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1 Number fields
1.1 Algebraic integers
Recall that if 𝐾 and 𝐿 are fields and dim𝐾 𝐿 < ∞, we write [𝐿 ∶ 𝐾] for this dimension and say that
𝐿/𝐾 is a finite extension. If 𝐿/𝐾 is a finite extension, every element 𝑥 ∈ 𝐿 is algebraic over 𝐾.

Definition. A number field is a finite extension of ℚ.

Definition. Let 𝐿 be a number field. 𝛼 ∈ 𝐿 is an algebraic integer if there exists 𝑓 ∈ ℤ[𝑥]
monic such that 𝑓(𝛼) = 0. We write 𝒪𝐿 = {𝛼 ∈ 𝐿 ∣ 𝛼 is an algebraic integer} for the set of
integers of 𝐿.

ℤ ℚ

𝒪𝐿 𝐿

Lemma. 𝒪ℚ = ℤ.

Proof. Clearly if 𝛼 is an integer, then 𝑓(𝑥) = 𝑥 − 𝛼 is a monic polynomial such that 𝑓(𝛼) = 0.
Conversely, if 𝛼 is a rational number, we can let 𝛼 = 𝑟

𝑠
where 𝑟 and 𝑠 are coprime. Let 𝑓(𝑥) = 𝑥𝑛 +

𝑎𝑛−1𝑥𝑛−1+⋯+𝑎0 ∈ ℤ[𝑥] such that 𝑓(𝛼) = 0. Clearing denominators, 𝑟𝑛+𝑎𝑛−1𝑟𝑛−1𝑠+⋯+𝑎0𝑠𝑛 = 0.
Hence 𝑠 ∣ 𝑟𝑛. If 𝑠 ≠ 1, let 𝑝 ∣ 𝑠 be a prime, then 𝑝 ∣ 𝑟, so 𝑟 and 𝑠 were not coprime.

We will soon show that 𝒪𝐿 is a ring. In other words, 𝛼, 𝛽 ∈ 𝒪𝐿 implies 𝛼 ± 𝛽, 𝛼𝛽 ∈ 𝒪𝐿.

Note that 𝛼 ∈ 𝒪𝐿 does not in general imply
1
𝛼
∈ 𝒪𝐿. Recall from Galois Theory that if 𝛼, 𝛽 ∈ 𝐿, and

𝛼, 𝛽 are algebraic over 𝐾, then so is 𝛼 ± 𝛽, 𝛼𝛽. The proof from Galois Theory will not work in this
case, since that proof does not provide for monic polynomials.

Definition. Let 𝑅 ⊆ 𝑆 be commutative rings with a 1.
(i) 𝛼 ∈ 𝑆 is integral over 𝑅 if there exists a monic polynomial 𝑓 ∈ 𝑅[𝑥] such that 𝑓(𝛼) = 0.
(ii) 𝑆 is integral over 𝑅 if all 𝛼 ∈ 𝑆 are integral over 𝑅.
(iii) 𝑆 is finitely generated over 𝑅 if there exist elements 𝛼1,… , 𝛼𝑛 ∈ 𝑆 such that any element

of 𝑆 can be written as an 𝑅-linear combination of the 𝛼𝑖. Equivalently, the map 𝑅𝑛 → 𝑆
given by (𝑟1,… , 𝑟𝑛) ↦ ∑𝑛

𝑖=1 𝑟𝑖𝛼𝑖 is surjective.

Example. Letℚ ⊆ 𝐿 be a number field. Then 𝛼 ∈ 𝐿 is an algebraic integer if and only if 𝛼 is integral
over ℤ. 𝒪𝐿 is integral over ℤ (once we have proven it is a ring).
If 𝛼1,… , 𝛼𝑟 ∈ 𝑆, we write 𝑅[𝛼1,… , 𝛼𝑟] for the subring of 𝑆 generated by 𝑅 and the 𝛼𝑖. This is equi-
valently the image of the polynomial ring 𝑅[𝑥1,… , 𝑥𝑟] → 𝑆 mapping 𝑥𝑖 to 𝛼𝑖.
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Proposition. Let 𝑆 = 𝑅[𝑠], where 𝑠 is integral over 𝑅. Then 𝑆 is finitely generated over 𝑅.
Further, if 𝑆 = 𝑅[𝑠1,… , 𝑠𝑛] with each 𝑠𝑖 integral over 𝑅, then 𝑆 is finitely generated over 𝑅.

Proof. 𝑆 is spanned by 1, 𝑠, 𝑠2,… over 𝑅. By assumption, there exists 𝑎0,… , 𝑎𝑛−1 ∈ 𝑅 such that 𝑠𝑛 =
∑𝑛−1

𝑖=0 𝑎𝑖𝑠𝑖. So the 𝑅-module spanned by 1,… , 𝑠𝑛−1 is stable under multiplication by 𝑠, so contains
𝑠𝑛, 𝑠𝑛+1,… and hence is all of 𝑆.
Let 𝑆 𝑖 = 𝑅[𝑠1,… , 𝑠𝑖−1]. Then 𝑆 𝑖+1 = 𝑆 𝑖[𝑠𝑖+1], and 𝑠𝑖+1 is integral over 𝑅, hence is integral over 𝑆 𝑖. So
𝑆 𝑖+1 is finitely generated over 𝑆 𝑖. Note that if 𝐴 ⊆ 𝐵 ⊆ 𝐶 where 𝐵 is finitely generated over 𝐴 and 𝐶
is finitely generated over 𝐵, then 𝐶 is finitely generated over 𝐴. Indeed, if 𝑏𝑖 generate 𝐵 over 𝐴 and
𝑐𝑗 generate 𝐶 over 𝐵, the 𝑏𝑖𝑐𝑗 generate 𝐶 over 𝐴.

Theorem. If 𝑆 is finitely generated over 𝑅, 𝑆 is integral over 𝑅.

Proof. Let 𝛼1,… , 𝛼𝑛 generate 𝑆 as an 𝑅-module. Without loss of generality, we can assume 𝛼1 = 1.
Let 𝑠 ∈ 𝑆, and consider the function𝑚𝑠 ∶ 𝑆 → 𝑆 given by𝑚𝑠(𝑥) = 𝑠𝑥. Then,𝑚𝑠(𝛼𝑖) = 𝑠𝛼𝑖 = ∑𝑏𝑖𝑗𝛼𝑗
for some choice of 𝑏𝑖𝑗 . Let 𝐵 = (𝑏𝑖𝑗). By definition, (𝑠𝐼 − 𝐵)(𝛼1,… , 𝛼𝑛)⊺ = 0.
Recall that for anymatrix𝑋 , the adjugate has the property that adj(𝑋)𝑋 = det𝑋⋅𝐼. Hence, det(𝑠𝐼 − 𝐵)(𝛼1,… , 𝛼𝑛)⊺ =
0. In particular, det(𝑠𝐼 − 𝐵)𝛼1 = det(𝑠𝐼 − 𝐵) = 0. Let 𝑓(𝑡) = det(𝑡𝐼 − 𝐵), which is a monic polyno-
mial in 𝑅. As 𝑓(𝑠) = 0, 𝑠 is integral over 𝑅.

Note the similarity to a proof of the Cayley–Hamilton theorem. Note further that this proof is con-
structive.

Corollary. Let ℚ ⊆ 𝐿 be a number field. Then 𝒪𝐿 is a ring.

Proof. If 𝛼, 𝛽 ∈ 𝒪𝐿, then ℤ[𝛼, 𝛽] is finitely generated over ℤ. So this ring is integral.

Corollary. Let 𝐴 ⊆ 𝐵 ⊆ 𝐶 be ring extensions, where 𝐵/𝐴 is integral and 𝐶/𝐵 is integral.
Then 𝐶/𝐴 is integral.

Proof. If 𝑐 ∈ 𝐶, let 𝑓(𝑥) = ∑𝑛
𝑖=0 𝑏𝑖𝑥𝑖 be the monic polynomial in 𝐵[𝑥] it satisfies, and set 𝐵0 =

𝐴[𝑏0,… , 𝑏𝑛−1], 𝐶0 = 𝐵[𝑐]. Then 𝐵0 is finitely generated over 𝐴 as 𝑏0,… , 𝑏𝑛−1 are integral over 𝐴,
and 𝐶0 is finitely generated over 𝐵0 as 𝑐 is integral over 𝐵0. 𝐶0 is therefore finitely generated over 𝐴.
Then the theorem implies that 𝑐 is integral over 𝐴.

Remark. 𝐶 could have had infinitely many generators, for instance,

𝐶 = {𝛼 ∈ ℂ ∣ 𝛼 is an algebraic integer}

This possibility is why we passed to 𝐶0. This kind of proof is common in commutative algebra, ap-
plying a powerful theorem such as the Cayley–Hamilton theorem carefully to find its consequences.

Example. 𝒪ℚ[𝑖] = ℤ[𝑖].
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1.2 Minimal polynomials
Let 𝐾 ⊆ 𝐿 be fields. Recall that the minimal polynomial of 𝛼 ∈ 𝐿 is the monic polynomial 𝑝𝛼(𝑥) ∈
𝐾[𝑥] of minimum degree such that 𝑝𝛼(𝛼) = 0.

Lemma. Let 𝑓(𝑥) ∈ 𝐾[𝑥] satisfy 𝑓(𝛼) = 0. Then 𝑝𝛼 ∣ 𝑓.

Proof. By Euclid, 𝑓 = 𝑝𝛼ℎ + 𝑟 where 𝑟 ∈ 𝐾[𝑥] has degree less than that of 𝑝. Then 0 = 𝑓(𝛼) =
𝑝𝛼(𝛼)ℎ(𝛼) + 𝑟(𝛼). If 𝑟 ≠ 0, this contradicts minimality of deg𝑝𝛼.

The converse is obvious, so the lemma implies the uniqueness of 𝑝𝛼.

Proposition. Let 𝐿 be a number field and 𝛼 ∈ 𝐿. Then 𝛼 ∈ 𝒪𝐿 if and only if 𝑝𝛼(𝑥) ∈ ℚ[𝑥]
is in ℤ[𝑥].

Proof. If 𝑝𝛼 has integer coefficients, this holds by definition. Conversely, suppose 𝛼 ∈ 𝒪𝐿, where 𝑝𝛼
is the minimal polynomial. Let 𝑀 ⊇ 𝐿 be a splitting field for 𝑝𝛼, i.e. a field in which 𝑝𝛼 splits into
linear factors. Let ℎ(𝑥) be amonic polynomial which 𝛼 satisfies. By the lemma, 𝑝𝛼 ∣ ℎ, so each root 𝛼𝑖
of 𝑝𝛼 in𝑀 is an algebraic integer. By the previous theorem, sums and products of algebraic integers
are algebraic. So the coefficients of 𝑝𝛼 are algebraic integers. But 𝑝𝛼 ∈ ℚ[𝑥], so the coefficients are
in ℤ.

Remark. One can also show this from the previous result and Gauss’ lemma.

Lemma. The field of fractions of 𝒪𝐿 is 𝐿. In fact, if 𝛼 ∈ 𝐿, there exists 𝑛 ∈ ℤ, 𝑛 ≠ 0 such
that 𝑛𝛼 ∈ 𝒪𝐿.

Proof. Let 𝛼 ∈ 𝐿, and 𝑔 be the minimal polynomial of 𝛼. Then 𝑔 is monic, and there exists an integer
𝑛 ∈ ℤ, 𝑛 ≠ 0 such that 𝑛𝑔 ∈ ℤ[𝑥]. So ℎ(𝑥) = 𝑛deg𝑔𝑔(𝑥

𝑛
) is an integer polynomial which is monic,

and this is the minimal polynomial of 𝑛𝛼, so 𝑛𝛼 ∈ 𝒪𝐿.

1.3 Integral basis
If 𝐿/𝐾 is a field extension, and 𝛼 ∈ 𝐿, we write 𝑚𝛼 ∶ 𝐿 → 𝐿 for the map given by multiplication
by 𝛼. We define the norm of 𝛼 to be the determinant of 𝑚𝛼, and the trace of 𝛼 to be the trace of
𝑚𝛼. Recall that if 𝑝𝛼(𝑥) is the minimal polynomial of 𝛼, then the characteristic polynomial of 𝑚𝛼
is det(𝑥𝐼 − 𝑚𝛼) = 𝑝[𝐿/𝐾(𝛼)]𝛼 . Further, if 𝑝𝛼(𝑡) splits as (𝑡 − 𝛼1)⋯ (𝑡 − 𝛼𝑟) in some field 𝐿′ ⊇ 𝐾(𝛼),
then 𝑁𝐾(𝛼)/𝐾(𝛼) = ∏𝛼𝑖 and Tr𝐾(𝛼)/𝐾(𝛼) = ∑𝛼𝑖, and 𝑁𝐿/𝐾(𝛼) = (∏𝛼𝑖)[𝐿∶𝐾(𝛼)],Tr𝐿/𝐾(𝛼) = [𝐿 ∶
𝐾(𝛼)]∑𝛼𝑖.
If 𝐿 is a number field, then 𝛼 is an algebraic integer if and only if the minimal polynomial is has
integer coefficients, which is the case if and only if the characteristic polynomial of 𝑚𝛼 has integer
coefficients. In particular, in this case, 𝑁𝐿/ℚ(𝛼) ∈ ℤ and Tr𝐿/ℚ(𝛼) ∈ ℤ. If the degree of 𝐿 over ℚ
is 2, the norm and trace are integers if and only if 𝛼 is algebraic, since these values determine the
characteristic polynomial.
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Example. Let 𝐿 = 𝐾(√𝑑) where 𝑑 ∈ 𝐾 is not a square. This has basis 1,√𝑑. If 𝛼 = 𝑥 + 𝑦√𝑑, the
matrix𝑚𝛼 is

(𝑥 𝑑𝑦
𝑦 𝑥 )

Then, Tr𝐿/𝐾(𝑥 + 𝑦√𝑑) = 2𝑥 = (𝑥 + 𝑦√𝑑) + (𝑥 − 𝑦√𝑑), and 𝑁𝐿/𝐾(𝑥 + 𝑦√𝑑) = 𝑥2 − 𝑑𝑦2 = (𝑥 +
𝑦√𝑑)(𝑥 − 𝑦√𝑑).

Lemma. Let 𝐿 = ℚ(√𝑑), 𝑑 ∈ ℤ a nonzero square-free integer. Such a field is called a
quadratic field. Then, 𝒪𝐿 = ℤ[√𝑑] if 𝑑 ≡ 2, 3mod 4, and 𝒪𝐿 = ℤ[ 1

2
(1 + √𝑑)] if 𝑑 ≡ 1mod 4.

Proof. 𝑥 + 𝑦√𝑑 ∈ 𝒪𝐿 if and only if 2𝑥, 𝑥2 − 𝑑𝑦2 ∈ ℤ. This implies that 4𝑑𝑦2 ∈ ℤ. If 𝑦 = 𝑟
𝑠
with

gcd(𝑟, 𝑠) = 1, then 𝑠2 ∣ 4𝑑. But 𝑑 was square-free, so 𝑠2 ∣ 4 so 𝑠 = ±1,±2. As 2𝑥 ∈ ℤ, we can write
𝑥 = 𝑢

2
and 𝑦 = 𝑣

2
, for 𝑢, 𝑣 ∈ ℤ. Therefore, 𝑢2 − 𝑑𝑣2 ∈ 4ℤ, so 𝑢2 ≡ 𝑑𝑣2 mod 4. Note that 𝑢2 must be 0

or 1 mod 4.

So if 𝑑 is not congruent to 1 mod 4, 𝑢2 ≡ 𝑑𝑣2 has a solution, so 𝑢2, 𝑣2 are both zero mod 4, so 𝑢, 𝑣 are
even. In this case, 𝑥, 𝑦 ∈ ℤ, so any 𝛼 ∈ 𝒪𝐿 is a ℤ-combination of 1,√𝑑.
On the other hand, if 𝑑 ≡ 1, then 𝑢, 𝑣 have the same parity mod 2, so we can write any such values
as a ℤ-combination of 1, 1

2
(1 + √𝑑).

Example. If 𝑑 = −1,𝒪ℚ[𝑖] = ℤ[𝑖]. Note that theminimal polynomial of 1
2
(1+√𝑑) is 𝑡2−𝑡+ 1

4
(1−𝑑),

which has integer coefficients as 𝑑 ≡ 1.

Definition. Let 𝐿 be a number field. Then, a basis 𝛼1,… , 𝛼𝑛 of 𝐿 as aℚ-vector space is called
an integral basis if 𝒪𝐿 = {∑𝑛

𝑖=1𝑚𝑖𝛼𝑖 ∣ 𝑚𝑖 ∈ ℤ} = ⨁𝑛
𝑖=1 ℤ𝛼𝑖.

Example. ℚ(√𝑑) has integer basis 1, 1
2
(1 + √𝑑) or 1,√𝑑, depending on the value of 𝑑mod 4.

Integral bases are not unique. Given two such bases, there exists a matrix 𝑔 ∈ 𝐺𝐿𝑛(ℤ) which trans-
forms one into the other. We now aim to show that there exists an integral basis for every number
field.

Recall that if 𝐿/𝐾 is a finite separable extension, then there exists 𝛼 ∈ 𝐿 such that 𝐿 = 𝐾(𝛼); this is
the primitive element theorem. Note that all extensions in characteristic 0 are separable.

Example. ℚ(√2,√3) = ℚ(√2 + √3).
This implies that if 𝐿/ℚ is a number field, then there exists 𝛼 ∈ 𝐿 such that 𝐿 = ℚ(𝛼), isomorphic to
ℚ[𝑥]⟋(𝑝𝛼(𝑥)) where 𝑝𝛼 is the minimal polynomial for 𝑥. 𝐿 is a field, so 𝑃𝛼 ⊲ ℚ[𝑥] is a maximal ideal
in the principal ideal domain ℚ[𝑥], and 𝑝𝛼 is irreducible. Let deg𝑝𝛼 = [𝐿 ∶ ℚ] = 𝑛. Then 𝐿 has
basis 1, 𝛼,… , 𝛼𝑛−1 as a ℚ-vector space.

Lemma. 𝑛 is the number of field embeddings of 𝐿 into ℂ.
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Proof. 𝑝𝛼 ∈ ℚ[𝑥] is irreducible, so gcd(𝑝𝛼, 𝑝′𝛼) = 1. So 𝑝𝛼(𝑥) = (𝑥 − 𝛼1)… (𝑥 − 𝛼𝑛) has 𝑛 distinct
roots in ℂ. A field homomorphism ℚ[𝑥]⟋(𝑝𝛼(𝑥)) → ℂ is automatically ℚ-linear, so must map 𝑥 to a
root 𝛼𝑖 of 𝑝𝛼(𝑥) in ℂ. Conversely, there exists such a map for each 𝛼𝑖, and they are distinct.

This allows us to define a new invariant which refines 𝑛 = [𝐿 ∶ ℚ].

Definition. Let 𝑟 be the number of real roots of 𝑝𝛼(𝑥), and let 𝑠 be the number of complex
conjugate pairs of roots of 𝑝𝛼(𝑥). Also, 𝑟 is the number of field embeddings of 𝐿 into ℝ, so is
independent of the choice of 𝛼. 𝑠 is therefore also an invariant, as 𝑟 + 2𝑠 = 𝑛.

Lemma. Let 𝐿/ℚ be a number field. Let 𝜎1,… , 𝜎𝑛 ∶ 𝐿 → ℂ be the different field embeddings,
so 𝑛 = [𝐿 ∶ ℚ]. If 𝛽 ∈ 𝐿, then Tr𝐿/ℚ(𝛽) = ∑𝜎𝑖(𝛽) and 𝑁𝐿/ℚ(𝛽) = ∏𝜎𝑖(𝛽). We call the 𝜎𝑖(𝛽)
the conjugates of 𝛽 in ℂ.

