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1 Polynomials
1.1 Introduction
Galois theory concerns itself with solving polynomial equations of higher degree, and discussing
how the symmetries of these polynomials relate to their solubility. The modern interpretation of
Galois theory is more interested in the fields that particular polynomials generate, rather than their
particular solutions; this naturally extends to studying symmetries of fields.

1.2 Solving quadratics, cubics and quartics
Methods for solving quadratic equations have been known since the time of the Babylonians. Con-
sider 𝑎𝑋2 + 𝑏𝑋 + 𝑐, and complete the square into (𝑋 + 1

2
𝑏)

2
+ 𝑐 − 𝑏2

4
. This leads directly into the

usual formula.

Alternatively, consider (𝑋−𝑥1)(𝑋−𝑥2) and expand, giving𝑋2−(𝑥1+𝑥2)𝑋+𝑥1𝑥2. Thus, 𝑥1+𝑥2 = −𝑏
and 𝑥1𝑥2 = 𝑐. We can write 𝑥1 =

1
2
[(𝑥1 + 𝑥2) + (𝑥1 − 𝑥2)], where 𝑥1 + 𝑥2 = 𝑏 and (𝑥1 − 𝑥2)2 =

𝑏2 − 4𝑐.
Cubics were solved much later, in the early 16th century, by the Italian mathematician del Ferro.
Consider the cubic𝑋3+𝑎𝑋2+𝑏𝑋+𝑐, written as (𝑋−𝑥1)(𝑋−𝑥2)(𝑋−𝑥3). Multiplying, we find

𝑥1 + 𝑥2 + 𝑥3 = −𝑎; 𝑥1𝑥2 + 𝑥2𝑥3 + 𝑥3𝑥1 = 𝑏; 𝑥1𝑥2𝑥3 = −𝑐
Without loss of generality we can set 𝑎 = 0 by replacing 𝑋 ↦ 𝑋 − 𝑎

3
. Now,

𝑥1 =
1
3[(𝑥1 + 𝑥2 + 𝑥3) + (𝑥1 + 𝜔𝑥2 + 𝜔2𝑥3)⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟

𝑢
+ (𝑥1 + 𝜔2𝑥2 + 𝜔𝑥3)⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟

𝑣
]

where 𝜔 = 𝑒
2𝜋𝑖
3 . The 𝑢, 𝑣 are known as Lagrange resolvents. Applying a cyclic permutation to

𝑥1, 𝑥2, 𝑥3 in 𝑢 or 𝑣, we find 𝑢 ↦ 𝜔𝑢 and 𝑣 ↦ 𝜔𝑣. Hence, the cubes of 𝑢 and 𝑣 are invariant un-
der cyclic permutations of 𝑥1, 𝑥2, 𝑥3. Under a permutation 𝑥2 ↦ 𝑥3, 𝑥3 ↦ 𝑥2, 𝑢 and 𝑣 swap. Hence,
𝑢3+𝑣3 and 𝑢3𝑣3 are invariant under all permutations of roots. A general fact that we will prove later
is that such invariant expressions can be written in terms of the coefficients of the polynomial. In
this case, we have

𝑢3 + 𝑣3 = −27𝑐; 𝑢3𝑣3 = −27𝑏2

Now, 𝑢3 and 𝑣3 are the roots of the quadratic 𝑌 2 +27𝑐𝑌 − 27𝑏2. This then provides a formula for the
root 𝑥1. This process is known as Cardano’s formula.
Similarly, the quartic𝑋4+𝑎𝑋3+𝑏𝑋2+𝑐𝑋+𝑑 can be solved by producing an auxiliary cubic equation,
in a similar way to the auxiliary quadratic equation found for the cubic case above. However, the
same process does not work for the quintic; the auxiliary equation has a degree which is too large.
The underlying reason behind this is to do with group theory, and in particular, the group structure
of 𝑆5 and 𝐴5. This will be explored later in the course.

1.3 Polynomial rings
In this course, ringmeans a commutative nonzero ring. If 𝑅 is a ring, 𝑅[𝑋] denotes the ring of poly-
nomials with elements∑𝑛

𝑖=0 𝑎𝑖𝑋 𝑖, and the usual operations of addition and multiplication. A poly-
nomial 𝑓 ∈ 𝑅[𝑋] can be interpreted as a function 𝑓∶ 𝑅 → 𝑅, given by 𝑥 ↦ ∑𝑛

𝑖=0 𝑎𝑖𝑥𝑖. It is, however,
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important to distinguish the polynomial and its associated function; the polynomial is not in general
uniquely determined by the function. For example, let 𝑅 = ℤ⟋𝑝ℤ, so for all 𝑎 ∈ 𝑅, we have 𝑎𝑝 = 𝑎,
and hence 𝑋𝑝 and 𝑋 are different polynomials yet represent the same function.

Recall from Groups, Rings and Modules that if 𝑅 = 𝐾 is a field, 𝐾[𝑋] is a Euclidean domain (and
hence is a unique factorisation domain, a Noetherian ring, a principal ideal domain, and an integral
domain). Hence, there is a division algorithm: for polynomials 𝑓, 𝑔 ∈ 𝐾[𝑋], there exists a unique
𝑞, 𝑟 ∈ 𝐾[𝑋] such that 𝑓 = 𝑔𝑞 + 𝑟 and deg 𝑟 < deg 𝑔, where we denote deg 0 = −∞. If 𝑔 = 𝑋 − 𝑎 is
linear, 𝑓 = (𝑋 −𝑎)𝑞+ 𝑟where 𝑟 = 𝑓(𝑎) ∈ 𝐾; this is the familiar remainder theorem. Note that every
polynomial 𝑓 ∈ 𝐾[𝑋] is a product of irreducible polynomials since 𝐾[𝑋] is a unique factorisation
domain, and there are greatest common divisors which can be computed using Euclid’s algorithm in
the usual way.

Proposition. Let 𝐾 be a field, and 0 ≠ 𝑓 ∈ 𝐾[𝑋]. Then, 𝑓 has at most deg𝑓 roots in 𝐾.

Proof. If𝑓 has no roots, the proof is complete. If𝑓 has a root𝑎, consider𝑓 = (𝑋−𝑎)𝑞+𝑓(0) = (𝑋−𝑎)𝑞.
For a root 𝑏 of 𝑓, either 𝑏 = 𝑎 or 𝑞(𝑏) = 0. By induction, 𝑞 has at most deg 𝑞 roots, since deg 𝑞 < deg𝑓.
Then deg 𝑞 + 1 ≤ deg𝑓 as required.

1.4 Symmetric polynomials

Definition. Let 𝑅 be a ring, and let 𝑛 ≥ 1. A polynomial 𝑓 ∈ 𝑅[𝑋1,… , 𝑋𝑛] is symmetric if,
for every permutation 𝜎 ∈ 𝑆𝑛, we have 𝑓(𝑋𝜎(1),… , 𝑋𝜎(𝑛)) = 𝑓(𝑋1,… , 𝑋𝑛), where 𝑆𝑛 is the
symmetric group of degree 𝑛.

Note that constant polynomials are symmetric, and the property of symmetry is closed under addition
and multiplication. Hence, the set of symmetric polynomials is a subring of 𝑅[𝑋1,… , 𝑋𝑛].
Example. 𝑋1 +⋯+ 𝑋𝑛 is symmetric. More generally, 𝑝𝑘 = 𝑋𝑘

1 +⋯+ 𝑋𝑘
𝑛 is symmetric.

Proposition. Let 𝑓𝜎(𝑋) = 𝑓(𝑋𝜎(1),… , 𝑋𝜎(𝑛)). This gives an action (on the right) of the group
𝑆𝑛 on𝑅[𝑋1,… , 𝑋𝑛]. A polynomial𝑓 ∈ 𝑅[𝑋1,… , 𝑋𝑛] is symmetric if and only if𝑓 is fixedunder
the action of 𝑆𝑛; in other words, 𝑓𝜎 = 𝑓 for all 𝜎 ∈ 𝑆𝑛.

Definition. The elementary symmetric functions or elementary symmetric polynomials are

𝑠𝑟(𝑋1,… , 𝑋𝑛) = ∑
𝑖1<⋯<𝑖𝑟

𝑋𝑖1𝑋𝑖2 ⋯𝑋𝑖𝑟

For instance,
𝑠2(𝑋1, 𝑋2, 𝑋3) = 𝑋1𝑋2 + 𝑋1𝑋3 + 𝑋2𝑋3

It is clear that these are symmetric polynomials.
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Definition. Amonomial is an expression of the form 𝑋𝐼 = 𝑋𝐼1
1 ⋯𝑋𝐼𝑛𝑛 for 𝐼 ∈ ℕ𝑛. The (total)

degree of a monomial is∑𝑛
𝑖=1 𝐼𝑖. A term is a scalar multiple of a monomial. A polynomial is

uniquely characterised by a sum of terms. The total degree of a polynomial is the maximum
total degree of its terms.
Monomials are equipped with a lexicographic ordering, where we say monomials 𝑋𝐼 > 𝑋𝐽 if
either 𝐼1 > 𝐽1 or 𝐼1 = 𝐽1 and for some 𝑟 ∈ {1,… , 𝑛 − 1}we have 𝐼1 = 𝐽1,… , 𝐼𝑟 = 𝐽𝑟, 𝐼𝑟+1 > 𝐽𝑟+1.
This is a total order.

Theorem. Every symmetric polynomial in 𝑛 variables over a ring 𝑅 can be expressed as a
polynomial in the 𝑠𝑟 for 1 ≤ 𝑟 ≤ 𝑛, with coefficients in 𝑅. Further, there are no non-trivial
relations between the 𝑠𝑟.

Remark. Consider the ring homomorphism 𝜃∶ 𝑅[𝑌1,… , 𝑌𝑛] → 𝑅[𝑋1,… , 𝑋𝑛] given by 𝜃(𝑌𝑟) = 𝑠𝑟 and
𝜃(𝑟) = 𝑟 for 𝑟 ∈ 𝑅. The first part of the above theorem stipulates that Im 𝜃 is the set of symmetric
polynomials. The second part implies that 𝜃 is injective, since any element of ker 𝜃 is a polynomial
between the 𝑠𝑟 that evaluates to zero.
Note that we can equivalently define the 𝑠𝑟 as

𝑛
∏
𝑖=1

(𝑇 + 𝑋𝑖) = 𝑇𝑛 + 𝑠1𝑇𝑛−1 +⋯+ 𝑠𝑛−1𝑇 + 𝑠𝑛

If we need to specify the number of variables, we use 𝑠𝑟,𝑛 instead of 𝑠𝑟.

Proof. Let 𝑑 be the total degree of a symmetric polynomial 𝑓. Let 𝑋𝐼 be the largest (in lexicographic
order) monomial which occurs in 𝑓 with coefficient 𝑐. Since 𝑓 is symmetric, any permutation of
the 𝑋𝑖 yields another monomial that occurs in 𝑓. Hence, 𝐼1 ≥ 𝐼2 ≥ ⋯ ≥ 𝐼𝑛, because otherwise the
rearranged monomial that satisfies this will be a strictly larger monomial in 𝑓. We can therefore
write

𝑋𝐼 = 𝑋𝐼1−𝐼2
1 (𝑋1𝑋2)𝐼2−𝐼3 ⋯(𝑋1…𝑋𝑛)𝐼𝑛

Consider
𝑔 = 𝑠𝐼1−𝐼21 𝑠𝐼2−𝐼32 ⋯𝑠𝐼𝑛𝑛

By construction, the largest monomial in 𝑔 is 𝑋𝐼 . Since 𝑔 is symmetric, 𝑐𝑔 is symmetric. By induction,
wemay assume 𝑓−𝑐𝑔 is expressible as a sumof symmetric polynomials as it has total degree no larger
than 𝑑, its leading monomial term is smaller than 𝑋𝐼 , and there are only finitely many monomials of
degree at most 𝑑. Hence 𝑓 is also expressible as a sum of polynomials as required.

Now we prove uniqueness by induction on 𝑛. Let 𝐺 ∈ 𝑅[𝑌1,… , 𝑌𝑛] such that 𝐺(𝑠1,𝑛,… , 𝑠𝑛,𝑛) = 0.
We want to show that 𝐺 is the zero polynomial. If 𝑛 = 1, the result is trivial as 𝑠1,1 = 𝑋1. If 𝐺 = 𝑌𝑘

𝑛 𝐻
with 𝑌𝑛 not dividing 𝐻, then 𝑠𝑘𝑛,𝑛𝐻(𝑠1,𝑛,… , 𝑠𝑛,𝑛) = 0. Since 𝑠𝑛,𝑛 = 𝑋1…𝑋𝑛, it is not a zero divisor
in 𝑅[𝑋1,… , 𝑋𝑛]. Hence 𝐻(𝑠1,𝑛,… , 𝑠𝑛,𝑛) = 0. Without loss of generality, we can assume that 𝐺 is not
divisible by 𝑌𝑛. Now, replacing 𝑋𝑛 with zero, 𝑠𝑘,𝑛 is mapped to 𝑠𝑘,𝑛−1 for 𝑘 ≠ 𝑛, and 𝑠𝑛,𝑛 is mapped
to zero. Hence, 𝐺(𝑠1,𝑛−1,… , 𝑠𝑛−1,𝑛−1, 0) = 0. By induction, 𝐺(𝑌1,… , 𝑌𝑛−1, 0) = 0. Hence 𝑌𝑛 ∣ 𝐺,
contradicting our assumption.

Example. Consider, for 𝑛 ≥ 3,
𝑓 = ∑

𝑖≠𝑗
𝑋2
𝑖 𝑋𝑗
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The leading term is 𝑋2
1𝑋2 = 𝑋1(𝑋1𝑋2), so we consider

𝑓 − 𝑠1𝑠2 = (∑
𝑖≠𝑗

𝑋2
𝑖 𝑋𝑗) −∑

𝑖
∑
𝑗<𝑘

𝑋𝑖𝑋𝑗𝑋𝑘

= (∑
𝑖≠𝑗

𝑋2
𝑖 𝑋𝑗) − (∑

𝑖≠𝑗
𝑋2
𝑖 𝑋𝑗 + 3 ∑

𝑖<𝑗<𝑘
𝑋𝑖𝑋𝑗𝑋𝑘)

= −3 ∑
𝑖<𝑗<𝑘

𝑋𝑖𝑋𝑗𝑋𝑘

= −3𝑠3
Hence 𝑓 = 𝑠1𝑠2 − 3𝑠3.
Consider 𝑓 = 𝑝5 = ∑𝑖 𝑋5

𝑖 . Computing this in terms of elementary symmetric polynomials by hand
is somewhat tedious, but there are various results, such as Newton’s formulae, which can help in
simplifying such expressions.

Theorem (Newton’s formulae). Let 𝑛 ≥ 1. Then for all 𝑘 ≥ 1,

𝑝𝑘 − 𝑠1𝑝𝑘−1 +⋯+ (−1)𝑘−1𝑠𝑘−1𝑝1 + (−1)𝑘𝑘𝑠𝑘 = 0

By convention, let 𝑠0 = 1 and 𝑠𝑟 = 0 if 𝑟 > 𝑛.

Proof. It suffices to consider 𝑅 = ℤ (or, for example, 𝑅 = ℝ). Consider the generating function

𝐹(𝑇) =
𝑛
∏
𝑖=1

(1 − 𝑋𝑖𝑇) =
𝑛
∑
𝑟=0

(−1)𝑟𝑠𝑟𝑇𝑟

Note that for polynomials 𝑓(𝑥), 𝑔(𝑥), their formal derivatives satisfy
d
d𝑇
(𝑓𝑔)
𝑓𝑔 = 𝑓′𝑔 + 𝑓𝑔′

𝑓𝑔 = 𝑓′
𝑓 + 𝑔′

𝑔
Then, taking the logarithmic derivative with respect to 𝑇,

𝐹′(𝑇)
𝐹(𝑇) =

d
d𝑇
∏𝑛

𝑖=1(1 − 𝑋𝑖𝑇)

∏𝑛
𝑖=1(1 − 𝑋𝑖𝑇)

=
𝑛
∑
𝑖=1

d
d𝑇
(1 − 𝑋𝑖𝑇)
1 − 𝑋𝑖𝑇

= −
𝑛
∑
𝑖=1

𝑋𝑖
1 − 𝑋𝑖𝑇

= −1
𝑇

𝑛
∑
𝑖=1

∞
∑
𝑟=1

𝑋𝑟
𝑖 𝑇𝑟

= −1
𝑇

∞
∑
𝑟=1

𝑝𝑟𝑇𝑟
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Hence,
−𝑇𝐹′(𝑇) = 𝑠1𝑇 − 2𝑠2𝑇2 +⋯+ (−1)𝑛−1𝑛𝑠𝑛𝑇𝑛

but also

−𝑇𝐹′(𝑇) = 𝐹(𝑇)
∞
∑
𝑟=1

𝑝𝑟𝑇𝑟 = (𝑠0 − 𝑠1𝑇 +⋯+ (−1)𝑛𝑠𝑛𝑇𝑛)(𝑝1𝑇 + 𝑝2𝑇2 +…)

Equating the coefficients of powers of 𝑇, we find the identity as required by the theorem.

Example. The discriminant polynomial is

𝐷(𝑋1,… , 𝑋𝑛) = Δ(𝑋1,… , 𝑋𝑛)2

where
Δ(𝑋1,… , 𝑋𝑛) =∏

𝑖<𝑗
(𝑋𝑖 − 𝑋𝑗)

This is used in defining the sign of a permutation: applying a permutation 𝜎 to Δmultiplies Δ by the
sign of 𝜎. Hence 𝐷 is symmetric. Therefore, 𝐷 can be written in terms of the symmetric polynomials.

𝐷(𝑋1,… , 𝑋𝑛) = 𝑑(𝑠1,… , 𝑠𝑛)

where 𝑑 has integer coefficients. For example, 𝑛 = 2 gives 𝐷 = (𝑋1 − 𝑋2)2 = 𝑠21 − 4𝑠2.

Definition. Let 𝑓 = 𝑇𝑛 +∑𝑛−1
𝑖=0 𝑎𝑛−𝑖𝑇 𝑖 be a monic polynomial in 𝑅[𝑇]. Its discriminant is

Disc(𝑓) = 𝑑(−𝑎1, 𝑎2, −𝑎3,… , (−1)𝑛𝑎𝑛) ∈ 𝑅

Observe that if 𝑓 is a product of linear polynomials 𝑓 = ∏𝑛
𝑖=1(𝑇 − 𝑥𝑖), then

𝑎𝑟 = (−1)𝑟𝑠𝑟(𝑥1,… , 𝑥𝑛)

giving
Disc(𝑓) =∏

𝑖<𝑗
(𝑥𝑖 − 𝑥𝑗)2 = 𝐷(𝑥1,… , 𝑥𝑛)

In particular, if 𝑅 = 𝐾 is a field, Disc(𝑓) = 0 if and only if 𝑓 has a repeated root. For example,
Disc(𝑇2 + 𝑏𝑇 + 𝑐) = 𝑏2 − 4𝑐.

2 Fields
2.1 Definition

Definition. A field is a commutative nonzero ring 𝐾 with a 1, in which every nonzero ele-
ment is invertible. The set of nonzero elements in𝐾 is therefore a group undermultiplication,
known as the multiplicative group of 𝐾, denoted 𝐾×.
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Definition. The characteristic of a field 𝐾 is the least positive integer 𝑝 such that 𝑝 ⋅ 1 = 0;
or if such an integer does not exist, its characteristic is zero.

Example. ℚ has characteristic zero. 𝔽𝑝 = ℤ⟋𝑝ℤ has characteristic 𝑝, when 𝑝 is prime.

Remark. The characteristic of a field is always prime or zero.

Definition. The prime subfield of a field 𝐾 is the smallest subfield of 𝐾, which is isomorphic
to 𝔽𝑝 (if its characteristic is a prime 𝑝) or ℚ (if its characteristic is zero).

Proposition. Let 𝜑∶ 𝐾 → 𝐿 be a field homomorphism. Then 𝜑 is an injection.

Proof. We have 𝜑(1𝐾) = 1𝐿 ≠ 0𝐿 by the definition of a ring homomorphism. Then ker𝜑 is a proper
ideal of 𝐾. But the only proper ideal of a field is the zero ideal, so ker𝜑 = (0).

2.2 Field extensions

Definition. Let 𝐾 ⊂ 𝐿 be fields (implicitly assuming that the field operations and identity
elements on 𝐾 and 𝐿 are the same). We say 𝐾 is a subfield of 𝐿, and 𝐿 is a field extension of
𝐾, denoted 𝐿/𝐾 (read ‘𝐿 over 𝐾’). If 𝑖 ∶ 𝐾 → 𝐿 is a field homomorphism, we say that 𝑖 is an
isomorphism of 𝐾 with the subfield 𝑖(𝐾) ⊂ 𝐿; in this case, we identify 𝐾 with 𝑖(𝐾) and say 𝐿
is a field extension of 𝐾.

Remark. The notation 𝐿/𝐾 is not related to quotients or division.

Example. (i) ℂ/ℝ/ℚ.
(ii) ℚ(𝑖) = {𝑎 + 𝑏𝑖 ∣ 𝑎, 𝑏 ∈ ℚ}/ℚ.

Definition. Let 𝐾 ⊂ 𝐿, and 𝑥 ∈ 𝐿. We define 𝐾[𝑥] = {𝑝(𝑥) ∣ 𝑝 ∈ 𝐾[𝑇]}, the ring of polyno-
mial expressions in 𝑥. This is a subring of 𝐿, but is not in general a field. We further define
𝐾(𝑥) = {𝑝(𝑥)

𝑞(𝑥)
||| 𝑝, 𝑞 ∈ 𝐾[𝑇], 𝑞(𝑥) ≠ 0} to be the field of fractions of 𝐾[𝑥], which is the field of

rational expressions in 𝑥. This is a subfield of 𝐿, usually read ‘𝐾 adjoin 𝑥’. For 𝑥1,… , 𝑥𝑛 ∈ 𝐿,
we define

𝐾[𝑥1,… , 𝑥𝑛] = {𝑝(𝑥1,… , 𝑥𝑛) ∣ 𝑝 ∈ 𝐾[𝑇1,… , 𝑇𝑛]}

𝐾(𝑥1,… , 𝑥𝑛) = {𝑝(𝑥1,… , 𝑥𝑛)
𝑞(𝑥1,… , 𝑥𝑛)

||| 𝑝, 𝑞 ∈ 𝐾[𝑇1,… , 𝑇𝑛], 𝑞(𝑥1,… , 𝑥𝑛) ≠ 0}

Remark. One can check that 𝐾(𝑥1,… , 𝑥𝑛−1)(𝑥𝑛) = 𝐾(𝑥1,… , 𝑥𝑛) and similarly for 𝐾[𝑥1,… , 𝑥𝑛].

2.3 Field extensions as vector spaces
Remark. A field extension 𝐿/𝐾 turns 𝐿 into a𝐾-vector space by forgetting themultiplication between
elements of 𝐿.
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Definition. A field extension 𝐿/𝐾 is called a finite extension if 𝐿 is a finite-dimensional 𝐾-
vector space. In this case, we write [𝐿 ∶ 𝐾] = dim𝐾 𝐿 for the dimension of this vector space,
known as the degree of the extension. Otherwise, we say 𝐿/𝐾 is an infinite extension, andwrite
[𝐿 ∶ 𝐾] = ∞.

Remark. [𝐿 ∶ 𝐿] = dim𝐿 𝐿 = 1. As a 𝐾-vector space, 𝐿 ≅ 𝐾[𝐿∶𝐾].

Example. ℂ/ℝ is a finite extension of degree two.

If 𝐾 is any field, the extension 𝐾(𝑋)/𝐾 is an infinite extension, where 𝐾(𝑋) is the field of rational
functions, the field of fractions of the polynomial ring 𝐾[𝑋]. This is because 1, 𝑋, 𝑋2,… are linearly
independent.

ℝ/ℚ is an infinite extension. This follows by a countability argument. If ℝ/ℚwere a finite extension
of degree 𝑛, we would have ℝ ≅ ℚ𝑛, but the left hand side is uncountable and the right hand side is
countable.

This course is largely concerned with properties and symmetries of finite field extensions.

Definition. An extension is quadratic, cubic, etc. if its degree is 2, 3, etc.

Proposition. Suppose 𝐾 is a finite field (necessarily of characteristic 𝑝 for 𝑝 ≠ 0 a prime).
Then |𝐾| is a power of 𝑝.

Proof. Note that 𝐾/𝔽𝑝 is a finite extension, and so 𝐾 ≅ 𝔽𝑛𝑝 , giving |𝐾| = 𝑝𝑛.

Wewill later show that for all primepowers 𝑞 = 𝑝𝑛, there exists a finite field𝔽𝑞with 𝑞 elements.

