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1 Number fields

1.1 Algebraic integers

Recall that if K and L are fields and dimg L < oo, we write [L : K] for this dimension and say that
L/K is a finite extension. If L/K is a finite extension, every element x € L is algebraic over K.

Definition. A number field is a finite extension of Q.

Definition. Let L be a number field. @ € L is an algebraic integer if there exists f € Z[x]
monic such that f(a) = 0. We write O; = {a € L | a is an algebraic integer} for the set of
integers of L.

Lemma. Og = Z.

Proof. Clearly if a is an integer, then f(x) = x — « is a monic polynomial such that f(a) = 0.

Conversely, if « is a rational number, we can let o« = ~ where r and s are coprime. Let f(x) = x" +
N

a,_1 X" 1+..-+q, € Z[x]such that f(a) = 0. Clearing denominators, r* +a,_; 7" s+---+aqs" = 0.

Hence s | r". If s # 1, let p | s be a prime, then p | r, so r and s were not coprime. O

We will soon show that Oy is a ring. In other words, a, 8 € Oy implies a + 3, a8 € O;.

Note that @ € Oy, does not in general imply le Oy Recall from Galois Theory thatif «, 8 € L, and
o4

a, B are algebraic over K, then so is o = 8, af8. The proof from Galois Theory will not work in this
case, since that proof does not provide for monic polynomials.

Definition. Let R C S be commutative rings with a 1.
(i) a € Sisintegral over R if there exists a monic polynomial f € R[x] such that f(c) = 0.
(ii) Sisintegral over R if all « € S are integral over R.
(iii) S is finitely generated over R if there exist elements a;, ... ,a;,, € S such that any element
of S can be written as an R-linear combination of the «;. Equivalently, the map R" — S
given by (ry, ..., 1) 2?21 r;a; is surjective.

Example. Let Q C L be anumber field. Then o € L is an algebraic integer if and only if « is integral

over Z. Oy is integral over Z (once we have proven it is a ring).

Ifay,...,a, € S, we write R[ay, ..., a,] for the subring of S generated by R and the «;. This is equi-
valently the image of the polynomial ring R[x, ..., x,] — S mapping x; to «;.



Proposition. Let S = R[s], where s is integral over R. Then S is finitely generated over R.
Further, if S = R[sy, ..., s, ] with each s; integral over R, then S is finitely generated over R.

Proof. S isspanned by 1, s, s2,...over R. By assumption, there exists ay, ... ,a,_; € R such that s =
n—1 : n—1

Yo @is'. So the R-module spanned by 1, ...,s
s, s"t1 .. and hence is all of S.

is stable under multiplication by s, so contains

LetS; = R[sy, ..., S;_1]- Then S;,; = S;[si;1], and s;,; is integral over R, hence is integral over S;. So
S;41 is finitely generated over S;. Note that if A C B C C where B is finitely generated over A and C
is finitely generated over B, then C is finitely generated over A. Indeed, if b; generate B over A and
c; generate C over B, the b;c; generate C over A. O

Theorem. If S is finitely generated over R, S is integral over R.

Proof. Let ay,...,a, generate S as an R-module. Without loss of generality, we can assume a; = 1.
Lets € S, and consider the function my : S — S given by m,(x) = sx. Then, my(e;) = sa; = ), b;;q;
for some choice of b;;. Let B = (b;;). By definition, (sI — B)(a3, ..., ;)T = 0.

Recall that for any matrix X, the adjugate has the property that adj(X)X = det X-I. Hence, det(sI — B)(ay, ..., )" =
0. In particular, det(sI — B)at; = det(sI — B) = 0. Let f(t) = det(tI — B), which is a monic polyno-
mial in R. As f(s) = 0, s is integral over R. O

Note the similarity to a proof of the Cayley-Hamilton theorem. Note further that this proof is con-
structive.

Corollary. Let Q C L be a number field. Then Oy is a ring.

Proof. Ifa, 8 € Op, then Z[a, 5] is finitely generated over Z. So this ring is integral. O

Corollary. Let A C B C C be ring extensions, where B/A is integral and C/B is integral.
Then C/A is integral.

Proof. If ¢ € C, let f(x) = Z.”:O b;x! be the monic polynomial in B[x] it satisfies, and set B, =

L

Albg, ..., by_1], Cy = Blc]. Then By is finitely generated over A as by, ..., b,_; are integral over A,
and C, is finitely generated over By as c is integral over B,. Cj, is therefore finitely generated over A.
Then the theorem implies that c is integral over A. O

Remark. C could have had infinitely many generators, for instance,
C ={a € C | ais an algebraic integer}

This possibility is why we passed to C,. This kind of proof is common in commutative algebra, ap-
plying a powerful theorem such as the Cayley-Hamilton theorem carefully to find its consequences.

Example. Ogq[;; = Z[i].



1.2 Minimal polynomials

Let K C L be fields. Recall that the minimal polynomial of & € L is the monic polynomial p,(x) €
K[x] of minimum degree such that p,(a) = 0.

Lemma. Let f(x) € K[x] satisfy f(a) = 0. Then p, | f.

Proof. By Euclid, f = p,h + r where r € K[x] has degree less than that of p. Then 0 = f(a) =
pa()h(a) + r(a). If r # 0, this contradicts minimality of deg p,. O

The converse is obvious, so the lemma implies the uniqueness of p,.

Proposition. Let L be a number field and ¢ € L. Then o € Oy if and only if p,(x) € Q[x]
isin Z[x].

Proof. If p, has integer coefficients, this holds by definition. Conversely, suppose a € O, where p,
is the minimal polynomial. Let M D L be a splitting field for p,, i.e. a field in which p, splits into
linear factors. Let h(x) be a monic polynomial which « satisfies. By the lemma, p,, | h, so each root «;
of p, in M is an algebraic integer. By the previous theorem, sums and products of algebraic integers
are algebraic. So the coefficients of p, are algebraic integers. But p, € Q[x], so the coefficients are
inZ. O

Remark. One can also show this from the previous result and Gauss’ lemma.

Lemma. The field of fractions of Oy, is L. In fact, if « € L, there exists n € Z,n # 0 such
that na € Oy.

Proof. Leta € L, and g be the minimal polynomial of . Then g is monic, and there exists an integer

n € Z,n # 0such that ng € Z[x]. So h(x) = ndEgggG) is an integer polynomial which is monic,
n

and this is the minimal polynomial of na, so na € Oy. O

1.3 Integral basis

If L/K is a field extension, and a € L, we write m, : L — L for the map given by multiplication
by a. We define the norm of a to be the determinant of m,, and the trace of « to be the trace of
mg. Recall that if p,(x) is the minimal polynomial of «, then the characteristic polynomial of m,,

is det(xI — my) = pt[xL/ K@l Further, if p,(¢) splits as (t — a;) -+ (t — «,) in some field L' 2 K(«),
then Ni(ay/x(@) = J] & and Trg(gyx(@) = Y o, and Nyjg(a) = (I a)! B K@, Trp () = [L -
K(@)] ) a;.

If L is a number field, then « is an algebraic integer if and only if the minimal polynomial is has
integer coefficients, which is the case if and only if the characteristic polynomial of m, has integer
coefficients. In particular, in this case, Np/g(a) € Z and Try,g(a) € Z. If the degree of L over Q
is 2, the norm and trace are integers if and only if « is algebraic, since these values determine the
characteristic polynomial.



Example. Let L = K(\/E) where d € K is not a square. This has basis 1, \/E fa=x+ y\/E, the

matrix m, is
x dy
y X

Then, Trp/g(x + wWd) = 2x = (x + yVd) + (x — yV/d), and Npx(x + wd) = x2—dy? = (x +

wWad)(x - y/d).

Lemma. Let L = @(\/E), d € Z a nonzero square-free integer. Such a field is called a
quadratic field. Then, O, = Z[\/d] ifd = 2,3 mod 4, and O}, = Z[%(l + \/E)] ifd = 1 mod 4.

Proof x + y\d € Oy if and only if 2x,x2 — dy? € Z. This implies that 4dy? € Z. If y = © with

N
ged(r, s) = 1, then s? | 4d. But d was square-free, so s? | 4s0s = +1,+2. As 2x € Z, we can write
X = g andy = g, for u, v € Z. Therefore, u? — dv? € 47, so u?> = dv? mod 4. Note that u2 must be 0
or 1 mod 4.

So if d is not congruent to 1 mod 4, u?> = dv? has a solution, so u?, v? are both zero mod 4, so u, v are
even. In this case, x,y € Z, so any a € Oy is a Z-combination of 1, \/E

On the other hand, if d = 1, then u, v have the same parity mod 2, so we can write any such values
as a Z-combination of 1, 2(1 + \/E). O

Example. Ifd = —1, Oq;) = Z[i]. Note that the minimal polynomial of %(1 + \/E) ist?—t+ i(l —d),
which has integer coefficients as d = 1.

Definition. Let L be a number field. Then, a basis a;, ..., a,, of L as a Q-vector space is called
an integral basis if Of, = {Zn mia; | m; € Z} = @in:l Za;.

i=1

Example. Q(\/E) has integer basis 1, %(1 + \/E) orl, \/E, depending on the value of d mod 4.

Integral bases are not unique. Given two such bases, there exists a matrix g € GL,(Z) which trans-
forms one into the other. We now aim to show that there exists an integral basis for every number
field.

Recall that if L/K is a finite separable extension, then there exists @ € L such that L = K(«); this is
the primitive element theorem. Note that all extensions in characteristic 0 are separable.

Example. 0(v/2,1/3) = Q(V2 +/3).

This implies that if L/Q is a number field, then there exists & € L such that L = Q(«), isomorphic to
@[x]/( Pe()) where p,, is the minimal polynomial for x. L is a field, so B, < Q[x] is a maximal ideal

in the principal ideal domain Q[x], and p, is irreducible. Let degp, = [L : Q] = n. Then L has
basis 1,a, ..., a™ ! as a Q-vector space.

Lemma. n is the number of field embeddings of L into C.



Proof. p, € Q[x] is irreducible, so gcd(py, px) = 1. S0 pu(x) = (x — ay) ... (x — a;,) has n distinct
roots in C. A field homomorphism Q[x]/( pa(x)) ~ C is automatically Q-linear, so must map x to a
root a; of p,(x) in C. Conversely, there exists such a map for each «;, and they are distinct. O

This allows us to define a new invariant which refines n = [L : Q].

Definition. Let 7 be the number of real roots of p,(x), and let s be the number of complex
conjugate pairs of roots of p,(x). Also, r is the number of field embeddings of L into R, so is
independent of the choice of a. s is therefore also an invariant, asr + 2s = n.

