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1 Modelling communication
To reason about communication, we use the following model. We have a sourcewhich knows a mes-
sage, that uses an encoder to produce some code words. The code words are sent through a channel,
but errors and noise may be introduced in this channel. The code words are received by a decoder,
which performs some form of error detection and correction. The message is finally received by a
receiver.

The source is often named Alice, and the receiver is named Bob. There may be an agent watching the
channel called Eve, short for eavesdropper.

Examples of these ideas include the optical and electrical telegraph, SMS, postcodes, CDs and their
error correction, compression algorithms such as gzip, and PINs.

Given a source and a channel, modelled probabilistically, the basic problem is to design an encoder
and decoder to transmit messages economically (noiseless coding, compression) and reliably (noisy
coding).

An example of noiseless coding is Morse code, where every letter is assigned a unique sequence of
dots anddashes, wheremore common letters are assigned shorter strings. Noiseless coding is adapted
to the source.

Here is an example of noisy coding. Each book has an ISBN 𝑎1𝑎2…𝑎9𝑎10 where the 𝑎1,… , 𝑎9 are
digits in {0,… , 9}, and 𝑎10 ∈ {0,… , 9, 𝑋} such that 11 ∣ ∑10

𝑗=1 𝑗𝑎𝑗 . This coding system detects the
commonhuman errors ofwriting an incorrect digit and transposing two adjacent digits. Noisy coding
is adapted to the channel, which in this case is the human reading the number and typing it into a
computer.

Definition. A communication channel accepts a string of symbols from a finite alphabet
𝒜 = {𝑎1,… , 𝑎𝑟} and outputs a string of symbols from another finite alphabet ℬ = {𝑏1,… , 𝑏𝑠}.
It is modelled by the probabilities ℙ (𝑦1…𝑦𝑛 received ∣ 𝑥1…𝑥𝑛 sent).

Definition. A discrete memoryless channel is a channel where 𝑝𝑖𝑗 = ℙ (𝑏𝑗 received ∣ 𝑎𝑖 sent)
are the same for each channel use, and independent of all past and future uses of the channel.
Its channel matrix is the 𝑟 × 𝑠 stochastic matrix 𝑃 = (𝑝𝑖𝑗).

Example. The binary symmetric channel with error probability 𝑝 ∈ [0, 1] is a discrete memoryless
channel with input and output alphabets {0, 1}, where the channel matrix is

(1 − 𝑝 𝑝
𝑝 1 − 𝑝)

Here, a symbol is transmitted correctly with probability 1 − 𝑝. Usually, we assume 𝑝 < 1
2
.

Example. The binary erasure channel has 𝒜 = {0, 1} and ℬ = {0, 1,⋆}. The channel matrix is

(1 − 𝑝 0 𝑝
0 1 − 𝑝 𝑝)

𝑝 can be interpreted as the probability that the symbol received is unreadable. If ⋆ is received, we say
that we have received a splurge error.
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Definition. Wemodel 𝑛 uses of a channel by the 𝑛th extension, with input alphabet𝒜𝑛 and
output alphabetℬ𝑛. A code𝐶 of length 𝑛 is a functionℳ → 𝒜𝑛, whereℳ is a set ofmessages.
Implicitly, we also have a decoding rule ℬ𝑛 →ℳ.

• The size of this code is𝑚 = |ℳ|.
• The information rate of the code is 𝜌(𝐶) = 1

𝑛
log2𝑚.

• The error rate of the code is ̂𝑒(𝐶) = max𝑥∈ℳ ℙ (error ∣ 𝑥 sent).

Definition. A channel can transmit reliably at rate 𝑅 if there is a sequence of codes (𝐶𝑛)∞𝑛=1
with each 𝐶𝑛 a code of length 𝑛 such that lim𝑛→∞ 𝜌(𝐶𝑛) = 𝑅 and lim𝑛→∞ ̂𝑒(𝐶𝑛) = 0. The
capacity of a channel is the supremum of all reliable transmission rates.

It is a nontrivial fact that the capacity of the binary symmetric channel with 𝑝 < 1
2
is nonzero. This

is one of Shannon’s theorems, proven later.

2 Noiseless coding
2.1 Prefix-free codes
Let 𝒜 be a finite alphabet. We write 𝒜⋆ for the set of strings of elements of 𝒜, defined by 𝒜⋆ =
⋃𝑛≥0 𝐴𝑛. The concatenation of two strings𝑥 = 𝑥1…𝑥𝑟 and 𝑦 = 𝑦1…𝑦𝑠 is the string𝑥𝑦 = 𝑥1…𝑥𝑟𝑦1…𝑦𝑠.

Definition. Let 𝒜,ℬ be alphabets. A code is a function 𝑐∶ 𝒜 → ℬ⋆. The codewords of 𝑐 are
the elements of Im 𝑐.

Example (Greek fire code). Let 𝒜 = {𝛼, 𝛽,… , 𝜔}, and 𝐵 = {1, 2, 3, 4, 5}. We map 𝑐(𝛼) = 11, 𝑐(𝛽) =
12,… , 𝑐(𝜓) = 53, 𝑐(𝜔) = 54. 𝑥𝑦means to hold up 𝑥 torches and another 𝑦 torches nearby. This code
was described by the historian Polybius.

Example. Let𝒜 be a set of words in some dictionary. Letℬ be the letters of English {𝐴,… , 𝑍, ␣} The
code is to spell the word and follow with a space.

The general idea is to send a message 𝑥1,… , 𝑥𝑛 ∈ 𝒜⋆ as 𝑐(𝑥1)… 𝑐(𝑥𝑛) ∈ ℬ⋆. So 𝑐 extends to a
function 𝑐⋆ ∶ 𝒜⋆ → ℬ⋆.

Definition. A code 𝑐 is decipherable (or uniquely decodable) if 𝑐⋆ is injective.

If 𝑐 is decipherable, each string in ℬ⋆ corresponds to at most one message. It does not suffice to
require that 𝑐 be injective. Consider 𝒜 = {1, 2, 3, 4}, ℬ = {0, 1}, and let 𝑐(1) = 0, 𝑐(2) = 1, 𝑐(3) =
00, 𝑐(4) = 01. Then 𝑐⋆(114) = 0001 = 𝑐⋆(312).
Typically we define𝑚 = |𝒜| and 𝑎 = |ℬ|. We say 𝑐 is an 𝑎-ary code of size𝑚. A 2-ary code is a binary
code, and a 3-ary code is a ternary code. We aim to construct decipherable codes with short word
lengths. Assuming that 𝑐 is injective, the following codes are always decipherable.
(i) a block code, where all codewords have the same length, such as in the Greek fire code;

(ii) a comma code, which reserves a letter from ℬ to signal the end of a word;
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(iii) a prefix-free code, a code in which no codeword is a prefix of another codeword.

Block codes and comma codes are examples of prefix-free codes. Such codes require no lookahead
to determine if we have reached the end of a word, so such codes are sometimes called instantaneous
codes. One can easily find decipherable codes that are not prefix-free.

2.2 Kraft’s inequality

Definition. Let 𝒜 be an alphabet of size𝑚, and ℬ be an alphabet of size 𝑎. Let 𝑐∶ 𝒜 → ℬ⋆

be a code with codewords are of length ℓ1,… , ℓ𝑚. Then, Kraft’s inequality is
𝑚
∑
𝑖=1

𝑎−ℓ𝑖 ≤ 1

Theorem. A prefix-free code (with given codeword lengths) exists if and only if Kraft’s in-
equality holds.

Proof. Let us rewrite Kraft’s inequality as∑𝑠
ℓ=1 𝑛ℓ𝑎−ℓ ≤ 1, where 𝑛ℓ is the number of codewords of

length ℓ, and 𝑠 is the length of the longest codeword. Suppose 𝑐∶ 𝒜 → ℬ⋆ is prefix-free. Then,

𝑛1𝑎𝑠−1 + 𝑛2𝑎𝑠−2 +⋯+ 𝑛𝑠−1𝑎 + 𝑛𝑠 ≤ 𝑎𝑠

since the left hand side counts the number of strings of length 𝑠 in ℬ with some codeword of 𝑐 as a
prefix, and the right hand side counts the total number of strings of length 𝑠. Dividing by 𝑎𝑠 gives the
desired result.

Now, suppose that∑𝑠
ℓ=1 𝑛ℓ𝑎−ℓ ≤ 1. We aim to construct a prefix-free code 𝑐 with 𝑛ℓ codewords of

length ℓ for all ℓ ≤ 𝑠. Proceed by induction on 𝑠. The case 𝑠 = 1 is clear; in this case, the inequality
gives 𝑛1 ≤ 𝑎. By the inductive hypothesis, we have constructed a prefix-free code ̂𝑐with 𝑛ℓ codewords
of length ℓ for all ℓ < 𝑠. The inequality gives 𝑛1𝑎𝑠−1 +⋯+ 𝑛𝑠−1𝑎 + 𝑛𝑠 ≤ 𝑎𝑠. The first 𝑠 − 1 terms on
the left hand side gives the number of strings of length 𝑠 with some codeword of ̂𝑐 as a prefix. So we
are free to add 𝑛𝑠 additional codewords of length 𝑠 to ̂𝑐 to form 𝑐without exhausting our supply of 𝑎𝑠
total strings of length 𝑠.

Remark. The proof of existence of such a code is constructive; one can choose codewords in order of
increasing length, ensuring that we do not introduce prefixes at each stage.

2.3 McMillan’s inequality

Theorem. Any decipherable code satisfies Kraft’s inequality.

Proof. Let 𝑐∶ 𝒜 → ℬ⋆ be decipherable with word lengths ℓ1,… , ℓ𝑚. Let 𝑠 = max𝑖≤𝑚 ℓ𝑖. For 𝑅 ∈ ℕ,
we have

(
𝑚
∑
𝑖=1

𝑎−ℓ𝑖)
𝑅

=
𝑅𝑠
∑
ℓ=1

𝑏ℓ𝑎−ℓ
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where 𝑏ℓ is the number of ways of choosing 𝑅 codewords of total length ℓ. Since 𝑐 is decipherable,
any string of length ℓ formed from codewordsmust correspond to exactly one sequence of codewords.
Hence, 𝑏ℓ ≤ ||ℬℓ|| = 𝑎ℓ. The inequality therefore gives

(
𝑚
∑
𝑖=1

𝑎−ℓ𝑖)
𝑅

≤ 𝑅𝑠 ⟹
𝑚
∑
𝑖=1

𝑎−ℓ𝑖 ≤ (𝑅𝑠)
1
𝑅

As 𝑅 → ∞, the right hand side converges to 1, giving Kraft’s inequality as required.

Corollary. Adecipherable codewith prescribedword lengths exists if and only if a prefix-free
code with the same word lengths exists.

We can therefore restrict our attention to prefix-free codes.

2.4 Entropy
Entropy is a measure of ‘randomness’ or ‘uncertainty’ in an input message. Suppose that we have
a random variable 𝑋 taking a finite number of values 𝑥1,… , 𝑥𝑛 with probability 𝑝1,… , 𝑝𝑛. Then,
the entropy of this random variable is the expected number of fair coin tosses required to determine
𝑋 .
Example. Suppose 𝑝1 = 𝑝2 = 𝑝3 = 𝑝4 =

1
4
. Identifying {𝑥1, 𝑥2, 𝑥3, 𝑥4} = {00, 01, 10, 11}, we would

expect 𝐻(𝑋) = 2.

Example. Suppose 𝑝1 =
1
2
, 𝑝2 =

1
4
, and 𝑝3 = 𝑝4 =

1
8
. Identifying {𝑥1, 𝑥2, 𝑥3, 𝑥4} = {0, 10, 110, 111},

we obtain 𝐻(𝑋) = 1
2
⋅ 1 + 1

4
⋅ 2 + 1

8
⋅ 3 + 1

8
⋅ 3 = 7

4
.

In a sense, the first example is ‘more random’ than the second, as its entropy is higher.

Definition. The entropy of a random variable 𝑋 taking a finite number of values 𝑥1,… , 𝑥𝑛
with probabilities 𝑝1,… , 𝑝𝑛 is defined to be

𝐻(𝑋) = 𝐻(𝑝1,… , 𝑝𝑛) = −
𝑛
∑
𝑖=1

𝑝𝑖 log𝑝𝑖 = −𝔼 [log𝑝𝑖]

where the logarithm is taken with base 2.

Note that𝐻(𝑋) ≥ 0, and equality holds exactly when 𝑋 is constant with probability 1. It is measured
in bits, binary digits. By convention, we write 0 log 0 = 0 (note that 𝑥 log𝑥 → 0 as 𝑥 → 0).
Example. For a biased coin with probability 𝑝 of a head, we write 𝐻(𝑝, 1 − 𝑝) = 𝐻(𝑝). We find

𝐻(𝑝) = −𝑝 log𝑝 − (1 − 𝑝) log(1 − 𝑝); 𝐻′(𝑝) = log 1 − 𝑝
𝑝

This graph is concave, taking a maximum value of 1 when 𝑝 = 1
2
. If 𝑝 = 0, 1 then 𝐻(𝑝) = 0.

6



2.5 Gibbs’ inequality

Proposition. Let (𝑝1,… , 𝑝𝑛), (𝑞1,… , 𝑞𝑛) be discrete probability distributions. Then,

−∑𝑝𝑖 log𝑝𝑖 ≤ −∑𝑝𝑖 log 𝑞𝑖

with equality if and only if 𝑝𝑖 = 𝑞𝑖.

The right hand side is sometimes called the cross entropy, ormixed entropy.

Proof. Since log 𝑥 = ln𝑥
ln 2

, we may replace the inequality with

−∑𝑝𝑖 ln𝑝𝑖 ≤ −∑𝑝𝑖 ln 𝑞𝑖
Define 𝐼 = {𝑖 ∣ 𝑝𝑖 ≠ 0}. Now, ln𝑥 ≤ 𝑥 − 1 for all 𝑥 > 0, with equality if and only if 𝑥 = 1. Hence,
ln 𝑞𝑖

𝑝𝑖
≤ 𝑞𝑖

𝑝𝑖
− 1 for all 𝑖 ∈ 𝐼. Then,

∑
𝑖∈𝐼

𝑝𝑖 ln
𝑞𝑖
𝑝𝑖

≤ ∑
𝑖∈𝐼

𝑞𝑖 −∑
𝑖∈𝐼

𝑝𝑖

As the 𝑝𝑖 form a probability distribution, ∑𝑖∈𝐼 𝑝𝑖 = 1 and∑𝑖∈𝐼 𝑞𝑖 ≤ 1, so the right hand side is at
most 0. Therefore,

−
𝑛
∑
𝑖=1

𝑝𝑖 ln𝑝𝑖 = −∑
𝑖∈𝐼

𝑝𝑖 ln𝑝𝑖 ≤ −∑
𝑖∈𝐼

𝑝𝑖 ln 𝑞𝑖 ≤ −
𝑛
∑
𝑖=1

𝑝𝑖 ln 𝑞𝑖

If equality holds, we must have∑𝑖∈𝐼 𝑞𝑖 = 1 and 𝑞𝑖
𝑝𝑖
= 1 for all 𝑖 ∈ 𝐼, giving that 𝑝𝑖 = 𝑞𝑖 for all 𝑖.

Corollary. 𝐻(𝑝1,… , 𝑝𝑛) ≤ log𝑛, with equality if and only if 𝑝1 = ⋯ = 𝑝𝑛.

2.6 Optimal codes
Let𝒜 = {𝜇1,… , 𝜇𝑚} be an alphabet of𝑚 ≥ 2messages, and letℬ be an alphabet of length 𝑎 ≥ 2. Let
𝑋 be a random variable taking values in 𝐴 with probabilities 𝑝1,… , 𝑝𝑚.

Definition. A code 𝑐∶ 𝒜 → ℬ⋆ is called optimal if it has the smallest possible expected word
length∑𝑝𝑖ℓ𝑖 = 𝔼 [𝑆] among all decipherable codes.

Theorem (Shannon’s noiseless coding theorem). The expected word length 𝔼 [𝑆] of a de-
cipherable code satisfies

for decipherable codes

⏞⎴⎴⏞⎴⎴⏞𝐻(𝑋)
log 𝑎 ≤ 𝔼[𝑆] < 𝐻(𝑋)

log 𝑎 + 1
⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟

for optimal codes

Moreover, the left hand inequality is an equality if and only if 𝑝𝑖 = 𝑎−ℓ𝑖 with∑𝑎−ℓ𝑖 = 1 for
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some integers ℓ1,… , ℓ𝑚.

Proof. First, we consider the lower bound. Let 𝑐∶ 𝒜 → ℬ⋆ be a decipherable code with word lengths
ℓ1,… , ℓ𝑚. Let 𝑞𝑖 =

𝑎−ℓ𝑖
𝐷

where 𝐷 = ∑𝑎−ℓ𝑖 , so∑𝑞𝑖 = 1. By Gibbs’ inequality,

𝐻(𝑋) ≤ −∑𝑝𝑖 log 𝑞𝑖 = −∑𝑝𝑖(−ℓ𝑖 log 𝑎 − log𝐷) = log𝐷 + log 𝑎∑𝑝𝑖ℓ𝑖

By McMillan’s inequality, 𝐷 ≤ 1 so log𝐷 ≤ 0. Hence, 𝐻(𝑋) ≤ log 𝑎∑𝑝𝑖ℓ𝑖 = log 𝑎𝔼 [𝑆] as required.
Equality holds exactly when 𝐷 = 1 and 𝑝𝑖 = 𝑞𝑖 =

𝑎−ℓ𝑖
𝐷

= 𝑎−ℓ𝑖 for some integers ℓ1,… , ℓ𝑚.

Now, consider the upper bound. We construct a code called the Shannon–Fano code. Let ℓ𝑖 =
⌈− log𝑎 𝑝𝑖⌉, so− log𝑎 𝑝𝑖 ≤ ℓ𝑖 < − log𝑎 𝑝𝑖+1. Therefore, log𝑎 𝑝𝑖 ≥ −ℓ𝑖, so 𝑝𝑖 ≥ 𝑎−ℓ𝑖 . Thus, Kraft’s in-
equality∑𝑎−ℓ𝑖 ≤ 1 is satisfied, so there exists a prefix-free code 𝑐with these word lengths ℓ1,… , ℓ𝑚.
𝑐 has expected word length

𝔼 [𝑆] = ∑𝑝𝑖ℓ𝑖 < ∑𝑝𝑖(− log𝑝𝑖 + 1) = 𝐻(𝑋)
log 𝑎 + 1

as required.

Example (Shannon–Fano coding). For probabilities 𝑝1,… , 𝑝𝑚, we set ℓ𝑖 = ⌈− log𝑎 𝑝𝑖⌉. Construct
a prefix-free code with these word lengths by choosing codewords in order of size, with smallest
codewords being selected first to ensure that the prefix-free property holds. By Kraft’s inequality, this
process can always be completed.

Example. Let 𝑎 = 2,𝑚 = 5, and define

𝑖 𝑝𝑖 ⌈− log2 𝑝𝑖⌉
1 0.4 2 00
2 0.2 3 010
3 0.2 3 011
4 0.1 4 1000
5 0.1 4 1001

Here, 𝔼 [𝑆] = ∑𝑝𝑖ℓ𝑖 = 2.8, and 𝐻(𝑋) = 𝐻(𝑋)
log 2

≈ 2.12. Clearly, this is not optimal; one could take
𝑐(4) = 100, 𝑐(5) = 101 to reduce the expected word length.

2.7 Huffman coding
Let 𝒜 = {𝜇1,… , 𝜇𝑚} and 𝑝𝑖 = ℙ (𝑋 = 𝜇𝑖). We assume 𝑎 = 2 and ℬ = {0, 1} for simplicity. Without
loss of generality, we can assume 𝑝1 ≥ 𝑝2 ≥ ⋯ ≥ 𝑝𝑚. We construct an optimal code induct-
ively.

