, ®E,) such that u(A; XA,) = u1(A1)u(A3)
forallA; € &, A, € &,.

Proof. A generates & ® &,, so by the uniqueness theorem, there can only be one such measure. We

define
#(A)=f (f “A(xlsxz)dﬂz(xz))dﬂl(xl)
e, \JE,
We have
iy x A = | ( | nA1<x1>nA2<x2>duz<x2>)dul(xo
E, \JE,

- f 14, (x)Ha(A) daty ()
Eq

= w1 (A)ux(Az)

Clearly u(@) = 0, so it suffices to show countable additivity. Let A, be disjoint sets in £&; ® &,. Then

n
an) = 20, = 1m0 D, 1,
n 1=

Then by the monotone convergence theorem and the previous lemmas,

#(UAn)=[ (-/b: r}i_)rgozﬂm dﬂz(xz))dﬂl(xl)

f (hm f >t sz(x2)> gy (1)

lim ( Z“A d#z(xz)) dp1 (1)
Ey

n—oo
E; i=

n

im 3, [ ( L, o) ) s ()
Eq

n—oo 4
i=1

= li A
ng{;;/x( )

= Z u(A,)

n=1
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4.2 Fubini’s theorem

Theorem. Let(E, &, u) = (E; XE,, & ®E,, Uy ®u,) be a finite measure space. Let f : E > R
be a nonnegative measurable function. Then

W= [ £
E
= | ( fxrx) du2<x2)> (1)
E1 \VE;
= / ( J(x1,x3) d:ul(xl)) du(x3)
E2 El
Now, let f : E — R be a u-integrable function (on the product measure). Let

Al = {xl EEl

|G x2)] dita) < oo}

E>
Define f; by fi(x;) = sz f(x1,x;) duy(x;) on A, and zero elsewhere. Then y;(A$) = 0 and
u(f) = 1 (f1) = u1(fila,), and defining A, symmetrically, u(f) = uy(f2) = ua(fala,)-

2_,2
X1—X3

Remark. If f is bounded, A; = E;. Note, for f(x;, x,) =

on (0! 1)29 we have ﬂl(fl) ?é ,le(fz),

(x3+x3)2

but f is not Lebesgue integrable on (0, 1)2.

Proof. By the construction of the product measure u(A) for rectangles A = A; X A, in the 7-system
A generating &, the identities in the first part of the theorem clearly hold for f = 14. By uniqueness,
this extends to 14 for all A € £. Then, by linearity of the integral, this extends to simple functions.
By the monotone convergence theorem, the first part of the theorem follows.

Now let f be u-integrable. Let h(x;) = sz | f(x1, %) duy(x,). Then by the first part, p;(Jh]) <
u(lf) < 0. So f is u;-integrable. We have y,(AS) = 0, otherwise, we could compute a lower
bound ;(|A]) > p1(|hl14¢) = oo, but it must be finite. Note that i = sz FE(x1, x,) duy(x,), and

u(f) = (i) =1 (). Hence, by the first part, u(f) = u(f*) —u(f7) = i () = (i) = ua ()
as required. O

Remark. The proofs above extend to o-finite measures u.

Let (E;, &;, ;) be measure spaces with o-finite measures. Note that (£; ® £;,) ® &3 = & ® (£, ® &3),
by a m-system argument using Dynkin’s lemma. So we can iterate the construction of the product
measure to obtain a measure y; ® ... 4,, which is a unique measure on (H:;l E; ®?:1 Si) with the
property that the measure of a hypercube u(A; X A,,) is the product of the measures of its sides 1;(A4;).

In particular, we have constructed the Lebesgue measure u" = ®?=1 non R"™. Applying Fubini’s
theorem, for functions f that are either nonnegative and measurable or u"-integrable, we have

f fdun = f e [ G e i) e du)
Rn R...R
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4.3 Product probability spaces and independence

Proposition. Let (Q,F,P), and (E, &) = (H?zl E;, ®?=1 8i). LetX: (Q,F) —» (E,E) bea
measurable function, and define X(w) = (X;(w), X,(w), ..., X,(@)). Then the following are
equivalent.

(i) Xi,...,X, are independent random variables;
a0 n
(i) px = @y Mx;3
(iii) for all bounded and measurable f; : E; > R, E [Hin:l fl-(Xi)] = H?zl E[fi(X)]-

Proof. (i) implies (ii). Consider the 7z-system A of rectangles A = H?:l A;for A; € &;. Since uy isan
image measure, Then

n
px(Ay X - XAp) =P (X; €Ay, ... Xy €EAR) =P (X)) ...P(A,) = HMXi(Ai)
i=1

So by uniqueness, the result follows.

(ii) implies (iii). By Fubini’s theorem,
n n
E [H fi(Xi)] = MX(H fi(xi))
i=1 i=1
~ [ s duto
E
n
- [ (H fi(x») At (1) e i, ()
E; \i=1
n
= Hf filxi) d:qu-(xi)
i=1 YE;
n
= J[TElf:x0]
i=1
(iii) implies (i). Let f; = 14, for any A; € &;. These are bounded and measurable functions. Then

PX; €Ay, ....X, €A,)=E HﬂAi(Xi)] =[JE[a,&)] =[P €4)
i=1 i=1 i=1

So the o-algebras generated by the X; are independent as required. O
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5 Function spaces and norms
5.1 Norms

Definition. A norm on areal vector spaceisamap | - ||;, : V' — R such that
@ [Av]| = 14] - [lvl;
(i) fJu+ vl < flull + [vl;
(iii) |v]l = 0if and only if v = 0.

Definition. Let (E, &, u) be a measure space. We define LP(E, &, u) = LP(u) = LP for the
space of measurable functions f : E — R such that || f| p 18 finite, where

1
171, = (e I du(x))? 1<p<oo
esssup |f| =inf{d > 0| |f| < A almost everywhere} p = oo

We must check that || - || p as defined is a norm. Clearly (i) holds for all 1 < p < oo0. Property (ii)
holds for p = 1 and p = o0, and we will prove later that this holds for other values of p. The last
property does not hold: f = 0 implies ||f ||p = 0, but ||f ||p = 0 implies only that |f|” = 0 almost
everywhere, so f is zero almost everywhere on E. Therefore, to rigorously define the norm, we must
construct the quotient space £P of functions that coincide almost everywhere. We write [ f] for the
equivalence class of functions that are equal almost everywhere. The functional | - || p is then a norm
on LP.