Lemma. Let L/Q be anumber field. Let oy, ..., 0, : L — C be the different field embeddings,

son=[L : Q]. If B € L, then Tryq(B) = 2, 0;(B) and Nyg(B) = [] 0:(B). We call the o;(B)
the conjugates of 8 in C.

Example. If L = Q(\/E) where d is square-free, then a + b\/H and a — b\/& are conjugates.

Proposition. Let L/K be a finite separable extension. Then, the K-bilinear form L X L — K
given by (x,y) — Trpx(xy), known as the trace form, is a nondegenerate inner product.
Equivalently, if «, ..., o, is a basis of L/K, the Gram matrix has nonzero determinant, that is,
Alay, ..., 0,) = detTrL/K(ociocj) # 0. Conversely, if L/K is inseparable, the trace form is the
Z€ero map.

Proof. Letoy,...,0, : L — K be the ndistinct K-linear field embeddings of L into an algebraic closure
K, which exists by separability. Let S be the matrix (o;(«;)). Observe that STS is the matrix with (i, j)

term
n n

>, oklaow(a;) = D oxlaia;) = Tryg(aa;)
k=1 k=1

So A(ay, ..., a,) = det S det ST = (det S). By the primitive element theorem, there exists 6 € L such
that L = K(6). Therefore, 1,6, ...,8" ! forms a basis of L/K. Then

1 0(6) - a(®"h
S=|: : :
(1 Tn(0) - %(9”‘1))

This is a Vandermonde matrix, which gives

(dets? = [ (64(6) - 0;(0) = AQL 6, .., 6"

i<j

This is nonzero; indeed, if 0;(6) = (), then 0;(6%) = 0;(6) for all @, so o; = g}, but they are
distinct.

Moreover, if ay, ..., a, is any basis of L/K, and «f, ... , &}, is another basis of L/K, then
Aal, ... al) = (detA)?Aay, ..., ay)

where af = )’ a;;a; and A = (a;;). Hence, A(x, ..., a,) # O for any basis. O



Remark. L = K(6) and pg(t) = J[(t — 0;(8)). The Galois theory notion of the discriminant of pg,
which is T, B CHCORE (6))?, is exactly the determinant of the Gram matrix A(1,6, ...,6"1), also
often called a discriminant.

Remark. Let L be a number field. If o, 8 € Oy, Try/g(af) € Z. Therefore, the inner product is a

function Oy X0 — Z. lf ay, ... ,a, € L form a basis of L over Q, and «a;, ..., a;, are algebraic integers,
then A(ay, ..., @,) is a nonzero integer.

Theorem. Let L/Q be a number field. Then there exists an integral basis for O : there exist
oy, ..., 0ty € Op such that O = P Za; ~ 7" and L = P Qq; ~ Q".

Proof. Let ay, ..., a, be any basis for L as a Q-vector space. We have shown that there exists n; € Z
such that n;a; € Op. Therefore, we can assume «a;, ..., a, € O without loss of generality. Here,
A(ay, ... , ) is a nonzero integer.

Choose ay, ..., ay, such that A(ay, ..., &) has minimum absolute value. Suppose the result is false, so
let x € O and x = ) A;a; where 4; € Q, and suppose that some 4; is not an integer. Without loss of
generality let A; & Z. Write 4 = n; +¢;,and 0 < g < 1. Now, let

Ay =X —moy =0 + 4,0, + -+ Aa,

Noteaj € Or. Thenaj, ay, ... ,a, is abasis of L containing only the elements of O;. But A(aj, ay, ..., &) =
e2A(ay, ..., a,) contradicting the minimality assumption. O

Remark. If af, ..., a;, are any other integral basis of Oy, then there exists g € GL,(Z) such that

g(a}) = a;. Butdetg € GL(Z) = {£1}, so (detg)? = 1, giving A(ct}, ... , o)) = A(ety, ..., ty,), s this is
an invariant.

Definition. The discriminant of a number field L/Q is the invariant D; = A(ay, ..., ay,).

Example. Let L = @(\/E) where d is square-free. Then, d = 2,3 mod 4, then 1, \/E is an integral
basis. If d = 1 mod 4, then 1, %(1 + \/E) is an integral basis. Then,

2
1
DL=[det<1 ﬁ)] =4d; Dy = det(1

1 —vd
Remark. Results on quadratic fields are often phrased more uniformly if written in terms of D; . Note
also that L = Q(+/Dy). An integral basis is 1, @ regardless of the value of d.

So the discriminant is either 4d or d.



2 Ideals

2.1 Idealsin the ring of integers

Lemma. Letx € Oy, where Lisanumber field. Then x isa unitin Oy ifand only if Ny /o (x) =
+1. We write Oj for the set of units of Or.

Proof. If x is a unit, then as the norm is multiplicative, N(xx~!) = 1 so N(x)N(x~!) = 1. So N(x) =
+1. Conversely, letoy, ..., 0, : L — Cbe the distinct field embeddings. Let L C C be the containment
given by 0y. If x € Op, then N(x) = x0,(x) ... 0,(x). So if N(x) = %1, we have i =+ H?:z a;(x).

This is a product of algebraic integers, hence an algebraic integer. So x™! € ;. O

Recall thatif x € Oy, itisirreducible if it does not factorise as ab where a, b € O not units. If x = uy
where u is a unit, we say x and y are associate. Many number fields have rings of algebraic integers
which are not unique factorisation domains.

Example. Let L = Q(\/—_S) Here, Oy, = Z[\/—_S] Note that 3 -7 = (1 + 2\/—_5)(1 - 2\/—_5), and
N(3) =9,N(7) = 49,N(1 + \/—_5) = 21. These are not associates. We claim that 3,7,1 + 2\/—_5 are
irreducible, so O}, is not a unique factorisation domain. If this were not the case, 3 = aa, where
a = x+y\V=5,but N(3) = 9 = N(a)N(@) = N(a)? so N(a) = x2 + 5y* = +3, but there are no integer
solutions to this equation. All of the other factors are similarly irreducible.

Remark. In any number field, one can factorise any « € Oy, into a product of irreducibles by induc-
tion on |[N(a)|, but this factorisation is not in general unique. An idea due to Kummer is to measure
the failure of unique factorisation by studying ideals a < Oy.

If xq,...,x, € O, we write (X, ..., x,,) for the ideal ), x;O; generated by the x;. We will consider
products of ideals, rather than products of elements.

Definition. If a,b < Oy, define

a+b={x+y|x€a,yeb} ab={2x,~yi X; € a,y; EB}
i
One can check that this is an ideal, and that products are associative.

Example. (xj,...,%,)(V1s .. ¥m) = ({Xy; | 1 <i < n,1< j < n}). For instance, (x)(y) = (xy), so
the product of principal ideals is principal.

Example. Consider Z[\/g] = Or, and the ideals p; = (3,1 + 2\/3), p, =(3,1- 2\/3). We obtain
P, = (9,3(1 = 2¢/5),3(1 + 24/5),21) = (3). So the ideal (3) factors as p,p, in O;. Note that
37 =1+ 24/-5)1 — 2y -=5),s0 Z[\/g] is not a unique factorisation domain.

Recall that an ideal p < R is prime if R/p is an integral domain, so p # Rand forall x,y € R, xy € p
implies x € p or y € p. In this course, we will also define that a prime ideal is nonzero.

Lemma. If a < O, it contains an integer, and moreover, OK/a is a finite abelian group.



Proof. Leta € a,a # 0. Let po(x) = x™ + a1 X! + --- + a4 € Z[x] be its minimal polynomial,
and ay # 0. Then ay = —a(@™! + a,_;a" ! + -+ + aya + @;). Butay € Z, a € a, and the other
factor lies in Og. So ay € a as a is an ideal. Hence a,Og C a, so OK/aO Ox surjects onto OK/a. But

for any integer d, Ok, dOg = Zn/dzn = (Z/dz)n is a finite set, so OK/a is finite. O

Corollary. a ~ 7", as Og ~ Z" and the quotient is finite.
Therefore, nonzero ideals in Ok are isomorphic to Z" as abelian groups.

Proposition. (i) O is an integral domain.
(i) O is a Noetherian ring.
(iii) O is integrally closed in K (which is the field of fractions of O): if x € K is integral
over Og, it lies in Og.
(iv) Every (implicitly nonzero) prime ideal is maximal. We say that the Krull dimension of
OK is 1.

Remark. A ring with these four properties is called a Dedekind domain. Many of the results in this
section hold for all Dedekind domains.

Proof. Part (i). O C K, and K is a field.

Part (ii). We have shown that Og ~ 7", where n = [K : Q], so O is finitely generated as an abelian
group, so is certainly finitely generated as a ring.

Part (iii). Oy is integral over Z by definition, so if x is integral over Oy, it is integral over Z. So x is
an algebraic integer, so lies in O.

Part (iv). If p is a prime ideal, then by the previous lemma OK/p is finite and an integral domain, as
p is prime. All finite integral domains are fields, hence p is maximal. O

Example. Consider R = C[X,Y]. Then (x) is prime but not maximal, since (x) C (x, y).

2.2 Unique factorisation of ideals

We aim to show that every ideal in Ok factors uniquely as a product of prime ideals.

Definition. b divides a if there exists an ideal ¢ such that a = bc. We write b | a.

Example. (5,1 + 2\/5) | 3)in OQ(\/_—S). 37| 6Zas3Z 27 = 6Z.

Note that bc C b, as b is an ideal. So if b | a, then a C b. We will show the converse, thata C b
implies b | a. This allows us to prove results about division by using containment. Note that prime
ideals are maximal, which allows us to use the containment relation.

Lemma. Let p be a prime ideal in a ring R, and let a, b < R be ideals. Then if ab C p, either
aCporbCp.



Proof. Otherwise, there existsa € a \ pand b € b\ p, with ab € p. But p is prime giving a
contradiction. O

Lemma. Let a < Ok be a nonzero ideal. Then a contains a product of prime ideals.

Proof. Otherwise, as Ok is Noetherian, there exists a ideal a which is maximal with this property. In
particular, a is not prime. So there exists x,y € O with x or ynotinabutxy € a. Soa ¢ a + (x).
But then, a + (x) contains a product of prime ideals py, ..., p, with p; ... p, C a + (x). Similarly, there
exist prime ideals ¢y, ... g5 such that q; ... q; C a + (). Then,

P prdr g5 S (a+ (0))a+(¥) =a+(xy)

But xy € a, giving a contradiction. O

The main proof will use the idea that we can formally introduce the group of fractions of the com-
mutative monoid of ideals. The object {y € K | ya C Ok} will represent the inverse of a.

Lemma. (i) Let0 # a < Ok be an ideal. If x € K has the property that xa C a, then
X € OK
(ii) Let 0 # a < Ok be a proper ideal. Then, O C {y € K | ya C Ok} contains elements
which are not in Og. Equivalently, 1V € K | ya € Ok }/OK # {1} as abelian groups.