Theorem (tower law). Let 𝑀/𝐿, 𝐿/𝐾 be a pair of field extensions. Then 𝑀/𝐾 is a finite ex-
tension if and only if𝑀/𝐿 and 𝐿/𝐾 are finite. If so, we have [𝑀 ∶ 𝐿][𝐿 ∶ 𝐾] = [𝑀 ∶ 𝐾].

It is easier to prove a more general statement.

Theorem. Let 𝐿/𝐾 and 𝑉 is an 𝐿-vector space. Then 𝑉 is a 𝐾-vector space, and dim𝐾 𝑉 =
[𝐿 ∶ 𝐾] dim𝐿 𝑉 (with the obvious meaning if any of these expressions are infinite).

Taking 𝑉 = 𝑀 proves the tower law as required.

Proof. Let dim𝐿 𝑉 = 𝑑 < ∞. Then 𝑉 ≅ 𝐿 ⊕⋯⊕ 𝐿 = 𝐿𝑑 as an 𝐿-vector space, so this also holds as
a 𝐾-vector space. But since 𝐿 ≅ 𝐾[𝐿∶𝐾] as a 𝐾-vector space, we have 𝑉 ≅ (𝐾[𝐿∶𝐾])𝑑 ≅ 𝐾𝑑[𝐿∶𝐾] as a
𝐾-vector space.
If 𝑉 is finite-dimensional over 𝐾, then a 𝐾-basis for 𝑉 will span 𝑉 over 𝐿, so 𝑉 is finite-dimensional
over 𝐿. Thus if 𝑉 is infinite-dimensional over 𝐿, it is infinite-dimensional over 𝐾.
Likewise, if [𝐿 ∶ 𝐾] = ∞ and 𝑉 ≠ 0, then 𝑉 has an infinite set of linearly independent vectors as a
𝐾-vector space, so dim𝐾 𝑉 = ∞.
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Proposition. Let 𝐾 be a field, and 𝐺 ⊂ 𝐾× be a finite subgroup of the multiplicative group.
Then 𝐺 is cyclic. In particular, if 𝐾 is finite, 𝐾× is cyclic.

Proof. We can find𝑚𝑖 such that

𝐺 ≅ ℤ⟋𝑚1ℤ ×⋯× ℤ⟋𝑚𝑘ℤ

where 1 < 𝑚1 ∣ 𝑚2 ∣ ⋯ ∣ 𝑚𝑘 = 𝑚 by the structure theorem for abelian groups. Then, every element
of 𝐺 satisfies 𝑥𝑚 = 1. Since 𝐾 is a field, the polynomial 𝑇𝑚 − 1 has at most 𝑚 roots. Every element
of 𝐺 is a root of this polynomial, so |𝐺| ≤ 𝑚. This can only happen when 𝑘 = 1, so 𝐺 = ℤ⟋𝑚ℤ.

Remark. If 𝐾 = 𝔽𝑝 = ℤ⟋𝑝ℤ, there exists 𝑎 ∈ {1,… , 𝑝 − 1} such that ℤ⟋𝑝ℤ = {1, 𝑎, 𝑎2,… , 𝑎𝑝−1}. Such
an 𝑎 is called a primitive rootmod 𝑝.

Proposition. Let 𝑅 be a ring, 𝑝 be a prime such that 𝑝 ⋅ 1𝑅 = 0𝑅 (for instance, 𝑅 could be a
field of characteristic 𝑝). Then, themap 𝜑𝑝 ∶ 𝑅 → 𝑅 given by 𝜑𝑝(𝑥) = 𝑥𝑝 is a homomorphism,
known as the Frobenius endomorphism.

Proof. First, 𝜑𝑝(1) = 1𝑝 = 1 and 𝜑𝑝(𝑥)𝜑𝑝(𝑦) = 𝑥𝑝𝑦𝑝 = (𝑥𝑦)𝑝 = 𝜑𝑝(𝑥𝑦). For 𝑥, 𝑦 ∈ 𝑅,

𝜑𝑝(𝑥 + 𝑦) = (𝑝0)𝑥
𝑝𝑦0 + (𝑝1)𝑥

𝑝−1𝑦1 +⋯+ ( 𝑝
𝑝 − 1)𝑥

1𝑦𝑝−1 + (𝑝𝑝)𝑥
0𝑦𝑝

= 𝑥𝑝 + 𝑦𝑝 = 𝜑𝑝(𝑥) + 𝜑𝑝(𝑦)

since 𝑝 ∣ (𝑝
𝑘
) for 𝑘 ∈ {1,… , 𝑝 − 1} by primality of 𝑝.

Example. This gives another proof of Fermat’s little theorem 𝑥𝑝 ≡ 𝑥mod 𝑝, by induction on 𝑥
noting that (𝑥 + 1)𝑝 ≡ 𝑥𝑝 + 1mod 𝑝.

2.4 Algebraic elements and minimal polynomials

Definition. Let 𝐿/𝐾 be an extension and 𝑥 ∈ 𝐿. 𝑥 is algebraic over 𝐾 if there exists a nonzero
polynomial 𝑓 ∈ 𝐾[𝑇] such that 𝑓(𝑥) = 0. Otherwise, we say 𝑥 is transcendental over 𝐾.

For 𝑓 ∈ 𝐾[𝑇], we have 𝑓(𝑥) ∈ 𝐿. Varying 𝑓, this gives a map ev𝑥 ∶ 𝐾[𝑇] → 𝐿 defined by 𝑓 ↦ 𝑓(𝑥).
This is a ring homomorphism.

The kernel 𝐼 = ker(ev𝑥) ⊂ 𝐾[𝑇] is an ideal, the set of polynomials which vanish at 𝑥. As Im(ev𝑥)
is a subring of 𝐿 which is a field, it is an integral domain. In particular, 𝐼 is a prime ideal, so either
𝐼 = 0, in which case 𝑥 is transcendental over𝐾, or there exists a uniquemonic irreducible polynomial
0 ≠ 𝑔 ∈ 𝐾[𝑇] such that 𝐼 = (𝑔), in which case 𝑥 is algebraic and we say 𝑔 is theminimal polynomial
of 𝑥 over 𝐾. In this case, 𝑓(𝑥) = 0 if and only if 𝑔 ∣ 𝑓. We write𝑚𝑥,𝐾 for the minimal polynomial of
𝑥 over 𝐾. Note that𝑚𝑥,𝐾 is the monic polynomial in 𝐾 of least degree with 𝑥 as a root.

10



Example. If 𝑥 ∈ 𝐾, 𝑚𝑥,𝐾 = 𝑇 − 𝑥. If 𝑝 is prime and 𝑑 ≥ 1, 𝑇𝑑 − 𝑝 ∈ ℚ[𝑇] is irreducible by

Eisenstein’s criterion, so it is the minimal polynomial of 𝑑√𝑝 ∈ ℝ over ℚ. If 𝑝 is prime, 𝑧 = 𝑒
2𝜋𝑖
𝑝 is a

root of 𝑇𝑝 − 1 = (𝑇 − 1)(𝑇𝑝−1 + 𝑇𝑝−2 +⋯+ 1) = (𝑇 − 1)𝑔(𝑇). Note that

𝑔(𝑇 + 1) = (𝑝𝑝)𝑇
𝑝−1 + ( 𝑝

𝑝 − 1)𝑇
𝑝−2 +⋯+ (𝑝2)𝑇 + (𝑝1)

This is irreducible by Eisenstein’s criterion, so 𝑔 is minimal for 𝑧 over ℚ.
We say the degree of an algebraic element 𝑥 over 𝐾 is the degree of its minimal polynomial, written
deg𝐾 𝑥 = deg(𝑥/𝐾).

Proposition. Let 𝐿/𝐾 and 𝑥 ∈ 𝐿. Then, the following are equivalent.
(i) 𝑥 is algebraic over 𝐾.
(ii) [𝐾(𝑥) ∶ 𝐾] is finite.
(iii) 𝐾[𝑥] is finite-dimensional as a 𝐾-vector space.
(iv) 𝐾[𝑥] = 𝐾(𝑥).
(v) 𝐾[𝑥] is a field.

If these hold, deg𝑥 = [𝐾(𝑥) ∶ 𝐾].

Proof. (ii) implies (iii). This follows since 𝐾[𝑥] ⊆ 𝐾(𝑥).
(iv) is equivalent to (v) is trivial.

(iii) implies (v) and (ii). Let 0 ≠ 𝑦 = 𝑔(𝑥) ∈ 𝐾[𝑥]. Consider the map 𝐾[𝑥] → 𝐾[𝑥] given by 𝑧 ↦ 𝑦𝑧.
This is a 𝐾-linear transformation, and since 𝑦 ≠ 0 this is injective. Because dim𝐾[𝑥] is finite, this
injective map must be a bijection. Therefore there exists 𝑧 such that 𝑦𝑧 = 1, so 𝑦 is invertible. Hence
(v) holds. Since (v) implies (iv), [𝐾(𝑥) ∶ 𝐾] = dim𝐾 𝐾[𝑥] < ∞ as required for (ii).

(v) implies (i). If 𝑥 = 0, the proof is complete, so assume 𝑥 ≠ 0. Then 𝑥−1 = 𝑎0 + 𝑎1𝑥 +⋯+ 𝑎𝑛𝑥𝑛 ∈
𝐾[𝑥]. Therefore, 𝑎𝑛𝑥𝑛+1 +⋯+ 𝑎0𝑥 − 1 = 0, so 𝑥 is algebraic over 𝐾.
(i) implies (v), (iii), and the degree formula. The image of ev𝑥 ∶ 𝐾[𝑇] → 𝐿 is the subring 𝐾[𝑥] ⊂ 𝐿.
If 𝑥 is algebraic over 𝐾, ker(ev𝑥) = (𝑚𝑥,𝐾) is a maximal ideal by irreducibility of 𝑚𝑥,𝐾 . By the first
isomorphism theorem, 𝐾[𝑇]⟋(𝑚𝑥,𝐾) ≅ 𝐾[𝑥]. But quotients by maximal ideals are fields, so 𝐾[𝑥] is a
field, proving (v). This polynomial is monic of degree 𝑑 = deg𝐾 𝑥. Hence 𝐾[𝑇]⟋(𝑚𝑥,𝐾) has a 𝐾-basis
1, 𝑇,… , 𝑇𝑑−1. Thus, dim𝐾 𝐾[𝑥] = 𝑑 = [𝐾(𝑥) ∶ 𝐾] < ∞, proving (iii) and the degree formula.

Corollary. 𝑥1,… , 𝑥𝑛 are algebraic over 𝐾 if and only if 𝐿 = 𝐾(𝑥1,… , 𝑥𝑛) is finite over 𝐾. If
so, every element of 𝐾(𝑥1,… , 𝑥𝑛) is algebraic over 𝐾.
If 𝑥, 𝑦 are algebraic over 𝐾, then so are 𝑥 ± 𝑦, 𝑥𝑦, and 𝑥−1 if 𝑥 is nonzero. If 𝐿/𝐾 is a field
extension, the set of algebraic elements of 𝐿 forms a subfield of 𝐿.

Proof. If 𝑥𝑛 is algebraic over 𝐾, then it is also algebraic over 𝐾(𝑥1,… , 𝑥𝑛−1). Hence the extension
𝐿/𝐾(𝑥1,… , 𝑥𝑛−1) is finite. By induction on 𝑛, the tower law gives the required result. Conversely, if
𝐿 is finite over 𝐾, the subfield 𝐾(𝑦) is finite over 𝐾 for all 𝑦 ∈ 𝐿, so 𝑦 is algebraic over 𝐾.
Suppose𝑥, 𝑦 are algebraic over𝐾. Then𝑥±𝑦, 𝑥𝑦, 𝑥−1 ∈ 𝐾(𝑥, 𝑦), which is finite over𝐾 as required.
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Example. Consider 𝑧 = 𝑒2𝜋𝑖/𝑝 ∈ ℂ where 𝑝 is an odd prime. This has degree 𝑝 − 1 as discussed
above. Now consider 𝑥 = 2 cos 2𝜋

𝑝
, so 𝑥 = 𝑧 + 1

𝑧
∈ ℚ(𝑧). This is algebraic over ℚ because it belongs

to this finite extension. Note that ℚ(𝑧) ⊃ ℚ(𝑥) ⊃ ℚ, and 𝑧2 − 𝑥𝑧 + 1 = 0. Hence the degree of 𝑧
over ℚ(𝑥) is at most 2. But [ℚ(𝑧) ∶ ℚ(𝑥)] ≠ 1 because 𝑧 ∈ ℂ ∖ ℝ. By the tower law, we must have
[ℚ(𝑧) ∶ ℚ] = 𝑝−1

2
.

We can now derive the minimal polynomial by considering 𝑧
𝑝−1
2 + 𝑧

𝑝−3
2 + ⋯ + 𝑧

−𝑝−1
2 = 0. Since

𝑧 + 𝑧−1 = 𝑥, we can express this as a polynomial in 𝑥 of degree 𝑝−1
2
.

Example. Let 𝑥 = √𝑚 + √𝑛 where𝑚, 𝑛 are integers, and 𝑚, 𝑛,𝑚𝑛 are not squares. We know that
𝑛 = (𝑥−√𝑚)2 = 𝑥2 −2𝑥√𝑚+𝑚, so [ℚ(𝑥) ∶ ℚ(√𝑚)] ≤ 2. By symmetry, [ℚ(𝑥) ∶ ℚ(√𝑛)] ≤ 2. Note
that√𝑚 ∈ ℚ(𝑥) because 𝑥2+𝑚−𝑛

2𝑥
= √𝑚.

𝑚, 𝑛 are not squares, so [ℚ(√𝑚) ∶ ℚ] = 2. By the tower law we have [ℚ(𝑥) ∶ ℚ] ∈ {2, 4}. If [ℚ(𝑥) ∶
ℚ] = 2, we haveℚ(𝑥) = ℚ(√𝑚) = ℚ(√𝑛). In this case,√𝑚 = 𝑎+𝑏√𝑛 ⟹ 𝑚 = 𝑎2+𝑏2𝑛+2𝑎𝑏√𝑛,
but 𝑛 is not a square, so by rationality, 𝑎𝑏 = 0. But if 𝑏 = 0,𝑚 is a square, and if 𝑎 = 0,𝑚𝑛 = 𝑏2𝑛2 is
a square. Hence the degree of the field extension is 4.

Definition. An extension 𝐿/𝐾 is algebraic if all elements of 𝐿 are algebraic over 𝐾.

Lemma. Let𝑀/𝐿/𝐾, where 𝐿/𝐾 is algebraic. Suppose 𝑥 is algebraic over 𝐿. Then 𝑥 is algeb-
raic over 𝐾.

Proof. There exists 𝑓 = 𝑇𝑛 + 𝑎𝑛−1𝑇𝑛−1 + ⋯ + 𝑎0 ∈ 𝐿[𝑇] where 𝑓 ≠ 0 and 𝑓(𝑥) = 0. Let 𝐿0 =
𝐾(𝑎0,… , 𝑎𝑛−1). As each 𝑎𝑖 ∈ 𝐿 is algebraic over𝐾, wemust have that [𝐿0 ∶ 𝐾] is finite. As 𝑓 ∈ 𝐿0[𝑇],
𝑥 is algebraic over 𝐿0. So [𝐿0(𝑥) ∶ 𝐿0] < ∞ ⟹ [𝐿0(𝑥) ∶ 𝐾] < ∞. Hence [𝐾(𝑥) ∶ 𝐾] < ∞, so 𝑥 is
algebraic over 𝐾.

Proposition. (i) Finite extensions are algebraic.
(ii) 𝐾(𝑥) is algebraic over 𝐾 if and only if 𝑥 is algebraic over 𝐾.
(iii) If𝑀/𝐿/𝐾, we have𝑀/𝐾 is algebraic if and only if𝑀/𝐿 and 𝐿/𝐾 are algebraic.

Proof. (i) [𝐿 ∶ 𝐾] < ∞, so for all 𝑥 ∈ 𝐿, [𝐾(𝑥) ∶ 𝐾] < ∞, so 𝑥 is algebraic.
(ii) Certainly if 𝐾(𝑥) is algebraic over 𝐾, we have that 𝑥 is algebraic over 𝐾. Conversely, if 𝑥 is

algebraic over 𝐾, [𝐾(𝑥) ∶ 𝐾] is finite, so it is algebraic by part (i).
(iii) Suppose𝑀/𝐾 is algebraic. Then for all 𝑥 ∈ 𝑀, we have that 𝑥 is algebraic over 𝐾, so it satisfies

a polynomial 𝑓 ∈ 𝐾[𝑇]. Hence 𝑓 ∈ 𝐿[𝑇] is another polynomial that 𝑥 satisfies, so 𝑀/𝐿 is
algebraic. 𝐿/𝐾 is clearly algebraic because it is contained within𝑀.

Conversely, suppose𝑀/𝐿 and 𝐿/𝐾 are algebraic. Let 𝑥 ∈ 𝑀. Then by the previous lemma, 𝑥 is
algebraic over 𝐾 as required.
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Example. Let 𝐾 = ℚ and 𝐿 = {𝑥 ∈ ℂ ∣ 𝑥 is algebraic over ℚ} = ℚ. This extension ℚ/ℚ is algebraic,
but not finite. Indeed, for every 𝑛 ≥ 1, 𝑛√2 ∈ 𝐿, and [ℚ(𝑛√2) ∶ ℚ] = 𝑛 by irreducibility of 𝑇𝑛 − 2. In
particular, 𝐿 contains subfields of arbitrarily large degree, so cannot be a finite extension.

2.5 Algebraic numbers in the real line and complex plane
Traditionally, we call 𝑥 ∈ ℂ algebraic if it is algebraic over ℚ, otherwise it is transcendental. ℚ =
{𝑥 ∣ 𝑥 algebraic} is a proper subfield of ℂ. Indeed, ℚ[𝑇] is a countable set, and ℂ is uncountable.
However, it is difficult to explicitly find an element of ℂ ∖ ℚ, or to show that a given number is
transcendental.

Example. Liouville’s constant 𝑐 = ∑𝑛≥1 10−𝑛! is transcendental, as proven in IA Numbers and Sets.
This can be proven by showing that algebraic numbers cannot be ‘well approximated’ by rationals.

Example. Hermite and Lindemann showed that 𝑒 and 𝜋 are transcendental.
Example. Let 𝑥, 𝑦 be algebraic, and 𝑥 ≠ 0, 1. Gelfond and Schneider showed that 𝑥𝑦 is algebraic if
and only if 𝑦 is rational. In particular, 𝑒𝜋 = (−1)−𝑖 is transcendental.

2.6 Ruler and compass constructions

Definition. A ruler and compass construction in plane geometry is a drawing constructed
with the following methods.
(i) Given 𝑃1, 𝑃2, 𝑄1, 𝑄2 in the plane and 𝑃𝑖 ≠ 𝑄𝑖, we can construct the point of intersection

of the lines 𝑃1𝑄1 and 𝑃2𝑄2, if indeed they do intersect.
(ii) Given 𝑃1, 𝑃2, 𝑄1, 𝑄2 in the plane and 𝑃𝑖 ≠ 𝑄𝑖, we can construct the points of intersection

of the circles with centres 𝑃𝑖 that pass through the 𝑄𝑖, if they intersect.
(iii) Similarly we can construct the points of intersection of a line and a circle.
A point (𝑥, 𝑦) ∈ ℝ2 is constructible from a set {(𝑥1, 𝑦1),… , (𝑥𝑛, 𝑦𝑛)} if it can be obtained by
finitelymany expansions of the set under applications of the above operations. A real number
𝑥 ∈ ℝ is constructible if (𝑥, 0) is constructible from {(0, 0), (1, 0)}.

Remark. Every rational is constructible. Square roots of constructible numbers are constructible.

Definition. Let 𝐾 ⊆ ℝ be a subfield of the reals. We say 𝐾 is constructible if there exists
𝑛 ∈ ℕ and fields ℚ = 𝐹0 ⊂ 𝐹1 ⊂ ⋯ ⊂ 𝐹𝑛 ⊆ ℝ and 𝑎𝑖 ∈ 𝐹𝑖 for 1 ≤ 𝑖 ≤ 𝑛 such that
(i) 𝐾 ⊆ 𝐹𝑛;
(ii) 𝐹𝑖 = 𝐹𝑖−1(𝑎𝑖);
(iii) 𝑎2𝑖 ∈ 𝐹𝑖−1.

Remark. By conditions (ii) and (iii), 𝐹𝑖/𝐹𝑖−1 is at most a quadratic extension. Then, by the tower law,
𝐹𝑛/ℚ has degree a power of two, so 𝐾/ℚ is a finite extension with degree a power of two.

Theorem. If 𝑥 is constructible, ℚ(𝑥) is constructible.

Proof. Let 𝐾 = ℚ(𝑥). We show that if (𝑥, 𝑦) can be constructed with 𝑘 steps,ℚ(𝑥, 𝑦) is a constructible
extension ofℚ. By induction, supposeℚ = 𝐹0 ⊂ ⋯ ⊂ 𝐹𝑛 satisfy conditions (ii) and (iii) such that the
coordinates of the points obtained after 𝑘 − 1 constructions lie in 𝐹𝑛.
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The intersection point of two lines has coordinates given by rational functions of the coordinates
of the points 𝑃𝑖, 𝑄𝑖 with rational coefficients. In particular, if the 𝑘th construction is of this type,
the intersection point has coordinates in 𝐹𝑛. We can similarly see that the intersection points of two
circles and the intersection points of a line and a circle have coordinates given by quadratic equations
𝑎±𝑏√𝑒, 𝑐±𝑑√𝑒, where𝑎, 𝑏, 𝑐, 𝑑, 𝑒 are rational functions of the coordinates𝑃𝑖, 𝑄𝑖. Thus the newpoints
have coordinates which lie in 𝐹𝑛(√𝑒), a constructible extension of ℚ as required.

Corollary. If 𝑥 is constructible, 𝑥 is algebraic over ℚ and the degree of the minimal polyno-
mial is a power of two.

Remark. One can show that if ℚ(𝑥) is constructible, we also have 𝑥 is constructible, so the above
theorem is a bi-implication. However, this will not be required for our purposes in this course.

2.7 Classical problems

Theorem. It is impossible to square the circle.

Proof. The statement is to construct a square with area equal to that of a given circle. In particular,
we must construct √𝜋. Suppose such a construction can occur. Then 𝜋 is also constructible. But 𝜋
is transcendental and hence inconstructible.

Theorem. It is impossible to duplicate the cube.

Proof. To duplicate the cube, one must be able to construct 3√2. The minimal polynomial of 3√2 is
𝑋3 − 2. This can be easily checked with Eisenstein’s criterion. Since the minimal polynomial is of
degree not a power of two, 3√2 is inconstructible.

Theorem. It is impossible to trisect a given angle.

Proof. If we can trisect any constructible angle, we can in particular trisect the (constructible) angle
2𝜋
3
, for example to construct a regular nonagon. Then the angle 2𝜋

9
would be constructible, so its sine

and cosine would be constructible. By the triple angle formula for cosine,

cos 3𝜃 = 4 cos3 𝜃 − 3 cos 𝜃 ⟹ 4 cos (2𝜋9 )
3
− 3 cos (2𝜋9 ) = cos (2𝜋3 )

Hence cos ( 2𝜋
9
) is a root of 8𝑋3−6𝑋+1. In particular, 2 cos ( 2𝜋

9
)−2 is a root of𝑋3+6𝑋2+9𝑋+3, which

can be shown to be irreducible by Eisenstein’s criterion. But this has degree 3, so degℚ cos (
2𝜋
9
) = 3,

so this is inconstructible. In particular, the regular nonagon is inconstructible.

We will later prove the following theorem.
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Theorem (Gauss). A regular 𝑛-gon is is constructible if and only if 𝑛 is the product of a power
of two and distinct Fermat primes, which are the primes of the form 22𝑘 + 1.

3 Types of field extensions
3.1 Fields from polynomials
Suppose 𝐾 is a field and 𝑓 ∈ 𝐾[𝑇]. We wish to find an extension 𝐿/𝐾 of degree as small as possible
such that 𝑓 is expressible as a product of linear factors in 𝐿[𝑇].
Example. Let 𝐾 = ℚ. Then by the fundamental theorem of algebra, a monic polynomial 𝑓 ∈ ℚ[𝑇]
is expressible as a product of 𝑛 linear factors (𝑇 − 𝑥𝑖) in ℂ[𝑇]. One example of such a field extension
is 𝐿 = ℚ(𝑥1,… , 𝑥𝑛), which is a finite extension of ℚ.
We will later give another proof of the fundamental theorem of algebra using techniques fromGalois
theory.

Example. Let 𝐾 = 𝔽𝑝, and 𝑓 is irreducible and has degree 𝑑 > 1. Since there is no ambient field
structure, explicitly finding 𝐿 is more challenging. We will first find an extension in which 𝑓 has at
least one root, and then use induction.

Theorem. Let 𝑓 be a monic irreducible polynomial. Let 𝐿𝑓 = 𝐾[𝑇]⟋(𝑓). Since 𝑓 is irredu-
cible, (𝑓) is maximal, hence 𝐿𝑓 is a field. Let 𝑡 ∈ 𝐿𝑓 be the residue class 𝑇 modulo (𝑓). Then
𝐿𝑓/𝐾 is a finite field extension of degree deg𝑓, and 𝑓 is the minimal polynomial for 𝑡.

