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1 Propositional logic
1.1 Languages
Let 𝑃 be a set of primitive propositions. Unless otherwise stated, we let 𝑃 = {𝑝1, 𝑝2,… }. The language
𝐿 = 𝐿(𝑃) is defined inductively by
(i) if 𝑝 ∈ 𝑃, then 𝑝 ∈ 𝐿;
(ii) ⊥ ∈ 𝐿, where the symbol ⊥ is read ‘false’;

(iii) if 𝑝, 𝑞 ∈ 𝐿, then (𝑝 ⇒ 𝑞) ∈ 𝐿.
Example. ((𝑝1 ⇒ 𝑝2) ⇒ (𝑝1 ⇒ 𝑝3)) ∈ 𝐿. (𝑝4 ⇒ ⊥) ∈ 𝐿.
Remark. Note that the elements of𝐿, called propositions, are just strings of symbols from the alphabet
{(, ),⇒,⊥, 𝑝1, 𝑝2,… }. Brackets are only given for clarity; we omit those that are unnecessary, andmay
use other types of brackets such as square brackets.

Note that the phrase ‘𝐿 is defined inductively’ means more precisely the following. Let 𝐿1 = 𝑃 ∪ {⊥},
and define 𝐿𝑛+1 = 𝐿𝑛 ∪ {(𝑝 ⇒ 𝑞) ∣ 𝑝, 𝑞 ∈ 𝐿𝑛}. We set 𝐿 = ⋃∞

𝑛=1 𝐿𝑛. Note that the introduction
rules for the language are injective and have disjoint ranges, so there is exactly one way in which any
element of the language can be constructed using rules (i) to (iii).

We can now introduce the abbreviations ¬,∧, ∨ defined by

¬𝑝 = (𝑝 ⇒ ⊥); 𝑝 ∨ 𝑞 = ¬𝑝 ⇒ 𝑞; 𝑝 ∧ 𝑞 = ¬(𝑝 ⇒ ¬𝑞)

1.2 Semantic implication

Definition. A valuation is a function 𝑣∶ 𝐿 → {0, 1} such that
(i) 𝑣(⊥) = 0;
(ii) 𝑣(𝑝 ⇒ 𝑞) = 0 if 𝑣(𝑝) = 1 and 𝑣(𝑞) = 0, and 1 otherwise.

Remark. On {0, 1}, we can define the constant ⊥ = 0 and the operation⇒ in the obvious way. Then,
a valuation is precisely a mapping 𝐿 → {0, 1} preserving all structure, so it can be considered a homo-
morphism.

Proposition. Let 𝑣, 𝑣′ ∶ 𝐿 → {0, 1} be valuations that agree on the primitives 𝑝𝑖. Then 𝑣 = 𝑣′.
Further, any function 𝑤∶ 𝑃 → {0, 1} extends to a valuation.

Remark. This is analogous to the definition of a linear map by its action on the basis vectors.

Proof. Clearly, 𝑣, 𝑣′ agree on 𝐿1, the set of elements of the language of length 1. If 𝑣, 𝑣′ agree at 𝑝, 𝑞,
then they agree at 𝑝 ⇒ 𝑞. So by induction, 𝑣, 𝑣′ agree on 𝐿𝑛 for all 𝑛, and hence on 𝐿.
Let 𝑣(𝑝) = 𝑤(𝑝) for all 𝑝 ∈ 𝑃, and 𝑣(⊥) = 0 to obtain 𝑣 on the set 𝐿1. Assuming 𝑣 is defined on 𝑝, 𝑞
we can define it at 𝑝 ⇒ 𝑞 in the obvious way. This defines 𝑣 on all of 𝐿.

Example. Let 𝑣 be the valuation with 𝑣(𝑝1) = 𝑣(𝑝3) = 1, and 𝑣(𝑝𝑛) = 0 for all 𝑛 ≠ 1, 3. Then,
𝑣((𝑝1 ⇒ 𝑝3) ⇒ 𝑝2) = 0.
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Definition. A tautology is 𝑡 ∈ 𝐿 such that 𝑣(𝑡) = 1 for every valuation 𝑣. We write ⊧ 𝑡.

Example. 𝑝 ⇒ (𝑞 ⇒ 𝑝).
𝑣(𝑝) 𝑣(𝑞) 𝑣(𝑞 ⇒ 𝑝) 𝑣(𝑝 ⇒ (𝑞 ⇒ 𝑝))
0 0 1 1
0 1 0 1
1 0 1 1
1 1 1 1

Since the right-hand column is always 1, ⊧ 𝑝 ⇒ (𝑞 ⇒ 𝑝).
Example. ¬¬𝑝 ⇒ 𝑝, which expands to ((𝑝 ⇒ ⊥) ⇒ ⊥) ⇒ 𝑝.

𝑣(𝑝) 𝑣(¬𝑝) 𝑣(¬¬𝑝) 𝑣(¬¬𝑝 ⇒ 𝑝)
0 1 0 1
1 0 1 1

Hence ⊧ ¬¬𝑝 ⇒ 𝑝.
Example. (𝑝 ⇒ (𝑞 ⇒ 𝑟)) ⇒ ((𝑝 ⇒ 𝑞) ⇒ (𝑝 ⇒ 𝑟)). Suppose this is not a tautology. Then we have
a valuation 𝑣 such that 𝑣(𝑝 ⇒ (𝑞 ⇒ 𝑟)) = 1 and 𝑣((𝑝 ⇒ 𝑞) ⇒ (𝑝 ⇒ 𝑟)) = 0. Hence, 𝑣(𝑝 ⇒ 𝑞) =
1, 𝑣(𝑝 ⇒ 𝑟) = 0, so 𝑣(𝑝) = 1, 𝑣(𝑟) = 0, giving 𝑣(𝑞) = 1, but then 𝑣(𝑝 ⇒ (𝑞 ⇒ 𝑟)) = 0 contradicting
the assumption.

Definition. Let 𝑆 ⊆ 𝐿 and 𝑡 ∈ 𝐿. We say 𝑆 entails or semantically implies 𝑡, written 𝑆 ⊧ 𝑡, if
𝑣(𝑡) = 1 whenever 𝑣(𝑠) = 1 for all 𝑠 ∈ 𝑆.

Example. Let 𝑆 = {𝑝 ⇒ 𝑞, 𝑞 ⇒ 𝑟}, and let 𝑡 = 𝑝 ⇒ 𝑟. Suppose 𝑆⊧̸𝑡, so there is a valuation 𝑣 such that
𝑣(𝑝 ⇒ 𝑞) = 1, 𝑣(𝑞 ⇒ 𝑟) = 1, 𝑣(𝑝 ⇒ 𝑟) = 0. Then 𝑣(𝑝) = 1, 𝑣(𝑟) = 0, so 𝑣(𝑞) = 1 and 𝑣(𝑞) = 0.

Definition. We say that 𝑣 is amodel of 𝑆 in 𝐿 if 𝑣(𝑠) = 1 for all 𝑠 ∈ 𝑆.

Thus, 𝑆 ⊧ 𝑡 is the statement that every model of 𝑆 is also a model of 𝑡.
Remark. The notation ⊧ 𝑡 is equivalent to ∅ ⊧ 𝑡.

1.3 Syntactic implication
For a notion of proof, we require a system of axioms and deduction rules. As axioms, we take (for
any 𝑝, 𝑞, 𝑟 ∈ 𝐿),
(i) 𝑝 ⇒ (𝑞 ⇒ 𝑝);
(ii) (𝑝 ⇒ (𝑞 ⇒ 𝑟)) ⇒ ((𝑝 ⇒ 𝑞) ⇒ (𝑝 ⇒ 𝑟));
(iii) ((𝑝 ⇒ ⊥) ⇒ ⊥) ⇒ 𝑝.
Remark. Sometimes, these three axioms are considered axiom schemes, since they are really a differ-
ent axiom for each 𝑝, 𝑞, 𝑟 ∈ 𝐿. These are all tautologies.
For deduction rules, we will have only the rulemodus ponens, that from 𝑝 and 𝑝 ⇒ 𝑞 one can deduce
𝑞.
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Definition. Let 𝑆 ⊆ 𝐿, 𝑡 ∈ 𝐿. We say 𝑆 proves or syntactically implies 𝑡, written 𝑆 ⊢ 𝑡, if there
exists a sequence 𝑡1,… , 𝑡𝑛 = 𝑡 in 𝐿 such that every 𝑡𝑖 is either
(i) an axiom;
(ii) an element of 𝑆; or
(iii) 𝑞, where 𝑡𝑗 = 𝑝 and 𝑡𝑘 = 𝑝 ⇒ 𝑞 where 𝑗, 𝑘 < 𝑖.
We say that 𝑆 is the set of premises or hypotheses, and 𝑡 is the conclusion.

Example. We will show {𝑝 ⇒ 𝑞, 𝑞 ⇒ 𝑟} ⊢ 𝑝 ⇒ 𝑟.
1. 𝑞 ⇒ 𝑟 (hypothesis)
2. (𝑞 ⇒ 𝑟) ⇒ (𝑝 ⇒ (𝑞 ⇒ 𝑟)) (axiom 1)

3. 𝑝 ⇒ (𝑞 ⇒ 𝑟) (modus ponens on lines 1, 2)
4. (𝑝 ⇒ (𝑞 ⇒ 𝑟)) ⇒ ((𝑝 ⇒ 𝑞) ⇒ (𝑝 ⇒ 𝑟)) (axiom 2)

5. (𝑝 ⇒ 𝑞) ⇒ (𝑝 ⇒ 𝑟) (modus ponens on lines 3, 4)
6. 𝑝 ⇒ 𝑞 (hypothesis)
7. 𝑝 ⇒ 𝑟 (modus ponens on lines 5, 6)

Definition. If ∅ ⊢ 𝑡, we say 𝑡 is a theorem, written ⊢ 𝑡.

Example. ⊢ 𝑝 ⇒ 𝑝.
1. (𝑝 ⇒ ((𝑝 ⇒ 𝑝) ⇒ 𝑝)) ⇒ ((𝑝 ⇒ (𝑝 ⇒ 𝑝)) ⇒ (𝑝 ⇒ 𝑝)) (axiom 2)

2. 𝑝 ⇒ ((𝑝 ⇒ 𝑝) ⇒ 𝑝) (axiom 1)

3. (𝑝 ⇒ (𝑝 ⇒ 𝑝)) ⇒ (𝑝 ⇒ 𝑝) (modus ponens on lines 1, 2)
4. 𝑝 ⇒ (𝑝 ⇒ 𝑝) (axiom 1)

5. 𝑝 ⇒ 𝑝 (modus ponens on lines 3, 4)

1.4 Deduction theorem

Theorem. Let 𝑆 ⊆ 𝐿, and 𝑝, 𝑞 ∈ 𝐿. Then 𝑆 ⊢ (𝑝 ⇒ 𝑞) if and only if 𝑆 ∪ {𝑝} ⊢ 𝑞.

Intuitively, provability corresponds to the implication connective in 𝐿.

Proof. For the forward direction, given a proof of 𝑝 ⇒ 𝑞 from 𝑆, add the line 𝑝 by hypothesis and
deduce 𝑞 from modus ponens, to obtain a proof of 𝑞 from 𝑆 ∪ {𝑝}.
Conversely, suppose we have a proof of 𝑞 from 𝑆 ∪ {𝑝}. Let 𝑡1,… , 𝑡𝑛 be the lines of the proof. We will
prove that 𝑆 ⊢ (𝑝 ⇒ 𝑡𝑖) for all 𝑖.

• If 𝑡𝑖 is an axiom, we write 𝑡𝑖 (axiom); 𝑡𝑖 ⇒ (𝑝 ⇒ 𝑡𝑖) (axiom 1); 𝑝 ⇒ 𝑡𝑖 (modus ponens).
• If 𝑡𝑖 ∈ 𝑆, we write 𝑡𝑖 (hypothesis); 𝑡𝑖 ⇒ (𝑝 ⇒ 𝑡𝑖) (axiom 1); 𝑝 ⇒ 𝑡𝑖 (modus ponens).
• If 𝑡𝑖 = 𝑝, we write the proof of ⊢ 𝑝 ⇒ 𝑝 given above.
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• Suppose 𝑡𝑖 is obtained bymodus ponens from 𝑡𝑗 and 𝑡𝑘 = 𝑡𝑗 ⇒ 𝑡𝑖. Wemay assume by induction
that 𝑆 ⊢ 𝑝 ⇒ 𝑡𝑘 and 𝑆 ⊢ 𝑝 ⇒ (𝑡𝑗 ⇒ 𝑡𝑖). We write
1. (𝑝 ⇒ (𝑡𝑗 ⇒ 𝑡𝑖)) ⇒ ((𝑝 ⇒ 𝑡𝑗) ⇒ (𝑝 ⇒ 𝑡𝑖)) (axiom 2)

2. (𝑝 ⇒ 𝑡𝑗) ⇒ (𝑝 ⇒ 𝑡𝑖) (modus ponens)
3. 𝑝 ⇒ 𝑡𝑖 (modus ponens)

giving 𝑆 ⊢ 𝑝 ⇒ 𝑡𝑖.

Example. Consider {𝑝 ⇒ 𝑞, 𝑞 ⇒ 𝑟} ⊢ 𝑝 ⇒ 𝑟. By the deduction theorem, it suffices to prove {𝑝 ⇒ 𝑞, 𝑞 ⇒ 𝑟, 𝑝} ⊢
𝑟, which is obtained easily from modus ponens.

1.5 Soundness
We aim to show 𝑆 ⊧ 𝑡 if and only if 𝑆 ⊢ 𝑡. The direction 𝑆 ⊢ 𝑡 implies 𝑆 ⊧ 𝑡 is called soundness, which
is a way of verifying that our axioms and deduction rule make sense. The direction 𝑆 ⊧ 𝑡 implies
𝑆 ⊢ 𝑡 is called adequacy, which states that our axioms are powerful enough to deduce everything
that is (semantically) true.

Proposition. Let 𝑆 ⊆ 𝐿 and 𝑡 ∈ 𝐿. Then 𝑆 ⊢ 𝑡 implies 𝑆 ⊧ 𝑡.

Proof. Wehave a proof 𝑡1,… , 𝑡𝑛 of 𝑡 from 𝑆. We aim to show that anymodel of 𝑆 is also amodel of 𝑡, so
if 𝑣 is a valuation that maps every element of 𝑆 to 1, then 𝑣(𝑡) = 1. We show this by induction on the
length of the proof. 𝑣(𝑝) = 1 for each axiom 𝑝 and for each 𝑝 ∈ 𝑆. Further, 𝑣(𝑡𝑖) = 1, 𝑣(𝑡𝑖 ⇒ 𝑡𝑗) = 1,
then 𝑣(𝑡𝑗) = 1. Therefore, 𝑣(𝑡𝑖) = 1 for all 𝑖.

1.6 Adequacy
Consider the case of adequacy where 𝑡 = ⊥. If our axioms are adequate, 𝑆 ⊧ ⊥ implies 𝑆 ⊢ ⊥, so
𝑆 ⊬ ⊥. We say 𝑆 is consistent if 𝑆 ⊬ ⊥. Therefore, in an adequate system, if 𝑆 has no models then 𝑆
is inconsistent; equivalently, if 𝑆 is consistent then it has a model.
In fact, the statement that consistent axiom sets have a model implies adequacy in general. Indeed,
if 𝑆 ⊧ 𝑡, then 𝑆 ∪ {¬𝑡} has no models, and so it is inconsistent by assumption. Then 𝑆 ∪ {¬𝑡} ⊢ ⊥, so
𝑆 ⊢ ¬𝑡 ⇒ ⊥ by the deduction theorem, giving 𝑆 ⊢ 𝑡 by axiom 3.

We aim to construct a model of 𝑆 given that 𝑆 is consistent. Intuitively, we want to write

𝑣(𝑡) = {1 𝑡 ∈ 𝑆
0 𝑡 ∉ 𝑆

but this does not work on the set 𝑆 = {𝑝1, 𝑝1 ⇒ 𝑝2} as it would evaluate 𝑝2 to false.
We say a set 𝑆 ⊆ 𝐿 is deductively closed if 𝑝 ∈ 𝑆 whenever 𝑆 ⊢ 𝑝. Any set 𝑆 has a deductive closure,
which is the (deductively closed) set of statements {𝑡 ∈ 𝐿 ∣ 𝑆 ⊢ 𝑡} that 𝑆 proves. If 𝑆 is consistent,
then the deductive closure is also consistent. Computing the deductive closure before the valuation
solves the problem for 𝑆 = {𝑝1, 𝑝1 ⇒ 𝑝2}. However, if a primitive proposition 𝑝 is not in 𝑆, but ¬𝑝 is
also not in 𝑆, this technique still does not work, as it would assign false to both 𝑝 and ¬𝑝.
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Theorem (model existence lemma). Every consistent set 𝑆 ⊆ 𝐿 has a model.

Proof. First, we claim that for any consistent 𝑆 ⊆ 𝐿 and proposition 𝑝 ∈ 𝐿, either 𝑆∪{𝑝} is consistent
or 𝑆 ∪ {¬𝑝} is consistent. If this were not the case, then 𝑆 ∪ {𝑝} ⊢ ⊥, and also 𝑆 ∪ {¬𝑝} ⊢ ⊥. By the
deduction theorem, 𝑆 ⊢ 𝑝 ⇒ ⊥ and 𝑆 ⊢ (¬𝑝) ⇒ ⊥. But then 𝑆 ⊢ ¬𝑝 and 𝑆 ⊢ ¬¬𝑝, so 𝑆 ⊢ ⊥
contradicting consistency of 𝑆.
Now, 𝐿 is a countable set as each 𝐿𝑛 is countable, so we can enumerate 𝐿 as 𝑡1, 𝑡2,…. Let 𝑆0 = 𝑆, and
define 𝑆1 = 𝑆0 ∪ {𝑡1} or 𝑆1 = 𝑆0 ∪ {¬𝑡1}, chosen such that 𝑆1 is consistent. Continuing inductively,
define 𝑆 = ⋃𝑖∈ℕ 𝑆 𝑖. Then, for all 𝑡 ∈ 𝐿, either 𝑡 ∈ 𝑆 or ¬𝑡 ∈ 𝑆. Note that 𝑆 is consistent; indeed,
if 𝑆 ⊢ ⊥, then this proof uses hypotheses only in 𝑆𝑛 for some 𝑛, but then 𝑆𝑛 ⊢ ⊥ contradicting
consistency of 𝑆𝑛. Note also that 𝑆 is deductively closed, so if 𝑆 ⊢ 𝑝, we must have 𝑝 ∈ 𝑆; otherwise,
¬𝑝 ∈ 𝑆 so 𝑆 ⊢ ¬𝑝, giving 𝑆 ⊢ ⊥, contradicting consistency of 𝑆. Now, define the function

𝑣(𝑡) = {1 𝑡 ∈ 𝑆
0 𝑡 ∉ 𝑆

We show that 𝑣 is a valuation, then the proof is complete as 𝑣(𝑠) = 1 for all 𝑠 ∈ 𝑆. Since 𝑆 is consistent,
⊥ ∉ 𝑆, so 𝑣(⊥) = 0.
Suppose 𝑣(𝑝) = 1, 𝑣(𝑞) = 0. Then 𝑝 ∈ 𝑆 and 𝑞 ∉ 𝑆, and we want to show (𝑝 ⇒ 𝑞) ∉ 𝑆. If this were
not the case, we would have (𝑝 ⇒ 𝑞) ∈ 𝑆 and 𝑝 ∈ 𝑆, so 𝑞 ∈ 𝑆 as 𝑆 is deductively closed.