Proposition (Chebyshev’s inequality, Markov’s inequality). Let f: E — R be nonnegative
and measurable. Then for all 1 > 0,

#({xemf(x)zu)w(fzmg@

Proof. Integrate the inequality A1;¢> 7 < f, which holds on E. O

Definition. Let] C R be an interval. Then wesayamapc: I — Risconvexifforallx,y € I
and t € [0,1], we have c(tx + (1 — t)y) < tce(x) + (1 — £)c(y). Equivalently, forall x < t < y
et)—cx) . c)—c(®)

t—x y—t

and x,y € I, we have

Since a convex function is continuous on the interior of the interval, it is Borel measurable.

Lemma. Let I C R be an interval, and let m € I°. If ¢ is convex on I, there exist a, b such
that ¢(x) > ax + b, and ¢(m) = am + b.

c(m)—c(x)
—-x

m

Proof. Define a = sup{ | x < m,x € I{. This exists in R by the second definition of con-

,80c(y) > ay — am + c¢(m) = ay + b where we

vexity. Lety € I,and y > m. Then a < c)—c(m)
y—m
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< a, we have

define b = c(m) — am. Similarly, for y < m, by definition of the supremum, w

y
cy)>ay+b. O

Theorem (Jensen’sinequality). Let X be arandom variable taking valuesin an interval I C R,
such that E[|X]|] < co. Letc: I — R be a convex function. Then c¢(E [X]) < E [¢(X)].

Note that the integral E [c(X)] is defined as E [c¢*(X)] — E [¢~(X)], and this is well-defined and takes
values in (—o0, 0o].

Proof. Define m = E [X] = [; zdux(2). If m & I°, X must equal m almost surely, and then the result
follows. Now let m € I°. Applying the previous lemma, we find a, b such that ¢~ (X) < |a| - |X]| + |b|.
Hence, E[c™(X)] < |a|E[|X]] + |b] < o0, and E [¢(X)] = E[cT(X)] — E[c~(X)] is well-defined in
(—00, ]. Integrating the inequality from the lemma, and using linearity of the integral,

E[c(X)] = aE[X]+b =am+ b = c(m) = c(E[X])
O

q
Remark. If1 < p < q < o0, c(x) = |x|? is a convex function. If X is a bounded random variable (so
lies in L*(P)), we then have

1 1 1

IX1, = E[IXP[]P = c(E[IXIP 2 < E[c(X))]® = I,

Using the monotone convergence theorem, this extends to all X € L(P) when | X]| q is finite. In

particular, L9(P) C LP(P) forall1 < p < q < 0.

Theorem (Holder’s inequality). Let f,g be measurable functions on (E, &, u). If p,q are
conjugate, so % + é =1land1 < p,q < oo, we have

u(ifgl) = f F@gG)l du < I, - lgll,
E

Remark. For p = q = 2, this is exactly the Cauchy-Schwarz inequality on I2.

Proof. The cases p = 1 or p = oo are obvious. We can assume f € L? and g € L9 without loss of
generality since the right hand side would otherwise be infinite. We can also assume f is not equal
to zero almost everywhere, otherwise this reduces to 0 < 0. Hence, || f]| p > 0. Then, we can divide
both sides by ||f||p and then assume ||f||p =1.

1
K7 = [ 81— 110y

|f1
Note that we can set |f|p du = dP, and since L4(P) C L}(P),

1
f gl £1P 1m0y it < f g —— 7P du q=( f |g|qdu)”’
e fP! |flAPD o
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Theorem (Minkowski’s inequality). Let f,g: (E, &, u) — R be measurable functions. Then
forall 1 < p < oo, we have | +gl, < /1, + Il

Proof. The results for p = 1,00 are clear. Suppose 1 < p < oo. We can assume without loss of
generality that f,g € LP. We can integrate the pointwise inequality |f + g|® < 22(|f]° + |g|®) to
deduce that || f + g||§ < 2p(||f||§ + IIgIIII;) < o050 f+g € LP. Weassume that 0 < | f + g, otherwise
the result is trivial. Now, using Holder’s inequality with q conjugate to p,

-1
I + gl = [ 17 +8P1f + gl du
E

< [irefiidus [ 1f + Pl
E E

< ( [ g du)q(llfllp +lgl)
E

< ( fE f + g du)é(nfnp +lgl,)

p

<|1f +lg (111, + lgl)

p

Dividing both sides by || f + g||p:’, we obtain | f + g||p < ||f||p + ||g||p. O

So the LP spaces are indeed normed spaces.
5.2 Banach spaces

Definition. A Banach space is a complete normed vector space.

Theorem (LP? is a Banach space). Let1 < p < o0, and let f,, € LP be a Cauchy sequence, so
for all € > 0 there exists N such that for all m,n > N, we have | f,, — fn||p < ¢. Then there

exists a function f € LP such that f;, - fin LP,so | f, — f||p — 0asn — oo.

Proof. For this proof, we assume p < oo; the other case is already proven in IB Analysis and Topology.
Since f, is Cauchy, using ¢ = 27 we extract a subsequence Jn, of LP functions such that

5= 3 [ =i, = D2 <
k=1 Pk=1

By Minkowski’s inequality, for any K, we have

K
sz: |ka+1 - ka'
=1

i < é”f]\]kﬂ —kaHp <S<om
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p
By the monotone convergence theorem applied to |Zf:1 | Ny — S ” which increases to | Y-, |fw,, — fvi| 'p,
we find

<S<o
p

00
Z |ka+1 - ka'
k=1

Since the integral is finite, we see that 2111 | TN — I | is finite almost everywhere. Then ZIk{:l( TN (0=
N () = fv,, (%) — fn, (x) converges in the real line for all x in a set A that has full measure, so

u(A®) = 0. In particular, fy, (x) is a Cauchy sequence of reals, so by completeness of the real line, we

can define the limit

limp_ o fy,(X) x€A

f(x)z{o X € AC

so fn, — f ask — oo almost everywhere. Now, by Fatou’s lemma,
p p . p o p
1 = £ = 1l = ) = pllim |y = v |") < lim infa(fy = v )

Since the f,, are Cauchy,
11, < If = full, + Ifwl, < oo
N—————— ——

<e <o

so f € LP,and | f, —f||§ < el forn,Ny > N,so f, —» fin LP. O
Remark. If V is any of the spaces

C([a,b]); {f simple}; {f alinear combination of indicators of intervals}

then V is dense in L!(u) where u is the Lebesgue measure on B([a, b]). So the completion (V, || - |)
is exactly L'(u).