Example. Let O = Z and a = 3Z. Then, part (i) shows that if % -3 € 37, then % € Z. Part (ii)

1
o a a _1_, . ea 1 -Z, _ 7
shows that if . 3 € Z then - IS 3Z, for instance, if L= we have 37/ = /57 # {1}.

Proof. Part (i). a C O is finitely generated as an abelian group, as it is isomorphic to Z". Let
ay, ..., be a Z-basis of a. Consider m, : a — a given by multiplication by x € K. We write
X =D, q jj, where by assumption, a;; are integers. Hence,

a
(xI—A)( : )=0
An

where A = (a;;). So det(xI — A) = 0, so x is integral over Z; that is, x € Ok.

Part (ii). If this holds for a, it certainly holds for all ideals a’ C a. So without loss of generality, let
a be maximal, so a = p is a prime ideal. Let a € p be nonzero. By the previous lemma, there exist
prime ideals p, ..., p, such that p, ... p, C (a) C p. Suppose that r is minimal. By the first lemma in
this subsection, there exists i such that p; C p, and without loss of generality i = 1. So p; C p. But
p; is maximal, so p; = p.

Since r is minimal, p, ... p, € (a). Fix 8 € p, ... p; \ (@). Then Sp C p(p, ... p;) C (), but g € ().
So, dividing by a, we obtain gp C (1) = Ok, but g & Og. O

Definition. A fractionalidealisan Og-module X such thatX C K and X is finitely generated.

10



={x € K| xa C Og}is an Og-module. If a € a \ {0}, then aX C O = Z" wheren = [K : Q].
Multiplication by « is an isomorphism X — X, and submodules of Z" are finitely generated abelian
groups, so X is finitely generated as an abelian group, hence as an Og-module. Hence X is a fractional
ideal.

Lemma. q C K is a fractional ideal if and only if there exists a nonzero constant ¢ € K such
that cq is an ideal in Og.

Proof. Suppose cq is an ideal. Then q C K, and multiplication by c is an isomorphism q — cq as
Og-modules, so it is finitely generated as q is.

Suppose q is a fractional ideal. Then, xq, ..., X, generate q as an Og-module. But x; € K so x; = %
n

where y; € Ok, n; € Z. Let ¢ be the least common multiple of the n;, and then cq C O, and is a
submodule of Ok, and hence is an ideal. O

Corollary. q isisomorphic to Z" as an abelian group.

Proof. We have shown that all nonzero ideals in Ok are isomorphic to Z" as abelian groups, where
n = [K : Q], and multiplication by c is an isomorphism q — cq. O

Ideals are sometimes called integral ideals to distinguish from fractional ideals. One can define mul-
tiplication of fractional ideals in the same way that we defined it for integral ideals.

Definition. A fractional ideal q is invertible if there exists a fractional ideal r such that qt =

(L=

Proposition. Every nonzero fractional ideal q is invertible, and its inverse is

l={x€eK|xqC Ok}

Remark. q = —a T = —b where a, b are integral ideals in Ok, and n,m € K*. Then qr = 1 if and

only if ab = (nm) Therefore the proposition is equivalent to the statement that for every a < Ok,
there exists an ideal b < Ok such that ab is principal.

Proof. qisinvertible if and only if a is invertible, where nq = a as above. So, without loss of generality,
let q be an integral ideal. If the proposition is false, there exists some integral ideal in Og. As Ok
is Noetherian, there exists a maximal such ideal a # Og. So every ideal a’ 2 a is invertible. Let
b = {x € K| xa C Ok}, which is a fractional ideal. O C b hence a C ab. If a = ab, then part (i)
of a previous lemma implies that b C Og. Part (ii) of the same lemma implies b \ Ox # @, which
is a contradiction. So a € ab C O. Then ab is invertible by assumption, so a is invertible, giving
a contradiction. Finally, ¢! C {x €K |xq C Og} = X,s0qq7 ! = Og C gX C Ok, so we have
equality: ¢~ = X. O
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Corollary. Let a,b, ¢ < Ok be integral ideals, and let ¢ # (0). Then,
(i) bCa < bcCag

(ii) a|b < ac]|bg

(iii) a| b < bCa.

Proof. The forward direction of parts (i) and (ii) are clear; the backward direction follows from multi-
plication by ¢~!. The forward direction of part (iii) has already been seen. Now, suppose b C a. By the
proposition above, there exists ¢ such that ac = («) is principal. Then, b C a if and only if be C («) by
part (). a | bif and only if () | be by part (ii). But if be is generated by 34, ..., B, bc C (a) means that
each ; is divisible by a. More precisely, 8; = 8;a for some 8; € Ok. So (81, ..., ) = (B, ..., Br)(@)
proving part (iii). O

Remark. Part (iii) is straightforward if a is principal, and invertibility via fractional ideals allows us
to reduce to this case.

Theorem. Let a < Ok be a nonzero ideal. Then a can be written uniquely as a product of
prime ideals.

Proof. If a is not prime, it is not maximal. Let b 2 a be an ideal in Og. Then a = bc for some ideal ¢
containing a by part (iii) of the previous corollary. We continue factoring in this way. As the ring is
Noetherian, this process will always terminate, as we produce an ascending chain.

For uniqueness, we have shown that p | ab implies p | a or p | b. Soif p; ... p, = qy ... g5 with p;, q;
prime, we have p, | q; for some i. Soleti = 1 without loss of generality, so q; C p,. But q; is maximal,
so q; = p;. Multiply by p7! to obtain p, ... p, = qs ... qs, then by induction, the p; and q; match. [J

Corollary. The nonzero fractional ideals form a group Ix under multiplication. Iy is the
free abelian group generated by the prime ideals p < Og. In other words, any q € Iy can be
written uniquely as a product of prime ideals and their inverses. q € Iy is an integral ideal if
and only if all of the exponents are nonnegative.

Proof. Follows from the previous theorem after writing q = ab~! where a,b < Ok. O

2.3 Class group

Observe that we have a map K* — Ix mapping x to the principal ideal (x). This map is a group
homomorphism, as aff — (x)(f). Its kernel is the set of @ € K* such that (a«) = (1) = Ok, which is
the set O of invertible elements of Og. The image is the set of principal ideals Px.

Definition. The class group of a number field K is Clg = K/PK, the cokernel of the map
K" — IK'

If a € I, we write [a] for its equivalence class in the class group, so [a] = [b] if and only if there
exists y € K* such that ya = b.

12



Theorem. The following are equivalent.
(i) Og is a principal ideal domain;
(ii) Ok isa unique factorisation domain;
(iii) Cly is trivial.

Proof. (i) holds if and only if (iii) holds by definition. (i) implies (ii) is a general fact from IB Groups,
Rings and Modules. The proof that (ii) implies (i) remains. Let p be a prime ideal in Ok, and x €
p a nonzero element of this ideal. We can factorise x into irreducibles x = «; ... @, uniquely by
assumption. As p is prime, some «; lies in p. Then (¢;) C p, and as Ok is a unique factorisation
domain and ¢; is irreducible, («;) is prime. But prime ideals are maximal, so («;) = p asrequired. [

The following sequence is exact.

1 > Ok > K > Ix > Clg > 1

We can now state the main theorems of the course, which are:
(i) the class group is finite;
(i) Oy is the direct product of the roots of unity in K with Z"+5-1,

Example. (3,1 + 2\/§)(3, 1- 2\/§) = (3),s0 (3,1 + 2\/§) and (3,1 — 2\/3) are inverse in the class
group.

Example. Let[L : Q] = 2,s0L = @(\/E) ford € Z,andd # 1 mod 4. Leta < O, s0a ~ 72
giving a = (o, §) as an O;-module. We can always assume 8 € Z. Indeed, write &« = a + b\/& and
B=a+ b'\/d. Assume |a| + |a’| is minimal, so without loss of generality a > a’ > 0, and if a’ # 0,
a — f3, 8 has smaller |a| + |a'|.

Example. In a quadratic field a = (a, b) where b € Z. Then (b, a)(b, @) is principal.

aa = (b, ba, ba, aa) = (b, ba, b (a + «), N(a)) = (ba, c)
N —
Tr(ea)
where ¢ = ged(b?, Tr(a), N(a)). Let x = b%x € L. Tr(x) = @ € Z,and N(c) = N(%a)

2 —_ _
b N@) € Z,s0 x € Oy, giving ¢ | ba, so aa = (c). In particular, (b, @), (b, «) are inverse in the class

C C
group.

_ b2N(a) _
=— =

2.4 Norms of ideals

Definition. Let L be a number field, and let [L : Q] = n. Let a < O;, be a nonzero ideal.
The norm of a is |OL/a|.
By Lagrange’s theorem, N(a) - 1 = 0in OL/a. Hence N(a) e anZ.

Example. Let p be a prime. N((p)) = }Zn/(pz)n = p".

13



Proposition. Let a,b < O be nonzero ideals. Then, N(ab) = N(a)N(b).

Remark. By unique factorisation of ideals, it suffices to show that
N(Y" .. pi") = N(p)™ ... N(pn) ™
for p; distinct prime ideals. To show this, we need that

6) OL/pclzl i = OL/ptlzl OL/ptrzln by the Chinese remainder theorem.
-1
(ii) |Ol/pe‘ = )OL/p| . ‘p/pz( P /pe which is a general fact, and this is equal to ‘OI‘/pr as

a
P/ 41 is a one-dimensional vector space over the field OL/p. This fact is specific to number

fields (or more generally, Dedekind domains). For a counterexample, consider Fp [X,Y] and
p=(xy).
The following proof uses the above approach obscurely but quickly.

Proof. By unique factorisation it suffices to show the result for b = p where p is prime. a # ap
by unique factorisation, so let « € a \ ap. We claim that the homomorphism of abelian groups
C)L/p - a/ap mapping x — ax is an isomorphism. Then,

s (O%p)/(%p)

¥ o N(ap)
N(a)=‘ I/Cl|= ‘a/ ’

ap

but ‘a/ap‘ = ‘OL/p| = N(p) by the claim, proving the proposition. We now prove the claim.

We show the homomorphism is injective. (o) C a so () = ac for some ¢ < O;. Suppose x has
ax € ap, so x + p is in the kernel. Then, xac C ap. Dividing by a, x¢ C p. But p is prime, sox € p
or¢ C p. But ¢ C pimplies o € ap, contradicting our choice of a. So x € p, so the map is injective as
required.