We have thus constructed a field extension of 𝐾 for which 𝑓 has at least a single root. Recall that if 𝑥
is algebraic over 𝐾, then 𝐾(𝑥) ≅ 𝐾[𝑇]⟋(𝑓) where 𝑓 is minimal for 𝑥.

Definition. Let 𝐾 be a field, and 𝐿/𝐾,𝑀/𝐾 are field extensions. A 𝐾-homomorphism or 𝐾-
embedding from 𝐿 to𝑀 is a field homomorphism 𝜎∶ 𝐿 → 𝑀 such that 𝜎|𝐾 = id𝐾 .

The naming ‘𝐾-embedding’ is justified because any field homomorphism is injective.

Theorem. Let 𝑓 ∈ 𝐾[𝑇] be irreducible, and 𝐿/𝐾 a field extension. Then:
(i) If 𝑥 ∈ 𝐿 is a root of 𝑓, there exists a unique 𝐾-homomorphism 𝜎∶ 𝐿𝑓 = 𝐾[𝑇]⟋(𝑓) → 𝐿

such that 𝑡 = 𝑇 + (𝑓) ↦ 𝑥.
(ii) Every 𝐾-homomorphism 𝜎∶ 𝐿𝑓 → 𝐿 arises in this way.

Hence, we have a bijection between 𝐾-homomorphisms 𝜎∶ 𝐿𝑓 → 𝐿 and the set of roots of 𝑓
in 𝐿. In particular, there are at most deg𝑓-many 𝐾-homomorphisms.

Proof. Let 𝑥 ∈ 𝐿 be a root of 𝑓. We define the 𝐾-homomorphism 𝜎∶ 𝐾[𝑇]⟋(𝑓) → 𝐿 by 𝜎(𝑇) = 𝑥.
Conversely, suppose 𝜎∶ 𝐾[𝑇]⟋(𝑓) → 𝐿 is a 𝐾-homomorphism. Then 𝜎(𝑇) is a root of 𝑓, because
𝑓(𝜎(𝑇)) = 𝜎(𝑓(𝑇)) = 𝜎(0) = 0. So the two definitions are inverses, so we have a one-to-one corres-
pondence as required.
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Corollary. Let 𝐿 = 𝐾(𝑥) for some 𝑥 algebraic over 𝐾. Then there exists a unique isomorph-
ism 𝜎∶ 𝐿𝑓 → 𝐾(𝑥) such that 𝜎(𝑡) = 𝑥, where 𝑓 is minimal for 𝑥 over 𝐾.

Definition. Let 𝑥, 𝑦 be algebraic over 𝐾. We say 𝑥, 𝑦 are 𝐾-conjugate if they have the same
minimal polynomial over 𝐾.

By the corollary above, 𝐾(𝑥) and 𝐾(𝑦) are isomorphic to 𝐿𝑓 where 𝑓 is minimal for 𝑥 and 𝑦 over
𝐾.

Corollary. Algebraic elements 𝑥, 𝑦 are 𝐾-conjugate if and only if there exists a 𝐾-
isomorphism 𝜎∶ 𝐾(𝑥) → 𝐾(𝑦) such that 𝜎(𝑥) = 𝑦.

Proof. The above corollary shows the forward direction. Conversely, for all 𝑔 ∈ 𝐾[𝑇], we have
𝜎(𝑔(𝑥)) = 𝑔(𝜎(𝑥)) so they have the same minimal polynomial.

Informally, the roots of an irreducible polynomial are algebraically indistinguishable.

It can be useful for inductive arguments to have a generalisation of the above theorem.

Definition. Let 𝐿/𝐾, 𝐿′/𝐾′ be field extensions, and let 𝜎∶ 𝐾 → 𝐾′ be a field homomorphism.
Let 𝜏∶ 𝐿 → 𝐿′ be a field homomorphism such that 𝜏(𝑥) = 𝜎(𝑥) for all 𝑥 ∈ 𝐾. Then we say 𝜏
is a 𝜎-homomorphism from 𝐿 to 𝐿′. We also say 𝜏 extends 𝜎, or that 𝜎 is the restriction of 𝜏 to
𝐾.

We can now define the following variant of the previous theorem.

Theorem. Let 𝑓 ∈ 𝐾[𝑇] be irreducible, and 𝜎∶ 𝐾 → 𝐿 be a field homomorphism. Let 𝜎𝑓 be
the polynomial obtained by applying 𝜎 to the coefficients of 𝑓.
(i) If 𝑥 ∈ 𝐿 is a root of 𝑓, there exists a unique 𝜎-homomorphism 𝜏∶ 𝐿𝑓 → 𝐿 such that

𝜏(𝑡) = 𝑥.
(ii) Every 𝜎-homomorphism 𝐿𝑓 → 𝐿 is of this form.

Therefore there is a bijection between the 𝜎-homomorphisms 𝐿𝑓 → 𝐿 and the roots of 𝑓 in 𝐿.

Example. Let 𝐾 = ℚ(√2) ⊂ ℝ, and 𝐿 = ℂ. Let 𝜎∶ 𝐾 → 𝐿 be the homomorphism such that
𝜎(𝑥 + 𝑦√2) = 𝑥 − 𝑦√2. Then let 𝑓 = 𝑇2 − (1 + √2). Then the map 𝜏∶ 𝐿𝑓 → ℂmust satisfy 𝜏(𝑡) =

±√1 −√2 = ±𝑖√√2 − 1 ∈ ℂ. If instead we let 𝜎(𝑥 + 𝑦√2) = 𝑥 + 𝑦√2, we have 𝜏(𝑡) = ±√√2 + 1,
which are both real.

3.2 Splitting fields

Definition. Let 𝑓 ∈ 𝐾[𝑇] be a nonzero polynomial that is not necessarily irreducible. We
say that an extension 𝐿/𝐾 is a splitting field for 𝑓 over 𝐾 if
(i) 𝑓 splits into linear factors in 𝐿[𝑇];
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(ii) 𝐿 = 𝐾(𝑥1,… , 𝑥𝑛), where the 𝑥𝑖 are the roots of 𝑓 in 𝐿.

Remark. The second criterion ensures that 𝑓 does not split into linear factors in any proper subfield
of 𝐿. Note that any splitting field is finite, because the adjoined elements are algebraic.

Theorem. Every nonzero polynomial has a splitting field.

Proof. Let 𝑓 ∈ 𝐾[𝑇]. We prove this by induction on the degree of 𝑓, but allow 𝐾 to vary. If 𝑓 is
constant, there is nothing to prove, since 𝐾 is already a splitting field. Suppose that for all fields 𝐾′

and all polynomials in 𝐾′[𝑇] of degree less than 𝑓, there is a splitting field. Consider an irreducible
factor 𝑔 of 𝑓, and consider 𝐾′ = 𝐿𝑔 = 𝐾[𝑇]⟋(𝑔). Let 𝑥1 = 𝑇 + (𝑔). Then 𝑔(𝑥1) = 0, so 𝑓(𝑥1) = 0,
hence 𝑓 = (𝑇 − 𝑥1)𝑓1, where 𝑓1 ∈ 𝐾′[𝑇]. By induction, there exists a splitting field 𝐿 for 𝑓1 over 𝐾′

since deg𝑓1 < deg𝑓. Let 𝑥2,… , 𝑥𝑛 ∈ 𝐿 be the roots of 𝑓1 in 𝐿. Then 𝑓 splits into linear factors in 𝐿
with roots {𝑥1, 𝑥2,… , 𝑥𝑛}. Because 𝐿 is a splitting field for 𝑓1 over 𝐾′, we have 𝐿 = 𝐾′(𝑥2,… , 𝑥𝑛) =
𝐾(𝑥1)(𝑥2,… , 𝑥𝑛) = 𝐾(𝑥1,… , 𝑥𝑛), so 𝐿 is a splitting field for 𝑓.

Remark. If 𝐾 ⊆ ℂ, we already know by the fundamental theorem of algebra that any polynomial
over 𝐾 has a subfield of ℂ as its splitting field.

Theorem. Let 𝑓 ∈ 𝐾[𝑇] be a polynomial and 𝐿/𝐾 be a splitting field for 𝑓. Then let 𝜎∶ 𝐾 →
𝑀 be a field homomorphism such that 𝜎𝑓 splits in𝑀[𝑇]. Then
(i) 𝜎 can be extended to a homomorphism 𝜏∶ 𝐿 → 𝑀;
(ii) if𝑀 is a splitting field for 𝜎𝑓 over 𝜎𝐾, then any 𝜏∶ 𝐿 → 𝑀 is an isomorphism.

In particular, any two splitting fields are 𝐾-isomorphic.

Remark. When constructing the splitting field for a polynomial, we had choice in which irreducible
factors to consider first. It is not clear, without this theorem, that two splitting fields have the same
degree.

Note that we can have different 𝜏1, 𝜏2 ∶ 𝐿 → 𝑀 for splitting fields 𝐿,𝑀 of 𝑓 over 𝐾.

Proof. We will prove (i) by induction on [𝐿 ∶ 𝐾]. If 𝑛 = 1, we have 𝐿 = 𝐾 and there is nothing to
prove. Suppose 𝑥 ∈ 𝐿 ∖ 𝐾 is a root of an irreducible factor 𝑔 of 𝑓 in 𝐾, so deg 𝑔 > 1. Let 𝑦 ∈ 𝑀 be a
root of 𝜎𝑔 ∈ 𝑀[𝑇], which exists because 𝜎𝑓 splits in𝑀. Then, there exists 𝜎1 ∶ 𝐾(𝑥) → 𝑀 such that
𝜎1(𝑥) = 𝑦, and 𝜎1 extends 𝜎. Then, [𝐿 ∶ 𝐾(𝑥)] < [𝐿 ∶ 𝐾], so by induction, 𝜎1 ∶ 𝐾(𝑥) → 𝑀 can be
extended to 𝜏∶ 𝐿 → 𝑀, because 𝐿 is a splitting field for 𝑓 over 𝐾(𝑥). This 𝜏 therefore extends 𝜎 as
required.

To prove (ii), suppose𝑀 is a splitting field for 𝜎𝑓 over 𝜎𝐾. Let 𝜏 be as in (i), and {𝑥𝑖} be the roots of
𝑓 in 𝐿. Then the roots of 𝜎𝑓 in 𝑀 are {𝜏(𝑥𝑖)}. Since 𝑀 is a splitting field, 𝑀 = 𝜎𝐾({𝜏(𝑥𝑖)}) = 𝜏𝐿 as
𝐿 = 𝐾({𝑥𝑖}). So 𝜏 is an isomorphism.
If 𝐾 ⊆ 𝑀 and 𝜎 is the inclusion homomorphism, 𝜏 is a 𝐾-isomorphism.

Example. Let 𝑓 = 𝑇3 − 2 ∈ ℚ[𝑇]. This has splitting field 𝐿 = ℚ(3√2, 𝜔) ⊆ ℂ where 𝜔 = 𝑒
2𝜋𝑖
3 . We

know [ℚ(3√2) ∶ ℚ] = 3, but 𝜔 ∉ ℝ and 𝜔2 +𝜔+1 = 0, so [𝐿 ∶ ℚ(2√3)] = 2 giving [𝐿 ∶ ℚ] = 6 by the
tower law. In particular, adjoining a single root to ℚ is not enough to generate 𝐿.
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Example. Let 𝑓 = 𝑇5−1
𝑇−1

= 𝑇4+⋯+𝑇+1 ∈ ℚ[𝑇]. Let 𝑧 = 𝑒
2𝜋𝑖
5 , then this is theminimal polynomial

of 𝑧. We find 𝑓 = ∏1≤𝑎≤4(𝑇−𝑧𝑎), soℚ(𝑧) is already a splitting field for 𝑓 overℚ, and [ℚ(𝑧) ∶ ℚ] = 4.

Example. Let 𝑓 = 𝑇3 − 2 ∈ 𝔽7[𝑇]. This is irreducible because 2 is not a cube in 𝔽7. Consider
𝐿 = 𝔽7[𝑋]⟋𝑋3 − 2 = 𝔽7(𝑥), so 𝑥3 = 2. Since 23 = 43 = 1 in 𝔽7, we have (2𝑥)3 = (4𝑥)3 = 2, so
𝑥, 2𝑥, 4𝑥 are roots of 𝑓 in 𝐿. In particular, 𝐿 is a splitting field for 𝑓, since 𝑓 = (𝑇−𝑥)(𝑇−2𝑥)(𝑇−4𝑥);
here, adjoining one root is enough to make 𝑓 split.

3.3 Normal extensions

Definition. An extension 𝐿/𝐾 is a normal extension if it is algebraic and for all 𝑥 ∈ 𝐿, the
minimal polynomial splits in 𝐿.

Remark. This condition is equivalent to the statement that for every 𝑥 ∈ 𝐿, 𝐿 contains a splitting
field for 𝑥. In other words, if an irreducible polynomial 𝑓 ∈ 𝐾[𝑇] has a single root in 𝐿, it splits and
has all roots in 𝐿.

Theorem. Let 𝐿/𝐾 be a finite extension. Then 𝐿 is normal over𝐾 if and only if 𝐿 is a splitting
field for some (not necessarily irreducible) polynomial 𝑓 ∈ 𝐾[𝑇].

Proof. Suppose 𝐿 is normal. Then 𝐿 = 𝐾(𝑥1,… , 𝑥𝑛) since 𝐿 is algebraic. Then the minimal polyno-
mial 𝑚𝑥𝑖 ,𝐾 of each 𝑥𝑖 over 𝐾 splits in 𝐿. 𝐿 is generated by the roots of∏𝑖𝑚𝑥𝑖 ,𝐾 , so 𝐿 is a splitting
field for 𝑓.
For the converse, suppose 𝐿 is a splitting field for 𝑓 ∈ 𝐾[𝑇]. Let 𝑥 ∈ 𝐿, and let 𝑔 = 𝑚𝑥,𝐾 be its
minimal polynomial. We want to show that 𝑔 splits in 𝐿. Let𝑀 be a splitting field for 𝑔 over 𝐿, and
let 𝑦 ∈ 𝑀 be a root of 𝑔. We want to show 𝑦 ∈ 𝐿.
Since 𝐿 is a splitting field for 𝑓 over 𝐾, 𝐿 is a splitting field for 𝑓 over 𝐾(𝑥), and 𝐿(𝑦) is a splitting field
for 𝑓 over 𝐾(𝑦). Now, there exists a 𝐾-isomorphism between 𝐾(𝑥) and 𝐾(𝑦), because 𝑥, 𝑦 are roots of
the same irreducible polynomial 𝑔. By the uniqueness of splitting fields, [𝐿 ∶ 𝐾(𝑥)] = [𝐿(𝑦) ∶ 𝐾(𝑦)].
Multiplying by [𝐾(𝑥) ∶ 𝐾], we find [𝐿 ∶ 𝐾] = [𝐿(𝑦) ∶ 𝐾] because [𝐾(𝑦) ∶ 𝐾] = [𝐾(𝑥) ∶ 𝐾] as they
are roots of the same irreducible polynomial. Hence [𝐿(𝑦) ∶ 𝐿] = 1, so 𝑦 ∈ 𝐿 as required.

Corollary (normal closure). Let𝐿/𝐾 be a finite extension. Then there exists a finite extension
𝑀/𝐿 such that𝑀/𝐾 is normal, and if 𝐿 ⊆ 𝑀′ ⊆ 𝑀 and𝑀′/𝐾 is normal, 𝑀 = 𝑀′. Moreover,
any two such extensions𝑀 are 𝐿-isomorphic.

Such an𝑀 is said to be a normal closure of 𝐿/𝐾.

Proof. Let 𝐿 = 𝐾(𝑥1,… , 𝑥𝑘), and 𝑓 = ∏𝑘
𝑖=1𝑚𝑥𝑖 ,𝐾 ∈ 𝐾[𝑇]. Then let𝑀 be a splitting field of 𝑓 over 𝐿.

Then, since the 𝑥𝑖 are roots of 𝑓,𝑀 is also a splitting field for 𝑓 over 𝐾. So𝑀/𝐾 is normal.

Let 𝑀′ be such that 𝐿 ⊆ 𝑀′ ⊆ 𝑀 and 𝑀′/𝐾 be normal. Then as 𝑥𝑖 ∈ 𝑀′, the minimal polynomial
𝑚𝑥𝑖 ,𝐾 splits in𝑀′. So𝑀′ = 𝑀.
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Any normal extension𝑀/𝐾 must contain a splitting field for 𝑓, and by the minimality condition,𝑀
must be a splitting field. By uniqueness of splitting fields, any two such extensions are 𝐿-isomorphic
as required.

3.4 Separable polynomials
Recall that over ℂ, a root 𝑥 of a polynomial is said to be a multiple zero when its derivative vanishes
at 𝑥. Over arbitrary fields, the same is true, but the analytic concept of derivative must be replaced
with an algebraic process.

Definition. The formal derivative of a polynomial 𝑓(𝑇) = ∑𝑑
𝑖=0 𝑎𝑖𝑋 𝑖 is

𝑓′(𝑇) =
𝑑
∑
𝑖=1

𝑖𝑎𝑖𝑋 𝑖−1

Remark. One can check from the definition that the familiar rules (𝑓+𝑔)′ = 𝑓′+𝑔′, (𝑓𝑔)′ = 𝑓′𝑔+𝑓𝑔′,
and (𝑓𝑛)′ = 𝑛𝑓′𝑓𝑛−1 hold.
Example. Consider a field 𝐾 of characteristic 𝑝 > 0, and let 𝑓 = 𝑇𝑝 + 𝑎0. Then 𝑓′ = 0, so a
non-constant polynomial can have a zero derivative.

Proposition. Let 𝑓 ∈ 𝐾[𝑇], 𝐿/𝐾 be a field extension, and 𝑥 ∈ 𝐿 a root of 𝑓. Then 𝑥 is a
simple root if and only if 𝑓′(𝑥) ≠ 0.

Proof. We can write 𝑓 = (𝑇 − 𝑥)𝑔 ∈ 𝐿[𝑇]. Then 𝑓′ = 𝑔 + (𝑇 − 𝑥)𝑔′, so 𝑓′(𝑥) = 𝑔(𝑥). In particular,
𝑓′(𝑥) ≠ 0 if and only if (𝑇 − 𝑥) does not divide 𝑔, which is the criterion that 𝑥 is a simple root of
𝑓.

Definition. A polynomial 𝑓 ∈ 𝐾[𝑇] is separable if it splits into distinct linear factors in a
splitting field. Equivalently, it has deg𝑓 distinct roots.

Corollary. 𝑓 is separable if and only if the greatest common divisor of 𝑓 and 𝑓′ is 1.

For convenience, we will take gcd(𝑓, 𝑔) to be the unique monic polynomial ℎ such that (ℎ) = (𝑓, 𝑔).
Then since𝐾[𝑇] is a Euclidean domain, we can compute a representationℎ = 𝑎𝑓+𝑏𝑔 for polynomials
𝑎, 𝑏. Note that gcd(𝑓, 𝑔) is invariant under a field extension, because Euclid’s algorithm does not
depend on the ambient field structure.

Proof. Wecan replace𝐾 by a splitting field of𝑓, sowe can factorise𝑓 into a product of linear factors in
𝐾. The two are separable if 𝑓, 𝑓′ have no common root, which is true if and only if gcd(𝑓, 𝑓′) = 1.

Example. Let𝐾 have characteristic 𝑝 > 0, and let 𝑓 = 𝑇𝑝−𝑏 for 𝑏 ∈ 𝐾. Then 𝑓′ = 0, so gcd(𝑓, 𝑓′) =
𝑓 ≠ 1. Hence 𝑓 is inseparable. Let 𝐿 be an extension of 𝐾 containing a 𝑝th root 𝑎 ∈ 𝐿 of 𝑏, so 𝑎𝑝 = 𝑏.
Then 𝑓 = (𝑇 − 𝑎)𝑝 = 𝑇𝑝 + (−𝑎)𝑝 = 𝑇𝑝 − 𝑏. In particular, 𝑓 has only one root in a splitting field.
If 𝑏 is not a 𝑝th power in 𝐾, then 𝑓 is irreducible. This is seen on the example sheets.
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Theorem. Let 𝑓 ∈ 𝐾[𝑇] be an irreducible polynomial. Then 𝑓 is separable if and only if
𝑓′ ≠ 0.
In addition, if 𝐾 has characteristic zero, every irreducible polynomial 𝑓 ∈ 𝐾[𝑇] is separable.
If 𝐾 has positive characteristic 𝑝 > 0, an irreducible polynomial 𝑓 ∈ 𝐾[𝑇] is inseparable if
and only if 𝑓(𝑇) = 𝑔(𝑇𝑝) for some 𝑔 ∈ 𝐾[𝑇].

Proof. Without loss of generality, we can assume 𝑓 is monic. Then, since 𝑓 is irreducible, the greatest
common divisor gcd(𝑓, 𝑓′) is either 𝑓 or 1. If gcd(𝑓, 𝑓′) = 𝑓, then 𝑓′ = 0 by considering the degree.

For a polynomial 𝑓, we can write 𝑓 = ∑𝑑
𝑖=0 𝑎𝑖𝑇 𝑖 and 𝑓′ = ∑𝑑

𝑖=1 𝑖𝑎𝑖𝑇 𝑖−1, so 𝑓′ = 0 if and only if
𝑖𝑎𝑖 = 0 for all 1 ≤ 𝑖 ≤ 𝑑. In particular, if 𝐾 has characteristic zero, this is true if and only if 𝑎𝑖 = 0 for
all 1 ≤ 𝑖 ≤ 𝑑, so 𝑓 = 𝑎0 is a constant so not irreducible. If𝐾 has characteristic 𝑝 > 0, the requirement
is that 𝑎𝑖 = 0 for all 𝑖 not divisible by 𝑝, or equivalently, 𝑓(𝑇) = 𝑔(𝑇𝑝).

3.5 Separable extensions

Definition. Let 𝐿/𝐾 be a field extension. We say 𝑥 ∈ 𝐿 is separable over 𝐾 if 𝑥 is algebraic
and its minimal polynomial 𝑓 is separable over 𝐾. 𝐿 is separable over 𝐾 if all elements 𝑥 are
separable over 𝐾.

Theorem. Let 𝑥 be algebraic over 𝐾, and 𝐿/𝐾 be an extension in which the minimal poly-
nomial 𝑚𝑥,𝐾 splits. Then 𝑥 is separable over 𝐾 if and only if there are exactly deg𝑥 𝐾-
homomorphisms from 𝐾(𝑥) to 𝐿.

Proof. The number of 𝐾-homomorphisms from 𝐾(𝑥) to 𝐿 is the number of roots of 𝑚𝑥,𝐾 in 𝐿. This
is equal to the degree of 𝑥 if and only if 𝑥 is separable.

Let Hom𝐾(𝐿,𝑀) be the set of 𝐾-homomorphisms from 𝐿 to𝑀. Note that not all 𝐾-linear maps from
𝐿 to𝑀 are 𝐾-homomorphisms.

Theorem (counting embeddings). Let 𝐿 = 𝐾(𝑥1,… , 𝑥𝑘) be a finite extension of 𝐾, so the 𝑥𝑖
are algebraic. Let𝑀/𝐾 be any field extension. Then |Hom𝐾(𝐿,𝑀)| ≤ [𝐿 ∶ 𝐾], with equality
if and only if
(i) for all 𝑖, the minimal polynomial𝑚𝑥𝑖 ,𝐾 splits into linear factors in𝑀; and
(ii) all the 𝑥𝑖 are separable over 𝐾.

Remark. The conditions (i) and (ii) are equivalent to the statement that𝑚𝑥𝑖 ,𝐾 split into distinct linear
factors over 𝑀. There is a variant of this theorem: let 𝜎 ∶ 𝐾 → 𝑀 be a field homomorphism, then
|Hom𝜎(𝐿,𝑀)| ≤ |𝐿 ∶ 𝐾|, and equality holds if and only if the 𝜎𝑚𝑥𝑖 ,𝐾 split into distinct linear factors
over𝑀.