If 𝑚 = 2, we take codewords 0 and 1. If 𝑚 > 2, first we take the Huffman code for messages
𝜇1,… , 𝜇𝑚−2, 𝜈 with probabilities 𝑝1, 𝑝2,… , 𝑝𝑚−2, 𝑝𝑚−1 + 𝑝𝑚. Then, we append 0 and 1 to the code-
word for 𝜈 to obtain the new codewords for 𝜇𝑚−1, 𝜇𝑚.
Remark. By construction, Huffman codes are prefix-free. In general, Huffman codes are not unique;
we require a choice if 𝑝𝑖 = 𝑝𝑗 .
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Example. Consider the example Let 𝑎 = 2,𝑚 = 5, and consider as before

𝑖 𝑝𝑖
1 0.4
2 0.2
3 0.2
4 0.1
5 0.1

Merging 4 and 5, as they have the lowest probabilities,

𝑖 𝑝𝑖
1 0.4
2 0.2
3 0.2
45 0.2

Continuing, we obtain
𝑖 𝑝𝑖

(3(45))2 0.6
1 0.4

giving codewords
•

• 1

• 2

3 •

4 5

0 1

0 1

0 1

0 1

This gives 𝔼 [𝑆] = 2.2, better than the Shannon–Fano code found above.

Lemma. Let 𝜇1,… , 𝜇𝑚 be messages in 𝒜 with probabilities 𝑝1,… , 𝑝𝑚. Let 𝑐 be an optimal
prefix-free code for 𝑐 with word lengths ℓ1,… , ℓ𝑚. Then,
(i) if 𝑝𝑖 > 𝑝𝑗 , ℓ𝑖 ≤ ℓ𝑗 ; and
(ii) among all codewords of maximal length, there exist two which differ only in the last

digit.

Proof. If this were not true, one could modify 𝑐 by
(i) swapping the 𝑖th and 𝑗th codewords; or
(ii) deleting the last letter of each codeword of maximal length

which yields a prefix-free code with strictly smaller expected word length.
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Theorem. Huffman codes are optimal.

Proof. The proof is by induction on 𝑚. If 𝑚 = 2, then the codewords are 0 and 1, which is clearly
optimal. Assume𝑚 > 2, and let 𝑐𝑚 be the Huffman code for 𝑋𝑚 which takes values 𝜇1,… , 𝜇𝑚 with
probabilities 𝑝1 ≥ ⋯ ≥ 𝑝𝑚. 𝑐𝑚 is constructed from aHuffman code 𝑐𝑚−1 with random variable𝑋𝑚−1
taking values 𝜇1,… , 𝜇𝑛−2, 𝜈 with probabilities 𝑝1,… , 𝑝𝑚−2, 𝑝𝑚−1 + 𝑝𝑚. The code 𝑐𝑚−1 is optimal by
the inductive hypothesis. The expected word length 𝔼 [𝑆𝑚] is given by

𝔼 [𝑆𝑚] = 𝔼 [𝑆𝑚−1] + 𝑝𝑚−1 + 𝑝𝑚

Let 𝑐′𝑚 be an optimal code for 𝑋𝑚, which without loss of generality can be chosen to be prefix-free.
Without loss of generality, the last two codewords of 𝑐′𝑚 can be chosen to have the largest possible
length and differ only in the final position, by the previous lemma. Then, 𝑐′𝑚(𝜇𝑚−1) = 𝑦0 and
𝑐′𝑚(𝜇𝑚) = 𝑦1 for some 𝑦 ∈ {0, 1}⋆. Let 𝑐′𝑚−1 be the prefix-free code for 𝑋𝑚−1 given by

𝑐′𝑚−1(𝜇𝑖) = {𝑐
′
𝑚(𝜇𝑖) 𝑖 ≤ 𝑚 − 2
𝑦 𝑖 = 𝑚 − 1,𝑚

The expected word length satisfies

𝔼 [𝑆′𝑚] = 𝔼 [𝑆′𝑚−1] + 𝑝𝑚−1 + 𝑝𝑚

By the inductive hypothesis, 𝑐𝑚−1 is optimal, so 𝔼 [𝑆𝑚−1] ≤ 𝔼 [𝑆′𝑚−1]. Combining the equations,

𝔼 [𝑆𝑚] ≤ 𝔼 [𝑆′𝑚]

So 𝑐𝑚 is optimal as required.

Remark. Not all optimal codes are Huffman codes. However, we have proven that, given a prefix-free
optimal code with prescribed word lengths, there is a Huffman code with these word lengths.

2.8 Joint entropy
Let 𝑋, 𝑌 be random variables with values in 𝒜,ℬ. Then, the pair (𝑋, 𝑌) is also a random variable,
taking values in 𝒜 ×ℬ. This has entropy 𝐻(𝑋, 𝑌), called the joint entropy for 𝑋 and 𝑌 .

𝐻(𝑋, 𝑌) = − ∑
𝑥∈𝒜

∑
𝑦∈ℬ

ℙ (𝑋 = 𝑥, 𝑌 = 𝑦) logℙ (𝑋 = 𝑥, 𝑌 = 𝑦)

This construction generalises to finite tuples of random variables.

Lemma. Let 𝑋, 𝑌 be random variables taking values in𝒜,ℬ. Then𝐻(𝑋, 𝑌) ≤ 𝐻(𝑋)+𝐻(𝑌),
with equality if and only if 𝑋 and 𝑌 are independent.

Proof. Let 𝒜 = {𝑥1,… , 𝑥𝑚} and ℬ = {𝑦1,… , 𝑦𝑛}. Let 𝑝𝑖𝑗 = ℙ (𝑋 = 𝑥𝑖, 𝑌 = 𝑦𝑗), 𝑝𝑖 = ℙ (𝑋 = 𝑥𝑖), and
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𝑞𝑗 = ℙ (𝑌 = 𝑦𝑗). By Gibbs’ inequality applied to {𝑝𝑖𝑗} and {𝑝𝑖𝑞𝑗},

𝐻(𝑋, 𝑌) = −∑𝑝𝑖𝑗 log𝑝𝑖𝑗 ≤ −∑𝑝𝑖𝑗 log(𝑝𝑖𝑞𝑗)

= −∑
𝑖
(∑

𝑗
𝑝𝑖𝑗) log𝑝𝑖 −∑

𝑗
(∑

𝑖
𝑝𝑖𝑗) log 𝑞𝑗

= −∑
𝑖
𝑝𝑖 log𝑝𝑖 −∑

𝑗
𝑞𝑗 log 𝑞𝑗

= 𝐻(𝑋) + 𝐻(𝑌)
Equality holds if and only if 𝑝𝑖𝑗 = 𝑝𝑖𝑞𝑗 for all 𝑖, 𝑗, or equivalently, if 𝑋, 𝑌 are independent.

3 Noisy channels
3.1 Decoding rules

Definition. A binary [𝑛,𝑚]-code is a subset𝐶 of {0, 1}𝑛 of size𝑚 = |𝐶|. We say 𝑛 is the length
of the code, and elements of 𝐶 are called codewords.

We use an [𝑛,𝑚]-code to send one of 𝑚 messages through a channel using 𝑛 bits. For instance, if
the channel is a binary symmetric channel, we use the channel 𝑛 times. Note that 1 ≤ 𝑚 ≤ 2𝑛, so
the information rate 𝜌(𝐶) = 1

𝑛
log𝑚 satisfies 0 ≤ 𝜌(𝐶) ≤ 1. If 𝑚 = 1, 𝜌(𝐶) = 0, and if 𝐶 = {0, 1}𝑛,

𝜌(𝐶) = 1.

Definition. Let 𝑥, 𝑦 ∈ {0, 1}𝑛. The Hamming distance between 𝑥 and 𝑦 is

𝑑(𝑥, 𝑦) = |{𝑖 ∣ 𝑥𝑖 ≠ 𝑦𝑖}|

In this section, we consider only the binary symmetric channel with probability 𝑝.

Definition. Let 𝐶 be a binary [𝑛,𝑚]-code.
• The ideal observer decoding rule decodes 𝑥 ∈ {0, 1}𝑛 as the 𝑐 ∈ 𝐶 maximising the
probability that 𝑐 was sent given that 𝑥 was received;

• The maximum likelihood decoding rule decodes 𝑥 ∈ {0, 1}𝑛 as the 𝑐 ∈ 𝐶 maximising
the probability that 𝑥 was received given that 𝑐 was sent;

• The minimum distance decoding rule decodes 𝑥 ∈ {0, 1}𝑛 as the 𝑐 ∈ 𝐶 minimising the
Hamming distance 𝑑(𝑥, 𝑐).

Lemma. Let 𝐶 be a binary [𝑛,𝑚]-code.
(i) If all messages are equally likely, the ideal observer and maximum likelihood decoding

rules agree.
(ii) If 𝑝 < 1

2
, then the maximum likelihood and minimum distance decoding rules agree.

Note that the hypothesis in part (i) is reasonable if we first encode a message using noiseless coding.
The hypothesis in part (ii) is reasonable, since a channel with 𝑝 = 1

2
can carry no information, and a
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channel with 𝑝 > 1
2
can be used as a channel with probability 1−𝑝 by inverting its outputs. Channels

with 𝑝 = 0 are called lossless channels, and channels with 𝑝 = 1
2
are called useless channels.

Proof. Part (i). By Bayes’ rule,

ℙ (𝑐 sent ∣ 𝑥 received) = ℙ (𝑐 sent, 𝑥 received)
𝑥 received = ℙ (𝑐 sent)

ℙ (𝑥 received)ℙ (𝑥 received ∣ 𝑐 sent)

By hypothesis, ℙ (𝑐 sent) is independent of 𝑐. Hence, for some fixed received message 𝑥, maximising
ℙ (𝑐 sent ∣ 𝑥 received) is the same as maximising ℙ (𝑥 received ∣ 𝑐 sent).
Part (ii). Let 𝑟 = 𝑑(𝑥, 𝑐). Then,

ℙ (𝑥 received ∣ 𝑐 sent) = 𝑝𝑟(1 − 𝑝)𝑛−𝑟 = (1 − 𝑝)𝑛( 𝑝
1 − 𝑝)

𝑟

As 𝑝 < 1
2
, 𝑝
1−𝑝

< 1. Hence, maximising ℙ (𝑥 received ∣ 𝑐 sent) is equivalent to minimising 𝑟 =
𝑑(𝑥, 𝑐).

We can therefore choose to use minimum distance decoding from this point.

Example. Suppose codewords 000, 111 are sent with probabilities 𝛼 = 9
10
and 1 − 𝛼 = 1

10
, through

a binary symmetric channel with error probability 𝑝 = 1
4
. Suppose that we receive 110. Clearly, an

error has been introduced.

ℙ (000 sent ∣ 110 received) = 𝛼𝑝2(1 − 𝑝)
𝛼𝑝2(1 − 𝑝) + (1 − 𝛼)𝑝(1 − 𝑝)2 =

3
4

ℙ (111 sent ∣ 110 received) = 1
4

The ideal observer therefore decodes 110 as 000. The maximum likelihood or minimum distance
decoding rules decode 110 as 111.
Remark. Minimum distance decoding may be expensive in terms of time and storage if |𝐶| is large,
since the distance to all codewordsmust be calculated a priori. Onemust also specify a convention in
case of a tie between the probabilities or distances, for instance, using a random choice, or requesting
a retransmission.

3.2 Error detection and correction
The aim when constructing codes for noisy channels is to detect errors, and if possible, to correct
them.

Definition. A binary [𝑛,𝑚]-code 𝐶 is
• 𝑑-error detecting if, when changing up to 𝑑 digits in each codeword, we can never pro-
duce another codeword;

• 𝑒-error correcting if, knowing that 𝑥 ∈ {0, 1}𝑛 differs from a codeword in at most 𝑒 posi-
tions, we can deduce the codeword.

12



Example. A repetition code of length 𝑛 has codewords 0𝑛, 1𝑛. This is an [𝑛, 2]-code. It is (𝑛−1)-error
detecting, and ⌊𝑛−1

2
⌋-error correcting. Its information rate is 1

𝑛
.

Example. A simple parity check code or paper tape code of length 𝑛 identifies the set {0, 1} with the
field 𝔽2 of two elements, and defines 𝐶 = {(𝑥1,… , 𝑥𝑛) ∈ 𝔽𝑛2 ∣ ∑𝑥𝑖 = 0}. This is an [𝑛, 2𝑛−1]-code.
This is 1-error detecting and 0-error correcting, but has information rate 𝑛−1

𝑛
.

Example. Hamming’s original code is a 1-error correcting binary [7, 16]-code, defined on a subset
of 𝔽72 by

𝐶 = {𝑐 ∈ 𝔽72 ∣ 𝑐1 + 𝑐3 + 𝑐5 + 𝑐7 = 0; 𝑐2 + 𝑐3 + 𝑐6 + 𝑐7 = 0; 𝑐4 + 𝑐5 + 𝑐6 + 𝑐7 = 0}

The bits 𝑐3, 𝑐5, 𝑐6, 𝑐7 are chosen arbitrarily, and 𝑐1, 𝑐2, 𝑐4 are check digits, giving a size of 24 = 16.
Suppose that we receive 𝑥 ∈ 𝔽72. We form the syndrome 𝑧 = 𝑧𝑥 = (𝑧1, 𝑧2, 𝑧4) ∈ 𝔽32 where

𝑧1 = 𝑥1 + 𝑥3 + 𝑥5 + 𝑥7; 𝑧2 = 𝑥2 + 𝑥3 + 𝑥6 + 𝑥7; 𝑧4 = 𝑥4 + 𝑥5 + 𝑥6 + 𝑥7
By definition of 𝐶, if 𝑥 ∈ 𝐶 then 𝑧 = (0, 0, 0). If 𝑑(𝑥, 𝑐) = 1 for some 𝑐 ∈ 𝐶, then the place where
𝑥 and 𝑐 differ is given by 𝑧1 + 2𝑧2 + 4𝑧4 (not modulo 2). Indeed, if 𝑥 = 𝑐 + 𝑒𝑖 where 𝑒𝑖 is the zero
vector with a one in the 𝑖th position, 𝑧𝑥 = 𝑧𝑒𝑖 , and one can check that this holds for each 1 ≤ 𝑖 ≤ 7.
Therefore, Hamming’s original code is 1-error correcting.

Lemma. The Hamming distance is a metric on 𝔽𝑛2 .

Proof. Clearly, 𝑑(𝑥, 𝑦) ≥ 0 and equality holds if and only if 𝑥 = 𝑦, and 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥). Let 𝑥, 𝑦, 𝑧 ∈
𝔽𝑛2 . Then,

{𝑖 ∣ 𝑥𝑖 ≠ 𝑧𝑖} ⊆ {𝑖 ∣ 𝑥𝑖 ≠ 𝑦𝑖} ∪ {𝑖 ∣ 𝑦𝑖 ≠ 𝑧𝑖}
Hence 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧).

Remark. We could write 𝑑(𝑥, 𝑦) as∑𝑑1(𝑥𝑖, 𝑦𝑖) where 𝑑1 is the discrete metric on 𝔽2.

3.3 Minimum distance

Definition. Theminimumdistance of a code is theminimumvalue of𝑑(𝑐1, 𝑐2) for codewords
𝑐1 ≠ 𝑐2.

Lemma. Let 𝐶 be a code with minimum distance 𝑑 > 0. Then,
(i) 𝐶 is (𝑑 − 1)-error detecting, but cannot detect all sets of 𝑑 errors;
(ii) 𝐶 is ⌊𝑑−1

2
⌋-error correcting, but cannot correct all sets of ⌊𝑑−1

2
⌋ + 1 errors.

Proof. Part (i). If 𝑥 ∈ 𝔽𝑛2 and 𝑐 is a codeword with 1 ≤ 𝑑(𝑥, 𝑐) ≤ 𝑑 − 1. Then 𝑥 ∉ 𝐶, so 𝑑 − 1 errors
are detected. Suppose 𝑐1, 𝑐2 are codewords with 𝑑(𝑐1, 𝑐2) = 𝑑. Then 𝑐1 can be corrupted into 𝑐2 with
only 𝑑 errors, and this is undetectable.

Part (ii). Let 𝑒 = ⌊𝑑−1
2
⌋. By definition, 𝑒 ≤ 𝑑−1

2
< 𝑒 + 1, so 2𝑒 < 𝑑 ≤ 2(𝑒 + 1). Let 𝑥 ∈ 𝔽𝑛2 . If

𝑐1 ∈ 𝐶 with 𝑑(𝑥, 𝑐1) ≤ 𝑒, we want to show that 𝑑(𝑥, 𝑐2) > 𝑒 for all 𝑐2 ≠ 𝑐1. By the triangle inequality,
𝑑(𝑥, 𝑐2) ≥ 𝑑(𝑐1, 𝑐2) − 𝑑(𝑥, 𝑐1) ≥ 𝑑 − 𝑒 > 𝑒 as required. Hence, 𝐶 is 𝑒-error correcting.
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Let 𝑐1, 𝑐2 ∈ 𝐶 with 𝑑(𝑐1, 𝑐2) = 𝑑. Let 𝑥 ∈ 𝔽𝑛2 differ from 𝑐1 in precisely 𝑒 + 1 places that 𝑐1 and 𝑐2
differ. Then 𝑑(𝑥, 𝑐1) = 𝑒 + 1, and 𝑑(𝑥, 𝑐2) = 𝑑 − (𝑒 + 1) ≤ 𝑒 + 1. Hence, 𝐶 cannot correct all sets of
𝑒 + 1 errors.

Definition. An [𝑛,𝑚]-code with minimum distance 𝑑 is called an [𝑛,𝑚, 𝑑]-code.

Note that 𝑚 ≤ 2𝑛 with equality if and only if 𝐶 = 𝔽𝑛2 . Similarly, 𝑑 ≤ 𝑛, with equality in the case of
the repetition code.

Example. The repetition code of length 𝑛 is an [𝑛, 2, 𝑛]-code. The simple parity check code of length
𝑛 is an [𝑛, 2𝑛−1, 2]-code. The trivial code on 𝑛 bits is an [𝑛, 2𝑛, 1]-code. Hamming’s original code is
1-error correcting, so has minimum distance at least 3. The minimum distance can easily be shown
to be exactly 3 as 0000000, 1110000 are codewords, so it is a [7, 16, 3]-code.

3.4 Covering estimates

Definition. Let 𝑥 ∈ 𝔽𝑛2 and 𝑟 ≥ 0. Then, we denote the closed Hamming ball with centre 𝑥
and radius 𝑟 by 𝐵(𝑥, 𝑟). We write 𝑉(𝑛, 𝑟) = |𝐵(𝑥, 𝑟)| = ∑𝑟

𝑖=0 (
𝑛
𝑖
) for the volume of this ball.

Lemma (Hamming’s bound; sphere packing bound). An 𝑒-error correcting code 𝐶 of length
𝑛 has

|𝐶| ≤ 2𝑛
𝑉(𝑛, 𝑒)

Proof. 𝐶 is 𝑒-error correcting, so 𝐵(𝑐1, 𝑒) ∩ 𝐵(𝑐2, 𝑒) is empty for all codewords 𝑐1 ≠ 𝑐2. Hence,

∑
𝑐∈𝐶

|𝐵(𝑐, 𝑒)| ≤ |𝔽𝑛2 | ⟹ |𝐶|𝑉(𝑛, 𝑒) ≤ 2𝑛

as required.

Definition. An 𝑒-error correcting code 𝐶 of length 𝑛 such that |𝐶| = 2𝑛

𝑉(𝑛,𝑒)
is called perfect.