Example. If 𝐿 = ℚ(√𝑑) where 𝑑 is square-free, then 𝑎 + 𝑏√𝑑 and 𝑎 − 𝑏√𝑑 are conjugates.

Proposition. Let 𝐿/𝐾 be a finite separable extension. Then, the 𝐾-bilinear form 𝐿 × 𝐿 → 𝐾
given by (𝑥, 𝑦) ↦ Tr𝐿/𝐾(𝑥𝑦), known as the trace form, is a nondegenerate inner product.
Equivalently, if 𝛼1,… , 𝛼𝑛 is a basis of 𝐿/𝐾, the Grammatrix has nonzero determinant, that is,
Δ(𝛼1,… , 𝛼𝑛) = det Tr𝐿/𝐾(𝛼𝑖𝛼𝑗) ≠ 0. Conversely, if 𝐿/𝐾 is inseparable, the trace form is the
zero map.

Proof. Let 𝜎1,… , 𝜎𝑛 ∶ 𝐿 → 𝐾 be the 𝑛 distinct𝐾-linear field embeddings of 𝐿 into an algebraic closure
𝐾, which exists by separability. Let 𝑆 be the matrix (𝜎𝑖(𝛼𝑗)). Observe that 𝑆⊺𝑆 is the matrix with (𝑖, 𝑗)
term

𝑛
∑
𝑘=1

𝜎𝑘(𝛼𝑖)𝜎𝑘(𝛼𝑗) =
𝑛
∑
𝑘=1

𝜎𝑘(𝛼𝑖𝛼𝑗) = Tr𝐿/𝐾(𝛼𝑖𝛼𝑗)

So Δ(𝛼1,… , 𝛼𝑛) = det 𝑆 det 𝑆⊺ = (det 𝑆)2. By the primitive element theorem, there exists 𝜃 ∈ 𝐿 such
that 𝐿 = 𝐾(𝜃). Therefore, 1, 𝜃,… , 𝜃𝑛−1 forms a basis of 𝐿/𝐾. Then

𝑆 = (
1 𝜎1(𝜃) ⋯ 𝜎1(𝜃𝑛−1)
⋮ ⋮ ⋮
1 𝜎𝑛(𝜃) ⋯ 𝜎𝑛(𝜃𝑛−1)

)

This is a Vandermonde matrix, which gives

(det 𝑆)2 =∏
𝑖<𝑗

(𝜎𝑖(𝜃) − 𝜎𝑗(𝜃))
2 = Δ(1, 𝜃,… , 𝜃𝑛−1)

This is nonzero; indeed, if 𝜎𝑖(𝜃) = 𝜎𝑗(𝜃), then 𝜎𝑖(𝜃𝑎) = 𝜎𝑗(𝜃𝑎) for all 𝑎, so 𝜎𝑖 = 𝜎𝑗 , but they are
distinct.

Moreover, if 𝛼1,… , 𝛼𝑛 is any basis of 𝐿/𝐾, and 𝛼′1,… , 𝛼′𝑛 is another basis of 𝐿/𝐾, then

Δ(𝛼′1,… , 𝛼′𝑛) = (det𝐴)2Δ(𝛼1,… , 𝛼𝑛)

where 𝛼′𝑖 = ∑𝑎𝑖𝑗𝛼𝑗 and 𝐴 = (𝑎𝑖𝑗). Hence, Δ(𝛼1,… , 𝛼𝑛) ≠ 0 for any basis.
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Remark. 𝐿 = 𝐾(𝜃) and 𝑝𝜃(𝑡) = ∏(𝑡 − 𝜎𝑖(𝜃)). The Galois theory notion of the discriminant of 𝑝𝜃,
which is∏𝑖<𝑗(𝜎𝑖(𝜃) − 𝜎𝑗(𝜃))2, is exactly the determinant of the Gram matrix Δ(1, 𝜃,… , 𝜃𝑛−1), also
often called a discriminant.

Remark. Let 𝐿 be a number field. If 𝛼, 𝛽 ∈ 𝒪𝐿, Tr𝐿/ℚ(𝛼𝛽) ∈ ℤ. Therefore, the inner product is a
function𝒪𝐿×𝒪𝐿 → ℤ. If 𝛼1,… , 𝛼𝑛 ∈ 𝐿 form a basis of 𝐿 overℚ, and 𝛼1,… , 𝛼𝑛 are algebraic integers,
then Δ(𝛼1,… , 𝛼𝑛) is a nonzero integer.

Theorem. Let 𝐿/ℚ be a number field. Then there exists an integral basis for 𝒪𝐿: there exist
𝛼1,… , 𝛼𝑛 ∈ 𝒪𝐿 such that 𝒪𝐿 =⨁ℤ𝛼𝑖 ≃ ℤ𝑛 and 𝐿 = ⨁ℚ𝛼𝑖 ≃ ℚ𝑛.

Proof. Let 𝛼1,… , 𝛼𝑛 be any basis for 𝐿 as a ℚ-vector space. We have shown that there exists 𝑛𝑖 ∈ ℤ
such that 𝑛𝑖𝛼𝑖 ∈ 𝒪𝐿. Therefore, we can assume 𝛼1,… , 𝛼𝑛 ∈ 𝒪𝐿 without loss of generality. Here,
Δ(𝛼1,… , 𝛼𝑛) is a nonzero integer.
Choose 𝛼1,… , 𝛼𝑛 such that Δ(𝛼1,… , 𝛼𝑛) has minimum absolute value. Suppose the result is false, so
let 𝑥 ∈ 𝒪𝐿 and 𝑥 = ∑𝜆𝑖𝛼𝑖 where 𝜆𝑖 ∈ ℚ, and suppose that some 𝜆𝑖 is not an integer. Without loss of
generality let 𝜆1 ∉ ℤ. Write 𝜆1 = 𝑛1 + 𝜀1, and 0 < 𝜀1 < 1. Now, let

𝛼′1 = 𝑥 − 𝑛1𝛼1 = 𝜀1𝛼1 + 𝜆2𝛼2 +⋯+ 𝜆𝑛𝛼𝑛

Note𝛼′1 ∈ 𝒪𝐿. Then𝛼′1, 𝛼2,… , 𝛼𝑛 is a basis of𝐿 containing only the elements of𝒪𝐿. ButΔ(𝛼′1, 𝛼2,… , 𝛼𝑛) =
𝜀21Δ(𝛼1,… , 𝛼𝑛) contradicting the minimality assumption.

Remark. If 𝛼′1,… , 𝛼′𝑛 are any other integral basis of 𝒪𝐿, then there exists 𝑔 ∈ 𝐺𝐿𝑛(ℤ) such that
𝑔(𝛼′𝑖) = 𝛼𝑖. But det 𝑔 ∈ 𝐺𝐿1(ℤ) = {±1}, so (det 𝑔)2 = 1, giving Δ(𝛼′1,… , 𝛼′𝑛) = Δ(𝛼1,… , 𝛼𝑛), so this is
an invariant.

Definition. The discriminant of a number field 𝐿/ℚ is the invariant 𝐷𝐿 = Δ(𝛼1,… , 𝛼𝑛).

Example. Let 𝐿 = ℚ(√𝑑) where 𝑑 is square-free. Then, 𝑑 ≡ 2, 3 mod 4, then 1,√𝑑 is an integral
basis. If 𝑑 ≡ 1mod 4, then 1, 1

2
(1 + √𝑑) is an integral basis. Then,

𝐷𝐿 = [det (1 √𝑑
1 −√𝑑

)]
2

= 4𝑑; 𝐷𝐿 = [det(
1 1

2
(1 + √𝑑)

1 1
2
(1 − √𝑑)

)]
2

= 𝑑

So the discriminant is either 4𝑑 or 𝑑.
Remark. Results on quadratic fields are often phrasedmore uniformly if written in terms of𝐷𝐿. Note
also that 𝐿 = ℚ(√𝐷𝐿). An integral basis is 1,

√𝐷𝐿+𝐷𝐿
2

regardless of the value of 𝑑.
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2 Ideals
2.1 Ideals in the ring of integers

Lemma. Let𝑥 ∈ 𝒪𝐿, where𝐿 is a number field. Then𝑥 is a unit in𝒪𝐿 if and only if𝑁𝐿/ℚ(𝑥) =
±1. We write 𝒪⋆

𝐿 for the set of units of 𝒪𝐿.

Proof. If 𝑥 is a unit, then as the norm is multiplicative, 𝑁(𝑥𝑥−1) = 1 so 𝑁(𝑥)𝑁(𝑥−1) = 1. So 𝑁(𝑥) =
±1. Conversely, let 𝜎1,… , 𝜎𝑛 ∶ 𝐿 → ℂ be the distinct field embeddings. Let 𝐿 ⊆ ℂ be the containment
given by 𝜎1. If 𝑥 ∈ 𝒪𝐿, then 𝑁(𝑥) = 𝑥𝜎2(𝑥)…𝜎𝑛(𝑥). So if 𝑁(𝑥) = ±1, we have 1

𝑥
= ±∏𝑛

𝑖=2 𝜎𝑖(𝑥).
This is a product of algebraic integers, hence an algebraic integer. So 𝑥−1 ∈ 𝒪𝐿.

Recall that if 𝑥 ∈ 𝒪𝐿, it is irreducible if it does not factorise as 𝑎𝑏where 𝑎, 𝑏 ∈ 𝒪𝐿 not units. If 𝑥 = 𝑢𝑦
where 𝑢 is a unit, we say 𝑥 and 𝑦 are associate. Many number fields have rings of algebraic integers
which are not unique factorisation domains.

Example. Let 𝐿 = ℚ(√−5). Here, 𝒪𝐿 = ℤ[√−5]. Note that 3 ⋅ 7 = (1 + 2√−5)(1 − 2√−5), and
𝑁(3) = 9, 𝑁(7) = 49, 𝑁(1 ± √−5) = 21. These are not associates. We claim that 3, 7, 1 ± 2√−5 are
irreducible, so 𝒪𝐿 is not a unique factorisation domain. If this were not the case, 3 = 𝛼𝛼, where
𝛼 = 𝑥+𝑦√−5, but𝑁(3) = 9 = 𝑁(𝛼)𝑁(𝛼) = 𝑁(𝛼)2 so𝑁(𝛼) = 𝑥2+5𝑦2 = ±3, but there are no integer
solutions to this equation. All of the other factors are similarly irreducible.

Remark. In any number field, one can factorise any 𝛼 ∈ 𝒪𝐿 into a product of irreducibles by induc-
tion on |𝑁(𝛼)|, but this factorisation is not in general unique. An idea due to Kummer is to measure
the failure of unique factorisation by studying ideals 𝔞 ⊲ 𝒪𝐿.

If 𝑥1,… , 𝑥𝑛 ∈ 𝒪𝐿, we write (𝑥1,… , 𝑥𝑛) for the ideal∑𝑥𝑖𝒪𝐿 generated by the 𝑥𝑖. We will consider
products of ideals, rather than products of elements.

Definition. If 𝔞, 𝔟 ⊲ 𝒪𝐿, define

𝔞 + 𝔟 = {𝑥 + 𝑦 ∣ 𝑥 ∈ 𝔞, 𝑦 ∈ 𝔟}; 𝔞𝔟 = {∑
𝑖
𝑥𝑖𝑦𝑖

||||
𝑥𝑖 ∈ 𝔞, 𝑦𝑖 ∈ 𝔟}

One can check that this is an ideal, and that products are associative.

Example. (𝑥1,… , 𝑥𝑛)(𝑦1,… , 𝑦𝑚) = ({𝑥𝑖𝑦𝑗 ∣ 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑛}). For instance, (𝑥)(𝑦) = (𝑥𝑦), so
the product of principal ideals is principal.

Example. Consider ℤ[√5] = 𝒪𝐿, and the ideals 𝔭1 = (3, 1 + 2√5), 𝔭2 = (3, 1 − 2√5). We obtain
𝔭1𝔭2 = (9, 3(1 − 2√5), 3(1 + 2√5), 21) = (3). So the ideal (3) factors as 𝔭1𝔭2 in 𝒪𝐿. Note that
37 = (1 + 2√−5)(1 − 2√−5), so ℤ[√5] is not a unique factorisation domain.

Recall that an ideal 𝔭 ⊲ 𝑅 is prime if 𝑅⟋𝔭 is an integral domain, so 𝑝 ≠ 𝑅 and for all 𝑥, 𝑦 ∈ 𝑅, 𝑥𝑦 ∈ 𝔭
implies 𝑥 ∈ 𝔭 or 𝑦 ∈ 𝔭. In this course, we will also define that a prime ideal is nonzero.

Lemma. If 𝔞 ⊲ 𝒪𝐾 , it contains an integer, and moreover, 𝒪𝐾⟋𝔞 is a finite abelian group.
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Proof. Let 𝛼 ∈ 𝔞, 𝛼 ≠ 0. Let 𝑝𝛼(𝑥) = 𝑥𝑚 + 𝑎𝑚−1𝑥𝑚−1 +⋯ + 𝑎0 ∈ ℤ[𝑥] be its minimal polynomial,
and 𝑎0 ≠ 0. Then 𝑎0 = −𝛼(𝛼𝑛−1 + 𝑎𝑛−1𝛼𝑛−1 + ⋯ + 𝑎2𝛼 + 𝑎1). But 𝑎0 ∈ ℤ, 𝛼 ∈ 𝔞, and the other
factor lies in 𝒪𝐾 . So 𝑎0 ∈ 𝔞 as 𝔞 is an ideal. Hence 𝑎0𝒪𝐾 ⊆ 𝔞, so 𝒪𝐾⟋𝑎0𝒪𝐾

surjects onto 𝒪𝐾⟋𝔞. But
for any integer 𝑑, 𝒪𝐾⟋𝑑𝒪𝐾

= ℤ𝑛⟋𝑑ℤ𝑛 = (ℤ⟋𝑑ℤ)
𝑛
is a finite set, so 𝒪𝐾⟋𝔞 is finite.

Corollary. 𝔞 ≃ ℤ𝑛, as 𝒪𝐾 ≃ ℤ𝑛 and the quotient is finite.

Therefore, nonzero ideals in 𝒪𝐾 are isomorphic to ℤ𝑛 as abelian groups.

Proposition. (i) 𝒪𝐾 is an integral domain.
(ii) 𝒪𝐾 is a Noetherian ring.
(iii) 𝒪𝐾 is integrally closed in 𝐾 (which is the field of fractions of 𝒪𝐾): if 𝑥 ∈ 𝐾 is integral

over 𝒪𝐾 , it lies in 𝒪𝐾 .
(iv) Every (implicitly nonzero) prime ideal is maximal. We say that the Krull dimension of

𝒪𝐾 is 1.

Remark. A ring with these four properties is called a Dedekind domain. Many of the results in this
section hold for all Dedekind domains.

Proof. Part (i). 𝒪𝐾 ⊆ 𝐾, and 𝐾 is a field.

Part (ii). We have shown that𝒪𝐾 ≃ ℤ𝑛, where 𝑛 = [𝐾 ∶ ℚ], so𝒪𝐾 is finitely generated as an abelian
group, so is certainly finitely generated as a ring.

Part (iii). 𝒪𝐾 is integral over ℤ by definition, so if 𝑥 is integral over 𝒪𝐾 , it is integral over ℤ. So 𝑥 is
an algebraic integer, so lies in 𝒪𝐾 .

Part (iv). If 𝔭 is a prime ideal, then by the previous lemma 𝒪𝐾⟋𝔭 is finite and an integral domain, as
𝔭 is prime. All finite integral domains are fields, hence 𝔭 is maximal.

Example. Consider 𝑅 = ℂ[𝑋, 𝑌]. Then (𝑥) is prime but not maximal, since (𝑥) ⊊ (𝑥, 𝑦).

2.2 Unique factorisation of ideals
We aim to show that every ideal in 𝒪𝐾 factors uniquely as a product of prime ideals.

Definition. 𝔟 divides 𝔞 if there exists an ideal 𝔠 such that 𝔞 = 𝔟𝔠. We write 𝔟 ∣ 𝔞.

Example. (5, 1 + 2√5) ∣ (3) in 𝒪ℚ(√−5). 3ℤ ∣ 6ℤ as 3ℤ ⋅ 2ℤ = 6ℤ.

Note that 𝔟𝔠 ⊆ 𝔟, as 𝔟 is an ideal. So if 𝔟 ∣ 𝔞, then 𝔞 ⊆ 𝔟. We will show the converse, that 𝔞 ⊆ 𝔟
implies 𝔟 ∣ 𝔞. This allows us to prove results about division by using containment. Note that prime
ideals are maximal, which allows us to use the containment relation.

Lemma. Let 𝔭 be a prime ideal in a ring 𝑅, and let 𝔞, 𝔟 ⊲ 𝑅 be ideals. Then if 𝔞𝔟 ⊆ 𝔭, either
𝔞 ⊆ 𝔭 or 𝔟 ⊆ 𝔭.
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Proof. Otherwise, there exists 𝑎 ∈ 𝔞 ∖ 𝔭 and 𝑏 ∈ 𝔟 ∖ 𝔭, with 𝑎𝑏 ∈ 𝔭. But 𝔭 is prime giving a
contradiction.

Lemma. Let 𝔞 ⊴ 𝒪𝐾 be a nonzero ideal. Then 𝔞 contains a product of prime ideals.

Proof. Otherwise, as𝒪𝐾 is Noetherian, there exists a ideal 𝔞which is maximal with this property. In
particular, 𝔞 is not prime. So there exists 𝑥, 𝑦 ∈ 𝒪𝐾 with 𝑥 or 𝑦 not in 𝔞 but 𝑥𝑦 ∈ 𝔞. So 𝔞 ⊊ 𝔞 + (𝑥).
But then, 𝔞+ (𝑥) contains a product of prime ideals 𝔭1,… , 𝔭𝑟 with 𝔭1…𝔭𝑟 ⊆ 𝔞+ (𝑥). Similarly, there
exist prime ideals 𝔮1,… 𝔮𝑠 such that 𝔮1…𝔮𝑠 ⊆ 𝔞 + (𝑦). Then,

𝔭1…𝔭𝑟𝔮1…𝔮𝑠 ⊆ (𝔞 + (𝑥))(𝔞 + (𝑦)) = 𝔞 + (𝑥𝑦)

But 𝑥𝑦 ∈ 𝔞, giving a contradiction.

The main proof will use the idea that we can formally introduce the group of fractions of the com-
mutative monoid of ideals. The object {𝑦 ∈ 𝐾 ∣ 𝑦𝔞 ⊆ 𝒪𝐾} will represent the inverse of 𝔞.

Lemma. (i) Let 0 ≠ 𝔞 ⊴ 𝒪𝐾 be an ideal. If 𝑥 ∈ 𝐾 has the property that 𝑥𝔞 ⊆ 𝔞, then
𝑥 ∈ 𝒪𝐾 .

(ii) Let 0 ≠ 𝔞 ⊲ 𝒪𝐾 be a proper ideal. Then, 𝒪𝐾 ⊆ {𝑦 ∈ 𝐾 ∣ 𝑦𝔞 ⊆ 𝒪𝐾} contains elements
which are not in 𝒪𝐾 . Equivalently, {𝑦 ∈ 𝐾 ∣ 𝑦𝔞 ⊆ 𝒪𝐾}⟋𝒪𝐾

≠ {1} as abelian groups.

Example. Let 𝒪𝐾 = ℤ and 𝔞 = 3ℤ. Then, part (i) shows that if 𝑎
𝑏
⋅ 3 ∈ 𝟛ℤ, then 𝑎

𝑏
∈ ℤ. Part (ii)

shows that if 𝑎
𝑏
⋅ 3 ∈ ℤ then 𝑎

𝑏
∈ 1

3
ℤ; for instance, if 𝑎

𝑏
= 1

3
, we have

1
3
ℤ⟋ℤ = ℤ⟋3ℤ ≠ {1}.