Proof. We prove this by induction on 𝑘. The case 𝑘 = 0 is trivial. Let 𝐾1 = 𝐾(𝑥1) and write
𝑑 = deg𝐾 𝑥1 = [𝐾1 ∶ 𝐾]. Then the number of 𝐾-homomorphisms from 𝐾1 to 𝑀, denoted 𝑒 =
|Hom𝐾(𝐾1,𝑀)|, is the number of roots of 𝑚𝑥1,𝐾 in𝑀. Let 𝜎 ∶ 𝐾1 → 𝑀 be a 𝐾-homomorphism. By
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the inductive hypothesis, there exist at most [𝐿 ∶ 𝐾1] extensions of 𝜎 to a 𝐾-homomorphism 𝐿 → 𝑀.
Hence the number of 𝐾-homomorphisms from 𝐿 to𝑀 is at most 𝑒[𝐿 ∶ 𝐾1] ≤ 𝑑[𝐿 ∶ 𝐾1] = [𝐿 ∶ 𝐾].
If equality holds, then 𝑒 = 𝑑, and so𝑚𝑥1,𝐾 splits into 𝑑 distinct linear factors in𝑀, so (i) and (ii) hold
for 𝑥1. Replacing 𝑥1 with an arbitrary 𝑥𝑖, one implication follows. Conversely, suppose conditions
(i) and (ii) hold. Then, by the previous theorem, there are 𝑑 distinct homomorphisms from 𝐾1 to𝑀.
Conditions (i) and (ii) still hold over 𝐾1, then by induction, each 𝜎∶ 𝐾1 → 𝑀 has [𝐿 ∶ 𝐾1] extensions
to a homomorphism 𝐿 → 𝑀. Hence |Hom𝐾(𝐿,𝑀)| = [𝐿 ∶ 𝐾] as required.

Theorem (separably generated implies separable). Let𝐿 = 𝐾(𝑥1,… , 𝑥𝑘) be a finite extension
of 𝐾. Then 𝐿/𝐾 is a separable extension if and only if each 𝑥𝑖 is separable over 𝐾.

Proof. If 𝐿/𝐾 is separable, the 𝑥𝑖 are separable by definition. Suppose the 𝑥𝑖 are separable. Let 𝑀
be a normal closure of 𝐿/𝐾, so the splitting field of the product of the𝑚𝑥𝑖 ,𝐾 over 𝐿. By the counting
embeddings theorem, conditions (i) and (ii) are satisfied so |Hom𝐾(𝐿,𝑀)| = [𝐿 ∶ 𝐾]. But if 𝑥 ∈ 𝐿,
𝐿 = 𝐾(𝑥, 𝑥1,… , 𝑥𝑘), so 𝑥 is separable.

Corollary. Let 𝑥, 𝑦 ∈ 𝐿, and 𝐿/𝐾 a field extension. If 𝑥, 𝑦 are separable over 𝐾, so are 𝑥 +
𝑦, 𝑥𝑦, 𝑥−1 for 𝑥 ≠ 0.

Proof. Consider the fields 𝐾(𝑥, 𝑦) and 𝐾(𝑥). These are separable extensions of 𝐾. In particular,
{𝑥 ∈ 𝐿 ∣ 𝑥 separable over 𝐾} is a subfield of 𝐿.

Theorem (primitive element theorem for separable extensions). Let 𝐾 be an infinite field
and 𝐿 = 𝐾(𝑥1,… , 𝑥𝑘) be a finite separable extension. Then there exists 𝑥 ∈ 𝐿 such that
𝐿 = 𝐾(𝑥). In particular, 𝑥 is separable over 𝐾.

Proof. It suffices to consider the case when 𝑘 = 2, because if we can turn 𝐾(𝑥, 𝑦) into 𝐾(𝑧) for 𝑧 ∈
𝐾(𝑥, 𝑦), we can perform this inductively. Let 𝐿 = 𝐾(𝑥, 𝑦)with 𝑥, 𝑦 separable over 𝐾. Let 𝑛 = [𝐿 ∶ 𝐾],
and let 𝑀 be a normal closure for 𝐿/𝐾. Then there exist 𝑛 distinct 𝐾-homomorphisms 𝜎𝑖 ∶ 𝐿 → 𝑀.
Let 𝑎 ∈ 𝐾, and consider 𝑧 = 𝑥 + 𝑎𝑦. We will choose 𝑎 such that 𝐿 = 𝐾(𝑧).
Since 𝐿 = 𝐾(𝑥, 𝑦), we have 𝜎𝑖(𝑥) = 𝜎𝑗(𝑥) and 𝜎𝑖(𝑦) = 𝜎𝑗(𝑦) implies 𝑖 = 𝑗. Consider 𝜎𝑖(𝑧) =
𝜎𝑖(𝑥) + 𝑎𝜎𝑖(𝑦). If 𝜎𝑖(𝑧) = 𝜎𝑗(𝑧), we must have (𝜎𝑖(𝑥) − 𝜎𝑗(𝑥)) + 𝑎(𝜎𝑖(𝑦) − 𝜎𝑗(𝑦)) = 0. If 𝑖 ≠ 𝑗,
at least one of the parenthesised terms is nonzero. Therefore there is at most one 𝑎 ∈ 𝐾 such that
𝜎𝑖(𝑧) = 𝜎𝑗(𝑧). Since 𝐾 is infinite, there exists 𝑎 ∈ 𝐾 such that all of the 𝜎𝑖(𝑧) are distinct. But then
deg𝐾 𝑧 = 𝑛, so 𝐿 = 𝐾(𝑧).

Theorem. Let 𝐿/𝐾 be an extension of finite fields. Then 𝐿 = 𝐾(𝑥) for some 𝑥 ∈ 𝐿.

Proof. The multiplicative group 𝐿× is cyclic. Let 𝑥 be a generator of this group. Then 𝐿 = 𝐾(𝑥), since
every nonzero element is a power of 𝑥.
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4 Galois theory
4.1 Field automorphisms

Definition. A bijective homomorphism from a field to itself is called an automorphism. The
set of automorphisms of a field 𝐿 forms a group Aut(𝐿) under composition: (𝜎𝜏)(𝑥) = 𝜎(𝜏(𝑥)).
This is called the automorphism group of 𝐿. Let 𝑆 ⊆ Aut(𝐿). Then, we define

𝐿𝑆 = {𝑥 ∈ 𝐿 ∣ ∀𝜎 ∈ 𝑆, 𝜎(𝑥) = 𝑥}

This is a subfield of 𝐿, known as the fixed field of 𝑆, since each 𝜎 is a homomorphism.

Example. Let 𝐿 = ℂ and 𝜎 be the complex conjugation automorphism. Then the fixed field of {𝜎}
is ℂ{𝜎} = ℝ.

Definition. Let 𝐿/𝐾 be a field extension. We define Aut(𝐿/𝐾) to be the set of 𝐾-
automorphisms of 𝐿, so Aut(𝐿/𝐾) = {𝜎 ∈ Aut(𝐿) ∣ ∀𝑥 ∈ 𝐾, 𝜎(𝑥) = 𝑥}. Equivalently, 𝜎 ∈
Aut(𝐿) is an element of Aut(𝐿/𝐾) if 𝐾 ⊆ 𝐿{𝜎}. Aut(𝐿/𝐾) is a subgroup of Aut(𝐿).

Theorem. Let 𝐿/𝐾 be a finite extension. Then |Aut(𝐿/𝐾)| ≤ [𝐿 ∶ 𝐾].

Proof. Let𝑀 = 𝐿, then Hom𝐾(𝐿,𝑀) = Aut(𝐿/𝐾), which has at most [𝐿 ∶ 𝐾] elements.

Proposition. If 𝐾 = ℚ or 𝐾 = 𝔽𝑞, Aut(𝐾) = {1}.

Proof. 𝜎(1𝐾) = 1𝐾 hence 𝜎(𝑛𝐾) = 𝑛𝐾 .

In particular, Aut(𝐿) = Aut(𝐿/𝐾) where 𝐾 is the prime subfield of 𝐿.

4.2 Galois extensions
We need to define a notion of when an extension 𝐿/𝐾 has ‘many symmetries’.

Definition. An extension 𝐿/𝐾 is a Galois extension if it is algebraic, and 𝐿Aut(𝐿/𝐾) = 𝐾.

Remark. If 𝑥 ∈ 𝐿 ∖ 𝐾, there is a 𝐾-automorphism 𝜎 ∶ 𝐿 → 𝐿 such that 𝑥 ≠ 𝜎(𝑥).
Example. ℂ/ℝ is a Galois extension, since the fixed field of complex conjugation is ℝ. Similarly,
ℚ(𝑖)/ℚ is a Galois extension.

Example. Let 𝐾/𝔽𝑝 be a finite extension, so 𝐾 is a finite field. The Frobenius automorphism of 𝐾,
given by 𝜑𝑝(𝑥) = 𝑥𝑝, has fixed field

𝐾{𝜑𝑝} = {𝑥 ∈ 𝐾 ∣ 𝑥 a root of 𝑇𝑝 − 𝑇}
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But since this has at most 𝑝 roots, and each element of 𝔽𝑝 is a root, the fixed field is exactly 𝔽𝑝. So
𝐾Aut(𝐾/𝔽𝑝) = 𝔽𝑝, so this is a Galois extension.

Definition. Let 𝐿/𝐾 be a Galois extension. We write Gal(𝐿/𝐾) for the automorphism group
Aut(𝐿/𝐾), called the Galois group of 𝐿/𝐾.

Theorem (classification of finite Galois extensions). Let 𝐿/𝐾 be a finite extension, and let
𝐺 = Aut(𝐿/𝐾), then the following are equivalent.
(i) 𝐿/𝐾 is a Galois extension, so 𝐾 = 𝐿𝐺.
(ii) 𝐿/𝐾 is normal and separable.
(iii) 𝐿 is a splitting field of a separable polynomial in 𝐾.
(iv) |Aut(𝐿/𝐾)| = [𝐿 ∶ 𝐾].
If this holds, the minimal polynomial of any 𝑥 ∈ 𝐿 over 𝐾 is 𝑚𝑥,𝐾 = ∏𝑟

𝑖=1(𝑇 − 𝑥𝑖), where
{𝑥1,… , 𝑥𝑟} is the orbit of 𝐺 on 𝑥.

Proof. (i) implies (ii) and the minimal polynomial result. Let 𝑥 ∈ 𝐿, and {𝑥1,… , 𝑥𝑟} be the orbit of 𝐺
on 𝑥. Let 𝑓 = ∏𝑟

𝑖=1(𝑇 − 𝑥𝑖). Then 𝑓(𝑥) = 0. Since 𝐺 permutes the 𝑥𝑖, the coefficients of 𝑓 are fixed
by 𝐺. By assumption, the coefficients of 𝑓 lie in 𝐾, so the minimal polynomial of 𝑥 must divide 𝑓.
Since𝑚𝑥,𝐾(𝜎(𝑥)) = 𝜎(𝑚𝑥,𝐾(𝑥)) = 0, so every 𝑥𝑖 is a root of the minimal polynomial of𝑚𝑥,𝐾 . So 𝑓 is
exactly the minimal polynomial as required. 𝑚𝑥,𝐾 is a separable polynomial and splits in 𝐿. So 𝐿/𝐾
is normal and separable.

(ii) implies (iii). Since splitting fields are normal extensions, 𝐿 is a splitting field for some polynomial
𝑓 ∈ 𝐾[𝑇]. Write 𝑓 = ∏𝑟

𝑖=1 𝑞
𝑒𝑖
𝑖 where the 𝑞𝑖 are distinct irreducible polynomials, and 𝑒𝑖 ≥ 1. Since 𝐿

and 𝐾 are separable, the 𝑞𝑖 are separable as they are irreducible, so 𝑔 = ∏𝑟
𝑖=1 𝑞𝑖 is separable and 𝐿 is

also a splitting field for 𝑔.
(iii) implies (iv). Let 𝐿 = 𝐾(𝑥1,… , 𝑥𝑘) be the splitting field of a separable polynomial 𝑓 ∈ 𝐾[𝑇] with
roots 𝑥𝑖. By the theorem on counting embeddings with𝑀 = 𝐿, since𝑚𝑥𝑖 ,𝐾 ∣ 𝑓, conditions (i) and (ii)
in the theorem are satisfied, and we find |Aut(𝐿/𝐾)| = |Hom𝐾(𝐿,𝑀)| = [𝐿 ∶ 𝐾].
(iv) implies (i). Suppose |Aut(𝐿/𝐾)| = |𝐺| = [𝐿 ∶ 𝐾]. Note that 𝐺 ⊆ Aut(𝐿/𝐿𝐺) ⊆ Aut(𝐿/𝐾), so these
inclusions are both equalities. So 𝐺 = Aut(𝐿/𝐿𝐺), so [𝐿 ∶ 𝐾] = |𝐺| ≤ [𝐿 ∶ 𝐿𝐺]. But since 𝐿𝐺 ⊇ 𝐾, we
must have equality by the tower law.

Corollary. Let 𝐿/𝐾 be a finite Galois extension. Then 𝐿 = 𝐾(𝑥) for some 𝑥 ∈ 𝐿 which is
separable over 𝐾, and has degree [𝐿 ∶ 𝐾].

Proof. By (ii) above, 𝐿/𝐾 is separable. Then the primitive element theorem implies that 𝐿 = 𝐾(𝑥) for
some 𝑥.
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4.3 Galois correspondence

Theorem (Galois correspondence: part (a)). Let 𝐿/𝐾 be a finite Galois extension with
𝐺 = Gal(𝐿/𝐾). Suppose 𝐹 is another field, and 𝐾 ⊆ 𝐹 ⊆ 𝐿. Then 𝐿/𝐹 is also a Galois ex-
tension where Gal(𝐿/𝐹) ≤ Gal(𝐿/𝐾). The map 𝐹 ↦ Gal(𝐿/𝐹) is a bijection between the set
of intermediate fields 𝐹 and the set of subgroups of𝐻 ≤ Gal(𝐿/𝐾). The inverse of this map is
𝐻 ↦ 𝐿𝐻 . This bijection reverses inclusions, and if 𝐹 = 𝐿𝐻 , we have [𝐹 ∶ 𝐾] = (𝐺 ∶ 𝐻).

Proof. Let 𝑥 ∈ 𝐿. Then 𝑚𝑥,𝐹 ∣ 𝑚𝑥,𝐾 in 𝐹[𝑇]. As 𝑚𝑥,𝐾 splits into distinct linear factors in 𝐿 so
does𝑚𝑥,𝐹 . So 𝐿/𝐹 is normal and separable, and hence a Galois extension as required. By definition,
Gal(𝐿/𝐹) ≤ Gal(𝐿/𝐾).
To check the map 𝐹 ↦ Gal(𝐿/𝐹) is a bijection with the given inverse, we first consider a field 𝐹,
and its image 𝐿Gal(𝐿/𝐹) under both maps. We have 𝐿Gal(𝐿/𝐹) = 𝐹, since 𝐿/𝐹 is Galois as required.
Conversely, suppose 𝐻 ≤ Gal(𝐿/𝐹), and consider its image Gal(𝐿/𝐿𝐻). To show Gal(𝐿/𝐿𝐻) = 𝐻, it
suffices to show that [𝐿 ∶ 𝐿𝐻] ≤ |𝐻|, because certainly 𝐻 ≤ Gal(𝐿/𝐿𝐻) and ||Gal(𝐿/𝐿𝐻)|| ≤ [𝐿 ∶ 𝐿𝐻].
By the previous corollary, 𝐿 = 𝐿𝐻(𝑥) for some 𝑥, and 𝑓 = ∏𝜎∈𝐻(𝑇 − 𝜎(𝑥)) ∈ 𝐿𝐻[𝑇] is a polynomial
with 𝑥 as a root. In particular, [𝐿 ∶ 𝐿𝐻] = deg𝐿𝐻 (𝑥) ≤ deg𝑓 = |𝐻|. So we have a bijection as claimed.
Suppose 𝐹 ⊆ 𝐹′ are fields between 𝐾 and 𝐿. Then Gal(𝐿/𝐹′) ⊆ Gal(𝐿/𝐹), so the bijection reverses
inclusions. Finally, if 𝐹 = 𝐿𝐻 , we have [𝐹 ∶ 𝐾] = [𝐿∶𝐾]

[𝐿∶𝐹]
= ||Gal(𝐿/𝐾)||

||Gal(𝐿/𝐹)||
= |𝐺|

|𝐻|
= (𝐺 ∶ 𝐻).

Theorem (Galois correspondence: part (b)). Let 𝐻 ≤ 𝐺 be a subgroup of a Galois group
𝐺 = Gal(𝐿/𝐾). Then 𝜎𝐻𝜎−1 corresponds to the field 𝜎𝐿𝐻 .

Proof. Under the Galois correspondence, 𝜎𝐻𝜎−1 corresponds to its fixed field

𝐿𝜎𝐻𝜎−1 = {𝑥 ∈ 𝐿 ∣ 𝜎𝜏𝜎−1(𝑥) = 𝑥 for all 𝜏 ∈ 𝐻}

Note that 𝜎𝜏𝜎−1(𝑥) = 𝑥 if and only if 𝜏𝜎−1(𝑥) = 𝜎−1(𝑥), so 𝜏(𝑦) = 𝑦 for 𝑥 = 𝜎(𝑦). Hence 𝑥 ∈ 𝐿𝜎𝐻𝜎−1

if and only if there exists 𝑦 ∈ 𝐿𝐻 , 𝑥 = 𝜎(𝑦). Therefore 𝐿𝜎𝐻𝜎−1 = 𝜎𝐿𝐻 as required.

Theorem (Galois correspondence: part (c)). Let𝐻 ≤ 𝐺 = Gal(𝐿/𝐾). Then the following are
equivalent.
(i) 𝐿𝐻/𝐾 is Galois;
(ii) 𝐿𝐻/𝐾 is normal;
(iii) for all 𝜎 ∈ 𝐺, 𝜎𝐿𝐻 = 𝐿𝐻 ;
(iv) 𝐻 is a normal subgroup of 𝐺.
If so, Gal(𝐿𝐻/𝐾) = Gal(𝐿/𝐾)⟋𝐻 = 𝐺⟋𝐻.

Proof. (i) and (ii) are equivalent. 𝐿/𝐾 is separable since it is Galois. So 𝐿𝐻/𝐾 is also separable.

(iii) and (iv) are equivalent. Let 𝐹 = 𝐿𝐻 , and let 𝑥 ∈ 𝐹. Then the set of roots of𝑚𝑥,𝐾 is the orbit of 𝑥
under𝐺, so theminimal polynomial splits in 𝐹 if and only if for all 𝜎 ∈ 𝐺, 𝜎(𝑥) ∈ 𝐹. As this holds for
all 𝑥 ∈ 𝐹, 𝐹 is normal if and only if 𝜎𝐹 ⊆ 𝐹. Since [𝜎𝐹 ∶ 𝐾] = [𝐹 ∶ 𝐾], as 𝐹 and 𝜎𝐹 are𝐾-isomorphic,
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this holds if and only if 𝜎𝐹 = 𝐹. By part (b) of the Galois correspondence, this is equivalent to the
statement that 𝜎𝐻𝜎−1 = 𝐻 for all 𝜎, so 𝐻 is normal.

If any of the above hold, for all 𝜎 ∈ 𝐺, we have 𝜎𝐹 = 𝐹, so we have homomorphisms 𝐺 → Gal(𝐹/𝐾)
given by the restriction of 𝜎 ∈ 𝐺 to 𝐹. Its kernel is 𝐻. Then from the isomorphism theorem, 𝐺⟋𝐻 is
isomorphic to a subgroup ofGal(𝐹/𝐾). Thismust be an isomorphismbecause [𝐹 ∶ 𝐾] = (𝐺 ∶ 𝐻).

Example. Let 𝐾 = ℚ and 𝐿 = ℚ(3√2, 𝜔) where 𝜔 = 𝑒
2𝜋𝑖
3 . 𝐿 is a splitting field for 𝑇3 − 2 with

[𝐿 ∶ ℚ] = 6. Since 𝑇3 − 2 is a separable polynomial, 𝐿 is the splitting field of a separable polynomial
and hence Galois. Therefore 𝐺 = Gal(𝐿/ℚ) has order 6.

We have the subfields 𝐹1 = ℚ(𝜔), 𝐹2 = ℚ(3√2), where [𝐹1 ∶ ℚ] = 2 and [𝐹2 ∶ ℚ] = 3. In the following
diagram, the arrows on the left hand side are annotated with the degrees of an extensions, and the
arrows on the right hand side are labelled with the index of the relevant subgroup.

𝐿 {1}

𝐹1 𝐹2 𝐻1 𝐻2

𝐾 𝐺

3 2

6

3 2

2 32 3

6

By the classification of finite groups of order 6,𝐺 is isomorphic either to𝐶6 or 𝑆3. 𝐹2 = ℚ(3√2) is not a
normal extension ofℚ, because 𝜔3√2 ∉ 𝐹2. So𝐻2 is not a normal subgroup of 𝐺. Since all subgroups
of abelian groups are normal, 𝐺 is not abelian. So 𝐺 ≅ 𝑆3. Hence𝐻1 ≅ 𝐴3, and𝐻2 is a transposition,
but since all subgroups generated by transpositions are conjugate, we can set 𝐻2 = ⟨(1 2)⟩.
The other two subgroups are conjugate to𝐻2, corresponding to the subfields𝜎𝐹2where𝜎 ∈ 𝐺. Hence,
these subfields are exactly ℚ(𝜔3√2) and ℚ(𝜔2 3√2), since the conjugates of 3√2 are exactly the roots of
the minimal polynomial. Note that since these are the only subgroups, we have found all intermedi-
ate fields between ℚ and ℚ(3√2, 𝜔).
There is an easier way to prove 𝐺 ≅ 𝑆3. Consider a separable polynomial 𝑓 ∈ 𝐾[𝑇], and its roots
𝑥1,… , 𝑥𝑛 in a splitting field 𝐿. Then 𝐺 = Gal(𝐿/𝐾) permutes the {𝑥𝑖}, because 𝑓(𝜎𝑥𝑖) = 𝜎𝑓(𝑥𝑖) = 0.
If 𝜎(𝑥𝑖) = 𝑥𝑖 for all 𝑖, since 𝐿 = 𝐾(𝑥1,… , 𝑥𝑛), 𝜎 must be the identity map. This gives an injective
homomorphism from 𝐺 into 𝑆𝑛. So 𝐺 is isomorphic to a subgroup of 𝑆𝑛. In our example above,
|𝐺| = 6 and 𝐺 is isomorphic to a subgroup of 𝑆3, so 𝐺 ≅ 𝑆3.

4.4 Galois groups of polynomials

Definition. Let 𝑓 ∈ 𝐾[𝑇], and let 𝐿 be a splitting field for 𝑓. There is an action of Gal(𝐿/𝐾)
on the set of roots of 𝑓 in 𝐿. If 𝑓 has 𝑛 roots, this action induces a subgroup of permutations
of roots Gal(𝑓/𝐾) ≤ 𝑆𝑛, called the Galois group of 𝑓 over 𝐾.

Remark. Gal(𝑓/𝐾) ≃ Gal(𝐿/𝐾) as 𝐿 is a splitting field for 𝑓 over 𝐾. In particular, [𝐿 ∶ 𝐾] =
|Gal(𝐿/𝐾)| = |Gal(𝑓/𝐾)| ∣ 𝑛!.
There exist several methods for finding the Galois group for a particular polynomial.
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Proposition. 𝑓 ∈ 𝐾[𝑇] is irreducible if and only if Gal(𝑓/𝐾) is transitive, so for all 𝑖, 𝑗 ∈
{1,… , 𝑛}, there exists 𝜎 ∈ Gal(𝑓/𝐾) such that 𝜎(𝑖) = 𝑗.

Remark. A subgroup of 𝑆𝑛 is transitive if and only if there is exactly one orbit.

Proof. Let 𝑥 be a root of 𝑓 in a splitting field 𝐿. Then its orbit under 𝐺 = Gal(𝑓/𝐾) is exactly the
set of roots of 𝑚𝑥,𝐾 . Since 𝑚𝑥,𝐾 is an irreducible factor of 𝑓, 𝑚𝑥,𝐾 = 𝑓 if and only if 𝑓 is irreducible.
Conversely,𝑚𝑥,𝐾 = 𝑓 if and only if each root of 𝑓 is in the orbit of 𝑥, which is exactly the statement
that 𝐺 acts transitively on the roots of 𝑓.

Remark. If 𝐺 ⊆ 𝑆𝑛 is transitive, by the orbit-stabiliser theorem, 𝑛 ∣ |𝐺|.

Recall that for a monic polynomial 𝑓 = ∏𝑛
𝑖=1(𝑇 − 𝑥𝑖), the discriminant of 𝑓 is Disc(𝑓) = Δ2 ∈ 𝐾,

where Δ = ∏𝑖<𝑗(𝑥𝑖 − 𝑥𝑗). The discriminant is nonzero if and only if 𝑓 is separable.

Proposition. Let char𝐾 ≠ 2, and let 𝑓 ∈ 𝐾[𝑇] be a monic polynomial with splitting field 𝐿.
Let 𝐺 = Gal(𝑓/𝐾). Then the fixed field of 𝐺 ∩ 𝐴𝑛 is 𝐾(Δ), where Δ2 is the discriminant. In
particular, Gal(𝑓/𝐾) ⊆ 𝐴𝑛 if and only if the discriminant Disc(𝑓) is a square.