Remark. Equivalently, a code is perfect if for all 𝑥 ∈ 𝔽𝑛2 , there exists a unique 𝑐 ∈ 𝐶 such that
𝑑(𝑥, 𝑐) ≤ 𝑒. Alternatively, 𝔽𝑛2 is a union of disjoint balls 𝐵(𝑐, 𝑒) for all 𝑐 ∈ 𝐶, or that any collection of
𝑒 + 1 will cause the message to be decoded incorrectly.
Example. Consider Hamming’s [7, 16, 3]-code. This is 1-error correcting, and

2𝑛
𝑉(𝑛, 𝑒) =

27
𝑉(7, 1) =

27
1 + 7 = 24 = |𝐶|

So Hamming’s original code is perfect.

Example. The binary repetition code of length 𝑛 is perfect if and only if 𝑛 is odd.
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Remark. If 2𝑛

𝑉(𝑛,𝑒)
is not an integer, there does not exist a perfect 𝑒-error correcting code of length 𝑛.

The converse is false; the case 𝑛 = 90, 𝑒 = 2 is discussed on the second example sheet.

Definition. 𝐴(𝑛, 𝑑) is the largest possible size𝑚 of an [𝑛,𝑚, 𝑑]-code.

The values of the 𝐴(𝑛, 𝑑) are unknown in general.
Example. 𝐴(𝑛, 1) = 2𝑛, considering the trivial code. 𝐴(𝑛, 2) = 2𝑛−1, maximised at the simple parity
check code. 𝐴(𝑛, 𝑛) = 2, maximised at the repetition code.

Lemma. 𝐴(𝑛, 𝑑 + 1) ≤ 𝐴(𝑛, 𝑑).

Proof. Let 𝑚 = 𝐴(𝑛, 𝑑 + 1), and let 𝐶 be an [𝑛,𝑚, 𝑑 + 1]-code. Let 𝑐1, 𝑐2 ∈ 𝐶 be distinct codewords
such that 𝑑(𝑐1, 𝑐2) = 𝑑 + 1. Let 𝑐′1 differ from 𝑐1 in exactly one of the places where 𝑐1 and 𝑐2 differ.
Then 𝑑(𝑐′1, 𝑐2) = 𝑑. If 𝑐 ∈ 𝐶 is any codeword not equal to 𝑐1, then 𝑑(𝑐, 𝑐1) ≤ 𝑑(𝑐, 𝑐′1) +𝑑(𝑐′1, 𝑐1) hence
𝑑 + 1 ≤ 𝑑(𝑐, 𝑐′1) + 1, so the code given by 𝐶 ∪ {𝑐′1} ∖ {𝑐1} has minimum distance 𝑑, but has length 𝑛
and size𝑚. This is therefore an [𝑛,𝑚, 𝑑]-code as required.

Corollary. Equivalently, 𝐴(𝑛, 𝑑) = max {𝑚 ∣ ∃[𝑛,𝑚, 𝑑′]-code, for some 𝑑′ ≥ 𝑑}.

Theorem.
2𝑛

𝑉(𝑛, 𝑑 − 1) ≤ 𝐴(𝑛, 𝑑) ≤ 2𝑛

𝑉(𝑛, ⌊𝑑−1
2
⌋)

The upper bound is Hamming’s bound; the lower bound is known as the GSV (Gilbert–Shannon–
Varshamov) bound. The upper bound can be thought of as a sphere packing bound, and the lower
bound is a sphere covering bound.

Proof. We prove the lower bound. Let𝑚 = 𝐴(𝑛, 𝑑), and let 𝐶 be an [𝑛,𝑚, 𝑑]-code. Then, there exists
no 𝑥 ∈ 𝔽𝑛2 with 𝑑(𝑥, 𝑐) ≥ 𝑑 for all codewords. Indeed, if such an 𝑥 exists, we could consider the code
𝐶 ∪ {𝑥}, which would be an [𝑛,𝑚 + 1, 𝑑]-code, contradicting maximality of𝑚. Then,

𝔽𝑛2 ⊆ ⋃
𝑐∈𝐶

𝐵(𝑐, 𝑑 − 1) ⟹ 2𝑛 ≤ ∑
𝑐∈𝐶

|𝐵(𝑐, 𝑑 − 1)| = 𝑚𝑉(𝑛, 𝑑 − 1)

as required.

Example. Let 𝑛 = 10, 𝑑 = 3. Then 𝑉(𝑛, 1) = 11 and 𝑉(𝑛, 2) = 56, so the GSV bound is 210

56
≤

𝐴(10, 3) ≤ 210

11
. Hence, 19 ≤ 𝐴(10, 3) ≤ 93. It was known that the lower bound could be improved to

72. We now know that the true value of 𝐴(10, 3) is exactly 72. In this case, the GSV bound was not a
sharp inequality.
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3.5 Asymptotics

We study the information rate log𝐴(𝑛,⌊𝑛𝛿⌋)
𝑛

as 𝑛 → ∞ to see how large the information rate can be for
a fixed error rate.

Proposition. Let 0 < 𝛿 < 1
2
. Then,

(i) log𝑉(𝑛, ⌊𝑛𝛿⌋) ≤ 𝑛𝐻(𝛿);
(ii) 1

𝑛
log𝐴(𝑛, ⌊𝑛𝛿⌋) ≥ 1 − 𝐻(𝛿);

where 𝐻(𝛿) = −𝛿 log 𝛿 − (1 − 𝛿) log(1 − 𝛿).

Proof. (i) implies (ii). By the GSV bound, we find

𝐴(𝑛, ⌊𝑛𝛿⌋) ≥ 2𝑛
𝑉(𝑛, ⌊𝑛𝛿⌋ − 1) ≥

2𝑛
𝑉(𝑛, ⌊𝑛𝛿⌋)

Taking logarithms,
1
𝑛 log𝐴(𝑛, ⌊𝑛𝛿⌋) ≥ 1 − log𝑉(𝑛, ⌊𝑛𝛿⌋)

𝑛 ≥ 1 − 𝐻(𝛿)

Part (i). 𝐻(𝛿) is increasing for 𝛿 < 1
2
. Therefore, without loss of generality, we may assume 𝑛𝛿 is an

integer. Now, as 𝛿
1−𝛿

< 1,

1 = (𝛿 + (1 − 𝛿))𝑛

=
𝑛
∑
𝑖=0

(𝑛𝑖 )𝛿
𝑖(1 − 𝛿)𝑛−𝑖

≥
𝑛𝛿
∑
𝑖=0

(𝑛𝑖 )𝛿
𝑖(1 − 𝛿)𝑛−𝑖

= (1 − 𝛿)𝑛
𝑛𝛿
∑
𝑖=0

(𝑛𝑖 )(
𝛿

1 − 𝛿)
𝑖

≥ (1 − 𝛿)𝑛
𝑛𝛿
∑
𝑖=0

(𝑛𝑖 )(
𝛿

1 − 𝛿)
𝑛𝛿

= 𝛿𝑛𝛿(1 − 𝛿)𝑛(1−𝛿)𝑉(𝑛, 𝑛𝛿)

Taking logarithms,
0 ≥ 𝑛𝛿 log 𝛿 + 𝑛(1 − 𝛿) log(1 − 𝛿) + log𝑉(𝑛, 𝑛𝛿)

as required.

The constant 𝐻(𝛿) in the proposition is optimal.

Lemma. lim𝑛→∞
log𝑉(𝑛,⌊𝑛𝛿⌋)

𝑛
= 𝐻(𝛿).

Proof. Exercise. Follows from Stirling’s approximation to factorials.
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3.6 Constructing new codes from old
Let 𝐶 be an [𝑛,𝑚, 𝑑]-code.
Example. The parity check extension is an [𝑛 + 1,𝑚, 𝑑′]-code given by

𝐶+ = {(𝑐1,… , 𝑐𝑛,
𝑛
∑
𝑖=1

𝑐𝑖)
||||
(𝑐1,… , 𝑐𝑛) ∈ 𝐶}

where 𝑑′ is either 𝑑 or 𝑑 + 1, depending on whether 𝑑 is odd or even.
Example. Let 1 ≤ 𝑖 ≤ 𝑛. Then, deleting the 𝑖th digit from each codeword gives the punctured code

𝐶− = {(𝑐1,… , 𝑐𝑖−1, 𝑐𝑖+1,… , 𝑐𝑛) | (𝑐1,… , 𝑐𝑛) ∈ 𝐶}
If 𝑑 ≥ 2, this is an [𝑛 − 1,𝑚, 𝑑′]-code where 𝑑′ is either 𝑑 or 𝑑 − 1.
Example. Let 1 ≤ 𝑖 ≤ 𝑛 and let 𝛼 ∈ 𝔽2. The shortened code is

𝐶′ = {(𝑐1,… , 𝑐𝑖−1, 𝑐𝑖+1,… , 𝑐𝑛) | (𝑐1,… , 𝑐𝑖−1, 𝛼, 𝑐𝑖+1,… , 𝑐𝑛) ∈ 𝐶}
This is an [𝑛 − 1,𝑚′, 𝑑′] with 𝑑′ ≥ 𝑑 and𝑚′ ≥ 𝑚

2
for a suitable choice of 𝛼.

4 Information theory
4.1 Sources and information rate

Definition. A source is a sequence of random variables 𝑋1, 𝑋2,… taking values in 𝒜.

Example. TheBernoulli (ormemoryless) source is a sourcewhere the𝑋𝑖 are independent and identic-
ally distributed according to a Bernoulli distribution.

Definition. A source 𝑋1, 𝑋2,… is reliably encodable at rate 𝑟 if there exist subsets 𝐴𝑛 ⊆ 𝒜𝑛

such that
(i) lim log |𝐴𝑛|

𝑛
= 𝑟;

(ii) limℙ ((𝑋1,… , 𝑋𝑛) ∈ 𝐴𝑛) = 1.

Definition. The information rate 𝐻 of a source is the infimum of all reliable encoding rates.

Example. 0 ≤ 𝐻 ≤ log |𝒜|, with both bounds attainable. The proof is left as an exercise.
Shannon’s first coding theorem computes the information rate of certain sources, including Bernoulli
sources.

Recall from IA Probability that a probability space is a tuple (Ω,ℱ, ℙ), and a discrete random variable
is a function 𝑋 ∶ Ω → 𝒜. The probability mass function is the function 𝑝𝑋 ∶ 𝒜 → [0, 1] given by
𝑝𝑋(𝑥) = ℙ (𝑋 = 𝑥). We can consider the function 𝑝(𝑋)∶ Ω → [0, 1] defined by the composition
𝑝𝑋 ∘ 𝑋 , which assigns 𝑝(𝑋)(𝜔) = ℙ (𝑋 = 𝑋(𝜔)); hence, 𝑝(𝑋) is also a random variable.

Similarly, given a source 𝑋1, 𝑋2,… of random variables with values in 𝒜, the probability mass func-
tion of any tuple 𝑋(𝑛) = (𝑋1,… , 𝑋𝑛) is 𝑝𝑋(𝑛)(𝑥1,… , 𝑥𝑛) = ℙ (𝑋1 = 𝑥1,… , 𝑋𝑛 = 𝑥𝑛). As 𝑝𝑋(𝑛) ∶ 𝒜𝑛 →
[0, 1], and𝑋(𝑛) ∶ Ω → 𝒜𝑛, we can consider𝑝(𝑋(𝑛)) = 𝑝𝑋(𝑛)∘𝑋(𝑛) defined by𝜔 ↦ 𝑝𝑋(𝑛)(𝑋(𝑛)(𝜔)).
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Example. Let 𝒜 = {𝐴, 𝐵, 𝐶}. Suppose

𝑋(2) =

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

𝐴𝐵 with probability 0.3
𝐴𝐶 with probability 0.1
𝐵𝐶 with probability 0.1
𝐵𝐴 with probability 0.2
𝐶𝐴 with probability 0.25
𝐶𝐵 with probability 0.05

Then, 𝑝𝑋(2)(𝐴𝐵) = 0.3, and so on. Hence,

𝑝(𝑋(2)) =

⎧⎪⎪
⎨⎪⎪
⎩

0.3 with probability 0.3
0.1 with probability 0.2
0.2 with probability 0.2
0.25 with probability 0.25
0.05 with probability 0.05

We say that a source 𝑋1, 𝑋2,… converges in probability to a random variable 𝐿 if for all 𝜀 > 0,
lim𝑛→∞ ℙ (|𝑋𝑛 − 𝐿| > 𝜀) = 0. We write 𝑋𝑛

ℙ−→ 𝐿. The weak law of large numbers states that if
𝑋1, 𝑋2,… is a sequence of independent identically distributed real-valued random variables with fi-
nite expectation 𝔼 [𝑋1], then

1
𝑛
∑𝑛

𝑖=1 𝑋𝑖
ℙ−→ 𝔼 [𝑋].

Example. Let𝑋1, 𝑋2,… be a Bernoulli source. Then 𝑝(𝑋1), 𝑝(𝑋2),… are independent and identically
distributed random variables, and 𝑝(𝑋1,… , 𝑋𝑛) = 𝑝(𝑋1)…𝑝(𝑋𝑛). Note that by the weak law of large
numbers,

−1𝑛 log𝑝(𝑋1,… , 𝑋𝑛) = −1𝑛
𝑛
∑
𝑖=1

log𝑝(𝑋𝑖)
ℙ−→ 𝔼 [− log𝑝(𝑋1)] = 𝐻(𝑋1)

Lemma. The information rate of a Bernoulli source 𝑋1, 𝑋2,… is at most the expected word
length of an optimal code 𝑐∶ 𝒜 → {0, 1}⋆ for 𝑋1.

Proof. Let ℓ1, ℓ2,… be the codeword lengths when we encode 𝑋1, 𝑋2,… using 𝑐. Let 𝜀 > 0. Let

𝐴𝑛 = {𝑥 ∈ 𝒜𝑛 ∣ 𝑐⋆(𝑥) has length less than 𝑛(𝔼 [ℓ1] + 𝜀)}

Then,

ℙ ((𝑋1,… , 𝑋𝑛) ∈ 𝐴𝑛) = ℙ(
𝑛
∑
𝑖=1

ℓ𝑖 ≤ 𝑛(𝔼 [ℓ1] + 𝜀)) = ℙ(
||||
1
𝑛

𝑛
∑
𝑖=1

ℓ𝑖 − 𝔼 [ℓ𝑖]
||||
< 𝜀) → 1

Now, 𝑐 is decipherable so 𝑐⋆ is injective. Hence, |𝐴𝑛| ≤ 2𝑛(𝔼[ℓ1]+𝜀). Making 𝐴𝑛 larger if necessary,
we can assume |𝐴𝑛| = ⌊2𝑛(𝔼[ℓ1]+𝜀)⌋. Taking logarithms, log |𝐴𝑛|

𝑛
→ 𝔼[ℓ1] + 𝜀. So 𝑋1, 𝑋2,… is reliably

encodable at rate 𝑟 = 𝔼 [ℓ1] + 𝜀 for all 𝜀 > 0. Hence the information rate is at most 𝔼 [ℓ1].
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Corollary. A Bernoulli source has information rate less than 𝐻(𝑋1) + 1.

Proof. Combine the previous lemma with the noiseless coding theorem.

Suppose we encode 𝑋1, 𝑋2,… in blocks of size 𝑁. Let 𝑌1 = (𝑋1,… , 𝑋𝑁), 𝑌2 = (𝑋𝑁+1,… , 𝑋2𝑁) and so
on, such that 𝑌1, 𝑌2,… take values in𝒜𝑁 . One can show that if the source 𝑋1, 𝑋2,… has information
rate 𝐻, then 𝑌1, 𝑌2,… has information rate 𝑁𝐻.

Proposition. The information rate 𝐻 of a Bernoulli source is at most 𝐻(𝑋1).

Proof. Apply the previous corollary to the 𝑌 𝑖 to obtain

𝑁𝐻 < 𝐻(𝑌1) + 1 = 𝐻(𝑋1,… , 𝑋𝑁) + 1 = 𝑁𝐻(𝑋1) + 1 ⟹ 𝐻 < 𝐻(𝑋1) +
1
𝑁

as required.

4.2 Asymptotic equipartition property

Definition. A source 𝑋1, 𝑋2,… satisfies the asymptotic equipartition property if there exists
a constant 𝐻 ≥ 0 such that

−1𝑛 log𝑝(𝑋1,… , 𝑋𝑛)
ℙ−→ 𝐻

Example. Suppose we toss a biased coin with probability 𝑝 of obtaining a head. Let 𝑋1, 𝑋2,… be the
results of independent coin tosses. If we toss the coin 𝑁 times, we expect 𝑝𝑁 heads and (1 − 𝑝)𝑁
tails. The probability of any particular sequence of 𝑝𝑁 heads and (1 − 𝑝)𝑁 tails is

𝑝𝑝𝑁(1 − 𝑝)(1−𝑝)𝑁 = 2𝑁(𝑝 log𝑝+(1−𝑝) log(1−𝑝)) = 2−𝑁𝐻(𝑋)

Not every sequence of tosses is of this form, but there is only a small probability of ‘atypical sequences’.
With high probability, it is a ‘typical sequence’ which has a probability close to 2−𝑁𝐻(𝑋).

Lemma. The asymptotic equipartition property for a source 𝑋1, 𝑋2,… is equivalent to the
property that for all 𝜀 > 0, there exists 𝑛 ∈ ℕ such that for all 𝑛 ≥ 𝑛0, there exists a ‘typical
set’ 𝑇𝑛 ⊆ 𝒜𝑛 such that
(i) ℙ ((𝑋1,… , 𝑋𝑛) ∈ 𝑇𝑛) > 1 − 𝜀;
(ii) 2−𝑛(𝐻+𝜀) ≤ 𝑝(𝑥1,… , 𝑥𝑛) ≤ 2−𝑛(𝐻−𝜀) for all (𝑥1,… , 𝑥𝑛) ∈ 𝑇𝑛.

Proof sketch. First, we show that the asymptotic equipartition property implies the alternative defin-
ition. We define

𝑇𝑛 = {(𝑥1,… , 𝑥𝑛) |||
|||−
1
𝑛 log𝑝(𝑥1,… , 𝑥𝑛) − 𝐻||| ≤ 𝜀} = {(𝑥1,… , 𝑥𝑛) ∣ condition (ii) holds}

For the converse,
ℙ(|||

1
𝑛 log𝑝(𝑥1,… , 𝑥𝑛) − 𝐻||| < 𝜀) ≥ ℙ (𝑇𝑛) → 1
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4.3 Shannon’s first coding theorem

Theorem. Let 𝑋1, 𝑋2,… be a source satisfying the asymptotic equipartition property with
constant 𝐻. Then this source has information rate 𝐻.

Proof. Let 𝜀 > 0, and let 𝑇𝑛 ⊆ 𝒜𝑛 be typical sets. Then, for all 𝑛 ≥ 𝑛0(𝜀), for all (𝑥1,… , 𝑥𝑛) ∈ 𝑇𝑛
we have 𝑝(𝑥1,… , 𝑥𝑛) ≥ 2−𝑛(𝐻+𝜀). Therefore, 1 ≥ ℙ (𝑇𝑛) ≥ 2−𝑛(𝐻+𝜀) ⋅ |𝑇𝑛|, giving

1
𝑛
log |𝑇𝑛| ≤ 𝐻 + 𝜀.