5.3 Hilbert spaces

Definition. A symmetric bilinearform (-, -) : VXV — R on areal vector space V is called
an inner product if (v, v) > 0 and (v, v) = 0 implies v = 0. In this case, we can define a norm

lvll = V{v,v). If (V,( -, -))is complete, we say that it is a Hilbert space.

Corollary. The space £ is a Hilbert space for the inner product (f, g) = J fgdu.

Example. An analog of the Pythagorean theorem holds. Let f,g € I?, then ||f + g||§ = |\f ||§ +
2(f,g) + ||g||§. We say f is orthogonal to g if (f,g) = 0. f and g are orthogonal if and only if

If+ glli = ||f||§ + ||g||§. For centred (mean zero) random variables X, Y, we have (X,Y) = E[XY] =
E[X —E[XD(Y —E[Y])] = Cov (X, Y)which vanishes when X and Y are orthogonal.

Example. The parallelogram identity holds: || f + g||§ +|f - g||§ = 2(||f||§ + ||g||§)
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Definition. Let V C I*(u). We define its orthogonal complement to be

vi={felPw|VgeV,(f g =0}

We say that a subset V of £2 is closed if any sequence f, € V that converges in £2, its limit f
coincides almost everywhere with some v € V.

Theorem. Let V be a closed linear subspace of £2(u). Then for all f € £2, there exists an
orthogonal decomposition f = v+uwhere v € V and u € V* such that || f — oll, < [If —gll,
for all g € V with equality only if v = g almost everywhere. We call v the projection of f onto
V.

Proof. In this proof, we set p = 2 for all norms. We define d(f, V) = infyep g — f|l, and let g, € V
be a sequence of functions such that ||g,, — f|| converges to d(f, V). By the parallelogram law,

2 2 2 2
2f = gall™ +21f — 8ml” = 112f — (8n + 8n)lI” + lIgn — &mll
2

+ 2
=4lf-E828n tg, — gl
——
eV

> 4d(f,V)* + llgn — gml’

Taking the limit superior as n,m — oo, limsup,, , lIg, — gm||2 < 4d(f,V) —4d(f,V) = 0. So the
sequence g, is Cauchy in I?, so by completeness, it converges to some v € I*. Since V is closed,
v € V. In particular, d(f, V) = infgep lg — fI| = v = f].

Note that d(f,V)? < F(t) = ||f — (v + th)||2 where t € R and h € V. So we obtain the first-order
condition F’(0) = 2{f — v, h) = 0 for all h. Defining f — v = u, we have f = u+vand u € V* since
h was arbitrary.

For uniqueness, suppose f = w + zwithw € Vandz € VX. Thenv—w+u—z=f—f =0,s0
taking norms, 0 = |[v —w +u — z||2 =|v- w||2 + |u— z||2 so v = w and u = z (almost everywhere)
by orthogonality. O

5.4 Convergence in probability and uniform integrability

Theorem (bounded convergence). Let X, be random variables on (Q, F, P) such that |X,,| <
C < oo and they converge in probability to X. Then X,, — X in L}(P).

Proof. We know that X,,, — X almost surely along a subsequence ny. So [X| = limy, |Xnk| <C<om
almost surely. Then

e
< 20P (|, - X| > %) + %
<e¢
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for sufficiently large n. O
If X € I}(P), thenas & — 0,
Ix(8) = sup{E[|X[14] | P(A) <8} | 0

Suppose this does not hold. Then there exists ¢ > 0 and a sequence of events A,, € F such that
P(A,) <27"but E[|X|14, | > e Since )} P(A4,) < o, by the first Borel-Cantelli lemma, we have
P(My UpisnAm) = 0. But E[IX[1a,] < E[IXI1 4, ] Notethat1y . =1 ), 4, 50
E [lX |1]Um2n Am] - E [|X |1 N, Umm] by the dominated convergence theorem, but this is equal to zero,
giving a contradiction.

Definition. For a collection X' C L!(P) of random variables, we say X is uniformly integrable
if it is bounded in L'(P), and

I(8) = sup{E[|X|14] |P(A) <5,Xe€X} |0

Remark. Note that X,, = nl [0 17 for the Lebesgue measure x on [0,1] is bounded in L'(P) but not
uniformly integrable. If X is bounded in LP(P) for p > 1, then by Holder’s inequality,

1
E[IX]14] < |IX1l, -P(A)e

bounded 1
<89 -0

Lemma. X C L'(P) is uniformly integrable if and only if supy, E[IX|lx>x;] — 0 as
K — oo.

Proof. Let X be uniformly integrable. Applying Markov’s inequality, as K — oo,

E[X]] _ ElXITa] _ L@
K K - K

P(X] > K) <

Using the uniform integrability property using A = {|X| > K}, we obtain the required limit. Con-
versely, we have

g
E[XI] = E[IXI(hxi<x) + Tpxisx) | S K + 5

for sufficiently large K. So XX is bounded in L!(PP) as required. Then for A such that P (4) < 6,
€
E[1X19a(Ux1<x) + Txis )] < KP(A) + E[IX[0x50) ] KO+ 5 < e

for sufficiently small . O

Theorem. Let X, X be random variables on (Q, F,P). Then the following are equivalent.
(i) X,,X € I}(P) and X,, - X in L}(P).
(i) {X, | n € N} is uniformly integrable, and X,, — X in probability.
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Proof. (i) implies (ii). Using Markov’s inequality,

E[1X,, — XI]

P(X, — X| > ¢) < .