Now suppose 𝑣(𝑞) = 1, so 𝑞 ∈ 𝑆, and we need to show (𝑝 ⇒ 𝑞) ∈ 𝑆. Then 𝑆 ⊢ 𝑞, and by axiom 1,
𝑆 ⊢ 𝑞 ⇒ (𝑝 ⇒ 𝑞). Therefore, as 𝑆 is deductively closed, (𝑝 ⇒ 𝑞) ∈ 𝑆.

Finally, suppose 𝑣(𝑝) = 0, so 𝑝 ∉ 𝑆, and we want to show (𝑝 ⇒ 𝑞) ∈ 𝑆. We know that ¬𝑝 ∈ 𝑆,
so it suffices to show that 𝑝 ⇒ ⊥ ⊢ 𝑝 ⇒ 𝑞. By the deduction theorem, this is equivalent to proving
{𝑝, 𝑝 ⇒ ⊥} ⊢ 𝑞, or equivalently, ⊥ ⊢ 𝑞. But by axiom 1, ⊥ ⇒ (¬𝑞 ⇒ ⊥) where (¬𝑞 ⇒ ⊥) = ¬¬𝑞, so
the proof is complete by axiom 3.

Remark. We used the fact that 𝑃 was a countable set in order to show that 𝐿 was countable. The
result does in fact hold if 𝑃 is uncountable, but requires more tools to prove. Some sources call this
theorem the ‘completeness theorem’.

Corollary (adequacy). Let 𝑆 ⊆ 𝐿 and let 𝑡 ∈ 𝐿, such that 𝑆 ⊧ 𝑡. Then 𝑆 ⊢ 𝑡.

Proof. Follows from the remarks before the model existence lemma.

1.7 Completeness

Theorem (completeness theorem for propositional logic). Let 𝑆 ⊆ 𝐿 and 𝑡 ∈ 𝐿. Then 𝑆 ⊧ 𝑡
if and only if 𝑆 ⊢ 𝑡.

Proof. Follows from soundness and adequacy.
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Theorem (compactness theorem). Let 𝑆 ⊆ 𝐿 and 𝑡 ∈ 𝐿 with 𝑆 ⊧ 𝑡. Then there exists a finite
subset 𝑆′ ⊆ 𝑆 such that 𝑆′ ⊧ 𝑡.

Proof. Trivial after applying the completeness theorem, since proofs depend on only finitely many
hypotheses in 𝑆.

Corollary (compactness theorem, equivalent form). Let 𝑆 ⊆ 𝐿. Then if every finite subset
𝑆′ ⊆ 𝑆 has a model, then 𝑆 has a model.

Proof. Let 𝑡 = ⊥ in the compactness theorem. Then, if 𝑆 ⊧ ⊥, some finite 𝑆′ ⊆ 𝑆 has 𝑆′ ⊧ ⊥. But this
is not true by assumption, so there is a model for 𝑆.

Remark. This corollary is equivalent to the more general compactness theorem, since the assertion
that 𝑆 ⊧ 𝑡 is equivalent to the statement that 𝑆 ∪ {¬𝑡} has no model, and 𝑆′ ⊧ 𝑡 is equivalent to the
statement that 𝑆′ ∪ {¬𝑡} has no model.

Theorem (decidability theorem). Let 𝑆 ⊆ 𝐿 and 𝑡 ∈ 𝐿. Then, there is an algorithm to decide
(in finite time) if 𝑆 ⊢ 𝑡.

Proof. Trivial after replacing ⊢ with ⊧, by drawing the relevant truth tables.

2 Well-orderings
2.1 Definition

Definition. A total order or linear order is a pair (𝑋, <) where 𝑋 is a set, and < is a relation
on 𝑋 such that

• (irreflexivity) for all 𝑥 ∈ 𝑋 , 𝑥 ≮ 𝑥;
• (transitivity) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 , 𝑥 < 𝑦 and 𝑦 < 𝑧 implies 𝑥 < 𝑧;
• (trichotomy) for all 𝑥, 𝑦 ∈ 𝑋 , either 𝑥 < 𝑦, 𝑦 < 𝑥, or 𝑥 = 𝑦.

We use the obvious notation 𝑥 > 𝑦 to denote 𝑦 < 𝑥. In terms of the ≤ relation, we can equivalently
write the axioms of a total order as

• (reflexivity) for all 𝑥 ∈ 𝑋 , 𝑥 ≤ 𝑥;
• (transitivity) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 , 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧 implies 𝑥 ≤ 𝑧;
• (antisymmetry) for all 𝑥, 𝑦 ∈ 𝑋 , if 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥 then 𝑥 = 𝑦.
• (trichotomy, or totality) for all 𝑥, 𝑦 ∈ 𝑋 , either 𝑥 ≤ 𝑦 or 𝑦 ≤ 𝑥.

Example. (i) (ℕ, ≤) is a total order.
(ii) (ℚ,≤) is a total order.
(iii) (ℝ,≤) is a total order.
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(iv) (ℕ+, |) is not a total order, where | is the divides relation, since 2 and 3 are not related.
(v) (𝒫(𝑆), ⊆) is not a total order if |𝑆| > 1, since it fails trichotomy.

Definition. A total order (𝑋, <) is awell-ordering if every nonempty subset 𝑆 ⊆ 𝑋 has a least
element.

∀𝑆 ⊆ 𝑋, 𝑆 ≠ ∅ ⟹ ∃𝑥 ∈ 𝑆, ∀𝑦 ∈ 𝑆, 𝑥 ≤ 𝑦

Example. (i) (ℕ, <) is a well-ordering.
(ii) (ℤ, <) is not a well-ordering, since ℤ has no least element.
(iii) (ℚ,<) is not a well-ordering.
(iv) (ℝ,<) is not a well-ordering.
(v) [0, 1] ⊂ ℝ with the usual order is not a well-ordering, since (0, 1] has no least element.

(vi) { 1
2
, 2
3
, 3
4
,… } ⊂ ℝ with the usual order is a well-ordering.

(vii) { 1
2
, 2
3
, 3
4
,… } ∪ {1} with the usual order is also a well-ordering.

(viii) { 1
2
, 2
3
, 3
4
,… } ∪ {2} with the usual order is another example.

(ix) { 1
2
, 2
3
, 3
4
,… } ∪ {1 + 1

2
, 1 + 2

3
, 1 + 3

4
,… } is another example.

Remark. Let (𝑋, <) be a total order. (𝑋, <) is a well-ordering if and only if there is no infinite de-
creasing sequence 𝑥1 > 𝑥2 > …. Indeed, if (𝑋, <) is a well-ordering, then the set {𝑥1, 𝑥2,… } has no
minimal element, contradicting the assumption. Conversely, if 𝑆 ⊆ 𝑋 has no minimal element, then
we can construct an infinite decreasing sequence by arbitrarily choosing points 𝑥1 > 𝑥2 > … in 𝑆,
which exists as 𝑆 has no minimal element.

Definition. Total orders 𝑋, 𝑌 are isomorphic if there is a bijection 𝑓 between 𝑋 and 𝑌 that
preserves <: 𝑥 < 𝑦 if and only if 𝑓(𝑥) < 𝑓(𝑦).

Examples (i) and (vi) are isomorphic, and (vii) and (viii) are isomorphic. Examples (i) and (vii) are
not isomorphic, since example (vii) has a greatest element and (i) does not.

Proposition (proof by induction). Let 𝑋 be a well-ordered set, and let 𝑆 ⊆ 𝑋 such that

∀𝑥 ∈ 𝑆, (∀𝑦 < 𝑥, 𝑦 ∈ 𝑆) ⟹ 𝑥 ∈ 𝑆

Then 𝑆 = 𝑋 .

Remark. Equivalently, if 𝑝(𝑥) is a property such that if 𝑝(𝑦) is true for all 𝑦 < 𝑥 then 𝑝(𝑥), then 𝑝(𝑥)
holds for all 𝑥.

Proof. Suppose 𝑆 ≠ 𝑋 . Then 𝑋 ∖𝑆 is nonempty, and therefore has a least element 𝑥. But all elements
𝑦 < 𝑥 lie in 𝑆, and so by the property of 𝑆, we must have 𝑥 ∈ 𝑆, contradicting the assumption.
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Proposition. Let 𝑋, 𝑌 be isomorphic well-orderings. Then there is exactly one isomorphism
between 𝑋 and 𝑌 .

Note that this does not hold for general total orderings, such as ℚ to itself or [0, 1] to itself.

Proof. Let 𝑓, 𝑔∶ 𝑋 → 𝑌 be isomorphisms. We show that 𝑓(𝑥) = 𝑔(𝑥) for all 𝑥 by induction on 𝑥.
Suppose 𝑓(𝑦) = 𝑔(𝑦) for all 𝑦 < 𝑥. We must have that 𝑓(𝑥) = 𝑎, where 𝑎 is the least element of
𝑌 ∖ {𝑓(𝑦) ∣ 𝑦 < 𝑥}. Indeed, if not, we have 𝑓(𝑥′) = 𝑎 for some 𝑥′ > 𝑥 by bijectivity, contradicting the
order-preserving property. Note that the set 𝑌 ∖ {𝑓(𝑥) ∣ 𝑦 < 𝑥} is nonempty as it contains 𝑓(𝑥). So
𝑓(𝑥) = 𝑎 = 𝑔(𝑥), as required.

2.2 Initial segments

Definition. A subset 𝐼 of a totally ordered set 𝑋 is an initial segment if 𝑥 ∈ 𝐼 implies 𝑦 ∈ 𝐼
for all 𝑦 < 𝑥.

Example. In any total ordering 𝑋 and element 𝑥 ∈ 𝑋 , the set {𝑦 ∣ 𝑦 < 𝑥} is an initial segment. Not
every initial segment is of this form, for instance {𝑥 ∣ 𝑥 ≤ 3} in ℝ, or {𝑥 ∣ 𝑥 > 0, 𝑥2 < 2} in ℚ.
In a well-ordering, every proper initial segment 𝐼 ≠ 𝑋 is of this form. Indeed, 𝐼 = {𝑦 ∣ 𝑦 < 𝑥}where 𝑥
is the least element of 𝑋 ∖ 𝐼: 𝑦 ∈ 𝐼 implies 𝑦 < 𝑥, otherwise 𝑦 = 𝑥 or 𝑥 < 𝑦, giving the contradiction
𝑥 ∈ 𝐼; and conversely, 𝑦 < 𝑥 implies 𝑦 ∈ 𝐼, otherwise 𝑦 is a smaller element of 𝑋 ∖ 𝐼.

Theorem (definition by recursion). Let𝑋 be a well-ordering and 𝑌 be any set. Let𝐺∶ 𝒫(𝑋×
𝑌) → 𝑌 be a rule that assigns a point in𝑌 given a definition of the function ‘so far’, represented
as a set of ordered pairs. Then there exists a function 𝑓∶ 𝑋 → 𝑌 such that 𝑓(𝑥) = 𝐺(𝑓|𝐼𝑥),
and such a function is unique.

Remark. In defining 𝑓(𝑥), we may use the value of 𝑓(𝑦) for all 𝑦 < 𝑥.

Proof. We say that ℎ is an attempt to mean that ℎ∶ 𝐼 → 𝑌 where 𝐼 is some initial segment of 𝑋 , and
for all 𝑥 ∈ 𝐼 we have that ℎ(𝑥) = 𝐺(ℎ|𝐼𝑥). Note that if ℎ, ℎ

′ are attempts both defined at 𝑥, then
ℎ(𝑥) = ℎ′(𝑥) by induction on 𝑥.
Also, for all 𝑥, there exists an attempt defined at 𝑥, by induction on 𝑥. Indeed, by induction we can
assume there exists an attempt ℎ𝑦 defined at 𝑦 for all 𝑦 < 𝑥, and then we can define ℎ to be the union
of the ℎ𝑦. This is an attempt with domain 𝐼𝑥, so the attempt ℎ′ = ℎ∪{(𝑥, 𝐺(ℎ))} is an attempt defined
at 𝑥. Therefore, there is an attempt defined at each 𝑥, so we can define the function 𝑓∶ 𝑋 → 𝑌 by
setting 𝑓(𝑥) to be the value of ℎ(𝑥) where ℎ is some attempt defined at 𝑥.
For uniqueness, we apply induction on 𝑥. If 𝑓, 𝑓′ agree below 𝑥, then they must agree at 𝑥 since
𝑓(𝑥) = 𝐺(𝑓|𝐼𝑥) = 𝐺(𝑓′|𝐼𝑥) = 𝑓′(𝑥).

Proposition (subset collapse). Any subset 𝑌 of a well-ordering 𝑋 is isomorphic to a unique
initial segment of 𝑋 .

This is not true for general total orderings, such as {1, 2, 3} ⊂ ℤ, or ℚ in ℝ.
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Proof. If 𝑓 is some such isomorphism, we must have that 𝑓(𝑥) is the least element of 𝑋 not of the
form 𝑓(𝑦) for 𝑦 < 𝑥. We define 𝑓 in this way by recursion, and this is an isomorphism as required.
Note that this is always well-defined as 𝑓(𝑦) ≤ 𝑦, so there is always some element of 𝑋 (namely, 𝑥)
not of the form 𝑓(𝑦) for 𝑦 < 𝑥. Uniqueness follows by induction.

Remark. 𝑋 itself cannot be isomorphic to a proper initial segment by uniqueness as it is isomorphic
to itself.

2.3 Relating well-orderings

Definition. For well-orderings 𝑋, 𝑌 , we will write 𝑋 ≤ 𝑌 if 𝑋 is isomorphic to an initial
segment of 𝑌 .

𝑋 ≤ 𝑌 if and only if 𝑋 is isomorphic to some subset of 𝑌 .

Example. ℕ ≤ { 1
2
, 2
3
,… }.

Proposition. Let 𝑋, 𝑌 be well-orderings. Then either 𝑋 ≤ 𝑌 or 𝑌 ≤ 𝑋 .

Proof. By recursion we define the function 𝑓∶ 𝑋 → 𝑌 by letting 𝑓(𝑥) be the least element of 𝑌 not
of the form 𝑓(𝑦) for all 𝑦 < 𝑥. If a least element of this form always exists, this is a well-defined
isomorphism from 𝑋 to an initial segment of 𝑌 as required. Suppose that 𝑌 ∖ {𝑓(𝑦) ∣ 𝑦 < 𝑥} is empty,
so {𝑓(𝑦) ∣ 𝑦 < 𝑥} = 𝑌 . Then 𝑌 is isomorphic to 𝐼𝑥 ⊆ 𝑋 , so 𝑌 ≤ 𝑋 .

Proposition. Let 𝑋, 𝑌 be well-orderings, and suppose 𝑋 ≤ 𝑌 and 𝑌 ≤ 𝑋 . Then 𝑋 is iso-
morphic to 𝑌 .

Proof. Let 𝑓∶ 𝑋 → 𝑌 and 𝑔∶ 𝑌 → 𝑋 be isomorphisms to initial segments. Then 𝑔 ∘ 𝑓 is an iso-
morphism from 𝑋 to some initial segment of 𝑋 , as an initial segment of an initial segment is an
initial segment. So by uniqueness, 𝑔 ∘ 𝑓 is the identity map on 𝑋 . Similarly, 𝑓 ∘ 𝑔 is the identity on 𝑌 ,
so 𝑓 and 𝑔 are inverses.

2.4 Constructing larger well-orderings

Definition. For well-orderings 𝑋, 𝑌 , we write 𝑋 < 𝑌 if 𝑋 ≤ 𝑌 and 𝑋 is not isomorphic to 𝑌 .

Equivalently, 𝑋 < 𝑌 if 𝑋 is isomorphic to a proper initial segment of 𝑌 .
Let 𝑋 be a well-ordering, and let 𝑥 ∉ 𝑋 . Construct the well-ordering on 𝑋 ∪ {𝑥} by setting 𝑦 < 𝑥
for all 𝑦 ∈ 𝑋 . This well-ordering is strictly greater than 𝑋 , since 𝑋 is isomorphic to a proper initial
segment. This is called the successor of 𝑋 , written 𝑋+.

For well-orderings (𝑋, <𝑋), (𝑌 , <𝑌 ), we say that (𝑌 , <𝑌 ) extends (𝑋, <𝑋) if 𝑋 ⊆ 𝑌 , <𝑌 |𝑋 =<𝑋 , and
𝑋 is an initial segment of 𝑌 . We say that well-orderings 𝑋𝑖 for 𝑖 ∈ 𝐼 are nested if for all 𝑖, 𝑗 ∈ 𝐼, either
𝑋𝑖 extends 𝑋𝑗 or 𝑋𝑗 extends 𝑋𝑖.
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Proposition. Let 𝑋𝑖 for 𝑖 ∈ 𝐼 be a nested set of well-orderings. Then, there exists a well-
ordering 𝑋 such that 𝑋𝑖 ≤ 𝑋 for all 𝑖 ∈ 𝐼.

Proof. Let 𝑋 = ⋃𝑖∈𝐼 𝑋𝑖 with ordering <𝑋 = ⋃𝑖∈𝐼 <𝑖. Then, as the 𝑋𝑖 are nested, each 𝑋𝑖 is an initial
segment of 𝑋 . We show that this is a well-ordering. Let 𝑆 ⊆ 𝑋 be a nonempty set. Then 𝑆 ∩ 𝑋𝑖 ≠ ∅
for some 𝑖 ∈ 𝐼. Let 𝑥 be the least element of 𝑆 ∩𝑋𝑖. Thus, 𝑥 is the least element of 𝑆, as 𝑋𝑖 is an initial
segment of 𝑋 .

Remark. The proposition holds without the nestedness assumption.

2.5 Ordinals

Definition. An ordinal is a well-ordered set, where we regard two ordinals as equal if they
are isomorphic.

Remark. We cannot construct ordinals as equivalence classes of well-orderings, due to Russell’s para-
dox. Later, we will see a different construction that deals with this problem.

Definition. Let 𝑋 be a well-ordering corresponding to an ordinal 𝛼. Then, we say that 𝑋 has
order type 𝛼.

The order type of the unique well-ordering on a collection of 𝑘 ∈ ℕ points is named 𝑘. The order
type of (ℕ, <) is named 𝜔.

Example. In the reals, the set {−2, 3, −𝜋, 5} has order type 4. The set { 1
2
, 2
3
, 3
4
,… } has order type 𝜔.