We show the homomorphism is surjective. We want to show (&) + ap = a. We know that ap ¢
() + ap C a. Multiplying by a1, we obtain

PG (@) +apa~ €O

But p is a prime and hence maximal. Therefore, ((a) + ap)a— = Oy, so () + p = a, so the map is
surjective. O

Lemma. Let M C Z" be a subgroup. Then M ~ Z" for some 0 < r < n. Suppose further that

r = n. Letey, ..., e, beabasisof Z" and vy, ... , v,, be a basis of M over Z. Then, Z"/M‘ =detA
where A = (a,-j) and Uj = Z aje;.
Proof. We can choose abasisvy, ..., v, of M such that A isupper triangular. Then, [detA| = |a;; ... @yl
O
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Lemma. Leta < Oy be a nonzero ideal, and n = [L : Q]. Then,
(i) There exist aty, ..., a, € asuch thata = {Z?:l ria; | r; € Z}, and ay, ..., a, are a basis
of L/Q.
(ii) For any such ay, ..., a, € a, A(a, ...,a,) = N(a)’D;, where Dy is the discriminant of

L, and where A(ay, ..., ) = det Tr(a;a;) = (det(a,-ocj))z.

Proof. Part (i). The result holds for O;, and if d € a is an integer, such as d = N(a), then dO; C a C
Oy, so as abelian groups, (dZ)" Ca C 7", s0oa ~ Z".

Part (ii). Let af, ... ,a;, be an integral basis of @;. Let A be the change of basis matrix from ay, ...,
2
t0 t}, ... , oty Then A(ay, ..., @) = (det AYPA(, ..., ap) = |OL/g| Dy by the lemma. O

Corollary. If ay, ..., a, generating a as a Z-module has A(«y, ..., a,) square-free, then a =
Op, and Dy is square-free. In particular, if L = Q(a) and a € O where the discriminant
disc(a) = A(1,a, ..., 1) is square-free, then Z[a] = Op. More generally, if « € O and
L = Q(a), and d € Z is a maximal integer such that d? | disc(a), then Z[a] C O, C éZ[oc].

Lemma. Leta € O be a nonzero algebraic integer. Then N((«)) = |N/q(@)|-

Proof. Letay, ..., a, be an integral basis of Or. Consider

Aloya, ..., o,Q) = (det(al-(ocjoc)))2
= (det((o30;)(01)))"

=(]]oi(@- det(aiocj)>
i=1

= N(OC)ZA(OQ: eee s O‘n)

2

But a;q, ..., o, is a basis of (a), hence this is equal to N((«))?D;. So N((a))?> = Npo(a)?, but
N((«)) > 0, giving the result as required. O

2.5 Prime ideals

Lemma. Let p < O be a prime ideal. Then there exists a unique prime p € Z such that
p | (p) = pO.. Moreover, N(p) = p/ for some integer 1 < f <n =[L : Q].

Proof. p N Zisanideal in Z, hence principal. So for some p € Z, p N Z = pZ; we claim p is prime.
If p=abwitha,b € Z thenasp € p,aorblieinpnZ,soaorbliein pZ,sop | aorp | b.
By factorisation of ideals, (p) = pa for some a < ;. Taking norms, N((p)) = N(p)N(a). But
N((p)) = p",soN(p) = p/ for1 < f < n. O
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Remark. Every prime ideal in Oy is a factor of (p) <« Z where p is a prime. Hence, we can factorise
(p) as p;' ... py" for each prime p € Z to identify all prime ideals in ;.

Let p € Zbe a prime. Consider the map q: O — OL/pOL’ which is a surjection. By the isomorph-
ism theorem, there is a bijection I — ¢~!(I) with inverse J J/( p) between the set of ideals in

OL/pOL and ideals of O, containing pO;, or equivalently, ideals p < Oy with p | (p). The bijection
maps prime ideals to prime ideals.

Under certain assumptions, we can determine the prime ideals in OL/( p) exactly.

Theorem (Dedekind’s criteria). Let o € O have minimal polynomial g(x) € Z[x]. Suppose
that Z[a] C O, has finite index |OL/Z[a]‘ not divisible by p. Let g(x) = g(x) mod p € Fp[x].

Let g(x) = Eil Ei' be the factorisation of g(x) into irreducibles in Fy[x]. Then pO; =
(p) = pi' ... pr" where p; = (p, 9;(«)) is the prime ideal in O where we choose any monic
polynomial ¢;(x) € Z[x] which has reduction mod p equal to ¢;(x).

Proof. First, we show that each factor ¢, defines a prime ideal in A [a]/pz[ al ‘We will then relate this

to prime ideals in OL/pOL- We have a surjective ring homomorphism Z[x] — ”:P[x]/a.
1

We claim that the kernel of this homomorphism is the ideal generated by p, ;. We can factor the
map as Z[a] — F,[x] — [Fp[x]/a_. It is clear that p, ; lie in the kernel. If f ~ 0, then ¢, | f so there
1

exists h € Fp[x] such that f = Eiﬁ, so f = @;h + ps for any lift h of h of the same degree. So the
kernel is precisely (p, ;).

We can alternatively factor the map as Z[«a| — Z[x]/g(x)z[x] - [Fp[x]/a. ‘We claim that the kernel
1
of the map Z[a] — Fpla] = [Fp[x]/a is the ideal q; < Z[a] generated by p, ¢;(). The proof of this
L
claim is left as an exercise. Therefore, Z[“]/qi ~ [Fp[x]/a(x). But @,(x) is irreducible by hypothesis,
1
o) Fp[x]/a_ (x) is a field, hence q; is a prime ideal. Therefore, [Fp[x]/a ~ [, where g = p/i is some
1 1
Z[oc]/qi) = '[Fp[x]/ai(x)' = p/i where f; = deg®,.

power of p. In particular,

Now, if Z[a] = O, the first part implies that p; = q; is a prime ideal containing p, and N(p;) = p/i.
Suppose p 1 )OI/Z[OC]|' We claim that the inclusion map defines an isomorphism ¢ : Z[“]/pz[ a] =

O . . . N . Z . O
L/pOL' This implies that there is a bijection between ideals of [a]/pZ[oc] and ideals of L/pOL'

Hence, there is a bijection between ideals of Z[«] containing p and ideals of @}, containing p, where
this bijection maps an ideal (p,y) < Z[a] to p < O generated by the same elements under the
inclusion map. In other words, it maps an ideal q to qO;. The inverse bijection maps p to p N Z[«].

Moreover, OL/p ~ Z[O‘]/p N Z[a] hence N(p;) = piee®i = pfi for p; as above.

We now prove the claim. The map OL/Z[ o] = OL/Z[oc] given by multiplication by p is an isomorph-
ism. It is injective as the kernel is a p-group so must be trivial, and OL/Z[O(] is a finite abelian group,

so this is an isomorphism. But the kernel of the map ¢ : Z[“]/pz[ ] = OI/pOL isZlaln pOL/pZ[a],
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which is precisely the kernel of the map given by multiplication by p. So tis injective.

tis surjective if O; = Z[a] + pOr. The map given by multiplication by p is surjective, so ¢ is indeed
surjective, and hence an isomorphism as required.

We have now constructed prime ideals p; = (p, ¢;(a)) < O containing p with norm N(p;) = p/i
with f; = degg;,. We must now show that there are no other ideals containing p. Now, pfi =

(p, pi(@)¥ C (p, pi(a)¥), s0
Pt 0 C (01 (@)) .. (P, (@) C (1 ()% .. pr(@)°)

But ¢7' ... 7" = 5091 ... 97" = g+ ps. So (P,_§01(Of)er1 e pr(@)r) = (lg,g(a)) = (p) as g(a) = 0. So
p' .. p C(p).But[L: Q] =n=degg=degg =D ,_ e;degp, = Y,,_, e;f;. Taking norms,

NS pi) = [ NGt = pafitseeds = pt = N((p)

i=1
One can show that if a C b and N(a) = N(b), then a = b. So the two ideals are equal.

Note that if i # j, Ei,aj are coprime in Fp[x], so p; + p; = (p, 9i(@), pj(@)) # p;, S0 p; # p;. O

Note that since we choose a monic polynomial, deg ¢;(x) = degg;(x). Different choices of ¢;(x)
give the same ideal as p is in the ideal. p; # p; ifi # j, and Pl ... p;" is the factorisation of (p) into
irreducibles.

Remark. Most o € Oy, have OL/Z[OC] finite, but the condition that p } |OL/Z[O(]| is restrictive.

Example. Let L = Q(y/—11), and let us factorise (5) C Oy. As —11 = 1 mod 4, Z[\/—11] # O;. So
Z[\ —11] hasindex2in O, and 5 } 2, so Dedekind’s theorem applies. Modulo 5, x?+1 = (x—2)(x+2),

50 (5) = (5, -2 + V=11)(5, =2 — Y/—11).

Example. In general, let L = @(\/E) where d is square free and not equal to zero or one. Let p be

an odd prime. Then, Z[\/E] C Oy has index 1 or 2, and both are coprime to p. Factorising x*> — d
modulo p, there are three cases.

« Suppose there are two distinct roots modulo p of x> — d. Then, using the Legendre symbol,

(:—j) = 1. In this case, x> —d = (x —r)(x +r) for some r € Z. By Dedekind’s theorem, p = p; p,

where p; = (p, \/E —r)and p, = (p, \/E + r). In this case, N(p;) = N(p,) = p; we say p splits
in L/Q.

« Suppose x? — d is irreducible modulo p. Then (g) = —1. (p) = p is prime; we say p is inert in
L.

« Suppose x> — d has a repeated root, so d = 0 modulo p. Then (g) = 0. In this case, Dedekind’s
theorem gives (p) = p* where p = (p, \Vd). We say that p ramifies in L.

Now consider the case p = 2.

Lemma. 2 splits in L if and only if d = 1 mod 8. 2 is inert in L if and only if d = 5 mod 8. 2
ramifies in L if and only if d = 2, 3 mod 4.
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Proof. If d = 1 mod 4, then O; = Z[«a] where a = %(1 + \/E). The minimal polynomial of « is
x> —x+ i(l —d). Reducing modulo 2, if d = 1 mod 8 then this is x(x + 1) so 2 splits. If d = 5 mod 8
then this gives x? + x + 1 which is irreducible, so 2 is inert. If d = 2,3 mod 4, then O, = Z[\/E] and
x? — d is either x? or (x — 1)?, which ramifies. O

Recall that Dy = 4d ifd = 2,3 mod 4, and D;, = d ifd = 1 mod 4.

Corollary. LetL = Q(d). p | Dy, if and only if p ramifies in L.
Proof. Case analysis. O

Definition. Let (p) = pi' ... p;" be the factorisation of (p) into irreducibles in O, where
p/i = N(p;). We say that

+ p ramifies if some e; is greater than 1;

» pisinertifr =1 and e; = 1, so (p) remains prime;

» psplits or splits completelyifr =nande; = f;=---=¢, = f, = L.