Proof. Part (i). 𝔞 ⊆ 𝒪𝐾 is finitely generated as an abelian group, as it is isomorphic to ℤ𝑛. Let
𝛼1,… , 𝛼𝑛 be a ℤ-basis of 𝔞. Consider 𝑚𝑥 ∶ 𝔞 → 𝔞 given by multiplication by 𝑥 ∈ 𝐾. We write
𝑥𝛼𝑖 = ∑𝑎𝑖𝑗𝛼𝑗 , where by assumption, 𝑎𝑖𝑗 are integers. Hence,

(𝑥𝐼 − 𝐴) (
𝛼1
⋮
𝛼𝑛
) = 0

where 𝐴 = (𝑎𝑖𝑗). So det(𝑥𝐼 − 𝐴) = 0, so 𝑥 is integral over ℤ; that is, 𝑥 ∈ 𝒪𝐾 .

Part (ii). If this holds for 𝔞, it certainly holds for all ideals 𝔞′ ⊆ 𝔞. So without loss of generality, let
𝔞 be maximal, so 𝔞 = 𝔭 is a prime ideal. Let 𝛼 ∈ 𝔭 be nonzero. By the previous lemma, there exist
prime ideals 𝔭1,… , 𝔭𝑟 such that 𝔭1…𝔭𝑟 ⊆ (𝛼) ⊆ 𝔭. Suppose that 𝑟 is minimal. By the first lemma in
this subsection, there exists 𝑖 such that 𝔭𝑖 ⊆ 𝔭, and without loss of generality 𝑖 = 1. So 𝔭1 ⊆ 𝔭. But
𝔭1 is maximal, so 𝔭1 = 𝔭.
Since 𝑟 is minimal, 𝔭2…𝔭𝑟 ⊊ (𝛼). Fix 𝛽 ∈ 𝔭2…𝔭𝑟 ∖ (𝛼). Then 𝛽𝔭 ⊆ 𝔭(𝔭2…𝔭𝑟) ⊆ (𝛼), but 𝛽 ∈ (𝛼).
So, dividing by 𝛼, we obtain 𝛽

𝛼
𝔭 ⊆ (1) = 𝒪𝐾 , but

𝛽
𝛼
∉ 𝒪𝐾 .

Definition. A fractional ideal is an𝒪𝐾 -module𝑋 such that𝑋 ⊆ 𝐾 and𝑋 is finitely generated.
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𝑋 = {𝑥 ∈ 𝐾 ∣ 𝑥𝔞 ⊆ 𝒪𝐾} is an 𝒪𝐾 -module. If 𝛼 ∈ 𝔞 ∖ {0}, then 𝛼𝑋 ⊆ 𝒪𝐾 = ℤ𝑛 where 𝑛 = [𝐾 ∶ ℚ].
Multiplication by 𝛼 is an isomorphism 𝑋 → 𝛼𝑋 , and submodules of ℤ𝑛 are finitely generated abelian
groups, so𝑋 is finitely generated as an abelian group, hence as an𝒪𝐾 -module. Hence𝑋 is a fractional
ideal.

Lemma. 𝔮 ⊆ 𝐾 is a fractional ideal if and only if there exists a nonzero constant 𝑐 ∈ 𝐾 such
that 𝑐𝔮 is an ideal in 𝒪𝐾 .

Proof. Suppose 𝑐𝔮 is an ideal. Then 𝔮 ⊆ 𝐾, and multiplication by 𝑐 is an isomorphism 𝔮 → 𝑐𝔮 as
𝒪𝐾 -modules, so it is finitely generated as 𝔮 is.
Suppose 𝔮 is a fractional ideal. Then, 𝑥1,… , 𝑥𝑟 generate 𝔮 as an 𝒪𝐾 -module. But 𝑥𝑖 ∈ 𝐾 so 𝑥𝑖 =

𝑦𝑖
𝑛𝑖

where 𝑦𝑖 ∈ 𝒪𝐾 , 𝑛𝑖 ∈ ℤ. Let 𝑐 be the least common multiple of the 𝑛𝑖, and then 𝑐𝑞 ⊆ 𝒪𝐾 , and is a
submodule of 𝒪𝐾 , and hence is an ideal.

Corollary. 𝔮 is isomorphic to ℤ𝑛 as an abelian group.

Proof. We have shown that all nonzero ideals in 𝒪𝐾 are isomorphic to ℤ𝑛 as abelian groups, where
𝑛 = [𝐾 ∶ ℚ], and multiplication by 𝑐 is an isomorphism 𝔮 → 𝑐𝔮.

Ideals are sometimes called integral ideals to distinguish from fractional ideals. One can define mul-
tiplication of fractional ideals in the same way that we defined it for integral ideals.

Definition. A fractional ideal 𝔮 is invertible if there exists a fractional ideal 𝔯 such that 𝔮𝔯 =
(1) = 𝒪𝐾 .

Proposition. Every nonzero fractional ideal 𝔮 is invertible, and its inverse is

𝔮−1 = {𝑥 ∈ 𝐾 ∣ 𝑥𝔮 ⊆ 𝒪𝐾}

Remark. 𝔮 = 1
𝑛
𝔞, 𝔯 = 1

𝑚
𝔟 where 𝔞, 𝔟 are integral ideals in 𝒪𝐾 , and 𝑛,𝑚 ∈ 𝐾⋆. Then 𝔮𝔯 = 1 if and

only if 𝔞𝔟 = (𝑛𝑚). Therefore, the proposition is equivalent to the statement that for every 𝔞 ⊴ 𝒪𝐾 ,
there exists an ideal 𝔟 ⊴ 𝒪𝐾 such that 𝔞𝔟 is principal.

Proof. 𝔮 is invertible if and only if 𝔞 is invertible, where 𝑛𝔮 = 𝔞 as above. So, without loss of generality,
let 𝔮 be an integral ideal. If the proposition is false, there exists some integral ideal in 𝒪𝐾 . As 𝒪𝐾
is Noetherian, there exists a maximal such ideal 𝔞 ≠ 𝒪𝐾 . So every ideal 𝔞′ ⊋ 𝔞 is invertible. Let
𝔟 = {𝑥 ∈ 𝐾 ∣ 𝑥𝔞 ⊆ 𝒪𝐾}, which is a fractional ideal. 𝒪𝐾 ⊆ 𝔟 hence 𝔞 ⊆ 𝔞𝔟. If 𝔞 = 𝔞𝔟, then part (i)
of a previous lemma implies that 𝔟 ⊆ 𝒪𝐾 . Part (ii) of the same lemma implies 𝔟 ∖ 𝒪𝐾 ≠ ∅, which
is a contradiction. So 𝔞 ⊊ 𝔞𝔟 ⊊ 𝒪𝐾 . Then 𝔞𝔟 is invertible by assumption, so 𝔞 is invertible, giving
a contradiction. Finally, 𝔮−1 ⊆ {𝑥 ∈ 𝐾 ∣ 𝑥𝔮 ⊆ 𝒪𝐾} = 𝑋 , so 𝔮𝔮−1 = 𝒪𝐾 ⊆ 𝔮𝑋 ⊆ 𝒪𝐾 , so we have
equality: 𝔮−1 = 𝑋 .

11



Corollary. Let 𝔞, 𝔟, 𝔠 ⊲ 𝒪𝐾 be integral ideals, and let 𝔠 ≠ (0). Then,
(i) 𝔟 ⊆ 𝔞 ⟺ 𝔟𝔠 ⊆ 𝔞𝔠;
(ii) 𝔞 ∣ 𝔟 ⟺ 𝔞𝔠 ∣ 𝔟𝔠;
(iii) 𝔞 ∣ 𝔟 ⟺ 𝔟 ⊆ 𝔞.

Proof. The forward direction of parts (i) and (ii) are clear; the backward direction follows frommulti-
plication by 𝔠−1. The forward direction of part (iii) has already been seen. Now, suppose 𝔟 ⊆ 𝔞. By the
proposition above, there exists 𝔠 such that 𝔞𝔠 = (𝛼) is principal. Then, 𝔟 ⊆ 𝔞 if and only if 𝔟𝔠 ⊆ (𝛼) by
part (i). 𝔞 ∣ 𝔟 if and only if (𝛼) ∣ 𝔟𝔠 by part (ii). But if 𝔟𝔠 is generated by 𝛽1,… , 𝛽𝑟, 𝔟𝔠 ⊆ (𝛼)means that
each 𝛽𝑖 is divisible by 𝛼. More precisely, 𝛽𝑖 = 𝛽′𝑖𝛼 for some 𝛽′𝑖 ∈ 𝒪𝐾 . So (𝛽1,… , 𝛽𝑟) = (𝛽′1,… , 𝛽′𝑟)(𝛼)
proving part (iii).

Remark. Part (iii) is straightforward if 𝔞 is principal, and invertibility via fractional ideals allows us
to reduce to this case.

Theorem. Let 𝔞 ⊲ 𝒪𝐾 be a nonzero ideal. Then 𝔞 can be written uniquely as a product of
prime ideals.

Proof. If 𝔞 is not prime, it is not maximal. Let 𝔟 ⊋ 𝔞 be an ideal in 𝒪𝐾 . Then 𝔞 = 𝔟𝔠 for some ideal 𝔠
containing 𝔞 by part (iii) of the previous corollary. We continue factoring in this way. As the ring is
Noetherian, this process will always terminate, as we produce an ascending chain.

For uniqueness, we have shown that 𝔭 ∣ 𝔞𝔟 implies 𝔭 ∣ 𝔞 or 𝔭 ∣ 𝔟. So if 𝔭1…𝔭𝑟 = 𝔮1…𝔮𝑠 with 𝔭𝑖, 𝔮𝑖
prime, we have 𝔭1 ∣ 𝔮𝑖 for some 𝑖. So let 𝑖 = 1without loss of generality, so 𝔮1 ⊆ 𝔭1. But 𝔮1 is maximal,
so 𝔮1 = 𝔭1. Multiply by 𝔭−11 to obtain 𝔭2…𝔭𝑟 = 𝔮2…𝔮𝑠, then by induction, the 𝔭𝑖 and 𝔮𝑖 match.

Corollary. The nonzero fractional ideals form a group 𝐼𝐾 under multiplication. 𝐼𝐾 is the
free abelian group generated by the prime ideals 𝔭 ⊲ 𝒪𝐾 . In other words, any 𝔮 ∈ 𝐼𝐾 can be
written uniquely as a product of prime ideals and their inverses. 𝔮 ∈ 𝐼𝐾 is an integral ideal if
and only if all of the exponents are nonnegative.

Proof. Follows from the previous theorem after writing 𝔮 = 𝔞𝔟−1 where 𝔞, 𝔟 ⊴ 𝒪𝐾 .

2.3 Class group
Observe that we have a map 𝐾⋆ → 𝐼𝐾 mapping 𝑥 to the principal ideal (𝑥). This map is a group
homomorphism, as 𝛼𝛽 ↦ (𝛼)(𝛽). Its kernel is the set of 𝛼 ∈ 𝐾⋆ such that (𝛼) = (1) = 𝒪𝐾 , which is
the set 𝒪⋆

𝐾 of invertible elements of 𝒪𝐾 . The image is the set of principal ideals 𝑃𝐾 .

Definition. The class group of a number field 𝐾 is Cl𝐾 = 𝐼𝐾⟋𝑃𝐾 , the cokernel of the map
𝐾⋆ → 𝐼𝐾 .

If 𝔞 ∈ 𝐼𝐾 , we write [𝔞] for its equivalence class in the class group, so [𝔞] = [𝔟] if and only if there
exists 𝛾 ∈ 𝐾⋆ such that 𝛾𝔞 = 𝔟.
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Theorem. The following are equivalent.
(i) 𝒪𝐾 is a principal ideal domain;
(ii) 𝒪𝐾 is a unique factorisation domain;
(iii) Cl𝐾 is trivial.

Proof. (i) holds if and only if (iii) holds by definition. (i) implies (ii) is a general fact from IB Groups,
Rings and Modules. The proof that (ii) implies (i) remains. Let 𝔭 be a prime ideal in 𝒪𝐾 , and 𝑥 ∈
𝔭 a nonzero element of this ideal. We can factorise 𝑥 into irreducibles 𝑥 = 𝛼1…𝛼𝑟 uniquely by
assumption. As 𝔭 is prime, some 𝛼𝑖 lies in 𝔭. Then (𝛼𝑖) ⊆ 𝔭, and as 𝒪𝐾 is a unique factorisation
domain and 𝛼𝑖 is irreducible, (𝛼𝑖) is prime. But prime ideals aremaximal, so (𝛼𝑖) = 𝔭 as required.

The following sequence is exact.

1 𝒪⋆
𝐾 𝐾⋆ 𝐼𝐾 Cl𝐾 1

We can now state the main theorems of the course, which are:

(i) the class group is finite;

(ii) 𝒪⋆
𝐾 is the direct product of the roots of unity in 𝐾 with ℤ𝑟+𝑠−1.

Example. (3, 1 + 2√5)(3, 1 − 2√5) = (3), so (3, 1 + 2√5) and (3, 1 − 2√5) are inverse in the class
group.

Example. Let [𝐿 ∶ ℚ] = 2, so 𝐿 = ℚ(√𝑑) for 𝑑 ∈ ℤ, and 𝑑 ≢ 1 mod 4. Let 𝔞 ⊴ 𝒪𝐿, so 𝔞 ≃ ℤ2
giving 𝔞 = (𝛼, 𝛽) as an 𝒪𝐿-module. We can always assume 𝛽 ∈ ℤ. Indeed, write 𝛼 = 𝑎 + 𝑏√𝑑 and
𝛽 = 𝑎′ + 𝑏′√𝑑. Assume |𝑎| + |𝑎′| is minimal, so without loss of generality 𝑎 ≥ 𝑎′ ≥ 0, and if 𝑎′ ≠ 0,
𝛼 − 𝛽, 𝛽 has smaller |𝑎| + |𝑎′|.
Example. In a quadratic field 𝔞 = (𝛼, 𝑏) where 𝑏 ∈ ℤ. Then (𝑏, 𝛼)(𝑏, 𝛼) is principal.

𝔞𝔞 = (𝑏2, 𝑏𝛼, 𝑏𝛼, 𝛼𝛼) = (𝑏2, 𝑏𝛼, 𝑏 (𝛼 + 𝛼)⏟⎵⏟⎵⏟
Tr(𝛼)

, 𝑁(𝛼)) = (𝑏𝛼, 𝑐)

where 𝑐 = gcd(𝑏2,Tr(𝛼), 𝑁(𝛼)). Let 𝑥 = 𝑏𝛼
𝑐
∈ 𝐿⋆. Tr(𝑥) = 𝑏Tr(𝛼)

𝑐
∈ ℤ, and 𝑁(𝑐) = 𝑁(𝑏𝛼

𝑐
) = 𝑏2𝑁(𝛼)

𝑐2
=

𝑏2

𝑐
𝑁(𝛼)
𝑐

∈ ℤ, so 𝑥 ∈ 𝒪𝐿, giving 𝑐 ∣ 𝑏𝛼, so 𝔞𝔞 = (𝑐). In particular, (𝑏, 𝛼), (𝑏, 𝛼) are inverse in the class
group.

2.4 Norms of ideals

Definition. Let 𝐿 be a number field, and let [𝐿 ∶ ℚ] = 𝑛. Let 𝔞 ⊴ 𝒪𝐿 be a nonzero ideal.
The norm of 𝔞 is ||𝒪𝐿⟋𝔞||.

By Lagrange’s theorem, 𝑁(𝔞) ⋅ 1 = 0 in 𝒪𝐿⟋𝔞. Hence 𝑁(𝔞) ∈ 𝔞 ∩ ℤ.

Example. Let 𝑝 be a prime. 𝑁((𝑝)) = |
|ℤ

𝑛⟋(𝑝ℤ)𝑛
|
| = 𝑝𝑛.
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Proposition. Let 𝔞, 𝔟 ⊴ 𝒪𝐿 be nonzero ideals. Then, 𝑁(𝔞𝔟) = 𝑁(𝔞)𝑁(𝔟).

Remark. By unique factorisation of ideals, it suffices to show that

𝑁(𝔭𝑎11 …𝔭𝑎𝑛𝑛 ) = 𝑁(𝔭1)𝑎1 …𝑁(𝔭𝑛)𝑎𝑛

for 𝔭𝑖 distinct prime ideals. To show this, we need that

(i) 𝒪𝐿⟋𝔭𝑎11 …𝔭𝑎𝑛𝑛 ≃ 𝒪𝐿⟋𝔭𝑎11 …𝒪𝐿⟋𝔭𝑎𝑛𝑛 by the Chinese remainder theorem.

(ii) ||𝒪𝐿⟋𝔭𝑒|| = ||𝒪𝐿⟋𝔭|| ⋅ ||𝔭⟋𝔭2
||⋯

|||
𝔭𝑒−1⟋𝔭𝑒

||| which is a general fact, and this is equal to ||𝒪𝐿⟋𝔭||
𝑒
as

𝔭𝑎⟋𝔭𝑎+1 is a one-dimensional vector space over the field 𝒪𝐿⟋𝔭. This fact is specific to number
fields (or more generally, Dedekind domains). For a counterexample, consider 𝔽𝑝[𝑋, 𝑌] and
𝔭 = (𝑥, 𝑦).

The following proof uses the above approach obscurely but quickly.

Proof. By unique factorisation it suffices to show the result for 𝔟 = 𝔭 where 𝔭 is prime. 𝔞 ≠ 𝔞𝔭
by unique factorisation, so let 𝛼 ∈ 𝔞 ∖ 𝔞𝔭. We claim that the homomorphism of abelian groups
𝒪𝐿⟋𝔭 → 𝔞⟋𝔞𝔭mapping 𝑥 ↦ 𝛼𝑥 is an isomorphism. Then,

𝒪𝐿⟋𝔞 ≃
(𝒪𝐿⟋𝔞𝔭)⟋(𝔞⟋𝔞𝔭)

so
𝑁(𝔞) = ||𝒪𝐿⟋𝔞|| =

𝑁(𝔞𝔭)
||𝔞⟋𝔞𝔭||

but ||𝔞⟋𝔞𝔭|| = ||𝒪𝐿⟋𝔭|| = 𝑁(𝔭) by the claim, proving the proposition. We now prove the claim.

We show the homomorphism is injective. (𝛼) ⊆ 𝔞 so (𝛼) = 𝔞𝔠 for some 𝔠 ⊲ 𝒪𝐿. Suppose 𝑥 has
𝛼𝑥 ∈ 𝔞𝔭, so 𝑥 + 𝔭 is in the kernel. Then, 𝑥𝔞𝔠 ⊆ 𝔞𝔭. Dividing by 𝔞, 𝑥𝔠 ⊆ 𝔭. But 𝔭 is prime, so 𝑥 ∈ 𝑝
or 𝔠 ⊆ 𝔭. But 𝔠 ⊆ 𝔭 implies 𝛼 ∈ 𝔞𝔭, contradicting our choice of 𝛼. So 𝑥 ∈ 𝔭, so the map is injective as
required.

We show the homomorphism is surjective. We want to show (𝛼) + 𝔞𝔭 = 𝔞. We know that 𝔞𝔭 ⊊
(𝛼) + 𝔞𝔭 ⊆ 𝔞. Multiplying by 𝔞−1, we obtain

𝔭 ⊊ ((𝛼) + 𝔞𝔭)𝔞−1 ⊆ 𝒪𝐿

But 𝔭 is a prime and hence maximal. Therefore, ((𝛼) + 𝔞𝔭)𝔞−1 = 𝒪𝐿, so (𝛼) + 𝑝 = 𝔞, so the map is
surjective.