-0

so X,, — X in probability. Since any finite collection is uniformly integrable, so are X along with
Xi, ..., Xy for each N. For the indices larger than N, we have

€

g
E[1Xalta] < E[1X, = X[1a] +E[X[14] < £ + 5

for sufficiently large N and sufficiently small 8, so all X,, are uniformly integrable.
(i) implies (i). Along a subsequence, X,, — X almost surely. So

E[1X|]] =E [lin}{inﬂXnJ] < lim inf £ [1Xn, |] < I(1) < 00

almost surely, so X € L}(P). Next, we define random variables g(X,,) = XX = max(—K, min(K, X,,))
and g(X) = XX = max(—K, min(K, X)), where g is continuous. Then for some ¢’ > 0,

P(lg(Xy) —gX) > &) < P(IX, - X[ >£) —> 0

asn — oo, since X,, — X in probability and g is continuous. Then by bounded convergence, XX —
XXinI!, and so

E[1X, — XI] < E[|X, — XX|] + E[|IXX — x¥|] + E[|x¥ - X]]
= E[1Xul1x,50] + E[IXK = XX|] + E[IX|1x5 k)]
<é€

by choosing sufficiently large K and n. O

6 Fourier analysis

6.1 Fourier transforms
In this section, we will write LP(R¢) for the set of measurable functions f: R? — C such that
1

I f||p = ( Jra lf (x)|p dx)‘_’ < o0. We can extend the integral as a complex linear map I}(R) — C

by defining
/(u +iv)(x)dx = / u(x)dx + i/ v(x)dx
R R R

Note that for some u + iv = a € C with |a| =1,

:fRd af(x)dx:jI;d u(x)dx+ifRd v(x)dx

But since the left hand side is real-valued, the i /4 U(x) dx term vanishes. So

jr; | = j.; ) dr < A 1FCoNd

f(x)dx
Rd
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Definition. Let f € L'(R%). We define the Fourier transform f by
fa = [ e ax
Rd

where (u, x) = Ed

i=1 UuiX;j.

Remark. Note that |f(w)| < ||f]l,. Also, if u, — u, then el®n¥) — ¢i®X)_ By the dominated conver-

gence theorem with dominating function |f|, we have f(u,) — f(u), so f is a continuous bounded
function.

Definition. Let f € [}(R?) such that f € I}(R%). Then we say that the Fourier inversion
formula holds for f if
1

169 = e fR et du

almost everywhere in R

Definition. Let f € L'(R%) n I*(R%). Then the Plancherel identity holds for f if

1, = ezt

We will show that the Fourier inversion formula holds whenever f e I[}(R%), and the Plancherel
identity holds for all f € L}(R%) n [*(R?).

Remark. Given the Plancherel identity, the Fourier transform is a linear isometry of I?(R¢), by ap-
proximating any function in I?(R%) by integrable functions.

Definition. Let u be a finite Borel measure on R?. We define the Fourier transform of the
measure by

) = / e du(x)
Rd

Note that [@(u)| < u(R?), and 4 is continuous by theA dominated convergence theorem. If u has a
density f with respect to the Lebesgue measure, i = f.

Definition. Let X be an R%-valued random variable. The characteristic function ¢y is given
by
px () = E[] = (W)

where uy is the law of X.
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6.2 Convolutions

Definition. Let f € L'(R?) and v be a probability measure on R¢. We define their convolu-
tion f * v by

Jpa fG=y)dv(y) if(y - f(x-y) € L'()

0 else

(f *v)(x) = {

Remark. If1 < p < o0, by Jensen’s inequality,

So f € LP(R%), we have (y — f(x—y)) € LP(v) almost everywhere, and again by Jensen’s inequality,

D _
If eott = [
R4

Hence f +— f v is a contraction on LP(R%).

14 p
ar< [ ([ rc=lao)) ar <
R4 Rd

/ FGx =) dv(y)
R4

In the case where v has a density g with respect to the Lebesgue measure, we write fxg = fxv.

Definition. For probability measures u,v on R?, their convolution u * v is a probability
measure on R? given by the law of X + Y where X, Y are independent random variables with
laws ¢ and v, so

wxV)A)=PX+Y €A

_ f 14(x + ) d(u ® v)(x, )
RdxRd

- / f 1,4Ce+ ) dv(y) dux)
Rd JRd

If 1 has density f with respect to the Lebesgue measure, 1 % v has density f % v with respect to the
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Lebesgue measure. Indeed,

(s v)(A) Ta(x + y)f(x) dx dv(y)

2,4.1 _/Rd
_ f / 1,(0)f (v — y) dv du(y)
Rd JRd

=/'uaof F(o =) dv(y)dv
[Rd [Rd

- [ @ e

Rd

Proposition. f/;/(u) = fwv(u).

Proposition. g#v(u) = E [e!X+1)] = E [ ®X)el®Y)] = p(u)D(w).

6.3 Fourier transforms of Gaussians

Definition. The normal distribution N(0, t) is given by the probability density function

_xz
e 2

g(x) =
27t

If px is the characteristic function of a standard normal random variable, by integration by parts,

d — d iux
ox =g [ ewneoar
— d iux
—A&wwedx
i . _x?
= —— | eivxxe 2 dx

2T JR v w’

i2 RN
= —/ue’”xe_T dx
V27 Jr
= —upx(u)

Hence,
2 2

d[ £ u? u?
a(e 2 ¢X(u)) =ue 2 px(u) —e 2 upx(u) =0

u? u?

In particular, px (1) = px(0)e” 2 = e 2. In other words, &;(u) = v 27g,(u).
In R9, consider a Gaussian random vector Z = (Zy, ..., Z4) with independent and identically distrib-
uted entries Z; ~ N(0,1). Then, the joint probability density function of v/tZ is

2
d X4 d Hx”z

2 =] 7

e 2 =2mt) ze 2
j=1 V27t
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The Fourier transform of g; is

. d d d 2t
&(w=E [€l<u’\/—tz>] =E [H ei"f\/zzfl = H E [ei"j‘ﬁzj] He Uiz =
Jj=1 j=1

j=1

\IM\I t

d d
which implies that in general, 8;(u) = (27)2¢2g1(u). Taking the Fourier transform with respect to
t

u, g, = (2m)?g,, and since g;(—x) = g;(x) and the Lebesgue measure is translation invariant, we
have

I 4 1 —i(U,x) 5
800 = G () = oo L g, du

so the Fourier inversion theorem holds for such Gaussian random vectors.
Definition. We say that a function on R¢ is a Gaussian convolution if it is of the form
frae= [ fGe-pumd
where x € R4, t > 0, f € [}(R9).