Taking 𝐴𝑛 = 𝑇𝑛 in the definition of reliable encoding shows that the source is reliably encodable at
rate 𝐻 + 𝜀.
Conversely, if𝐻 = 0 the proof concludes, so wemay assume𝐻 > 0. Let 0 < 𝜀 < 𝐻

2
, and suppose that

the source is reliably encodable at rate 𝐻 − 2𝜀 with sets 𝐴𝑛 ⊆ 𝒜𝑛. Let 𝑇𝑛 ⊆ 𝒜𝑛 be typical sets. Then,
for all (𝑥1,… , 𝑥𝑛) ∈ 𝑇𝑛, 𝑝(𝑥1,… , 𝑥𝑛) ≤ 2−𝑛(𝐻−𝜀), so ℙ (𝐴𝑛 ∩ 𝑇𝑛) ≤ 2−𝑛(𝐻−𝜀)|𝐴𝑛|, giving

1
𝑛 logℙ (𝐴𝑛 ∩ 𝑇𝑛) ≤ −(𝐻 − 𝜀) + 1

𝑛 log |𝐴𝑛| → −(𝐻 − 𝜀) + (𝐻 − 2𝜀) = −𝜀

Then, logℙ (𝐴𝑛 ∩ 𝑇𝑛) → −∞, so ℙ (𝐴𝑛 ∩ 𝑇𝑛) → 0. But ℙ (𝑇𝑛) ≤ ℙ (𝐴𝑛 ∩ 𝑇𝑛) + ℙ (𝒜𝑛 ∖ 𝐴𝑛) → 0 + 0,
contradicting typicality. So we cannot reliably encode at rate𝐻−𝜀, so the information rate is at least
𝐻.

Corollary. A Bernoulli source 𝑋1, 𝑋2,… has information rate 𝐻(𝑋1).

Proof. In a previous example we showed that for a Bernoulli source, − 1
𝑛
log𝑝(𝑋1,… , 𝑋𝑛)

ℙ−→ 𝐻(𝑋1).
So the asymptotic equipartition property holds with 𝐻 = 𝐻(𝑋1), giving the result by Shannon’s first
coding theorem.

Remark. The asymptotic equipartition property is useful for noiseless coding. We can encode the
typical sequences using a block code, and encode the atypical sequences arbitrarily.

Many sources, which are not necessarily Bernoulli, also satisfy the property. Under suitable hypo-
theses, the sequence 1

𝑛
𝐻(𝑋1,… , 𝑋𝑛) is decreasing, and the asymptotic equipartition property is satis-

fied with constant 𝐻 = lim𝑛→∞
1
𝑛
𝐻(𝑋1,… , 𝑋𝑛).

4.4 Capacity
Consider a communication channel with input alphabet𝒜 and output alphabetℬ. Recall the follow-
ing definitions. A code of length 𝑛 is a subset 𝐶 ⊆ 𝒜𝑛. The error rate is

̂𝑒(𝐶) = max
𝑐∈𝐶

ℙ (error ∣ 𝑐 sent)

The information rate is 𝜌(𝐶) = log |𝐶|
𝑛

. A channel can transmit reliably at rate 𝑅 if there exist codes
𝐶1, 𝐶2,… where 𝐶𝑛 has length 𝑛 such that lim𝑛→∞ 𝜌(𝐶𝑛) = 𝑅 and lim𝑛→∞ ̂𝑒(𝐶𝑛) = 0. The (opera-
tional) capacity of a channel is the supremum of all rates at which it can transmit reliably.

Suppose we are given a source with information rate 𝑟 bits per second that emits symbols at a rate
of 𝑠 symbols per second. Suppose we also have a channel with capacity 𝑅 bits per transmission that
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transmits symbols at a rate of 𝑆 transmissions per second. Usually, information theorists take 𝑆 =
𝑠 = 1. We will show that reliable encoding and transmission is possible if and only if 𝑟𝑠 ≤ 𝑅𝑆.
We will now compute the capacity of the binary symmetric channel with error probability 𝑝.

Proposition. A binary symmetric channel with error probability 𝑝 < 1
4
has nonzero capa-

city.

Proof. Let 𝛿 be such that 2𝑝 < 𝛿 < 1
2
. We claim that we can reliably transmit at rate𝑅 = 1−𝐻(𝛿) > 0.

Let 𝐶𝑛 be a code of length 𝑛, and suppose it has minimum distance ⌊𝑛𝛿⌋ of maximal size. Then, by
the GSV bound,

|𝐶𝑛| = 𝐴(𝑛, ⌊𝑛𝛿⌋) ≥ 2−𝑛(1−𝐻(𝛿)) = 2𝑛𝑅

Replacing 𝐶𝑛 with a subcode if necessary, we can assume |𝐶𝑛| = ⌊2𝑛𝑅⌋, with minimum distance at
least ⌊𝑛𝛿⌋. Using minimum distance decoding,

̂𝑒(𝐶𝑛) ≤ ℙ (in 𝑛 uses, the channel makes at least ⌊ ⌊𝑛𝛿⌋ − 1
2 ⌋ errors)

≤ ℙ (in 𝑛 uses, the channel makes at least ⌊𝑛𝛿 − 1
2 ⌋ errors)

Let 𝜀 > 0 be such that 𝑝+ 𝜀 < 𝛿
2
. Then, for 𝑛 sufficiently large, 𝑛𝛿−1

2
= 𝑛(𝛿

2
− 1

2𝑛
) > 𝑛(𝑝+ 𝜀). Hence,

̂𝑒(𝐶𝑛) ≤ ℙ (in 𝑛 uses, the channel makes at least 𝑛(𝑝 + 𝜀) errors). We show that this value converges
to zero as 𝑛 → ∞ using the next lemma.

Lemma. Let 𝜀 > 0. A binary symmetric channel with error probability 𝑝 is used to transmit
𝑛 digits. Then,

lim
𝑛→∞

ℙ (in 𝑛 uses, the channel makes at least 𝑛(𝑝 + 𝜀) errors) = 0

Proof. Consider random variables 𝑈 𝑖 = 𝟙[the 𝑖th digit is mistransmitted]. The 𝑈 𝑖 are independent
and identically distributed with ℙ (𝑈 𝑖 = 1) = 𝑝. In particular, 𝔼 [𝑈 𝑖] = 𝑝. Therefore, the probability
that the channel makes at least 𝑛(𝑝 + 𝜀) errors is

ℙ(
𝑛
∑
𝑖=1

𝑈 𝑖 ≥ 𝑛(𝑝 + 𝜀)) ≤ ℙ(
||||
1
𝑛

𝑛
∑
𝑖=1

𝑈 𝑖 − 𝑝
||||
≥ 𝜀)

so the result holds by the weak law of large numbers.

4.5 Conditional entropy

Definition. Let𝑋, 𝑌 be random variables taking values in alphabets𝒜,ℬ respectively. Then,
the conditional entropy is defined by

𝐻(𝑋 ∣ 𝑌 = 𝑦) = − ∑
𝑥∈𝒜

ℙ (𝑋 = 𝑥 ∣ 𝑌 = 𝑦) logℙ (𝑋 = 𝑥 ∣ 𝑌 = 𝑦)
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and
𝐻(𝑋 ∣ 𝑌) = ∑

𝑦∈ℬ
ℙ (𝑌 = 𝑦)𝐻(𝑋 ∣ 𝑌 = 𝑦)

Note that 𝐻(𝑋 ∣ 𝑌) ≥ 0.

Lemma. 𝐻(𝑋, 𝑌) = 𝐻(𝑋 ∣ 𝑌) + 𝐻(𝑌).

Proof.

𝐻(𝑋 ∣ 𝑌) = − ∑
𝑦∈ℬ

∑
𝑥∈𝒜

ℙ (𝑋 = 𝑥 ∣ 𝑌 = 𝑦)ℙ (𝑌 = 𝑦) log (ℙ (𝑋 = 𝑥 ∣ 𝑌 = 𝑦))

= − ∑
𝑦∈ℬ

∑
𝑥∈𝒜

ℙ (𝑋 = 𝑥 ∣ 𝑌 = 𝑦)ℙ (𝑌 = 𝑦) log (ℙ (𝑋 = 𝑥, 𝑌 = 𝑦)
ℙ (𝑌 = 𝑦) )

= − ∑
𝑦∈ℬ

∑
𝑥∈𝒜

ℙ (𝑋 = 𝑥, 𝑌 = 𝑦) (logℙ (𝑋 = 𝑥, 𝑌 = 𝑦) − logℙ (𝑌 = 𝑦))

= − ∑
𝑦∈ℬ

∑
𝑥∈𝒜

ℙ (𝑋 = 𝑥, 𝑌 = 𝑦) logℙ (𝑋 = 𝑥, 𝑌 = 𝑦)

+ ∑
𝑦∈ℬ

∑
𝑥∈𝒜

ℙ (𝑋 = 𝑥, 𝑌 = 𝑦) logℙ (𝑌 = 𝑦)

= − ∑
𝑦∈ℬ

∑
𝑥∈𝒜

ℙ (𝑋 = 𝑥, 𝑌 = 𝑦) logℙ (𝑋 = 𝑥, 𝑌 = 𝑦)

+ ∑
𝑦∈ℬ

ℙ (𝑌 = 𝑦) logℙ (𝑌 = 𝑦)

= 𝐻(𝑋, 𝑌) − 𝐻(𝑌)

Example. Let 𝑋 be a uniform random variable on {1,… , 6}modelling a dice roll, and 𝑌 is defined to
be zero if 𝑋 is even, and one if 𝑋 is odd. Then,𝐻(𝑋, 𝑌) = 𝐻(𝑋) = log 6 and𝐻(𝑌) = log 2. Therefore,
𝐻(𝑋 ∣ 𝑌) = log 3 and 𝐻(𝑌 ∣ 𝑋) = 0.

Corollary. 𝐻(𝑋 ∣ 𝑌) ≤ 𝐻(𝑋), with equality if and only if 𝑋 and 𝑌 are independent.

Proof. Combine this result with the fact that 𝐻(𝑋, 𝑌) ≤ 𝐻(𝑋) + 𝐻(𝑌) where equality holds if and
only if 𝐻(𝑋),𝐻(𝑌) are independent.

Now, replace randomvariables𝑋 and𝑌 with randomvectors𝑋(𝑟) = (𝑋1,… , 𝑋𝑟) and𝑌 (𝑠) = (𝑌1,… , 𝑌𝑠).
Similarly, we can define 𝐻(𝑋1,… , 𝑋𝑟 ∣ 𝑌1,… , 𝑌𝑠) = 𝐻(𝑋(𝑟) ∣ 𝑌 (𝑠)). Note that 𝐻(𝑋, 𝑌 ∣ 𝑍) is the en-
tropy of 𝑋 and 𝑌 combined, given the value of 𝑍, and is not the entropy of 𝑋 , together with 𝑌 given
𝑍.

Lemma. Let 𝑋, 𝑌, 𝑍 be random variables. Then, 𝐻(𝑋 ∣ 𝑌) ≤ 𝐻(𝑋 ∣ 𝑌, 𝑍) + 𝐻(𝑍).
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Proof. Expand 𝐻(𝑋, 𝑌, 𝑍) in two ways.

𝐻(𝑍 ∣ 𝑋, 𝑌) + 𝐻(𝑋 ∣ 𝑌) + 𝐻(𝑌)⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟
𝐻(𝑋,𝑌)

= 𝐻(𝑋, 𝑌, 𝑍) = 𝐻(𝑋 ∣ 𝑌, 𝑍) + 𝐻(𝑍 ∣ 𝑌) + 𝐻(𝑌)⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟
𝐻(𝑌,𝑍)

Since 𝐻(𝑍 ∣ 𝑋, 𝑌) ≥ 0, we have

𝐻(𝑋 ∣ 𝑌) ≤ 𝐻(𝑋 ∣ 𝑌, 𝑍) + 𝐻(𝑍 ∣ 𝑌) ≤ 𝐻(𝑋 ∣ 𝑌, 𝑍) + 𝐻(𝑍)

Proposition (Fano’s inequality). Let 𝑋, 𝑌 be random variables taking values in𝒜. Let |𝒜| =
𝑚, and let 𝑝 = ℙ (𝑋 ≠ 𝑌). Then 𝐻(𝑋 ∣ 𝑌) ≤ 𝐻(𝑝) + 𝑝 log(𝑚 − 1).

Proof. Define 𝑍 to be zero if 𝑋 = 𝑌 and one if 𝑋 ≠ 𝑌 . Then, ℙ (𝑍 = 0) = ℙ (𝑋 = 𝑌) = 1 − 𝑝, and
ℙ (𝑍 = 1) = ℙ (𝑋 ≠ 𝑌) = 𝑝. Hence, 𝐻(𝑍) = 𝐻(𝑝). Applying the previous lemma, 𝐻(𝑋 ∣ 𝑌) ≤ 𝐻(𝑋 ∣
𝑌, 𝑍) + 𝐻(𝑝), so it suffices to show 𝐻(𝑋 ∣ 𝑌, 𝑍) ≤ 𝑝 log(𝑚 − 1).
Since 𝑍 = 0 implies 𝑋 = 𝑌 , 𝐻(𝑋 ∣ 𝑌 = 𝑦, 𝑍 = 0) = 0. There are𝑚− 1 remaining possibilities for 𝑋 .
Hence, 𝐻(𝑋 ∣ 𝑌 = 𝑦, 𝑍 = 1) ≤ log(𝑚 − 1).

𝐻(𝑋 ∣ 𝑌, 𝑍) = ∑
𝑦∈𝒜

∑
𝑧∈{0,1}

ℙ (𝑌 = 𝑦, 𝑍 = 𝑧)𝐻(𝑋 ∣ 𝑌 = 𝑦, 𝑍 = 𝑧)

≤ ∑
𝑦∈𝒜

ℙ (𝑌 = 𝑦, 𝑍 = 1) log(𝑚 − 1)

= ℙ (𝑍 = 1) log(𝑚 − 1)
= 𝑝 log(𝑚 − 1)

as required.

Let 𝑋 be a random variable describing the input to a channel and 𝑌 be a random variable describing
the output of the channel. 𝐻(𝑝) provides the information required to decide whether an error has
occurred, and 𝑝 log(𝑚 − 1) gives the information needed to resolve that error in the worst possible
case.

4.6 Shannon’s second coding theorem

Definition. Let 𝑋, 𝑌 be random variables taking values in 𝒜. The mutual information is
𝐼(𝑋; 𝑌) = 𝐻(𝑋) − 𝐻(𝑋 ∣ 𝑌).

This is nonnegative, as 𝐼(𝑋; 𝑌) = 𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋, 𝑌) ≥ 0. Equality holds if and only if 𝑋, 𝑌 are
independent. Clearly, 𝐼(𝑋; 𝑌) = 𝐼(𝑌; 𝑋).

Definition. Consider a discrete memoryless channel with input alphabet 𝒜 of size 𝑚 and
output alphabet ℬ. Let 𝑋 be a random variable taking values in 𝒜, used as the input to this
channel. Let 𝑌 be the random variable output by the channel, depending on 𝑋 and the chan-
nel matrix. The information capacity of the channel is max𝑋 𝐼(𝑋; 𝑌).
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The maximum is taken over all discrete random variables 𝑋 taking values in𝒜, or equivalently. This
maximum is attained since 𝐼 is continuous and the space

{(𝑝1,… , 𝑝𝑚) ∈ ℝ𝑚 ||||
𝑝𝑖 ≥ 0,

𝑚
∑
𝑖=1

𝑝𝑖 = 1}

is compact. The information capacity depends only on the channel matrix.

Theorem. For a discrete memoryless channel, the (operational) capacity is equal to the in-
formation capacity.

We prove that the operational capacity is at most the information capacity in general, and we will
prove the other inequality for the special case of the binary symmetric channel.

Example. Assuming this result holds, we compute the capacity of certain specific channels.
(i) Consider the binary symmetric channel with error probability 𝑝, input 𝑋 , and output 𝑌 . Let

ℙ (𝑋 = 0) = 𝛼, ℙ (𝑋 = 1) = 1−𝛼, soℙ (𝑌 = 0) = (1−𝑝)𝛼𝑝(1−𝛼), ℙ (𝑌 = 1) = (1−𝑝)(1−𝛼)+𝑝𝛼.
Then, as 𝐻(𝑌 ∣ 𝑋) = ℙ (𝑋 = 0)𝐻(𝑝) + ℙ (𝑋 = 1)𝐻(𝑝),

𝐶 = max
𝛼

𝐼(𝑋; 𝑌) = max
𝛼
[𝐻(𝑌) − 𝐻(𝑌 ∣ 𝑋)]

= max
𝛼

[𝐻(𝛼(1 − 𝑝) + (1 − 𝛼)𝑝) − 𝐻(𝑝)] = 1 − 𝐻(𝑝)

with the maximum attained at 𝛼 = 1
2
. Hence, the capacity of the binary symmetric channel is

𝐶 = 1 + 𝑝 log𝑝 + (1 − 𝑝) log(1 − 𝑝). If 𝑝 = 0 or 𝑝 = 1, 𝐶 = 1. If 𝑝 = 1
2
, 𝐶 = 0. Note that

𝐼(𝑋; 𝑌) = 𝐼(𝑌; 𝑋); we can choose which to calculate for convenience.
(ii) Consider the binary erasure channel with erasure probability 𝑝, input 𝑋 , and output 𝑌 . Let

ℙ (𝑋 = 0) = 𝛼, ℙ (𝑋 = 1) = 1−𝛼, soℙ (𝑌 = 0) = (1−𝑝)𝛼, ℙ (𝑌 = 1) = (1−𝑝)(1−𝛼), ℙ (𝑌 = ⋆) =
𝑝. We obtain

𝐻(𝑋 ∣ 𝑌 = 0) = 0; 𝐻(𝑋 ∣ 𝑌 = 1) = 0; 𝐻(𝑋 ∣ 𝑌 = ⋆) = 𝐻(𝛼)

Therefore, 𝐻(𝑋 ∣ 𝑌) = 𝑝𝐻(𝛼), giving

𝐶 = max
𝛼

𝐼(𝑋; 𝑌) = max
𝛼

[𝐻(𝑋) − 𝐻(𝑋 ∣ 𝑌)]

= max
𝛼

[𝐻(𝛼) − 𝑝𝐻(𝛼)] = (1 − 𝑝)max
𝛼

𝐻(𝛼) = 1 − 𝑝

with maximum attained at 𝛼 = 1
2
.

We will now model using a channel 𝑛 times as the 𝑛th extension, replacing 𝒜 with 𝒜𝑛 and ℬ with
ℬ𝑛, and use the channel matrix defined by

ℙ (𝑦1…𝑦𝑛 received ∣ 𝑥1…𝑥𝑛 sent) =
𝑛
∏
𝑖=1

ℙ (𝑦𝑖 ∣ 𝑥𝑖)
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Lemma. Consider a discrete memoryless channel with information capacity 𝐶. Then, its
𝑛th extension has information capacity 𝑛𝐶.

Proof. Let 𝑋1,… , 𝑋𝑛 be the input producing an output 𝑌1,… , 𝑌𝑛. Since the channel is memoryless,

𝐻(𝑌1,… , 𝑌𝑛 ∣ 𝑋1,… , 𝑋𝑛) =
𝑛
∑
𝑖=1

𝐻(𝑌 𝑖 ∣ 𝑋1,… , 𝑋𝑛) =
𝑛
∑
𝑖=1

𝐻(𝑌 𝑖 ∣ 𝑋𝑖)

Therefore,
𝐼(𝑋1,… , 𝑋𝑛; 𝑌1,… , 𝑌𝑛) = 𝐻(𝑌1,… , 𝑌𝑛) − 𝐻(𝑌1,… , 𝑌𝑛 ∣ 𝑋1,… , 𝑋𝑛)

≤
𝑛
∑
𝑖=1

𝐻(𝑌 𝑖) −
𝑛
∑
𝑖=1

𝐻(𝑌 𝑖 ∣ 𝑋𝑖)

=
𝑛
∑
𝑖=1

[𝐻(𝑌 𝑖) − 𝐻(𝑌 𝑖 ∣ 𝑋𝑖)]

=
𝑛
∑
𝑖=1

𝐼(𝑋𝑖; 𝑌 𝑖) ≤ 𝑛𝐶

Equality is attained by taking𝑋1,… , 𝑋𝑛 independent and identically distributed such that 𝐼(𝑋𝑖; 𝑌 𝑖) =
𝐶. Indeed, if 𝑋1,… , 𝑋𝑛 are independent, then so are 𝑌1,… , 𝑌𝑛, so𝐻(𝑌1,… , 𝑌𝑛) = ∑𝑛

𝑖=1𝐻(𝑌 𝑖). There-
fore,

max
𝑋1,…,𝑋𝑛

𝐼(𝑋1,… , 𝑋𝑛; 𝑌1,… , 𝑌𝑛) = 𝑛𝐶

as required.