Proof. Let 𝜋 ∈ 𝑆𝑛. The sign of the permutation is given by

∏
𝑖<𝑗

(𝑇𝜋(𝑖) − 𝑇𝜋(𝑗)) = sgn𝜋∏
𝑖<𝑗

(𝑇𝑖 − 𝑇𝑗)

Hence, if 𝜎 ∈ 𝐺, we have 𝜎(Δ) = sgn𝜎 ⋅ Δ. Because the characteristic is not 2, −1 ≠ 1. Since
Δ ≠ 0, this implies Δ ∈ 𝐾 if and only if 𝐺 ⊆ 𝐴𝑛, and Δ lies in the fixed field 𝐹 of 𝐺 ∩ 𝐴𝑛. Because
[𝐹 ∶ 𝐾] = (𝐺 ∶ 𝐺 ∩ 𝐴𝑛) ∈ {1, 2}, 𝐹 = 𝐾(Δ) exactly.

Example. Let 𝑛 = 3, 𝑓 = 𝑇3 + 𝑎𝑇 + 𝑏 = ∏3
𝑖=1(𝑇 − 𝑥𝑖) where 𝑥𝑖 lie in a splitting field for 𝑓. Since

there is no 𝑇2 term, 𝑥3 = −𝑥1 −𝑥2. Hence, 𝑎 = 𝑥1𝑥2 − (𝑥1 +𝑥2)2, and 𝑏 = 𝑥1𝑥2(𝑥1 +𝑥2). Therefore,

Disc(𝑓) = [(𝑥1 − 𝑥2)(2𝑥1 + 𝑥2)(𝑥1 + 2𝑥2)]
2 = −4𝑎3 − 27𝑏2

In particular, Gal(𝑓/𝐾) ⊆ 𝐴3 if and only if −4𝑎3 − 27𝑏2 is a square in 𝐾.
For example, consider 𝑓 = 𝑇3 − 21𝑇 − 7 ∈ ℚ[𝑇]. This is irreducible by Eisenstein’s criterion. Its
discriminant is 4 ⋅213−27⋅72 = (27 ⋅7)2, which is a square. So Gal(𝑓/𝐾) ⊆ 𝐴3. Since 𝑓 is irreducible,
Gal(𝑓/𝐾) is transitive, so its order is divisible by 3. So Gal(𝑓/𝐾)must be exactly 𝐴3.

Remark. This technique can be used to calculate the Galois group of any cubic polynomial for char-
acteristic not 2, 3, for example.

5 Finite fields
5.1 Construction of finite fields
Every finite field has characteristic 𝑝 > 0, and so it can be regarded as a field extension of 𝔽𝑝. We will
classify every finite field and study their Galois theory. Recall that, for a finite field 𝐹 of characteristic
𝑝,
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(i) |𝐹| = 𝑝𝑛, where [𝐹 ∶ 𝔽𝑝] = 𝑛;
(ii) 𝐹× is cyclic, of order 𝑝𝑛 − 1;
(iii) The Frobenius automorphism 𝜑𝑝 ∶ 𝐹 → 𝐹 given by 𝑥 ↦ 𝑥𝑝 is an automorphism of 𝐹.

Theorem. Let 𝑝 be a prime, and 𝑛 ≥ 1. Then there is a finite field with 𝑞 = 𝑝𝑛 elements.
Any such field is a splitting field of the polynomial 𝑓 = 𝑇𝑞 − 𝑇 over 𝔽𝑝. Since splitting fields
are unique up to 𝔽𝑝-isomorphism, any two finite fields of the same order are isomorphic.

Proof. Let 𝐹 be a field with 𝑞 = 𝑝𝑛 elements. Then if 𝑥 ∈ 𝐹×, 𝑥𝑞−1 = 1. Hence, for all 𝑥 ∈ 𝐹, 𝑥𝑞 = 𝑥.
In particular, 𝑓 has 𝑞 distinct roots in 𝐹, which are all of the elements of 𝐹. So 𝑓 splits into linear
factors in 𝐹, and not in any proper subfield, so 𝐹 is indeed a splitting field for 𝑓 as required.
Now, we wish to explicitly construct such a field. Let 𝐿 be a splitting field for 𝑓 = 𝑇𝑞−𝑇 over 𝔽𝑝. Let
𝐹 ⊆ 𝐿 be the fixed field of 𝜑𝑛𝑝 , the map 𝑥 ↦ 𝑥𝑞. So 𝐹 is the set of roots of 𝑓 in 𝐿. So |𝐹| = 𝑞. Therefore,
𝐿 = 𝐹 because 𝐹 has 𝑞 elements, using the above argument.

Now that we have shown isomorphism, we simply write 𝔽𝑞 for any finite field of 𝑞 elements. There
is no canonical finite field of a given order in general.

5.2 Galois theory of finite fields

Theorem. The extension𝔽𝑝𝑛/𝔽𝑝 is Galois, and theGalois group is cyclic of order𝑛, generated
by the Frobenius automorphism 𝜑𝑝.

Proof. Since 𝔽𝑝𝑛 is the splitting field of the separable polynomial 𝑇𝑝𝑛−𝑇, the extension is Galois. Let
𝐺 ≤ Gal(𝔽𝑝𝑛/𝔽𝑝) be the subgroup generated by 𝜑𝑝. Then 𝔽𝐺𝑝𝑛 = {𝑥 ∣ 𝑥𝑝 = 𝑥} = 𝔽𝑝, so by the Galois
correspondence, 𝐺 must be the entire group Gal(𝔽𝑝𝑛/𝔽𝑝).

Theorem. 𝔽𝑝𝑛 has a unique subfield of order 𝑝𝑚 for all𝑚 ∣ 𝑛, and no others. If𝑚 ∣ 𝑛, then
𝔽𝑝𝑚 ⊆ 𝔽𝑝𝑛 is the fixed field of 𝜑𝑚𝑝 .

Proof. By the Galois correspondence, it suffices to check the subgroups of ℤ⟋𝑛ℤ. The subgroups of
ℤ⟋𝑛ℤ are 𝑚ℤ⟋𝑛ℤ for 𝑚 ∣ 𝑛. Hence, the subfields of 𝔽𝑝𝑚 are the fixed fields of the subgroups ⟨𝜑𝑚𝑝 ⟩,
which have degree equal to the indices (ℤ⟋𝑛ℤ ∶ 𝑚ℤ⟋𝑛ℤ) = 𝑚.

Remark. If𝑚 ∣ 𝑛, Gal(𝔽𝑝𝑛/𝔽𝑝𝑚) = ⟨𝜑𝑚𝑝 ⟩, which has order
𝑛
𝑚
.

Theorem. Let 𝑓 ∈ 𝔽𝑝[𝑇] be separable, and let 𝑛 = deg𝑓. Suppose the irreducible factors of
𝑓 have degrees 𝑛1,… , 𝑛𝑟, so∑

𝑟
𝑖=1 𝑛𝑖 = 𝑛. Then Gal(𝑓/𝔽𝑝) ⊆ 𝑆𝑛 is cyclic and generated by an

element of cycle type (𝑛1,… , 𝑛𝑟). In particular, ||Gal(𝑓/𝔽𝑝)|| is the least common multiple of
the 𝑛𝑖.
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Recall that 𝜋 ∈ 𝑆𝑛 has cycle type (𝑛1,… , 𝑛𝑟) if it is a product of 𝑟 disjoint cycles 𝜋𝑖, each with length
𝑛𝑖.

Proof. Let 𝐿 be a splitting field for 𝑓 over 𝔽𝑝. Consider 𝑥1,… , 𝑥𝑛 ∈ 𝐿. Then Gal(𝐿/𝔽𝑝) is cyclic and
generated by 𝜑𝑝. As the irreducible factors 𝑔𝑖 of 𝑓 are the minimal polynomials of the 𝑥𝑖, and the
roots of the minimal polynomial of 𝑥𝑖 are precisely the orbit of 𝜑𝑝 on 𝑥𝑖, the cycle type must be as
required. The order of any such permutation is the lowest common multiple of the lengths of the
cycles.

5.3 Reduction modulo a prime

Theorem. Let 𝑓 ∈ ℤ[𝑇] be a monic separable polynomial with deg𝑓 = 𝑛, and let 𝑝 be
a prime. Suppose that the reduction 𝑓 ∈ 𝔽𝑝[𝑇] of 𝑓 is also separable. Then Gal(𝑓/𝔽𝑝) ≤
Gal(𝑓/ℚ) as subgroups of 𝑆𝑛.

Remark. The identification of Gal(𝑓/ℚ) with a subgroup of 𝑆𝑛 depends on the choice of ordering
of the roots of 𝑓. Choosing a different ordering corresponds to conjugation of Gal(𝑓/ℚ) in 𝑆𝑛. The
meaning of the statement Gal(𝑓/𝔽𝑝) ≤ Gal(𝑓/ℚ) therefore means that Gal(𝑓/𝔽𝑝) is conjugate to a
subgroup of Gal(𝑓/ℚ) in 𝑆𝑛, not that it is exactly a subgroup.
The following proof is based in algebraic number theory; alternatives are available. The proof is not
examinable.

Proof. Let 𝐿 = ℚ(𝑥1,… , 𝑥𝑛) be a splitting field for 𝑓, where the 𝑥𝑖 are the roots of 𝑓. Let 𝑁 = [𝐿 ∶
ℚ]. Consider 𝑅 = ℤ[𝑥1,… , 𝑥𝑛]. Since 𝑓(𝑥𝑖) = 0 and 𝑓 is monic, every element of 𝑅 is a ℤ-linear
combination of 𝑥𝑎11 ,… , 𝑥𝑎𝑛𝑛 where the 𝑎𝑖 < 𝑛 by using 𝑓 to reduce the degrees. So 𝑅 is finitely-
generated as a ℤ-module, or equivalently, as an abelian group. 𝑅 is contained inside 𝐿 ≃ ℚ𝑁 . 𝑅 is
torsion-free, so 𝑅 ≃ ℤ𝑀 with𝑀 ≤ 𝑁 (in fact,𝑀 = 𝑁).
Then 𝑅 = 𝑅⟋𝑝𝑅 has 𝑝𝑀 elements. Let 𝑃 be a maximal ideal for 𝑅, which corresponds to an ideal

𝑃 of 𝑅 that contains 𝑝𝑅. Then 𝐹 = 𝑅⟋𝑃 ≃ 𝑅⟋𝑃 (by the isomorphism theorem) is a finite field with
𝑝𝑑 elements for some 𝑑. Since 𝑅 is generated by 𝑥1,… , 𝑥𝑛, 𝐹 is generated by 𝑥1,… , 𝑥𝑛, where 𝑥𝑖 =
𝑥𝑖 + 𝑃 ∈ 𝐹. In particular, 𝑓 = ∏𝑛

𝑖=1(𝑇 − 𝑥𝑖). Since 𝑓 is separable, the 𝑥𝑖 are distinct, and 𝐹 is a
splitting field for 𝑓.
Let 𝐺 = Gal(𝑓/ℚ). Then 𝐺 maps 𝑅 to 𝑅 since it permutes the 𝑥𝑖. Let 𝐻 ≤ 𝐺 be the stabiliser of 𝑃,
so 𝐻 = {𝜎 ∈ 𝐺 ∣ 𝜎𝑃 = 𝑃}. Since 𝐻 fixes 𝑃, 𝐻 acts on the quotient 𝑅⟋𝑃 = 𝐹, and it permutes the 𝑥𝑖 in
the same way as it permutes the 𝑥𝑖. In particular, there is an injective homomorphism from 𝐻 into
Gal(𝐹/𝔽𝑝). It now suffices to show that this homomorphism is an isomorphism.

Let {𝑃 = 𝑃1, 𝑃2,… , 𝑃𝑟} be the orbit of 𝑃 under 𝐺, so 𝑃𝑖 = 𝜎𝑃 for some 𝜎 ∈ 𝐺. These are all maximal
ideals since 𝑃 is, and 𝑅⟋𝑃𝑖 ≃

𝑅⟋𝑃 so each 𝑅⟋𝑃𝑖 have 𝑝
𝑑 elements. The 𝑃𝑖 are maximal, so 𝑃𝑖 + 𝑃𝑗 = 𝑅

if 𝑖 ≠ 𝑗. So by the Chinese remainder theorem for rings,

𝑅⟋(𝑃1 ∩⋯ ∩ 𝑃𝑘) ≃
𝑅⟋𝑃1 ×⋯× 𝑅⟋𝑃𝑟
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As 𝑝 ∈ 𝑃1, 𝑝𝑅 ⊆ 𝑃1 ∩⋯ ∩ 𝑃𝑟. So

𝑝𝑁 ≥ 𝑝𝑀 = ||𝑅⟋𝑝𝑅|| ≥ ||𝑅⟋(𝑃1 ∩⋯ ∩ 𝑃𝑟)
|| =

𝑟
∏
𝑖=1

||𝑅⟋𝑃𝑖
|| = 𝑝𝑟𝑑 ⟹ 𝑁 ≥ 𝑟𝑑

Now, by the orbit-stabiliser theorem, 𝑟 = (𝐺 ∶ 𝐻) = 𝑁
|𝐻|
. Since 𝐻 injects into Gal(𝐹/𝔽𝑝), we have

|𝐻| ≤ 𝑑 with equality if and only if the injection is an isomorphism. So 𝑁 ≤ 𝑟𝑑, but since 𝑁 ≥ 𝑟𝑑,
we must have 𝑁 = 𝑟𝑑, so the injection is an isomorphism, and 𝐻 ≃ Gal(𝑓/𝔽𝑝).

Corollary. Let 𝑓 ∈ ℤ[𝑇] be monic and separable with 𝑝 a prime such that 𝑓 ∈ 𝔽𝑝[𝑇] is
separable. Consider the factorisation into irreducibles 𝑓 = 𝑔1…𝑔𝑟 ∈ 𝔽𝑝[𝑇], where deg 𝑔𝑖 =
𝑛𝑖. Then Gal(𝑓/ℚ) contains an element of cycle type (𝑛1,… , 𝑛𝑟).

Proof. Combine the previous two theorems.

Example. Let 𝑓 = 𝑇4 − 3𝑇 + 1. Consider 𝑝 = 2. In 𝔽2, 𝑓 = 𝑇4 + 𝑇 + 1. This does not have a root,
and not divisible by 𝑇2 + 𝑇 + 1 which is the only irreducible quadratic, so it is irreducible.
Now, consider 𝑝 = 5. In 𝔽5, 𝑓 = (𝑇 + 1)(𝑇3 − 𝑇2 + 𝑇 + 1), which is a factorisation into irreducibles.
By the above corollary, Gal(𝑓/ℚ) has a 4-cycle and a 3-cycle. In particular, 12 ∣ |Gal(𝑓/ℚ)|, so the
group is either all of 𝑆4 or it is 𝐴4, as this is the unique index 2 subgroup of 𝑆4. But 4-cycles are odd,
so do not lie in 𝐴4. So Gal(𝑓/ℚ) = 𝑆4.

Note that if 𝑓 is separable, Disc(𝑓) ≠ 0, so 𝑝 ∤ Disc(𝑓) so 𝑓 is separable. If 𝑓 is separable, then 𝑓 is
separable for all primes but the finite set of primes dividing Disc(𝑓).
Remark. If Gal(𝑓/ℚ) contains an element of cycle type (𝑛1,… , 𝑛𝑟), it can in fact be shown that there
exist infinitely many primes 𝑝 such that 𝑓 factors into irreducibles of degrees 𝑛1,… , 𝑛𝑟 in 𝔽𝑝. This is
known as the Chebotarev density theorem, which is a generalisation of Dirichlet’s theoremon primes
in arithmetic progression. However, the proof is far outside the scope of this course.

6 Cyclotomic and Kummer extensions
6.1 Primitive roots of unity

Lemma. Let 𝐶 be a cyclic group of order 𝑛 > 1. Let 𝑎 ∈ ℤ be coprime with 𝑛, also written
(𝑎, 𝑛) = 1. Then the map [𝑎]∶ 𝐶 → 𝐶 given by [𝑎](𝑔) = 𝑔𝑎 is an automorphism of 𝐶, and the
map (ℤ⟋𝑛ℤ)

×
→ Aut(𝐶) defined by 𝑎 ↦ [𝑎] is an isomorphism.

Proof. [𝑎] is clearly a homomorphism, and since 𝑎 is coprime to 𝑛, it is an automorphism since there
exists 𝑏 such that 𝑎𝑏 is congruent to 1 modulo 𝑛. Hence, there is an injection (ℤ⟋𝑛ℤ)

×
→ Aut(𝐶)

given by 𝑎 ↦ [𝑎], and it is a homomorphism. If 𝜑 ∈ Aut(𝐶) and 𝑔 is a generator for 𝐶, 𝜑(𝑔) = 𝑔𝑎 for
some 𝑎 ∈ (ℤ⟋𝑛ℤ)

×
. So 𝜑 = [𝑎], and in particular, the map is an isomorphism.
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Let 𝐾 be a field and 𝑛 ≥ 1. We define 𝛍𝑛(𝐾) = {𝑥 ∈ 𝐾 ∣ 𝑥𝑛 = 1} for the group (under multiplication)
of 𝑛th roots of unity in 𝐾. This is a finite subgroup of 𝐾×, hence it is cyclic. The order of any element
divides 𝑛, so it has order dividing 𝑛.
We say that 𝜁 ∈ 𝛍𝑛(𝐾) is a primitive 𝑛th root of unity if its order is exactly 𝑛. Such a 𝜁 exists if and
only if 𝛍𝑛(𝐾) has 𝑛 elements, and then 𝜁 is a generator for the group. In particular, 𝑓 = 𝑇𝑛 − 1 has 𝑛
distinct roots, 𝜁𝑖 for 𝑖 ∈ {0,… , 𝑛 − 1}, and hence it is separable. In general, 𝑓 = 𝑇𝑛 − 1 is separable
if and only if 𝑓 is coprime with 𝑓′ = 𝑛𝑇𝑛−1, which holds if and only if 𝑛 ≠ 0. In this section, we
assume that the characteristic of 𝐾 is zero or is a positive number 𝑝 that does not divide 𝑛, so 𝑓 is
separable.

Let 𝐿/𝐾 be a splitting field for 𝑇𝑛 − 1. This is Galois since 𝑓 is separable, so we can define 𝐺 =
Gal(𝐿/𝐾). Then |𝛍𝑛(𝐿)| = 𝑛, and so there exists a primitive 𝑛th root of unity 𝜁 = 𝜁𝑛 ∈ 𝐿. Such an 𝐿
is called a cyclotomic extension.

Proposition. Let 𝐿 = 𝐾(𝜁). There exists an injective homomorphism 𝜒 = 𝜒𝑛 ∶ Gal(𝐿/𝐾) →
(ℤ⟋𝑛ℤ)

×
such that 𝜒(𝜎) = 𝑎 implies 𝜎(𝜁) = 𝜁𝑎. In particular, 𝐺 is abelian. 𝜒 is an isomorph-

ism if and only if 𝐺 acts transitively on the set of primitive roots of unity in 𝐿.

The homomorphism 𝜒 is called the cyclotomic character.

Proof. 𝛍𝑛(𝐿) is cyclic and generated by 𝜁, so the roots of𝑇𝑛−1 are the powers of 𝜁, so𝐿 = 𝐾(1, 𝜁, 𝜁2,… , 𝜁𝑛−1) =
𝐾(𝜁). Consider the action of𝐺 on 𝐿. This action permutes 𝛍𝑛(𝐿), and if 𝜁, 𝜁′ ∈ 𝛍𝑛(𝐿) and 𝜎 ∈ 𝐺, then
𝜎(𝜁𝜁′) = 𝜎(𝜁)𝜎(𝜁′), so 𝜎 acts as an automorphism of 𝛍𝑛(𝐿). 𝜎(𝜁) = 𝜁 if and only if 𝜎 is the identity
because 𝐿 = 𝐾(𝜁). This gives an injective homomorphism 𝐺 ↪ Aut (𝛍𝑛(𝐿)) ≃ (ℤ⟋𝑛ℤ)

×
.

𝜁𝑎𝑛 is primitive if and only if 𝑎 is coprime to 𝑛. Therefore the set of primitive 𝑛th roots of unity is
{𝜁𝑎 || 𝑎 ∈ (ℤ⟋𝑛ℤ)

×
}, which by the previous part, is the orbit of 𝜁 under𝐺. The map is surjective if and

only if there is one orbit, so the result follows.

6.2 Cyclotomic polynomials

Definition. Let 𝐾 have characteristic zero or a prime 𝑝 that does not divide 𝑛. The 𝑛th
cyclotomic polynomial is

Φ𝑛(𝑡) = ∏
𝑎∈(ℤ⟋𝑛ℤ)

×
(𝑇 − 𝜁𝑎𝑛 )

in a splitting field 𝐿 of 𝑇𝑛 − 1.

This is the polynomial where the roots are the primitive 𝑛th roots of unity. As 𝐺 permutes the prim-
itive 𝑛th roots of unity in 𝐿, Φ𝑛 has coefficients in 𝐿𝐺 = 𝐾. The last part of the above proposition
shows that 𝜒 is surjective if and only if Φ𝑛 ∈ 𝐾[𝑇] is irreducible.
𝑥 ∈ 𝐿 satisfies 𝑥𝑛 − 1 = 0 if and only if 𝑥 is a primitive 𝑑th root of unity for some unique 𝑑 ∣ 𝑛.
Hence 𝑇𝑛 − 1 = ∏𝑑∣𝑛 Φ𝑑, since the sets of roots are equal. In particular, we could have inductively
defined the cyclotomic polynomials by Φ𝑛 =

𝑇𝑛−1
∏𝑑∣𝑛,𝑑≠𝑛Φ𝑑

. This shows that the Φ𝑛 do not depend on

the choice of field 𝐾, since Φ𝑛 is the image in 𝐾[𝑇] of a polynomial in ℤ[𝑇].
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For example, Φ𝑝 = 𝑇𝑝−1
𝑇−1

= 𝑇𝑝−1 + 𝑇𝑝−2 + ⋯ + ⋯ + 𝑇 + 1. We also have Φ1 = 𝑇 − 1 and

Φ𝑝𝑛(𝑇) =
𝑇𝑝𝑛−1
𝑇𝑝𝑛−1−1

= Φ𝑝(𝑇𝑝𝑛−1). We have degΦ𝑛 = |
|(ℤ⟋𝑛ℤ)

×|
| = 𝜑(𝑛) where 𝜑 is the Euler totient

function.

Theorem (rationals). Let 𝐾 = ℚ. Then 𝜒𝑛 is an isomorphism for all 𝑛 > 1. In particular,
[ℚ(𝜁𝑛) ∶ ℚ] = 𝜑(𝑛), and Φ𝑛 is irreducible over ℚ.

Proof. The statements in the theorem are all equivalent by the previous results, so it suffices to prove
that Φ𝑛 is irreducible over ℚ. If 𝑛 is prime, we have already proven its irreducibility by Eisenstein’s
criterion and Gauss’ lemma. We can easily extend this to the case where 𝑛 is a prime power.

Note that𝜒𝑛 is an isomorphism if for all primes𝑝 ∤ 𝑛, the residue class of𝑝 ∈ (ℤ⟋𝑛ℤ)
×
is in the image

of 𝜒, by factorising 𝑎 as a product of primes if 𝑎 is coprime to 𝑛. Let 𝑓 be the minimal polynomial
of 𝜁 over ℚ, and let 𝑔 be the minimal polynomial of 𝜁𝑝 over ℚ. If 𝑓 = 𝑔, then 𝜁𝑝 lies in the orbit
of Gal(𝐿/𝐾) on 𝜁, so 𝑝 lies in the image of 𝜒 as required. Otherwise, 𝑓 and 𝑔 are coprime, and they
divide 𝑇𝑛−1 so 𝑓𝑔 ∣ 𝑇𝑛−1. As 𝜁 is a root of 𝑔(𝑇𝑝), we have 𝑓 ∣ 𝑔(𝑇𝑝). Reducingmodulo 𝑝, 𝑓 ∈ 𝔽𝑝[𝑇]
divides 𝑔(𝑇𝑝) ∈ 𝔽𝑝[𝑇]. But since we are working over 𝔽𝑝, 𝑔(𝑇𝑝) = 𝑔(𝑇)𝑝. Now, 𝑓 and 𝑔 divide 𝑇𝑛−1
in 𝔽𝑝[𝑇], which is separable because 𝑝 ∤ 𝑛. So 𝑓 ∣ 𝑔

𝑝, so 𝑓 ∣ 𝑔. But then 𝑓
2
∣ 𝑓𝑔 ∣ 𝑇𝑛−1, contradicting

separability of 𝑇𝑛 − 1.

Therefore, the minimal polynomial of 𝑒
2𝜋𝑖
𝑛 over ℚ is Φ𝑛.