3

We can show that f = g, is continuous on R, and ||f * gt||l I fIl;- Note that f = gt(u) fwe 2,
so |7 <l ving [T, < 171,03 E <o

Lemma. The Fourier inversion theorem holds for all Gaussian convolutions.

Proof. We can use the Fourier inversion theorem for g;(y) to see that
@ry'f 0 = o [ = )ey
R

= [ fex—y) | e g (u)dudy
Rd Rd

= [ et [ e et ay g
Rd Rd

= f e~ iwx) [ f(2)el%? dz g,(u) du
Rd Rd

= [ et fng
Rd

= [ g du
Rd

O

Remark. If y is a finite measure, then u * g, = u * g: * g: with u * g: € L, so is also a Gaussian
2 2 2
convolution.
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Lemma (Gaussian convolutions are dense in LP). Let f € LP where 1 < p < oo. Then
If % g — fll, > Oast 0.

Proof. One can easily show that the space C,(R%) of continuous functions of compact support is
dense in LP. Hence, for all ¢ > 0, there exists 1 € C,(R%) such that ||f — k| p < g, and by properties

of the convolution, we also obtain

3
If 8= gill, = 1F = 1)+ gl < I =l < 5

So
€
I g = fll, <0 %8 = hxgll, + b= g +hll, +h = fll, < 5 + Ik +g —hl,

so it suffices to prove the result for f = h € C.(R%). We define a new map
)= [ Ihx=3) = heoP dx
R

Since h is bounded on its bounded support, the dominated convergence theorem implies that e is
continuous at y = 0. Note that e(y) < 2P+1||h||5. Hence, by Jensen’s inequality,

g — i} = |
Rd

sf‘/UMFw—MwWM&@Ny
Rd JRd

14
f(Mx—w—hu»&@Nycu
[Rd

= f e(y)g:(y)dy
Rd

=/1 e(i2) g(z)dz
Rd

—e(0)=0as t—>0
-0

Theorem (Fourier inversion). Let f € L'(R%) be such that f € I(R%). Then for almost all
X € Rd,
1

) =

f e~ f(y)du
Rd

Remark. This proves that the Fourier transform is injective; f = g implies f/—\g = 0 so by Fourier in-
version, f = g almost everywhere. The identity holds everywhere on R for the (unique) continuous
representative f in its equivalence class.

Proof. The Fourier inversion theorem holds for the following Gaussian convolution for all ¢.

1 —lu’t

o809 = g [ e e du= fico
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Now, since Gaussian convolutions are dense, f g, — finL!,so f * g, — f in measure by Markov’s
inequality. Hence, along a subsequence, f * g, — f almost everywhere. On the other hand, by

the dominated convergence theorem with dominating function | f |, the right hand side converges to
1

(2m)d

Sa €710 f(u)du. So this is equal to lim;, ¢ f;, almost everywhere by uniqueness of limits.
O

d
Theorem (Plancherel). Let f € L'(R?) N I2(R?). Then ||f], = (27)" 2

1,
Remark. By the Pythagorean identity, (f, g) = (27)¢ (f, ).

Proof. Initially, we assume f € I!. In this case, f, f € L, and (x,u) — f(x)f(u)is integrable for the
product Lebesgue measure dx ® du on R¢ x R?, so Fubini’s theorem for bounded functions applies.

QryIfIE = @a) / SO dx
R4

= fR ) ( /R ) e~ 1) f(y) du>m dx

= f f@ | el f(x)dxdu
Rd Rd

- [ feof
Rd
02
=|f
2
To extend this result to general f, we take the Gaussian convolutions f % g, = f; such that f; — fin
A Pt A 2
I?. By the continuity of the norm, || f;|l, = [|fll,. Since |f(u)e” 2 | increases to ] f@)| , we have by

2 12
monotone convergence that H ﬁ“ 1 || f H . Therefore, since the Plancherel identity holds for the f;,
2 2

1712 = tim 112 = imGry-< | = -4 ],
O

d a
Remark. Since L; N L, is dense in I?, we can extend the linear operator Fy(f) = (27) 2 f to I* by
continuity to a linear isometry F: I — I? known as the Fourier-Plancherel transform. One can
show that F is surjective with inverse F~1 : [? — I?.

Example. Consider the Dirac measure 8, on R, so §o(u) = Jw €™ d8y(x) = 1. But the inverse
Fourier transform would be zi Jir € du which is not a Lebesgue integrable function.
T

Theorem. Let X be a random vector in R¢ with law uy. Then the characteristic function
®x = fix uniquely determines uy. In addition, if px € L!, then uy has a probability density
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1

function fx which can be computed almost everywhere by o

Jia € (1) du,

Proof. Let Z = (Z,,...,Z,) be a vector of independent and identically distributed random variables,
independent of X, with Z; ~ N(0, 1). Then \/?Z has probability density function g,. Then X +\/?Z has

probability density function f; = ux *g,. Thisis a Gaussian convolution since ux *g; = tx * gt *g¢.
2 2
Hence,

1
(2m)d
which is uniquely determined by ¢x. We show on an example sheet that two Borel probability meas-

ures u, v on RY coincide if and only if u(g) = v(g) for all g: R? — R that are bounded, continuous,
and have compact support. Now,

. Pt
fix) = f g, (e T du
Rd

gX +1z)

-X as.

/ gL fi(x)dx = E
Rd

Since ‘g(X + \/?Z)| < igll,, < o0, by the bounded convergence theorem, this converges to [E [g(X)] =
Jra 8(x) dux(x). So by uniqueness of limits, px determines uy.