Lemma. Let𝑀 ⊆ ℤ𝑛 be a subgroup. Then𝑀 ≃ ℤ𝑟 for some 0 ≤ 𝑟 ≤ 𝑛. Suppose further that
𝑟 = 𝑛. Let 𝑒1,… , 𝑒𝑛 be a basis ofℤ𝑛 and 𝑣1,… , 𝑣𝑛 be a basis of𝑀 overℤ. Then, ||ℤ

𝑛⟋𝑀|| = det𝐴
where 𝐴 = (𝑎𝑖𝑗) and 𝑣𝑗 = ∑𝑎𝑖𝑗𝑒𝑖.

Proof. Wecan choose a basis 𝑣1,… , 𝑣𝑛 of𝑀 such that𝐴 is upper triangular. Then, |det𝐴| = |𝑎11…𝑎𝑛𝑛|.
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Lemma. Let 𝔞 ⊲ 𝒪𝐿 be a nonzero ideal, and 𝑛 = [𝐿 ∶ ℚ]. Then,
(i) There exist 𝛼1,… , 𝛼𝑛 ∈ 𝔞 such that 𝔞 = {∑𝑛

𝑖=1 𝑟𝑖𝛼𝑖 ∣ 𝑟𝑖 ∈ ℤ}, and 𝛼1,… , 𝛼𝑛 are a basis
of 𝐿/ℚ.

(ii) For any such 𝛼1,… , 𝛼𝑛 ∈ 𝔞, Δ(𝛼1,… , 𝛼𝑛) = 𝑁(𝔞)2𝐷𝐿 where 𝐷𝐿 is the discriminant of
𝐿, and where Δ(𝛼1,… , 𝛼𝑛) = det Tr(𝛼𝑖𝛼𝑗) = (det(𝜎𝑖𝛼𝑗))

2.

Proof. Part (i). The result holds for 𝒪𝐿, and if 𝑑 ∈ 𝔞 is an integer, such as 𝑑 = 𝑁(𝔞), then 𝑑𝒪𝐿 ⊆ 𝔞 ⊆
𝒪𝐿, so as abelian groups, (𝑑ℤ)𝑛 ⊆ 𝔞 ⊆ ℤ𝑛, so 𝔞 ≃ ℤ𝑛.
Part (ii). Let 𝛼′1,… , 𝛼′𝑛 be an integral basis of 𝒪𝐿. Let 𝐴 be the change of basis matrix from 𝛼1,… , 𝛼𝑛
to 𝛼′1,… , 𝛼′𝑛. Then Δ(𝛼1,… , 𝛼𝑛) = (det𝐴)2Δ(𝛼′1,… , 𝛼′𝑛) = ||𝒪𝐿⟋𝔞||

2
𝐷𝐿 by the lemma.

Corollary. If 𝛼1,… , 𝛼𝑛 generating 𝔞 as a ℤ-module has Δ(𝛼1,… , 𝛼𝑛) square-free, then 𝔞 =
𝒪𝐿 and 𝐷𝐿 is square-free. In particular, if 𝐿 = ℚ(𝛼) and 𝛼 ∈ 𝒪𝐿 where the discriminant
disc(𝛼) = Δ(1, 𝛼,… , 𝛼𝑛−1) is square-free, then ℤ[𝛼] = 𝒪𝐿. More generally, if 𝛼 ∈ 𝒪𝐿 and
𝐿 = ℚ(𝛼), and 𝑑 ∈ ℤ is a maximal integer such that 𝑑2 ∣ disc(𝛼), then ℤ[𝛼] ⊆ 𝒪𝐿 ⊆

1
𝑑
ℤ[𝛼].

Lemma. Let 𝛼 ∈ 𝒪𝐿 be a nonzero algebraic integer. Then 𝑁((𝛼)) = ||𝑁𝐿/ℚ(𝛼)||.

Proof. Let 𝛼1,… , 𝛼𝑛 be an integral basis of 𝒪𝐿. Consider

Δ(𝛼1𝛼,… , 𝛼𝑛𝛼) = (det(𝜎𝑖(𝛼𝑗𝛼)))
2

= (det((𝜎𝑖𝛼𝑗)(𝜎𝑖𝛼)))
2

= (
𝑛
∏
𝑖=1

𝜎𝑖(𝛼) ⋅ det(𝜎𝑖𝛼𝑗))
2

= 𝑁(𝛼)2Δ(𝛼1,… , 𝛼𝑛)
= 𝑁(𝛼)2𝐷𝐿

But 𝛼1𝛼,… , 𝛼𝑛𝛼 is a basis of (𝛼), hence this is equal to 𝑁((𝛼))2𝐷𝐿. So 𝑁((𝛼))2 = 𝑁𝐿/ℚ(𝛼)2, but
𝑁((𝛼)) > 0, giving the result as required.

2.5 Prime ideals

Lemma. Let 𝔭 ⊲ 𝒪𝐿 be a prime ideal. Then there exists a unique prime 𝑝 ∈ ℤ such that
𝔭 ∣ (𝑝) = 𝑝𝒪𝐿. Moreover, 𝑁(𝔭) = 𝑝𝑓 for some integer 1 ≤ 𝑓 ≤ 𝑛 = [𝐿 ∶ ℚ].

Proof. 𝔭 ∩ ℤ is an ideal in ℤ, hence principal. So for some 𝑝 ∈ ℤ, 𝔭 ∩ ℤ = 𝑝ℤ; we claim 𝑝 is prime.
If 𝑝 = 𝑎𝑏 with 𝑎, 𝑏 ∈ ℤ, then as 𝑝 ∈ 𝔭, 𝑎 or 𝑏 lie in 𝔭 ∩ ℤ, so 𝑎 or 𝑏 lie in 𝑝ℤ, so 𝑝 ∣ 𝑎 or 𝑝 ∣ 𝑏.
By factorisation of ideals, (𝑝) = 𝔭𝔞 for some 𝔞 ⊴ 𝒪𝐿. Taking norms, 𝑁((𝑝)) = 𝑁(𝔭)𝑁(𝔞). But
𝑁((𝑝)) = 𝑝𝑛, so 𝑁(𝔭) = 𝑝𝑓 for 1 ≤ 𝑓 ≤ 𝑛.
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Remark. Every prime ideal in 𝒪𝐿 is a factor of (𝑝) ⊲ ℤ where 𝑝 is a prime. Hence, we can factorise
(𝑝) as 𝔭𝑒11 …𝔭𝑒𝑟𝑟 for each prime 𝑝 ∈ ℤ to identify all prime ideals in 𝒪𝐿.

Let 𝑝 ∈ ℤ be a prime. Consider the map 𝑞∶ 𝒪𝐿 → 𝒪𝐿⟋𝑝𝒪𝐿
, which is a surjection. By the isomorph-

ism theorem, there is a bijection 𝐼 ↦ 𝑞−1(𝐼) with inverse 𝐽 ↦ 𝐽⟋(𝑝) between the set of ideals in
𝒪𝐿⟋𝑝𝒪𝐿

and ideals of 𝒪𝐿 containing 𝑝𝒪𝐿, or equivalently, ideals 𝔭 ⊲ 𝒪𝐿 with 𝔭 ∣ (𝑝). The bijection
maps prime ideals to prime ideals.

Under certain assumptions, we can determine the prime ideals in 𝒪𝐿⟋(𝑝) exactly.

Theorem (Dedekind’s criteria). Let 𝛼 ∈ 𝒪𝐿 haveminimal polynomial 𝑔(𝑥) ∈ ℤ[𝑥]. Suppose
that ℤ[𝛼] ⊆ 𝒪𝐿 has finite index ||𝒪𝐿⟋ℤ[𝛼]|| not divisible by 𝑝. Let 𝑔(𝑥) = 𝑔(𝑥)mod 𝑝 ∈ 𝔽𝑝[𝑥].
Let 𝑔(𝑥) = 𝜑𝑒11 …𝜑𝑒𝑟𝑟 be the factorisation of 𝑔(𝑥) into irreducibles in 𝔽𝑝[𝑥]. Then 𝑝𝒪𝐿 =
(𝑝) = 𝔭𝑒11 …𝔭𝑒𝑟𝑟 where 𝔭𝑖 = (𝑝, 𝜑𝑖(𝛼)) is the prime ideal in 𝒪𝐿 where we choose any monic
polynomial 𝜑𝑖(𝑥) ∈ ℤ[𝑥] which has reduction mod 𝑝 equal to 𝜑𝑖(𝑥).

Proof. First, we show that each factor 𝜑𝑖 defines a prime ideal in ℤ[𝛼]⟋𝑝ℤ[𝛼]. We will then relate this
to prime ideals in 𝒪𝐿⟋𝑝𝒪𝐿

. We have a surjective ring homomorphism ℤ[𝑥] → 𝔽𝑝[𝑥]⟋𝜑𝑖.

We claim that the kernel of this homomorphism is the ideal generated by 𝑝, 𝜑𝑖. We can factor the
map as ℤ[𝛼] → 𝔽𝑝[𝑥] → 𝔽𝑝[𝑥]⟋𝜑𝑖. It is clear that 𝑝, 𝜑𝑖 lie in the kernel. If 𝑓 ↦ 0, then 𝜑𝑖 ∣ 𝑓 so there
exists ℎ ∈ 𝔽𝑝[𝑥] such that 𝑓 = 𝜑𝑖ℎ, so 𝑓 = 𝜑𝑖ℎ + 𝑝𝑠 for any lift ℎ of ℎ of the same degree. So the
kernel is precisely (𝑝, 𝜑𝑖).

We can alternatively factor the map as ℤ[𝛼] → ℤ[𝑥]⟋𝑔(𝑥)ℤ[𝑥] → 𝔽𝑝[𝑥]⟋𝜑𝑖. We claim that the kernel

of the map ℤ[𝛼] → 𝔽𝑝[𝛼] = 𝔽𝑝[𝑥]⟋𝜑𝑖 is the ideal 𝔮𝑖 ⊲ ℤ[𝛼] generated by 𝑝, 𝜑𝑖(𝛼). The proof of this

claim is left as an exercise. Therefore, ℤ[𝛼]⟋𝔮𝑖 ≃
𝔽𝑝[𝑥]⟋𝜑𝑖(𝑥). But 𝜑𝑖(𝑥) is irreducible by hypothesis,

so 𝔽𝑝[𝑥]⟋𝜑𝑖(𝑥) is a field, hence 𝔮𝑖 is a prime ideal. Therefore,
𝔽𝑝[𝑥]⟋𝜑𝑖 ≃ 𝔽𝑞 where 𝑞 = 𝑝𝑓𝑖 is some

power of 𝑝. In particular, ||ℤ[𝛼]⟋𝔮𝑖
|| = |||

𝔽𝑝[𝑥]⟋𝜑𝑖(𝑥)
||| = 𝑝𝑓𝑖 where 𝑓𝑖 = deg𝜑𝑖.

Now, if ℤ[𝛼] = 𝒪𝐿 the first part implies that 𝔭𝑖 = 𝔮𝑖 is a prime ideal containing 𝑝, and 𝑁(𝔭𝑖) = 𝑝𝑓𝑖 .
Suppose 𝑝 ∤ ||𝒪𝐿⟋ℤ[𝛼]||. We claim that the inclusion map defines an isomorphism 𝜄∶ ℤ[𝛼]⟋𝑝ℤ[𝛼] →
𝒪𝐿⟋𝑝𝒪𝐿

. This implies that there is a bijection between ideals of ℤ[𝛼]⟋𝑝ℤ[𝛼] and ideals of 𝒪𝐿⟋𝑝𝒪𝐿
.

Hence, there is a bijection between ideals of ℤ[𝛼] containing 𝑝 and ideals of 𝒪𝐿 containing 𝑝, where
this bijection maps an ideal (𝑝, 𝑦) ⊴ ℤ[𝛼] to 𝔭 ⊴ 𝒪𝐿 generated by the same elements under the
inclusion map. In other words, it maps an ideal 𝔮 to 𝔮𝒪𝐿. The inverse bijection maps 𝔭 to 𝔭 ∩ ℤ[𝛼].
Moreover, 𝒪𝐿⟋𝔭 ≃ ℤ[𝛼]⟋𝔭 ∩ ℤ[𝛼] hence 𝑁(𝔭𝑖) = 𝑝deg𝜑𝑖 = 𝑝𝑓𝑖 for 𝔭𝑖 as above.

We now prove the claim. The map 𝒪𝐿⟋ℤ[𝛼] → 𝒪𝐿⟋ℤ[𝛼] given by multiplication by 𝑝 is an isomorph-
ism. It is injective as the kernel is a 𝑝-group so must be trivial, and 𝒪𝐿⟋ℤ[𝛼] is a finite abelian group,
so this is an isomorphism. But the kernel of the map 𝜄∶ ℤ[𝛼]⟋𝑝ℤ[𝛼] → 𝒪𝐿⟋𝑝𝒪𝐿

is ℤ[𝛼] ∩ 𝑝𝒪𝐿⟋𝑝ℤ[𝛼],
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which is precisely the kernel of the map given by multiplication by 𝑝. So 𝜄 is injective.
𝜄 is surjective if 𝒪𝐿 = ℤ[𝛼] + 𝑝𝒪𝐿. The map given by multiplication by 𝑝 is surjective, so 𝜄 is indeed
surjective, and hence an isomorphism as required.

We have now constructed prime ideals 𝔭𝑖 = (𝑝, 𝜑𝑖(𝛼)) ⊲ 𝒪𝐿 containing 𝑝 with norm 𝑁(𝔭𝑖) = 𝑝𝑓𝑖
with 𝑓𝑖 = deg𝜑𝑖. We must now show that there are no other ideals containing 𝑝. Now, 𝔭𝑒𝑖𝑖 =
(𝑝, 𝜑𝑖(𝛼))𝑒𝑖 ⊆ (𝑝, 𝜑𝑖(𝛼)𝑒𝑖 ), so

𝔭𝑒11 …𝔭𝑒𝑟𝑟 ⊆ (𝑝, 𝜑1(𝛼)𝑒1)… (𝑝, 𝜑𝑟(𝛼)𝑒𝑟) ⊆ (𝑝, 𝜑1(𝛼)𝑒1 …𝜑𝑟(𝛼)𝑒𝑟)

But 𝜑𝑒11 …𝜑𝑒𝑟𝑟 = 𝑔, so 𝜑𝑒11 …𝜑𝑒𝑟𝑟 = 𝑔 + 𝑝𝑠. So (𝑝, 𝜑1(𝛼)𝑒1 …𝜑𝑟(𝛼)𝑒𝑟) = (𝑝, 𝑔(𝛼)) = (𝑝) as 𝑔(𝛼) = 0. So
𝔭𝑒11 …𝔭𝑒𝑟𝑟 ⊆ (𝑝). But [𝐿 ∶ ℚ] = 𝑛 = deg 𝑔 = deg 𝑔 = ∑𝑟

𝑖=1 𝑒𝑖 deg𝜑𝑖 = ∑𝑟
𝑖=1 𝑒𝑖𝑓𝑖. Taking norms,

𝑁(𝔭𝑒11 …𝔭𝑒𝑟𝑟 ) =
𝑟
∏
𝑖=1

𝑁(𝔭𝑖)𝑒𝑖 = 𝑝𝑒1𝑓1+⋯+𝑒𝑟𝑓𝑟 = 𝑝𝑛 = 𝑁((𝑝))

One can show that if 𝔞 ⊆ 𝔟 and 𝑁(𝔞) = 𝑁(𝔟), then 𝔞 = 𝔟. So the two ideals are equal.
Note that if 𝑖 ≠ 𝑗, 𝜑𝑖, 𝜑𝑗 are coprime in 𝔽𝑝[𝑥], so 𝔭𝑖 + 𝔭𝑗 = (𝑝, 𝜑𝑖(𝛼), 𝜑𝑗(𝛼)) ≠ 𝔭𝑖, so 𝔭𝑖 ≠ 𝔭𝑗 .

Note that since we choose a monic polynomial, deg𝜑𝑖(𝑥) = deg𝜑𝑖(𝑥). Different choices of 𝜑𝑖(𝑥)
give the same ideal as 𝑝 is in the ideal. 𝔭𝑖 ≠ 𝔭𝑗 if 𝑖 ≠ 𝑗, and 𝔭𝑒11 …𝔭𝑒𝑟𝑟 is the factorisation of (𝑝) into
irreducibles.

Remark. Most 𝛼 ∈ 𝒪𝐿 have 𝒪𝐿⟋ℤ[𝛼] finite, but the condition that 𝑝 ∤ ||𝒪𝐿⟋ℤ[𝛼]|| is restrictive.

Example. Let 𝐿 = ℚ(√−11), and let us factorise (5) ⊆ 𝒪𝐿. As −11 ≡ 1mod 4, ℤ[√−11] ≠ 𝒪𝐿. So
ℤ[√−11]has index 2 in𝒪𝐿, and 5 ∤ 2, soDedekind’s theoremapplies. Modulo 5, 𝑥2+1 = (𝑥−2)(𝑥+2),
so (5) = (5, −2 + √−11)(5, −2 − √−11).

Example. In general, let 𝐿 = ℚ(√𝑑) where 𝑑 is square free and not equal to zero or one. Let 𝑝 be
an odd prime. Then, ℤ[√𝑑] ⊆ 𝒪𝐿 has index 1 or 2, and both are coprime to 𝑝. Factorising 𝑥2 − 𝑑
modulo 𝑝, there are three cases.

• Suppose there are two distinct roots modulo 𝑝 of 𝑥2 − 𝑑. Then, using the Legendre symbol,
(𝑑
𝑝
) = 1. In this case, 𝑥2−𝑑 = (𝑥−𝑟)(𝑥+𝑟) for some 𝑟 ∈ ℤ. By Dedekind’s theorem, 𝑝 = 𝔭1𝔭2

where 𝔭1 = (𝑝,√𝑑 − 𝑟) and 𝔭2 = (𝑝,√𝑑 + 𝑟). In this case, 𝑁(𝔭1) = 𝑁(𝔭2) = 𝑝; we say 𝑝 splits
in 𝐿/ℚ.

• Suppose 𝑥2 − 𝑑 is irreducible modulo 𝑝. Then (𝑑
𝑝
) = −1. (𝑝) = 𝔭 is prime; we say 𝑝 is inert in

𝐿.

• Suppose 𝑥2−𝑑 has a repeated root, so 𝑑 ≡ 0modulo 𝑝. Then (𝑑
𝑝
) = 0. In this case, Dedekind’s

theorem gives (𝑝) = 𝔭2 where 𝔭 = (𝑝,√𝑑). We say that 𝑝 ramifies in 𝐿.
Now consider the case 𝑝 = 2.

Lemma. 2 splits in 𝐿 if and only if 𝑑 ≡ 1mod 8. 2 is inert in 𝐿 if and only if 𝑑 ≡ 5mod 8. 2
ramifies in 𝐿 if and only if 𝑑 ≡ 2, 3mod 4.
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Proof. If 𝑑 ≡ 1mod 4, then 𝒪𝐿 = ℤ[𝛼] where 𝛼 = 1
2
(1 + √𝑑). The minimal polynomial of 𝛼 is

𝑥2 −𝑥+ 1
4
(1 − 𝑑). Reducing modulo 2, if 𝑑 ≡ 1mod 8 then this is 𝑥(𝑥+ 1) so 2 splits. If 𝑑 ≡ 5mod 8

then this gives 𝑥2 + 𝑥 + 1 which is irreducible, so 2 is inert. If 𝑑 ≡ 2, 3mod 4, then 𝒪𝐿 = ℤ[√𝑑] and
𝑥2 − 𝑑 is either 𝑥2 or (𝑥 − 1)2, which ramifies.

Recall that 𝐷𝐿 = 4𝑑 if 𝑑 ≡ 2, 3mod 4, and 𝐷𝐿 = 𝑑 if 𝑑 ≡ 1mod 4.