Theorem (finite fields). Let 𝐾 = 𝔽𝑝, and let 𝑛 be coprime to 𝑝. Let 𝐿 be a splitting field for
𝑇𝑛−1. Then 𝜒𝑛 is an isomorphism fromGal(𝐿/𝐾) to ⟨𝑝⟩ ≤ (ℤ⟋𝑛ℤ)

×
, the subgroup generated

by the residue class of 𝑝, and 𝜒𝑛(𝜑𝑝) = 𝑝mod 𝑛 where 𝜑𝑝 is the Frobenius endomorphism
𝑥 ↦ 𝑥𝑝, which is a generator of Gal(𝐿/𝐾). Further, [𝐿 ∶ 𝐾] = 𝑟, where 𝑟 is the order of
𝑝 modulo 𝑛. Finally, 𝜑𝑝 has cycle type (𝑟,… , 𝑟) acting as a permutation of the roots of the
cyclotomic polynomial Φ𝑛, which are the primitive 𝑛th roots of unity.

Proof. Since 𝜑𝑝(𝜁) = 𝜁𝑝 and 𝐿 = 𝐾(𝜁), by definition of 𝜒𝑛, we have 𝜒𝑛(𝜑𝑝) = 𝑝, or more precisely,
𝑝mod 𝑛. In particular, 𝜒𝑛(𝐺) = ⟨𝑝⟩, and as this is a Galois extension, [𝐿 ∶ 𝐾] = |𝐺| = |⟨𝑔⟩| = 𝑟.
For the last part, notice that if 𝑎 and 𝑛 are coprime, 𝜑𝑘𝑝(𝜁𝑎) = 𝜁𝑎 holds if and only if 𝜑𝑘𝑝(𝜁) = 𝜁, or
equivalently, 𝑟 ∣ 𝑘. So the orbits of 𝜑𝑝 on the set {𝜁𝑎𝑛 ∣ (𝑎, 𝑛) = 1}, which is the set of roots of Φ𝑛, all
have length 𝑟.

Remark. This almost gives another proof of the irreducibility of the cyclotomic polynomials Φ𝑛 over
ℚ. By reduction modulo 𝑝, Gal(Φ𝑛/ℚ) contains Gal(Φ𝑛/𝔽𝑝) as a subgroup, up to conjugacy by ele-
ments of 𝑆𝜑(𝑛). It is not difficult to show that in fact 𝜒𝑛(Gal(Φ𝑛/ℚ)) ⊇ 𝜒𝑛(Gal(Φ𝑛/𝔽𝑝)) = ⟨𝑝⟩. As this
holds for all primes 𝑝 not dividing 𝑛, 𝜒𝑛(Gal(Φ𝑛/ℚ)) = (ℤ⟋𝑛ℤ)

×
.

Remark. The last part of the above theorem implies that over 𝔽𝑝, the cyclotomic polynomial Φ𝑛
factors as a product of irreducibles of degree 𝑟. This depends only on the value of 𝑝 modulo 𝑛. In
general, for a polynomial with integer coefficients 𝑓 ∈ ℤ[𝑇], its factorisation modulo 𝑝 does not
follow an obvious pattern.
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Answering this question is part of the Langlands programme, a large area of research in modern
number theory. The case where there is such a congruence pattern turns out to be when Gal(𝑓/ℚ) is
abelian. This study is known as class field theory, which is studied in Part III.

6.3 Quadratic reciprocity
The following theorem is from Part II Number Theory. This theorem has several hundred proofs,
and this particular one follows from the above theory on cyclotomic polynomials.

Let 𝑝 be an odd prime and 𝑎 an integer coprime to 𝑝. Then the Legendre symbol (𝑎
𝑝
) is defined

by

(𝑎𝑝) = {+1 if 𝑎 is a square mod 𝑝
−1 otherwise

Euler’s formula for the Legendre symbol is

(𝑎𝑝) ≡ 𝑎
𝑝−1
2 mod 𝑝

Let 𝑞 be another odd prime, and consider the case 𝑛 = 𝑞 in the above discussion, so 𝐿 = 𝐾(𝜁𝑞) is a
splitting field for 𝑓 = 𝑇𝑞 − 1 = (𝑇 − 1)Φ𝑞. On roots of 𝑓 in 𝐿, the Frobenius map 𝜑𝑝 has cycle type
(1, 𝑟,… , 𝑟). There are 𝑞−1

𝑟
-many 𝑟-cycles. The sign of the permutation 𝜑𝑝 is (−1)(𝑟−1)

𝑞−1
𝑟 = (−1)

𝑞−1
𝑟

since 𝑞 is odd. Note that 2 ∣ 𝑞−1
𝑟
holds if and only if 𝑟 ∣ 𝑞−1

2
, or equivalently, 𝑝

𝑞−1
2 ≡ 1mod 2. This is

in the form of Euler’s formula for the Legendre symbol. So the sign of 𝜑𝑝 is exactly (
𝑝
𝑞
).

Since 𝐺 = ⟨𝜑𝑝⟩, the sign of 𝜑𝑝 is +1 if and only if 𝐺 ⊆ 𝐴𝑞 since 𝑞 = deg𝑓. This holds if and only if
Disc(𝑓) is a square in 𝔽𝑝.

Lemma. Let 𝑓 = ∏(𝑇 − 𝑥𝑖) over some field. Then Disc(𝑓) = (−1)
𝑑(𝑑−1)

2 ∏𝑓′(𝑥𝑖). where
𝑑 = deg𝑓.

This lemma can be shown directly from the definition of the discriminant. We use the above lemma
with 𝑓 = 𝑇𝑞 − 1 = ∏𝑞−1

𝑎=0(𝑇 − 𝜁𝑛𝑞 ) and 𝑓′ = 𝑞𝑇𝑞−1 to find

Disc(𝑓) = (−1)
𝑞(𝑞−1)

2

𝑞−1
∏
𝑎=0

𝑞𝜁𝑎(𝑞−1)𝑞 = (−1)
𝑞−1
2 𝑞𝑞𝜁

(𝑞−1) 𝑞(𝑞−1)2𝑞 = (−1)
𝑞−1
2 𝑞𝑞

since 𝑞 is odd. Hence, by the fact that (−1
𝑝
) = (−1)

𝑝−1
2 ,

(𝑝𝑞 ) = (Disc(𝑓)𝑝 ) = ((−1)
𝑞−1
2 𝑞

𝑝 ) = (𝑞𝑝)(−1)
(𝑝−1)(𝑞−1)

4

which is the quadratic reciprocity law.

32



6.4 Construction of regular polygons

Lemma. If𝑚 is a positive integer such that 2𝑚 + 1 is prime, then𝑚 is a power of two.

Proof. If 𝑞 is odd, 2𝑞𝑟 + 1 = (2𝑟 + 1)(2𝑞𝑟−𝑟 − 2𝑞𝑟−2𝑟 +⋯+ 1), which is a nontrivial factorisation.

Ruler and compass construction of a regular 𝑛-gon for 𝑛 ≥ 3 is equivalent to constructing the real
number cos( 2𝜋

𝑛
).

Theorem (Gauss). A regular𝑛-gon is contructible if and only if𝑛 is a power of twomultiplied
by a product of distinct primes of the form 22𝑘 + 1.

Remark. Let 𝐹𝑘 = 22𝑘 + 1 be the 𝑘th Fermat number. 𝐹1 = 5, 𝐹2 = 17, 𝐹3 = 257, and 𝐹4 = 65537 are
all prime. Fermat conjectured that all𝐹𝑘 are prime. This is false; Euler proved that𝐹5 = 641⋅6700417.
Many Fermat numbers are known to be composite, and no more have been found to be prime.

Proof. Recall that a real number 𝑥 ∈ ℝ is constructible if and only if there is a sequence of fields
ℚ = 𝐾0 ⊂ 𝐾1 ⊂ ⋯ ⊂ 𝐾𝑛 such that 𝑥 ∈ 𝐾𝑛 and [𝐾𝑖+1 ∶ 𝐾𝑖] = 2. In particular, if 𝑥 is constructible,
[ℚ(𝑥) ∶ ℚ] = degℚ(𝑥) is a power of two. Note that

𝑥 = cos (2𝜋𝑛 ) = 1
2(𝜁𝑛 + 𝜁−1𝑛 ) ⟹ 𝜁2𝑛 − 2𝑥𝜁𝑛 + 1 = 0

Since 𝑥 ∈ ℝ and 𝜁𝑛 ∉ ℝ (for 𝑛 ≥ 3), [ℚ(𝜁𝑛) ∶ ℚ(𝑥)] = 2. If 𝑥 is constructible, then [ℚ(𝜁𝑛) ∶ ℚ] is a
power of two. But [ℚ(𝜁𝑛) ∶ ℚ] = 𝜑(𝑛).

Let 𝑛 = ∏𝑟
𝑖=1 𝑝

𝑒𝑖
𝑖 be the prime factorisation of 𝑛. Then [ℚ(𝜁𝑛) ∶ ℚ] = ∏𝑟

𝑖=1 𝑝
𝑒𝑖−1
𝑖 (𝑝 − 1). This is a

power of two if and only if for all odd 𝑝𝑖, we have 𝑒𝑖 = 1 and 𝑝𝑖−1 is a power of two. By the previous
lemma, 𝜑(𝑛) is a power of two if and only if 𝑛 is of the required form.
Now suppose 𝑛 is of the required form, so 𝜑(𝑛) = 2𝑚. ℚ(𝜁𝑛)/ℚ is Galois, with Galois group 𝐺 ≃
(ℤ⟋𝑛ℤ)

×
, which has 2𝑚 elements. There exist subgroups 𝐺 = 𝐻0 ⊃ 𝐻1 ⊃ ⋯ ⊃ 𝐻𝑚 = 1 such that

[𝐻𝑖 ∶ 𝐻𝑖+1] = 2. Indeed, as 2 ∣ 2𝑚, by Cauchy’s theorem there exists an element 𝜎 ∈ 𝐺 of order
2, assuming 𝐺 is not the trivial group. Take 𝐻𝑚−1 = ⟨𝜎⟩, and then consider 𝐺⟋⟨𝜎⟩, which contains
a subgroup of order 2 by the same argument; we can proceed inductively. Then the tower of fixed
fields 𝐾𝑖 = ℚ(𝜁𝑛)𝐻𝑖 is a tower of quadratic extensions by the Galois correspondence.

6.5 Kummer extensions

Theorem (linear independence of field embeddings). Let 𝐾, 𝐿 be fields. Let 𝜎1,… , 𝜎𝑛 ∶ 𝐾 →
𝐿 be distinct field homomorphisms. Let 𝑦1,… , 𝑦𝑛 ∈ 𝐿 be such that for all 𝑥 ∈ 𝐾×, 𝑦1𝜎1(𝑥) +
⋯ + 𝑦𝑛𝜎𝑛(𝑥) = 0. Then all 𝑦𝑖 = 0. In other words, 𝜎1,… , 𝜎𝑛 are 𝐿-linearly independent
elements of the set of functions 𝐾 → 𝐿, considered as an 𝐿-vector space.

This is a special case, using 𝐺 = 𝐾×, of the following theorem.
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Theorem (linear independence of characters). Let 𝐺 be a group and 𝐿 be a field. Let
𝜎1,… , 𝜎𝑛 ∶ 𝐺 → 𝐿× be distinct group homomorphisms. Then 𝜎1,… , 𝜎𝑛 are 𝐿-linearly inde-
pendent elements.

Proof. We use induction on 𝑛. If 𝑛 = 1, the result is clear. Suppose 𝑛 > 1. Let 𝑦1,… , 𝑦𝑛 ∈ 𝐿 be such
that for all 𝑔 ∈ 𝐺, 𝑦1𝜎1(𝑔) + ⋯ + 𝑦𝑛𝜎𝑛(𝑔) = 0. Since the homomorphisms are distinct, there is an
element ℎ ∈ 𝐺 such that 𝜎1(ℎ) ≠ 𝜎𝑛(ℎ). The 𝜎𝑖 are homomorphisms, so

𝑦1𝜎1(ℎ𝑔) +⋯+ 𝑦𝑛𝜎𝑛(ℎ𝑔) = 𝑦1𝜎1(ℎ)𝜎1(𝑔) +⋯ + 𝑦𝑛𝜎𝑛(ℎ)𝜎𝑛(𝑔) = 0

Multiplying the original expression in 𝑔 by 𝜎𝑛(ℎ) and subtracting,

𝑦′1𝜎1(𝑔) +⋯ + 𝑦′𝑛−1𝜎𝑛−1(𝑔) = 0; 𝑦′𝑖 = 𝑦𝑖(𝜎𝑖(ℎ) − 𝜎𝑛(ℎ))

By induction, all 𝑦′𝑖 = 0. But 𝜎1(ℎ) ≠ 𝜎𝑛(ℎ), so 𝑦1 = 0. So the original equation 𝑦1𝜎1(𝑔) + ⋯ +
𝑦𝑛𝜎𝑛(𝑔) = 0 can be simplified into 𝑦2𝜎2(𝑔) + ⋯ + 𝑦𝑛𝜎𝑛(𝑔) = 0, so again by induction, all 𝑦𝑖 are
zero.

We now consider extensions of the form 𝐿 = 𝐾(𝑥) for 𝑥𝑛 = 𝑎 ∈ 𝐾. The special case 𝑎 = 1 gives
the cyclotomic extensions. These extensions are not necessarily Galois; for example,ℚ(3√2)/ℚ is not
Galois. In this section, let 𝑛 > 1, and 𝑛 ≠ 0 in 𝐾.

Theorem. Let𝐾 be a field that contains a primitive𝑛th root of unity 𝜁 = 𝜁𝑛. Let𝐿/𝐾 be a field
extension with 𝐿 = 𝐾(𝑥), where 𝑥𝑛 = 𝑎 ∈ 𝐾×. Then 𝐿/𝐾 is a splitting field for 𝑓 = 𝑇𝑛 − 𝑎,
and is Galois with cyclic Galois group. [𝐿 ∶ 𝐾] is the least𝑚 ≥ 1 such that 𝑥𝑚 ∈ 𝐾.

Proof. Note that 𝛍𝑛(𝐾) = {𝜁𝑖 ∣ 0 ≤ 𝑖 < 𝑛} has 𝑛 elements. Then 𝑓 has 𝑛 distinct roots 𝜁𝑖𝑥 in 𝐿. So 𝐿
is a splitting field for the separable polynomial 𝑓, and in particular, 𝐿 is a Galois extension.
Let 𝜎 ∈ Gal(𝐿/𝐾) = 𝐺. Then 𝑓(𝜎(𝑥)) = 0, so 𝜎(𝑥) = 𝜁𝑖𝑥 for some 𝑖, which is unique modulo 𝑛. This
induces a map 𝜃∶ 𝐺 → 𝛍𝑛(𝐾) ≃ ℤ⟋𝑛ℤ, given by 𝜃(𝜎) =

𝜎(𝑥)
𝑥

which is equal to 𝜁𝑖 for some 𝑖. We
claim this is a homomorphism. Let 𝜎, 𝜏 ∈ 𝐺. Then since 𝜁 ∈ 𝐾, 𝜏(𝜃(𝜎)) = 𝜃(𝜎). So

𝜃(𝜏𝜎) = 𝜏𝜎(𝑥)
𝑥 = 𝜏(𝜎(𝑥)𝑥 ) ⋅ 𝜏(𝑥)𝑥 = 𝜏(𝜃(𝜎)) ⋅ 𝜃(𝜏) = 𝜃(𝜎)𝜃(𝜏)

It is injective, because 𝜃(𝜎) = 1 if and only if 𝜎(𝑥) = 𝑥, so 𝜎 = id. So 𝐺 is isomorphic to a subgroup
of a cyclic group. Hence it is cyclic.

If𝑚 ≥ 1, since 𝐿/𝐾 is Galois, 𝑥𝑚 ∈ 𝐾 if and only if for all 𝜎 ∈ 𝐺, 𝜎(𝑥𝑚) = 𝑥𝑚. By the definition of 𝜃,
this holds if and only if for all 𝜎 ∈ 𝐺, 𝜃(𝜎)𝑚 = 1. So |𝐺| = [𝐿 ∶ 𝐾] divides𝑚. So [𝐿 ∶ 𝐾]must be the
least𝑚 such that 𝑥𝑚 ∈ 𝐾, as required.

Corollary. Let 𝐾 be a field that contains a primitive 𝑛th root of unity 𝜁 = 𝜁𝑛. Let 𝑎 ∈ 𝐾×.
Then 𝑓 = 𝑇𝑛−𝑎 is irreducible over 𝐾 if and only if 𝑎 is not a 𝑑th power in 𝐾 for any 1 ≠ 𝑑 ∣ 𝑛.
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Proof. Let 𝐿 be a splitting field for 𝑓 = 𝑇𝑛−𝑎, so 𝐿 = 𝐾(𝑥) for 𝑥𝑛 = 𝑎. Then theminimal polynomial
of 𝑥 divides 𝑓. So 𝑓 is irreducible if and only if 𝑓 = 𝑚𝑥,𝐾 , or equivalently, [𝐿 ∶ 𝐾] = 𝑛.
Suppose 𝑛 = 𝑚𝑑 for 𝑑 ≠ 1. Then 𝑎 is a 𝑑th power in 𝐾 if and only if 𝑥𝑚 ∈ 𝐾 since 𝜁𝑛 ∈ 𝐾. By the
above theorem, this holds if and only if |𝐺| ∣ 𝑚.

Remark. This does not hold if we relax the assumption 𝜁𝑛 ∈ 𝐾. For example, consider 𝐾 = ℚ and
𝑇4 + 4.

Definition. Extensions of the form 𝐿 = 𝐾(𝑥) where 𝑥𝑛 = 𝑎 ∈ 𝐾 and 𝜁𝑛 ∈ 𝐾 are called
Kummer extensions.

Example. Let 𝑛 = 2 and char𝐾 ≠ 2. Then 𝜁2 = −1 ∈ 𝐾. Then 𝐾(√𝑎)/𝐾 is a quadratic Kummer
extension if 𝑎 ∉ (𝐾×)2. Conversely, any quadratic extension must be of this form.

Theorem. Let𝐾 be a field that contains a primitive 𝑛th root of unity 𝜁 = 𝜁𝑛 where 𝑛 > 1. Let
𝐿/𝐾 be a Galois extension with cyclic Galois group of order 𝑛. Then 𝐿 is a Kummer extension
of 𝐾.

Proof. Let Gal(𝐿/𝐾) = {1, 𝜎, 𝜎2,… , 𝜎𝑛−1}. For 𝑦 ∈ 𝐿, let

𝑥 = 𝑅(𝑦) = 𝑦 + 𝜁−1𝜎(𝑦) + 𝜁−2𝜎2(𝑦) +⋯ + 𝜁−(𝑛−1)𝜎𝑛−1(𝑦) =
𝑛−1
∑
𝑗=0

𝜁−𝑗𝜎𝑗(𝑦) ∈ 𝐿

This is known as a Lagrange resolvent. Then

𝜎(𝑥) =
𝑛−1
∑
𝑗=0

𝜁−𝑗𝜎𝑗+1(𝑦) =
𝑛
∑
𝑗=0

𝜁1−𝑗𝜎𝑗(𝑦) = 𝜁𝑥

Hence 𝜎(𝑥𝑛) = 𝜁𝑛𝑥𝑛 = 𝑥𝑛, so 𝑥𝑛 ∈ 𝐾. By the linear independence of field embeddings with {𝜎𝑖} =
{1, 𝜎,… , 𝜎𝑛−1}, there exists 𝑦 such that 𝑅(𝑦) = 𝑥 ≠ 0. Now, since 𝜎𝑖𝑥 = 𝜁𝑖𝑥, the 𝜎𝑖(𝑥) are distinct,
and so deg𝐾 𝑥 = 𝑛. In particular, [𝐾(𝑥) ∶ 𝐾] = 𝑛 = [𝐿 ∶ 𝐾], so 𝐿 = 𝐾(𝑥).

Example. Let 𝐿/ℚ be a Galois extension of degree 3. Since 𝜁3 ∉ ℚ, this is not a Kummer extension.

7 Trace and norm
7.1 Trace and norm
Let 𝐿/𝐾 be an extension of degree 𝑛, so 𝐿 is a 𝐾-vector space of dimension 𝑛. Let 𝑥 ∈ 𝐿. Then the
map 𝑈𝑥 ∶ 𝐿 → 𝐿 defined by 𝑈𝑥(𝑦) = 𝑥𝑦 is 𝐾-linear, as it is 𝐿-linear. Since it is a linear map, it has a
characteristic polynomial, a determinant, and a trace.

Definition. The trace and norm of 𝑥 ∈ 𝐿 (relative to the extension 𝐿/𝐾) are Tr𝐿/𝐾(𝑥) =
tr𝑈𝑥 ∈ 𝐾 and 𝑁𝐿/𝐾(𝑥) = det𝑈𝑥 ∈ 𝐾 respectively. The characteristic polynomial of 𝑥 ∈ 𝐿 is
𝑓𝑥,𝐿/𝐾 = det(𝑇𝐼 − 𝑈𝑥) ∈ 𝐾[𝑇] where 𝐼 is the identity linear transformation.
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We sometimes write tr𝐾 , det𝐾 . Let 𝑒1,… , 𝑒𝑛 be a basis for 𝐿/𝐾. Then 𝑈𝑥 can be written as a unique
𝐾-valued matrix 𝐴 = (𝑎𝑖𝑗), so 𝑥𝑒𝑖 = ∑𝑗 𝑎𝑗𝑖𝑒𝑗 . Then Tr𝐿/𝐾(𝑥) = tr(𝐴), and so on.

Example. Consider the quadratic extensionℚ(√𝑑)/ℚwith the basis 1,√𝑑. Let 𝑥 = 𝑎+ 𝑏√𝑑. Since
𝑥 ⋅ 1 = 𝑎 + 𝑏√𝑑 and 𝑥 ⋅ √𝑑 = 𝑏𝑑 + 𝑎√𝑑,

𝐴 = (𝑎 𝑏𝑑
𝑏 𝑎 )

Hence Tr𝐿/𝐾(𝑥) = 2𝑎 and 𝑁𝐿/𝐾(𝑥) = 𝑎2 − 𝑏2𝑑.
Example. Consider ℂ/ℝ with the basis 1, 𝑖. Then the matrix of 𝑈𝑥+𝑖𝑦 is

(𝑥 −𝑦
𝑦 𝑥 )

which is the usual encoding of complex numbers as 2 × 2 real matrices. Note the similarity between
this matrix and the Cauchy–Riemann equations

𝜕𝑢
𝜕𝑥 = 𝜕𝑣

𝜕𝑦 ;
𝜕𝑢
𝜕𝑦 = −𝜕𝑣𝜕𝑥

Lemma. Let 𝑥, 𝑦 ∈ 𝐿 and 𝑎 ∈ 𝐾, where 𝑛 = [𝐿 ∶ 𝐾]. Then,
(i) Tr𝐿/𝐾(𝑥 + 𝑦) = Tr𝐿/𝐾(𝑥) + Tr𝐿/𝐾(𝑦);
(ii) 𝑁𝐿/𝐾(𝑥𝑦) = 𝑁𝐿/𝐾(𝑥)𝑁𝐿/𝐾(𝑦);
(iii) 𝑁𝐿/𝐾(𝑥) = 0 if and only if 𝑥 = 0;
(iv) Tr𝐿/𝐾(1) = 𝑛 and 𝑁𝐿/𝐾(1) = 1;
(v) Tr𝐿/𝐾(𝑎𝑥) = 𝑎Tr𝐿/𝐾(𝑥) and 𝑁𝐿/𝐾(𝑎𝑥) = 𝑎𝑛𝑁𝐿/𝐾(𝑥).

In particular, Tr𝐿/𝐾 is 𝐾-linear and 𝑁𝐿/𝐾 ∶ 𝐿× → 𝐾× is a homomorphism.

Proof. For part (iii), 𝑁𝐿/𝐾(𝑥) = det(𝑈𝑥) ≠ 0 if and only if𝑈𝑥 is invertible. But this holds if and only if
𝑥 is nonzero because 𝐿 is a field. The other results follow from the laws of linear transformations.

7.2 Formulae and applications

Theorem. Let𝑀/𝐿/𝐾 be a tower of finite extensions. Then, for all 𝑥 ∈ 𝑀,

Tr𝐿/𝐾(Tr𝑀/𝐿(𝑥)) = Tr𝑀/𝐾(𝑥); 𝑁𝐿/𝐾(𝑁𝑀/𝐿(𝑥)) = 𝑁𝑀/𝐾(𝑥)

Proof. We prove the theorem for the trace; we will not need the result for the norm. Let 𝑥 ∈ 𝑀.
Let 𝑢1,… , 𝑢𝑚 be a basis for 𝑀/𝐿, and let 𝑣1,… , 𝑣𝑛 be a basis for 𝐿/𝐾. Let (𝑎𝑖𝑗) be the matrix of
𝑈𝑥,𝑀/𝐿, so (𝑎𝑖𝑗) ∈ Mat𝑚,𝑚(𝐿). Then Tr𝑀/𝐿(𝑥) = ∑𝑚

𝑖=1 𝑎𝑖𝑖. For each (𝑖, 𝑗), let the matrix of 𝑈𝑎𝑖𝑗 be
𝐴𝑖𝑗 ∈ Mat𝑛,𝑛(𝐾). Then, Tr𝐿/𝐾(Tr𝑀/𝐿(𝑥)) = ∑𝑚

𝑖=1 Tr𝐿/𝐾(𝑎𝑖𝑖) = ∑𝑚
𝑖=1 tr(𝐴𝑖𝑖).