Ifpx € L', by dominated convergence, f;(x) converges everywhere to some function fy. In particular,
since uy *g; > 0, the limit f is also nonnegative on R¢. Then, for any bounded continuous function
on compact support g € C2(R%),

[ somtoax= [ geotimpeoar=tim [ seofeodr= [ gtduxx)
Rd RrRd t— ”?;;E =0 Jpd RrRd

by the dominated convergence theorem, since g has compact support. O

Definition. A sequence (i,),en Of Borel probability measures on R? converges weakly to a
Borel probability measure u if u,(g) — u(g) for all g: R¢ — R bounded and continuous. If
(X1 )nens X are random vectors with laws (uy, ), ix such that ux converges weakly to ux, we
say (X;,) converges weakly to X.

Remark. If d = 1, weak convergence is equivalent to convergence in distribution; this is proven on
an example sheet. One can also show that convergence of u,,(g) to u(g) for all g € C®(R%) suffices to
show weak convergence, where C°(R9) is the space of smooth functions of compact support. This
is equivalent to the notion of weak-* convergence on the function space C,(R%).

Theorem (Lévy’s continuity theorem). Let X,,X be random vectors in R?, such that
¢x, () — px(u) for all u, as n — co. Then uy, — ux weakly.

Remark. The converse holds by definition of weak convergence, testing against the complex expo-
nentials in the Fourier transform.
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Proof. LetZ = (Z;, ..., Zy) be a vector of standard normal random variables, independent from each
other, X,,, and X. Let g € C®(R%). Then g € L}(R%), and is Lipschitz by the mean value theorem, as
its first derivative is bounded. Let |g(x) — g(y)| < || g||Lip|x —Y|. Lete > 0. Let t > 0 be sufficiently

small such that \/tl|g], , E [|Z]] < § Then,
|ux, (&) — ux(g)] = |E[g(X,)] — E [g(O]|
< E || — 8, +V12)| | + E[[2X) - 2(X +12)|
+]E 206 +Vi2) - gX +V12)|
< 2ligl, VIE [121] + [E [, + Vi2) — g(X +12)]
< 2+ [E[g + Viz) - gx +i2)|

We show that the remaining term can be made less than § asn — oo. Let f; ,(x) = g; * ux,. Then,
by Fourier inversion for Gaussian convolutions,

E [0t + V)] = [ s0fin(dx
Rd

1 ; i
= me g(x) g e Xgy (u)e” 2 dudx

Since characteristic functions are bounded by 1, we can apply the dominated convergence theorem
_lu?t
with dominating function |g(x)le 2 to find

[E[g(Xn +\/?Z)] - (;Tyi / g(x) f w00 (e T dudx
Rd Rd
= f g8(x) fi(x)dx
Rd
= E[ex +V12)]

where f; = g, * ux. So as n — oo, the difference between these two terms can be made less than g
as required. O

Theorem (central limit theorem). Let X, ..., X, be independent and identically distributed
random variables with E [X;] = 0 and Var (X;) = 1. Let S,, = Z:;l X,- Then

1 weakly
n

In particular,

P<L5n§x>—>P(Z§x)

ﬁ

Proof. Let X = X;. The characteristic function p(u) = px(u) = E[e™¥] satisfies p(0) = 1, ¢'(u) =
iE[XeX|, 9" (u) = i*E [X%e™X]. We can find ¢'(0) = iE[X] = 0Oand ¢"(0) = —E [X?] = — Var (X) =
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2
—1. By Taylor’s theorem, ¢(v) = 1 — v? + o(v?) as v — 0. Now, denoting ¢, (u) = ¢ 1 s (u), we can
\/ﬁ n
write
ot = E[ T3]

n . u
= ITe ¢
j=1

u? n]"
=F‘ﬂ+4ﬁ]
The complex logarithm satisfies log(1 + z) = z + o(z), so by taking logarithms, we find

u? 1 u?
log ¢, (1) = nlog (1 —5, O<ﬁ>> =->

2
lul

Hence, ¢,(u) > e 2 = @z(u). So by Lévy’s continuity theorem, the result follows. O

Remark. This theorem extends to R? by using the next proposition, using the fact that X,, — X
weakly in R? if and only if (X,,, v) — (X, v) weakly in R for all v € R,

Definition. A random variable X in R? is called a Gaussian vector if (X,,, v) are Gaussian for
each v € R4,

Proposition. Let X be a Gaussian vector in R¢. Then Z = AX + b is a Gaussian vector in R™
where A isan mxd matrixand b € R™. Also, X € I*(R%),andu = E[X]and V = Cov (X}, X;)
exist and determine uy. The characteristic function is

q _<u,Vu)
) = MKW

ox(u

If V is invertible, then ux has a probability density function

fe() = (@3 (det V)73 expf— (x — . V- (x — o)}

Subvectors X1, X() of X are independent if and only if Cov (X1, X)) = 0.

Proposition. Let X, — X weakly in R? as n — 0. Then,
(i) if h: R - R¥is continuous, then h(X,) — h(X) weakly;
(i) if |X,, — Y| — 0in probability, then Y;, — X weakly;
(iii) if ¥, — c in probability where c is constant on Q, then (X,,,Y,) — (X,c) weakly in
R% x R4

Remark. Combining parts (iii) and (i), X,, + Y, — X + ¢ weakly if Y,, — c in probability. If d = 1,
then in addition X,,Y,, — cX weakly.
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Proof. Part (i). This follows from the fact that gh is continuous for any test function g.
Part (ii). Let g: R% — R be bounded and Lipschitz continuous. Then
IE[g(¥)] — E[gX)]| < |E[g(Xpn)] — E[gON] +E [18(Xp) — g(¥n)l]

€
<3

where the bound on E [g(X},)] — E [g(X)] holds for sufficiently large n. Then the remaining term is
upper bounded by

E[lg(Xn) — g(¥)l] (ﬂ{p(n—YnISm} * ﬂ{lxn Y">3ng})

3 2e
< I8l 3, + 2l P (0= n> ) < 3
1p

for sufficiently large n.

Part (iii). |(Xy,c) — (X, Y,)| = |Y, —c| — 0 in probability. Also, E[g(X,,c)] — E[g(X,c)] for all
bounded continuous maps g : R x R4 = R, so (X,,,¢) = (X, c) weakly. Hence, by (ii), (X,,, Y,) —
(X, ¢) weakly. O

7 Ergodic theory

7.1 Laws of large numbers

Proposition. Let (X},),cn be independent and identically distributed random variables such
that E [X,,] = 0 and Var (X,,) = 0% < co. Then - Zl 1 Xi = 01in probability as n — oo.