We will write 𝛼 ≤ 𝛽 if 𝑋 ≤ 𝑌 where 𝑋 has order type 𝛼 and 𝑌 has order type 𝛽. This does not
depend on the choice of representative 𝑋 or 𝑌 . We define 𝛼 < 𝛽 and 𝛼+ in a similar way. Note that
𝛼 ≤ 𝛽, 𝛽 ≤ 𝛼 implies 𝛼 = 𝛽. Therefore, ordinals are totally ordered.

Proposition. Let 𝛼 be an ordinal. Then the set of ordinals less than 𝛼 form a well-ordered
set of order type 𝛼.

Proof. Let 𝑋 be a well-ordering with order type 𝛼. Then, the well-orderings less than 𝑋 are precisely
the proper initial segments of 𝑋 , up to isomorphism. The initial segments of 𝑋 are precisely the sets
𝐼𝑥 = {𝑦 ∈ 𝑋 ∣ 𝑦 < 𝑥} for 𝑥 ∈ 𝑋 . But these are order isomorphic to 𝑋 itself by mapping 𝐼𝑥 ↦ 𝑥.

We define 𝐼𝛼 = {𝛽 < 𝛼}, which is a well-ordered set of order type 𝛼. This is often a convenient
representative to choose for an ordinal.

Proposition. Every nonempty set 𝑆 of ordinals has a least element.

Proof. Let 𝛼 ∈ 𝑆. Suppose 𝛼 is not the least element of 𝑆. Then 𝑆 ∩ 𝐼𝛼 is nonempty. But 𝐼𝛼 is
well-ordered, so 𝑆 ∩ 𝐼𝛼 has a minimal element as required.
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Theorem (Burali-Forti paradox). The ordinals do not form a set.

Proof. Suppose 𝑋 is the set of all ordinals. Then 𝑋 is a well-ordered set, so it has an order type 𝛼.
Then 𝑋 is isomorphic to 𝐼𝛼, which is a proper initial segment of 𝑋 .

Remark. Given a set 𝑆 = {𝛼𝑖 ∶ 𝑖 ∈ 𝐼} of ordinals, there exists an upper bound 𝛼 for 𝑆, so 𝛼𝑖 ≤ 𝛼 for
all 𝑖 ∈ 𝐼, by considering the nested family of well-orderings 𝐼𝛼𝑖 . Hence, by the previous proposition,
there exists a least upper bound, as 𝐼𝛼 is a set. We write 𝛼 = sup 𝑆.
Example. sup {2, 4, 6,… } = 𝜔.
Remark. If we represent ordinals by sets of smaller ordinals, sup 𝑆 = ⋃𝛼∈𝑆 𝛼.

2.6 Some ordinals
0, 1, 2, 3,… , 𝜔

Write 𝛼 + 1 for the successor 𝛼+ of 𝛼.

𝜔 + 1, 𝜔 + 2, 𝜔 + 3,… , 𝜔 + 𝜔 = 𝜔 ⋅ 2

where 𝜔 + 𝜔 = 𝜔 ⋅ 2 is defined by sup {𝜔, 𝜔 + 1, 𝜔 + 2,… }.

𝜔 ⋅ 2 + 1, 𝜔 ⋅ 2 + 2,… , 𝜔 ⋅ 3, 𝜔 ⋅ 4, 𝜔 ⋅ 5,… , 𝜔 ⋅ 𝜔 = 𝜔2

where we define 𝜔 ⋅ 𝜔 = sup {𝜔 ⋅ 2, 𝜔 ⋅ 3,… }.

𝜔2 + 1, 𝜔2 + 2,… , 𝜔2 + 𝜔,… ,𝜔2 + 𝜔 ⋅ 2,… , 𝜔2 + 𝜔2 = 𝜔2 ⋅ 2

Continue in the same way.
𝜔2 ⋅ 3, 𝜔2 ⋅ 4,… , 𝜔3

where 𝜔3 = sup {𝜔2 ⋅ 2, 𝜔2 ⋅ 3,… }.

𝜔3 + 𝜔2 ⋅ 7 + 𝜔 ⋅ 4 + 13,… , 𝜔4, 𝜔5,… , 𝜔𝜔

where 𝜔𝜔 = sup {𝜔, 𝜔2, 𝜔3,… }.

𝜔𝜔 ⋅ 2, 𝜔𝜔 ⋅ 3,… , 𝜔𝜔 ⋅ 𝜔 = 𝜔𝜔+1

𝜔𝜔+2,… , 𝜔𝜔⋅2, 𝜔𝜔⋅3,… , 𝜔𝜔2 ,… , 𝜔𝜔3 ,… , 𝜔𝜔𝜔 ,… , 𝜔𝜔𝜔𝜔 ,… , 𝜔𝜔𝜔… = 𝜀0
where 𝜀0 = sup {𝜔, 𝜔𝜔, 𝜔𝜔𝜔 ,… }.

𝜀0 + 1, 𝜀0 + 𝜔, 𝜀0 + 𝜀0 = 𝜀0 ⋅ 2,… , 𝜀20, 𝜀30,… , 𝜀𝜀00

where 𝜀𝜀00 = sup {𝜀𝜔0 , 𝜀𝜔
𝜔

0 ,… }.

𝜀𝜀
𝜀…0
0
0 = 𝜀1

All of these ordinals are countable, as each operation only takes a countable union of countable
sets.

2.7 Uncountable ordinals

13



Theorem. There exists an uncountable ordinal.

Remark. The reals cannot be explicitly well-ordered.

Proof. Let 𝐴 ⊆ 𝒫(𝜔×𝜔) be the set of well-orderings of subsets of ℕ. Let 𝐵 be the set of order types of
𝐴. Then 𝐵 is the set of all countable ordinals. Let 𝜔1 = sup𝐵. 𝜔1 is uncountable, and in particular,
the least uncountable ordinal. Indeed, if it were countable, it would be the greatest element of 𝐵, but
𝜔1 + 1 would also lie in 𝐵.

Remark. Without introducing 𝐴, it would be difficult to show that 𝐵 was in fact a set.
Remark. Another ending to the proof above is as follows. 𝐵 cannot be the set of all ordinals, since
the ordinals do not form a set by the Burali-Forti paradox, so there exists an uncountable ordinal. In
particular, there exists a least uncountable ordinal.

The ordinal 𝜔1 has a number of remarkable properties.

(i) 𝜔1 is uncountable, but {𝛽 ∣ 𝛽 < 𝛼} is countable for all 𝛼 < 𝜔1.

(ii) There exists no sequence 𝛼1, 𝛼2,… in 𝐼𝜔1 with supremum𝜔1, as it is bounded by sup {𝛼1, 𝛼2,… },
which is a countable ordinal.

Theorem (Hartogs’ lemma). For every set 𝑋 , there exists an ordinal 𝛾 that does not inject
into 𝑋 .

Proof. Use the argument above from the existence of an uncountable ordinal.

We write 𝛾(𝑋) for the least ordinal that does not inject into 𝑋 . For example 𝛾(𝜔) = 𝜔1.

2.8 Successors and limits

Definition. We say that an ordinal 𝛼 is a successor if there exists 𝛽 such that 𝛼 = 𝛽+. Other-
wise, 𝛼 is a limit.

Equivalently, an ordinal is a successor if and only if it has a greatest element. An ordinal 𝛼 is a limit
if and only if it has no greatest element, or equivalently, for all 𝛽 < 𝛼, there exists 𝛾 < 𝛼 with 𝛾 > 𝛽,
giving 𝛼 = sup {𝛽 ∣ 𝛽 < 𝛼}.
Example. 5 is a successor. 𝜔+ 2 = (𝜔+)+ is a successor. 𝜔 is a limit as it has no greatest element. 0
is a limit.

2.9 Ordinal arithmetic
Let 𝛼, 𝛽 be ordinals. We define 𝛼 + 𝛽 by induction on 𝛽, by

• 𝛼 + 0 = 𝛼;
• 𝛼 + 𝛽+ = (𝛼 + 𝛽)+;
• 𝛼 + 𝜆 = sup {𝛼 + 𝛾 ∣ 𝛾 < 𝜆} for a nonzero limit ordinal.
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Example. 𝜔 + 1 = 𝜔 + 0+ = (𝜔 + 0)+ = 𝜔+. 𝜔 + 2 = 𝜔 + 1+ = (𝜔 + 1)+ = (𝜔+)+. 1 + 𝜔 =
sup {1 + 𝛾 ∣ 𝛾 < 𝜔} = 𝜔. Therefore, addition is noncommutative.
Remark. As the ordinals do not form a set, we must technically define addition 𝛼 + 𝛾 by induction
on the set {𝛾 ∣ 𝛾 ≤ 𝛽}. The choice of 𝛽 does not change the definition of 𝛼 + 𝛾 as defined for 𝛾 ≤ 𝛽.

Proposition. Ordinal addition is associative.

Proof. Let 𝛼, 𝛽, 𝛾 be ordinals. We use induction on 𝛾. Suppose 𝛼+ (𝛽 + 𝛿) = (𝛼+ 𝛽) + 𝛿 for all 𝛿 < 𝛾.
First, suppose 𝛾 = 0. 𝛼 + (𝛽 + 0) = 𝛼 + 𝛽 = (𝛼 + 𝛽) = 0, as required. Now consider 𝛾+.

𝛼 + (𝛽 + 𝛾+) = 𝛼 + (𝛽 + 𝛾)+ = (𝛼 + (𝛽 + 𝛾))+ = ((𝛼 + 𝛽) + 𝛾)+ = (𝛼 + 𝛽) + 𝛾+

Finally, consider 𝜆 a nonzero limit.

(𝛼 + 𝛽) + 𝜆 = sup {(𝛼 + 𝛽) + 𝛾 ∣ 𝛾 < 𝜆} = sup {𝛼 + (𝛽 + 𝛾) ∣ 𝛾 < 𝜆}

We claim that 𝛽 + 𝜆 is a limit. Indeed, 𝛽 + 𝜆 = sup {𝛽 + 𝛾 ∣ 𝛾 < 𝜆}, but for every 𝛾 < 𝜆 there exists
𝛾′ < 𝜆 with 𝛾 < 𝛾′ as 𝜆 is a limit, so 𝛽 + 𝛾 < 𝛽 + 𝛾′. Thus, there is no greatest element in the set
{𝛽 + 𝛾 ∣ 𝛾 < 𝜆}, so 𝛽 + 𝜆 is a limit.
Now, 𝛼 + (𝛽 + 𝜆) = sup {𝛼 + 𝛿 ∣ 𝛿 < 𝛽 + 𝜆}. So it suffices to show that

sup {𝛼 + (𝛽 + 𝛾) ∣ 𝛾 < 𝜆} = sup {𝛼 + 𝛿 ∣ 𝛿 < 𝛽 + 𝜆}

Certainly
{𝛼 + (𝛽 + 𝛾) ∣ 𝛾 < 𝜆} ⊆ {𝛼 + 𝛿 ∣ 𝛿 < 𝛽 + 𝜆}

as 𝛾 < 𝜆 implies 𝛽 + 𝛾 < 𝛽 + 𝜆. Further, for any 𝛿 < 𝛽 + 𝜆, 𝛿 ≤ 𝛽 + 𝛾 for some 𝛾 < 𝜆 by definition of
𝛽 +𝜆. Therefore, 𝛼+𝛿 ≤ 𝛼+ (𝛽 +𝛾), so each element of {𝛼 + 𝛿 ∣ 𝛿 < 𝛽 + 𝜆} is at most some element
of {𝛼 + (𝛽 + 𝛾) ∣ 𝛾 < 𝜆}. So the two suprema agree.

Remark. We used the facts

(i) 𝛽 ≤ 𝛾 ⟹ 𝛼+ 𝛽 ≤ 𝛼 + 𝛾, which is trivial by induction on 𝛾;
(ii) 𝛽 < 𝛾 ⟹ 𝛼+ 𝛽 < 𝛼 + 𝛾, as 𝛽+ ≤ 𝛾 so 𝛼 + 𝛽+ ≤ 𝛼 + 𝛾 by (i).

However, 1 < 2 but 1 + 𝜔 ≮ 2 + 𝜔.
The above is the inductive definition of addition; there is also a synthetic definition of addition. We
can define 𝛼+ 𝛽 to be the order type of 𝛼 ⊔ 𝛽, where every element of 𝛼 is taken to be less than every
element of 𝛽.
For instance, 𝜔+1 is the order type of 𝜔with a point afterwards, and 1+𝜔 is the order type of a point
followed by 𝜔, which is clearly isomorphic to 𝜔. Associativity is clear, as (𝛼 + 𝛽) + 𝛾 and 𝛼 + (𝛽 + 𝛾)
are the order type of 𝛼 ⊔ 𝛽 ⊔ 𝛾.

Proposition. The inductive and synthetic definitions of addition coincide.

15



Proof. Wewrite+′ for synthetic addition, and aim to show 𝛼+𝛽 = 𝛼+′ 𝛽. We perform induction on
𝛽.
For 𝛽 = 0, 𝛼 + 0 = 𝛼 and 𝛼 +′ 0 = 𝛼. For successors, 𝛼 + 𝛽+ = (𝛼 + 𝛽)+ = (𝛼 +′ 𝛽)+, which is the
order type of 𝛼 ⊔ 𝛽 ⊔ {⋆}, which is equal to 𝛼 +′ 𝛽+.
Let 𝜆 be a nonzero limit. We have 𝛼 + 𝜆 = sup {𝛼 + 𝛾 ∣ 𝛾 < 𝜆}. But 𝛼 + 𝛾 = 𝛼 +′ 𝛾 for 𝛾 < 𝜆, so
𝛼 + 𝜆 = sup {𝛼 +′ 𝛾 ∣ 𝛾 < 𝜆}. As the set {𝛼 +′ 𝛾 ∣ 𝛾 < 𝜆} is nested, it is equal to its union, which is
𝛼 +′ 𝜆.

Synthetic definitions can be easier to work with if such definitions exist. However, there are many
definitions that can only easily be represented inductively, and not synthetically.

We define multiplication inductively by

• 𝛼0 = 0;
• 𝛼𝛽+ = 𝛼𝛽 + 𝛼;
• 𝛼𝜆 = sup {𝛼𝛾 ∣ 𝛾 < 𝜆} for 𝜆 a nonzero limit.

Example. 𝜔2 = 𝜔1+𝜔 = 𝜔0+𝜔+𝜔 = 𝜔+𝜔. Similarly, 𝜔3 = 𝜔+𝜔+𝜔. 𝜔𝜔 = sup {0, 𝜔1, 𝜔2,… } =
{0, 𝜔, 𝜔 + 𝜔,… }. Note that 2𝜔 = sup {0, 2, 4,… } = 𝜔. Multiplication is noncommutative. One can
show in a similar way that multiplication is associative.

We can produce a synthetic definition of multiplication, which can be shown to coincide with the
inductive definition. We define 𝛼𝛽 to be the order type of the Cartesian product 𝛼 × 𝛽 where we say
(𝛾, 𝛿) < (𝛾′, 𝛿′) if 𝛿 < 𝛿′ or 𝛿 = 𝛿′ and 𝛾 < 𝛾′. For instance, 𝜔2 is the order type of two infinite
sequences, and 2𝜔 is the order type of a sequence of pairs.
Similar definitions can be created for exponentiation, towers, and so on. For instance, 𝛼𝛽 can be
defined by

• 𝛼0 = 1;
• 𝛼(𝛽+) = 𝛼𝛽𝛼;
• 𝛼𝜆 = sup {𝛼𝛾 ∣ 𝛾 < 𝜆} for 𝜆 a nonzero limit.

For example, 𝜔2 = 𝜔1𝜔 = 𝜔0𝜔𝜔 = 𝜔𝜔. Further, 2𝜔 = sup {20, 21,… } = 𝜔, which is count-
able.

3 Posets
3.1 Definitions

Definition. A partially ordered set or poset is a pair (𝑋, ≤)where𝑋 is a set, and≤ is a relation
on 𝑋 such that

• (reflexivity) for all 𝑥 ∈ 𝑋 , 𝑥 ≤ 𝑥;
• (transitivity) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 , 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧 implies 𝑥 ≤ 𝑧;
• (antisymmetry) for all 𝑥, 𝑦 ∈ 𝑋 , 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥 implies 𝑥 = 𝑦.

We write 𝑥 < 𝑦 for 𝑥 ≤ 𝑦 and 𝑥 ≠ 𝑦. Alternatively, a post is a pair (𝑋, <) where 𝑋 is a set, and < is a
relation on 𝑋 such that
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• (irreflexivity) for all 𝑥 ∈ 𝑋 , 𝑥 ≮ 𝑥;
• (transitivity) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 , 𝑥 < 𝑦 and 𝑦 < 𝑧 implies 𝑥 < 𝑧.

Example. (i) Any total order is a poset.

(ii) ℕ+ with the divides relation is a poset.

(iii) (𝒫(𝑆), ⊆) is a poset.
(iv) (𝑋, ⊆) is a poset where 𝑋 ⊆ 𝒫(𝑆), such as the set of vector subspaces of a vector space.
(v) The following diagram is also a poset, where the lines from 𝑎 upwards to 𝑏 denote relations

𝑎 ≤ 𝑏.
𝑐 𝑒

𝑏 𝑑

𝑎
This is called aHasse diagram. An upwards line from 𝑥 to 𝑦 is drawn if 𝑦 covers 𝑥, so 𝑦 > 𝑥 and
no 𝑧 has 𝑦 > 𝑧 > 𝑥. The natural numbers can be represented as a Hasse diagram.

⋮

3

2

1

0
The rationals cannot, since no element covers another.

(vi) There is no notion of ‘height’ in a poset, illustrated by the following diagram.

𝑏

𝑒

𝑐

𝑑

𝑎
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(vii)
𝑒

𝑐 𝑑

𝑎 𝑏

Definition. A subset 𝑆 of a poset 𝑋 is a chain if it is totally ordered.

Example. The powers of 2 in (ℕ+, ∣) is a chain.

Definition. A subset 𝑆 of a poset 𝑋 is an antichain if no two distinct elements are related.

Example. The set of primes in (ℕ+, ∣) is an antichain.

Definition. For 𝑆 ⊆ 𝑋 , an upper bound for 𝑆 is an 𝑥 ∈ 𝑋 such that 𝑥 ≥ 𝑦 for all 𝑦 ∈ 𝑆. A
least upper bound is an upper bound 𝑥 ∈ 𝑋 for 𝑆 such that for all upper bounds 𝑦 ∈ 𝑋 for 𝑆,
𝑥 ≤ 𝑦.

Example. If 𝑆 = {𝑥 ∣ 𝑥 < √2} ⊂ ℝ, 7 is an upper bound, and √2 is a least upper bound. We write
√2 = sup 𝑆 = ⋁𝑆 for the least upper bound or join of 𝑆.
In ℚ, the set {𝑥 ∣ 𝑥2 < 2} has 7 as an upper bound but has no least upper bound.
In example (v), {𝑎, 𝑏} has upper bounds 𝑏 and 𝑐, so the least upper bound is 𝑏. {𝑏, 𝑑} has no upper
bound. In example (vii), {𝑎, 𝑏} has upper bounds 𝑐, 𝑑, 𝑒, so does not have a least upper bound.