Corollary. Let 𝐿 = ℚ(√𝑑). 𝑝 ∣ 𝐷𝐿 if and only if 𝑝 ramifies in 𝐿.

Proof. Case analysis.

Definition. Let (𝑝) = 𝔭𝑒11 …𝔭𝑒𝑟𝑟 be the factorisation of (𝑝) into irreducibles in 𝒪𝐿, where
𝑝𝑓𝑖 = 𝑁(𝔭𝑖). We say that

• 𝑝 ramifies if some 𝑒𝑖 is greater than 1;
• 𝑝 is inert if 𝑟 = 1 and 𝑒1 = 1, so (𝑝) remains prime;
• 𝑝 splits or splits completely if 𝑟 = 𝑛 and 𝑒𝑖 = 𝑓𝑖 = ⋯ = 𝑒𝑛 = 𝑓𝑛 = 1.

Corollary. Let 𝑝 be a prime and 𝑝 < 𝑛 = [𝐿 ∶ ℚ]. Let ℤ[𝛼] ⊆ 𝒪𝐿 have finite index coprime
to 𝑝. Then 𝑝 does not split completely.

Proof. Let 𝑔 be the minimal polynomial of 𝛼. Suppose 𝑝 splits, so 𝑔 has 𝑛 distinct roots in 𝔽𝑝 by
Dedekind’s theorem. But 𝑛 > 𝑝, so this is not possible.

Example. Let 𝐿 = ℚ(𝛼) and 𝛼 has minimal polynomial 𝑥3 − 𝑥2 − 2𝑥 − 8. On an example sheet, we
show that 2 splits completely in 𝒪𝐿. Hence, for all 𝛽 ∈ 𝒪𝐿 ∖ ℤ, ℤ[𝛽] ⊆ 𝒪𝐿 has even index.

Note that Dedekind’s theorem allows for the factorisation of (𝑝) for all but finitely many 𝑝, as if
𝛼 ∈ 𝒪𝐿 with 𝒪𝐿⟋ℤ[𝛼] finite, only finitely many primes 𝑝 divide its order.

Theorem. For all primes 𝑝, we have (𝑝) = 𝔭𝑒11 …𝔭𝑒𝑟𝑟 with 𝒪𝐿⟋𝔭𝑖 = 𝔽𝑝[𝑥]⟋𝜑𝑖(𝑥) where
𝜑𝑖 ∈ 𝔽𝑝[𝑥] is an irreducible polynomial of degree 𝑓𝑖 and 𝑁(𝔭𝑖) = 𝑝𝑓𝑖 , and 𝒪𝐿⟋𝑝𝒪𝐿

≃
∏𝑟

𝑖=1
𝔽𝑝[𝑥]⟋𝜑𝑖(𝑥) = ∏𝑟

𝑖=1 𝔽𝑝𝑓𝑖 .

Dedekind’s theorem implies that this holds if there exists 𝛼 ∈ 𝒪𝐿 with 𝑝 ∤ ||𝒪𝐿⟋ℤ[𝛼]|| < ∞.

Theorem. 𝑝 ramifies in 𝐿 if and only if 𝑝 ∣ 𝐷𝐿.
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3 Geometry of numbers
3.1 Imaginary quadratic fields
Let 𝐿 = ℚ(√𝑑) where 𝑑 is square-free and 𝑑 < 0. 𝒪𝐿 = ℤ[𝛼] where 𝛼 = 1

2
(1 + √𝑑) or 𝛼 = √𝑑.

Choose a square root of 𝑑 in ℂ to construct an embedding of 𝒪𝐿 into ℂ.
SupposeΛ = ℤ𝑣1+ℤ𝑣2 ⊆ ℝ2 whereℝ2 is equipped with the Euclidean norm, and 𝑣1, 𝑣2 are linearly
independent over ℝ. Let 𝐴(Λ) be the area of the parallelogram generated by 𝑣1 and 𝑣2. If 𝑣𝑖 =
𝑎𝑖𝑒1 + 𝑏𝑖𝑒2, we have

𝐴(Λ) = |||det (
𝑎1 𝑎2
𝑏1 𝑏2

)|||
Minkowski’s lemma is that a closed disk 𝑆 around zero contains a nonzero point of Λ whenever the
area of 𝑆 is at least 4𝐴(Λ). More precisely, there exists 𝛼 ∈ Λ such that 0 < |𝛼|2 < 4𝐴(Λ)

𝜋
. Note

that this condition depends only on the area of the parallelogram, not its shape. This will be proven
shortly.

We will apply this to Λ = 𝔞 ⊴ 𝒪𝐿 for 𝐿 = ℚ(√𝑑), 𝑑 < 0 square-free. Let √𝑑 ∈ ℂ be chosen with
positive imaginary part to embed 𝒪𝐿 in ℂ.

Lemma. (i) if 𝛼 = 𝑎 + 𝑏√𝑑 ∈ 𝒪𝐿, then |𝛼|
2 = (𝑎 + 𝑏√𝑑)(𝑎 − 𝑏√𝑑) = 𝑁(𝛼);

(ii) 𝐴(𝒪𝐿) =
1
2
√|𝐷𝐿|;

(iii) 𝐴(𝔞) = 𝑁(𝔞)𝐴(𝒪𝐿);
(iv) 𝐴(𝔞) = 1

2
|Δ(𝛼1, 𝛼2)|

1
2 where 𝛼1, 𝛼2 are an integral basis for 𝔞.

Proof. Part (i) is clear. (iv) implies (ii) and (iii). We will prove (iv) later in a more general setting,
giving the justification for the coefficient 1

2
.

We now prove (ii) and (iii) manually, without appealing to (iv). For part (ii), 𝒪𝐿 has basis 1, 𝛼.
Therefore, 𝐴(𝒪𝐿) = 1

2
√𝑑 or √𝑑, which is exactly 1

2
√|𝐷𝐿|. Part (iii) is a variant of the fact that

Δ(𝛼1,… , 𝛼𝑛) = 𝑁(𝔞)2𝐷𝐿.

Minkowski’s lemma implies that there exists 𝛼 ∈ 𝔞 with 𝑁(𝛼) ≤ 4𝐴(𝔞)
𝜋

= 𝑁(𝔞)𝐶𝐿 where 𝐶𝐿 =
2√|𝐷𝐿|

𝜋
isMinkowski’s constant. Since 𝛼 ∈ 𝔞, (𝛼) ⊆ 𝔞. Hence (𝛼) = 𝔞𝔟 for some 𝔟 ⊴ 𝒪𝐿. So𝑁(𝛼) = 𝑁((𝛼)) =
𝑁(𝔞)𝑁(𝔟), so 𝑁(𝔟) ≤ 𝐶𝐿.
Recall that the class group of 𝐿 is 𝐼𝐿⟋𝑃𝐿, the quotient of fractional ideals over principal ideals. Then,
[𝔟] = [𝔞−1] ∈ Cl𝐿. Replacing 𝔞 with 𝔞−1, we have shown that for all [𝔞] ∈ Cl𝐿, there exists a
representative 𝔟 of [𝔞] which is an ideal with 𝑁(𝔟) ≤ 2√|𝐷𝐿|

𝜋
= 𝐶𝐿. But for all𝑚 ∈ ℤ, the number of

ideals 𝔞 ⊴ 𝒪𝐿 with 𝑁(𝔞) = 𝑚 is finite; indeed, if 𝑁(𝔞) = 𝑚, then𝑚 ∈ 𝔞 so 𝔞 ∣ (𝑚), but there are only
finitely many ideals dividing (𝑚), as they biject with ideals in 𝒪𝐿⟋𝑚𝒪𝐿

≃ (ℤ⟋𝑚ℤ)
𝑛
.

Therefore, we have shown that Cl𝐿 is finite, and generated by the class of prime ideals dividing (𝑝),
for 𝑝 a prime integer less than 2√|𝐷𝐿|

𝜋
= 𝐶𝐿. Indeed, if 𝔞 = 𝔭𝑒11 …𝔭𝑒𝑟𝑟 with 𝑁(𝔞) < 𝐶𝐿, then 𝑁(𝔭𝑖) <

𝐶𝐿.
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Example. Let 𝑑 = −7. Then 𝐷𝐿 = −7, and 2√7
𝜋

< 2. So there are no primes 𝑝 < 𝐶𝐿, giving
Cl𝐿 = {1}. In particular, 𝒪𝐿 is a unique factorisation domain. Similarly, 𝑑 = −1,−2,−3 give unique
factorisation domains.

Example. Let 𝑑 = −5. Here, 𝐷𝐿 = −20, and 2 < 4√5
𝜋

< 3. Hence, Cl𝐿 is generated by prime ideals
dividing (2). Note that (2) = (2, 1 + √−5)2 by Dedekind’s theorem.

We now must check if (2, 1 + √−5) is principal. If (2, 1 + √−5) = (𝛽), then 𝑁(𝛽) = 2. But 𝛽 =
𝑎 + 𝑏√−5, so 𝑁(𝛽) = 𝑎2 + 5𝑏2, which is not satisfiable by integers. So (2, 1 + √−5) is principal but
its square is, so Cl𝐿 = ℤ⟋2ℤ.
Example. Let 𝑑 = −17, then 5 < 𝐶𝐿 < 6. Cl𝐿 is generated by prime ideals dividing (2), (3), (5).
Modulo 2, 𝑥2 + 17 = 𝑥2 + 1 = (𝑥 + 1)2, so (2) = 𝔭2 where 𝔭 = (2, 1 + √−17). Modulo 3, 𝑥2 + 17 =
𝑥2 − 1 = (𝑥 + 1)(𝑥 − 1), giving (3) = 𝔮𝔮 where 𝔮 = (3, 1 + √−17), 𝔮 = (3, 1 − √−17). Modulo 5,
𝑥2 + 17 = 𝑥2 + 2 which is irreducible, so (5) is inert, so is trivial in the class group.
Hence Cl𝐿 = (𝔭, 𝔮, 𝔮) = (𝔭, 𝔮). We could compute powers of 𝔭 and 𝔮 until we obtain all nontrivial
relations between them. A more efficient way to compute Cl𝐿 in this case is to find principal ideals
of small norm which are multiples of 2 and 3 to find the relations. Consider (1 + √−17), which has
norm 𝑁(1 +√−17) = 18 = 2 ⋅ 32. Note that 1 +√−17 ∈ 𝔭 ∩ 𝔮 so (1 +√−17) = 𝔭𝔮𝔯where 𝔯 ∈ (𝔭, 𝔮).
We can show that 𝔯 = 𝔮. This shows that [𝔭] = [𝔮]−2 in Cl𝐿. So Cl𝐿 is generated by [𝔮]. So it is cyclic,
and we can show [𝔮]2 ≠ 1, as 𝔭 is not principal, but [𝔮]4 = [𝔭2]−1 = 1. So Cl𝐿 = ℤ⟋4ℤ.

Theorem. Let 𝐿 = ℚ(√−𝑑) with 𝑑 > 0.
(i) 𝒪𝐿 is a unique factorisation domain if 𝑑 ∈ {1, 2, 3, 7, 11, 19, 43, 67, 163};
(ii) there are no others.

3.2 Lattices

Definition. A subset 𝑋 ⊆ ℝ𝑛 is called discrete if for all 𝐾 ⊆ ℝ𝑛 compact, 𝐾 ∩ 𝑋 is finite.
Equivalently, for all 𝑥 ∈ 𝑋 there exists 𝜀 > 0 with 𝐵𝜀(𝑥) ∩ 𝑋 = {𝑥}.

Recall that 𝐾 ⊆ ℝ𝑛 is compact if and only if it is closed and bounded.

Proposition. Let Λ ⊆ ℝ𝑛. Then the following are equivalent.
(i) Λ is a discrete subgroup of (ℝ𝑛, +);
(ii) Λ = {∑𝑚

𝑖=1 𝑛𝑖𝑥𝑖 ∣ 𝑛𝑖 ∈ ℤ} where 𝑥1,… , 𝑥𝑚 are linearly independent over ℝ.

Example. ℤ√2 + ℤ√3 ⊆ ℝ is not discrete. If Λ = 𝔞 ⊴ 𝑂𝐿 is an ideal where 𝐿 = ℚ(√−𝑑) and 𝑑 > 0,
Λ is discrete.

Proof. (ii) implies (i). Observe that if 𝑔 ∈ 𝐺𝐿𝑛(ℝ), then 𝑔Λ is discrete if Λ is. 𝑔Λ satisfies (ii) if and
only if Λ does. Suppose property (ii) holds, so Λ = {∑𝑚

𝑖=1 𝑛𝑖𝑥𝑖 ∣ 𝑛𝑖 ∈ ℤ}. There exists 𝑔 ∈ 𝐺𝐿𝑛(ℝ)
such that 𝑔𝑥𝑖 = 𝑒𝑖 where the 𝑒𝑖 form the standard basis of ℝ𝑛. Clearly,⨁𝑚

𝑖=1 ℤ𝑒𝑖 is discrete.
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(i) implies (ii). Let 𝑦1,… , 𝑦𝑚 ∈ Λ which are ℝ-linearly independent such that 𝑚 is maximal. Note
that𝑚 ≤ 𝑛. Also,

{
𝑚
∑
𝑖=1

𝜆𝑖𝑦𝑖
||||
𝜆𝑖 ∈ ℝ} = {

𝑁
∑
𝑖=1

𝜆𝛼𝑧𝛼
||||
𝜆𝛼 ∈ ℝ, 𝑧𝛼 ∈ Λ,𝑁 ≥ 0}

This is the smallest ℝ-vector subspace of ℝ𝑛 containing Λ. Let 𝑋 = {∑𝑚
𝑖=1 𝜆𝑖𝑦𝑖 ∣ 𝜆𝑖 ∈ [0, 1]}. This is

closed and bounded, hence compact. Λ is discrete, so 𝑋 ∩ Λ is finite.

Consider the subgroup ℤ𝑚 = ⨁𝑚
𝑖=1 ℤ𝑦𝑖 ⊆ Λ. We can write 𝜆 ∈ Λ as 𝜆 = 𝜆0 + 𝜆1 where 𝜆0 ∈ 𝑋 ∩ Λ

is the integral part and 𝜆1 ∈ ℤ𝑚 = ⨁𝑚
𝑖=1 ℤ𝑦𝑖 is the fractional part. Hence, ||Λ⟋ℤ𝑚|| ≤ |𝑋 ∩ Λ| is

finite. Let 𝑑 = ||Λ⟋ℤ𝑚||, so by Lagrange’s theorem, 𝑑 = 0 in Λ⟋ℤ𝑚, so 𝑑Λ ⊆ ℤ𝑚. In particular,
ℤ𝑚 ⊆ Λ ⊆ 1

𝑑
ℤ𝑚. The structure theorem for finitely generated abelian groups shows that there exist

𝑥1,… , 𝑥𝑚 ∈ Λ with Λ =⨁𝑚
𝑖=1 ℤ𝑥𝑖.

Definition. If rankΛ = 𝑛, so if 𝑛 = 𝑚, we say Λ is a lattice in ℝ𝑛.

Definition. Let Λ ⊆ ℝ𝑛 be a lattice with basis 𝑥1,… , 𝑥𝑛. The fundamental parallelogram
is 𝑃 = {∑𝑛

𝑖=1 𝜆𝑖𝑥𝑖 ∣ 𝜆𝑖 ∈ [0, 1]}. The covolume of Λ is the volume of 𝑃, which is |det𝐴| if
𝑥𝑖 = ∑𝑛

𝑗=1 𝑎𝑖𝑗𝑒𝑗 .

Note that if 𝑥′1,… , 𝑥′𝑛 are another basis of Λ, the change of basis matrix 𝐵 given by 𝑥′𝑖 = ∑𝑚
𝑗=1 𝑏𝑖𝑗𝑥𝑗

has integer coefficients, so 𝐵 ∈ 𝐺𝐿𝑛(ℤ), giving det𝐵 = ±1. Hence, the covolume is well-defined
irrespective of the choice of basis. Observe that 𝑃 is a fundamental domain for the action of Λ on
ℝ𝑛; ℝ𝑛 = ⋃𝛾∈Λ(𝛾 + 𝑃) and (𝛾 + 𝑃) ∩ (𝜇 + 𝑃) ⊆ 𝜕𝑃 if 𝛾 ≠ 𝜇. We can think of 𝑃 as a set of coset
representatives for ℝ𝑛⟋Λ, ignoring the boundary of 𝑃; this can be justified by noting that 𝜕𝑃 has no
volume.

3.3 Minkowski’s lemma

Theorem. Let Λ ⊆ ℝ𝑛 be a lattice, and 𝑃 be a fundamental parallelogram for it. Let 𝑆 ⊆ ℝ𝑛

be a measurable set.
(i) If vol(𝑆) > covol(Λ), there exist 𝑥, 𝑦 ∈ 𝑆 with 𝑥 ≠ 𝑦 and 𝑥 − 𝑦 ∈ Λ.
(ii) Suppose 𝑠 ∈ 𝑆 if and only if −𝑠 ∈ 𝑆, so 𝑆 is symmetric around zero, and that 𝑆 is convex.

Then, if
(a) vol(𝑆) > 2𝑛 covol(Λ), or
(b) vol(𝑆) ≥ 2𝑛 covol(Λ) and 𝑆 is closed,
then there exists 𝛾 ∈ 𝑆 ∩ Λ with 𝛾 ≠ 0.

Note that this implies the result we used when 𝑛 = 2. In the case of the square lattice Λ = ℤ𝑛 and
𝑆 = [−1, 1]𝑛, we can see that these bounds are sharp.

Proof. Part (i). Observe that vol(𝑆) = ∑𝛾∈Λ vol(𝑆 ∩ (𝑃 +𝛾)) as 𝑃 is a fundamental domain, volume is
additive, and vol(𝜕(𝑃 + 𝛾)) = 0. Note that vol(𝑆 ∩ (𝑃 + 𝛾)) = vol((𝑆 − 𝛾) ∩ 𝑃) as volume is translation
invariant. We claim that the sets (𝑆 − 𝛾) ∩ 𝑃 are not pairwise disjoint. Indeed, if they were, then
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vol(𝑃) ≥ ∑𝛾∈Λ vol((𝑆 − 𝛾) ∩ 𝑃) = vol(𝑆) contradicting the assumption. Hence there exists 𝛾𝜇 ∈ Λ
with 𝛾 ≠ 𝜇 such that (𝑆−𝛾)∩𝑃 and (𝑆−𝜇)∩𝑃 are not disjoint, so there exist 𝑥, 𝑦 ∈ 𝑆with 𝑥−𝛾 = 𝑦−𝜇,
hence 𝑥 − 𝑦 ∈ Λ.

Part (ii)(a). Let 𝑆′ = 1
2
𝑆 = { 1

2
𝑠 ∣ 𝑠 ∈ 𝑆}. Then vol(𝑆′) = 2−𝑛 vol(𝑆) > covol(Λ) by assumption. By

part (i), there exist 𝑦, 𝑧 ∈ 𝑆′ with 𝑦 − 𝑧 ∈ Λ ∖ {0}. But 𝑦 − 𝑧 = 1
2
(2𝑦 + −2𝑧). 2𝑧 ∈ 𝑆 so −2𝑧 ∈ 𝑆 as 𝑆

is symmetric around zero. 2𝑦 ∈ 𝑆, and 𝑆 is convex, so 𝑦 − 𝑧 ∈ 𝑆 as required.