Corollary. Let pbe aprimeand p < n=[L : Q). Let Z[a] C Oy, have finite index coprime
to p. Then p does not split completely.

Proof. Let g be the minimal polynomial of a. Suppose p splits, so g has n distinct roots in F, by
Dedekind’s theorem. But n > p, so this is not possible. O

Example. Let L = Q(a) and a has minimal polynomial x> — x* — 2x — 8. On an example sheet, we
show that 2 splits completely in O;. Hence, for all § € Oy \ Z, Z[3] C O has even index.

Note that Dedekind’s theorem allows for the factorisation of (p) for all but finitely many p, as if
a € O with OL/Z[ al finite, only finitely many primes p divide its order.

Theorem. For all primes p, we have (p) = pi'...p;" with Ol/pi = [Fp[x]/a(x) where
1
®; € [Fp[x] is an irreducible polynomial of degree f; and N(p;) = pfi, and OL/pOL ~
r F.lx _ r
Hizl ol ]/ﬁl(x) = Hi:1 [prr

Dedekind’s theorem implies that this holds if there exists « € O with p } |OL/Z[oc]| < oo.

Theorem. p ramifies in L if and only if p | Dy.
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3 Geometry of numbers

3.1 Imaginary quadratic fields

LetL = @(\/E) where d is square-free and d < 0. O; = Z[a] where o = %(1 + \/E) ora = \/E
Choose a square root of d in C to construct an embedding of O; into C.

Suppose A = Zv; + Zv, C R? where R? is equipped with the Euclidean norm, and v;, v, are linearly
independent over R. Let A(A) be the area of the parallelogram generated by v, and v,. If v; =

a;e, + b;e,, we have
a @
det <b1 bz)

Minkowski’s lemma is that a closed disk S around zero contains a nonzero point of A whenever the
area of S is at least 4A(A). More precisely, there exists @ € A such that 0 < |oc|2 AW Note

that this condition depends only on the area of the parallelogram, not its shape. This will be proven
shortly.

AN) =

We will apply thisto A = a < O for L = Q(d), d <0 square-free. Let \/d € C be chosen with
positive imaginary part to embed Oy in C.

Lemma. (i) 1fo¢ =a+ b\/E € Or, then |oc|2 =(a+ b\/a)(a — b\/g) = N(a);

(ii) A(OL) = -+/[Dr};
(iii) A(a) = N(a)A(OL)
(iv) A(a) = |A(oc1, oc2)| 2 where a4, @, are an integral basis for a.

Proof. Part (i) is clear. (iv) implies (ii) and (iii). We will prove (iv) later in a more general setting,
giving the justification for the coefficient %

We now prove (ii) and (iii) manually, without appealing to (iv). For part (ii), Oy has basis 1, a.
Therefore, A(O;) = %\/E or \/E, which is exactly %\/ |Dy|. Part (iii) is a variant of the fact that
Ay, ..., a,) = N(a)’Dy. O

4A(a) 2vIDL|

Minkowski’s lemma implies that there exists @ € a with N(a) < —— = N(a)Cy, where C, = -
is Minkowski’s constant. Since a € a, (o) C a. Hence (a) = ab forsome b < O;. SoN(a) = N((a)) =
N(a)N(b), so N(b) < C;.

Recall that the class group of L is II/PL, the quotient of fractional ideals over principal ideals. Then,
[b] = [a7!] € Cl;. Replacing a with a=!, we have shown that for all [a] € Cl;, there exists a
representative b of [a] which is an ideal with N(b) < ND_L = C;. But for all m € Z, the number of
ideals a < Oy, with N(a) = m is finite; indeed, if N(a) = m then m € a so a | (m), but there are only
finitely many ideals dividing (m), as they biject with ideals in OL/m(DL ~ (Z/mz)n.

Therefore, we have shown that Cl; is finite, and generated by the class of prime ideals dividing (p),

for p a prime integer less than 2‘ 1D = Cy. Indeed, ifa = ... py" with N(a) < Cy, then N(p;) <
Cr.
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2/7

Example. Letd = —7. Then D; = -7, and - < 2. So there are no primes p < Cy, giving

Cl; = {1}. In particular, Oy, is a unique factorisation domain. Similarly, d = —1, —2, —3 give unique

factorisation domains.

Hs
T

dividing (2). Note that (2) = (2,1 + v/ —5)? by Dedekind’s theorem.

Example. Letd = —5. Here, D; = —20, and 2 < < 3. Hence, Cl; is generated by prime ideals

We now must check if (2,1 + 4/—5) is principal. If (2,1 + v —=5) = (B), then N(8) = 2. But 8 =
a + by/=5,s0 N(B) = a? + 5b%, which is not satisfiable by integers. So (2,1 + v/ —5) is principal but
its square is, so Cl;, = Z/ZZ-

Example. Letd = —17, then 5 < C; < 6. Cl; is generated by prime ideals dividing (2), (3), (5).
Modulo 2, x> + 17 = x* + 1 = (x + 1)%, 50 (2) = p? where p = (2,1 +1/—17). Modulo 3, x*> + 17 =
x2 =1 = (x + 1)(x — 1), giving (3) = qq where q = (3,1 +1/=17),q = (3,1 — Y/—17). Modulo 5,
x% 4+ 17 = x% + 2 which is irreducible, so (5) is inert, so is trivial in the class group.

Hence Cl;, = (p,q,9) = (b,q). We could compute powers of p and q until we obtain all nontrivial
relations between them. A more efficient way to compute Cl; in this case is to find principal ideals
of small norm which are multiples of 2 and 3 to find the relations. Consider (1 + \/—_17), which has
norm N(1+4/—17) = 18 = 2- 32, Note that 1 ++/—17 € pn g so (1 ++/—17) = pqr where € (p, q).
We can show that t = q. This shows that [p] = [q]~2 in Cl;. So Cl; is generated by [q]. So it is cyclic,
and we can show [q]? # 1, as D is not principal, but [q]* = [p?]™! = 1. So Cl;, = Z/42.

Theorem. Let L = Q(\ —d) with d > 0.
(i) Oy is a unique factorisation domain ifd € {1, 2,3,7,11,19,43,67,163};
(ii) there are no others.

3.2 Lattices

Definition. A subset X C R" is called discrete if for all K C R" compact, K N X is finite.
Equivalently, for all x € X there exists € > 0 with B,(x) N X = {x}.

Recall that K C R" is compact if and only if it is closed and bounded.

Proposition. Let A C R". Then the following are equivalent.
(i) A is a discrete subgroup of (R", +);

() A= {2:21 nix; | n; € Z} where X, ..., X,, are linearly independent over R.

Example. Z\/E + Z\/g C Ris not discrete. If A = a < Oy, is an ideal where L = Q(v/—d) and d > 0,
A is discrete.

Proof. (ii) implies (i). Observe that if g € GL,(R), then fﬁA is discrete if A is. gA satisfies (ii) if and
only if A does. Suppose property (ii) holds, so A = {Z nix; | n; € Z}. There exists g € GL,(R)

i=1
such that gx; = e; where the e; form the standard basis of R". Clearly, @:Zl Ze; is discrete.
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(i) implies (ii). Let y,, ...,y € A which are R-linearly independent such that m is maximal. Note
that m < n. Also,

Ay ER,zZ, €AN>0

{i e R} - {i Aue

i=1 i=1

This is the smallest R-vector subspace of R” containing A. Let X = {Z:Zl Aiy; | 4; € [0, 1]}. This is
closed and bounded, hence compact. A is discrete, so X N A is finite.

Consider the subgroup 2" = @?;1 Zy; C A. Wecanwrited € Aasd =49+ 1, where4g € XN A
is the integral part and 4, € 2" = @:il Zy; is the fractional part. Hence, |A/Zm| < |IXNnAlis
finite. Letd = ‘A/Zm‘, so by Lagrange’s theorem, d = 0 in A/Zm, so dA C Z™. In particular,
7" CAC éz'". The structure theorem for finitely generated abelian groups shows that there exist
X1y s X € AWith A = @ﬁlzxi. O

Definition. Ifrank A = n, so if n = m, we say A is a lattice in R".

Definition. Let A C R" be a lattice with basis xy, ..., x,. The fundamental parallelogram
isP = {Z?:l Aix; | 4; € [0, 1]}. The covolume of A is the volume of P, which is |detA| if

n
X = Zj:l a,-jej.

Note that if x7, ..., Xx;, are another basis of A, the change of basis matrix B given by x| = Z;"zl bijx;
has integer coefficients, so B € GL,(Z), giving detB = +1. Hence, the covolume is well-defined
irrespective of the choice of basis. Observe that P is a fundamental domain for the action of A on
R"; R" = UyeA(y +P)and (y + P)n (u + P) C 8P if y # u. We can think of P as a set of coset

representatives for IRn/A, ignoring the boundary of P; this can be justified by noting that dP has no
volume.

3.3 Minkowski’s lemma

Theorem. Let A C R" be a lattice, and P be a fundamental parallelogram for it. Let S C R”
be a measurable set.
(i) Ifvol(S) > covol(A), there exist x,y € Swith x # yand x —y € A.
(ii) Suppose s € Sif and only if —s € S, so S is symmetric around zero, and that S is convex.
Then, if
(a) vol(S) > 2" covol(A), or
(b) vol(S) > 2" covol(A) and S is closed,
then there exists y € S n A with y # 0.

Note that this implies the result we used when n = 2. In the case of the square lattice A = Z" and
S =[—1,1]", we can see that these bounds are sharp.

Proof. Part (i). Observe that vol(S) = 3] ven vol(SN (P +7y)) as P is a fundamental domain, volume is

additive, and vol(d(P + y)) = 0. Note that vol(S N (P + y)) = vol((S — y) N P) as volume is translation
invariant. We claim that the sets (S — y) N P are not pairwise disjoint. Indeed, if they were, then
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vol(P) > Zye A VOl((S — ) N P) = vol(S) contradicting the assumption. Hence there exists yu € A
with y # usuch that (S—y)nP and (S—u)NP are not disjoint, so there exist x,y € Swithx—y = y—p,

hencex —y € A.
Part (ii)(a). Let S’ = %S = {%s | s € S}. Then vol(S") = 27" vol(S) > covol(A) by assumption. By
part (i), there exist y,z € S’ withy —z € A\ {0}. Buty —z = %(Zy +—2z).2z€ Sso—-2ze€ SasS

is symmetric around zero. 2y € S, and S is convex, soy — z € S as required.