We now prove part of Shannon’s second coding theorem, that the operational capacity is at most the
information capacity for a discrete memoryless channel.

Proof. Let 𝐶 be the information capacity. Suppose reliable transmission is possible at a rate 𝑅 >
𝐶. Then, there is a sequence of codes (𝐶𝑛)𝑛≥1 where 𝐶𝑛 has length 𝑛 and size ⌊2𝑛𝑅⌋, such that
lim𝑛→∞ 𝜌(𝐶𝑛) = 𝑅 and lim𝑛→∞ ̂𝑒(𝐶𝑛) = 0.

Recall that ̂𝑒(𝐶𝑛) = max𝑐∈𝐶𝑛 ℙ (error ∣ 𝑐 sent). Define theaverage error rate 𝑒(𝐶) by 𝑒(𝐶) =
1

|𝐶𝑛|
∑𝑐∈𝐶 ℙ (error ∣ 𝑐 sent).

Note that 𝑒(𝐶𝑛) ≤ ̂𝑒(𝐶𝑛). As ̂𝑒(𝐶𝑛) → 0, we also have 𝑒(𝐶𝑛) → 0.
Consider an input random variable 𝑋 distributed uniformly over 𝐶𝑛. Let 𝑌 be the output given by 𝑋
and the channel matrix. Then 𝑒(𝐶𝑛) = ℙ (𝑋 ≠ 𝑌) = 𝑝. Hence, 𝐻(𝑋) = log |𝐶𝑛| = log⌊2𝑛𝑅⌋ ≥ 𝑛𝑅 − 1
for sufficiently large 𝑛. Also, by Fano’s inequality, 𝐻(𝑋 ∣ 𝑌) ≤ 𝐻(𝑝) + 𝑝 log(|𝐶𝑛| − 1) ≤ 1 + 𝑝𝑛𝑅.
Recall that 𝐼(𝑋; 𝑌) = 𝐻(𝑋) − 𝐻(𝑋 ∣ 𝑌). By the previous lemma, 𝑛𝐶 ≥ 𝐼(𝑋; 𝑌), so

𝑛𝐶 ≥ 𝑛𝑅 − 1 − 1 − 𝑝𝑛𝑅 ⟹ 𝑝𝑛𝑅 ≥ 𝑛(𝑅 − 𝑐) − 2 ⟹ 𝑝 ≥ 𝑛(𝑅 − 𝐶) − 2
𝑛𝑅

As 𝑛 → ∞, the right hand side converges to 𝑅−𝐶
𝑅

> 0. This contradicts the fact that 𝑝 = 𝑒(𝐶𝑛) → 0.
Hence, we cannot transmit reliably at any rate which exceeds 𝐶, hence the capacity is at most 𝐶.

To complete the proof of Shannon’s second coding theorem for the binary symmetric channel with
error probability 𝑝, we prove that the operational capacity is at least 1 − 𝐻(𝑝).

25



Proposition. Consider a binary symmetric channel with error probability 𝑝, and let 𝑅 <
1 − 𝐻(𝑝). Then there exists a sequence of codes (𝐶𝑛)𝑛≥1 with 𝐶𝑛 of length 𝑛 and size ⌊2𝑛𝑅⌋
such that lim𝑛→∞ 𝜌(𝐶𝑛) = 𝑅 and lim𝑛→∞ 𝑒(𝐶𝑛) = 0.

Remark. This proposition deals with the average error rate, instead of the error rate ̂𝑒.

Proof. We use the method of random coding. Without loss of generality let 𝑝 < 1
2
. Let 𝜀 > 0 such

that 𝑝 + 𝜀 < 1
2
and 𝑅 < 1 − 𝐻(𝑝 + 𝜀). We use minimum distance decoding, and in the case of a tie,

we make an arbitrary choice. Let 𝑚 = ⌊2𝑛𝑅⌋, and let 𝐶 = {𝑐1,… , 𝑐𝑚} be a code chosen uniformly at
random from 𝒞 = {[𝑛,𝑚]-codes}, a set of size (2𝑛

𝑚
).

Choose 1 ≤ 𝑖 ≤ 𝑚 uniformly at random, and send 𝑐𝑖 through the channel, and obtain an output 𝑌 .
Then, ℙ (𝑌 not decoded as 𝑐𝑖) is the average value of 𝑒(𝐶) for 𝐶 ranging over 𝒞, giving 1

|𝒞|
∑𝐶∈𝒞 𝑒(𝐶).

We can choose a code𝐶𝑛 ∈ 𝒞 such that 𝑒(𝐶𝑛) ≤
1
|𝒞|
∑𝐶∈𝒞 𝑒(𝐶). So it suffices to showℙ (𝑌 not decoded as 𝑐𝑖) →

0.
Let 𝑟 = ⌊𝑛(𝑝 + 𝜀)⌋. Then if 𝐵(𝑌, 𝑟) ∩ 𝐶 = {𝑐𝑖}, 𝑌 is correctly decoded as 𝑐𝑖. Therefore,

ℙ (𝑌 not decoded as 𝑐𝑖) ≤ ℙ (𝑐𝑖 ∉ 𝐵(𝑌, 𝑟)) + ℙ (𝐵(𝑌, 𝑟) ∩ 𝐶 ⊋ {𝑐𝑖})

We consider the two cases separately.

In the first case with 𝑑(𝑐𝑖, 𝑌) > 𝑟, ℙ (𝑑(𝑐𝑖, 𝑌) > 𝑟) is the probability that the channel makes more
than 𝑟 errors, and hence more than 𝑛(𝑝 + 𝜀) errors. We have already shown that this converges to
zero as 𝑛 → ∞.

In the second case with 𝑑(𝑐𝑖, 𝑌) ≤ 𝑟, if 𝑗 ≠ 𝑖,

ℙ (𝑐𝑗 ∈ 𝐵(𝑌, 𝑟) ∣ 𝑐𝑖 ∈ 𝐵(𝑌, 𝑟)) = 𝑉(𝑛, 𝑟) − 1
2𝑛 − 1 ≤ 𝑉(𝑛, 𝑟)

2𝑛

Therefore,

ℙ (𝐵(𝑌, 𝑟) ∩ 𝐶 ⊋ {𝑐𝑖}) ≤ ∑
𝑗≠𝑖

ℙ (𝑐𝑗 ∈ 𝐵(𝑌, 𝑟), 𝑐𝑖 ∈ 𝐵(𝑌, 𝑟))

≤ ∑
𝑗≠𝑖

ℙ (𝑐𝑗 ∈ 𝐵(𝑌, 𝑟) ∣ 𝑐𝑖 ∈ 𝐵(𝑌, 𝑟))

≤ (𝑚 − 1)𝑉(𝑛, 𝑟)2𝑛

≤ 𝑚𝑉(𝑛, 𝑟)
2𝑛

≤ 2𝑛𝑅2𝑛𝐻(𝑝+𝜀)2−𝑛

= 2𝑛(𝑅−(1−𝐻(𝑝+𝜀))) → 0

as required.

Proposition. We can replace 𝑒 with ̂𝑒 in the previous result.
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Proof. Let 𝑅′ be such that 𝑅 < 𝑅′ < 1 − 𝐻(𝑝). Then, apply the previous result to 𝑅′ to construct
a sequence of codes (𝐶′

𝑛)𝑛≥1 of length 𝑛 and size ⌊2𝑛𝑅
′⌋, where 𝑒(𝐶′

𝑛) → 0. Order the codewords
of 𝐶′

𝑛 by the probability of error given that the codeword was sent, and delete the worst half. This
gives a code 𝐶𝑛 with ̂𝑒(𝐶𝑛) ≤ 2𝑒(𝐶′

𝑛). Hence ̂𝑒(𝐶𝑛) → 0 as 𝑛 → ∞. Since 𝐶𝑛 has length 𝑛, and size
1
2
⌊2𝑛𝑅′⌋ = ⌊2𝑛𝑅′−1⌋. But 2𝑛𝑅′−1 = 2𝑛(𝑅

′− 1
𝑛 ) ≥ 2𝑛𝑅 for sufficiently large 𝑛. So we can replace 𝐶′

𝑛 with
a code of smaller size ⌊2𝑛𝑅⌋ and still have ̂𝑒(𝐶𝑛) → 0 and 𝜌(𝐶𝑛) → 𝑅 as 𝑛 → ∞.

Therefore, a binary symmetric channel with error probability 𝑝 has operational capacity 1−𝐻(𝑝), as
we can transmit reliably at any rate 𝑅 < 1 − 𝐻(𝑝), and the capacity is at most 1 − 𝐻(𝑝). The result
shows that codes with certain properties exist, but does not give a way to construct them.

4.7 The Kelly criterion
Let 0 < 𝑝 < 1, 𝑢 > 0, 0 ≤ 𝑤 < 1. Suppose that a coin is tossed 𝑛 times in succession with probability
𝑝 of obtaining a head. If a stake of 𝑘 is paid ahead of a particular throw, the return is 𝑘𝑢 if the result
is a head, and the return is zero if the result is a tail.

Suppose the initial bankroll is𝑋0 = 1. After 𝑛 throws, the bankroll is𝑋𝑛. We bet𝑤𝑋𝑛 on the (𝑛+1)th
coin toss, retaining (1 − 𝑤)𝑋𝑛. The bankroll after the toss is

𝑋𝑛+1 = {𝑋𝑛(𝑤𝑢 + (1 − 𝑤)) (𝑛 + 1)th toss is a head
𝑋𝑛(1 − 𝑤) (𝑛 + 1)th toss is a tail

Define 𝑌𝑛+1 =
𝑋𝑛+1
𝑋𝑛

, then the 𝑌 𝑖 are independent and identically distributed. Then log𝑌 𝑖 is a se-

quence of independent and identically distributed randomvariables. Note that log𝑋𝑛 = ∑𝑛
𝑖=1 log𝑌 𝑖.

Lemma. Let 𝜇 = 𝔼 [log𝑌1] , 𝜎2 = Var (log𝑌1). Then, if 𝑎 > 0,
(i) ℙ (||

1
𝑛
∑𝑛

𝑖=1 log𝑌 𝑖 − 𝜇|| ≥ 𝑎) ≤ 𝜎2

𝑛𝑎2
by Chebyshev’s inequality;

(ii) ℙ (||
log𝑋𝑛
𝑛

− 𝜇|| ≥ 𝑎) ≤ 𝜎2

𝑛𝑎2
;

(iii) given 𝜀 > 0 and 𝛿 > 0, there exists 𝑁 such that ℙ (||
log𝑋𝑛
𝑛

− 𝜇|| ≥ 𝛿) ≤ 𝜀 for all 𝑛 ≥ 𝑁.

Consider a single coin toss, with probability 𝑝 < 1 of a head. Suppose that a bet of 𝑘 on a head gives
a payout of 𝑘𝑢 for some payout ratio 𝑢 > 0. Suppose further that we have an initial bankroll of 1, and
we bet 𝑤 on heads, retaining 1 − 𝑤, for some 0 ≤ 𝑤 < 1. Then, if 𝑌 is the expected fortune after the
throw, 𝔼 [log𝑌] = 𝑝 log(1 + (𝑢 − 1)𝑤) + (1−𝑝) log(1 − 𝑤). One can show that the value of 𝔼 [log𝑌]
is maximised by taking 𝑤 = 0 if 𝑢𝑝 ≤ 1, and setting 𝑤 = 𝑢𝑝−1

𝑢−1
if 𝑢𝑝 > 1.

Let 𝑞 = 1 − 𝑝. If 𝑢𝑝 > 1, at the optimum value of 𝑤, we find

𝔼 [log𝑌] = 𝑝 log𝑝 + 𝑞 log 𝑞 + log𝑢 − 𝑞 log(𝑢 − 1) = −𝐻(𝑝) + log𝑢 − 𝑞 log(𝑢 − 1)

Kelly’s criterion is that in order to maximise profit, 𝔼 [log𝑌] should be optimised, given that we can
bet arbitrarily many times.

One can show that if 𝑤 is set below the optimum, the bankroll will still increase, but does so more
slowly. If 𝑤 is set sufficiently high, the bankroll will tend to decrease.
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5 Algebraic coding theory
5.1 Linear codes

Definition. A binary code 𝐶 ⊆ 𝔽𝑛2 is linear if 0 ∈ 𝐶, and whenever 𝑥, 𝑦 ∈ 𝐶, we have
𝑥 + 𝑦 ∈ 𝐶.

Equivalently, 𝐶 is a vector subspace of 𝔽𝑛2 .

Definition. The rank of a linear code 𝐶, denoted rank𝐶, is its dimension as an 𝔽2-vector
space. A linear code of length 𝑛 and rank 𝑘 is called an (𝑛, 𝑘)-code. If it hasminimumdistance
𝑑, it is called an (𝑛, 𝑘, 𝑑)-code.

Let 𝑣1,… , 𝑣𝑘 be a basis for 𝐶. Then 𝐶 = {∑𝑘
𝑖=1 𝜆𝑖𝑣𝑖 ∣ 𝜆𝑖 ∈ 𝔽2}. The size of the code is therefore 2𝑘,

so an (𝑛, 𝑘)-code is an [𝑛, 2𝑘]-code, and an (𝑛, 𝑘, 𝑑)-code is an [𝑛, 2𝑘, 𝑑]-code. The information rate is
𝑘
𝑛
.

Definition. The weight of 𝑥 ∈ 𝔽𝑛2 is 𝑤(𝑥) = 𝑑(𝑥, 0).

Lemma. The minimum distance of a linear code is the minimum weight of a nonzero code-
word.

Proof. Let 𝑥, 𝑦 ∈ 𝐶. Then, 𝑑(𝑥, 𝑦) = 𝑑(𝑥 + 𝑦, 0) = 𝑤(𝑥 + 𝑦). Observe that 𝑥 ≠ 𝑦 if and only if
𝑥 + 𝑦 ≠ 0, so 𝑑(𝐶) is the minimum 𝑤(𝑥 + 𝑦) for 𝑥 + 𝑦 ≠ 0.

Definition. Let 𝑥, 𝑦 ∈ 𝔽𝑛2 . Define 𝑥 ⋅ 𝑦 = ∑𝑛
𝑖=1 𝑥𝑖𝑦𝑖 ∈ 𝔽2. This is symmetric and bilinear.

There are nonzero 𝑥 such that 𝑥 ⋅ 𝑥 = 0.

Definition. Let 𝑃 ⊆ 𝔽𝑛2 . The parity check code defined by 𝑃 is

𝐶 = {𝑥 ∈ 𝔽𝑛2 ∣ ∀𝑝 ∈ 𝑃, 𝑝 ⋅ 𝑥 = 0}

Example. (i) 𝑃 = {11…1} gives the simple parity check code.
(ii) 𝑃 = {1010101, 0110011, 0001111} gives Hamming’s original [7, 16, 3]-code.
(iii) 𝐶+ and 𝐶− are linear if 𝐶 is linear.

Lemma. Every parity check code is linear.

Proof. 0 ∈ 𝐶 as 𝑝 ⋅ 0 = 0. If 𝑝 ⋅ 𝑥 = 0 and 𝑝 ⋅ 𝑦 = 0 then 𝑝 ⋅ (𝑥 + 𝑦) = 0, so 𝑥, 𝑦 ∈ 𝐶 implies
𝑥 + 𝑦 ∈ 𝐶.
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Definition. Let 𝐶 ⊆ 𝔽𝑛2 be a linear code. The dual code 𝐶⟂ is defined by

𝐶⟂ = {𝑥 ∈ 𝔽𝑛2 ∣ ∀𝑦 ∈ 𝐶, 𝑥 ⋅ 𝑦 = 0}

By definition, 𝐶⟂ is a parity check code, and hence is linear. Note that 𝐶 ∩𝐶⟂ may contain elements
other than 0.

Lemma. rank𝐶 + rank𝐶⟂ = 𝑛.

Proof. One can prove this by defining 𝐶⟂ as an annihilator from linear algebra. A proof using coding
theory is shown later.

Corollary. Let 𝐶 be a linear code. Then (𝐶⟂)⟂ = 𝐶. In particular, all linear codes are parity
check codes, defined by 𝐶⟂.

Proof. If𝑥 ∈ 𝐶, then𝑥⋅𝑦 = 0 for all 𝑦 ∈ 𝐶⟂ by definition, so𝑥 ∈ (𝐶⟂)⟂. Then rank𝐶 = 𝑛−rank𝐶⟂ =
𝑛 − (𝑛 − rank(𝐶⟂)⟂) = rank(𝐶⟂)⟂, so 𝐶 = (𝐶⟂)⟂.

Definition. Let 𝐶 be an (𝑛, 𝑘)-code. A generator matrix 𝐺 for 𝐶 is a 𝑘 × 𝑛matrix where the
rows form a basis for 𝐶. A parity check matrix 𝐻 for 𝐶 is a generator matrix for the dual code
𝐶⟂, so it is an (𝑛 − 𝑘) × 𝑛matrix.

The codewords of a linear code can be viewed either as linear combinations of rows of 𝐺, or linear
dependence relations between the columns of 𝐻, so 𝐶 = {𝑥 ∈ 𝔽𝑛2 ∣ 𝐻𝑥 = 0}.

Definition. Let 𝐶 be an (𝑛, 𝑘)-code. The syndrome of 𝑥 ∈ 𝔽𝑛2 is 𝐻𝑥.

If we receive a word 𝑥 = 𝑐 + 𝑧 where 𝑐 ∈ 𝐶 and 𝑧 is the error pattern, 𝐻𝑥 = 𝐻𝑧 as 𝐻𝑐 = 0. If 𝐶 is
𝑒-error correcting, we precompute 𝐻𝑧 for all 𝑧 for which 𝑤(𝑧) ≤ 𝑒. On receiving 𝑥, we can compute
the syndrome 𝐻𝑥 and find this entry in the table of values of 𝐻𝑧. If successful, we decode 𝑐 = 𝑥 − 𝑧,
with 𝑑(𝑥, 𝑐) = 𝑤(𝑧) ≤ 𝑒.

Definition. Codes 𝐶1, 𝐶2 ⊆ 𝔽𝑛2 are equivalent if there exists a permutation of bits that maps
codewords in 𝐶1 to codewords in 𝐶2.

Codes are typically only considered up to equivalence.

Lemma. Every (𝑛, 𝑘)-linear code is equivalent to one with generator matrix with block form
(𝐼𝑘 𝐵) for some 𝑘 × (𝑛 − 𝑘)matrix 𝐵.
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Proof. Let𝐺 be a 𝑘×𝑛 generator matrix for 𝐶. Using Gaussian elimination, we can transform𝐺 into
row echelon form

𝐺𝑖𝑗 = {0 𝑗 < ℓ(𝑖)
1 𝑗 = ℓ(𝑖)

for some ℓ(1) < ℓ(2) < ⋯ < ℓ(𝑘). Permuting the columns replaces 𝐶 with an equivalent code, so
without loss of generality we may assume ℓ(𝑖) = 𝑖. Hence,

𝐺 = (
1 ⋆

⋱ 𝐵
1

)

Further row operations eliminate ⋆ to give 𝐺 in the required form.