Part (ii)(b). Apply part (ii)(a) to 𝑆𝑚 = (1 + 1
𝑚
)𝑆 for all𝑚 ∈ ℕ,𝑚 > 0. We obtain 𝛾𝑚 ∈ 𝑆𝑚 ∩ Λ with

𝛾𝑚 ≠ 0. By convexity of 𝑆, 𝑆𝑚 ⊆ 𝑆1. So 𝛾1, 𝛾2,… are contained in 𝑆1 ∩ Λ, which is a finite set as 𝑆1
is closed and bounded (without loss of generality) and Λ is discrete. So there exists 𝛾 ∈ 𝑆𝑚 ∩ Λ such
that 𝛾𝑚 = 𝛾 for infinitely many𝑚. Hence, 𝛾 ∈ ⋂𝑚>0 𝑆𝑚 = 𝑆 as 𝑆 is closed. Therefore 𝛾 ∈ 𝑆∩Λwith
𝛾 ≠ 0.

Let 𝐿 be a number field and let 𝑛 = [𝐿 ∶ ℚ]. Let 𝜎1,… , 𝜎𝑟 ∶ 𝐿 → ℝ be the real embeddings, and
𝜎𝑟+1,… , 𝜎𝑟+𝑠, 𝜎𝑟+1,… , 𝜎𝑟+𝑠 ∶ 𝐿 → ℂ be the complex embeddings, where 𝑟 + 2𝑠 = 𝑛. This gives an
embedding

(𝜎1,… , 𝜎𝑟+𝑠)∶ 𝐿 ↪ ℝ𝑟 × ℂ𝑠 ≃−→ ℝ𝑟 × ℝ2𝑠 = ℝ𝑟+2𝑠

In other words, we can write

𝜎 = (𝜎1,… , 𝜎𝑟,Re𝜎𝑟+1, Im𝜎𝑟+1,… ,Re𝜎𝑟+𝑠, Im𝜎𝑟+𝑠)

Lemma. 𝜎(𝒪𝐿) is a lattice in ℝ𝑛 of covolume 2−𝑠|𝐷𝐿|
1
2 . If 𝔞 ⊴ 𝒪𝐿 is an ideal, then 𝜎(𝔞) is a

lattice, and covol(𝜎(𝔞)) = 2−𝑠|𝐷𝐿|
1
2𝑁(𝔞).

Proof. The first part is a special case of the second part. Recall that 𝔞 has an integral basis 𝛾1,… , 𝛾𝑛,
and (det(𝜎𝑖(𝛾𝑗)))2 = Δ(𝛾1,… , 𝛾𝑛) = 𝑁(𝔞)2𝐷𝐿. Hence, ||det(𝜎𝑖(𝛾𝑗))|| = 𝑁(𝔞)|𝐷𝐿|

1
2 . Note that if

𝜎𝑟+𝑖(𝛾)𝜎𝑟+𝑖(𝛾) = 𝑧𝑧,

(Re 𝑧Im 𝑧) = (
1
2
(𝑧 + 𝑧)

1
2𝑖
(𝑧 − 𝑧)

) = 1
2 (

1 1
𝑖 −𝑖) (

𝑧
𝑧)

The determinant of the change of basis matrix is − 1
2
.

Proposition (Minkowski bound). Let 𝔞 ⊴ 𝒪𝐿. Then there exists 𝛼 ∈ 𝔞 with 𝛼 ≠ 0 and
|𝑁(𝛼)| ≤ 𝐶𝐿𝑁(𝔞) where 𝐶𝐿 = ( 4

𝜋
)
𝑠 𝑛!
𝑛𝑛
|𝐷𝐿|

1
2 .

Proof. Let
𝐵𝑟,𝑠(𝑡) = {(𝑦1,… , 𝑦𝑟, 𝑧1,… , 𝑧𝑠) ∈ ℝ𝑟 × ℂ𝑠 ∣ ∑ |𝑦𝑖| + 2|𝑧𝑖| ≤ 𝑡}

This set is closed and bounded, hence compact. It is also convex, symmetric around zero, and
measurable with volume 2𝑟(𝜋

2
)
2 𝑡𝑛

𝑛!
. Choose 𝑡 such that the volume of 𝐵𝑟,𝑠(𝑡) is 2𝑛 covol(𝔞), so 𝑡𝑛 =
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( 4
𝜋
)
𝑠
𝑛!|𝐷𝐿|

1
2𝑁(𝔞). Minkowski’s lemma implies that there exists 𝛼 ∈ 𝔞 and 𝛼 ≠ 0 such that 𝜎(𝛼) =

(𝑦1,… , 𝑦𝑟, 𝑧1,… , 𝑧𝑠) ∈ 𝐵𝑟,𝑠(𝑡).

Note that 𝑁(𝛼) = 𝑦1…𝑦𝑟𝑧1𝑧1…𝑧𝑠𝑧𝑠 = ∏𝑦𝑖∏||𝑧𝑗 ||
2. Since the geometric mean is at most the

arithmetic mean, taking 𝑛th roots we obtain |𝑁(𝛼)|
1
𝑛 ≤ 1

𝑛
(∑ |𝑦𝑖| + 2∑ ||𝑧𝑗 ||) ≤

𝑡
𝑛
as 𝜎(𝛼) ∈ 𝐵𝑟,𝑠(𝑡).

So |𝑁(𝛼)| ≤ 𝑡𝑛

𝑛𝑛
= 𝐶𝐿𝑁(𝔞) as required.

To show that the volume of 𝐵𝑟,𝑠(𝑡) is 2𝑟(
𝜋
2
)
2 𝑡𝑛

𝑛!
, we can use induction with base cases 𝐵1,0(𝑡) = [−𝑡, 𝑡]

and 𝐵0,1(𝑡) =
𝜋
4
𝑡2. Given the result for 𝐵𝑟,𝑠(𝑡), the volume of 𝐵𝑟+1,𝑠(𝑡) is

∫
𝑡

−𝑡
vol𝐵𝑟,𝑠(𝑡 − |𝑦|) d𝑦 = 2∫

𝑡

0
(𝜋2 )

𝑠
2𝑟 (𝑡𝑦)

𝑛

𝑛! d𝑦 = 2𝑟+1(𝜋2 )
2 𝑡𝑛+1
𝑛!

The other inductive step is on an example sheet.

Corollary. Every element of the class group [𝔞] has a representative 𝔞 ⊴ 𝒪𝐿 with norm at
most 𝐶𝐿.

Theorem. The class group of 𝐿 is finite, and generated by prime ideals 𝔞 ⊴ 𝒪𝐿 with 𝑁(𝔞) ≤
𝐶𝐿.

Proof. Follows the argument used for imaginary quadratic fields.

Theorem (Hermite, Minkowski). Let 𝑛 ≥ 2. Then |𝐷𝐿| ≥
𝜋
3
( 3𝜋
4
)
𝑛−1

> 1. In particular,
|𝐷𝐿| > 1, so at least one prime ramifies in 𝐿.

Proof. Apply this to [𝒪𝐿] and obtain an ideal 𝔞 ⊴ 𝒪𝐿 with 1 ≤ 𝑁(𝔞) ≤ 𝐶𝐿, so 𝐶𝐿 ≥ 1. So

|𝐷𝐿|
1
2 ≥ (𝜋4 )

𝑠 𝑛𝑛
𝑛! ≥ (𝜋4 )

𝑛
2 𝑛𝑛
𝑛! 𝑎

1
2𝑛

as 𝜋
4
< 1 and 𝑠 ≤ 𝑛

2
. So 𝑎2 =

𝜋2

4
and 𝑎𝑛+1

𝑎𝑛
= 𝜋

4
(1 + 1

𝑛
)
2𝑛

> 𝜋
4
(1 + 2) = 3𝜋

4
. So 𝑎𝑛 ≥ 𝜋2

4
( 3𝜋
4
)
𝑛−2

=
𝜋
3
( 3𝜋
4
)
𝑛−1

.

4 Dirichlet’s unit theorem
4.1 Real quadratic fields
Recall that 𝛼 ∈ 𝒪𝐿 is a unit if and only if 𝑁(𝛼) = ±1. We aim to show that 𝒪⋆

𝐿 ≃ 𝛍𝐿 × ℤ𝑟+𝑠−1 where
𝛍𝐿 = {𝛼 ∈ 𝐿 ∣ 𝛼𝑎 = 1 for some 𝑎 > 0} is the set of roots of unity in 𝐿, a finite cyclic group.
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Example. Let 𝐿 = ℚ(√𝑑) where 𝑑 > 0 is square-free. Here, 𝑟 = 2, 𝑠 = 0, 𝑛 = 2. 𝐿 ⊆ ℝ gives
𝛍𝐿 ⊆ {±1} so 𝛍𝐿 = {±1}. Note that 𝑁(𝑥 + 𝑦√𝑑) = 𝑥2 − 𝑑𝑦2, so Dirichlet’s theorem implies the
following statement, which we will now prove directly.

Theorem (Pell’s equation). There exist infinitely many 𝑥 + 𝑦√𝑑 ∈ 𝒪𝐿 with 𝑥2 − 𝑑𝑦2 = ±1.

Proof. Recall that we have 𝜎∶ 𝒪𝐿 → ℝ2 given by 𝑥 + 𝑦√𝑑 ↦ (𝑥 + 𝑦√𝑑, 𝑥 − 𝑦√𝑑). For example, if
𝑑 = 2, the image is a lattice with basis (1, 1), (−√2,√2), note also that no point lies in the coordinate
axes apart from 0. The covolume of 𝜎(𝒪𝐿) is |𝐷𝐿|

1
2 .

Consider

𝑆𝑡 = {(𝑦1, 𝑦2) ∈ ℝ2
||||
|𝑦1| ≤ 𝑡, |𝑦2| ≤

|𝐷𝐿|
1
2

𝑡 }

The volume of 𝑆𝑡 is 4|𝐷𝐿|
1
2 = 2𝑛 covol(𝜎(𝒪𝐿)) as 𝑛 = 2. Minkowski’s lemma implies that there exists

a nonzero 𝛼 ∈ 𝒪𝐿 with 𝜎(𝛼) ∈ 𝑆𝑡. But 𝜎(𝛼) = (𝑦1, 𝑦2) gives 𝑁(𝛼) = 𝑦1𝑦2.
We have therefore found an element 𝛼 ∈ 𝒪𝐿 with 𝜎(𝛼) ∈ 𝑆𝑡 that has norm satisfying 1 ≤ 𝑛(𝛼) ≤
|𝐷𝐿|

1
2 . We show that there exist infinitely many such 𝛼 for 0 < 𝑡 < 1, so there are infinitely many

𝛼 ∈ 𝒪𝐿 with |𝑁(𝛼)| = 𝑁((𝛼)) < |𝐷𝐿|
1
2 . For fixed 𝑡, 𝑆𝑡 ∩ 𝜎(𝒪𝐿) is finite as 𝑆𝑡 is compact. Given

𝑡1 > 𝑡2 > ⋯ > 𝑡𝑛, choose 𝑡𝑛+1 less than all 𝑦1 where 𝜎(𝛼) = (𝑦1, 𝑦2) ∈ 𝑆𝑡𝑛 ∩ 𝜎(𝒪𝐿). Note that 𝛼 ≠ 0
so 𝜎1(𝛼) ≠ 0, so 𝑡𝑛+1 > 0.

Hence, there exists𝑚 ∈ ℤwith 1 ≤ |𝑚| ≤ |𝐷𝐿|
1
2 for which there are infinitelymany 𝛼with𝑁(𝛼) = 𝑚,

by the pigeonhole principle. But ideals 𝔞 ⊴ 𝒪𝐿 with 𝑚 ∈ 𝔞 biject with ideals in 𝒪𝐿⟋𝑚 = (ℤ⟋𝑚ℤ)
2
,

and hence there are finitely many of them. Again by the pigeonhole principle, there exists 𝛽 ∈ 𝒪𝐿
and infinitely many 𝛼 ∈ 𝒪𝐿 with 𝑁(𝛽) = 𝑁(𝛼) = 𝑚, where (𝛽) = (𝛼). But 𝛽

𝛼
is a unit, so there are

infinitely many units.

We can prove Dirichlet’s unit theorem for real quadratic fields from this result.

Corollary. 𝒪⋆
𝐿 = {±𝜀𝑛0 ∣ 𝑛 ∈ ℤ} for 𝜀0 ∈ 𝒪⋆

𝐿.

Such an 𝜀0 is called a fundamental unit.
Remark. As there are infinitely many units, there exists 𝜀 ∈ 𝒪⋆

𝐿 with 𝜀 ≠ ±1. Hence, |𝜎1(𝜀)| ≠ ±1
as 𝜎1(𝜀) = ±1 if and only if 𝜀 = ±1. Replacing 𝜀 by 𝜀−1 if necessary, we can assume 𝐸 = |𝜎1(𝜀)| > 1.
Consider {𝛼 ∈ 𝒪𝐿 ∣ 𝑁(𝛼) = ±1, 1 ≤ |𝜎1(𝛼)| ≤ 𝐸}, which is a finite set as 𝒪𝐿 is discrete in ℝ2. Hence,
𝜀0 can be chosen in this set with minimum |𝜎1(𝜀0)| and 𝜀0 ≠ ±1.

We claim that if 𝜀 ∈ 𝒪⋆
𝐿 has 𝜎1(𝜀) > 0, then 𝜀 = 𝜀𝑁0 for some 𝑁 ∈ ℤ. Indeed, we can write log𝜎1(𝜀)

log𝜎1(𝜀0)
=

𝑁 + 𝛾 where 𝑁 ∈ ℤ, 0 ≤ 𝛾 < 1. Hence 𝜀𝜀−𝑁0 = 𝜀𝛾0, and if 𝛾 ≠ 0, ||𝜀𝛾0|| = |𝜀|𝛾 < |𝜀0| contradicting the
choice of 𝜀0 (taking 𝜎1 as necessary to simplify notation).
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4.2 General case
We can prove Dirichlet’s unit theorem in general.

Let𝐿 be anumber field and let [𝐿 ∶ ℚ] = 𝑛with𝜎1,… , 𝜎𝑟 ∶ 𝐿 → ℝ real embeddings and𝜎𝑟+1,… , 𝜎𝑟+𝑠, 𝜎𝑟+1,… , 𝜎𝑟+𝑠 ∶ 𝐿 →
ℂ complex embeddings, choosing some representative between 𝜎𝑟+𝑖, 𝜎𝑟+𝑖 arbitrarily. Define a map
ℓ∶ 𝒪⋆

𝐿 → ℝ𝑟+𝑠 by

ℓ(𝑥) = (log |𝜎1(𝑥)|,… , log |𝜎𝑟(𝑥)|, 2 log |𝜎𝑟+1(𝑥)|,… , 2 log |𝜎𝑟+𝑠(𝑥)|)

Lemma. (i) The image of ℓ is a discrete subgroup of ℝ𝑟+𝑠.
(ii) The kernel of ℓ is 𝛍𝐿, the roots of unity in 𝐿, which is a finite cyclic group.

Remark. ℓ is independent of the choice of representative 𝜎𝑟+𝑖, 𝜎𝑟+𝑖, as they have the same absolute
value.

Proof. Part (i). log |𝑎𝑏| = log |𝑎| + log |𝑏|, so ℓ is a group homomorphism. The image is therefore an
additive subgroup ofℝ𝑟+𝑠. For part (i), it suffices to show that Im ℓ∩[−𝐴,𝐴]𝑟+𝑠 is finite for all 𝐴 > 0.
ℓ factorises as

𝒪⋆
𝐿 (ℝ≠0)𝑟 × ℂ𝑠 ℝ𝑟+𝑠𝜎 𝑗

where
𝑗(𝑦1,… , 𝑦𝑟, 𝑧1,… , 𝑧𝑠) = (log |𝑦1|,… , log |𝑦𝑟|, 2 log |𝑧1|,… , 2 log |𝑧𝑠|)

and
𝑗−1([−𝐴,𝐴]𝑟+𝑠) = {(𝑦𝑖, 𝑧𝑗) ∣ 𝑒−𝐴 ≤ |𝑦𝑖| ≤ 𝑒𝐴, 𝑒−𝐴 ≤ 2||𝑧𝑗 || ≤ 𝑒𝐴}

which is compact. As 𝜎(𝒪𝐿) is a lattice, 𝜎(𝒪⋆
𝐿) ∩ 𝑗−1([−𝐴,𝐴]𝑟+𝑠) is finite. This gives (i), and also

shows that ker 𝑗 = ker ℓ is finite.
Part (ii). ker ℓ is a group and finite, so every element has finite order. In particular, ker ℓ ≤ 𝛍𝐿. But
each root of unity lies in ker ℓ, so ker ℓ = 𝛍𝐿. But 𝐿 ↪ ℂ by any embedding, so 𝛍𝐿 is contained in
the set of roots of unity in ℂ of a fixed order, which is a cyclic group. Subgroups of cyclic groups are
cyclic.

Note that if 𝑟 > 0, 𝐿 ↪ ℝ, so 𝛍𝐿 = {±1}.
Observe that Im ℓ is contained in the set {(𝑦1,… , 𝑦𝑟+𝑠) ∣ 𝑦1 +⋯+ 𝑦𝑟+𝑠 = 0}. Indeed, 𝛼 ∈ 𝒪⋆

𝐿 gives
𝑁(𝛼) = ∏𝑟

𝑖=1 𝜎𝑖(𝛼)∏
𝑠
𝑖=1 𝜎𝑟+𝑖(𝛼)𝜎𝑟+𝑖(𝛼) = ±1, so taking logarithms,

log |𝑁(𝛼)| =
𝑟
∑
𝑖=1

log |𝜎𝑖(𝛼)| +
𝑠
∑
𝑖=1

2 log |𝜎𝑟+𝑖(𝛼)| = 0

So Im ℓ ⊆ ℝ𝑟+𝑠−1 is a discrete subgroup, hence isomorphic to ℤ𝑎 for 𝑎 ≤ 𝑟 + 𝑠 − 1.

Theorem (Dirichlet’s unit theorem). Im ℓ ⊆ ℝ𝑟+𝑠−1 is a lattice; it is isomorphic to ℤ𝑟+𝑠−1.

We now prove this theorem.
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Lemma. Let 1 ≤ 𝑘 ≤ 𝑠, and 𝛼 ∈ 𝒪𝐿, 𝛼 ≠ 0. Then there exists 𝛽 ∈ 𝒪𝐿 with |𝑁(𝛽)| ≤
( 2
𝜋
)
𝑠
|𝐷𝐿|

1
2 and with 𝑏𝑖 < 𝑎𝑖 for all 𝑖 ≠ 𝑘, where ℓ(𝛼) = (𝑎1,… , 𝑎𝑟+𝑠) and ℓ(𝛽) = (𝑏1,… , 𝑏𝑟+𝑠).

Proof. Apply Minkowski’s lemma. Let

𝑆 = {(𝑦1,… , 𝑦𝑟, 𝑧𝑟,… , 𝑧𝑠) ∈ ℝ𝑟 × ℂ𝑠 ≃ ℝ𝑛 || |𝑦𝑖| ≤ 𝑐𝑖, ||𝑧𝑗 ||
2 ≤ 𝑐𝑟+𝑗}

We have vol(𝑆) = 2𝑟𝜋𝑠𝑐1…𝑐𝑟+𝑠. This is convex and symmetric around zero. By choosing 𝑐𝑖 such
that 0 < 𝑐𝑖 < 𝑒𝑎𝑖 for 𝑖 ≠ 𝑘, and setting 𝑐𝑘 = ( 2

𝜋
)
𝑠
|𝐷𝐿|

1
2 𝑐−11 …𝑐−1𝑘−1𝑐−1𝑘+1…𝑐−1𝑟+𝑠, Minkowski gives

𝛽 ∈ 𝜎(𝒪𝐿) ∩ 𝑆.