Part (ii)(b). Apply part (ii)(a)to S,,, = (1 + i)S for all m € N,m > 0. We obtain y,,, € S, N A with
¥Ym # 0. By convexity of S, S, C S;. So 71, 7>, ... are contained in S; N A, which is a finite set as S;
is closed and bounded (without loss of generality) and A is discrete. So there exists y € S,,, N A such
that y,, = y for infinitely many m. Hence, y € ) mso Sm = S as Sisclosed. Therefore y € SN A with
y#0. H

Let L be a number field and let n = [L : Q]. Let gy,...,0,: L — R be the real embeddings, and
Opy1s e »Opyss Opy1s ---» Opys - L = C be the complex embeddings, where r + 2s = n. This gives an
embedding

(O1s s Opys)t LS RT X CS 5 R X R = RI*2

In other words, we can write

o=(0y,....0,Re 0.1, Imao,,q, ... ,Re 0y, Im 0,y )
1
Lemma. o(O;) is a lattice in R" of covolume 275|D;|2. If a < O is an ideal, then g(a) is a
1
lattice, and covol(c(a)) = 275|Dy |2 N(a).

Proof. The first part is a special case of the second part. Recall that a has an integral basis y;, ..., ¥4,
1

and (det(o;(y;)))* = A(n,..-»¥x) = N(a)’Dy. Hence, |det(o;(y;))| = N(a)[Dz|2. Note that if

Or+i(V)ori(y) = zz,
1 —_
(Rez) _ %(Z +2) B
Imz/ ™ ;(z -2) -

The determinant of the change of basis matrix is —é. O

Proposition (Minkowski bound). Let a < O;. Then there exists « € a with « # 0 and

4\’ n! L
IN(a)| £ C.N(a) where Cp, = (—) F'Dﬂz'

v

Proof. Let
Brg(t) = {(1s o2 ¥rs 21, e Z5) € RV X C | D) |yl +2lz;] <t}

This set is closed and bounded, hence compact. It is also convex, symmetric around zero, and

2.n
measurable with volume 2" (g) tn—' Choose ¢ such that the volume of B, (t) is 2" covol(a), so t" =
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N 1
(i) n!|D;|2N(a). Minkowski’s lemma implies that there exists « € a and a # 0 such that o(a) =
Ve
(yl’ s Vs 215 e ’Zs) € Br,s(t)-
Note that N(a) = y;...y,212; ... 22y = [[yi ][]z
1
arithmetic mean, taking nth roots we obtain |[N(a)|n < l(Z il +23 |z]) < Laso(a) € B.y(1).
n n

So IN(a)| < ;—z = CrN(a) as required. O

2 . :
|”. Since the geometric mean is at most the

24n
To show that the volume of B, ((t) is 2" (g) t—', we can use induction with base cases By (t) = [—t, ]
) Y ,

and B, ;(t) = Z¢2. Given the result for B, (¢ , the volume of B, t)is
0,1 4 r,s r+1,s

t 2 n+1

t
s, )" T
V01B)(t—|y|)dy=2/ =) 2r—==—dy=2"*(=
[ voin, [ (@ = (2

The other inductive step is on an example sheet.

Corollary. Every element of the class group [a] has a representative a < O with norm at
most Cy.

Theorem. The class group of L is finite, and generated by prime ideals a < O with N(a) <
Cr.

Proof. Follows the argument used for imaginary quadratic fields. O

3

n-1
Theorem (Hermite, Minkowski). Let n > 2. Then |D;| > %(T) > 1. In particular,

|Dy| > 1, so at least one prime ramifies in L.

Proof. Apply this to [O; ] and obtain an ideal a < O with 1 < N(a) < Cr,s0Cp > 1. So
! m\5n TNz n" 3
i (5% 2 (3) Dot

2 12n 3 3 n—-2
asz<1ands§E.Soa2=”—anda"—“=z(1+—) >E(1+2)=—ﬂ.Soan>—(—”) =
4 2 4 an 4 n 4 4 4

z(z)”‘{ O

3\ 4

4 Dirichlet’s unit theorem

4.1 Real quadratic fields

Recall that a € Oy is a unit if and only if N(a) = 1. We aim to show that O} ~ p; X Z"*~1 where
pr ={a € L | a® =1 for some a > 0} is the set of roots of unity in L, a finite cyclic group.
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Example. Let L = @(\/E) where d > 0 is square-free. Here,r = 2,s = 0,n = 2. L C R gives
My C {+1}so p; = {+1}. Note that N(x + y\/d) = x? — dy?, so Dirichlet’s theorem implies the
following statement, which we will now prove directly.

Theorem (Pell’s equation). There exist infinitely many x + y\/& € O with x? — dy? = +1.

Proof. Recall that we have o: O — R? given by x + y\/E > (x+ y\/E, X — y\/E). For example, if
d = 2, the image is a lattice with basis (1, 1), (—\/5, \/5), note also that no point lies in the coordinate
1

axes apart from 0. The covolume of o(O;) is | Dy | 2.

Consider

1
D;|2
5= {(yl,yz) € B2 |y < .1y < %]

1
The volume of S; is 4|D; |2 = 2" covol(c(0})) as n = 2. Minkowski’s lemma implies that there exists
anonzero a € O with o(a) € S;. But o(a) = (y;,y,) gives N(a) = y1¥5-

We have therefore found an element a € O; with o(a) € S; that has norm satisfying 1 < n(a) <
1

|Dz|2. We show that there exist infinitely many such « for 0 < ¢ < 1, so there are infinitely many
1

a € Op with [N(a)] = N((«)) < |D|2. For fixed ¢, S; n o(O;) is finite as S, is compact. Given
ty >ty >+ > ty, choose ty,,; less than all y; where o(a) = (y1,y,) € S;, N 0(Oyr). Note thata # 0
so gy(a) # 0,80 t,,1 > 0.

Hence, there exists m € Zwith1 < |m| < |DL|§ for which there are infinitely many a with N(«) = m,
by the pigeonhole principle. But ideals a < O with m € a biject with ideals in OL/m = (Z/mz)z,
and hence there are finitely many of them. Again by the pigeonhole principle, there exists 8 € Oy,
and infinitely many a € @ with N(8) = N(a) = m, where () = (a). But g is a unit, so there are
infinitely many units. O

We can prove Dirichlet’s unit theorem for real quadratic fields from this result.
Corollary. Of = {x¢} | n € Z} for g, € Oj.

Such an ¢ is called a fundamental unit.

Remark. As there are infinitely many units, there exists ¢ € O with ¢ # +1. Hence, |0y(¢)| # %1
as o;(e) = +1 if and only if ¢ = +1. Replacing ¢ by ¢! if necessary, we can assume E = |o;(¢)| > 1.
Consider {& € O | N(a) = 1,1 < |oy(«0)| < E}, which is a finite set as (9}, is discrete in R2. Hence,
€ can be chosen in this set with minimum |o;(gy)| and ¢y # *1.

logoi(e) _
log o1 (eo)
N +ywhere N € Z,0 < y < 1. Hence eg™ = ¢}, and if y # 0, |ej| = [e]” < || contradicting the
choice of ¢, (taking o, as necessary to simplify notation).

We claim that if ¢ € O} has o;(¢) > 0, then ¢ = ¢} for some N € Z. Indeed, we can write
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4.2 General case

We can prove Dirichlet’s unit theorem in general.

Let Lbeanumber fieldandlet[L : Q] = nwithoy,...,0, : L — Rrealembeddingsand o, 1, ..., 0p1g, Opp1seer s Opps - L —

C complex embeddings, choosing some representative between o, ;, 0,,; arbitrarily. Define a map
£: 0] - RS by

¢(x) = (log oy (X)), ..., log|o,(x)], 210g |0y41(X)], ... , 210g |Gy4.5(X)])

Lemma. (i) The image of ¢ is a discrete subgroup of R"*5,
(ii) The kernel of ¢ is u;, the roots of unity in L, which is a finite cyclic group.

Remark. ¢ is independent of the choice of representative o, ;, 7,,;, as they have the same absolute
value.

Proof. Part (i). log|ab| = log|a| + log |b|, so ¢ is a group homomorphism. The image is therefore an
additive subgroup of R"*5. For part (i), it suffices to show that Im £ N[—A, A]"** is finite for all A > 0.
¢ factorises as

0; I3 (Ry) x € —L3 Rres

where
JO1 s Yo 21, o5 25) = (l0g Y1), .., log |y, |, 210g |24 |, ..., 21og |zg])

and
JTU=AAT) = {0i,2)) | e < |yil < e e < 2|z < et}

which is compact. As o(Oy) is a lattice, a(O}) n j~1([-A4,A]"*S) is finite. This gives (i), and also
shows that ker j = ker ¢ is finite.

Part (ii). ker ¢ is a group and finite, so every element has finite order. In particular, ker ¢ < ;. But
each root of unity lies in ker ¢, so ker ¢ = p;. But L & C by any embedding, so p;, is contained in
the set of roots of unity in C of a fixed order, which is a cyclic group. Subgroups of cyclic groups are
cyclic. O

Note thatifr > 0,L & R, so pu; = {1}

Observe that Im ¢ is contained in the set {(y1, ..., Yy45) | Y1 + +++ + Y5 = 0}. Indeed, @ € Of gives
N(a) = Hirzl oi(a) H?:l 0r4i(@)o,4i(a) = 1, so taking logarithms,

r N
log IN(a)| = )} logloy(@)] + Y 21og |opi(e)] = 0

i=1 i=1

So Im ¢ C R™5~1 is a discrete subgroup, hence isomorphic to Z% fora < r + s — 1.
Theorem (Dirichlet’s unit theorem). Im ¢ C R"*5~1 is a lattice; it is isomorphic to Z"+5~1,

We now prove this theorem.
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Lemma. Letl < k < 5, and a € Op, a # 0. Then there exists § € Op with |[N(8)| <
N 1
(%) |Dr|2 and with b; < q; for alli # k, where €(a) = (ay, ... , @yyg) and €(B) = (by, ... , byys)-

Proof. Apply Minkowski’s lemma. Let
r S n 2
S = {(yl,...,yr,zr,...,zs) ER"XC~R )|yi| <culzj| < cr+j}

We have vol(S) = 2"nc; ... ¢,,. This is convex and symmetric around zero. By choosing c; such

. ; . 2\S 1 - _ : o
that 0 < ¢; < e% fori # k, and setting ¢, = (;) IDp|2e7! ... gt Chay - Crids, Minkowski gives

BealO)NnS. O

Fix some 1 < k < s. Repeatedly applying this lemma, we can obtain a sequence a, a,, -+ € O, such
that N(«;) is bounded, and for all i # k, the ith coordinate of €(a), €(a5), ... is strictly decreasing.
Hence, there exists t < t’ with N(«;) = N(a) = m as there are only finitely many possible norms

of the a;, and a; = o;» modulo OL/m by the pigeonhole principle. Therefore (a;) = (a,/) as in the
proof for real quadratic fields.