A message 𝑦 ∈ 𝔽𝑘2 viewed as a row vector can be encoded as 𝑦𝐺. If 𝐺 = (𝐼𝑘 𝐵), then 𝑦𝐺 = (𝑦, 𝑦𝐵)
where 𝑦 is the message and 𝑦𝐵 is a string of check digits. We now prove the following lemma that
was stated earlier.

Lemma. rank𝐶 + rank𝐶⟂ = 𝑛.

Proof. Let 𝐶 have generator matrix𝐺 = (𝐼𝑘 𝐵). 𝐺 has 𝑘 linearly independent columns, so there is a
linear map 𝛾∶ 𝔽𝑛2 → 𝔽𝑘2 defined by 𝑥 ↦ 𝐺𝑥 which is surjective. Its kernel is 𝐶⟂. By the rank-nullity
theorem, dim𝔽𝑛2 = dimker 𝛾 + dim Im 𝛾, so 𝑛 = rank𝐶 + rank𝐶⟂ as required.

Lemma. An (𝑛, 𝑘)-code with generator matrix𝐺 = (𝐼𝑘 𝐵) has parity checkmatrix𝐻 of the
form (𝐵⊺ 𝐼𝑛−𝑘).

Proof.

𝐺𝐻⊺ = (𝐼𝑘 𝐵) ( 𝐵
𝐼𝑛−𝑘

) = 𝐵 + 𝐵 = 2𝐵 = 0

So the rows of 𝐻 generate a subcode of 𝐶⟂. But rank𝐻 = 𝑛 − 𝑘, and rank𝐶⟂ = 𝑛 − 𝑘. So 𝐻 = 𝐶⟂,
and 𝐶⟂ has generator matrix 𝐻.

Lemma. Let 𝐶 be a linear code with parity check matrix 𝐻. Then, 𝑑(𝐶) = 𝑑 if and only if
(i) any 𝑑 − 1 columns of 𝐻 are linearly independent; and
(ii) a set of 𝑑 columns of 𝐻 are linearly dependent.

The proof is left as an exercise.

5.2 Hamming codes

Definition. Let 𝑑 ≥ 1, and let 𝑛 = 2𝑑 − 1. Let 𝐻 be the 𝑑 × 𝑛 matrix with columns given
by the nonzero elements of 𝔽𝑑2 . The Hamming (𝑛, 𝑛 − 𝑑)-linear code is the code with parity
check matrix 𝐻.
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Lemma. The Hamming (𝑛, 𝑛 − 𝑑)-code 𝐶 has minimum distance 𝑑(𝐶) = 3, and is a perfect
1-error correcting code.

Proof. Any two columns of𝐻 are linearly independent, but there are three linearly dependent columns.
Hence, 𝑑(𝐶) = 3. Hence, 𝐶 is ⌊ 3−1

2
⌋ = 1-error correcting. A perfect code is one such that |𝐶| = 2𝑛

𝑉(𝑛,𝑒)
.

In this case, 𝑛 = 2𝑑 − 1 and 𝑒 = 1, so 2𝑛

1+2𝑑−1
= 2𝑛−𝑑 = |𝐶| as required.

5.3 Reed–Muller codes
Let 𝑋 = {𝑝1,… , 𝑝𝑛} be a set of size 𝑛. There is a correspondence between the power set 𝒫(𝑋) and
𝔽𝑛2 .

𝒫(𝑋) 𝐴↦𝟙𝐴−−−−→ {𝑓∶ 𝑋 → 𝔽2}
𝑓↦(𝑓(𝑝1),…,𝑓(𝑝𝑛))−−−−−−−−−−−−−→ 𝔽𝑛2

The symmetric difference of two sets 𝐴, 𝐵 is defined to be 𝐴 △ 𝐵 = 𝐴 ∖ 𝐵 ∪ 𝐵 ∖ 𝐴, which cor-
responds to vector addition in 𝔽𝑛2 . Intersection 𝐴 ∩ 𝐵 corresponds to the wedge product 𝑥 ∧ 𝑦 =
(𝑥1𝑦1,… , 𝑥𝑛𝑦𝑛).
Let 𝑋 = 𝔽𝑑2 , so 𝑛 = 2𝑑 − |𝑋|. Let 𝑣0 = (1,… , 1), and let 𝑣𝑖 = 𝟙𝐻𝑖 where 𝐻𝑖 = {𝑝 ∈ 𝑋 ∣ 𝑝𝑖 = 0} is a
coordinate hyperplane.

Definition. Let 0 ≤ 𝑟 ≤ 𝑑. The Reed–Muller code 𝑅𝑀(𝑑, 𝑟) of order 𝑟 and length 2𝑑 is the
linear code spanned by 𝑣0 and all wedge products of at most 𝑟 of the the 𝑣𝑖 for 1 ≤ 𝑖 ≤ 𝑑.

By convention, the empty wedge product is 𝑣0.
Example. Let 𝑑 = 3, and let 𝑋 = 𝔽32 = {𝑝1,… , 𝑝8} in binary order.

𝑋 000 001 010 011 100 101 110 111
𝑣0 1 1 1 1 1 1 1 1
𝑣1 1 1 1 1 0 0 0 0
𝑣2 1 1 0 0 1 1 0 0
𝑣3 1 0 1 0 1 0 1 0

𝑣1 ∧ 𝑣2 1 1 0 0 0 0 0 0
𝑣2 ∧ 𝑣3 1 0 0 0 1 0 0 0
𝑣1 ∧ 𝑣3 1 0 1 0 0 0 0 0

𝑣1 ∧ 𝑣2 ∧ 𝑣3 1 0 0 0 0 0 0 0

A generator matrix for Hamming’s original code is a submatrix in the top-right corner.

𝑅𝑀(3, 0) is spanned by 𝑣0, and is hence the repetition code of length 8. 𝑅𝑀(3, 1) is spanned by
𝑣0, 𝑣1, 𝑣2, 𝑣3, which is equivalent to a parity check extension ofHamming’s original (7, 4)-code. 𝑅𝑀(3, 2)
is an (8, 7)-code, and can be shown to be equivalent to a simple parity check code of length 8. 𝑅𝑀(3, 3)
is the trivial code 𝔽82 of length 8.

Theorem. (i) The vectors 𝑣𝑖1 ∧⋯∧ 𝑣𝑖𝑠 for 𝑖1 < ⋯ < 𝑖𝑠 and 0 ≤ 𝑠 ≤ 𝑑 form a basis for 𝔽𝑛2 .
(ii) The rank of 𝑅𝑀(𝑑, 𝑟) is∑𝑟

𝑠=0 (
𝑑
𝑠
).
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Proof. Part (i). There are∑𝑑
𝑠=0 (

𝑑
𝑠
) = 2𝑑 = 𝑛 vectors listed, so it suffices to show they are a spanning

set, or equivalently 𝑅𝑀(𝑑, 𝑑) is the trivial code. Let 𝑝 ∈ 𝑋 , and let 𝑦𝑖 be 𝑣𝑖 if 𝑝𝑖 = 0 and 𝑣0 + 𝑣𝑖 if
𝑝𝑖 = 1. Then 𝟙{𝑝} = 𝑦1 ∧⋯ ∧ 𝑦𝑑. Expanding this using the distributive law, 𝟙{𝑝} ∈ 𝑅𝑀(𝑑, 𝑑). But the
set of 𝟙{𝑝} for 𝑝 ∈ 𝑋 spans 𝔽𝑛2 , as required.
Part (ii). 𝑅𝑀(𝑑, 𝑟) is spanned by 𝑣𝑖1 ∧ ⋯ ∧ 𝑣𝑖𝑠 where 𝑖1 < ⋯ < 𝑖𝑠 and 0 ≤ 𝑠 ≤ 𝑟. Since these are
linearly independent, the rank of 𝑅𝑀(𝑑, 𝑟) is the number of such vectors, which is∑𝑑

𝑠=0 (
𝑑
𝑠
).

Definition. Let 𝐶1, 𝐶2 be linear codes of length 𝑛 where 𝐶2 ⊆ 𝐶1. The bar product is 𝐶1 ∣
𝐶2 = {(𝑥 ∣ 𝑥 + 𝑦) ∣ 𝑥 ∈ 𝐶1, 𝑦 ∈ 𝐶2}.

This is a linear code of length 2𝑛.

Lemma. (i) rank(𝐶1 ∣ 𝐶2) = rank𝐶1 + rank𝐶2.
(ii) 𝑑(𝐶1 ∣ 𝐶2) = min {2𝑑(𝐶1), 𝑑(𝐶2)}.

Proof. Part (i). If 𝐶1 has basis 𝑥1,… , 𝑥𝑘 and 𝐶2 has basis 𝑦1,… , 𝑦ℓ, then 𝐶1 ∣ 𝐶2 has basis

{(𝑥𝑖 ∣ 𝑥𝑖) ∣ 1 ≤ 𝑖 ≤ 𝑘} ∪ {(0 ∣ 𝑦𝑖) ∣ 1 ≤ 𝑖 ≤ ℓ}

Part (ii). Let 0 ≠ (𝑥 ∣ 𝑥 + 𝑦) ∈ 𝐶1 ∣ 𝐶2. If 𝑦 ≠ 0, then𝑤(𝑥 ∣ 𝑥 + 𝑦) = 𝑤(𝑥)+𝑤(𝑥+ 𝑦) ≥ 𝑤(𝑦) ≥ 𝑑(𝐶2).
If 𝑦 = 0, then 𝑤(𝑥 ∣ 𝑥 + 𝑦) = 𝑤(𝑥 ∣ 𝑥) = 2𝑤(𝑥) ≥ 2𝑑(𝐶1). Hence, 𝑑(𝐶1 ∣ 𝐶2) ≥ min {2𝑑(𝐶1), 𝑑(𝐶2)}.
There is a nonzero 𝑥 ∈ 𝐶1 with 𝑤(𝑥) = 𝑑(𝐶1), so 𝑑(𝐶1 ∣ 𝐶2) ≤ 𝑤(𝑥 ∣ 𝑥) = 2𝑑(𝐶1). There is a nonzero
𝑦 ∈ 𝐶2 with 𝑤(𝑦) = 𝑑(𝐶2), giving 𝑑(𝐶1 ∣ 𝐶2) ≤ 𝑤(0 ∣ 0 + 𝑦) = 𝑑(𝐶2), giving the other inequality as
required.

Theorem. (i) 𝑅𝑀(𝑑, 𝑟) = 𝑅𝑀(𝑑 − 1, 𝑟) ∣ 𝑅𝑀(𝑑 − 1, 𝑟 − 1) for 0 < 𝑟 < 𝑑.
(ii) 𝑅𝑀(𝑑, 𝑟) has minimum distance 2𝑑−𝑟 for all 𝑟.

Proof. Part (i). Exercise.

Part (ii). If 𝑟 = 0, then 𝑅𝑀(𝑑, 𝑟) is the repetition code of length 2𝑑, which has minimum distance
2𝑑. If 𝑟 = 𝑑, 𝑅𝑀(𝑑, 𝑟) is the trivial code of length 2𝑑, which has minimum distance 1 = 2𝑑−𝑑. We
prove the remaining cases by induction on 𝑑. From part (i), 𝑅𝑀(𝑑, 𝑟) = 𝑅𝑀(𝑑 − 1, 𝑟) ∣ 𝑅𝑀(𝑑 −
1, 𝑟 − 1). By induction, the minimum distance of 𝑅𝑀(𝑑 − 1, 𝑟) is 2𝑑−1−𝑟 and the minimum distance
of 𝑅𝑀(𝑑 − 1, 𝑟 − 1) is 2𝑑−𝑟. By part (ii) of the previous lemma, the minimum distance of 𝑅𝑀(𝑑, 𝑟) is
min {2 ⋅ 2𝑑−1−𝑟, 2𝑑−𝑟} = 2𝑑−𝑟.

5.4 Cyclic codes
If 𝐹 is a field and 𝑓 ∈ 𝐹[𝑋], 𝐹[𝑋]⟋(𝑓) is in bijection with 𝐹𝑛 where 𝑛 = deg𝑓, since 𝐹[𝑋]⟋(𝑓) is
represented by the set of functions of degree less than deg𝑓.
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Definition. A linear code 𝐶 ⊆ 𝔽𝑛2 is cyclic if
(𝑎0, 𝑎1,… , 𝑎𝑛−1) ∈ 𝐶 ⟹ (𝑎𝑛−1, 𝑎0,… , 𝑎𝑛−2) ∈ 𝐶

We identify 𝔽2[𝑋]⟋(𝑋𝑛 − 1)with 𝔽𝑛2 , letting 𝜋(𝑎0 +𝑎1𝑋 +⋯+𝑎𝑛−1𝑋𝑛−1) = (𝑎0, 𝑎1,… , 𝑎𝑛−1).

Lemma. A code 𝐶 ⊆ 𝔽𝑛2 is cyclic if and only if 𝜋(𝒞) = 𝐶 satisfies
(i) 0 ∈ 𝒞;
(ii) 𝑓, 𝑔 ∈ 𝒞 implies 𝑓 + 𝑔 ∈ 𝒞;
(iii) 𝑓 ∈ 𝔽2[𝑋], 𝑔 ∈ 𝒞 implies 𝑓𝑔 ∈ 𝒞.

Equivalently, 𝒞 is an ideal of 𝔽2[𝑋]⟋(𝑋𝑛 − 1).

Proof. If 𝑔(𝑋) = 𝑎0 + 𝑎1𝑋 + ⋯ + 𝑎𝑛−1𝑋𝑛−1, multiplication by 𝑋 gives 𝑋𝑔(𝑋) = 𝑎𝑛−1 + 𝑎0𝑋 + ⋯ +
𝑎𝑛−2𝑋𝑛−1. So 𝒞 is cyclic if and only if (i) and (ii) hold and 𝑔(𝑋) ∈ 𝐶 implies 𝑋𝑔(𝑋) ∈ 𝐶. Linearity
then gives (iii).

We will identify 𝐶 with 𝒞. The cyclic codes of length 𝑛 correspond to ideals in 𝔽2[𝑋]⟋(𝑋𝑛 − 1). Such
ideals correspond to ideals of 𝔽2[𝑋] that contain 𝑋𝑛 − 1. Since 𝔽2[𝑋] is a principal ideal domain,
these ideals correspond to polynomials 𝑔(𝑋) ∈ 𝔽2[𝑋] dividing 𝑋𝑛 − 1.

Theorem. Let 𝐶 ⊴ 𝔽2[𝑋]⟋(𝑋𝑛 − 1) be a cyclic code. Then, there exists a unique generator
polynomial 𝑔(𝑋) ∈ 𝔽2[𝑋] such that
(i) 𝐶 = (𝑔);
(ii) 𝑔(𝑋) ∣ 𝑋𝑛 − 1.

In particular, 𝑝(𝑋) ∈ 𝔽2[𝑋] represents a codeword if and only if 𝑔 ∣ 𝑝.

Proof. Let 𝑔(𝑋) ∈ 𝔽2[𝑋] be the polynomial of smallest degree that represents a nonzero codeword of
𝐶. Note that deg 𝑔 < 𝑛. Since 𝐶 is cyclic, (𝑔) ⊆ 𝐶. Now let 𝑝(𝑋) ∈ 𝔽2[𝑋] represent a codeword. By
the division algorithm, 𝑝 = 𝑞𝑔+ 𝑟 for 𝑞, 𝑟 ∈ 𝔽2[𝑋]where deg 𝑟 < deg 𝑔. Then, 𝑟 = 𝑝−𝑞𝑔 ∈ 𝐶 as 𝐶 is
an ideal. But deg 𝑟 < deg 𝑔, so 𝑟 = 0. Hence, 𝑔 ∣ 𝑝. For part (ii), let 𝑝(𝑋) = 𝑋𝑛 − 1, giving 𝑔 ∣ 𝑋𝑛 − 1.
Now we show uniqueness. Suppose 𝐶 = (𝑔1) = (𝑔2). Then 𝑔1 ∣ 𝑔2 and 𝑔2 ∣ 𝑔1. So 𝑔1 = 𝑐𝑔2 where
𝑐 ∈ 𝔽⋆

2 , so 𝑐 = 1.

Lemma. Let 𝐶 be a cyclic code of length 𝑛with generator 𝑔(𝑋) = 𝑎0+𝑎1𝑋 +⋯+𝑎𝑘𝑋𝑘 with
𝑎𝑘 ≠ 0. Then 𝐶 has basis {𝑔, 𝑋𝑔, 𝑋2𝑔,… , 𝑋𝑛−𝑘−1𝑔}. In particular, rank𝐶 = 𝑛 − 𝑘.

Proof. Exercise.

Corollary. Let 𝐶 be a cyclic code of length 𝑛 with generator 𝑔(𝑋) = 𝑎0 + 𝑎1𝑋 +⋯ + 𝑎𝑘𝑋𝑘
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with 𝑎𝑘 ≠ 0. Then, a generator matrix for 𝐶 is given by

𝐺 =
⎛
⎜
⎜
⎝

𝑎0 𝑎1 𝑎2 ⋯ 𝑎𝑘 0 0 ⋯ 0
0 𝑎0 𝑎1 ⋯ 𝑎𝑘−1 𝑎𝑘 0 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 0 𝑎0 𝑎1 ⋯ 𝑎𝑘

⎞
⎟
⎟
⎠

This is an (𝑛 − 𝑘) × 𝑛matrix.

Definition. Let 𝑔 be a generator for 𝐶. The parity check polynomial is the polynomial ℎ such
that 𝑔(𝑋)ℎ(𝑋) = 𝑋𝑛 − 1.

Corollary. Writing ℎ(𝑋) = 𝑏0 + 𝑏1𝑋 +⋯+ 𝑏𝑛−𝑘𝑋𝑛−𝑘, the parity check matrix is

𝐻 =
⎛
⎜
⎜
⎝

𝑏𝑛−𝑘 𝑏𝑛−𝑘−1 𝑏𝑛−𝑘−2 ⋯ 𝑏1 𝑏0 0 0 ⋯ 0
0 𝑏𝑛−𝑘 𝑏𝑛−𝑘−1 ⋯ 𝑏2 𝑏1 𝑏0 0 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 0 𝑏𝑛−𝑘 𝑏𝑛−𝑘−1 𝑏𝑛−𝑘−2 ⋯ 𝑏0

⎞
⎟
⎟
⎠

which is a 𝑘 × 𝑛matrix.

Proof. One can check that the inner product of the 𝑖th row of the generator matrix and the 𝑗th row of
the parity check matrix is the coefficient of 𝑋𝑛−𝑘−𝑖+𝑗 in 𝑔(𝑋)ℎ(𝑋) = 𝑋𝑛 − 1. Since 1 ≤ 𝑖 ≤ 𝑛 − 𝑘 and
1 ≤ 𝑗 ≤ 𝑘, 0 < 𝑛− 𝑘− 𝑖 + 𝑗 < 𝑛, and such coefficients are zero. Hence, the rows of 𝐺 are orthogonal
to the rows of 𝐻. Note that as 𝑏𝑛−𝑘 ≠ 0, rank𝐻 = 𝑘 = rank𝐶⟂, so 𝐻 is the parity check matrix.

Remark. Given a polynomial 𝑓(𝑋) = ∑𝑚
𝑖=0 𝑓𝑖𝑋𝑖 of degree 𝑚, the reverse polynomial is ̌𝑓(𝑋) = 𝑓𝑛 +

𝑓𝑛−1𝑋 +⋯+ 𝑓0𝑋𝑀 = 𝑋𝑚𝑓( 1
𝑋
). The cyclic code generated by ̌ℎ is the dual code 𝐶⟂.