Definition. A poset 𝑋 is complete if every 𝑆 ⊆ 𝑋 has a least upper bound.

Example. ℝ is not complete, as ℤ has no upper bound. [0, 1] ⊆ ℝ is complete. (0, 1) ⊆ ℝ is not
complete, as (0, 1) has no upper bound.
Example. 𝑋 = 𝒫(𝑆) is always complete as a poset under inclusion, with sup {𝐴𝑖 ∣ 𝑖 ∈ 𝐼} = ⋃𝑖∈𝐼 𝐴𝑖.

Note that every complete poset 𝑋 has a greatest element sup𝑋 . A complete poset also has a least
element sup∅. In the case 𝑋 = 𝒫(𝑆), sup𝑋 = 𝑆 and sup∅ = ∅.

Definition. Let 𝑓∶ 𝑋 → 𝑌 be a function where 𝑋, 𝑌 are posets. We say 𝑓 is order-preserving
if 𝑥 ≤ 𝑦 implies 𝑓(𝑥) ≤ 𝑓(𝑦).

Example. The function 𝑓∶ ℕ → ℕ defined by 𝑓(𝑥) = 𝑥 + 1 is order-preserving. The function
𝑓∶ [0, 1] → [0, 1] defined by 𝑥 ↦ 𝑥+1

2
is order-preserving. The function 𝑓∶ 𝒫(𝑆) → 𝒫(𝑆) defined by

𝑓(𝐴) = 𝐴 ∪ {𝑖} for some fixed 𝑖 ∈ 𝑆 is order-preserving.
Not all order-preserving functions have a fixed point 𝑥 such that 𝑓(𝑥) = 𝑥, for example 𝑓(𝑥) = 𝑥 + 1
on ℕ.
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Theorem (Knaster–Tarski fixed point theorem). Let𝑋 be a complete poset. Then every order-
preserving 𝑓∶ 𝑋 → 𝑋 has a fixed point.

Proof. Let 𝐸 = {𝑥 ∈ 𝑋 ∣ 𝑥 ≤ 𝑓(𝑥)}, and let 𝑠 = sup𝐸. We show that 𝑠 is a fixed point for 𝑓.
First, we show 𝑠 ≤ 𝑓(𝑠), so 𝑠 ∈ 𝐸. It suffices to show𝑓(𝑠) is an upper bound for𝐸, then the result holds
as 𝑠 is the least such upper bound. If 𝑥 ∈ 𝐸, we know 𝑥 ≤ 𝑠, so 𝑓(𝑥) ≤ 𝑓(𝑠) as 𝑓 is order-preserving,
as required.

Now, we show 𝑓(𝑠) ≤ 𝑠. It suffices to show 𝑓(𝑠) ∈ 𝐸, as 𝑠 is an upper bound for 𝐸. Since 𝑠 ≤ 𝑓(𝑠), we
have 𝑓(𝑠) ≤ 𝑓(𝑓(𝑠)), but this is precisely the fact that 𝑓(𝑠) ∈ 𝐸.

Corollary (Schröder–Bernstein theorem). Let 𝑓∶ 𝐴 → 𝐵 and 𝑔∶ 𝐵 → 𝐴 be injections. Then
there is a bijection 𝐴 → 𝐵.

Proof. We seek partitions 𝐴 = 𝑃 ⊔ 𝑄, 𝐵 = 𝑅 ⊔ 𝑆 such that 𝑓(𝑃) = 𝑅 and 𝑔(𝑆) = 𝑄; then we define ℎ
to equal to 𝑓 on 𝑃 and 𝑔−1 on 𝑄. Thus, we need a set 𝑃 that is a fixed point of 𝜃∶ 𝒫(𝐴) → 𝒫(𝐴) given
by 𝑃 ↦ 𝐴 ∖ 𝑔(𝐵 ∖ 𝑓(𝑃)). But 𝜃 is order-preserving and 𝒫(𝐴) is a complete poset. So 𝑃 exists by the
Knaster–Tarski fixed point theorem.

3.2 Zorn’s lemma

Definition. Let 𝑋 be a poset. We say that 𝑥 ∈ 𝑋 ismaximal if there is no 𝑦 ∈ 𝑋 with 𝑦 > 𝑥.

Example. In [0, 1], 1 is maximal. In example (v), there are two maximal elements 𝑐 and 𝑒.
Note that (ℝ,≤) and (ℕ, ∣) have no maximal elements, and they both have a chain with no upper
bound, such as ℕ ⊂ ℝ, and powers of two.

Theorem (Zorn’s lemma). Let 𝑋 be a poset in which every chain has an upper bound. Then
𝑋 has a maximal element.

The empty chain must have an upper bound in 𝑋 , so 𝑋 must be nonempty to apply Zorn’s lemma.
Zorn’s lemma can be equivalently be stated as the following.

Theorem. Let 𝑋 be a nonempty poset in which every nonempty chain has an upper bound.
Then 𝑋 has a maximal element.

One can view Zorn’s lemma as a fixed point theorem on a function 𝑓∶ 𝑋 → 𝑋 with the property that
𝑥 ≤ 𝑓(𝑥).

Proof. Suppose that 𝑋 has no maximal element. Then for each 𝑥 ∈ 𝑋 , we have 𝑥′ ∈ 𝑋 and 𝑥′ > 𝑥.
For each chain 𝐶, we have an upper bound 𝑢(𝐶). Let 𝑥 ∈ 𝑋 be any element, and define 𝑥𝛼 for each
𝛼 < 𝛾(𝑋) by recursion.

• 𝑥0 = 𝑥;
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• 𝑥𝛼+1 = 𝑥′𝛼;
• 𝑥𝜆 = 𝑢{𝑥𝛽 ∣ 𝛽 < 𝜆} for 𝜆 a nonzero limit.

Note that {𝑥𝛽 ∣ 𝛽 < 𝜆} forms a chain, so it has an upper bound as required. Then, we have an injection
from 𝛾(𝑋) into 𝑋 , contradicting the definition of 𝛾(𝑋).

Remark. Although this proof was short, it relied on the infrastructure of well-orderings, recursion,
ordinals, and Hartogs’ lemma.

We show that every vector space has a basis. Recall that a basis is a linearly independent spanning set;
no nontrivial finite linear combination of basis elements is zero, and each element of the vector space
is a finite linear combination of the basis elements. For instance, the space of real polynomials has
basis 1, 𝑋, 𝑋2,…. The space of real sequences has a linearly independent set (1, 0, 0,… ), (0, 1, 0,… ),…,
but this is not a basis as the sequence (1, 1, 1,… ) cannot be constructed as a finite linear combination
of these vectors. In fact, there is no countable basis for this space, and no explicitly definable basis in
general. ℝ is a vector space over ℚ. There is clearly no countable basis, and in fact no explicit basis.
A basis in this case is called a Hamel basis.

Theorem. Every vector space 𝑉 has a basis.

Proof. Let 𝑋 be the set of all linearly independent subsets of 𝑉 , ordered by inclusion. We seek a
maximal element of 𝑋 ; this is clearly a basis, as any vector not in its span could be added to the set
to increase the set of basis vectors. 𝑋 is nonempty as ∅ ∈ 𝑋 .
We apply Zorn’s lemma. Let (𝐴𝑖)𝑖∈𝐼 be a chain in 𝑋 . We show that its union 𝐴 = ⋃𝑖∈𝐼 𝐴𝑖 is a linearly
independent set, and therefore lies in 𝑋 and is an upper bound. Suppose 𝑥1,… , 𝑥𝑛 ∈ 𝐴 are linearly
dependent. Then 𝑥1 ∈ 𝐴𝑖1 ,… , 𝑥𝑛 ∈ 𝐴𝑖𝑛 , so all 𝑥𝑖 lie in some 𝐴𝑘 as the 𝐴𝑖 are a chain. But 𝐴𝑘 is
linearly independent, which is a contradiction.

Remark. The only time that linear algebra was used was to show that the maximal element obtained
by Zorn’s lemma performs the required task; this is usual for proofs in this style.

We can now prove the completeness theorem for propositional logic with no restrictions on the size
of the set of primitive propositions.

Theorem. Let 𝑆 ⊆ 𝐿 = 𝐿(𝑃) be consistent. Then 𝑆 has a model.

Proof. We will extend 𝑆 to a consistent set 𝑆 such that for all 𝑡 ∈ 𝐿, either 𝑡 ∈ 𝑆 or ¬𝑡 ∈ 𝑆; we then
complete the proof by defining a valuation 𝑣 such that 𝑣(𝑡) = 1 if 𝑡 ∈ 𝑆.
Let 𝑋 = {𝑇 ⊇ 𝑆 ∣ 𝑇 consistent} be the poset of consistent extensions of 𝑆, ordered by inclusion. We
seek a maximal element of 𝑋 . Then, if 𝑆 is maximal and 𝑡 ∉ 𝑆, then 𝑆 ∪ {𝑡} ⊢ ⊥ by maximality, so
𝑆 ⊢ ¬𝑡 by the deduction theorem, giving ¬𝑡 ∈ 𝑆 again by maximality.
Note that 𝑋 ≠ ∅ as 𝑆 ∈ 𝑋 . Given a nonempty chain (𝑇𝑖)𝑖∈𝐼 , let 𝑇 = ⋃𝑖∈𝐼 𝑇𝑖. We have 𝑇 ⊇ 𝑇𝑖 for
all 𝑖 and 𝑇 ⊇ 𝑆 as the chain is nonempty, so it suffices to show 𝑇 is consistent. Indeed, suppose
𝑇 ⊢ ⊥. Then there exists a subset {𝑡1,… , 𝑡𝑛} ∈ 𝑇 with {𝑡1,… , 𝑡𝑛} ⊢ ⊥ as proofs are finite. Now,
𝑡1 ∈ 𝑇𝑖1 ,… , 𝑡𝑛 ∈ 𝑇𝑖𝑛 so all 𝑡𝑗 are elements of 𝑇𝑖𝑘 for some 𝑘. But 𝑇𝑖𝑘 is consistent, so {𝑡1,… , 𝑡𝑛} ⊬ ⊥,
giving a contradiction.
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3.3 Well-ordering principle

Theorem. Every set has a well-ordering.

There exist sets with no definable well-ordering, such as ℝ.

Proof. Let 𝑆 be a set, and let 𝑋 be the set of pairs (𝐴, 𝑅) such that 𝐴 ⊆ 𝑆 and 𝑅 is a well-ordering on
𝐴. We define the partial order on 𝑋 by (𝐴, 𝑅) ≤ (𝐴′, 𝑅′) if (𝐴′, 𝑅′) extends (𝐴, 𝑅), so 𝑅′|𝐴 = 𝐴 and 𝐴
is an initial segment of 𝐴′ for 𝑅′.
𝑋 is nonempty as the empty relation is a well-ordering of the empty set. Given a nonempty chain
(𝐴𝑖, 𝑅𝑖)𝑖∈𝐼 , there is an upper bound (⋃𝑖∈𝐼 𝐴𝑖,⋃𝑖∈𝐼 𝑅𝑖), because the well-orderings are nested. By
Zorn’s lemma, there exists a maximal element (𝐴, 𝑅) ∈ 𝑋 .
Suppose 𝑥 ∈ 𝑆 ∖ 𝐴. Then we can construct the well-ordering on 𝐴 ∪ {𝑥} by defining 𝑎 < 𝑥 for 𝑎 ∈ 𝐴,
contradicting maximality of 𝐴. Hence 𝐴 = 𝑆, so 𝑅 is a well-ordering on 𝑆.

3.4 Zorn’s lemma and the axiom of choice
In the proof of Zorn’s lemma, for each 𝑥 ∈ 𝑆 we chose an arbitrary 𝑥′ > 𝑥. This requires potentially
infinitely many arbitrary choices. Other proofs, such as that the countable union of countable sets is
countable, also required infinitely many choices; in this example, we chose arbitrary enumerations
of the countable sets 𝐴1, 𝐴2,… at once.

Formally, this process of making infinitely many arbitrary choices is known as the axiom of choice
𝖠𝖢: if we have a family of nonempty sets, one can choose an element from each one. More precisely,
for any family of nonempty sets (𝐴𝑖)𝑖∈𝐼 , there is a choice function 𝑓∶ 𝐼 → ⋃𝑖∈𝐼 𝐴𝑖 such that 𝑓(𝑖) ∈ 𝐴𝑖
for all 𝑖.
Unlike the other axioms of set theory, the function obtained from the axiom of choice is not uniquely
defined. For instance, the axiom of union allows for the construction of 𝐴 ∪ 𝐵 given 𝐴 and 𝐵, which
can be fully described; but applying the axiom of choice to the family ⋆ ↦ {1, 2} could give the choice
function ⋆ ↦ 1 or ⋆ ↦ 2.
Use of the axiom of choice gives rise to nonconstructive proofs. In modern mathematics it is some-
times considered useful to note when the axiom of choice is being used. However, many proofs that
do not even use the axiom of choice are nonconstructive, such as the proof of existence of transcend-
entals, or Hilbert’s basis theorem that every ideal over ℚ[𝑋1,… , 𝑋𝑛] is finitely generated.
Although our proof of Zorn’s lemma required the axiom of choice, it is not immediately clear that
all such proofs require it. However, it can be shown that Zorn’s lemma implies the axiom of choice
in the presence of the other axioms of 𝖹𝖥 set theory. Indeed, if (𝐴𝑖)𝑖∈𝐼 is a family of sets, we can
well-order it using the well-ordering principle, and define the choice function by setting 𝑓(𝑖) to be
the least element of 𝐴𝑖. Hence, Zorn’s lemma, the axiom of choice, and the well-ordering principle
are equivalent, given 𝖹𝖥.
𝖠𝖢 can be proven trivially in 𝖹𝖥 for the case |𝐼| = 1, because a set being nonempty means precisely
that there exists an element inside it. Clearly, 𝖠𝖢 holds for all finite index sets in 𝖹𝖥 by induction on
|𝐼|. However, 𝖹𝖥 does not prove the most general form of 𝖠𝖢.
Zorn’s lemma is a difficult lemma to prove from first principles because of its reliance on ordinals and
Hartogs’ lemma; the use of the axiom of choice does not contribute significantly to its difficulty. The
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construction and properties of the ordinals did not rely on the axiom of choice. The axiom of choice
was only used twice in the section on well-orderings: the fact that in a set that is not well-ordered,
there is an infinite decreasing sequence; and the fact that 𝜔1 is not a countable supremum.

4 Predicate logic
4.1 Languages
Recall that a group is a set𝐴 equipped with functions𝑚∶ 𝐴2 → 𝐴 of arity 2, and 𝑖 ∶ 𝐴1 → 𝐴 of arity 1,
and a constant 𝑒 ∈ 𝐴 which can be viewed as a function 𝐴0 → 𝐴 of arity 0, such that a set of axioms
hold. A poset is a set 𝐴 equipped with a relation (≤) ⊆ 𝐴2 of arity 2, such that a set of axioms hold.
Other algebraic structures can be described in the same way.

Let Ω and Π be disjoint sets of functions and relations, and 𝛼∶ Ω ∪ Π → ℕ be an arity function.
Variables are symbols of the form 𝑥𝑖 for some 𝑖 ∈ ℕ. Terms are defined inductively by
(i) each variable is a term;

(ii) if 𝑓 ∈ Ω with 𝛼(𝑓) = 𝑛 and terms 𝑡1,… , 𝑡𝑛, then 𝑓 𝑡1… 𝑡𝑛 is a term.
The atomic formulae are defined inductively by

(i) ⊥ is an atomic formula;

(ii) for terms 𝑠, 𝑡, (𝑠 = 𝑡) is an atomic formula;
(iii) if 𝜑 ∈ Π with 𝛼(𝜑) = 𝑛 and terms 𝑡1,… , 𝑡𝑛, then 𝜑(𝑡1,… , 𝑡𝑛) is an atomic formula.
The formulae are defined inductively by

(i) each atomic formula is a formula;

(ii) if 𝑝 and 𝑞 are formulae then (𝑝 ⇒ 𝑞) is a formula;
(iii) if 𝑝 is a formula and 𝑥 is a variable, then (∀𝑥)𝑝 is a formula.
The language 𝐿 = 𝐿(Ω,Π, 𝛼) is the set of formulae.
Example. In the language of groups, Ω = {𝑚, 𝑖, 𝑒} and Π = ∅ with 𝛼(𝑚) = 2, 𝛼(𝑖) = 1, 𝛼(𝑒) = 0.
𝑚(𝑥1, 𝑥2),𝑚(𝑥1, 𝑖(𝑥2)), 𝑒,𝑚(𝑒, 𝑒) are examples of terms of the language. 𝑒 = 𝑚(ℓ, 𝑒),𝑚(𝑥, 𝑦) = 𝑚(𝑦, 𝑥)
are atomic formulae.

Example. In the language of posets, Ω = ∅ and Π = {≤} with 𝛼(≤) = 2. 𝑥 = 𝑦, 𝑥 ≤ 𝑦 are atomic
formulae. Technically, 𝑥 ≤ 𝑦 is written ≤ (𝑥, 𝑦).
Example. In the language of groups, (∀𝑥)(𝑚(𝑥, 𝑥) = 𝑒) is a formula. Another formula is𝑚(𝑥, 𝑥) =
𝑒 ⇒ (∃𝑦)(𝑚(𝑦, 𝑦) = 𝑥).
Remark. A formula is a certain finite string of symbols; it has no intrinsic semantics. We define
¬𝑝, 𝑝 ∧ 𝑞, 𝑝 ∨ 𝑞 in the usual way. We define (∃𝑥)𝑝 to mean ¬(∀𝑥)(¬𝑝).
A term is closed if it contains no variables. For example, 𝑒,𝑚(𝑒, 𝑖(𝑒)) are closed in the language of
groups, but𝑚(𝑥, 𝑖(𝑥)) is not closed.
An occurrence of a variable 𝑥 in a formula 𝑝 is bound if it is inside the brackets of a (∀𝑥) quantifier.
Otherwise, we say the occurrence is free. In the formula (∀𝑥)(𝑚(𝑥, 𝑥) = 𝑒), each occurrence of 𝑥 is
bound. In 𝑚(𝑥, 𝑥) = 𝑒 ⇒ (∃𝑦)(𝑚(𝑦, 𝑦) = 𝑥), the occurrences of 𝑥 are free and the occurrences of 𝑦
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are bound. In the formula 𝑚(𝑥, 𝑥) = 𝑒 ⇒ (∀𝑥)(∀𝑦)(𝑚(𝑥, 𝑦) = 𝑚(𝑦, 𝑥)), the occurrences of 𝑥 on the
left hand side are free, and the occurrences of 𝑥 on the right hand side are bound.
A sentence is a formula with no free variables. For instance, (∀𝑥)(𝑚(𝑥, 𝑥) = 𝑒) is a sentence, and
(∀𝑥)(𝑚(𝑥, 𝑥) ⇒ (∃𝑦)(𝑚(𝑦, 𝑦) = 𝑥)) is a sentence. In the language of posets, (∀𝑥)(∃𝑦)(𝑥 ≥ 𝑦 ∧ ¬(𝑥 =
𝑦)) is a sentence.
For a formula 𝑝, term 𝑡, and variable 𝑥, the substitution 𝑝[𝑡/𝑥] is obtained from 𝑝 by replacing every
free occurrence of 𝑥 with 𝑡. For example,

𝑝 = (∃𝑦)(𝑚(𝑦, 𝑦) = 𝑥); 𝑝[𝑒/𝑥] = (∃𝑦)(𝑚(𝑦, 𝑦) = 𝑒)

4.2 Semantic implication

Definition. Let 𝐿 = 𝐿(Ω,Π, 𝛼) be a language. An 𝐿-structure is
• a nonempty set 𝐴;
• for each 𝑓 ∈ Ω, a function 𝑓𝐴 ∶ 𝐴𝑛 → 𝐴 where 𝑛 = 𝛼(𝑓);
• for each 𝜑 ∈ Π, a subset 𝜑𝐴 ⊆ 𝐴𝑛 where 𝑛 = 𝛼(𝜑).