Consider the basis 𝑢1𝑣1,… , 𝑢1𝑣𝑚, 𝑢2𝑣1,… , 𝑢𝑛𝑣𝑚 for 𝑀 over 𝐾. Then the matrix of 𝑈𝑥,𝑀/𝐾 is the
block matrix

⎛
⎜
⎜
⎝

𝐴11
𝐴22

⋱
𝐴𝑛𝑛

⎞
⎟
⎟
⎠
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which has trace∑𝑚
𝑖=1 tr(𝐴𝑖𝑖) as required.

Proposition. Let 𝐿 = 𝐾(𝑥), and 𝑓 = 𝑇𝑛 + 𝑐𝑛−1𝑇𝑛−1 + ⋯ + 𝑐0 ∈ 𝐾[𝑇] be the minimal
polynomial for 𝑥 over𝐾. Then 𝑓𝑥,𝐿/𝐾 = 𝑓. Further, Tr𝐿/𝐾(𝑥) = −𝑐𝑛−1 and𝑁𝐿/𝐾(𝑥) = (−1)𝑛𝑐0.

Proof. It suffices to prove the first statement, since the second follows from the fact that the determin-
ant and trace are the given coefficients of the characteristic polynomial for any linear transformation.
Consider the basis 1, 𝑥,… , 𝑥𝑛−1 for 𝐿/𝐾. Then, the matrix of 𝑈𝑥 is

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 ⋯ −𝑐0
1 0 ⋯ −𝑐1
0 1 0 ⋯
⋮ 0 1 0 ⋯

⋮ 0 1 ⋯
⋮ ⋮ ⋱

−𝑐𝑛−1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

which has characteristic polynomial 𝑓 since it is in rational canonical form.

Corollary. Let char𝐾 = 𝑝 > 0, and 𝐿 = 𝐾(𝑥) where 𝑥 ∉ 𝐾 but 𝑥𝑝 ∈ 𝐾. Then for all 𝑦 ∈ 𝐿,
we have Tr𝐿/𝐾(𝑦) = 0 and 𝑁𝐿/𝐾(𝑦) = 𝑦𝑝.

Proof. Recall that the minimal polynomial of 𝑥 is 𝑇𝑝 − 𝑥𝑝, so [𝐿 ∶ 𝐾] = 𝑝. Suppose that 𝑦 ∈ 𝐾. By a
previous lemma, Tr𝐿/𝐾(𝑦) = 𝑝𝑦 = 0 and 𝑁𝐿/𝐾(𝑦) = 𝑦𝑝. Otherwise, since [𝐿 ∶ 𝐾] is prime, 𝐾(𝑦) = 𝐿,
and in particular, if 𝑦 = ∑𝑎𝑖𝑥𝑖 then 𝑦𝑝 = (∑𝑎𝑖𝑥𝑖)

𝑝 = ∑𝑎𝑖(𝑥𝑝)𝑖 ∈ 𝐾. So the minimal polynomial
of 𝑦 is 𝑇𝑝 − 𝑦𝑝. Applying the previous proposition, the result follows.

Proposition. Let 𝐿/𝐾 be a finite separable extension of degree 𝑛. Let 𝜎1,… , 𝜎𝑛 ∶ 𝐿 → 𝑀 be
the distinct 𝐾-homomorphisms of 𝐿 into a normal closure𝑀 for 𝐿/𝐾. Then

Tr𝐿/𝐾(𝑥) =
𝑛
∑
𝑖=1

𝜎𝑖(𝑥); 𝑁𝐿/𝐾(𝑥) =
𝑛
∏
𝑖=1

𝜎𝑖(𝑥); 𝑓𝑥,𝐿/𝐾 =
𝑛
∏
𝑖=1

(𝑇 − 𝜎𝑖(𝑥))

Remark. If 𝐿/𝐾 is finite and Galois, then Tr𝐿/𝐾(𝑥) = ∑𝜎∈Gal(𝐿/𝐾) 𝜎(𝑥), and the other results are
similar.

Proof. It suffices to show the result for the characteristic polynomial. Let 𝑒1,… , 𝑒𝑛 be a basis for
𝐿/𝐾. Let 𝑃 = (𝜎𝑖(𝑒𝑗)) ∈ Mat𝑛,𝑛(𝑀). Recall that the 𝜎𝑖 are linearly independent, so there exist no
𝑦𝑖 ∈ 𝑀 such that for all 𝑗, 𝜎𝑖(𝑒𝑗) = 0. Hence 𝑃 is nonsingular. Let 𝐴 = (𝑎𝑖𝑗) be the matrix of 𝑈𝑥, so
𝑥𝑒𝑗 = ∑𝑟 𝑎𝑟𝑗𝑒𝑟. Applying 𝜎𝑖, we have

𝜎𝑖(𝑥)𝜎𝑖(𝑒𝑗) = ∑
𝑟
𝜎𝑖(𝑒𝑟)𝑎𝑟𝑗

So if 𝑆 is the diagonal matrix with (𝑖, 𝑖)th entry 𝜎𝑖(𝑥), then the given equation can be rewritten as
𝑆𝑃 = 𝑃𝐴. Therefore 𝑆 = 𝑃𝐴𝑃−1. So 𝑆 and 𝐴 are conjugate matrices and hence have the same
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characteristic polynomial. We explicitly find that the characteristic polynomial of 𝑆 is∏(𝑇 − 𝜎𝑖(𝑥))
and the characteristic polynomial of 𝐴 is 𝑓𝑥,𝐿/𝐾 . So they are equal as required.

Note that since the trace Tr𝐿/𝐾 ∶ 𝐿 → 𝐾 is 𝐾-linear, it is either the zero map or surjective.

Theorem. Let 𝐿/𝐾 be a finite extension. Then, 𝐿/𝐾 is separable if and only if Tr𝐿/𝐾 is sur-
jective.

Remark. If char𝐾 = 0, Tr𝐿/𝐾(1) = 𝑛 ≠ 0, so the result holds easily.

Proof. Suppose 𝐿/𝐾 is separable, and 𝜎𝑖,… , 𝜎𝑛 are the𝐾-homomorphisms of 𝐿 into a normal closure
𝑀 of 𝐿/𝐾. Then Tr𝐿/𝐾(𝑥) = ∑𝑛

𝑖=1 𝜎𝑖(𝑥). As the 𝜎𝑖 are linearly independent, there exists 𝑥 such that
∑𝑛

𝑖=1 𝜎𝑖(𝑥) ≠ 0. So Tr𝐿/𝐾(𝑥) ≠ 0, and in particular, it must be surjective as it is 𝐾-linear.
Now suppose 𝐿/𝐾 is inseparable. Then there exists 𝑥 ∈ 𝐿 such that 𝐾(𝑥) ⊋ 𝐾(𝑥𝑝) from example 7
on example sheet 2. As we have shown, Tr𝐾(𝑥)/𝐾(𝑥𝑝) = 0, so

Tr𝐿/𝐾 = Tr𝐿/𝐾(𝑥) ∘Tr𝐾(𝑥)/𝐾(𝑥𝑝) ∘Tr𝐾(𝑥𝑝)/𝐾 = 0

Example. Consider the extension of finite fields 𝔽𝑞𝑛/𝔽𝑞 for 𝑞 = 𝑝𝑟. This is separable, so there exists
𝑥 ∈ 𝔽𝑞𝑛 such that Tr(𝑥) = 1. It is also possible to prove this directly by using the fact that the
multiplicative group is cyclic.

Remark. This criterion can be used to give another proof that if𝑀/𝐿 and 𝐿/𝐾 are separable,𝑀/𝐾 is
also separable.

8 Algebraic closure
8.1 Definition

Definition. A field 𝐾 is algebraically closed if every non-constant polynomial over 𝐾 splits
into linear factors over 𝐾.

Remark. An equivalent condition is that the only irreducible polynomials are linear.

Example. The complex numbers ℂ form an algebraically closed field due to the fundamental the-
orem of algebra.

Proposition. The following are equivalent.
(i) 𝐾 is algebraically closed.
(ii) If 𝐿/𝐾 is a field extension and 𝑥 ∈ 𝐿 is algebraic over 𝐾, then 𝑥 ∈ 𝐾.
(iii) If 𝐿/𝐾 is an algebraic extension, 𝐿 = 𝐾.

Proof. (i) implies (ii). Let 𝐿/𝐾 be a field extension and 𝑥 ∈ 𝐿 algebraic over 𝐾. Let 𝑓 be the minimal
polynomial for 𝑥 over 𝐾. Then 𝑓 is linear, so 𝑥 ∈ 𝐾.
(ii) implies (iii). An extension 𝐿/𝐾 is algebraic when all 𝑥 ∈ 𝐿 are algebraic over 𝐾. So 𝑥 ∈ 𝐾 by (ii).
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(iii) implies (i). Let 𝑓 be an irreducible polynomial, and 𝐿 = 𝐾[𝑇]⟋(𝑓), so 𝐿/𝐾 is a finite algebraic
extension. Then 𝐿 = 𝐾, so 𝑓 is linear.

Proposition. Let 𝐿/𝐾 be an algebraic extension such that every irreducible polynomial 𝑓 ∈
𝐾[𝑇] splits into linear factors in 𝐿. Then 𝐿 is algebraically closed.

Such a field is called an algebraic closure of 𝐾.

Proof. Let 𝑀/𝐿 be an extension, and let 𝑥 ∈ 𝑀 be algebraic over 𝐿. Then 𝑥 is algebraic over 𝐾. By
hypothesis, its minimal polynomial 𝑚𝑥,𝐾 ∈ 𝐾[𝑇] splits into linear factors over 𝐿. So 𝑥 ∈ 𝐿. By
criterion (ii) in the previous proposition, 𝐿 is algebraically closed.

Remark. An algebraic closure of 𝐾 is the same as an algebraic extension of 𝐾 which is algebraically
closed.

Corollary. The field ℚ of algebraic complex numbers is algebraically closed. In particular,
ℚ is an algebraic closure of ℚ.

Proof. We apply the previous result to the extensionℚ/ℚ. The extension is algebraic, so it suffices to
check that every irreducible polynomial 𝑓 ∈ ℚ[𝑇] splits into linear factors inℚ. By the fundamental
theorem of algebra, 𝑓 splits in ℂ. By definition of ℚ, we have 𝑓 = ∏(𝑇 − 𝑥𝑖) where each 𝑥𝑖 ∈ ℚ as
required.

8.2 Algebraic closures of countable fields

Proposition. Let 𝐾 be a countable field. Then 𝐾 has an algebraic closure.

Proof. If 𝐾 is a countable field, then 𝐾[𝑇] is a countable ring. We will enumerate the monic irredu-
cible polynomials 𝑓𝑖 ∈ 𝐾[𝑇] for 𝑖 ≥ 1. Let 𝐿0 = 𝐾, and inductively define 𝐿𝑖 to be a splitting field for
𝑓𝑖 over 𝐿𝑖−1.
One can perform this in such away that no choices need to bemade in the construction of the splitting
fields. We may also assume that 𝐿𝑖−1 ⊆ 𝐿𝑖 for each 𝑖 ≥ 1, because if 𝜎∶ 𝐿𝑖−1 → 𝐿𝑖 is the extension,
we can replace 𝐿𝑖 with 𝐿𝑖−1 ⊔ (𝐿𝑖 ∖ 𝜎(𝐿𝑖−1)). Let 𝐿 = ⋃𝐿𝑖 be their union. By construction, every 𝑓𝑖
splits in 𝐿, so 𝐿 is an algebraic closure of 𝐾.

Example. 𝔽𝑝 has an algebraic closure.

8.3 Zorn’s lemma
For a general field, we need to apply some set-theoretic machinery.

Definition. A binary relation ⪯ on a set 𝑆 is a partial order if it is reflexive, transitive, and
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antisymmetric. Explicitly, for all 𝑥, 𝑦, 𝑧 ∈ 𝑆, we have

𝑥 ⪯ 𝑥; 𝑥 ⪯ 𝑦, 𝑦 ⪯ 𝑧 ⟹ 𝑥 ⪯ 𝑧; 𝑥 ⪯ 𝑦, 𝑦 ⪯ 𝑥 ⟹ 𝑧 = 𝑦

We say (𝑆, ⪯) is a partially ordered set, or a poset. It is totally ordered if the order is total; 𝑥 ⪯ 𝑦
or 𝑦 ⪯ 𝑥 for all 𝑥, 𝑦 ∈ 𝑆.

Definition. Let 𝑆 be a partially ordered set. A chain in 𝑆 is a totally ordered subset. An
upper bound for a subset 𝑇 of 𝑆 is an element 𝑧 ∈ 𝑆 such that for all 𝑥 ∈ 𝑇, we have 𝑥 ⪯ 𝑧. A
maximal element of 𝑆 is an element 𝑦 ∈ 𝑆 such that for all 𝑥 ∈ 𝑆, 𝑦 ⪯ 𝑥 implies 𝑦 = 𝑥.

If 𝑆 is totally ordered, 𝑆 has at most one maximal element.

Lemma (Zorn). Let 𝑆 be a nonempty partially ordered set. Suppose that every chain in 𝑆
has an upper bound in 𝑆. Then 𝑆 has a maximal element.

This can be proven using the axiom of choice.

Example. Let 𝑉 be a vector space over 𝐾. Then 𝑉 has a basis; a set 𝐵 ⊆ 𝑉 such that any finite subset
of 𝐵 is linearly independent, and for all 𝑣 ∈ 𝑉 , there exists 𝑏1,… , 𝑏𝑘 ∈ 𝐵 and 𝑎1,… , 𝑎𝑘 ∈ 𝐾 such
that 𝑣 = ∑𝑘

𝑖=1 𝑎𝑖𝑏𝑖. If 𝑉 = {0}, the result is trivial by taking 𝑉 = ∅. Otherwise, let 𝑆 be the set of
all subsets 𝑋 ⊆ 𝑉 where finite subsets of 𝑋 are linearly independent. 𝑆 is ordered by inclusion; this
is a partial order. 𝑆 is nonempty since 𝑉 ≠ {0}. Each chain 𝑇 ⊆ 𝑆 has an upper bound by taking its
union 𝑌 = ⋃𝑋∈𝑇 𝑋 . This upper bound indeed lies in 𝑆, since we only need to check finite subsets of
𝑌 for linear independence. Then by Zorn’s lemma, 𝑆 has a maximal element 𝐵, which can be seen
to be a basis.

Proposition. Let 𝐿/𝐾 be an algebraic extension, and let 𝑀 be algebraically closed. Let
𝜎∶ 𝐾 → 𝑀. Then there exists 𝜎∶ 𝐿 → 𝑀 extending 𝜎.

Proof. First, consider the case 𝐿 = 𝐾(𝑥)where 𝑥 is algebraic over𝐾 withminimal polynomial𝑚𝑥,𝐾 =
𝑓. Then 𝜎𝑓 ∈ 𝑀[𝑇]. Since 𝑀 is algebraically closed, 𝜎𝑓 splits in 𝑀. Therefore there exists such a
𝜎∶ 𝐾(𝑥) → 𝑀 extending 𝜎. We can obtain one homomorphism for each root of 𝜎𝑓 in𝑀.

Now consider the general case. Suppose 𝐾 ⊆ 𝐿 without loss of generality, by replacing 𝐾 with its
image in 𝐿. Let

𝑆 = {(𝐹, 𝜏) ||| 𝐾 ⊆ 𝐹 ⊆ 𝐿, 𝜏∶ 𝐹 → 𝑀, 𝜏|||𝐾
= 𝜎}

This has a partial order given by (𝐹, 𝜏) ⪯ (𝐹′, 𝜏′)where 𝐹 ⊆ 𝐹′ and 𝜏′|𝐹 = 𝜏. Therefore, 𝑆 is a partially
ordered set. It contains (𝐾, 𝜎), so it is not empty.
Let 𝑇 = (𝐹𝑖, 𝜏𝑖)𝑖∈𝐼 be a chain in 𝑆. If 𝑇 is empty, we can vacuously upper bound it with (𝐾, 𝜎).
Otherwise, we define 𝐹′ = ⋃𝑖∈𝐼 𝐹𝑖. This is a field since 𝑇 is a chain; in particular, for all 𝑖, 𝑗 ∈ 𝐼, we
have either 𝐹𝑖 ⊆ 𝐹𝑗 or 𝐹𝑗 ⊆ 𝐹𝑖. Now define 𝜏′ ∶ 𝐹′ → 𝑀 by mapping 𝑥 to 𝜏𝑖(𝑥) where 𝑥 ∈ 𝜏𝑖; this is
independent of the choice of 𝑖 since 𝜏𝑗 ||𝐹𝑖 = 𝜏𝑖 and 𝑇 is a chain. This is an upper bound in 𝑆 for the
chain.
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Then, by Zorn’s lemma, 𝑆 has a maximal element. Let (𝐹, 𝜏) be this maximal element. We will show
𝐹 = 𝐿; in this case, 𝜏 = 𝜎 is an extension as required.
Clearly 𝐹 ⊆ 𝐿. If 𝑥 ∈ 𝐿, then by the first part applied to 𝐹(𝑥)/𝐹, we can extend the homomorphism
𝜏∶ 𝐹 → 𝑀 into a homomorphism 𝜏∶ 𝐹(𝑥) → 𝑀. Then (𝐹(𝑥), 𝜏) ∈ 𝑆, and (𝐹, 𝜏) ⪯ (𝐹(𝑥), 𝜏). By
maximality, 𝐹(𝑥) = 𝐹, so 𝑥 ∈ 𝐹. Hence 𝐹 = 𝐿 as required.

8.4 Algebraic closures of general fields
One can construct an algebraic closure of a field using Zorn’s lemma, obtaining a field that extends all
algebraic extensions of a given field. However, difficulties arise since the class of algebraic extensions
of a field does not form a set. Zorn’s lemma can be utilised inside a suitably well-behaved set, but
instead, we will construct the algebraic closure via the maximal ideal theorem.

Theorem (maximal ideal theorem). Let 𝑅 be a non-zero commutative ring with a 1. Then 𝑅
has a maximal ideal.

Proof sketch. Let 𝑆 be the set of all proper ideals 𝐼 ⊲ 𝑅, partially ordered by inclusion. A maximal
ideal is a maximal element of 𝑆. We apply Zorn’s lemma. Let 𝑇 be a nonempty chain, since anything
is an upper bound for an empty chain. Then 𝐽 = ⋃𝐼∈𝑇 𝐼 is an ideal. As 1 ∉ 𝐼 for all 𝐼 ∈ 𝑇, we
conclude 1 ∉ 𝐽. So 𝐽 is a proper ideal, and hence is an upper bound.

Theorem. Let 𝐾 be a field. Then 𝐾 has an algebraic closure 𝐾. If 𝜎∶ 𝐾 → 𝐾′ is an iso-
morphism, and 𝐾, 𝐾

′
are any algebraic closures of 𝐾, 𝐾′, then 𝜎 extends to an isomorphism

𝜎∶ 𝐾 → 𝐾
′
.

Remark. The extension 𝜎 is not generally unique.

Proof. Webegin by proving the existence of the algebraic closure. Let𝑃 be the set ofmonic irreducible
polynomials in 𝐾[𝑇], and construct 𝐾1 such that every 𝑓 ∈ 𝑃 has a root in 𝐾1. First, we will find a
ring in which every 𝑓 ∈ 𝑃 has a root.

Let 𝑅 = 𝐾[{𝑇𝑓}𝑓∈𝑃] be the set of finite 𝐾-linear combinations of monomials 𝑇
𝑚1
𝑓1 …𝑇𝑚𝑘

𝑓𝑘 for 𝑓𝑖 ∈ 𝑃.
Let 𝐼 be the ideal generated by 𝑓(𝑇𝑓) for each 𝑓 ∈ 𝑃. Now, in 𝑅⟋𝐼, 𝑇𝑓 + 𝐼 is a root of 𝑓.
We must check that 𝐼 ≠ 𝑅. If 𝐼 = 𝑅, then in particular 1 ∈ 𝐼. In other words, for some finite subset
𝑄 ⊆ 𝑃, there exists 𝑟𝑓 ∈ 𝑅 for 𝑓 ∈ 𝑄 such that 1 = ∑𝑓∈𝑄 𝑟𝑓𝑓(𝑇𝑓). Enlarging 𝑄 if necessary, we
can assume that each 𝑟𝑓 is a polynomial in {𝑇𝑔 ∣ 𝑔 ∈ 𝑄}. Let 𝐿/𝐾 be a splitting field for∏𝑓∈𝑄 𝑓, and
𝑎𝑓 ∈ 𝐿 be a root of 𝑓 for each 𝑓 ∈ 𝑄. Consider the homomorphism 𝜑∶ 𝑅 → 𝐿 such that 𝜑|𝐾 = id
and 𝜑(𝑇𝑓) = 𝑎𝑓 for 𝑓 ∈ 𝑄, and 𝜑(𝑇𝑓) = 0 for 𝑓 ∉ 𝑄. Then

1 = 𝜑(1) = ∑
𝑓∈𝑄

𝜑(𝑟𝑓𝑓(𝑇𝑓)) = ∑
𝑓∈𝑄

𝜑(𝑟𝑓)𝑓(𝑎𝑓) = 0

This is a contradiction, so 𝐼 is in fact a proper ideal.

By the maximal ideal theorem, the ring 𝑅⟋𝐼 has a maximal ideal 𝐽. Equivalently, there exists a max-
imal ideal 𝐽 of𝑅 containing 𝐼, since the ideals of𝑅⟋𝐼 are in bijectionwith the ideals of𝑅 containing 𝐼 by
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the isomorphism theorem. Now let𝐾1 = 𝑅⟋𝐽. This is a field since 𝐽 is maximal. Let 𝑥𝑓 = 𝑇𝑓+𝐽 ∈ 𝐾1,
then 𝐾1/𝐾 is generated by the 𝑥𝑓, and 𝑓(𝑥𝑓) = 0 by construction. So 𝐾1/𝐾 is an algebraic extension
of 𝐾 in which every 𝑓 ∈ 𝑃 has a root.
Let 𝑃1 be the set of monic irreducibles in 𝐾1[𝑇]. We apply the same procedure to 𝐾1 and 𝑃1 to obtain a
field𝐾2, and so on. We then obtain a tower𝐾 ⊆ 𝐾1 ⊆ 𝐾2 ⊆ ⋯ such that if 𝑓 ∈ 𝐾𝑛[𝑇] is non-constant,
it has a root in 𝐾𝑛+1.
Now, suppose 𝑓 ∈ 𝐾[𝑇] is non-constant. Then we can write 𝑓 = (𝑇 − 𝑥1)𝑓1 where 𝑥1 ∈ 𝐾1, 𝑓1 ∈
𝐾1[𝑇], and so on. So 𝑓 splits in 𝐾deg𝑓−1. Therefore, the union⋃𝑛∈ℕ 𝐾𝑛 is algebraically closed, and
hence is an algebraic closure of 𝐾.

We now prove uniqueness. Let 𝐾 ⊆ 𝐾 and 𝐾′ ⊆ 𝐾
′
be algebraic closures, and let 𝜎∶ 𝐾 → 𝐾′ be

an isomorphism. Then by the previous result, as 𝐾/𝐾 is algebraic, 𝜎 extends to a homomorphism
𝜎∶ 𝐾 → 𝐾

′
. It suffices to show that 𝜎 is an isomorphism. We have 𝐾′ ⊆ 𝜎(𝐾) ⊆ 𝐾

′
, so 𝐾

′
/𝜎(𝐾) is

algebraic. 𝐾 is algebraically closed, so 𝜎(𝐾) is also algebraically closed. So 𝐾
′
= 𝜎(𝐾) by part (iii) of

a previous result.

9 Solving polynomial equations
9.1 Cubics
Let 𝑓 ∈ 𝐾[𝑇] be a monic separable cubic. Then 𝐺 = Gal(𝑓/𝐾) ≤ 𝑆3 acting on the roots 𝑥1, 𝑥2, 𝑥3 in
a splitting field 𝐿 of 𝐾. If 𝑓 is reducible, 𝑓 is either a product of three linear factors, in which case 𝐺
is trivial, or 𝑓 is a linear factor multiplied by a quadratic, in which case 𝐺 is isomorphic to 𝑆2.
Now suppose 𝑓 is irreducible. We will assume that char𝐾 ≠ 2, 3. We have 𝐺 = 𝑆3 or 𝐺 = 𝐴3. We
know that 𝐺 = 𝐴3 if and only if the discriminant Disc(𝑓) is a square in 𝐾×. In general, the Galois
correspondence yields

𝐿 = 𝐾(𝑥1, 𝑥2, 𝑥3) {1}

𝐾1 = 𝐾(Δ) = 𝐿𝐺∩𝐴3 𝐺 ∩ 𝐴3

𝐾 𝐺

3 if 𝑓 irreducible, else 1

2 or 1

Then 𝐾1 = 𝐾(√Disc(𝑓)), and 𝐾1 = 𝐿 if 𝑓 is reducible.