Lemma. If 𝑛 is odd, 𝑋𝑛 −1 = 𝑓1(𝑋)…𝑓𝑡(𝑋)where the 𝑓𝑖(𝑋) are distinct irreducible polyno-
mials in 𝔽2[𝑋]. Thus, there are 2𝑡 cyclic codes of length 𝑛.

This is false if 𝑛 is even, for instance, 𝑋2 −1 = (𝑋 −1)2. The proof follows from Galois theory.

5.5 BCH codes
Recall that if 𝑝 is a prime, 𝔽𝑝 = ℤ⟋𝑝ℤ is a field, and if 𝑓(𝑋) ∈ 𝔽𝑝[𝑋] is irreducible, the quotient
𝐾 = 𝔽𝑝[𝑋]⟋(𝑓) is a field and has order 𝑝deg𝑓. Moreover, any finite field arises in this way.

If 𝑞 = 𝑝𝛼 is a prime power where 𝛼 ≥ 1, there exists a unique field 𝔽𝑞 of order 𝑞, up to isomorphism.
Note that 𝔽𝑞 ≄ ℤ⟋𝑞ℤ if 𝛼 > 1. The multiplicative group 𝔽×𝑞 is cyclic; there exists 𝛽 ∈ 𝔽𝑞 such that
𝔽×𝑞 = ⟨𝛽⟩ = {1, 𝛽,… , 𝛽𝑞−2}. Such a 𝛽 is called a primitive element.
Let 𝑛 be an odd integer, and let 𝑟 ≥ 1 such that 2𝑟 ≡ 1 mod 𝑛, which always exists as 2 is coprime
to 𝑛. Let 𝐾 = 𝔽2𝑟 , and define 𝛍𝑛(𝐾) = {𝑥 ∈ 𝐾 ∣ 𝑥𝑛 = 1} ≤ 𝐾×, which is a cyclic group. Since
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𝑛 ∣ (2𝑟 − 1) = |𝐾×|, 𝛍𝑛(𝐾) is the cyclic group of order 𝑛. Hence, 𝛍𝑛(𝐾) = {1, 𝛼, 𝛼2,… , 𝛼𝑛−1} for some
primitive 𝑛th root of unity 𝛼 ∈ 𝐾.

Definition. The cyclic code of length 𝑛 with defining set 𝐴 ⊆ 𝛍𝑛(𝐾) is the code

𝐶 = {𝑓(𝑋) ∈ 𝔽2[𝑋]⟋(𝑋𝑛 − 1) || ∀𝑎 ∈ 𝐴, 𝑓(𝑎) = 0}

The generator polynomial 𝑔(𝑋) is the nonzero polynomial of least degree such that 𝑔(𝑎) = 0 for all
𝑎 ∈ 𝐴. Equivalently, 𝑔 is the least common multiple of the minimal polynomials of the elements of
𝐴.

Definition. The cyclic code of length 𝑛with defining set {𝛼, 𝛼2,… , 𝛼𝛿−1} is a BCH codewith
design distance 𝛿.

Theorem. A BCH code 𝐶 with design distance 𝛿 has minimum distance 𝑑(𝐶) ≥ 𝛿.

This proof needs the following result.

Lemma. The Vandermonde matrix satisfies

det
⎛
⎜
⎜
⎜
⎝

1 1 1 ⋯ 1
𝑥1 𝑥2 𝑥3 ⋯ 𝑥𝑛
𝑥21 𝑥22 𝑥23 ⋯ 𝑥2𝑛
⋮ ⋮ ⋮ ⋱ ⋮

𝑥𝑛−11 𝑥𝑛−12 𝑥𝑛−13 ⋯ 𝑥𝑛−1𝑛

⎞
⎟
⎟
⎟
⎠

= ∏
1≤𝑗<𝑖≤𝑛

(𝑥𝑖 − 𝑥𝑗)

Proof of theorem. Consider

𝐻 =
⎛
⎜
⎜
⎝

1 𝛼 𝛼2 ⋯ 𝛼𝑛−1
1 𝛼2 𝛼4 ⋯ 𝛼2(𝑛−1)
⋮ ⋮ ⋮ ⋱ ⋮
1 𝛼𝛿−1 𝛼2(𝛿−1) ⋯ 𝛼(𝛿−1)(𝑛−1)

⎞
⎟
⎟
⎠

This is a (𝛿−1)×𝑛matrix. Any collection of (𝛿−1) columns is independent as it forms aVandermonde
matrix. But any codeword of 𝐶 is a dependence relation between the columns of 𝐻. Hence every
nonzero codeword has weight at least 𝛿, giving 𝑑(𝐶) ≥ 𝛿.

Note that 𝐻 in the proof above is not a parity check matrix, as its entries do not lie in 𝔽2.
Let 𝐶 be a cyclic code with defining set {𝛼, 𝛼2,… , 𝛼𝛿−1} where 𝛼 ∈ 𝐾 is a primitive 𝑛th root of unity.
Its minimum distance is at least 𝛿, so we should be able to correct 𝑡 = ⌊𝛿−1

2
⌋ errors. Suppose we send

𝑐 ∈ 𝐶 through the channel, and receive 𝑟 = 𝑐 + 𝑒 where 𝑒 is the error pattern with at most 𝑡 nonzero
errors. Note that 𝑟, 𝑐, 𝑒 correspond to polynomials 𝑟(𝑋), 𝑐(𝑋), 𝑒(𝑋), and 𝑐(𝛼𝑗) = 0 for 𝑗 ∈ {1,… , 𝛿 − 1}
as 𝑐 is a codeword. Hence, 𝑟(𝛼𝑗) = 𝑒(𝛼𝑗).
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Definition. The error locator polynomial of an error pattern 𝑒 ∈ 𝔽𝑛2 is

𝜎(𝑋) =∏
𝑖∈ℰ

(1 − 𝛼𝑖𝑋) ∈ 𝐾[𝑋]

where ℰ = {𝑖 ∣ 𝑒𝑖 = 1}.

Assuming that deg𝜎 = |ℰ|, where 2𝑡 + 1 ≤ 𝛿, we must recover 𝜎 from 𝑟(𝑋).

Theorem. Suppose deg𝜎 = |ℰ| ≤ 𝑡 where 2𝑡 + 1 ≤ 𝛿. Then 𝜎(𝑋) is the unique polynomial
in 𝐾[𝑋] of least degree such that
(i) 𝜎(0) = 1;
(ii) 𝜎(𝑋)∑2𝑡

𝑗=1 𝑟(𝛼𝑗)𝑋𝑗 = 𝜔(𝑋)mod 𝑋2𝑡+1 for some 𝜔 ∈ 𝐾[𝑋] of degree at most 𝑡.

Proof. Define 𝜔(𝑋) = −𝑋𝜎′(𝑋), called the error co-locator. Hence,

𝜔(𝑋) = ∑
𝑖∈ℰ

𝛼𝑖𝑋∏
𝑗≠𝑖

(1 − 𝛼𝑗𝑋)

This polynomial has deg𝜔 = deg𝜎. Consider the ring 𝐾⟦𝑋⟧ of formal power series. In this ring,

𝜔(𝑋)
𝜎(𝑋) = ∑

𝑖∈ℰ

𝛼𝑖𝑋
1 − 𝛼𝑖𝑋 = ∑

𝑖∈ℰ

∞
∑
𝑗=1

(𝛼𝑖𝑋)𝑗 =
∞
∑
𝑗=1

𝑋𝑗 ∑
𝑖∈ℰ

(𝛼𝑗)𝑖 =
∞
∑
𝑗=1

𝑒(𝛼𝑗)𝑋𝑗

Hence 𝜎(𝑋)∑∞
𝑗=1 𝑒(𝛼𝑗)𝑋𝑗 = 𝜔(𝑋). By definition of 𝐶, we have 𝑐(𝛼𝑗) = 0 for all 1 ≤ 𝑗 ≤ 𝛿−1. Hence

𝑐(𝛼𝑗) = 0 for 1 ≤ 𝑗 ≤ 2𝑡. As 𝑟 = 𝑐 + 𝑒, 𝑟(𝛼𝑗) = 𝑒(𝛼𝑗) for all 1 ≤ 𝑗 ≤ 2𝑡, hence 𝜎(𝑋)∑2𝑡
𝑗=1 𝑟(𝛼𝑗)𝑋𝑗 =

𝜔(𝑋)mod 𝑋2𝑡+1. This verifies (i) and (ii) for this choice of 𝜔, so deg𝜔 = deg𝜎 = |ℰ| ≤ 𝑡.
For uniqueness, suppose there exist �̃�, 𝜔with the properties (i), (ii). Without loss of generality, we can
assume deg �̃� ≤ deg𝜎. 𝜎(𝑋) has distinct nonzero roots, so 𝜔(𝑋) = −𝑋𝜎′(𝑋) is nonzero at these roots.
Hence 𝜎, 𝜔 are coprime polynomials. By property (ii), �̃�(𝑋)𝜔(𝑋) = 𝜎(𝑋)𝜔(𝑋) mod 𝑋2𝑡+1. But the
degrees of 𝜎, �̃�, 𝜔, 𝜔 are at most 𝑡, so this congruence is an equality. But 𝜎(𝑋) and 𝜔(𝑋) are coprime,
so 𝜎 ∣ �̃�, but deg �̃� ≤ deg𝜎 by assumption, so �̃� = 𝜆𝜎 for some 𝜆 ∈ 𝐾. By property (i), 𝜎(0) = �̃�(0)
hence 𝜆 = 1, giving �̃� = 𝜎.

Suppose that we receive 𝑟(𝑋) and wish to decode it.

• Compute∑2𝑡
𝑗=1 𝑟(𝛼𝑗)𝑋𝑗 .

• Set 𝜎(𝑋) = 1 + 𝜎1𝑋 +⋯+ 𝜎𝑡𝑋𝑡, and compute the coefficients of 𝑋 𝑖 for 𝑡 + 1 ≤ 𝑖 ≤ 2𝑡 to obtain
linear equations for 𝜎1,… , 𝜎𝑡, which are of the form∑𝑡

0 𝜎𝑗𝑟(𝛼𝑖−𝑗) = 0.
• Then solve these polynomials over 𝐾, keeping solutions of least degree.
• Compute ℰ = {𝑖 ∣ 𝜎(𝛼−𝑖) = 0}, and check that |ℰ| = deg𝜎.
• Set 𝑒(𝑋) = ∑𝑖∈ℰ 𝑋 𝑖, then 𝑐(𝑋) = 𝑟(𝑋) + 𝑒(𝑋), and check that 𝑐 is a codeword.
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Example. Consider𝑛 = 7, and𝑋7−1 = (𝑋+1)(𝑋3+𝑋+1)(𝑋3+𝑋2+1) in𝔽2[𝑋]. Let 𝑔(𝑋) = 𝑋3+𝑋+1,
so ℎ(𝑋) = (𝑋 + 1)(𝑋3 + 𝑋2 + 1) = 𝑋4 + 𝑋2 + 𝑋 + 1. The parity check matrix is

𝐻 = (
1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1

)

The columns are the elements of 𝔽32 ∖ {0}. This is the Hamming (7, 4)-code.
Let 𝐾 be a splitting field for 𝑋7−1; we can take 𝐾 = 𝔽8. Let 𝛽 ∈ 𝐾 be a root of 𝑔. Note that 𝛽3 = 𝛽+1,
so 𝛽6 = 𝛽2 + 1, so 𝑔(𝛽2) = 0, and hence 𝑔(𝛽4) = 0. So the BCH code defined by {𝛽, 𝛽2} has generator
polynomial 𝑔(𝑋), again proving that this is Hamming’s (7, 4)-code. This code has design distance 3,
so 𝑑(𝐶) ≥ 3, and we know Hamming’s code has minimum distance exactly 3.

5.6 Shift registers

Definition. A (general) feedback shift register is a map 𝑓∶ 𝔽𝑑2 → 𝔽𝑑2 given by

𝑓(𝑥0,… , 𝑥𝑑−1) = (𝑥1,… , 𝑥𝑑−1, 𝐶(𝑥0,… , 𝑥𝑑−1))

where 𝐶∶ 𝔽𝑑2 → 𝔽2. We say that the register has length 𝑑. The stream associated to an initial
fill (𝑦0,… , 𝑦𝑑−1) is the sequence 𝑦0,… with 𝑦𝑛 = 𝐶(𝑦𝑛−𝑑,… , 𝑦𝑛−1) for 𝑛 ≥ 𝑑.

Definition. The general feedback shift register 𝑓∶ 𝔽𝑑2 → 𝔽𝑑2 is a linear feedback shift register
if 𝐶 is linear, so

𝐶(𝑥0,… , 𝑥𝑑−1) =
𝑑−1
∑
𝑖=0

𝑎𝑖𝑥𝑖

We usually set 𝑎0 = 1.

The stream produced by a linear feedback shift register is now given by the recurrence relation 𝑦𝑛 =
∑𝑑−1

𝑖=0 𝑎𝑖𝑦𝑛−𝑑+𝑖. We can define the auxiliary polynomial 𝑃(𝑋) = 𝑋𝑑 +𝑎𝑑−1𝑋𝑑−1 +⋯+𝑎1𝑋 +𝑎0. We
sometimes write 𝑎𝑑 = 1, so 𝑃(𝑋) = ∑𝑑

𝑖=0 𝑎𝑖𝑋 𝑖.

Definition. The feedback polynomial is ̌𝑃(𝑋) = 𝑎0𝑋𝑑 + ⋯ + 𝑎𝑑−1𝑋 + 1 = ∑𝑑
𝑖=0 𝑎𝑑−𝑖𝑋 𝑖. A

sequence 𝑦0,… of elements of 𝔽2 has generating function∑
∞
𝑗=0 𝑦𝑗𝑋𝑗 ∈ 𝔽2⟦𝑋⟧.

Theorem. The stream (𝑦𝑛)𝑛∈ℕ comes from a linear feedback shift register with auxiliary
polynomial 𝑃(𝑋) if and only if its generating function is (formally) of the form 𝐴(𝑋)

̌𝑃(𝑋)
with

𝐴 ∈ 𝔽2[𝑋] such that deg𝐴 < deg ̌𝑃.

Note that ̌𝑃(𝑋) = 𝑋deg𝑃𝑃(𝑋−1).
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Proof. Let 𝑃(𝑋) and ̌𝑃(𝑋) be as above. We require

(
∞
∑
𝑗=0

𝑦𝑗𝑋𝑗)(
𝑑
∑
𝑖=0

𝑎𝑑−𝑖𝑋 𝑖)

to be a polynomial of degree strictly less than 𝑑. This holds if and only if the coefficient of 𝑋𝑛

in 𝐺(𝑋) ̌𝑃(𝑋) is zero for all 𝑛 ≥ 𝑑, which is ∑𝑑
𝑖=0 𝑎𝑑−𝑖𝑦𝑛−𝑖 = 0. This holds if and only if 𝑦𝑛 =

∑𝑑−1
𝑖=0 𝑎𝑖𝑦𝑛−𝑑+𝑖 for all 𝑛 ≥ 𝑑. This is precisely the form of a stream that arises from a linear feedback

shift register with auxiliary polynomial 𝑃.

The problem of recovering the linear feedback shift register from its stream and the problem of de-
coding BCH codes both involve writing a power series as a quotient of polynomials.

5.7 The Berlekamp–Massey method
Let (𝑥𝑛)𝑛∈ℕ be the output of a binary linear feedback shift register. We wish to find the unknown
length 𝑑 and values 𝑎0,… , 𝑎𝑑−1 such that 𝑥𝑛 +∑𝑑

𝑖=1 𝑎𝑑−𝑖𝑥𝑛−𝑖 = 0 for all 𝑛 ≥ 𝑑. We have

⎛
⎜
⎜
⎜
⎝

𝑥𝑑 𝑥𝑑−1 ⋯ 𝑥1 𝑥0
𝑥𝑑+1 𝑥𝑑 ⋯ 𝑥2 𝑥1
⋮ ⋮ ⋱ ⋮ ⋮

𝑥2𝑑−1 𝑥2𝑑−2 ⋯ 𝑥𝑑 𝑥𝑑−1
𝑥2𝑑 𝑥2𝑑−1 ⋯ 𝑥𝑑+1 𝑥𝑑

⎞
⎟
⎟
⎟
⎠⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟

𝐴𝑑

⎛
⎜
⎜
⎜
⎝

𝑎𝑑
𝑎𝑑−1
⋮
𝑎1
𝑎0

⎞
⎟
⎟
⎟
⎠

= 0

We look successively at 𝐴0 = (𝑥0) , 𝐴1 = (𝑥1 𝑥0
𝑥2 𝑥1

) ,…, starting at 𝐴𝑟 if we know 𝑑 ≥ 𝑟. For each
𝐴𝑖, we compute its determinant. If |𝐴𝑖| ≠ 0, then 𝑑 ≠ 𝑖. If |𝐴𝑖| = 0, we solve the system of linear
equations on the assumption that 𝑑 = 𝑖, giving a candidate for the coefficients 𝑎0,… , 𝑎𝑑−1. This
candidate can be checked over as many terms of the stream as desired.

6 Cryptography
6.1 Cryptosystems
We want to modify a message such that it becomes unintelligible to an eavesdropper Eve. Certain
secret information is shared between two participants Alice and Bob, called the key, chosen from a
set of possible keys𝒦. The unencryptedmessage is called the plaintext, which lies in a setℳ, and the
encrypted message is called the ciphertext, and lies in a set 𝒞. A cryptosystem consists of (𝒦,ℳ,𝒞)
together with the encryption function 𝑒∶ ℳ × 𝒦 → 𝒞 and decryption function 𝑑∶ 𝒞 × 𝒦 → ℳ.
These maps have the property that 𝑑(𝑒(𝑚, 𝑘), 𝑘) = 𝑚 for all𝑚 ∈ ℳ, 𝑘 ∈ 𝒦.
Example. Supposeℳ = 𝒞 = {𝐴, 𝐵,… , 𝑍}⋆ = Σ⋆. The simple substitution cipher defines 𝒦 to be
the set of permutations of Σ. To encrypt a message, each letter of plaintext is replaced with its image
under a chosen permutation 𝜋 ∈ 𝒦.

The Vigenère cipher has𝒦 = Σ𝑑 for some 𝑑. We identify Σ and ℤ⟋26ℤ. Write out the key repeatedly
below the plaintext, and add each plaintext letter with the corresponding key letter to produce a letter
of ciphertext. For instance, encrypting the plaintext ATTACKATDAWN with the key LEMON gives
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ciphertext LXFOPVEFRNHR. Note, for instance, that each occurrence of the letter A in the plaintext
corresponds to a letter of the key in the ciphertext. If 𝑑 = 1, this is the Caesar cipher.

6.2 Breaking cryptosystems
Eve may know 𝑒 and 𝑑, as well as the probability distributions of 𝒦,ℳ, but she does not know the
key itself. She seeks to recover the plaintext from a given string of ciphertext. There are three possible
attack levels.

1. (ciphertext-only) Eve only knows some piece of ciphertext.

2. (known-plaintext) Eve knows a considerable length of plaintext and its corresponding cipher-
text, but not the key. In other words, she knows𝑚 and 𝑒(𝑚, 𝑘), but not 𝑘.

3. (chosen plaintext) Eve can acquire the ciphertext for any plaintext message; she can generate
𝑒(𝑚, 𝑘) for any𝑚.

Remark. The simple substitution cipher and Vigenère cipher fail at Level 1 in English if themessages
are sufficiently long, as we can perform frequency analysis. Even if the plaintext is suitably random,
both examples can fail at Level 2. For modern applications, Level 3 security is desirable.