Remark. We will see later why the restriction that 𝐴 is nonempty is given here.

Example. In the language of groups, an 𝐿-structure is a nonempty set 𝐴 with functions𝑚𝐴 ∶ 𝐴2 →
𝐴, 𝑖𝐴 ∶ 𝐴 → 𝐴, 𝑒𝐴 ∈ 𝐴. Such a structure may not be a group, as we have not placed any axioms on 𝐴.
Example. In the language of posets, an 𝐿-structure is a nonempty set 𝐴 with a relation (≤𝐴) ⊆ 𝐴2.
We define the interpretation 𝑝𝐴 ∈ {0, 1} of a sentence 𝑝 in an 𝐿-structure 𝐴 as follows.

• The interpretation 𝑡𝐴 of a closed term 𝑡 in an𝐿-structure𝐴 is defined inductively as (𝑓 𝑡1…𝑡𝑛)𝐴 =
𝑓𝐴(𝑡1𝐴,… , 𝑡𝑛𝐴) for 𝑓 ∈ Ω, 𝛼(𝑓) = 𝑛, where 𝑡1,… , 𝑡𝑛 are closed.

• The interpretation of an atomic sentence is defined inductively.

– ⊥𝐴 = 0.
– (𝑠 = 𝑡)𝐴 is 1 if 𝑠𝐴 = 𝑡𝐴 and 0 if 𝑠𝐴 ≠ 𝑡𝐴.
– (𝜑(𝑡1,… , 𝑡𝑛))𝐴 is 1 if (𝑡1𝐴,… , 𝑡𝑛𝐴) ∈ 𝜑𝐴 and 0 otherwise, for 𝜑 ∈ Π, 𝛼(𝜑) = 𝑛, where
𝑡1,… , 𝑡𝑛 are closed.

• We now inductively define the interpretation of sentences, which is technically induction by
length over all languages at once.

– (𝑝 ⇒ 𝑞)𝐴 is 0 if 𝑝𝐴 = 1 and 𝑞𝐴 = 0, and 1 otherwise.
– ((∀𝑥)𝑝)𝐴 is 1 if 𝑝[𝑎/𝑥] is 1 for all 𝑎 ∈ 𝐴 and 0 otherwise, where we add a constant symbol
𝑎 to 𝐿 for a fixed 𝑎 ∈ 𝐴 to form the language 𝐿′, and we make 𝐴 into an 𝐿′-structure by
defining 𝑎𝐴 = 𝑎.

Remark. For a formula 𝑝 with free variables, we can define 𝑝𝐴 to be the subset of 𝐴𝑘 where 𝑘 is the
number of free variables, defined such that 𝑥 ∈ 𝑝𝐴 if and only if the substitution of 𝑥 in 𝑝 is evaluated
to 1.
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Definition. If 𝑝𝐴 = 1, we say 𝑝 holds in 𝐴, or 𝑝 is true in 𝐴, or 𝐴 is amodel of 𝑝. A theory is
a set of sentences, known as its axioms. We say that 𝐴 is a model of a theory 𝑇 if 𝑝𝐴 = 1 for
all 𝑝 ∈ 𝑇. For a theory 𝑇 and a sentence 𝑝, we say that 𝑇 ⊧ 𝑝, read 𝑇 entails or semantically
implies 𝑝, if every model of 𝑇 is a model of 𝑝.

Example. Let 𝐿 be the language of groups, and let

𝑇 = {(∀𝑥)(∀𝑦)(∀𝑧)(𝑚(𝑥,𝑚(𝑦, 𝑧)) = 𝑚(𝑚(𝑥, 𝑦), 𝑧)),
(∀𝑥)(𝑚(𝑥, 𝑒) = 𝑥 ∧ 𝑚(𝑒, 𝑥) = 𝑥),
(∀𝑥)(𝑚(𝑥, 𝑖(𝑥)) = 𝑒 ∧ 𝑚(𝑖(𝑥), 𝑥) = 𝑒)}

Then, an 𝐿-structure is a model of 𝑇 if and only if it is a group. Note that this statement has two
assertions; every 𝐿-structure that is a model of 𝑇 is a group, and that every group can be turned into
an 𝐿-structure that models 𝑇. We say that 𝑇 axiomatises the theory of groups or the class of groups.

Example. Let 𝐿 be the language of posets, and 𝑇 be the poset axioms. Then 𝑇 axiomatises the class
of posets.

Example. Let 𝐿 be the language of fields, so Ω = {0, 1, +, ⋅, −} with 𝛼(0) = 𝛼(1) = 0, 𝛼(+) = 𝛼(⋅) =
2, 𝛼(−) = 1. 𝑇 is the usual field axioms, including the statement (∀𝑥)(¬(𝑥 = 0) ⇒ (∃𝑦)(𝑥 ⋅ 𝑦 = 1)).
Then 𝑇 entails the statement that inverses are unique: (∀𝑥)(¬(𝑥 = 0) ⇒ (∀𝑦)(∀𝑧)(𝑦 ⋅ 𝑥 = 1 ∧ 𝑧 ⋅ 𝑥 =
1 ⇒ 𝑦 = 𝑧)).
Example. Let 𝐿 be the language of graphs, defined by Ω = ∅ and Π = {𝑎} where 𝛼(𝑎) = 2 is the
adjacency relation. Define 𝑇 = {(∀𝑥)(¬𝑎(𝑥, 𝑥)), (∀𝑥)(∀𝑦)(𝑎(𝑥, 𝑦) ⇒ 𝑎(𝑦, 𝑥))}. Then 𝑇 axiomatises
the class of graphs.

4.3 Syntactic implication
We need to define (logical) axioms and deduction rules in order to construct proofs.

(i) 𝑝 ⇒ (𝑞 ⇒ 𝑝) for formulae 𝑝, 𝑞.
(ii) (𝑝 ⇒ (𝑞 ⇒ 𝑟)) ⇒ ((𝑝 ⇒ 𝑞) ⇒ (𝑝 ⇒ 𝑟)) for formulae 𝑝, 𝑞, 𝑟.
(iii) ¬¬𝑝 ⇒ 𝑝 for each formula 𝑝.
(iv) (∀𝑥)(𝑥 = 𝑥) for any variable 𝑥.
(v) (∀𝑥)(∀𝑦)(𝑥 = 𝑦 ⇒ (𝑝 ⇒ 𝑝[𝑦/𝑥])) for any variables 𝑥, 𝑦 where 𝑦 is not bound in the formula 𝑝.
(vi) ((∀𝑥)𝑝) ⇒ 𝑝[𝑡/𝑥] for any variable 𝑥, formula 𝑝, and term 𝑡 that has no free variable that occurs

bound in 𝑝.
(vii) (∀𝑥)(𝑝 ⇒ 𝑞) ⇒ (𝑝 ⇒ (∀𝑥)𝑞) for any formulae 𝑝, 𝑞 and variable 𝑥 that does not appear free in

𝑝.
Note that all of these axioms are tautologies; they hold in every structure. We define the following
deduction rules.

(i) (modus ponens) From 𝑝 and 𝑝 ⇒ 𝑞, we can deduce 𝑞.
(ii) (generalisation) From 𝑝, we can deduce (∀𝑥)𝑝 provided that 𝑥 does not occur free in any

premise used to deduce 𝑝.
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For 𝑆 ⊆ 𝐿 and 𝑡 ∈ 𝐿, we say that 𝑆 ⊢ 𝑝, read 𝑆 proves 𝑝, if there exists a proof of 𝑝 from 𝑆, which is a
finite sequence of formulae ending with 𝑝 such that each formula is a logical axiom, a hypothesis in
𝑆, or obtained from earlier lines by one of the deduction rules.

Remark. Suppose we allow the empty structure for a language with no constants. Then, ⊥ is false in
𝐴, and the statement (∀𝑥)⊥ is true in 𝐴. Therefore, ((∀𝑥)⊥) ⇒ ⊥ is false by modus ponens. But this
is an instance of axiom (vi), showing that it would not be a tautology.

Example. We show {𝑥 = 𝑦, 𝑥 = 𝑧} ⊢ 𝑦 = 𝑧 where 𝑥, 𝑦, 𝑧 are different variables.
1. (∀𝑥)(∀𝑦)(𝑥 = 𝑦 ⇒ (𝑥 = 𝑧 ⇒ 𝑦 = 𝑧)) (axiom 5)

2. ((∀𝑥)(∀𝑦)(𝑥 = 𝑦 ⇒ (𝑥 = 𝑧 ⇒ 𝑦 = 𝑧))) ⇒ (∀𝑦)(𝑥 = 𝑦 ⇒ (𝑥 = 𝑧 ⇒ 𝑦 = 𝑧)) (axiom 6)

3. (∀𝑦)(𝑥 = 𝑦 ⇒ (𝑥 = 𝑧 ⇒ 𝑦 = 𝑧)) (modus ponens on lines 1, 2)
4. ((∀𝑦)(𝑥 = 𝑦 ⇒ (𝑥 = 𝑧 ⇒ 𝑦 = 𝑧))) ⇒ (𝑥 = 𝑦 ⇒ (𝑥 = 𝑧 ⇒ 𝑦 = 𝑧)) (axiom 6)

5. 𝑥 = 𝑦 ⇒ (𝑥 = 𝑧 ⇒ 𝑦 = 𝑧) (modus ponens on lines 3, 4)
6. 𝑥 = 𝑦 (hypothesis)
7. 𝑥 = 𝑧 ⇒ 𝑦 = 𝑧 (modus ponens on lines 5, 6)
8. 𝑥 = 𝑧 (hypothesis)
9. 𝑦 = 𝑧 (modus ponens on lines 7, 8)

4.4 Deduction theorem

Proposition. Let 𝑆 ⊆ 𝐿, and 𝑝, 𝑞 ∈ 𝐿. Then 𝑆 ⊢ (𝑝 ⇒ 𝑞) if and only if 𝑆 ∪ {𝑝} ⊢ 𝑞.

Proof. As before, given a proof of 𝑝 ⇒ 𝑞 from 𝑆, one can establish a proof of 𝑞 from 𝑆 ∪ {𝑝} ⊢ 𝑞 by
writing 𝑝 and applying modus ponens to the original proof.
Conversely, suppose we have a proof 𝑆 ∪ {𝑝} ⊢ 𝑞. We convert each line 𝑡𝑖 into 𝑝 ⇒ 𝑡𝑖 as in the proof
in propositional logic. The only new case is generalisation. Suppose we have the line 𝑟 and then the
line (∀𝑥)𝑟 obtained by generalisation, and we have a proof 𝑆 ⊢ 𝑝 ⇒ 𝑟 by induction. In the proof
𝑆 ∪ {𝑝} ⊢ 𝑟, no hypothesis has a free occurrence of 𝑥. Therefore, in the proof 𝑆 ⊢ 𝑝 ⇒ 𝑟, the same
holds. Thus, 𝑆 ⊢ (∀𝑥)(𝑝 ⇒ 𝑟) by generalisation.
Suppose 𝑥 is not free in 𝑝. Then, 𝑆 ⊢ 𝑝 ⇒ (∀𝑥)𝑟 by axiom 7 and modus ponens.

Now, suppose 𝑥 occurs free in 𝑝. In this case, the proof 𝑆 ∪ {𝑝} ⊢ 𝑟 cannot have used the hypothesis
𝑝. Hence, 𝑆 ⊢ 𝑟, and so 𝑆 ⊢ (∀𝑥)𝑟 by generalisation. This gives 𝑆 ⊢ 𝑝 ⇒ (∀𝑥)𝑟 by axiom 1.

4.5 Soundness
This section is non-examinable.

Proposition. Let 𝑆 be a set of sentences in 𝐿, and 𝑝 a sentence in 𝐿. Then 𝑆 ⊢ 𝑡 implies 𝑆 ⊧ 𝑡.
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Proof. We have a proof 𝑡1,… , 𝑡𝑛 of 𝑝 from 𝑆. We show that if 𝐴 is a model of 𝑆, 𝐴 is also a model
of 𝑡𝑖 for each 𝑖 (interpreting free variables as quantified); this can be shown by induction. Hence,
𝑆 ⊧ 𝑝.

4.6 Adequacy
This section is non-examinable.

We want to show that 𝑆 ⊧ 𝑝 implies 𝑆 ⊢ 𝑝. Equivalently, 𝑆 ∪ {¬𝑝} ⊧ ⊥ implies 𝑆 ∪ {¬𝑝} ⊢ ⊥. In other
words, if 𝑆 ∪ {¬𝑝} is consistent, it has a model.

Theorem (model existence lemma). Every consistent theory has a model.

We will need a number of key ideas in order to prove this.

(i) We will construct our model out of the language itself using the closed terms of 𝐿. For instance,
if 𝐿 is the language of fields and 𝑆 is the usual field axioms, we take the closed terms and
combine them with + and ⋅ in the obvious way.

(ii) However, we can prove 𝑆 ⊢ 1 + 0 = 1, but 1 + 0 and 1 are distinct as strings. We will therefore
take the quotient of this set by the equivalence relation defined by 𝑠 ∼ 𝑡 if 𝑆 ⊢ 𝑠 = 𝑡. If this set
is 𝐴, we define [𝑠] +𝐴 [𝑡] = [𝑠 + 𝑡], and this is a well-defined operation.

(iii) Suppose 𝑆 is the set of field axioms with the statement that 1 + 1 = 0 ∨ 1 + 1 + 1 = 0. In this
theory, 𝑆 ⊬ 1 + 1 = 0 and 𝑆 ⊬ 1 + 1 + 1 = 0. Therefore, [1 + 1] ≠ [0] and [1 + 1 + 1] ≠ [0],
so our structure 𝐴 is not of characteristic 2 or 3. We can overcome this by first extending 𝑆 to a
maximal consistent theory.

(iv) Suppose 𝑆 is the set of field axioms with the statement that (∃𝑥)(𝑥 ⋅ 𝑥 = 1 + 1). There is no
closed term 𝑡 with the property that [𝑡 ⋅ 𝑡] = [1 + 1]. The problem is that 𝑆 lacks witnesses to
existential quantifiers. For each statement of the form (∃𝑥)𝑝 ∈ 𝑆, we add a new constant 𝑐 to
the language and add to 𝑆 the sentence 𝑝[𝑐/𝑥]. This still forms a consistent set.

(v) The resulting set may no longer be maximal, as we have extended our language with new con-
stants. We must then return to step (iii) then step (iv); it is not clear if this process ever termin-
ates.

Proof. Let 𝑆 be a consistent set in a language 𝐿 = 𝐿(Ω,Π). Extend 𝑆 to a maximal consistent set 𝑆1,
using Zorn’s lemma. Then, for each sentence 𝑝 ∈ 𝐿, either 𝑝 ∈ 𝑆1 or¬𝑝 ∈ 𝑆1. Such a theory is called
complete; each sentence or its negation is proven. Now, we add witnesses to 𝑆1: for each sentence
of the form (∃𝑥)𝑝 ∈ 𝑆1, we add a new constant symbol 𝑐 to the language, and also add the sentence
𝑝[𝑐/𝑥]. We then obtain a new theory 𝑇1 in the language 𝐿1 = 𝐿(Ω∪𝐶1Π) that has witnesses for every
existential in 𝑆1. One can check easily that 𝑇1 is consistent.
We then extend 𝑇1 to a maximal consistent theory 𝑆2 in 𝐿1, and add witnesses to produce 𝑇2 in the
language 𝐿2 = 𝐿(Ω ∪ 𝐶1 ∪ 𝐶2, Π). Continue inductively, and let 𝑆 = ⋃𝑛∈ℕ 𝑆𝑛 in the language
𝐿 = 𝐿(Ω ∪⋃𝑛∈ℕ 𝐶𝑛, Π).

We claim that 𝑆 is consistent, complete, and has witnesses for every existential in 𝑆. Clearly 𝑆 is
consistent: if 𝑆 ⊢ ⊥ then 𝑆𝑛 ⊢ ⊥ for some 𝑛 as proofs are finite, contradicting consistency of 𝑆𝑛. For
completeness, if 𝑝 is a sentence in 𝐿, 𝑝must lie in 𝐿𝑛 for some 𝑛 as it is a finite string of symbols. But
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𝑆𝑛+1 is complete in 𝐿𝑛, so 𝑆𝑛+1 ⊢ 𝑝 or 𝑆𝑛+1 ⊢ ¬𝑝, so certainly 𝑆 ⊢ 𝑝 or 𝑆 ⊢ ¬𝑝. If (∃𝑥)𝑝 ∈ 𝑆, then
(∃𝑥)𝑝 ∈ 𝑆𝑛 for some 𝑛, so 𝑇𝑛 provides a witness.

On the closed terms of 𝐿, we define the relation 𝑠 ∼ 𝑡 if 𝑆 ⊢ 𝑠 = 𝑡. This is clearly an equivalence
relation, so we can define 𝐴 to be the set of equivalence classes of 𝐿 under ∼. This is an 𝐿-structure
by defining

• 𝑓𝐴([𝑡1],… , [𝑡𝑛]) = [𝑓 𝑡1…𝑡𝑛] for each 𝑓 ∈ Ω ∪⋃𝑛∈ℕ 𝐶𝑛, 𝛼(𝑓) = 𝑛, 𝑡𝑖 closed terms;

• 𝜑𝐴 = {([𝑡1],… , [𝑡𝑛]) ∈ 𝐴𝑛 ∣ 𝑆 ⊢ 𝜑(𝑡1,… , 𝑡𝑛)} for each 𝜑 ∈ Π, 𝛼(𝜑) = 𝑛, 𝑡𝑖 closed terms.