Proof. By Chebyshev’s inequality,
( n

So %Z:;lXi — E[X;] in probability. O

This is known as the weak law of large numbers. However, this result has several weaknesses, and
we can provide stronger results.

Proposition. Let (X,),cn be independent random variables such that E[X,] = u and
E[X;t] < M for all n. Then 1 e, X; — palmost surely as n — co.
o Lui=

Proof. LetY, = X, — u. Then E[Y,] = 0, and E[Y,}] < 2%(E[X;] + #*) < 0. So we can assume
= 0. For distinct indices i, j, k, €, by independence and the Cauchy-Schwarz inequality, we have

0= E[XiX;XiXe] = E[XPXX)] = EPGX]5 E[XPXF] < JE[X!E[X!] <M
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So we can compute

)

Let S, = Y, X;. Then,

E

. ]
=E [Zx;‘] + 6F foxfl < nM +3n(n—1)M < 3n’ M
i=1 | i<j

1

n43n2M<oo

<

Ms

{2 (%)

4
Hence Z:’:l (57”) < oo almost surely. But then (

1
—-

n

47

Sn

4
7) — 0 almost surely, so S;” — 0 almost surely.

O

7.2 Invariants

Let (E, &, 1) be a o-finite measure space.

Definition. A measurable transformation © : E — E is measure-preserving if u(071(A)) =
u(A) forallA € €.

In this case, for any integrable function f € L'(u), we have [ fdu = [ f o ©du.

Definition. A measurable map f: E — Riis called O-invariantif fo® = f. Aset A € £is
O-invariant if ®~!(A) = A, or equivalently, 1, is @-invariant.

The collection £g of ®-invariant sets forms a o-algebra over E. A function f: E — R is invariant if
and only if f is £g-measurable; this is a question on an example sheet.

Definition. O is called ergodic if the ®-invariant sets A satisfy either #(A4) = 0 or u(E\A) = 0.

If f is ®-invariant and © is ergodic, then one can show that f is constant almost everywhere on
E.

Example. Consider (E, &) = ((0,1], B) with the Lebesgue measure y. The maps O,(x) = x + a
modulo 1 and ©(x) = 2x modulo 1 are both measure-preserving, and ergodic unless a € Q. This is
a question on an example sheet.

Lemma (maximal ergodic lemma). Let (E, &, 1) be a o-finite measure space. Let®: E > E
be measure-preserving. For f € L'(u), we define Sy(f) = 0 and S,,(f) = ZZ;(I) f o ©F, Let
§* = S8*(f) = sup,;54 Sn(f). Then f{s*>0}fd/,¢ > 0.

Proof. Define S;; = maxy, S. Then clearly S;; 1 S*, and S < S, for all k < n. Note that Sy, =
Spo®+ f<S;,00+f.

Define A,, = {S;, > 0},s0 A4, 1 {S* > 0}. On A,,, we have

1<k<n 0<k<

Sy = max Sp < max Sy, <S;00+ f
n
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since S, = 0. We can integrate this inequality to find

fS;dqu S,’;oG)du+f fdu
A A An

n n

On the complement A§,, we must have S;, = 0 < S;; o ©. Hence,

fS du < [S*o@)d,u+f fdu
E
Since © is measure-preserving,
/S,ﬁd,uﬁ/S;d,u+/ fdu
E E A

f fdu>0
A

n

SO we obtain

Since f14, — flis->0) pointwise, and |f1,, | < |f| € L'(u), we can apply the dominated convergence
theorem to show that

n—oo

f fdu= lim fd/,c >0
{S*>0}

as required. O
7.3 Ergodic theorems

Theorem (Birkhoff). Let (E, &, u) be a o-finite measure space. Let ©® : E — E be measure-
preserving. For f € I}(u), we define Sy(f) = 0 and S,,(f) = ZZ_(I) f o ©%. Then there exists

a @-invariant integrable function f € L'(u) with ,Lt(| f D < u(|f]) such that =——= s”(f )
everywhere.

- f almost

The proof of Birkhoff’s ergodic theorem is non-examinable.

Proof (non-examinable). Note that

lim sup Sa(f) = lim sup Sn(f)o®
n n n n
and the same holds for lim inf,,. Hence lim sup,, "(f ) Snf)
n
they are £g-measurable. Hence
S
D=D,p = {lim inf "lgf) <a<b<limsup ”(f)}
n n

are measurable and invariant sets. Without loss of generality, let b > 0. Let B € &, where B C D
such that u(B) < oo. Let g = f — blg € L'(u). Then,

Sn(g) = Sn(f) - bSn(]]B) > Sn(f) —bn
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which is positive on D for some n by the definition of lim sup,. We will apply the maximal ergodic
lemma with E = D and u = u|p; @ is still measure-preserving on this new measure since

(A) =u(AnD) = u(O®1(AND)) = (O (A NO D)) = w(©'(A)ND) = | (071(4))
D

Note that {S* > 0} C D as we restrict our measure space to D, but by the previous inequality, S* > 0
on D. So D = {S* > 0}. Then the maximal ergodic lemma gives

Osf gdu=fgdu=ffdu—bu(3)
S*>0 D D

Hence, bu(B) < [, f du. By o-finiteness, this inequality extends to D; one can choose an approxim-
ating sequence B, 1 D where u(B,) < oo, then take limits to show bu(D) = blim, u(B,) < fp, f du.
Repeating the above argument for — f and —a, we obtain —au(D) < f,, —f du. Combining these two
inequalities gives

bu(D) < / fdu < au(D)
D

But a < b, so u(D) = 0 or oo, but f is integrable, so u(D) = 0. Now, define

{hm inf =2 "(f) < lim sup ”(f)} U Dgp

a<beQ

By countable additivity,

M(A)=#( U Da,b)= Y, UDep) =0

a<beQ a<beQ

On AS, Sn converges in [—oo0, co]. We define the invariant function f by
n

7 lim, 2 x € A°
0 x €A

SO 57" - f almost everywhere as n — oo. Since u(|f o @”-1|) = u(|f]), we have u(|S,|) < nu(|f])

,u(m) = <hm1nf|—|> < 11m1nf,u< Sn

which is one of the results required by the theorem. In particular, ,u(m) < o0 S0 m < oo almost

and thus

) < walrD

everywhere.