Let u;, = a,a;%; this is a unit in Oy, such that €(uy) = €(a;) — €(ay) = V1, .., Yres) has y; < 0 if
i # k. Note that as ), y; = 0, we have y; > 0.

We now have units uy, ... , u,, s by performing this for each coordinate. We now show that €(u;), ... , €(4p5_1)
are linearly independent, hence the rank of £(O;) is ¥ + s — 1. Indeed, let A be the (v + s) X (¥ + 5)
matrix with jth row given by €(u;), and apply the following lemma.

Lemma. Let A € My,y,(R) be a matrix with a;; > 0, a;; < 0fori # j, and Zj a;j > 0 for
alli. Then rank A > m — 1.

Note that the assumptions of this lemma are satisfied for our choice of matrix A.

Proof. Let v; be the ith column of A. We show that vy, ..., v,,_; are linearly independent. Suppose

that there existt; € Rwith Zl”:l;l t;0; = 0,and notall t; are zero. Choose k such that ¢, has maximum
absolute value. Dividing the linear dependence relation by t;, we can assume ¢, = 1 and all other ¢;
have absolute value at most 1. Now consider the kth entry of the linear dependence relation.

m—1
0= D hay =t + Y,  hag
i=1 i#k,1<i<m—1

Since t; < 1, ay; < 0, we have
m

m—1
0> D% ag >, a3 >0
i=1 i=1

as ay,, < 0, giving a contradiction as required. O

This proves Dirichlet’s unit theorem.
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Definition. Let R; = covol(¢(0;) C R™S~1). This is an invariant of a number field, called
the regulator of L.

Concretely, choose ¢y, ... , £,45_; in Of such that Of =~ pp x {e]* ... ey7t*7' | n; € Z}. Take any (r +s—
1) X (r + s — 1) minor of the (r + s — 1) X (r + s) matrix (€(ey), ... , €(€;45))- The determinant of the
absolute value of this submatrix is R;.

Example. Let L be a real quadratic field, and let € be a fundamental unit. Then log |o;(¢)| = R;.

4.3 Finding fundamental units

We now need to find such fundamental units. One way is to guess a unit and then find all smaller
ones.

Example. Let L = Q(/d) and d > 0, and embed this into R by choosing Vd > 0. Consider d = 2.
One might guesse = 1 + \/5 as N(e) = 1 so ¢ is a unit. We claim that this is fundamental. If not,
there exists u = a + b\/2 witha,b € Z,u € Or,and 1 < u < ¢ as elements of R, identifying L with
01(L) C R. The other embeddingu = a — by/2 hasuti = +1. Asu > 1, [u| < 1,s0 u + 1, u — i > 0.
Hence a, b > 0, so there are no possibilities for 1 < a + b\/E <1+ 1\/5 with a, b > 0 integers. Hence
¢ is a fundamental unit.

Example. Considerd = 11. Lete = 10—3v/11as N(g) = 1. Notice thate = 0.5. e! > land ¢! < 20.

If this were not fundamental, there exists u = a + b\/ﬁ withl <u<e! =10+ 3\/ﬁ < 20. We
could check all cases like in the above example, but we can do better in this case. If N(u) = —1,
we have a? — 11b* = —1, which has no solutions modulo 11 as —1 is not a square in F,;. Hence
N@w) =1sou =u"!,givinge™ >u > limpliesO <e<u'!=u<1,50< a—-bJ11 < 1, s0
-1<-—-a+ b\/ﬁ < 0. Combining with the previous inequality, 0 < 2b\/ﬁ <10+ 3\/ﬁ < 7\/ﬁ

so b = 1,2,3. Now we can check that 1 + b? - 11 isnot a square in [y, for b = 1,2, 3 so there is no
possible a. Hence ¢ is a fundamental unit.

Remark. Thereisan algorithm for @(\/E) to compute fundamental units. Recall that any real number

t can be written as .
t = ap + -1 = [ao, a;, a,as, ]

a, +
(12+a
3+

where a, = |t]. t is a quadratic algebraic number, so [Q(¢) : Q] = 2, if and only if the expansion of ¢
as a continued fraction is periodic t = [ag, ai, ..., Ay -

The following proposition is non-examinable (and should not be used in exams).

Proposition. Let Vd = lag, aq, -+, a;,,] and let s = [ag, ---» @y—1].- Then p + q\/E is a unit
inL = @(\/E), and if d = 2, 3 mod 4, it is fundamental.

The proof is omitted.
Example. \/7 = [2,1,1,1, 4] so 2 =[2,1,1,1] = g and (8 + 3v7)(8 — 3W/7) = 1.

This algorithm is polynomial-time in the regulator, but not polynomial-time in the discriminant.
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If q(x,y) = ax® + bxy + cy? is a quadratic form for a, b,c € Z and D = b* — 4ac, define L = Q(\/D),
-b+VD
2

and define the ideal associated to q to be (a, . One can show thatifa > 0,D < 0, the ideal

attached to q is equal to the ideal attached to ¢’ in the class group if and only g and q’ are equal under
the action of SL,(2Z), i.e. if ¢'(x,y) = q(x', y")

()= &)0)
€SLy(2)

In particular, the size of the class group is exactly the number of orbits of positive definite quadratic
forms with discriminant D under the action of SL,(Z).

5 Dirichlet series and L-functions

5.1 Dirichlet series
Theorem (Euclid). There exist infinitely many primes.

The following proof is due to Euler in 1748.

Proof. Consider
-1

11 (1—%) =11 (1+%+%+...)=§%

p prime p prime

as every n > 0 factors uniquely as a product of primes so occurs exactly once when we expand the
-1

product. If there are finitely many primes, the product is finite. As Zlojl p~! converges to (1 - l) ,
= p

oo 1
Zi_l - must converge. O
-t n

We aim to prove that for all a,q € Z coprime, there are infinitely many primes of the form a + kq,
-1

k € N. Note that there is no nice series expansion for | | , so Euler’s proof

1
o (1-2)
p=a mod q,p prime p
does not generalise.

Definition. The Riemann zeta functionis {(s) =Y, _ . n~*fors € C.

n>1

Proposition. (i) ¢(s) converges for Re(s) > 1.

(i) ¢(s) = Hp prime (1 - %) in this region; this result is known as the Euler product. This

product converges absolutely.
(>iii) ¢(s) — Ll extends to a holomorphic function for Re(s) > 0, so the zeta function has a
=
simple pole with residue 1 at s = 1.

If the series Y, log(1 — a,,) converges, [[(1 — a,) converges. [[(1 — a,) absolutely converges if
> llog(1 — a,,)| converges.
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If a, is a sequence of complex numbers, call the function ); ., a,n™* a Dirichlet series. Instead of
part (i), we will prove the following more general lemma. -

Lemma. If there exists r € R with a; + --- + ay = O(N"), then Y
Re(s) > r, and it is holomorphic in this region.

=S
ns1 @n~° converges for

Proof of lemma.

N
Z an S =15 =27+ (a;+a,))2 =35+ +(a; +any_ )(N=1)S =N+ R,
n=1

where R,, = % with T(N) = a; + --- + ay = O(N"). By assumption, if Re(s) > r,

T(N)
NS

T(N)
NV

1T
|Ns—r| ~| N7

1
) NRe(s)-r

-0

as x® = e5196% 50 |x%| = |xRe3|. SoifRe(s) > r, Y, a,n™5 = Y T(N)(N~5—(N+1)"%). But |T(N)| < BN"
for some constant B by assumption, so it suffices to show Y, N"(N~5 — (N + 1)~*) converges. Note
that Nil

dx

SxS+1

NP -(N+1)7° =f

N
and N" < x" if x € [N, N + 1]. Hence

N+1 N+1
dx dx
N'(N™* = (N +1)7) sf X' < SfN T

N
It is enough to show that s le x converges, which it does to =, O
xS+1—r —_
Proof of proposition. Part (ii). Let py, ..., p, be the first r primes. Then, Hirzl(l —-pi%)l = Donex°
where X is the set of positive integers whose prime divisors are only in py, ..., p,. So
r
¢ = [Ta=pr)™ =2 n7s| < D) 0= 3 nmRel) < 37 pmRe®
i=1 ngXx ngX ngX n>r

as 1,...,r € X. Hence the infinite product converges to {(s). The proof of absolute convergence is
omitted.

Part (iii). Left as an exercise, noting that

5.2 Zeta functions in number fields

The remaining new content in this course is nonexaminable.
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Definition. Let L be a number field. The zeta function of L is

Gu(s)= D) N(@) = #{a 20, |N(a) = njn™

a<0r, n>1

Proposition. (i) ¢;(s) converges to a holomorphic function for Re(s) > 1.
(ii) ¢&.(s) = Hp orme et L= N(p)~*)~! in this region.

(iii) ¢;(s) is a meromorphic function for Re(s) > 1 — , with a simple pole at s = 1 with

L
[L:Q]

|C1L|2r+S7TSRL

residue

1
D |2 ||
This is called the analytic class number formula.

Proof. Part (ii) is clear. Parts (i) and (iii) follow from the following estimate. Writing ¢;(s) = 3 2%
nS
where a,, is the number of ideals of norm »n, one can show

Cl 2r+S SR __1r

a1+...+aN=—| Ll T 7T L.N+O<N1 [L:Q])
Dz |2 ]

O

If L # Q, it turns out that {7 (s) factors into {g(s) = {(s) and some other factors. Suppose L = Q(\/E)
and d # 0, 1 is square-free.

- [ a-nNe™»Ht= ] J]a-Nm=)

p prime ideal p prime p|(p)
If p | Dy, then (p) = p? ramifies. In this case, N(p) = p and we have a term (1 — p~*) in the product.

If (p) remains prime in L, then N(p) = p? giving the term (1—p~2) = (1—p~5)(1—p®). If (p) = P11,
splits, then N(p;) = p and we have a term (1 — p~)?. Let

0  pramifies

xp,(p) = x(p) =1—1 pinert = ?L
1  psplits Tpodd

Then, defining L(y,s) = Hp prime 1~ x(p)p~* ! we have ¢(s) = $a(s)L(x,s). The function L is
called a Dirichlet L-function. When expanding the infinite product defining L(xp, s) the coefficient
of n=S,if n = pi* ... py" is xp(p1)® ... xp(py)er. We can extend the definition of y to make it multi-
plicative: Yp(py' ... pr') = Xp(PD™ ... Xp (P

A/ —4 -1 pl .
Example. Let L = Q(y/—1), so D; = 4. We have (?) = <?) = (=1) z for p # 2. 2 ramifies, so
xp(2) = 0. We claim that

m-1
a(m) = ’(—1) 2 modd
0 m even
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mn—1 m—1 n-1
Indeed, if n is even, this is clear; otherwise, this claim is that (—=1)" 2 = (-1)"2 (-1) 2 , whichis
easy to verify. Hence,

Liy_48)=1——=+—=—=+...
In this example, the coefficients are periodic mod 4; this is true for general L(yp, s). Since & (s) =

¢a(S)L(x_4, 5), the fact that {g(s) has a simple pole at s = 1 with residue 1, together with the analytic

class number formula, gives L(y_4,1) = %.