We claim that for a sentence 𝑝 ∈ 𝐿, we have 𝑝𝐴 = 1 if and only if 𝑆 ⊢ 𝑝. Then the proof is complete,
as 𝑆 ⊆ 𝑆 so 𝑝𝐴 = 1 for every 𝑝 ∈ 𝑆, so 𝐴 is a model of 𝑆.

We prove this by induction on the length of sentences. First, suppose 𝑝 is atomic. ⊥𝐴 = 0, as 𝑆 ⊬ ⊥.
For closed terms 𝑠, 𝑡, 𝑆 ⊢ 𝑠 = 𝑡 if and only if [𝑠] = [𝑡] by definition of ∼. This holds if and only if
𝑠𝐴 = 𝑡𝐴 by definition of the operations in𝐴. This is precisely the statement that 𝑠 = 𝑡 holds in𝐴. The
same holds for relations.

Now consider 𝑝 ⇒ 𝑞. 𝑆 ⊢ 𝑝 ⇒ 𝑞 if and only if 𝑆 ⊢ ¬𝑝 or 𝑆 ⊢ 𝑞 as 𝑆 is complete and consistent; if
𝑆 ⊬ ¬𝑝 and 𝑆 ⊬ 𝑞, then 𝑆 ⊢ 𝑝 and 𝑆 ⊢ ¬𝑝. By induction on the length of the formula, this holds if
and only if 𝑝𝐴 = 0 or 𝑞𝐴 = 1. This is the definition of the interpretation of 𝑝 ⇒ 𝑞 in 𝐴.

Finally, consider the existential (∃𝑥)𝑝. 𝑆 ⊢ (∃𝑥)𝑝 if and only if there is a closed term 𝑡 such that
𝑆 ⊢ 𝑝[𝑡/𝑥], as 𝑆 has witnesses to every existential. By induction (for example on the amount of
quantifiers in a formula), this holds if and only if 𝑝[𝑡/𝑥]𝐴 = 1 for some closed term 𝑡. This is true
exactly when (∃𝑥)𝑝 holds in 𝐴, as 𝐴 is precisely the set of equivalence classes of closed terms.

Corollary (adequacy). Let 𝑆 ⊆ 𝐿 be a theory and 𝑡 ∈ 𝐿 be a sentence. Then 𝑆 ⊧ 𝑡 implies
𝑆 ⊢ 𝑡.

4.7 Completeness

Theorem (Gödel’s completeness theorem for first order logic). Let 𝑆 ⊆ 𝐿 be a theory and
𝑡 ∈ 𝐿 be a sentence. Then 𝑆 ⊧ 𝑡 if and only if 𝑆 ⊢ 𝑡.

Proof. Follows from soundness and adequacy.

Note that first order refers to the fact that variables quantify over elements, rather than sets of ele-
ments.

Remark. If 𝐿 is countable, or equivalentlyΩ andΠ are countable, Zorn’s lemma is not needed in the
above proof.

Theorem (compactness theorem). Let 𝑆 ⊆ 𝐿 be a theory. Then if every finite subset 𝑆′ ⊆ 𝑆
has a model, 𝑆 has a model.

Proof. Trivial after applying completeness as proofs are finite.
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There is no decidability theorem for first order logic, as 𝑆 ⊧ 𝑝 can only be verified by checking its
valuation in every 𝐿-structure.

Corollary. The class of finite groups is not axiomatisable in the language of groups: there is
no theory 𝑆 such that a group is finite if and only if each 𝑝 ∈ 𝑆 holds in the group.

Proof. Suppose 𝑆 is a set of sentences that axiomatises the theory of finite groups. Consider 𝑆 together
with the sentences (∃𝑥1)(∃𝑥2)(𝑥1 ≠ 𝑥2), (∃𝑥1)(∃𝑥2)(∃𝑥3)(𝑥1 ≠ 𝑥2 ∧ 𝑥1 ≠ 𝑥3 ∧ 𝑥2 ≠ 𝑥3) and so on,
which collectively assert that the group has at least 𝑘 elements for every 𝑘. Each finite subset 𝑆′ ⊆ 𝑆
has a model, such as a cyclic group of sufficiently large order. So by compactness, there is a model of
𝑆, which is a finite group with at least 𝑘 elements for every 𝑘, giving a contradiction.

Corollary. Let 𝑆 be a theorywith arbitrarily large finitemodels. Then 𝑆 has an infinitemodel.

Proof. Add sentences and apply compactness as in the previous corollary.

Finiteness is not a first-order property.

Theorem (upward Löwenheim–Skolem theorem). Let 𝑆 be a theory with an infinite model.
Then 𝑆 has an uncountable model.

Proof. Add constants {𝑐𝑖 ∣ 𝑖 ∈ 𝐼} to the language, where 𝐼 is an uncountable set. Add sentences 𝑐𝑖 ≠ 𝑐𝑗
to the theory for all 𝑖 ≠ 𝑗 to obtain a theory 𝑆′. Any finite set of sentences in 𝑆′ has a model: indeed,
the infinite model of 𝑆 suffices. By compactness, 𝑆′ has a model.

Remark. Similarly, we can prove the existence of models of 𝑆 that do not inject into 𝑋 for any fixed
set 𝑋 . Adding 𝛾(𝑋) constants or 𝒫(𝑋) constants both suffice.
Example. There is an uncountable field, as there is an infinite fieldℚ. There is also a field that does
not inject into 𝑋 for any fixed set 𝑋 .

Theorem (downard Löwenheim–Skolem theorem). Let 𝑆 be a theory in a countable lan-
guage 𝐿, or equivalently, Ω and Π are countable. Then if 𝑆 has a model, it has a countable
model.

Proof. 𝑆 is consistent, so the model constructed in the proof of the model existence lemma is count-
able.

4.8 Peano arithmetic
Consider the language 𝐿 given byΩ = {0, 𝑠, +, ⋅}with 𝛼(0) = 0, 𝛼(𝑠) = 1, 𝛼(+) = 𝛼(⋅) = 2, andΠ = ∅.
It has axioms

(i) (∀𝑥)(𝑠(𝑥) ≠ 0);
(ii) (∀𝑥)(∀𝑦)(𝑠(𝑥) = 𝑠(𝑦) ⇒ 𝑥 = 𝑦);
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(iii) (∀𝑦1)… (∀𝑦𝑛)[𝑝[0/𝑥] ∧ (∀𝑥)(𝑝 ⇒ 𝑝[𝑠(𝑥)/𝑥]) ⇒ (∀𝑥)𝑝] for each formula 𝑝 with free variables
𝑥, 𝑦1,… , 𝑦𝑛;

(iv) (∀𝑥)(𝑥 + 0 = 𝑥);
(v) (∀𝑥)(∀𝑦)(𝑥 + 𝑠(𝑦) = 𝑠(𝑥 + 𝑦));
(vi) (∀𝑥)(𝑥 ⋅ 0 = 0);
(vii) (∀𝑥)(∀𝑦)(𝑥 ⋅ 𝑠(𝑦) = 𝑥 ⋅ 𝑦 + 𝑥).
These axioms are sometimes called Peano arithmetic, 𝖯𝖠, or formal number theory. The 𝑦𝑖 in (iii)
are called parameters. Without the parameters, we would not be able to perform induction on sets
such as {𝑥 ∣ 𝑥 ≥ 𝑦} if 𝑦 is a variable.
Note that𝖯𝖠 clearly has an infinitemodel, namelyℕ. So by the upwardLöwenheim–Skolem theorem,
it has an uncountable model, which in particular is not isomorphic to ℕ. This is because (iii) is not
‘true’ induction, stating that all subsets ofℕ either have a least element not in it, or it isℕ itself. Axiom
(iii) applies only to countably many formulae 𝑝, and therefore only asserts that induction holds for
countably many subsets of ℕ.

Definition. A set 𝑆 ⊆ ℕ is definable in the language of 𝖯𝖠 if there is a formula 𝑝 with a free
variable 𝑥 such that for each𝑚 ∈ ℕ,𝑚 ∈ 𝑆 if and only if 𝑝[𝑚/𝑥] holds in ℕ.

Only countably many formulae exist, so only countably many sets are definable.

Example. The set of squares is definable, as it can be defined by the formula (∃𝑦)(𝑦 ⋅ 𝑦 = 𝑥). The
set of primes is also definable by 𝑥 ≠ 0 ∧ 𝑥 ≠ 1 ∧ (∀𝑦)(𝑦 ∣ 𝑥 ⇒ 𝑦 = 1 ∧ 𝑦 = 𝑥), where 𝑦 ∣ 𝑥 is defined
to mean (∃𝑧)(𝑧 ⋅ 𝑦 = 𝑥). The set of powers of 2 can be defined by (∀𝑦)(𝑦 is prime ∧ 𝑦 ∣ 𝑥 ⇒ 𝑦 = 2).
The set of powers of 4 and the set of powers of 6 are also definable.

Theorem (Gödel’s incompleteness theorem). 𝖯𝖠 is not complete.

This theorem shows that there is a sentence 𝑝 such that 𝖯𝖠 ⊬ 𝑝 and 𝖯𝖠 ⊬ ¬𝑝. However, one
of 𝑝,¬𝑝 must hold in ℕ, so there is a sentence 𝑝 that is true in ℕ that 𝖯𝖠 does not prove. This
does not contradict the completeness theorem, which is that if 𝑝 is true in every model in 𝖯𝖠 then
𝖯𝖠 ⊢ 𝑝.

5 Set theory
5.1 Axioms of 𝖹𝖥
In this section, we will attempt to understand the structure of the universe of sets. In order to do
this, we will treat set theory as a first-order theory like any other, and can therefore study it with
our usual tools. In particular, we will study a particular theory called Zermelo–Fraenkel set theory,
denoted 𝖹𝖥. The language has Ω = ∅,Π = {∈}, 𝛼(∈) = 2. A ‘universe of sets’ is simply a model
(𝑉, ∈𝑉 ) = (𝑉,∈) for the axioms of 𝖹𝖥. We can view this section as a worked example of the concepts
of predicate logic, but every model of 𝖹𝖥 will contain a copy of (most of) mathematics, so they will
be very complicated.

We now define the axioms of 𝖹𝖥 set theory.
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(i) Axiom of extension.
(∀𝑥)(∀𝑦)((∀𝑧)(𝑧 ∈ 𝑥 ⇔ 𝑧 ∈ 𝑦) ⇒ 𝑥 = 𝑦)

Note that the converse follows from the definition of equality. This implies that sets have no
duplicate elements, and have no ordering.

(ii) Axiom of separation or comprehension. For a set 𝑥 and a property 𝑝, we can form the set of
𝑧 ∈ 𝑥 such that 𝑝(𝑧) holds.

(∀𝑡1)… (∀𝑡𝑛)(∀𝑥)(∃𝑦)(∀𝑧)(𝑧 ∈ 𝑦 ⇔ 𝑧 ∈ 𝑥 ∧ 𝑝)

where the 𝑡𝑖 are the parameters, and 𝑝 is a formula with free variables 𝑡1,… , 𝑡𝑛, 𝑧. Note that
we need the parameters as we may wish to form the set {𝑧 ∈ 𝑥 ∣ 𝑧 ∈ 𝑡} for some variable 𝑡. We
write {𝑧 ∈ 𝑥 ∣ 𝑝(𝑧)} for the set guaranteed by this axiom; this is an abbreviation and does not
change the language.

(iii) Empty-set axiom.
(∃𝑥)(∀𝑦)(¬𝑦 ∈ 𝑥)

This empty set is unique by extensionality. We write ∅ for the set guaranteed by this axiom.
For instance, 𝑝(∅) is the sentence (∃𝑥)((∀𝑦)(¬𝑦 ∈ 𝑥) ∧ 𝑝(𝑥)).

(iv) Pair-set axiom.
(∀𝑥)(∀𝑦)(∃𝑧)(∀𝑡)(𝑡 ∈ 𝑧 ⇔ 𝑡 = 𝑥 ∨ 𝑡 = 𝑦)

We write {𝑥, 𝑦} for this set 𝑧, which is unique by extensionality. Some basic set-theoretic prin-
ciples can now be defined.

• We write {𝑥} = {𝑥, 𝑥} for the singleton set containing 𝑥.
• We can now define the ordered pair (𝑥, 𝑦) = {{𝑥}, {𝑥, 𝑦}}; from the axioms so far we can
prove that (𝑥, 𝑦) = (𝑧, 𝑡) if and only if 𝑥 = 𝑧 and 𝑦 = 𝑡.

• We say that 𝑥 is an ordered pair if (∃𝑦)(∃𝑧)(𝑥 = (𝑦, 𝑧)), and 𝑓 is a function if

(∀𝑥)(𝑥 ∈ 𝑓 ⇒ 𝑥 is an ordered pair)

and
(∀𝑥)(∀𝑦)(∀𝑧)((𝑥, 𝑦) ∈ 𝑓 ∧ (𝑥, 𝑧) ∈ 𝑓 ⇒ 𝑦 = 𝑧)

• We call a set 𝑥 the domain of 𝑓, written 𝑥 = dom𝑓, if 𝑓 is a function and

(∀𝑦)(𝑦 ∈ 𝑥 ⇔ (∃𝑧)((𝑦, 𝑧) ∈ 𝑓))

• The notation 𝑓∶ 𝑥 → 𝑦means that 𝑓 is a function, 𝑥 = dom𝑓, and

(∀𝑧)(∀𝑡)((𝑧, 𝑡) ∈ 𝑓 ⇒ 𝑡 ∈ 𝑦)

(v) Union axiom. For each family of sets 𝑥, we can form its union⋃𝑡∈𝑥 𝑡.

(∀𝑥)(∃𝑦)(∀𝑧)(𝑧 ∈ 𝑦 ⇔ (∃𝑡)(𝑧 ∈ 𝑡 ∧ 𝑡 ∈ 𝑥))

The set guaranteed by this axiom can be written⋃𝑥, and we can write 𝑥 ∪ 𝑦 for⋃{𝑥, 𝑦}. We
need no intersection axiom, as such intersections already exist by the axiom of separation. This
cannot be used to create empty intersections, as the axiom of separation can only create subsets
of a set that already exists.
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(vi) Power-set axiom.
(∀𝑥)(∃𝑦)(∀𝑧)(𝑧 ∈ 𝑦 ⇔ 𝑧 ⊆ 𝑥)

where 𝑧 ⊆ 𝑥 means (∀𝑡)(𝑡 ∈ 𝑧 ⇒ 𝑡 ∈ 𝑥). We write 𝒫(𝑥) for the power set of 𝑥. We can form
the Cartesian product 𝑥 × 𝑦 as a suitable subset of 𝒫(𝒫(𝑥 ∪ 𝑦)), as if 𝑧 ∈ 𝑥, 𝑡 ∈ 𝑦, we have
(𝑧, 𝑡) = {{𝑧}, {𝑧, 𝑡}} ∈ 𝒫(𝒫(𝑥 ∪ 𝑦)). The set of all functions 𝑥 → 𝑦 can be defined as a subset of
𝒫(𝑥 × 𝑦).

(vii) Axiom of infinity. Using our currently defined axioms, any model 𝑉 must be infinite. For ex-
ample, writing 𝑥+ for the successor of 𝑥 defined as 𝑥 ∪ {𝑥}, the sets ∅,∅+, ∅++,… are distinct.

∅+ = {∅}; ∅++ = {∅, {∅}}; ∅+++ = {∅, {∅}, {∅, {∅}}}; …

We write 0 = ∅, 1 = ∅+, 2 = ∅++,… for the successors created in this way. For instance,
3 = {0, 1, 2}. 𝑉 may not have an infinite element, even though 𝑉 itself is infinite, because no
𝑥 ∈ 𝑉 has all 𝑦 ∈ 𝑉 as elements: 𝑉 does not think of itself as a set, because Russell’s paradox
follows from the axioms defined so far.

We say that 𝑥 is a successor set if ∅ ∈ 𝑥 and (∀𝑦)(𝑦 ∈ 𝑥 ⇒ 𝑦+ ∈ 𝑥). Note that this is a
finite-length formula that characterises an infinite set. The axiom of infinity is that there exists
a successor set.

(∃𝑥)(∅ ∈ 𝑥 ∧ (∀𝑦)(𝑦 ∈ 𝑥 ⇒ 𝑦+ ∈ 𝑥))
Note that this set is not uniquely defined, but any intersection of successor sets is a successor set.
We can therefore take the intersection of all successor sets by the axiom of separation, giving
a least successor set denoted 𝜔. Thus, (∀𝑥)(𝑥 ∈ 𝜔 ⇔ (∀𝑦)(𝑦 is a successor set ⇒ 𝑥 ∈ 𝑦)). For
example, we can prove that 3 ∈ 𝜔.
In particular, if 𝑥 is a successor set and a subset of 𝜔, then 𝑥 = 𝜔. Hence, (∀𝑥)(𝑥 ⊆ 𝜔 ∧ ∅ ∈
𝑥∧(∀𝑦)(𝑦 ∈ 𝑥 ⇒ 𝑦+ ∈ 𝑥) ⇒ 𝑥 = 𝜔). This is ‘proper’ induction over all subsets of 𝜔, unlike the
weaker first-order induction defined in the Peano axioms. It is easy to check that (∀𝑥)(𝑥 ∈ 𝜔 ⇒
𝑥+ ≠ ∅) and (∀𝑥)(∀𝑦)(𝑥 ∈ 𝜔∧𝑦 ∈ 𝜔∧𝑥+ = 𝑦+ ⇒ 𝑥 = 𝑦), so𝜔 satisfies (in𝑉) the usual axioms
for the natural numbers. We can now define ‘𝑥 is finite’ to mean (∃𝑦)(𝑦 ∈ 𝜔∧𝑥 bijects with 𝑦),
and define ‘𝑥 is countable’ to mean that 𝑥 is finite or bijects with 𝜔.

(viii) Axiomof foundation or regularity. We require that sets are built out of simpler sets. For example,
we want to disallow a set from being a member of itself, and similarly forbid 𝑥 ∈ 𝑦 and 𝑦 ∈ 𝑥.
In general, we want to forbid sets 𝑥𝑖 such that 𝑥𝑖+1 ∈ 𝑥𝑖 for each 𝑖 ∈ ℕ.
Note that if 𝑥 ∈ 𝑥, {𝑥} has no ∈-minimal element. If 𝑥 ∈ 𝑦, 𝑦 ∈ 𝑥, {𝑥, 𝑦} has no ∈-minimal
element. In the last example, {𝑥0, 𝑥1,… } has no∈-minimal element. We now define the axiom
of foundation: every nonempty set has an ∈-minimal element.

(∀𝑥)(𝑥 ≠ ∅ ⇒ (∃𝑦)(𝑦 ∈ 𝑥 ∧ (∀𝑧)(𝑧 ∈ 𝑥 ⇒ 𝑧 ∉ 𝑦)))

Any model of 𝖹𝖥 without this axiom has a submodel of all of 𝖹𝖥.
(ix) Axiom of replacement. Often, we are given an index set 𝐼 and construct a set 𝐴𝑖 for each 𝑖 ∈ 𝐼,

then take the collection {𝐴𝑖 ∣ 𝑖 ∈ 𝐼}. In order to write this down, the mapping 𝑖 ↦ 𝐴𝑖 must be
a function, or equivalently, there must be a set {(𝑖, 𝐴𝑖) ∣ 𝑖 ∈ 𝐼}. This is not clear from the other
axioms. We would like to say that the image of a set under something that looks like a function
(since we do not yet have such a set-theoretic function) is a set.