Fix some 1 ≤ 𝑘 ≤ 𝑠. Repeatedly applying this lemma, we can obtain a sequence 𝛼1, 𝛼2,⋯ ∈ 𝒪𝐿 such
that 𝑁(𝛼𝑗) is bounded, and for all 𝑖 ≠ 𝑘, the 𝑖th coordinate of ℓ(𝛼1), ℓ(𝛼2),… is strictly decreasing.
Hence, there exists 𝑡 < 𝑡′ with 𝑁(𝛼𝑡) = 𝑁(𝛼𝑡′) = 𝑚 as there are only finitely many possible norms
of the 𝛼𝑡, and 𝛼𝑡 = 𝛼𝑡′ modulo 𝒪𝐿⟋𝑚 by the pigeonhole principle. Therefore (𝛼𝑡) = (𝛼𝑡′) as in the
proof for real quadratic fields.

Let 𝑢𝑘 = 𝛼𝑡𝛼−1𝑡′ ; this is a unit in 𝒪𝐿 such that ℓ(𝑢𝑘) = ℓ(𝑎𝑡) − ℓ(𝑎𝑡′) = (𝑦1,… , 𝑦𝑟+𝑠) has 𝑦𝑖 < 0 if
𝑖 ≠ 𝑘. Note that as∑𝑦𝑖 = 0, we have 𝑦𝑘 > 0.
Wenowhaveunits𝑢1,… , 𝑢𝑟+𝑠 by performing this for each coordinate. Wenow show thatℓ(𝑢1),… , ℓ(𝑢𝑟+𝑠−1)
are linearly independent, hence the rank of ℓ(𝒪⋆

𝐿) is 𝑟 + 𝑠 − 1. Indeed, let 𝐴 be the (𝑟 + 𝑠) × (𝑟 + 𝑠)
matrix with 𝑗th row given by ℓ(𝑢𝑗), and apply the following lemma.

Lemma. Let 𝐴 ∈ 𝑀𝑚×𝑚(ℝ) be a matrix with 𝑎𝑖𝑖 > 0, 𝑎𝑖𝑗 < 0 for 𝑖 ≠ 𝑗, and∑𝑗 𝑎𝑖𝑗 ≥ 0 for
all 𝑖. Then rank𝐴 ≥ 𝑚− 1.

Note that the assumptions of this lemma are satisfied for our choice of matrix 𝐴.

Proof. Let 𝑣𝑖 be the 𝑖th column of 𝐴. We show that 𝑣1,… , 𝑣𝑚−1 are linearly independent. Suppose
that there exist 𝑡𝑖 ∈ ℝwith∑𝑚−1

𝑖=1 𝑡𝑖𝑣𝑖 = 0, and not all 𝑡𝑖 are zero. Choose 𝑘 such that 𝑡𝑘 hasmaximum
absolute value. Dividing the linear dependence relation by 𝑡𝑘, we can assume 𝑡𝑘 = 1 and all other 𝑡𝑖
have absolute value at most 1. Now consider the 𝑘th entry of the linear dependence relation.

0 =
𝑚−1
∑
𝑖=1

𝑡𝑖𝑎𝑘𝑖 = 𝑡𝑘𝑎𝑘𝑘 + ∑
𝑖≠𝑘,1≤𝑖≤𝑚−1

𝑡𝑖𝑎𝑘𝑖

Since 𝑡𝑖 ≤ 1, 𝑎𝑘𝑖 < 0, we have

0 ≥
𝑚−1
∑
𝑖=1

𝑎𝑘𝑖 >
𝑚
∑
𝑖=1

𝑎𝑘𝑖 ≥ 0

as 𝑎𝑘𝑚 < 0, giving a contradiction as required.

This proves Dirichlet’s unit theorem.
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Definition. Let 𝑅𝐿 = covol(ℓ(𝒪⋆
𝐿) ⊆ ℝ𝑟+𝑠−1). This is an invariant of a number field, called

the regulator of 𝐿.

Concretely, choose 𝜀1,… , 𝜀𝑟+𝑠−1 in𝒪⋆
𝐿 such that𝒪⋆

𝐿 ≃ 𝛍𝐿×{𝜀𝑛11 …𝜀𝑛𝑟+𝑠−1𝑟+𝑠−1 ∣ 𝑛𝑖 ∈ ℤ}. Take any (𝑟+ 𝑠−
1) × (𝑟 + 𝑠 − 1)minor of the (𝑟 + 𝑠 − 1) × (𝑟 + 𝑠)matrix (ℓ(𝜀1),… , ℓ(𝜀𝑟+𝑠)). The determinant of the
absolute value of this submatrix is 𝑅𝐿.
Example. Let 𝐿 be a real quadratic field, and let 𝜀 be a fundamental unit. Then log |𝜎1(𝜀)| = 𝑅𝐿.

4.3 Finding fundamental units
We now need to find such fundamental units. One way is to guess a unit and then find all smaller
ones.

Example. Let 𝐿 = ℚ(√𝑑) and 𝑑 > 0, and embed this into ℝ by choosing √𝑑 > 0. Consider 𝑑 = 2.
One might guess 𝜀 = 1 + √2, as 𝑁(𝜀) = 1 so 𝜀 is a unit. We claim that this is fundamental. If not,
there exists 𝑢 = 𝑎 + 𝑏√2 with 𝑎, 𝑏 ∈ ℤ, 𝑢 ∈ 𝒪⋆

𝐿, and 1 < 𝑢 < 𝜀 as elements of ℝ, identifying 𝐿 with
𝜎1(𝐿) ⊆ ℝ. The other embedding 𝑢 = 𝑎 − 𝑏√2 has 𝑢𝑢 = ±1. As 𝑢 > 1, ||𝑢|| < 1, so 𝑢 + 𝑢, 𝑢 − 𝑢 > 0.
Hence 𝑎, 𝑏 > 0, so there are no possibilities for 1 < 𝑎+𝑏√2 < 1+1√2with 𝑎, 𝑏 > 0 integers. Hence
𝜀 is a fundamental unit.
Example. Consider 𝑑 = 11. Let 𝜀 = 10−3√11 as𝑁(𝜀) = 1. Notice that 𝜀 ≈ 0.5. 𝜀−1 > 1 and 𝜀−1 < 20.
If this were not fundamental, there exists 𝑢 = 𝑎 + 𝑏√11 with 1 < 𝑢 < 𝜀−1 = 10 + 3√11 < 20. We
could check all cases like in the above example, but we can do better in this case. If 𝑁(𝑢) = −1,
we have 𝑎2 − 11𝑏2 = −1, which has no solutions modulo 11 as −1 is not a square in 𝔽11. Hence
𝑁(𝑢) = 1 so 𝑢 = 𝑢−1, giving 𝜀−1 > 𝑢 > 1 implies 0 < 𝜀 < 𝑢−1 = 𝑢 < 1, so 0 < 𝑎 − 𝑏√11 < 1, so
−1 < −𝑎 + 𝑏√11 < 0. Combining with the previous inequality, 0 < 2𝑏√11 < 10 + 3√11 < 7√11
so 𝑏 = 1, 2, 3. Now we can check that 1 + 𝑏2 ⋅ 11 is not a square in 𝔽11 for 𝑏 = 1, 2, 3 so there is no
possible 𝑎. Hence 𝜀 is a fundamental unit.

Remark. There is an algorithm forℚ(√𝑑) to compute fundamental units. Recall that any real number
𝑡 can be written as

𝑡 = 𝑎0 +
1

𝑎1 +
1

𝑎2+
1

𝑎3+⋯

= [𝑎0, 𝑎1, 𝑎2, 𝑎3,… ]

where 𝑎0 = ⌊𝑡⌋. 𝑡 is a quadratic algebraic number, so [ℚ(𝑡) ∶ ℚ] = 2, if and only if the expansion of 𝑡
as a continued fraction is periodic 𝑡 = [𝑎0, 𝑎1,… , 𝑎𝑚].
The following proposition is non-examinable (and should not be used in exams).

Proposition. Let √𝑑 = [𝑎0, 𝑎1,… , 𝑎𝑚] and let
𝑝
𝑞
= [𝑎0,… , 𝑎𝑚−1]. Then 𝑝 + 𝑞√𝑑 is a unit

in 𝐿 = ℚ(√𝑑), and if 𝑑 ≡ 2, 3mod 4, it is fundamental.

The proof is omitted.

Example. √7 = [2, 1, 1, 1, 4] so 𝑝
𝑞
= [2, 1, 1, 1] = 8

3
and (8 + 3√7)(8 − 3√7) = 1.

This algorithm is polynomial-time in the regulator, but not polynomial-time in the discriminant.
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If 𝑞(𝑥, 𝑦) = 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 is a quadratic form for 𝑎, 𝑏, 𝑐 ∈ ℤ and 𝐷 = 𝑏2 − 4𝑎𝑐, define 𝐿 = ℚ(√𝐷),
and define the ideal associated to 𝑞 to be (𝑎, −𝑏+√𝐷

2
). One can show that if 𝑎 > 0,𝐷 < 0, the ideal

attached to 𝑞 is equal to the ideal attached to 𝑞′ in the class group if and only 𝑞 and 𝑞′ are equal under
the action of 𝑆𝐿2(ℤ), i.e. if 𝑞′(𝑥, 𝑦) = 𝑞(𝑥′, 𝑦′)

(𝑥
′

𝑦′) = (𝛼 𝛽
𝛾 𝛿)⏟⎵⏟⎵⏟

∈𝑆𝐿2(ℤ)

(𝑥𝑦)

In particular, the size of the class group is exactly the number of orbits of positive definite quadratic
forms with discriminant 𝐷 under the action of 𝑆𝐿2(ℤ).

5 Dirichlet series and 𝐿-functions
5.1 Dirichlet series

Theorem (Euclid). There exist infinitely many primes.

The following proof is due to Euler in 1748.

Proof. Consider

∏
𝑝 prime

(1 − 1
𝑝)

−1
= ∏

𝑝 prime
(1 + 1

𝑝 + 1
𝑝2 +…) =

∞
∑
𝑛=1

1
𝑛

as every 𝑛 > 0 factors uniquely as a product of primes so occurs exactly once when we expand the
product. If there are finitely many primes, the product is finite. As∑∞

𝑖=1 𝑝−𝑖 converges to (1 −
1
𝑝
)
−1
,

∑∞
𝑖=1

1
𝑛
must converge.

We aim to prove that for all 𝑎, 𝑞 ∈ ℤ coprime, there are infinitely many primes of the form 𝑎 + 𝑘𝑞,
𝑘 ∈ ℕ. Note that there is no nice series expansion for∏𝑝≡𝑎mod 𝑞,𝑝 prime (1 −

1
𝑝
)
−1
, so Euler’s proof

does not generalise.

Definition. The Riemann zeta function is 𝜁(𝑠) = ∑𝑛≥1 𝑛−𝑠 for 𝑠 ∈ ℂ.

Proposition. (i) 𝜁(𝑠) converges for Re(𝑠) > 1.
(ii) 𝜁(𝑠) = ∏𝑝 prime (1 −

1
𝑝𝑠
)
−1
in this region; this result is known as the Euler product. This

product converges absolutely.
(iii) 𝜁(𝑠) − 1

𝑠−1
extends to a holomorphic function for Re(𝑠) > 0, so the zeta function has a

simple pole with residue 1 at 𝑠 = 1.

If the series ∑ log(1 − 𝑎𝑛) converges, ∏(1 − 𝑎𝑛) converges. ∏(1 − 𝑎𝑛) absolutely converges if
∑|log(1 − 𝑎𝑛)| converges.
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If 𝑎𝑛 is a sequence of complex numbers, call the function ∑𝑛≥1 𝑎𝑛𝑛−𝑠 a Dirichlet series. Instead of
part (i), we will prove the following more general lemma.

Lemma. If there exists 𝑟 ∈ ℝ with 𝑎1 + ⋯ + 𝑎𝑁 = 𝑂(𝑁𝑟), then∑𝑛≥1 𝑎𝑛𝑛−𝑠 converges for
Re(𝑠) > 𝑟, and it is holomorphic in this region.

Proof of lemma.

𝑁
∑
𝑛=1

𝑎𝑛𝑛−𝑠 = 𝑎1(1−𝑠 − 2−𝑠) + (𝑎1 + 𝑎2)(2−𝑠 − 3−𝑠) +⋯ + (𝑎1 + 𝑎𝑁−1)((𝑁 − 1)−𝑠 − 𝑁−𝑠) + 𝑅𝑛

where 𝑅𝑛 =
𝑇(𝑁)
𝑁𝑠 with 𝑇(𝑁) = 𝑎1 +⋯+ 𝑎𝑁 = 𝑂(𝑁𝑟). By assumption, if Re(𝑠) > 𝑟,

|||
𝑇(𝑁)
𝑁𝑠

||| =
|||
𝑇(𝑁)
𝑁𝑟

||| ⋅
1

|𝑁𝑠−𝑟| =
|||
𝑇(𝑁)
𝑁𝑟

||| ⋅
1

𝑁Re(𝑠)−𝑟 → 0

as𝑥𝑠 = 𝑒𝑠 log𝑥 so |𝑥𝑠| = ||𝑥Re 𝑠||. So if Re(𝑠) > 𝑟,∑𝑎𝑛𝑛−𝑠 = ∑𝑇(𝑁)(𝑁−𝑠−(𝑁+1)−𝑠). But |𝑇(𝑁)| ≤ 𝐵𝑁𝑟

for some constant 𝐵 by assumption, so it suffices to show∑𝑁𝑟(𝑁−𝑠 − (𝑁 + 1)−𝑠) converges. Note
that

𝑁−𝑠 − (𝑁 + 1)−𝑠 = ∫
𝑁+1

𝑁
𝑠 d𝑥𝑥𝑠+1

and 𝑁𝑟 ≤ 𝑥𝑟 if 𝑥 ∈ [𝑁,𝑁 + 1]. Hence

𝑁𝑟(𝑁−𝑠 − (𝑁 + 1)−𝑠) ≤ ∫
𝑁+1

𝑁
𝑥𝑟𝑠 d𝑥𝑥𝑠+1 ≤ 𝑠∫

𝑁+1

𝑁

d𝑥
𝑥𝑠+1−𝑟

It is enough to show that 𝑠 ∫𝑁
1

d𝑥
𝑥𝑠+1−𝑟

converges, which it does to 𝑠
𝑠−𝑟

.

Proof of proposition. Part (ii). Let 𝑝1,… , 𝑝𝑟 be the first 𝑟 primes. Then,∏
𝑟
𝑖=1(1−𝑝−𝑠𝑟 )−1 = ∑𝑛∈𝑋 𝑛−𝑠

where 𝑋 is the set of positive integers whose prime divisors are only in 𝑝1,… , 𝑝𝑟. So

||||
𝜁(𝑠) −

𝑟
∏
𝑖=1

(1 − 𝑝−𝑠𝑟 )−1
||||
=
||||
∑
𝑛∉𝑋

𝑛−𝑠
||||
≤ ∑

𝑛∉𝑋
|𝑛−𝑠| = ∑

𝑛∉𝑋
𝑛−Re(𝑠) ≤ ∑

𝑛>𝑟
𝑛−Re(𝑠)

as 1,… , 𝑟 ∈ 𝑋 . Hence the infinite product converges to 𝜁(𝑠). The proof of absolute convergence is
omitted.

Part (iii). Left as an exercise, noting that

1
𝑠 − 1 =

∞
∑
𝑖=1

∫
𝑛+1

𝑛

d𝑡
𝑡𝑠

5.2 Zeta functions in number fields
The remaining new content in this course is nonexaminable.
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Definition. Let 𝐿 be a number field. The zeta function of 𝐿 is

𝜁𝐿(𝑠) = ∑
𝔞⊴𝒪𝐿

𝑁(𝔞)−𝑠 = ∑
𝑛≥1

#{𝔞 ⊴ 𝒪𝐿 ∣ 𝑁(𝔞) = 𝑛}𝑛−𝑠

Proposition. (i) 𝜁𝐿(𝑠) converges to a holomorphic function for Re(𝑠) > 1.
(ii) 𝜁𝐿(𝑠) = ∏𝔭 prime ideal(1 − 𝑁(𝔭)−𝑠)−1 in this region.
(iii) 𝜁𝐿(𝑠) is a meromorphic function for Re(𝑠) > 1 − 1

[𝐿∶ℚ]
, with a simple pole at 𝑠 = 1 with

residue
|Cl𝐿|2𝑟+𝑠𝜋𝑠𝑅𝐿
|𝐷𝐿|

1
2 |𝛍𝐿|

This is called the analytic class number formula.

Proof. Part (ii) is clear. Parts (i) and (iii) follow from the following estimate. Writing 𝜁𝐿(𝑠) = ∑ 𝑎𝑛
𝑛𝑠

where 𝑎𝑛 is the number of ideals of norm 𝑛, one can show

𝑎1 +⋯+ 𝑎𝑁 = |Cl𝐿|2𝑟+𝑠𝜋𝑠𝑅𝐿
|𝐷𝐿|

1
2 |𝛍𝐿|

⋅ 𝑁 + 𝑂(𝑁1− 1
[𝐿∶ℚ] )

If 𝐿 ≠ ℚ, it turns out that 𝜁𝐿(𝑠) factors into 𝜁ℚ(𝑠) = 𝜁(𝑠) and some other factors. Suppose 𝐿 = ℚ(√𝑑)
and 𝑑 ≠ 0, 1 is square-free.

𝜁𝐿 − ∏
𝔭 prime ideal

(1 − 𝑁(𝔭)−𝑠)−1 = ∏
𝑝 prime

∏
𝔭∣(𝑝)

(1 − 𝑁(𝔭)−𝑠)−1

If 𝑝 ∣ 𝐷𝐿, then (𝑝) = 𝔭2 ramifies. In this case, 𝑁(𝔭) = 𝑝 and we have a term (1 − 𝑝−𝑠) in the product.
If (𝑝) remains prime in 𝐿, then𝑁(𝔭) = 𝑝2 giving the term (1−𝑝−2𝑠) = (1−𝑝−𝑠)(1−𝑝𝑠). If (𝑝) = 𝔭1𝔭2
splits, then 𝑁(𝔭𝑖) = 𝑝 and we have a term (1 − 𝑝−𝑠)2. Let

𝜒𝐷𝐿(𝑝) = 𝜒(𝑝) =
⎧
⎨
⎩

0 𝑝 ramifies
−1 𝑝 inert
1 𝑝 splits

= (𝐷𝐿
𝑝 )

⏟
if 𝑝 odd

Then, defining 𝐿(𝜒, 𝑠) = ∏𝑝 prime 1 − 𝜒(𝑝)𝑝−𝑠−1, we have 𝜁𝐿(𝑠) = 𝜁ℚ(𝑠)𝐿(𝜒, 𝑠). The function 𝐿 is
called a Dirichlet 𝐿-function. When expanding the infinite product defining 𝐿(𝜒𝐷, 𝑠) the coefficient
of 𝑛−𝑠, if 𝑛 = 𝑝𝑒11 …𝑝𝑒𝑟𝑟 is 𝜒𝐷(𝑝1)𝑒1 …𝜒𝐷(𝑝𝑟)𝑒𝑟 . We can extend the definition of 𝜒 to make it multi-
plicative: 𝜒𝐷(𝑝𝑒11 …𝑝𝑒𝑟𝑟 ) = 𝜒𝐷(𝑝1)𝑒1 …𝜒𝐷(𝑝𝑟)𝑒𝑟 .

Example. Let 𝐿 = ℚ(√−1), so 𝐷𝐿 = 4. We have (−4
𝑝
) = (−1

𝑝
) = (−1)

𝑝−1
2 for 𝑝 ≠ 2. 2 ramifies, so

𝜒𝐷(2) = 0. We claim that

𝜒−4(𝑚) = {(−1)
𝑚−1
2 𝑚 odd

0 𝑚 even
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Indeed, if 𝑛 is even, this is clear; otherwise, this claim is that (−1)
𝑚𝑛−1

2 = (−1)
𝑚−1
2 (−1)

𝑛−1
2 , which is

easy to verify. Hence,
𝐿(𝜒−4, 𝑠) = 1 − 1

3𝑠 +
1
5𝑠 −

1
7𝑠 +…

In this example, the coefficients are periodic mod 4; this is true for general 𝐿(𝜒𝐷, 𝑠). Since 𝜁𝐿(𝑠) =
𝜁ℚ(𝑠)𝐿(𝜒−4, 𝑠), the fact that 𝜁ℚ(𝑠) has a simple pole at 𝑠 = 1with residue 1, together with the analytic
class number formula, gives 𝐿(𝜒−4, 1) =

𝜋
4
.