In the irreducible case, 𝐿/𝐾1 is Galois with Gal(𝐿/𝐾1) ≃ ℤ⟋3ℤ. Recall that if 𝜔 ∈ 𝐾1 is a primitive
third root of unity, then 𝐿 = 𝐾1(𝑦) where 𝑦3 ∈ 𝐾1, by Kummer theory.

We can compute this 𝑦 explicitly. Suppose 𝑓 = 𝑇3 + 𝑏𝑇 + 𝑐 without loss of generality. Then Δ2 =
−4𝑏3−27𝑐2. If 𝑏 = 0, the roots of 𝑓 are𝑤𝑖 3√−𝑐, so let 𝑦 be any of them. In the other case 𝑏 ≠ 0, let 𝑦 be
a Lagrange resolvent. If the roots of 𝑓 in 𝐿 are 𝑥1, 𝑥2, 𝑥3, take 𝑦 = 𝑥1+𝜔2𝑥2+𝜔𝑥3 = (1−𝜔)(𝑥1−𝜔𝑥2)
as 𝑥1 + 𝑥2 + 𝑥3 = 0. Then 𝐿(𝜔) = 𝐾(Δ, 𝜔, 𝑦) if and only if 𝑦 ≠ 0, by the proof of the structure of
Kummer extensions. Let 𝑦′ = 𝑥1+𝜔𝑥2+𝜔2𝑥3, then 𝑦𝑦′ = −3𝑏 ≠ 0 since we are not in characteristic
3. Note that 𝑦 + 𝑦′ = 𝑦 + 𝑦′ + 𝑥1 + 𝑥2 + 𝑥3 = 3𝑥1. One can calculate 𝑦3 =

1
2
(−3√−3Δ + 27𝑐), so

𝑥1 = 𝑦 − 3𝑏
𝑦
.
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If not, let 𝐿(𝜔) be the splitting field of 𝑓 ⋅ (𝑇3 − 1) over 𝐾. Then 𝐿(𝜔)/𝐾1(𝜔) is Galois with Galois
group ℤ⟋3ℤ as before. So 𝐿(𝜔) = 𝐾1(𝜔, 𝑦) where 𝑦3 ∈ 𝐾1(𝜔).
Therefore, in every case, 𝑥𝑖 lie in the field obtained by adjoining successive square roots and cube
roots to 𝐾, since 𝜔 = −1+√−3

2
. This is a theoretical description of Cardano’s solution to the cu-

bic.

9.2 Quartics
Let𝑓 ∈ 𝐾[𝑇] be amonic separable quartic, with char𝐾 ≠ 2, 3. ThenGal(𝑓/𝐾) ≤ 𝑆4. Note that𝑆4 acts
on the partitions (12 ∣ 34), (13 ∣ 24), (14 ∣ 23) of {1, 2, 3, 4}. Then we have a homomorphism 𝑆4 → 𝑆3.
The kernel of this homomorphism is the Klein four-group 𝑉 = {𝑒, (12)(34), (13)(24), (14)(23)} ⊲ 𝑆4.
Hence the homomorphism is surjective, as |𝑉| ⋅ |𝑆3| = |𝑆4|.
Let 𝑓 have splitting field 𝐿with (distinct) roots 𝑥1,… , 𝑥4. Suppose that 𝑥1+⋯+𝑥4 = 0without loss
of generality as the characteristic is not 2, so 𝑓 = 𝑇4 + 𝑎𝑇2 + 𝑏𝑇 + 𝑐. Since 𝑉 is a normal subgroup
of 𝑆4, 𝐺 ∩ 𝑉 is a normal subgroup of 𝐺 and contains 𝑉 . In particular, we have a homomorphism
𝐺⟋𝐺 ∩ 𝑉 ↪ 𝑆4⟋𝑉 ≃ 𝑆3. But 𝐺⟋𝐺 ∩ 𝑉 = Gal(𝑀/𝐾). So we should be able to write𝑀 as the splitting
field of a cubic 𝑔 ∈ 𝐾[𝑇].
Let 𝑦12 = 𝑥1+𝑥2 = −(𝑥3+𝑥4) = −𝑦34, and let 𝑦13, 𝑦24, 𝑦14, 𝑦23 be defined similarly. Note that 𝐺∩𝑉
maps 𝑦12 to 𝑦12 or 𝑦34 = −𝑦12, and so on. So 𝑦212, 𝑦213, 𝑦214 are fixed under 𝐺 ∩ 𝑉 . Hence they lie in
𝑀 = 𝐿𝐺∩𝑉 .
Suppose 𝑦212 = 𝑦213. Then either 𝑦12 = 𝑦13, so 𝑥2 = 𝑥3, contradicting separability, or 𝑦12 = −𝑦13, so
2𝑥1+𝑥2+𝑥3 = 0, giving 𝑥1 = 𝑥4, also contradicting separability. So these are distinct elements of𝑀,
and hence are indeed the roots of a separable cubic 𝑔 ∈ 𝐾[𝑇]. This is called the resolvent cubic.

𝑀 = 𝐿𝐺∩𝑉 is a splitting field of 𝑔. Note that 𝑥1 =
1
2
(𝑦12 + 𝑦13 + 𝑦14) and similar results hold for

𝑥2, 𝑥3, 𝑥4. Hence 𝐿 = 𝑀(𝑦12, 𝑦13, 𝑦14). We can compute 𝑔 = (𝑇 − 𝑦212)(𝑇 − 𝑦213)(𝑇 − 𝑦214) = 𝑇3 +
2𝑎𝑇2+(𝑎2−4𝑐)𝑇 −𝑏2. In particular, 𝑦12𝑦13𝑦14 = 𝑏, hence we can simplify to 𝐿 = 𝑀(𝑦12, 𝑦13)where
𝑦212, 𝑦213 ∈ 𝑀.

In conclusion, we have found a way to solve 𝑓 = 0. First, we solve the resolvent equation 𝑔 = 0, and
then we take at most two square roots to obtain the relevant field generators.

9.3 Solubility by radicals
Let 𝑓 ∈ 𝐾[𝑇] be a monic polynomial in a field 𝐾 of characteristic zero. To prove that there is no
quintic formula, we must first establish a definition of ‘formula’. The relevant notion is solubility by
radicals.

Definition. An irreducible polynomial 𝑓 ∈ 𝐾[𝑇] is soluble by radicals over𝐾 if there exists a
sequence of fields 𝐾 = 𝐾0 ⊆ 𝐾1 ⊆ ⋯ ⊆ 𝐾𝑚, with 𝑥 ∈ 𝐾𝑚 a root of 𝑓, and each 𝐾𝑖 is obtained
from 𝐾𝑖−1 by adjoining a root, so 𝐾𝑖 = 𝐾𝑖−1(𝑦𝑖) where 𝑦𝑑𝑖𝑖 ∈ 𝐾𝑖−1.

Remark. This is a generalisation of ruler and compass constructions to permit roots of arbitrary de-
gree.

Note that we can adjoin extra roots if desired. In particular, adjoining roots of unity, 𝑓 is soluble by
radicals over 𝐾 if there exists 𝑑 ≥ 1 and 𝐾 = 𝐾0 ⊆ ⋯ ⊆ 𝐾𝑚, such that 𝑥 ∈ 𝐾𝑚 is a root of 𝑓, and
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𝐾1 = 𝐾0(𝜁𝑑) where 𝜁𝑑 is a primitive 𝑑th root of unity. We can also assume that the other extensions
satisfy 𝐾𝑖 = 𝐾𝑖−1(𝑦𝑖) for 𝑦𝑑𝑖 = 𝑎𝑖 ∈ 𝐾𝑖−1. This condition can be easily satisfied by letting 𝑑 be the
least common multiple of the 𝑑𝑖 that occurs in the tower of fields.
Note that 𝐾1/𝐾0 is Galois with abelian Galois group. 𝐾𝑖/𝐾𝑖−1 for 𝑖 > 1 is Galois, where the Galois
group is a subgroup of ℤ⟋𝑑ℤ as it is a Kummer extension.
To obtain all roots of 𝑓, we consider a normal closure𝑀 of 𝐾𝑚; this will contain a splitting field for
𝑓, since it contains one root and 𝑓 is irreducible. To determine𝑀, let 𝐾′

𝑖 ⊆ 𝑀 be a normal closure of
𝐾𝑖 for each 𝑖. As we are in characteristic zero, an extension is Galois if and only if it is normal. Note
that 𝐾1 is Galois, so 𝐾1 = 𝐾′

1 = 𝐾(𝜁𝑑).

Proposition. 𝐾′
𝑖 = 𝐾′

𝑖−1({𝑑√𝜎(𝑎𝑖) || 𝜎 ∈ Gal(𝐾′
𝑖−1/𝐾)}).

Proof. Suppose 𝜎 ∈ Gal(𝐾′
𝑖−1/𝐾). Then we can lift 𝜎 to an element 𝜎 ∈ Gal(𝐾′

𝑖/𝐾) such that 𝜎||𝐾′
𝑖−1

=
𝜎. Since 𝐾′

𝑖/𝐾 is normal, it contains 𝜎(𝑦𝑖), and 𝜎(𝑦)𝑑 = 𝜎(𝑦𝑑) = 𝜎(𝑎𝑖). So the right hand side is
contained in 𝐾′

𝑖 .

It suffices to show the right hand side is a normal extension. It is the splitting field over 𝐾′
𝑖−1 of the

polynomial 𝑔𝑖 = ∏𝜎∈Gal(𝐾′
𝑖−1/𝐾)

(𝑇𝑑 − 𝜎(𝑎𝑖)). This has coefficients in 𝐾. If 𝐾′
𝑖−1 is the splitting field

of some polynomial ℎ𝑖−1 over 𝐾, then the right hand side is the splitting field of the product 𝑔𝑖ℎ𝑖−1
over 𝐾. So it is normal.

Proposition. Gal(𝐾′
𝑖/𝐾′

𝑖−1) is abelian.

Proof. This proof is a variant on the proof of a previous theorem. Consider the case 𝑖 > 1. Let
𝐴 = Gal(𝐾′

𝑖/𝐾′
𝑖−1). Let 𝜏 ∈ 𝐴 and 𝜎 ∈ Gal(𝐾′

𝑖/𝐾). Then 𝜏(𝑑√𝜎(𝑎𝑖)) = 𝜁𝑚𝜎
𝑑

𝑑√𝜎(𝑎𝑖) where𝑚𝜎 ∈ ℤ⟋𝑑ℤ.
Hence 𝜏 ↦ (𝑚𝜎) ∈ (ℤ⟋𝑑ℤ)

𝑟
is an injective homomorphism, where 𝑟 = ||Gal(𝐾′

𝑖−1/𝐾)||.

If 𝑖 = 1, then 𝐾1 = 𝐾(𝜁𝑑). So the Galois group is a subgroup of (ℤ⟋𝑑ℤ)
×
, so is abelian.

Since all of the fields 𝐾′
𝑖 are normal closures, the 𝑁 𝑖 are normal subgroups of 𝐺.

Definition. A finite group 𝐺 is soluble if there exists a chain of normal subgroups 𝑁 𝑖 ⊴ 𝐺
with 𝐺 = 𝑁0 ⊇ 𝑁1 ⊇ ⋯ ⊇ 𝑁𝑚 = {1} such that 𝑁 𝑖⟋𝑁 𝑖+1

is abelian for all 𝑖.

Example. Any abelian group is soluble. 𝑆3 is soluble, by considering the chain 𝑆3 ⊃ 𝐴3 ⊃ {1}, as
𝑆3⟋𝐴3

≃ ℤ⟋2ℤ and 𝐴3 ≃ ℤ⟋3ℤ. 𝑆4 is also soluble; the chain 𝑆4 ⊃ 𝐴4 ⊃ 𝑉 ⊃ {1} suffices. Note that
𝑆4⟋𝐴4

≃ ℤ⟋2ℤ, 𝐴4⟋𝑉 ≃ ℤ⟋3ℤ, 𝑉 ≃ (ℤ⟋2ℤ)
2
.

We have shown that 𝑁 𝑖⟋𝑁 𝑖+1
= Gal(𝐾′

𝑖/𝐾′
𝑖−1) is abelian. Hence Gal(𝑀/𝐾) is soluble.

Lemma. Every subgroup and quotient of a soluble group is soluble.
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Proof. Let 𝐺 = 𝑁0 ⊃ 𝑁1 ⊃ …𝑁𝑚 = {1}, where the quotients 𝑁 𝑖⟋𝑁 𝑖+1
are abelian. Let 𝐻 ≤ 𝐺. Then

𝐻 ∩𝑁 𝑖 ⊴ 𝐻, and there is an injective homomorphism from𝐻 ∩ 𝑁 𝑖⟋𝐻 ∩ 𝑁 𝑖+1
to 𝑁 𝑖⟋𝑁 𝑖+1

. Hence the
𝐻 ∩ 𝑁 𝑖⟋𝐻 ∩ 𝑁 𝑖+1

are abelian, so 𝐻 is soluble.

Now let 𝜋∶ 𝐺 → 𝐺 = 𝐺⟋𝐻 for 𝐻 ⊴ 𝐺. Then 𝜋(𝑁 𝑖) ⊴ 𝐺, and 𝑁 𝑖⟋𝑁 𝑖+1
surjects onto 𝜋(𝑁 𝑖)⟋𝜋(𝑁 𝑖+1).

Theorem (Abel–Ruffini). Let 𝑓 ∈ 𝐾[𝑇] be soluble by radicals over 𝐾. Then Gal(𝑓/𝐾) is
soluble.

Proof. Gal(𝑓/𝐾) = Gal(𝐿/𝐾) ≃ Gal(𝑀/𝐾)⟋Gal(𝑀/𝐿). We know that Gal(𝑀/𝐾) is soluble, so the
result follows from the fact that quotients of soluble groups are soluble.

Remark. One can easily show the converse to this theorem.

Proposition. If 𝑛 ≥ 5, then 𝑆𝑛 and 𝐴𝑛 are insoluble.

Proof. 𝑆𝑛 and𝐴𝑛 contain𝐴5 as a subgroup, so it suffices to show that𝐴5 is insoluble. 𝐴5 is not abelian,
and it is simple, so it is insoluble.

Corollary. Let 𝑛 = deg𝑓 ≥ 5, and 𝐴𝑛 ≤ Gal(𝑓/𝐾). Then 𝑓 is not soluble by radicals over 𝐾.

10 Miscellaneous results
10.1 Fundamental theorem of algebra
This subsection is non-examinable. We show that ℂ is algebraically closed over ℚ, without using
complex analysis. We will only use the following facts:

(i) every polynomial of odd degree over ℝ has a root, due to the intermediate value theorem;

(ii) every quadratic over ℂ splits into linear factors, so we can take square roots;

(iii) every finite group 𝐺 has a subgroup 𝐻 such that (𝐺 ∶ 𝐻) is odd and |𝐻| is a power of 2, by
Sylow’s theorem for 𝑝 = 2;

(iv) if 𝐺 is a 𝑝-group, so |𝐺| = 𝑝𝑘 and 𝑘 > 0, then 𝐺 has a subgroup of index 𝑝, since 𝐺 has a
non-trivial centre.

Let 𝐾/ℂ be a finite extension. Let 𝐿/𝐾 be a normal closure of 𝐾 over ℝ, so 𝐿 is a Galois extension of
ℝ containing ℂ. Let 𝐺 = Gal(𝐿/ℝ). We will show that 𝐿 = ℂ.
Let 𝐻 ≤ 𝐺 be a Sylow 2-subgroup, and consider 𝐿𝐻 . We have [𝐿𝐻 ∶ ℝ] = (𝐺 ∶ 𝐻), which is odd. So
if 𝑥 ∈ 𝐿𝐻 , by (i), its minimal polynomial is linear over ℝ, so 𝑥 ∈ ℝ. Hence 𝐿𝐻 = ℝ, so 𝐻 = 𝐺. So 𝐺
is a 2-group.
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Let 𝐺 ⊃ 𝐺1 = Gal(𝐿/ℂ), and 𝐺2 ≤ 𝐺1 be a subgroup of index 2, which exists by (iv). Then [𝐿𝐺2 ∶
ℂ] = (𝐺1 ∶ 𝐺2), contradicting the fact (ii) that quadratics split inℂ. So there cannot exist a subgroup
of index 2, so 𝐺1 = {𝑒}, and 𝐿 = ℂ.

10.2 Artin’s theorem on invariants

Theorem (Artin). Let 𝐿 be a field and 𝐺 ≤ Aut(𝐿) be a finite subgroup of automorphisms of
𝐿. Define 𝐿𝐺 = {𝑥 ∈ 𝐿 ∣ ∀𝜎 ∈ 𝐺, 𝜎(𝑥) = 𝑥}. Then 𝐿/𝐿𝐺 is finite, and satisfies [𝐿 ∶ 𝐿𝐺] = |𝐺|.

Remark. Unlike in the Galois correspondence, this theorem does not rely on a field extension, just a
single field and a finite group of automorphisms. In particular, we find that 𝐿/𝐿𝐺 is finite and Galois,
with Galois group 𝐺.

Proof. It suffices to show 𝐿/𝐿𝐺 is finite, because then we can apply the Galois correspondence to
show [𝐿 ∶ 𝐿𝐺] = |𝐺|. Let 𝐾 = 𝐿𝐺, and let 𝑥 ∈ 𝐿. Then if {𝜎1(𝑥),… , 𝜎𝑟(𝑥)} is the orbit of 𝐺 on 𝑥, then
𝑥 is a root of 𝑓 = ∏𝑟

𝑖=1(𝑇 − 𝜎𝑖(𝑥)). But 𝑓 ∈ 𝐿𝐺[𝑇] = 𝐾[𝑇]. By construction, 𝑓 is separable. Hence 𝑥
is algebraic and separable over 𝐾, and deg𝐾 𝑥 ≤ |𝐺|.
Let 𝑦 ∈ 𝐿 have maximal degree. We claim that 𝐾(𝑦) = 𝐿. If not, there exists 𝑥 ∈ 𝐿 ∖ 𝐾(𝑦). By above,
𝑥, 𝑦 are algebraic and separable over 𝐾. By the primitive element theorem, there exists 𝑧 ∈ 𝐿 such
that 𝐾(𝑥, 𝑦) = 𝐾(𝑧) ⊋ 𝐾(𝑦), so deg𝐾 𝑧 > deg𝐾 𝑦. But 𝑦 was chosen to have maximal degree, so this is
a contradiction.

Remark. One can prove this theorem directly without appealing to the Galois correspondence or the
primitive element theorem. This can then be used as a starting point for Galois theory, which then
allows the more complicated theorems to be proven.

There are two common ways to construct finite Galois extensions. The first, studied earlier in the
course, involves taking the splitting field of a separable polynomial; this method constructs a larger
field from a given base field. Artin’s theorem provides another way to construct such extensions, by
fixing a large field 𝐿 and constructing the subfield 𝐿𝐺.
Example. Let 𝕜 be a field, and let 𝐿 = 𝕜(𝑋1,… , 𝑋𝑛) be the field of rational functions, defined as the
fractions of the polynomial ring 𝕜[𝑋1,… , 𝑋𝑛]. Let 𝐺 = 𝑆𝑛 be the symmetric group permuting the 𝑋𝑖.
Then 𝐺 ≤ Aut(𝐿).

Theorem. Let 𝕜 be a field and let 𝐿 = 𝕜(𝑋1,… , 𝑋𝑛). Then 𝐿𝐺 = 𝕜(𝑠1,… , 𝑠𝑛).

Proof. Recall that 𝕜[𝑋1,… , 𝑋𝑛]𝐺 = 𝕜[𝑠1,… , 𝑠𝑛] where the 𝑠𝑖 are the elementary symmetric polyno-
mials in the 𝑋𝑖, and there are no nontrivial relations between the 𝑠𝑖. In particular, 𝕜(𝑠1,… , 𝑠𝑛) ⊆ 𝐿𝐺.

Conversely, let 𝑓
𝑔
∈ 𝐿𝐺 for 𝑓, 𝑔 ∈ 𝕜[𝑋1,… , 𝑋𝑛] = 𝑅. Without loss of generality let 𝑓, 𝑔 be coprime.

Then for all 𝜎 ∈ 𝐺, 𝑓
𝑔
= 𝜎𝑓

𝜎𝑔
. By Gauss’ lemma, 𝑅 is a unique factorisation domain, and the units in

𝑅 are the nonzero constants 𝕜×. Hence 𝜎𝑓 = 𝑐𝜎𝑓 and 𝜎𝑔 = 𝑐𝜎𝑔 where 𝑐𝜎 ∈ 𝕜×.
Since𝐺 is finite and has order𝑁 = 𝑛!, 𝑓 = 𝜎𝑁𝑓 = 𝑐𝑁𝜎 𝑓. So 𝑐𝜎 is an𝑁th root of unity. Then 𝑓𝑔𝑁−1, 𝑔𝑁

are invariant under 𝜎, so 𝑓𝑔𝑁−1, 𝑔𝑁 ∈ 𝑅𝐺 = 𝕜[𝑠1,… , 𝑠𝑛]. So
𝑓
𝑔
= 𝑓𝑔𝑁−1

𝑔𝑁
∈ 𝕜(𝑠1,… , 𝑠𝑛).
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Example. Let 𝐿 = 𝕜(𝑋1,… , 𝑋𝑛), and let 𝐾 = 𝕜(𝑠1,… , 𝑠𝑛) = 𝐿𝐺 where 𝐺 = 𝑆𝑛. Then by Artin’s
theorem, 𝐿/𝐾 is a finite Galois extension with Galois group𝐺. Let 𝑓 = 𝑇𝑛−𝑠1𝑇𝑛−1+⋯+(−1)𝑛𝑠𝑛 ∈
𝐾[𝑇]. Then in 𝐿, 𝑓 = ∏𝑛

𝑖=1(𝑇 − 𝑋𝑖). Since the 𝑋𝑖 are different, 𝑓 is separable, and 𝐿/𝐾 is a splitting
field for 𝑓. Hence Gal(𝑓/𝐾) = 𝑆𝑛. Informally, the general polynomial of degree 𝑛 has Galois group
𝑆𝑛. It is not difficult to show that for any finite group 𝐺, there exists a Galois extension with Galois
group isomorphic to 𝐺.

10.3 Other areas of study
This is one of a number of theories in invariant theory, in which one considers a ring 𝑅 and a group
𝐺 ≤ Aut(𝑅), and study 𝑅𝐺. If 𝑅 is a polynomial ring 𝕜[𝑋1,… , 𝑋𝑛] and 𝐺 ≤ 𝑆𝑛, then knowing
𝑅𝐺 can help with the computation of Galois groups algorithmically. For example, if 𝐺 = 𝐴𝑛, then
𝕜[𝑋1,… , 𝑋𝑛]𝐴𝑛 = 𝕜[𝑠1,… , 𝑠𝑛, Δ] where Δ = ∏𝑖<𝑗(𝑋𝑖 − 𝑋𝑗), for char𝕜 ≠ 2.

Now consider 𝑅 = 𝕜[𝑋1, 𝑋2] and 𝐺 = {1, 𝜎} where 𝜎(𝑋𝑖) = −𝑋𝑖. Let char𝕜 ≠ 2. Then one can show
𝑅𝐺 = 𝕜[𝑋2

1 , 𝑋2
2 , 𝑋1𝑋2] = 𝕜[𝑌1, 𝑌2, 𝑌3]⟋(𝑌1𝑌2 − 𝑌 2

3 ). Geometrically, {𝑌1𝑌2 = 𝑌 2
3 } ⊂ ℝ3 is a double cone.

The point at which the cones meet is known as a singularity; such singularities occur in the study of
algebraic geometry.

If 𝐾 and 𝐺 are fixed, it is not always the case that there exists a Galois extension 𝐿/𝐾 such that
Gal(𝐿/𝐾) = 𝐺. For instance, if 𝐾 is algebraically closed, it has no nontrivial Galois extensions. If
𝐾 = 𝔽𝑝, then Gal(𝐿/𝐾)must be cyclic.
The inverse Galois problem asks whether every finite group 𝐺 is the Galois group of some Galois
extension 𝐿/ℚ. This is unsolved in the general case. On the extra example sheet, one shows that
every abelian group is in fact the Galois group of some Galois extension 𝐿/ℚ. There is a famous
theorem by Shafarevich that every finite soluble group is such a Galois group over ℚ. This is also
known to hold for most finite simple groups; in particular, due to a theorem of John Thompson, the
monster group is known to be a Galois group over ℚ.

Perhaps to solve this problem, it would be better to instead understand Gal(ℚ/ℚ). The inverse
Galois problem is equivalent to asking whether every finite group is a quotient of Gal(ℚ/ℚ). We
may also be interested in finding the representations of this group. This leads to the Langlands pro-
gramme.
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