Theorem (von Neumann). Let (E, &, 1) be a finite measure space (not o-finite). Let® : E —
E be measure-preserving. Let f € LP(E) with 1 < p < oo. Then Snlh) _, finLP.
n

Proof. Since © is measure-preserving, we have

po@id - pd — pd — p
fE f1P o 0 du fE 171P d fE 1P du = 112
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Thus, by Minkowski’s inequality, for all f € LP we have

n(f) H Z Hf @l

= If1,

Sn(f)

So is a contraction in LP. For each K > 0, we define fx = max(min(f, K), —K). Then

I = fil = [ 17 = feP o
E

Since 1,7 converges to zero pointwise, and |f — fx| < 2|fIP e L}, we find | f —fK||p < § by

dominated convergence, for sufficiently large K = K,. As [fx| < K, we have M( < K. Since
n

Sn(fk)

w is finite, fy € L!(u), so by Birkhoff’s ergodic theorem, - fK almost everywhere for some

invariant function f k- Note that f i is bounded by K as S”(r{K ) is bounded by K. By the bounded
Sn(fK)
n

convergence theorem, we deduce that - fK“ — 0 as n — oo. Further, this holds in LP since

‘ Sn(fk)

where the last inequality holds for sufficiently large n. Since u is a finite measure, LP(u) C L'(w),
Sn,if) — f almost everywhere as f — oco. Then, by the contrac-

n(fK)

“Txl, <3

~Tx H <@K)F

hence by Birkhoff’s ergodic theorem,
tion property applied to f — fx,

7=, = [[F -7l au
=fhminf Sn(f)_sn(fK)‘p du
B n

n

S]iminf/ M‘p du
e n

n

=liminff M‘pd,u
5 n

n

< liminf | f - fxl
n
e\P
= If = xlly < ()

So in particular, f € LP. Then by the triangle inequality,

SnT(f) _f”p <50 _nSn(fK)” + Sn(r{K) _?K”p + HF_EKHP
S =5,00)| , 2
<If = fill, + 5 =
for sufficiently large n. O
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7.4 Infinite product spaces

Let E = RN = {x = (x,,),en] be the space of real sequences. Consider

G:{A:ﬁAn

n=1

A, €B,AINeN,Vn>N,A, =R

This forms a 7-system, which generates the cylindrical o-algebra o(€). One shows that o(C) =
o({f, | n € N}) where f,(x) = x,, are the coordinate projection functions on E. We can also show
a(€) = B(RN) for the product topology. Let (X,,),en be a sequence of independent and identically
distributed random variables defined on (Q, F,P) with marginal distributions Mx, = m for all n;
this exists by an earlier theorem. We define a map X : Q — E by X(w),, = X,,(w). This is F-0(C)
measurable, since for all A € €, we have

N
XHA) = {0 | X,(@) € Ay, ..., Xn(w) € Ap} = [ | X7'(4,) € F

n=1

We denote u = P o X1, which is the unique product probability measure in RN satisfying

oo N
#(HAn) = lim M(HAn)
n=1 n=1
= lim P(X; €Ay, ..., Xy € Ay)
N-oo

= lim P(X; €A,;) - P(Xy € Ay)
N—-o0

[s9)
[P, €A,
n=1

o0
=1

= H m(An)

n

Note that we need to use finiteness of N to exploit independence of the X;. We call (E, &, u) =
(RN, o(@), mN) the canonical model for an infinite sequence of random variables of law m.

Theorem. The shift map ©® : E — E defined by ©(x),, = X,,,; is measure preserving and
ergodic.
Proof. For A € €,

#(A) = I]:D(Xl EAI, “ee ,XN EAN)
=P €4y P(Xy € AN)

N
= H m(Ay)
n=1

=P(X; €A PXn41 €EAN)
= u(©71(4))
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so © is measure-preserving. Recall that the tail o-algebra is defined by 7 = () nJn Where 7, =
o({Xx | k > n+ 1}). Note that for all A € €, we have

07(A) = {x € RV | (Xp41,Xn42, .. ) €A} € Ty
Now, if A is invariant, A = @~ "(A) € J,, for all n, so A € J". By Kolmogorov’s zero-one law, u(4) = 0
or u(A) = 1 as required for ergodicity. O

Sn(f)

We can apply Birkhoff’s ergodic theorem to @. If f € I'(u), then 2= — f € L}(u) almost surely.

Since f is invariant and © is ergodic, f is almost surely constant. By von Neumann’s LP-ergodic
theorem, convergence holds in fact in L.

7.5 Strong law of large numbers

Theorem. Let [, [x|dm(x) < co, and let fi xdm(x) = v. Then

e |ty

Proof. Let f(x) = x;. Then f € L'(u), since f |f|du = f x| dm(x) < o0. So by Birkhoff’s ergodic

theorem,
5 B4 7)

where we also use von Neumann’s ergodic theorem to deduce that

7=l =timp(2D) = 2y =y

O
Theorem (strong law of large numbers). Let (X, )neN be independent and identically distrib-
uted random variables such that E [|X;|] < co. Then = Zl 1 X; = E[X] almost surely.
Proof. Inject X from Q to E = RN as before, and notice that
1< X, 4+ X,
[P’(E;Xi—)[E[X]>_/,L({x‘—n —w})_l
O

Remark. The hypothesis E [|X|] < oo cannot be weakened; we see on an example sheet that 1 Z?_l X,

L L=
can exhibit various behaviours. Note that this notion of convergence is stronger than the weak con-
vergence seen in the central limit theorem. The law of the iterated logarithm is that

. X+ + X,
lim sup = z

n  +/2nloglogn

almost surely, and —1 for the limit inferior. In particular, the central limit theorem does not hold
almost surely.

=1
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Corollary. By von Neumann’s ergodic theorem, in the strong law of large numbers, we have
1 n
[EH; > X —E [X]H —0asn — co.
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