Definition. 𝜒∶ ℤ → ℂ is a Dirichlet character of modulus 𝐷 if there exists a group homo-
morphism 𝜔∶ (ℤ⟋𝐷ℤ)

⋆
→ ℂ such that

𝜒(𝑛) = {𝜔(𝑛mod 𝐷) 𝑛 invertible mod 𝐷
0 otherwise

For such a 𝜒, we have 𝜒(𝑛)𝜒(𝑚) = 𝜒(𝑛𝑚), and we can define

𝐿(𝜒, 𝑠) = ∏
𝑝 prime

(1 − 𝜒(𝑝)𝑝−𝑠)−1 = ∑
𝑛≥1

𝜒(𝑛)𝑛−𝑠

The previous example shows that 𝜒−4 is a Dirichlet character of modulus 4.

Theorem. For any 𝑑 ≠ 0, 1 square-free, defining 𝐿 = ℚ(√𝑑), 𝐷 = 𝐷𝐿, we have that 𝜒𝐷 is a
Dirichlet character of modulus 𝐷.

Proof. We must show 𝜒𝐷(𝑛 + 𝐷) = 𝜒𝐷(𝑛) for 𝑛 ∈ ℕ. Suppose first that 𝑑 ≡ 3mod 4. Here, 𝐷 = 4𝑑,
so 𝜒𝐷(2) = 0 as 2 ramifies, so 𝜒𝐷(𝑛) = 0 if 𝑛 is even as required. For 𝑝 > 2, 𝜒𝐷(𝑝) = (𝐷

𝑝
) = (𝑑

𝑝
) by

definition, but this is equal to ( 𝑝
𝑑
)(−1)

𝑝−1
2 by quadratic reciprocity as 𝑝, 𝑑 are odd, and as 𝑑 ≡ 3mod

4, 𝑑−1
2

≡ 1 mod 4. 𝑛 ↦ (−1)
𝑛−1
2 is multiplicative, so 𝜒𝐷(𝑛 + 𝐷) = (𝑛+𝐷

𝑑
)(−1)

𝑛−1
2 (−1)4𝑑2 = 𝜒𝐷(𝑛).

The other cases are omitted.

This theorem can be seen as equivalent to the law of quadratic reciprocity. Note that 𝜒 is nontrivial
if 𝜔 ≢ 1

Lemma. If 𝜒 is a nontrivial Dirichlet character, 𝐿(𝜒, 𝑠) is holomorphic for Re 𝑠 > 0.

Proof. Recall that if 𝐺 is a finite group and 𝜒1, 𝜒2 are characters of irreducible complex representa-
tions, then

1
𝐺 ∑

𝑔∈𝐺
𝜒1(𝑔)𝜒2(𝑔) = {1 𝜒1 = 𝜒2

0 otherwise

Applying this to 𝐺 = (ℤ⟋𝑑ℤ)
⋆
where 𝜒1 is the trivial character and 𝜒2 = 𝜔, this gives

∑
𝑎𝑑<𝑖<(𝑎+1)𝑑

𝜒(𝑖) = ∑
𝑖∈ℤ⟋𝑑ℤ

𝜒(𝑖) = ∑
𝑖∈(ℤ⟋𝑑ℤ)

⋆
𝜔(𝑖) = 0
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In particular,∑𝑛
𝑖=1 𝜒(𝑖) = 𝑂(1) is bounded. So∑𝑛

𝑖=1
𝜒(𝑖)
𝑛𝑠

converges for Re(𝑠) > 0.

Corollary. If 𝐷 < 0,

𝐿(𝜒𝐷, 1) =
2𝜋||Clℚ(√𝐷)||

|𝐷|
1
2 ||𝛍ℚ(√𝐷)||

In particular, 𝐿(𝜒𝐷, 1) ≠ 0.

Proof. 𝜁ℚ(√(𝐷))(𝑠) = 𝜁ℚ(𝑠)𝐿(𝜒𝐷, 𝑠), so both sides have a simple pole at 𝑠 = 1. The analytic class
number formula gives the residue of the left hand side, and Res𝜁(1) = 1.

5.3 𝐿-functions in cyclotomic fields
We will show that 𝐿(𝜒, 1) ≠ 0 for any Dirichlet character 𝜒, and hence show that there are infinitely
many primes in arithmetic progression. To do this, we will factor 𝜁

ℚ(𝑒
2𝜋𝑖
𝑞 )

for any 𝑞. Consider 𝐿 =
ℚ(𝜔𝑞) where 𝜔𝑞 is a primitive 𝑞th root of unity,

Proposition. (i) [𝐿 ∶ ℚ] = 𝜑(𝑞) where 𝜑(𝑞) = |||(ℤ⟋𝑞ℤ)
⋆|||;

(ii) 𝐿/ℚ is a Galois extension with Galois group 𝐺 = (ℤ⟋𝑞ℤ)
⋆
, and if 𝑟 ∈ (ℤ⟋𝑞ℤ)

⋆
, then 𝑟

acts on 𝐿 by mapping 𝜔𝑞 to 𝜔𝑟𝑞;
(iii) 𝒪𝐿 = ℤ[𝜔𝑞] = ℤ[𝑥]⟋Φ𝑞(𝑥) where Φ𝑞 is the 𝑞th cyclotomic polynomial;
(iv) if 𝑝 is prime, 𝑝 ∣ 𝐷𝐿 if and only if 𝑝 ∣ 𝑞;
(v) if 𝑝 is prime, 𝑝 ramifies in 𝒪𝐿 if and only if 𝑝 ∣ 𝑞;
(vi) if 𝑝 is prime with 𝑝 ∤ 𝑞, then (𝑝) factors as a product of 𝜑(𝑞)

𝑓
distinct prime ideals, each

of norm 𝑝𝑓, where 𝑓 is the order of 𝑝 in (ℤ⟋𝑞ℤ)
⋆
.

Proof. Parts (i) and (ii) follow from Galois theory. Part (iii) for 𝑞 prime is on an example sheet, and
the general case is omitted. Part (iv) is omitted. Part (iv) implies (v) is a general fact; we will only
show part (vi).

As 𝒪𝐿 = ℤ[𝑥]⟋Φ𝑞(𝑥), Dedekind’s theorem applies. We study 𝒪𝐿⟋(𝑝) = 𝔽𝑝[𝑥]⟋Φ𝑞(𝑥) by factoring
Φ𝑞(𝑥)modulo 𝑝. Recall that

Φ𝑞(𝑥) =
𝑥𝑞 − 1

∏𝑑≠𝑞,𝑑∣𝑞 Φ𝑑(𝑥)

so for instance Φ8(𝑥) =
𝑥8−1
𝑥4−1

= 𝑥4 + 1.

(ℤ⟋8ℤ)
⋆
= {1, 3, −3, −1} ≃ ℤ⟋2ℤ × ℤ⟋2ℤ

In this example, if 𝑝 = 17, 𝑥4 + 1 factors into four linear factors, but if 𝑝 = 3, 𝑥4 + 1 factors into two
factors as the order of 3 is 2 in (ℤ⟋8ℤ)

⋆
.
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Write Φ𝑞(𝑥) = 𝛾𝑒11 …𝛾𝑒𝑔𝑔 for 𝛾𝑖 irreducible and distinct, so

𝒪𝐿⟋(𝑝) = 𝔽𝑝[𝑥]⟋(𝛾𝑒11 ) × …𝔽𝑝[𝑥]⟋(𝛾𝑒𝑔𝑔 )

For any number field 𝐿, Gal(𝐿/ℚ) preserves 𝒪𝐿. Indeed, if 𝛼 ∈ 𝒪𝐿, 𝑓(𝛼) = 0 for some monic polyno-
mial 𝑓 ∈ ℤ[𝑥], but then 𝑔 ∈ Gal(𝐿/ℚ) givesn 0 = 𝑔𝑓(𝛼) = 𝑓(𝑔(𝛼)) = 0, so 𝑔(𝛼) is also a root of 𝑓 and
hence in 𝒪𝐿.

𝐺 permutes the roots of Φ𝑞, so 𝐺 acts on {𝛾1,… , 𝛾𝑔}. This action is transitive on the roots, so is
transitive on {𝛾1,… , 𝛾𝑔}. Hence deg 𝛾1 = ⋯ = deg 𝛾𝑔, so 𝑒1 = ⋯ = 𝑒𝑔 = 𝑒. Further, 𝑔𝑒 is the order of
𝐺⟋Stab𝐺(𝛾1).

If 𝑝 ∤ 𝐷𝐿, or equivalently 𝑝 ∤ 𝑞, then 𝑒 = 1 as 𝑝 is unramified. Hence 𝔽𝑝[𝑥]⟋(𝛾1) = 𝔽𝑝𝑓′ for some 𝑓′,
and 𝜑(𝑞)

𝑓′
factors. We must show that 𝑓′ = 𝑓.

𝑝 ∈ (ℤ⟋𝑞ℤ)
⋆
= Gal(𝐿/ℚ) acts as 𝛼 ↦ 𝛼𝑝 on 𝔽𝑝𝑓′ , so it acts as the Frobenius automorphism, which

is the generator of the Galois group of 𝔽𝑝𝑓′⟋𝔽𝑝 by (ii). Conversely, the image of 𝑥 in
𝔽𝑝[𝑥]⟋(𝛾1), is the

image of 𝜔𝑞 which is a primitive 𝑞th root of unity. So 𝑞 ∣ ||𝔽⋆
𝑝𝑓′

||, so 𝑞 ∣ 𝑝𝑓
′ − 1. In particular, 𝑝𝑓′ ≡ 1

mod 𝑞, so 𝑓 = ord(𝑝) ∣ 𝑓′. Hence 𝑓 = 𝑓′ as required.

Recall that 𝜁ℚ(𝜔𝑞)(𝑠) = ∏𝔭 prime(1 − 𝑁(𝔭)−𝑠)−1. Consider prime ideals 𝔭 dividing (𝑝) for a fixed

integer prime 𝑝. If 𝑝 ∤ 𝑞, part (vi) shows that these contribute (1 − 𝑝−𝑓𝑠)−
𝜑(𝑞)
𝑓 to the zeta function,

where 𝑓 is the order of 𝑝 in (ℤ⟋𝑞ℤ)
⋆
. But this factors as (1 − 𝑡𝑓) = ∏𝛾∈𝛍𝑓

(1 − 𝛾𝑡) where 𝛍𝑓 =
{𝛾 ∈ ℂ ∣ 𝛾𝑓 = 1}.

Set 𝑡 = 𝑝−𝑠, and let 𝜔1,… , 𝜔𝜑(𝑞) ∶ (ℤ⟋𝑞ℤ)
⋆
→ ℂ be the distinct irreducible complex representations

of (ℤ⟋𝑞ℤ)
⋆
, such that 𝜔1 = 𝟙 so 𝜔1(𝛼) = 1 for all 𝛼 ∈ (ℤ⟋𝑞ℤ)

⋆
. We claim that 𝜔1(𝑝),… , 𝜔𝜑(𝑞)(𝑝) are

the distinct 𝑓th roots of unity, each repeated 𝜑(𝑞)
𝑓

times. Certainly 𝑝 generates a cyclic subgroup (𝑝)

of (ℤ⟋𝑞ℤ)
⋆
of order 𝑓 by definition of 𝑓. The claim is that the restriction of of 𝜔1,… , 𝜔𝜑(𝑞) to (𝑝) are

the 𝑓 distinct irreducible representations of (𝑝), each repeated 𝜑(𝑞)
𝑓

times, which can be easily proven
using representation theory. We have therefore shown that

(1 − 𝑝−𝑓𝑠)−
𝜑(𝑞)
𝑓 =

𝜑(𝑞)
∏
𝑖=1

(1 − 𝜔𝑖(𝑝)𝑝−𝑠)−1

Let

𝜒𝑖(𝑛) = {𝜔𝑖(𝑛mod 𝑞) if gcd(𝑛, 𝑞) = 1
0 otherwise

Then we have shown that

𝜁ℚ(𝜔𝑞)(𝑠) =
𝜑(𝑞)
∏
𝑖=1

𝐿(𝜒𝑖, 𝑠)multiplied by a correction term
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which is a finite product of the form∏𝑝∣𝑞(1 − 𝑝−𝑓𝑝𝑠)−1. Note that 𝜁ℚ(𝑠) = 𝐿(𝜒1, 𝑠)∏𝑝∣𝑞(1 − 𝑝−𝑠)−1,
so we can rewrite this as

𝜁ℚ(𝜔𝑝)(𝑠) = 𝜁ℚ(𝑠)
𝜑(𝑞)
∏
𝑖=2

𝐿(𝜒𝑖, 𝑠)multiplied by a correction term

Theorem. If 𝜒𝑖 is a nontrivial Dirichlet character, then 𝐿(𝜒𝑖, 1) ≠ 0.

In fact, if 𝜒 is any nontrivial Dirichlet character modulo 𝑞, 𝜒 = 𝜒𝑖 for some 𝑖.

Proof. We have shown that if 𝜒 is a nontrivial Dirichlet character, 𝐿(𝜒, 𝑠) is holomorphic at 𝑠 = 1. In
the above expansion, the left hand side and right hand side are meromorphic functions at 𝑠 = 1with
a simple pole. The residue of the right hand side and left hand side therefore agree, and its value is

Res𝑠=1 𝜁ℚ(𝑠)
𝜑(𝑞)
∏
𝑖=2

𝐿(𝜒𝑖, 1)multiplied by a correction term

The analytic class number formula implies that this is nonzero, so 𝐿(𝜒𝑖, 1) ≠ 0.

Note that Dirichlet characters of quadratic fields have values in ±1.

5.4 Primes in arithmetic progression

Theorem (Dirichlet). Let 𝑎, 𝑞 ∈ ℕ with gcd(𝑎, 𝑞) = 1. There are infinitely many primes in
𝑎, 𝑎 + 𝑞, 𝑎 + 2𝑞,….

Proof. Consider (ℤ⟋𝑞ℤ)
⋆
, an abelian group of order 𝜑(𝑞). Let 𝜔1,… , 𝜔𝜑(𝑞) ∶ (ℤ⟋𝑞ℤ)

⋆
→ ℂ⋆ where

𝜔1 = 𝟙, and 𝜒1,… , 𝜒𝜑(𝑞) ∶ ℤ⟋𝑞ℤ → ℂ be the corresponding Dirichlet characters. Recall the ortho-
gonality of the columns of the character table of a finite group:

1
𝜑(𝑞) ∑𝑖

𝜔𝑖(𝑎)𝜔𝑖(𝑝) = {1 𝑎 ≡ 𝑝 mod 𝑞
0 otherwise

if gcd(𝑝, 𝑞) = 1, so 𝑝 defines an element of (ℤ⟋𝑞ℤ)
⋆
. Hence,

1
𝜑(𝑞) ∑𝑖

𝜒𝑖(𝑎)𝜒𝑖(𝑝) = {1 𝑎 ≡ 𝑝 mod 𝑞
0 otherwise

even if gcd(𝑝, 𝑞) ≠ 1, since in this case 𝜒𝑖(𝑝) = 0 by definition. Hence,

∑
𝑝≡𝑎mod 𝑞,𝑝 prime

𝑝−𝑠 = 1
𝜑(𝑞) ∑𝑖,𝑝

𝜒𝑖(𝑎)𝜒𝑖(𝑝)𝑝−𝑠
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We want to show that this has a pole at 𝑠 = 1. If 𝜒 is a Dirichlet character, by the series expansion of
logarithm which is valid by absolute convergence, we can write

log𝐿(𝜒, 𝑠) = −∑
𝑝
log(1 − 𝜒(𝑝)𝑝−𝑠)

= ∑
𝑛,𝑝

𝜒(𝑝)𝑛
𝑝𝑛𝑠𝑛

= ∑
𝑛,𝑝

𝜒(𝑝𝑛)
𝑝𝑛𝑠𝑛

= ∑
𝑝

𝜒(𝑝)
𝑝𝑠 + ∑

𝑛≥2,𝑝

𝜒(𝑝𝑛)
𝑝𝑛𝑠𝑛

We claim that∑𝑛≥2,𝑝 prime
𝜒(𝑝𝑛)
𝑝𝑛𝑠𝑛

converges at 𝑠 = 1. This holds as its absolute value is at most

∑
𝑛≥2,𝑝 prime

𝑝−𝑛𝑠 = ∑
𝑝 prime

1
𝑝𝑠(𝑝𝑠 − 1) ≤ ∑

𝑛

1
𝑛𝑠(𝑛𝑠 − 1) ≤ 2 1

𝑛2𝑠

which is finite at 𝑠 = 1. Hence, the series above has a pole at 𝑠 = 1 if and only if

1
𝜑(𝑞) ∑𝑖

𝜒𝑖(𝑎) log𝐿(𝜒𝑖, 𝑠)

has a pole at 𝑠 = 1.
If 𝜒1 is the trivial character, 𝐿(𝜒1, 𝑠) = 𝜁ℚ(𝑠)∏𝑝∣𝑠(1−𝑝−𝑠), so as 𝜁ℚ(𝑠) has only a simple pole at 𝑠 = 1,
log 𝜁ℚ(𝑠) = log 1

𝑠−1
+ bounded function near 𝑠 = 1, so log𝐿(𝜒1, 𝑠) ∼ log 1

𝑠−1
has a pole at 𝑠 = 1. For

𝑖 ≠ 1, 𝐿(𝜒𝑖, 𝑠) is nonzero at 𝑠 = 1 by the above theorem, so log𝐿(𝜒𝑖, 𝑠) is bounded at 𝑠 = 1. Hence,
1

𝜑(𝑞)
∑𝑖,𝑝 𝜒𝑖(𝑎)𝜒𝑖(𝑝)𝑝−𝑠 ∼

1
𝜑(𝑞)

log 1
𝑠−1

, and in particular has a pole at 𝑠 = 1.

Hence, there are infinitely many primes in arithmetic progression.

This proof shows that approximately 1
𝜑(𝑞)

of all primes lie in this arithmetic progression.

One can in fact show that for any number field 𝐿, 𝜁𝐿(𝑠) always factors and the factors have meaning.
Suppose 𝐿/ℚ is Galois, and 𝐺 = Gal(𝐿/ℚ). Then,
(i) We can factor 𝜁𝐿(𝑠) = ∏𝜌 irreducible representation of𝐺 𝐿(𝜌, 𝑠)dim𝜌, where the𝐿(𝜌, 𝑠) areArtin𝐿-functions.

Moreover, 𝐿/ℚ is the regular representation of 𝐺.
(ii) 𝐿(𝟙, 𝑠) = 𝜁ℚ(𝑠).
(iii) 𝐿(𝜌, 𝑠) is a meromorphic function of 𝑠. It is conjectured, but still not known, that 𝐿(𝜌, 𝑠) is

holomorphic if 𝜌 ≠ 𝟙.
(iv) If 𝜌 is one-dimensional, then 𝐿(𝜌, 𝑠) = 𝐿(𝜒, 𝑠) multiplied by a correction factor, where 𝐿(𝜒, 𝑠)

is a Dirichlet 𝐿-function. Finding 𝜒 given 𝜌 is a generalisation of quadratic reciprocity, called
class field theory.

(v) The properties of mutidimensional 𝜌 are studied in the Langlands programme.
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