Let (𝑉, ∈) be an 𝐿-structure. A class is a set 𝐶 ⊆ 𝑉 such that for some formula 𝑝 with free
variables 𝑥 and some parameters, we have 𝑥 ∈ 𝐶 if and only if 𝑝 holds in 𝑉 . 𝐶 is a set outside
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of our model; it may not correspond to a set 𝑥 ∈ 𝑉 inside the model. For instance, 𝑉 is a class,
taking 𝑝 to be 𝑥 = 𝑥. There is a class of infinite sets, taking 𝑝 to be ‘𝑥 is not finite’. For any
𝑡 ∈ 𝑉 , the collection of 𝑥 with 𝑡 ∈ 𝑥 is a class; here, 𝑡 is a parameter to the class. Every set
𝑦 ∈ 𝑉 is a class by setting 𝑝 to be 𝑥 ∈ 𝑦. A proper class is a class that does not correspond to
a set 𝑥 ∈ 𝑉 : ¬(∃𝑦)(∀𝑥)(𝑥 ∈ 𝑦 ⇔ 𝑝). When writing about classes inside 𝖹𝖥, we instead write
about their defining formulae, as classes have no direct representation in the language.

Similarly, a function-class is a set 𝐹 ⊆ 𝑉 of ordered pairs from 𝑉 such that for some formula
𝑝 with free variables 𝑥, 𝑦 and parameters, we have (𝑥, 𝑦) belongs to 𝐹 if and only if 𝑝, and if
(𝑥, 𝑦), (𝑥, 𝑧) belong to 𝐹, 𝑦 = 𝑧. This is intuitively a function whose domain may not be a set.
For example, the mapping 𝑥 ↦ {𝑥} is a function-class, taking 𝑝 to be 𝑦 = {𝑥}. This is not a
function, for example, every 𝑓 has a domain which is a set in 𝑉 , and this function has domain
𝑉 which is not a set.

We can now define the axiom of replacement: the image of a set under a function-class is a set.

(∀𝑡1)… (∀𝑡𝑛)[(∀𝑥)(∀𝑦)(∀𝑧)(𝑝 ∧ 𝑝[𝑧/𝑦] ⇒ 𝑦 = 𝑧) ⇒

(∀𝑥)(∃𝑦)(∀𝑧)(𝑧 ∈ 𝑦 ⇔ (∃𝑡)(𝑡 ∈ 𝑥 ∧ 𝑝[𝑡/𝑥, 𝑧/𝑦]))]
For example, for any set 𝑥, we can form the set {{𝑡} ∣ 𝑡 ∈ 𝑥}, which is the image of 𝑥 under
the function class 𝑡 ↦ {𝑡}. This set could alternatively have been formed using the power-set
and separation axioms; we will later present some examples of sets built with this axiom that
cannot be constructed from the other axioms.

This completes the description of the axioms of 𝖹𝖥. We write 𝖹𝖥𝖢 for 𝖹𝖥 + 𝖠𝖢, where 𝖠𝖢 is the
axiom

(∀𝑓)[𝑓 is a function ∧ (∀𝑥)(𝑥 ∈ dom𝑓 ⇒ 𝑓(𝑥) ≠ ∅) ⇒
(∃𝑔)(𝑔 is a function ∧ (dom 𝑔 = dom𝑓) ∧ (∀𝑥)(𝑥 ∈ dom𝑓 ⇒ 𝑔(𝑥) ∈ 𝑓(𝑥)))]

5.2 Transitive sets

Definition. 𝑥 is transitive if each member of a member of 𝑥 is a member of 𝑥.

(∀𝑦)((∃𝑧)(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥) ⇒ 𝑦 ∈ 𝑥)

Equivalently,⋃𝑥 ⊆ 𝑥.
Example. ∅ is a transitive set. {∅} is also transitive, and {∅, {∅}} is transitive. In general, elements
of 𝜔 are transitive. This can be proven by 𝜔-induction (inside a model): ∅ is transitive, and if 𝑦 is
transitive, 𝑦+ = 𝑦 ∪ {𝑦} is clearly transitive.

Lemma. Every set is contained in a transitive set.

Here, we define ‘𝑥 contains 𝑦’ to mean 𝑦 ⊆ 𝑥, not 𝑦 ∈ 𝑥.
Remark. This proof takes place inside an arbitrary model of 𝖹𝖥. Technically, the statement of the
lemma is ‘let (𝑉, ∈) be a model of 𝖹𝖥, then for all sets 𝑥 ∈ 𝑉 , 𝑥 is contained in a transitive set 𝑦 ∈ 𝑉 ’.
By completeness, this will show that there is a proof of this fact from the axioms of 𝖹𝖥.
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Note also that once this lemma is proven, any 𝑥 is contained in a least transitive set by taking inter-
sections, called its transitive closure, written 𝑇𝐶(𝑥). This holds as any intersection of transitive sets
is transitive.

Proof. Wewant to form 𝑥∪ (⋃𝑥)∪ (⋃⋃𝑥)∪…; if this is a set, it is clearly transitive and contains 𝑥.
We can show that this is a set by the union axiom applied to the set {𝑥,⋃𝑥,⋃⋃𝑥,… }. This is a set by
applying the axiom of replacement, it is an image of 𝜔 under the function-class 0 ↦ 𝑥, 1 ↦ ⋃𝑥, 2 ↦
⋃⋃𝑥 and so on. We want to define the function-class 𝑝(𝑧, 𝑤) to be (𝑧 = 0 ∧ 𝑤 = 𝑥) ∨ ((∃𝑡)(∃𝑢)𝑧 =
𝑡+ ∧ 𝑤 = ⋃𝑢 ∧ 𝑝(𝑡, 𝑢)), but this is not a first-order formula.
Define that 𝑓 is an attempt to mean that

(𝑓 is a function) ∧ (dom𝑓 ∈ 𝜔) ∧ (dom𝑓 ≠ ∅) ∧ (𝑓(0) = 𝑥) ∧

(∀𝑛)(𝑛 ∈ 𝜔 ∧ 𝑛 ∈ dom𝑓 ∧ 𝑛 ≠ 0 ⇒ 𝑓(𝑛) =⋃𝑓(𝑛 − 1))
Then,

(∀𝑛)(𝑛 ∈ 𝜔 ⇒ (∃𝑓)(𝑓 is an attempt ∧ 𝑛 ∈ dom𝑓))
can be proven by 𝜔-induction. We can similarly prove

(∀𝑛)(𝑛 ∈ 𝜔 ⇒ (∀𝑓)(∀𝑔)(𝑓, 𝑔 are attempts ∧ 𝑛 ∈ dom𝑓 ∩ dom 𝑔 ⇒ 𝑓(𝑛) = 𝑔(𝑛)))

by 𝜔-induction. We now define the function-class 𝑝 = 𝑝(𝑧, 𝑤) to be

(∃𝑓)(𝑓 is an attempt ∧ 𝑧 ∈ dom𝑓 ∧ 𝑓(𝑧) = 𝑤)

Intuitively, we needed to use the axiom of replacement because we started with a set 𝑥 and needed
to go ‘far away’ from it, forming⋃𝑛 𝑥 for all 𝑥. We could not have used the other axioms such as the
power-set axiom, as the⋃𝑛 𝑥 are not contained in an obvious larger set.
Transitive closures allow us to pass from the large universe of sets, which is not a set itself, into a
smaller world which is a set closed under ∈ that contains the relevant sets in question.

5.3 ∈-induction
We want the axiom of foundation to capture the idea that sets are built out of simpler sets.

Theorem (principle of ∈-induction). For each formula 𝑝 with free variables 𝑡1,… , 𝑡𝑛, 𝑥,

(∀𝑡1)… (∀𝑡𝑛)[(∀𝑥)((∀𝑦)(𝑦 ∈ 𝑥 ⇒ 𝑝(𝑦)) ⇒ 𝑝(𝑥)) ⇒ (∀𝑥)𝑝(𝑥)]

Proof. Given 𝑡1,… , 𝑡𝑛 and the statement (∀𝑥)((∀𝑦)(𝑦 ∈ 𝑥 ⇒ 𝑝(𝑦)) ⇒ 𝑝(𝑥)), we want to show
(∀𝑥)𝑝(𝑥). Suppose this is not the case, so there exists 𝑥 such that ¬𝑝(𝑥). We want to look at the
set {𝑡 ∣ ¬𝑝(𝑡)} and take an ∈-minimal element, but this is not necessarily a set, for instance if 𝑝(𝑥) is
the assertion 𝑥 ≠ 𝑥.
Let 𝑢 = {𝑡 ∈ 𝑇𝐶({𝑥}) ∣ ¬𝑝(𝑡)}; this is clearly a set in the model, and 𝑢 ≠ ∅ as 𝑥 ∈ 𝑢. Let 𝑡 be an
∈-minimal element of 𝑢, guaranteed by the axiom of foundation. Then ¬𝑝(𝑡) as 𝑡 ∈ 𝑢, but 𝑝(𝑧) for
all 𝑧 ∈ 𝑡 by minimality of 𝑡, noting that 𝑧 ∈ 𝑡 implies 𝑧 ∈ 𝑇𝐶({𝑥}). This gives a contradiction.
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The name of this theorem should be read ‘epsilon-induction’, even though the membership relation
is denoted ∈ and not 𝜖 or 𝜀.
The principle of ∈-induction is equivalent to the axiom of foundation in the presence of the other
axioms of 𝖹𝖥. We say that 𝑥 is regular if (∀𝑦)(𝑥 ∈ 𝑦 ⇒ 𝑦 has a minimal element). The axiom of
foundation is equivalent to the assertion that every set is regular. Given ∈-induction, we can prove
every set is regular. Suppose (∀𝑦 ∈ 𝑥)(𝑦 is regular); we need to show 𝑥 is regular. For a set 𝑧 with
𝑥 ∈ 𝑧, if 𝑥 is minimal in 𝑧, 𝑥 is clearly regular as required. If 𝑥 is not minimal in 𝑧, there exists 𝑦 ∈ 𝑥
such that 𝑦 ∈ 𝑧. So 𝑧 has a minimal element as 𝑦 is regular. Hence 𝑥 is regular.

5.4 ∈-recursion
We want to be able to define 𝑓(𝑥) given 𝑓(𝑦) for all 𝑦 ∈ 𝑥.

Theorem (∈-recursion theorem). Let𝐺 be a function-class, so (𝑥, 𝑦) ∈ 𝐺 if and only if𝑝(𝑥, 𝑦)
for some formula 𝑝. Suppose that 𝐺 is defined for all sets. Then there is a function-class 𝐹
defined for all sets by a formula 𝑞(𝑥, 𝑦) such that

(∀𝑥)(𝐹(𝑥) = 𝐺(𝐹|||𝑥
))

Moreover, this 𝐹 is unique.

Note that 𝐹|𝑥 = {(𝑦, 𝐹(𝑦)) ∣ 𝑦 ∈ 𝑥} is a set by the axiom of replacement.

Proof. Define that 𝑓 is an attempt if

𝑓 is a function ∧ dom𝑓 is transitive ∧ (∀𝑥)(𝑥 ∈ dom𝑓 ⇒ 𝑓(𝑥) = 𝐺(𝑓|||𝑥
))

Note that 𝑓|𝑥 is defined as dom𝑓 is transitive. Then,

(∀𝑥)(∀𝑓)(∀𝑓′)(𝑓, 𝑓′ are attempts ∧ 𝑥 ∈ dom𝑓 ∩ dom𝑓′ ⇒ 𝑓(𝑥) = 𝑓′(𝑥))

by ∈-induction: if 𝑓(𝑦) = 𝑓′(𝑦) for all 𝑦 ∈ 𝑥, then 𝑓(𝑥) = 𝑓′(𝑥). Also,

(∀𝑥)(∃𝑓)(𝑓 is an attempt ∧ 𝑥 ∈ dom𝑓)

by∈-induction. Indeed, if for all 𝑦 ∈ 𝑥 there exists an attempt defined at 𝑦, then for each 𝑦 ∈ 𝑥 there
is a unique attempt 𝑓𝑦 defined on 𝑇𝐶({𝑦}). Let 𝑓 = ⋃{𝑓𝑦 ∣ 𝑦 ∈ 𝑥}, which is an attempt with domain
𝑇𝐶(𝑥). We can then define 𝑓′ = 𝑓 ∪ {(𝑥, 𝐺(𝑓|𝑥))}. This is an attempt defined at 𝑥. We can then take
𝑞(𝑥, 𝑦) to be

(∃𝑓)(𝑓 is an attempt ∧ 𝑥 ∈ dom𝑓 ∧ 𝑓(𝑥) = 𝑦)
This defines the function-class 𝐹 as required. Uniqueness follows from the fact that if 𝐹, 𝐹′ are suit-
able function-classes, we have (∀𝑥)(𝐹(𝑥) = 𝐹′(𝑥)) by ∈-induction.

5.5 Well-founded relations
Note the similarity between the proofs of ∈-induction and ∈-recursion and the proofs of induction
and recursion on ordinals. These proofs are not specific to the relation ∈; we only used some of its
properties.
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(i) 𝑝 is well-founded: every nonempty set has a 𝑝-minimal element.
(ii) 𝑝 is local: {𝑥 ∣ 𝑝(𝑥, 𝑦)} is a set. This was required to build the 𝑝-transitive closure.

Therefore, 𝑝-induction and 𝑝-recursion hold for all relation-classes 𝑝 that are well-founded and local.
In particular, if 𝑟 is a well-founded relation on a set 𝑎, it is clearly local and hence we have 𝑟-induction
and 𝑟-recursion. The theorems about induction and recursion on ordinals are therefore special cases
of this, as a well-ordering is precisely a well-founded total order.

On the set {𝑎, 𝑏, 𝑐}, let 𝑟 be the relation 𝑎𝑟𝑏, 𝑏𝑟𝑐. Choosing 𝑎′ = ∅, 𝑏′ = {∅}, 𝑐′ = {{∅}}, the map
𝑓∶ {𝑎, 𝑏, 𝑐} → {𝑎′, 𝑏′, 𝑐′} given by 𝑥 ↦ 𝑥′ is a bijection with a transitive set such that 𝑥𝑟𝑦 if and only
if 𝑓(𝑥) ∈ 𝑓(𝑦). This models the relation 𝑟 by ∈.
We say that a relation 𝑟 on a set 𝑎 is extensional if

(∀𝑥 ∈ 𝑎)(∀𝑦 ∈ 𝑎)((∀𝑧 ∈ 𝑎)(𝑧𝑟𝑥 ⇔ 𝑧𝑟𝑦) ⇒ 𝑥 = 𝑦)
The relation 𝑟 in the above example is extensional.

Theorem (Mostowski’s collapsing theorem). Let 𝑟 be a relation on a set𝑎 that iswell-founded
and extensional. Then, there exists a transitive set 𝑏 and a bijection 𝑓∶ 𝑎 → 𝑏 such that

(∀𝑥 ∈ 𝑎)(∀𝑦 ∈ 𝑎)(𝑥𝑟𝑦 ⇔ 𝑓(𝑥) ∈ 𝑓(𝑦))

Moreover, 𝑏 and 𝑓 are unique.

This is an analogue of subset collapse from the section on ordinals. Transitive sets are playing the role
of initial segments. Note that the well-foundedness and extensionality conditions are clearly neces-
sary for the theorem, consider (ℤ, <) or ({𝑎, 𝑏, 𝑐, }, <) with 𝑎 < 𝑏, 𝑎 < 𝑐 for counterexamples.

Proof. We define the function 𝑓 by 𝑓(𝑥) = {𝑓(𝑦) ∣ 𝑦𝑟𝑥} using 𝑟-recursion. Note that 𝑓 is a function by
the axiom of replacement as it is given by a function-class 𝐹 obtained from 𝑟-recursion that is defined
on the set 𝑎. Let 𝑏 = {𝑓(𝑥) ∣ 𝑥 ∈ 𝑎}; this is a set by the axiom of replacement. Clearly 𝑓 is surjective
by the definition of 𝑏, and 𝑏 is transitive by definition.
We claim that 𝑓 is injective, and then we have that 𝑦𝑟𝑥 if and only if 𝑓(𝑦) ∈ 𝑓(𝑥) by definition of 𝑓.
We show

(∀𝑥 ∈ 𝑎)(∀𝑥′ ∈ 𝑎)(𝑓(𝑥′) = 𝑓(𝑥) ⇒ 𝑥′ = 𝑥)
by 𝑟-induction on 𝑥. Suppose that (∀𝑦𝑟𝑥)(∀𝑧 ∈ 𝑎)(𝑓(𝑦) = 𝑓(𝑧) ⇒ 𝑦 = 𝑧), we have 𝑓(𝑥) = 𝑓(𝑥′),
and we want to show that 𝑥 = 𝑥′. Note that {𝑓(𝑦) ∣ 𝑦𝑟𝑥} = {𝑓(𝑧) ∣ 𝑧𝑟𝑥′} by the definition of 𝑓 as
𝑓(𝑥) = 𝑓(𝑥′). So {𝑦 ∣ 𝑦𝑟𝑥} = {𝑧 ∣ 𝑧𝑟𝑥′}, so 𝑥 = 𝑥′ as 𝑟 is extensional. Uniqueness holds by 𝑟-induction,
as we must have 𝑓(𝑥) = {𝑓(𝑦) ∣ 𝑦𝑟𝑥} for all 𝑥 ∈ 𝑎.

In particular, every well-ordered set has a unique order isomorphism to a unique transitive set well-
ordered by∈. We can now define that an ordinal is a transitive set well-ordered by∈ (or equivalently,
totally-ordered, due to the axiom of foundation). For example,∅ is an ordinal, 𝑛 ∈ 𝜔 is an ordinal, 𝜔
is also an ordinal, and so on. Therefore, each well-ordering is order-isomorphic to a unique ordinal
called its order type, by Mostowski collapse.

Remark. If 𝑥, 𝑦 are elements of a well-ordered set 𝑎 with 𝑦 < 𝑥, then the order type of 𝐼𝑥, which is
precisely the image 𝑓(𝑥) under the Mostowski collapse, has an element 𝑓(𝑦), the order type of 𝐼𝑦. In
particular, given two ordinals 𝛼, 𝛽, the statement 𝛼 < 𝛽 is equivalent to 𝛼 ∈ 𝛽. Hence 𝛼 = {𝛽 ∣ 𝛽 < 𝛼}.
Thus, 𝛼+ = 𝛼 ∪ {𝛼}, and sup {𝛼𝑖 ∣ 𝑖 ∈ 𝐼} = ⋃ {𝛼𝑖 ∣ 𝑖 ∈ 𝐼}.
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5.6 The universe of sets
We would like the universe to be V-shaped, in the sense that we begin with ∅ and continue taking
power sets to create larger and larger sets. Define sets 𝑉𝛼 for each ordinal 𝛼 by

• 𝑉0 = ∅;
• 𝑉𝛼+1 = 𝒫(𝑉𝛼);
• 𝑉 𝜆 = ⋃{𝑉𝛼 ∣ 𝛼 < 𝜆} for a nonzero limit ordinal 𝜆.