Definition. y: Z — C is a Dirichlet character of modulus D if there exists a group homo-
morphism w : (Z/DZ) — C such that

w(n mod D) n invertible mod D
0 otherwise

x(n) = {

For such a y, we have y(n) y(m) = y(nm), and we can define

Lix.)= [] Q=x(@p~>)" =D x(mn~*

p prime n>1

The previous example shows that y_, is a Dirichlet character of modulus 4.

Theorem. For any d # 0, 1 square-free, defining L = Q(\/E),D = Dy, we have that yp isa
Dirichlet character of modulus D.

Proof. We must show yp(n + D) = yp(n) for n € N. Suppose first that d = 3 mod 4. Here, D = 4d,

s0 xp(2) = 0 as 2 ramifies, so yp(n) = 0if n is even as required. For p > 2, yp(p) = (g) = (S) by

p-1
definition, but this is equal to (S)(—I)T by quadratic reciprocity as p,d are odd, and as d = 3 mod

d—1 = n+D>(—1)nT_l(—1)4d2 = Xxp().
O

4, — = 1mod4. n— (—1) 2 is multiplicative, so yp(n + D) = (T
The other cases are omitted.

This theorem can be seen as equivalent to the law of quadratic reciprocity. Note that y is nontrivial
ifw#1

Lemma. If y is a nontrivial Dirichlet character, L(}, s) is holomorphic for Re s > 0.

Proof. Recall that if G is a finite group and y;, y, are characters of irreducible complex representa-
tions, then

lo— 1 n=nxn
z g;c 1(@xa(g) = { 0 otheraise

Applying this to G = (Z/dZ)* where y; is the trivial character and y, = w, this gives

2 = Y xh= 3 wd=0

ad<i<(a+1)d €2/ i€(%4z)
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In particular, Zl."zl x() = 0(1) is bounded. So 2?21 % converges for Re(s) > 0. O

Corollary. If D <0,

Cl
Lxp,1) = M

IDI2 |bg )
In particular, L(yp,1) # 0.

Proof. {Q( \/ZD))(S) = {o(s)L(xp,s), so both sides have a simple pole at s = 1. The analytic class
number formula gives the residue of the left hand side, and Res¢(1) = 1. [

5.3 L-functions in cyclotomic fields

We will show that L(y, 1) # 0 for any Dirichlet character y, and hence show that there are infinitely

many primes in arithmetic progression. To do this, we will factor { .= for any q. Consider L =
Qe 1)
Q(wy) where wy is a primitive gth root of unity,

Proposition. (i) [L : Q] = ¢(q) where ¢(q) = {(Z/qz>*|§

(i) L/Q is a Galois extension with Galois group G = (Z/qz) ,and if r € (Z/qz> ,thenr
acts on L by mapping w, to wy;
(iii) Op = Z[wq] = Z[x]/cpq(x) where @ is the gth cyclotomic polynomial;
(iv) if pis prime, p | Dy ifand onlyif p | g;
(v) if p is prime, p ramifies in Oy if and only if p | g;
(vi) if p is prime with p } g, then (p) factors as a product of @ distinct prime ideals, each

of norm pf, where f is the order of p in (Z/qZ)

Proof. Parts (i) and (ii) follow from Galois theory. Part (iii) for q prime is on an example sheet, and
the general case is omitted. Part (iv) is omitted. Part (iv) implies (v) is a general fact; we will only
show part (vi).

_ Z[x] o : o _ Fplx] :
As O = /qu(x)’ Dedekind’s theorem applies. We study L/(p) ="p /qu(x) by factoring
®,(x) modulo p. Recall that
x4 -1

(Dq(X) B Hd;éq,d|q Q)d(x)

. x8—1 4
so for instance ®g(x) = = - =X+ 1.

x4—

(Z4z) =1.3,-3, -1 =2 24y x Ly

In this example, if p = 17, x* + 1 factors into four linear factors, but if p = 3, x* + 1 factors into two
factors as the order of 3 is 2 in (Z/SZ) .
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Write @, (x) = 7 y§g for y; irreducible and distinct, so
O _F,lx] Fplx]
o) =P X P g

For any number field L, Gal(L/Q) preserves Oy. Indeed, if &« € Oy, f(a) = 0 for some monic polyno-
mial f € Z[x], but then g € Gal(L/Q) givesn 0 = gf () = f(g(ex)) = 0, so g(a) is also a root of f and
hence in O;.

G permutes the roots of ®,, so G acts on {yl, ,yg}. This action is transitive on the roots, so is
transitive on {yy, ..., 7g}. Hence degy; = --- = degyg, so e; = -+ = e, = e. Further, ge is the order of

G
7Stabg(r1)
If p + Dy, or equivalently p + g, then e = 1 as p is unramified. Hence [Fp[x]/(yl) =Fyp for some f”,

and % factors. We must show that f' = f.

pE (Z/qz) = Gal(L/Q) acts as a — P on [pr/, so it acts as the Frobenius automorphism, which
is the generator of the Galois group of Fpr //[Fp by (ii). Conversely, the image of x in 'Fp[x]/(yl), is the
image of w, which is a primitive qth root of unity. So q | |[F;f, | soq | p’ "~ 1.In particular, pf ‘=1

mod g, so f = ord(p) | f'. Hence f = f' as required. O

Recall that g”@(wq)(s) = Hp pMme(l — N(p)~*)"L. Consider prime ideals p dividing (p) for a fixed

_e@
integer prime p. If p 4 q, part (vi) shows that these contribute (1 — p=/%) 7 to the zeta function,
where f is the order of p in (Z/qZ> . But this factors as (1 — t/) = []
lrec|y =1}

Ve“f(l — yt) where p; =
Sett = p~*, and let wy, ..., Wy(q) (Z/qz> — C be the distinct irreducible complex representations

of (Z/qz) ,such thatw; = Tsow,(a) =1foralla € <Z/qz) . We claim that w;(p), ... , @p(q)(P) are

the distinct fth roots of unity, each repeated % times. Certainly p generates a cyclic subgroup (p)

of (Z/qz> of order f by definition of f. The claim is that the restriction of of w, ..., @y (q) to (p) are

the f distinct irreducible representations of (p), each repeated @ times, which can be easily proven

using representation theory. We have therefore shown that

o P@
A-p I 7 =][0Q-wip™?
i=1
Let
w;(nmod q) if gcd(n,q) =1
0 otherwise

xi(n) = {

Then we have shown that
»(q)
{Q(wq)(s) = H L(y;,s) multiplied by a correction term

i=1
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which is a finite product of the form leq(l — p~/p%)~1. Note that ¢o(s) = L(x1, ) leq(l -p 7L,
so we can rewrite this as

»(q)

Q‘Q(wp)(s) = {o(s) H L(x;, s) multiplied by a correction term
i=2

Theorem. If y; is a nontrivial Dirichlet character, then L(y;,1) # 0.

In fact, if y is any nontrivial Dirichlet character modulo q, y = y; for some i.

Proof. We have shown that if y is a nontrivial Dirichlet character, L(y, s) is holomorphic at s = 1. In
the above expansion, the left hand side and right hand side are meromorphic functions at s = 1 with
a simple pole. The residue of the right hand side and left hand side therefore agree, and its value is

»(q)
Resg—; $o(s) H L(x;,1) multiplied by a correction term
i=2

The analytic class number formula implies that this is nonzero, so L(y;,1) # 0. O

Note that Dirichlet characters of quadratic fields have values in +1.
5.4 Primes in arithmetic progression

Theorem (Dirichlet). Let a,q € N with gcd(a, q) = 1. There are infinitely many primes in
a,a+q,a+2q,....

Proof. Consider (Z/qz) , an abelian group of order p(q). Let wy, ..., wpq) <Z/qZ) — C* where

wy =T, and yi, -, Xo(q) Z/qZ — C be the corresponding Dirichlet characters. Recall the ortho-
gonality of the columns of the character table of a finite group:

)Zwl(am(p) { a=p modg

0 otherwise

if gcd(p, @) = 1, so p defines an element of (Z/qz) . Hence,

)Z)a( ) xi(p) = { a=p modq

0 otherwise

even if gcd(p, q) # 1, since in this case y;(p) = 0 by definition. Hence,

> p~*

p=a mod q,p prime (P(CI)

Z x(@x(p)p~*
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We want to show that this has a pole at s = 1. If y is a Dirichlet character, by the series expansion of
logarithm which is valid by absolute convergence, we can write

log L(x,s) = — Y log(1 — x(p)p™)
14

o leSn
_Zﬂﬁ)
P p}’lSn
n
»ED, 5 Lp)
p n>2,p
We claim that ), ") converges at s = 1. This holds as its absolute value is at most

n>2,p prime pnsSn

Cns 1 1 1
2 =X )Szn:ns(ns_l)ﬁzm

S S —
n>2,p prime p prime p (p 1

which is finite at s = 1. Hence, the series above has a pole at s = 1 if and only if
— 3 2@ log Lz, 9)
plq) 4™ s

hasapoleats=1.

If y, is the trivial character, L(x;, ) = {g(s) le (1 =p~%),s0as {g(s) has only a simple pole ats = 1,
log ¢q(s) = log ﬁ + bounded function near s = 1, so log L(x;,5s) ~ log ﬁ has a pole at s = 1. For
i #1, L(y;,s) is nonzero at s = 1 by the above theorem, so log L(;, s) is bounded at s = 1. Hence,

$ Zi,p xi(@xi(p)p™ ~ % log ﬁ, and in particular has a pole at s = 1.

Hence, there are infinitely many primes in arithmetic progression. O

This proof shows that approximately % of all primes lie in this arithmetic progression.

One can in fact show that for any number field L, {7 (s) always factors and the factors have meaning.
Suppose L/Q is Galois, and G = Gal(L/Q). Then,

(1) We can factor gL(S) = Hp irreducible representation of G L(p’
Moreover, L/Q is the regular representation of G.

(i) L(1,5) = {a(s)-

(iii) L(p,s) is a meromorphic function of s. It is conjectured, but still not known, that L(p, s) is
holomorphicif p # 1.

s)dime where the L(p, s) are Artin L-functions.

(iv) If p is one-dimensional, then L(p, s) = L(), s) multiplied by a correction factor, where L(y, s)
is a Dirichlet L-function. Finding y given p is a generalisation of quadratic reciprocity, called
class field theory.

(v) The properties of mutidimensional p are studied in the Langlands programme.
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