This can be viewed as a well-founded recursion on ordinals, or∈-recursion on the universe but map-
ping non-ordinals to ∅. For example, 𝑉𝜔 = 𝑉0 ∪ 𝑉1 ∪ …, and 𝑉𝜔+1 = 𝒫(𝑉𝜔). We will now show that
every set is contained within some 𝑉𝛼.

Lemma. Each 𝑉𝛼 is transitive.

Proof. We show this by induction on 𝛼. Clearly 𝑉0 = ∅ is transitive. Suppose 𝑉𝛼 is transitive. Then
𝑉𝛼+1 is transitive as the power set of a transitive set is transitive. Indeed, if 𝑥 is transitive and 𝑧 ∈ 𝑦 ∈
𝒫(𝑥), we have 𝑧 ∈ 𝑥, so 𝑧 ⊆ 𝑥 as 𝑥 is transitive, so 𝑧 ∈ 𝒫(𝑥). Now suppose 𝜆 is a limit ordinal, and
that the 𝑉𝛼 are transitive for 𝛼 < 𝜆. Any union of transitive sets is transitive, so 𝑉 𝜆 is transitive.

Lemma. Let 𝛼 ≤ 𝛽. Then 𝑉𝛼 ⊆ 𝑉 𝛽.

Proof. We show this by induction on 𝛽 for a fixed 𝛼. If 𝛽 = 𝛼, 𝑉𝛼 ⊆ 𝑉 𝛽 is trivial. For successors, note
that 𝑉 𝛽 ⊆ 𝒫(𝑉 𝛽) as 𝑉 𝛽 is transitive. So if 𝑉𝛼 ⊆ 𝑉 𝛽, then 𝑉𝛼 ⊆ 𝑉 𝛽+1. Limits are trivial.

Theorem. Every set 𝑥 belongs to 𝑉𝛼 for some 𝛼.

If we could construct the set 𝑉 defined as the union of the 𝑉𝛼 over all ordinals 𝛼, 𝑉 would be a model
of 𝖹𝖥.
Remark. Note that 𝑥 ⊆ 𝑉𝛼 if and only if 𝑥 ∈ 𝑉𝛼+1, so it suffices to show that each set 𝑥 is a subset of
some 𝑉𝛼. Once we have 𝑥 ⊆ 𝑉𝛼 for some 𝛼, there is a least such 𝛼, called the rank of 𝑥. For example,
the rank of ∅ is 0, the rank of 1 is 1, the rank of 𝜔 is 𝜔, and in general the rank of any ordinal 𝛼 is 𝛼.
Intuitively, the rank of a set is the time at which it was created.

Proof. We proceed by ∈-induction on 𝑥; we may assume that for all 𝑦 ∈ 𝑥, there exists 𝛼 such that
𝑦 ⊆ 𝑉𝛼, so 𝑦 ⊆ 𝑉rank(𝑦). Thus, for each 𝑦 ∈ 𝑥, 𝑦 ∈ 𝑉rank(𝑦)+1, so define 𝛼 = sup {rank(𝑦) + 1 ∣ 𝑦 ∈ 𝑥}.
Then for all 𝑦 ∈ 𝑥, we have 𝑦 ∈ 𝑉𝛼. So 𝑥 ⊆ 𝑉𝛼 as required.

The ordinals can be viewed as the backbone of the universe of sets; each 𝑉𝛼 can be thought of as
resting on the ordinal 𝛼.
Remark. The𝑉𝛼 are called the vonNeumannhierarchy. The above proof shows that for all𝑥, rank(𝑥) =
sup {rank(𝑦) + 1 ∣ 𝑦 ∈ 𝑥}. For example, the rank of {{2, 3}, 6} is

sup {rank{2, 3} + 1, 6 + 1} = sup {5, 7} = 7
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6 Cardinals
6.1 Definitions
We will study the possible sizes of sets in 𝖹𝖥𝖢. Write 𝑥 ↔ 𝑦 if there exists a bijection from 𝑥 to 𝑦;
we wish to define card(𝑥) = |𝑥| such that 𝑥 ↔ 𝑦 if and only if card(𝑥) = card(𝑦). This cannot be
formulated as an equivalence class, due to Russell’s paradox. However, for any 𝑥, there exists an
ordinal 𝛼 such that 𝑥 ↔ 𝛼 by the well-ordering theorem. Hence, we can define card(𝑥) to be the least
ordinal that 𝑥 bijects with. We say that a set𝑚 is a cardinality or a cardinal if𝑚 = card(𝑥) for some
set 𝑥.
If we were studying sets in 𝖹𝖥 and not 𝖹𝖥𝖢, there may not be an ordinal that bijects with a given set 𝑥.
However, we can apply Scott’s trick, which is as follows. We can consider the least 𝛼 such that there
exists 𝑦 ↔ 𝑥 with rank(𝑦) = 𝛼. This is often called the essential rank of 𝑥. In this case, we let card(𝑥)
be the set {𝑦 ⊆ 𝑉𝛼 ∣ 𝑦 ↔ 𝑥}.

6.2 The hierarchy of alephs
An ordinal is initial if it does not biject with any smaller ordinal. Any finite ordinal is initial, and
𝜔,𝜔1 are initial. For any set 𝑥, 𝛾(𝑥) is initial. 𝜔2 is not initial as it bijects with 𝜔. We define 𝜔𝛼 for
each ordinal 𝛼 by recursion.

• 𝜔0 = 𝜔;
• 𝜔𝛼+1 = 𝛾(𝜔𝛼);
• 𝜔𝜆 = sup {𝜔𝛼 ∣ 𝛼 < 𝜆} for a nonzero limit ordinal 𝜆.

Each of these ordinals is initial, and every initial ordinal 𝛽 is of the form 𝜔𝛼. Indeed, the 𝜔𝛼 are
unbounded, as 𝜔𝛼 ≥ 𝛼 for each 𝛼 by induction, so there exists a least ordinal 𝛿 such that 𝛽 < 𝜔𝛿. 𝛿
must be a successor, otherwise 𝜔𝛿 = sup {𝜔𝛼 ∣ 𝛼 < 𝛽}, contradicting the definition of 𝛿. So 𝛿 = 𝛼+1,
so 𝜔𝛼 ≤ 𝛽 < 𝜔𝛼+1. Hence 𝛽 = 𝜔𝛼, otherwise we contradict 𝜔𝛼+1 = 𝛾(𝜔𝛼).
Since we have potentially different definitions of cardinals, we will write ℵ𝛼 for card(𝜔𝛼) to avoid
ambiguity. Theℵ𝛼 are precisely the cardinalities of the infinite sets. In 𝖹𝖥without 𝖠𝖢, theℵ𝛼 are the
cardinalities of the well-orderable sets.

For cardinals 𝑚, 𝑛, we write 𝑚 ≤ 𝑛 if there exists an injection from 𝑀 to 𝑁 where card(𝑀) =
𝑚, card(𝑁) = 𝑛. Similarly, we write𝑚 < 𝑛 if𝑚 ≤ 𝑛 and𝑚 ≠ 𝑛. For example, card(𝜔) < card(𝒫(𝜔)).
By the Schröder–Bernstein theorem, if𝑚 ≤ 𝑛 and 𝑛 ≤ 𝑚, then𝑚 = 𝑛. Hence, ≤ is a partial order on
cardinals. This is in fact a total order in 𝖹𝖥𝖢, since we can well-order the two sets in question, and
one injects into the other; alternatively, the ℵ numbers are clearly totally ordered.

6.3 Cardinal arithmetic
Let𝑚, 𝑛 be cardinals. Then,
(i) 𝑚+ 𝑛 = card(𝑀 ⨿ 𝑁);
(ii) 𝑚 ⋅ 𝑛 = card(𝑀 × 𝑁);
(iii) 𝑚𝑛 = card(𝑀𝑁);
where 𝑚 = card(𝑀), 𝑛 = card(𝑁), and 𝑀𝑁 is the set of functions 𝑁 → 𝑀. The choice of repres-
entatives 𝑀,𝑁 do not influence the result. We can also define ∑𝑖∈𝐼𝑚𝑖 = card(∐𝑖∈𝐼𝑀𝑖); this is
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only well-defined assuming the axiom of choice, as forming the bijection requires infinitely many
choices.

Example. ℝ,𝒫(𝜔), {0, 1}𝜔 biject. Hence, card(ℝ) = card(𝒫(𝜔)) = 2ℵ0 . In particular, cardinal expo-
nentiation and ordinal exponentiation do not coincide, as 2𝜔 = 𝜔.
The cardinality of the set of sequences of reals is

card(ℝ𝜔) = (2ℵ0)ℵ0 = 2ℵ0⋅ℵ0 = 2ℵ0

Note that this statement requires that addition and multiplication are commutative, ℵ0 ⋅ ℵ0 = ℵ0
as 𝜔 × 𝜔 bijects with 𝜔, and that (𝑚𝑛)𝑝 = 𝑚𝑛𝑝. The latter holds as (𝑀𝑁)𝑃 is the set of functions
𝑃 → (𝑁 → 𝑀), and𝑀𝑁×𝑃 is the set of functions 𝑁 × 𝑃 → 𝑀.

Theorem. 𝑚2 = 𝑚 for all infinite cardinals𝑚.

Proof. We show by induction that ℵ2
𝛼 = ℵ𝛼 for all 𝛼. Define a well-ordering of 𝜔𝛼 ×𝜔𝛼 by ‘going up

in squares’:

(𝑥, 𝑦) < (𝑧, 𝑤) ⟺ (max(𝑥, 𝑦) < max(𝑧, 𝑤)) ∨
(max(𝑥, 𝑦) = max(𝑧, 𝑤) = 𝛽

∧ (𝑦 < 𝛽, 𝑧 < 𝛽 ∨ 𝑥 = 𝑧 = 𝛽, 𝑦 < 𝑤 ∨ 𝑦 = 𝑤 = 𝛽, 𝑥 < 𝑧))

For any 𝛿 ∈ 𝜔𝛼 × 𝜔𝛼, 𝛿 ∈ 𝛽 × 𝛽 for some 𝛽 < 𝜔𝛼, as 𝜔𝛼 is a limit ordinal. By induction, we can
assume 𝛽 × 𝛽 bijects with 𝛽 (or 𝛽 is finite). Hence, the initial segment 𝐼𝛿 is contained in 𝛽 × 𝛽 and
hence has cardinality at most card(𝛽 × 𝛽) < card(𝜔𝛼).
Therefore, the well-ordering has order type at most 𝜔𝛼. Thus, 𝜔𝛼 × 𝜔𝛼 injects into 𝜔𝛼, and the
converse injection is trivial. So 𝜔𝛼 × 𝜔𝛼 bijects with 𝜔𝛼.

Corollary. For any ordinals 𝛼 < 𝛽, we have ℵ𝛼 + ℵ𝛽 = ℵ𝛼 ⋅ ℵ𝛽 = ℵ𝛽.

Proof.
ℵ𝛽 ≤ ℵ𝛼 + ℵ𝛽 ≤ 2 ⋅ ℵ𝛽 ≤ ℵ𝛼ℵ𝛽 ≤ ℵ2

𝛽 = ℵ𝛽

Hence, for example, 𝑋 ⨿ 𝑋 bijects with 𝑋 for any infinite set 𝑋 .
Cardinal exponentiation is not as simple as addition and multiplication. For instance, in 𝖹𝖥, 2ℵ0
need not even be an aleph number, for instance if ℝ is not well-orderable. In 𝖹𝖥𝖢, the statement
2ℵ0 = ℵ1 is independent of the axioms; this is called the continuum hypothesis. 𝖹𝖥𝖢 does not even
decide if 2ℵ0 < 2ℵ1 . Even today, not all implications about cardinal exponentiation (such as ℵℵ𝛽

𝛼 ) are
known.
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7 Incompleteness
We aim to show that 𝖯𝖠 is incomplete: there is a sentence 𝑝 such that 𝖯𝖠 does not prove 𝑝 or ¬𝑝.
Equivalently, there is a sentence 𝑝 that is true in ℕ but 𝖯𝖠 ⊬ 𝑝. In this section, by ‘true’ we mean
true in ℕ, and by ‘unprovable’ we mean 𝖯𝖠 does not prove it, so more concisely we wish to find an
unprovable true sentence. Our aim is to find a sentence 𝑝 that asserts that it is not provable in 𝖯𝖠;
then 𝑝 is true if and only if 𝑝 is not provable. Then the proof is complete, as if 𝑝 is false, 𝑝 is provable
and hence true by soundness.

7.1 Definability
Recall that a subset 𝑆 ⊆ ℕ is definable if there is a formula 𝑝 with free variable 𝑥 such that 𝑚 ∈ 𝑆
if and only if 𝑝(𝑚) is true. For example, the set of primes is definable, taking 𝑝(𝑥) to be (𝑥 ≠ 1) ∧
(∀𝑦)(∀𝑧)(𝑦𝑧 = 𝑥 ⇒ (𝑦 = 1) ∨ (𝑧 = 1)). We might say that ‘𝑚 is prime’ is definable.

A function 𝑓∶ ℕ → ℕ is similarly called definable if there is a formula 𝑝with free variables 𝑥, 𝑦 such
that 𝑓(𝑚) = 𝑛 if and only if 𝑝(𝑚, 𝑛) is true. The function 𝑓(𝑥) = ⌊𝑥

2
⌋ is definable, setting 𝑝(𝑥, 𝑦) to

be (𝑥 = 2𝑦) ∨ (𝑥 = 2𝑦 + 1). Similarly, 𝑥2 is definable. In fact, any function 𝑓 given by an algorithm
is definable in 𝖯𝖠, but this will not be proven in this section.

7.2 Coding
𝐿 has symbols

0, 𝑠, +, ⋅, =, ⊥,⇒, (, ), ∀, 𝑥,′

labelling each variable 𝑥, 𝑥′, 𝑥″ and so on. We code each symbol by assigning it a number, so 𝑣(0) =
1,… , 𝑣(′) = 12. A formula 𝑝 is encoded by

𝑐(𝑝) = 2𝑣(first symbol)3𝑣(second symbol)…𝑛th prime𝑣(𝑛th symbol)

For instance, if 𝑝 is the assertion (∀𝑥)(𝑥 = 0), then

𝑐(𝑝) = 28310511791181311175191239

Clearly, not all numbers encode formulae. Wewillwrite 𝑆𝑛 for the formula encoded by𝑛, with 𝑆𝑛 = ⊥
if 𝑛 does not encode a formula. Observe that the statement ‘𝑛 codes a formula’ is definable, as there
is an algorithm to decide it.

The statement ‘𝑙, 𝑚, 𝑛 code formulae and 𝑆𝑛 is obtained from 𝑆 𝑙, 𝑆𝑚 by modus ponens’ is definable.
The analogous statement for generalisation is also definable in a similar way. The axioms of 𝖯𝖠 are
clearly definable, and ‘𝑛 codes a logical axiom or axiom of 𝖯𝖠’ is definable. Given formulae 𝑝1,… , 𝑝𝑛,
we code the sequence as

𝑠(𝑝1,… , 𝑝𝑛) = 2𝑐(𝑝1)3𝑐(𝑝2)…𝑛th prime𝑐(𝑝𝑛)

Thus, ‘𝑛 codes a proof’ is definable, and ‘𝑛 codes a proof of 𝑆𝑚’ is definable. Let 𝜃(𝑚, 𝑛) be a formula
defining ‘𝑛 codes a proof of𝑆𝑚’. Let𝜙(𝑚) = ‘𝑆𝑚 is provable’ is definable, as𝜙(𝑚) = (∃𝑛)(𝜃(𝑚, 𝑛)).

7.3 Gödel’s incompleteness theorem
Consider 𝜒(𝑚) = ‘𝑚 codes a formula 𝑆𝑚 with one free variable, and 𝑆𝑚(𝑚) is unprovable’. This is
definable, so is given by some formula 𝑝(𝑥), so 𝜒(𝑚) holds if and only if 𝑝(𝑚) holds. Let 𝑁 be the
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code for 𝑝(𝑥). Then, 𝑝(𝑁) is the assertion that𝑁 codes a formula 𝑆𝑁 with one free variable, such that
𝑆𝑁(𝑁) is unprovable. Note that 𝑆𝑁 = 𝑝 and 𝑆𝑁(𝑁) = 𝑝(𝑁), so 𝑝(𝑁) asserts that 𝑝(𝑁) is unprovable.
The sentence 𝑝(𝑁) suffices for the above argument, so we have shown the following theorem.

Theorem. 𝖯𝖠 is incomplete.

Note that if our proof above could be written in 𝖯𝖠, we would then have that 𝑝(𝑁) is provable in 𝖯𝖠.
One can check that the proof used the fact that a model of 𝖯𝖠 exists (namely, ℕ, although this was
not particularly important). We thus used the statement Con(𝖯𝖠), that 𝖯𝖠 is consistent, or equival-
ently,

(∀𝑥)(𝑥 does not code a proof of ⊥)
Thus, our proof above formalises to the statement

𝖯𝖠 ∪ {Con(𝖯𝖠)} ⊢ 𝑝(𝑁)

The next theorem then follows.

Theorem. 𝖯𝖠 ⊬ Con(𝖯𝖠).

𝖯𝖠 is incomplete, but we cannot add any true sentence 𝑡 to obtain a complete theory. Indeed, the
proof above can be performed on this new theory 𝖯𝖠∪ {𝑡} to show that it is incomplete. However, 𝖯𝖠
can certainly be extended to some complete theory by taking the set of all sentences that hold in ℕ.
We cannot use the above proof to show that 𝑇 is incomplete, since this would immediately derive a
contradiction. Almost all of the above proof is still valid, so the only invalid part must lead to this
contradiction; there must be no algorithm to decide truth of sentences in 𝖯𝖠.

Theorem. 𝑇 is not decidable.

Note that 𝖹𝖥𝖢 ⊢ Con(𝖯𝖠), where Con(𝖯𝖠) represents the sentence

(∀𝑥 ∈ 𝜔)(𝑥 does not code a proof of ⊥)

This is because 𝖹𝖥𝖢 proves that 𝖯𝖠 has a model, namely 𝜔. However, as for the above theorems, we
obtain the following.

Theorem. 𝖹𝖥𝖢 is incomplete (if 𝖹𝖥𝖢 is consistent).

Theorem. 𝖹𝖥𝖢 ⊬ Con(𝖹𝖥𝖢) (if 𝖹𝖥𝖢 is consistent).
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