Consider a cryptosystem (ℳ,𝒦, 𝒞). We model the keys and messages as independent random vari-
ables 𝐾,𝑀 taking values in𝒦,ℳ. The ciphertext random variable is 𝐶 = 𝑒(𝐾,𝑀) ∈ 𝒞.

Definition. A cryptosystem (ℳ,𝒦, 𝒞) has perfect secrecy if 𝐻(𝑀 ∣ 𝐶) = 𝐻(𝑀), or equival-
ently,𝑀 and 𝐶 are independent, or 𝐼(𝑀; 𝐶) = 0.

One can show that perfect secrecy implies that |𝒦| ≥ |ℳ|.

Definition. Themessage equivocation is 𝐻(𝑀 ∣ 𝐶). The key equivocation is 𝐻(𝐾 ∣ 𝐶).

Lemma. 𝐻(𝑀 ∣ 𝐶) ≤ 𝐻(𝐾 ∣ 𝐶).

Proof. Note that𝑀 = 𝑑(𝐶, 𝐾), hence 𝐻(𝑀 ∣ 𝐶, 𝐾) = 0. Therefore, 𝐻(𝐶, 𝐾) = 𝐻(𝑀,𝐶, 𝐾). So

𝐻(𝐾 ∣ 𝐶) = 𝐻(𝐾, 𝐶) − 𝐻(𝐶)
= 𝐻(𝑀,𝐶, 𝐾) − 𝐻(𝑀 ∣ 𝐾, 𝐶) − 𝐻(𝐶)
= 𝐻(𝑀,𝐾, 𝐶) − 𝐻(𝐶)
= 𝐻(𝐾 ∣ 𝑀, 𝐶) + 𝐻(𝑀,𝐶) − 𝐻(𝐶)
= 𝐻(𝐾 ∣ 𝑀, 𝐶) + 𝐻(𝑀 ∣ 𝐶)

Hence 𝐻(𝐾 ∣ 𝐶) ≥ 𝐻(𝑀 ∣ 𝐶).

Letℳ = 𝒞 = 𝒜, and suppose we send 𝑛 messages modelled as 𝑀(𝑛) = (𝑀1,… ,𝑀𝑛) encrypted as
𝐶(𝑛) = (𝐶1,… , 𝐶𝑛) using the same key 𝐾.

Definition. The unicity distance is the least 𝑛 such that 𝐻(𝐾 ∣ 𝐶(𝑛)) = 0; it is the smallest
number of encrypted messages required to uniquely determine the key.
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Now,

𝐻(𝐾 ∣ 𝐶(𝑛)) = 𝐻(𝐾, 𝐶(𝑛)) − 𝐻(𝐶(𝑛))
= 𝐻(𝐾,𝑀(𝑛), 𝐶(𝑛)) − 𝐻(𝐶(𝑛))
= 𝐻(𝐾,𝑀(𝑛)) − 𝐻(𝐶(𝑛))
= 𝐻(𝐾) + 𝐻(𝑀(𝑛)) − 𝐻(𝐶(𝑛))

as 𝐾,𝑀(𝑛) are independent. We make the following assumptions.

(i) All keys are equally likely, so 𝐻(𝐾) = log |𝒦|.
(ii) 𝐻(𝑀(𝑛)) ≈ 𝑛𝐻 for some constant 𝐻 and sufficiently large 𝑛.

(iii) All sequences of ciphertext are equally likely, so 𝐻(𝐶(𝑛)) = 𝑛 log |𝒜|.
Hence,

𝐻(𝐾 ∣ 𝐶(𝑛)) = log |𝒦| + 𝑛𝐻 − 𝑛 log |𝒜|
This is nonnegative if and only if

𝑛 ≤ 𝑈 = log |𝒦|
log |𝒜| − 𝐻

Equivalently, log |𝒜|
𝑅 log |𝒜|

where𝑅 = 1− 𝐻
log |𝒜|

is the redundancy of the source. Recall that 0 ≤ 𝐻 ≤ log |𝒜|.
To make the unicity distance large, we can make the number of keys large, or use a message source
with little redundancy.

6.3 One-time pad
Consider streams in 𝔽2 representing the plaintext 𝑝0, 𝑝1,…, the key stream 𝑘0, 𝑘1,…, and the cipher-
text 𝑧0, 𝑧1,… where 𝑧𝑛 = 𝑝𝑛 + 𝑘𝑛.

Definition. A one-time pad is a cryptosystem where 𝑘 is generated randomly; the 𝑘𝑖 are
independent and take values of 0 or 1 with probability 1

2
.

𝑧 = 𝑝+𝑘 is now a stream of independent and identically distributed random variables taking values
of 0 or 1 with probability 1

2
. Hence, without the key stream, deciphering is impossible, so the unicity

distance is infinite. One can show that a one-time pad has perfect secrecy.

In order to effectively use a one-time pad, we need to generate a random key stream. We then need
to share the key stream to the recipient, which is exactly the initial problem. In most applications,
the one-time pad is not practical. Instead, we share an initial fill 𝑘0,… , 𝑘𝑑−1 to be used in a shared
feedback shift register of length 𝑑 to generate 𝑘. We then apply the following result.

Lemma. Let 𝑥0, 𝑥1,… be a stream in 𝔽2 produced by a feedback shift register of length 𝑑.
Then there exist𝑀,𝑁 ≤ 2𝑑 such that 𝑥𝑁+𝑟 = 𝑥𝑟 for all 𝑟 ≥ 𝑀.

Proof. Let the register be 𝑓∶ 𝔽𝑑2 → 𝔽𝑑2 , and let 𝑣𝑖 = (𝑥𝑖,… , 𝑥𝑖+𝑑−1). Then for all 𝑖, we have 𝑓(𝑣𝑖) =
𝑣𝑖+1. Since ||𝔽𝑑2 || = 2𝑑, the tuples 𝑣0, 𝑣1,… , 𝑣2𝑑 cannot all be distinct. Let 𝑎 < 𝑏 ≤ 2𝑑 such that
𝑣𝑎 = 𝑣𝑏. Let 𝑀 = 𝑎 and 𝑁 = 𝑏 − 𝑎, so 𝑣𝑀 = 𝑣𝑀+𝑁 so by induction we have 𝑣𝑟 = 𝑣𝑟+𝑁 for all
𝑟 ≥ 𝑀.
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Remark. The maximum period of a feedback shift register of length 𝑑 is 2𝑑. For a linear feedback
shift register, the maximum period is 2𝑑 − 1; this result is shown on the fourth example sheet.
Stream ciphers using linear feedback shift registers fail at level 2 due to the Berlekamp–Massey
method. However, this cryptosystem is cheap, fast, and easy to use. Encryption and decryption
can be performed on-the-fly, without needing the entire codeword first, and it is error-tolerant.

Recall that the stream produced by a linear feedback shift register is given by

𝑥𝑛 =
𝑑
∑
𝑖=1

𝑎𝑑−𝑖𝑥𝑛−𝑖

for all 𝑛 ≥ 𝑑, and has auxiliary polynomial

𝑃(𝑋) = 𝑋𝑑 + 𝑎𝑑−1𝑋𝑑−1 +⋯+ 𝑎0

with 𝑎𝑑 = 1. The solutions to the recursion relations are linear combinations of powers of roots of 𝑃.
Over ℂ, the general solution is a linear combination of 𝛼𝑛, 𝑛𝛼𝑛,… , 𝑛𝑡−1𝛼𝑛 where 𝛼 is a root of 𝑃(𝑋)
with multiplicity 𝑡.
As 𝑛2 = 𝑛 in 𝔽2, we cannot use this method directly. First, we must work in a splitting field 𝐾 of 𝑃, a
field containing 𝔽2 in which 𝑃 is expressible as a product of linear factors. In addition, we replace the
𝑛𝑖𝛼𝑛 term with (𝑛

𝑖
)𝛼𝑛. The general solution is now a linear combination of these terms in 𝐾.

We can also generate new key streams from old ones.

Lemma. Let (𝑥𝑛), (𝑦𝑛) be outputs from linear feedback shift registers of length𝑀,𝑁 respect-
ively. Then,
(i) the sequence (𝑥𝑛 + 𝑦𝑛) is the output of a linear feedback shift register of length𝑀+𝑁;
(ii) the sequence (𝑥𝑛𝑦𝑛) is the output of a linear feedback shift register of length𝑀𝑁.

The following proof is non-examinable.

Proof. Assume for simplicity that the auxiliary polynomials𝑃(𝑋), 𝑄(𝑋) eachhave distinct roots𝛼1, 𝛼𝑀
and 𝛽1,… , 𝛽𝑁 in a field 𝐾 extending 𝔽2. Then 𝑥𝑛 = ∑𝑀

𝑖=1 𝜆𝑖𝛼𝑛𝑖 and 𝑦𝑛 = ∑𝑁
𝑖=1 𝜇𝑗𝛽𝑛𝑗 where 𝜆𝑖, 𝜇𝑗 ∈ 𝐾.

Now, 𝑥𝑛 + 𝑦𝑛 = ∑𝑀
𝑖=1 𝜆𝑖𝛼𝑛𝑖 ∑

𝑁
𝑖=1 𝜇𝑗𝛽𝑛𝑗 is produced by a linear feedback shift register with auxiliary

polynomial 𝑃(𝑋)𝑄(𝑋). For the second part, 𝑥𝑛𝑦𝑛 = ∑𝑀
𝑖=1∑

𝑛
𝑗=1 𝜆𝑖𝜇𝑗(𝛼𝑖𝛽𝑗)𝑛 is the output of a linear

feedback shift register with auxiliary polynomial∏𝑁
𝑖=1∏

𝑀
𝑗=1(𝑋 − 𝛼𝑖𝛽𝑗).

Adding outputs of linear feedback shift registers is no more economical than producing the same
string with a single linear feedback shift register. Muliplying streams does increase the effective
length of the linear feedback shift register, but 𝑥𝑛𝑦𝑛 = 0 when either 𝑥𝑛 or 𝑦𝑛 are zero, so we gain
little extra data. Nonlinear feedback shift registers are in general hard to analyse; in particular, an
eavesdropper may understand the feedback shift register better than Alice and Bob.

6.4 Asymmetric ciphers
Stream ciphers are examples of symmetric cryptosystems. In such a system, the decryption process
is the same, or is easily deduced from, the encryption process. In an asymmetric cryptosystem, the
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key is split into two parts: the private key for decryption, and the public key for encryption. Knowing
the encryption and decryption processes and the public key, it should still be hard to find the private
key or to decrypt the messages. This aim implies security at level 3. In this case, there is also no key
exchange problem, since the public key can be broadcast on an open channel.

We base asymmetric cryptosystems on certain mathematical problems in number theory which are
believed to be ‘hard’, such as the following.

(i) Factoring. Let 𝑁 = 𝑝𝑞 for 𝑝, 𝑞 large prime numbers. Given 𝑁, the task is to find 𝑝 and 𝑞.
(ii) Discrete logarithm problem. Let 𝑝 be a large prime and 𝑔 be a primitive rootmod 𝑝 (a generator

of 𝔽⋆
𝑝). Given 𝑥, we wish to find 𝑎 such that 𝑥 ≡ 𝑔𝑎 mod 𝑝.

Definition. An algorithm runs in polynomial time if the number of operations needed to
perform the algorithm is at most 𝑐𝑁𝑑 where 𝑁 is the input size, and 𝑐, 𝑑 are constants.

Example. An algorithm for factoring 𝑁 has input size log2 𝑁, roughly the number of bits in its bin-
ary expansion. Polynomial time algorithms include arithmetic operations on integers including the
division algorithm, computation of greatest common divisors, and the Euclidean algorithm. We can
also compute 𝑥𝛼mod𝑁 in polynomial time using repeated squaring; this is called modular exponen-
tiation. Primality testing can be performed in polynomial time.

Polynomial time algorithms are not known for examples (i) and (ii) above. However, we have ele-
mentary methods for computing (i) and (ii) that take exponential time. If 𝑁 = 𝑝𝑞, dividing 𝑁 by
successive primes up to√𝑁 will find 𝑝 and 𝑞 but takes 𝑂(√𝑁) = 𝑂(2

𝐵
2 ) steps where 𝐵 = log2 𝑁.

We describe the baby-step, giant-step algorithm for the discrete logarithm problem. Set 𝑚 = ⌈√𝑝⌉,
and write 𝑎 = 𝑞𝑚 + 𝑟 for 0 ≤ 𝑞, 𝑟 < 𝑚. Then, 𝑥 ≡ 𝑔𝑎 = 𝑔𝑞𝑚+𝑟 mod 𝑝, so 𝑔𝑞𝑚 = 𝑔−𝑟𝑥 mod 𝑝.
We list all values of 𝑔𝑞𝑚 and 𝑔−𝑟𝑥 mod 𝑝; we then sort the lists and search for a match. This takes
𝑂(√𝑝 log𝑝) steps.
The best knownmethods for solving the examples above use a factor basemethod, called themodular
number sieve. It has running time

𝑂(exp(𝑐(log𝑁)
1
3 (log log𝑁)

2
3 ))

where 𝑐 is a known constant.

6.5 Rabin cryptosystem
Recall that Euler’s totient function is denoted 𝜑, where 𝜑(𝑛) is the number of integers less than 𝑛
which are coprime to 𝑛. Equivalently, 𝜑(𝑛) = |

|(ℤ⟋𝑛ℤ)
×|
|. By Lagrange’s theorem, 𝑎𝜑(𝑁) ≡ 1 mod 𝑁

for each 𝑎 coprime to 𝑁; this result is sometimes known as the Fermat–Euler theorem. If 𝑁 = 𝑝 is
prime, 𝑎𝑝−1 ≡ 1mod 𝑝, which is Fermat’s little theorem.

Lemma. Let 𝑝 = 4𝑘 − 1 be a prime, and let 𝑑 ∈ ℤ. If 𝑥2 ≡ 𝑑 mod 𝑝 is soluble, one solution
is 𝑥 ≡ 𝑑𝑘 mod 𝑝.

Proof. Suppose 𝑥0 is a solution, so 𝑥20 ≡ 𝑑 mod 𝑝. Without loss of generality we can assume 𝑥0 ≢ 0,
or equivalently, 𝑥0 ∤ 𝑝. Then 𝑥20 ≡ 𝑑 so 𝑑2𝑘−1 ≡ 𝑥2(2𝑘−1)0 ≡ 𝑥𝑝−10 ≡ 1. Hence, (𝑑𝑘)2 ≡ 𝑑.
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In the Rabin cryptosystem, the private key consists of two large distinct primes 𝑝, 𝑞 ≡ 3mod 4. The
public key is 𝑁 = 𝑝𝑞. ℳ = 𝒞 = {1,… ,𝑁 − 1} = ℤ×𝑁 . We encrypt a plaintext message 𝑚 as 𝑐 = 𝑚2

mod 𝑁. Usually, we restrict our messages so that (𝑚,𝑁) = 1 and𝑚 > √𝑁.
Receiving ciphertext 𝑐, we can solve for 𝑥1, 𝑥2 such that 𝑥21 ≡ 𝑐 mod 𝑝 and 𝑥22 ≡ 𝑐 mod 𝑞 using the
previous lemma. Then, applying the Chinese remainder theorem, we can find 𝑥 such that 𝑥 ≡ 𝑥1
mod 𝑝 and 𝑥 ≡ 𝑥2 mod 𝑞, hence 𝑥2 ≡ 𝑐 mod 𝑁. Indeed, running the Euclidean algorithm on 𝑝, 𝑞
gives integers 𝑟, 𝑠 such that 𝑟𝑝 + 𝑠𝑞 = 1, then we can take 𝑥 = 𝑠𝑞𝑥1 + 𝑟𝑝𝑥2.

Lemma. (i) Let𝑝 be an oddprime, and let (𝑑, 𝑝) = 1. Then𝑥2 ≡ 𝑑mod𝑝has no solutions
or exactly two solutions.

(ii) Let 𝑁 = 𝑝𝑞 where 𝑝, 𝑞 are distinct odd primes, and let (𝑑, 𝑁) = 1. Then 𝑥2 ≡ 𝑑 mod 𝑁
has no solutions or exactly four solutions.

Proof. Part (i). 𝑥2 ≡ 𝑦2 mod 𝑝 if and only if 𝑝 ∣ (𝑥2 − 𝑦2) = (𝑥 − 𝑦)(𝑥 + 𝑦), so either 𝑝 ∣ 𝑥 − 𝑦 or
𝑝 ∣ 𝑥 + 𝑦, so 𝑥 = ±𝑦.
Part (ii). If 𝑥0 is a solution, then by the Chinese remainder theorem, there exist solutions 𝑥 with
𝑥 ≡ ±𝑥0 mod 𝑝 and 𝑥 ≡ ±𝑥0 mod 𝑞. This gives four solutions as required. By (i), these are the only
possible solutions.

Hence, to decrypt the Rabin cipher, wemust find all four solutions to 𝑥2 ≡ 𝑐mod𝑁. Messages should
include enough redundancy to uniquely determine which of these four solutions is the intended
plaintext.

Theorem. Breaking the Rabin cryptosystem is essentially as difficult as factoring 𝑁.

Proof. If we can factorise 𝑁 as 𝑝𝑞, we have seen that we can decrypt messages. Conversely, suppose
we can break the cryptosystem, so we have an algorithm to find square roots modulo 𝑁. Choose 𝑥
mod 𝑁 at random, and use the algorithm to find 𝑦 such that 𝑦2 ≡ 𝑥2 mod 𝑁. With probability 1

2
,

𝑥 ≠ ±𝑦mod 𝑁. Then, (𝑁, 𝑥 − 𝑦) is a nontrivial factor of 𝑁. If this fails, choose another 𝑥, and repeat
until the probability of failure ( 1

2
)
𝑟
is acceptably low.

6.6 RSA cryptosystem
Suppose 𝑁 = 𝑝𝑞 where 𝑝, 𝑞 are distinct odd primes. We claim that if we know a multiple 𝑚 of
𝜑(𝑁) = (𝑝 − 1)(𝑞 − 1), then factoring 𝑁 is ‘easy’. Write 𝑜𝑝(𝑥) for the order of 𝑥 as an element of
(ℤ⟋𝑝ℤ)

×
. Write𝑚 = 2𝑎𝑏 where 𝑎 ≥ 1, 𝑏 odd. Let

𝑋 = {𝑥 ∈ (ℤ⟋𝑁ℤ)
× |
| 𝑜𝑝(𝑥𝑏) ≠ 𝑜𝑞(𝑥𝑏)}

Theorem. (i) If 𝑥 ∈ 𝑋 , then there exists 0 ≤ 𝑡 < 𝑎 such that (𝑥2𝑡𝑏 − 1,𝑁) is a nontrivial
factor of 𝑁.

(ii) |𝑋| ≥ 1
2
|
|(ℤ⟋𝑁ℤ)

×|
| =

1
2
(𝑝 − 1)(𝑞 − 1).
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Proof. Part (i). By the Fermat–Euler theorem, 𝑥𝜑(𝑁) ≡ 1mod𝑁. Hence 𝑥𝑚 ≡ 1mod𝑁. But𝑚 = 2𝑎𝑏,
so setting 𝑦 = 𝑥𝑏 mod 𝑁, we obtain 𝑦2𝑎 ≡ 1 mod 𝑁. In particular, 𝑜𝑝(𝑦) and 𝑜𝑞(𝑦) are powers of 2.
Since 𝑥 ∈ 𝑋 , 𝑜𝑝(𝑦) ≠ 𝑜𝑞(𝑦), so without loss of generality suppose 𝑜𝑝(𝑦) < 𝑜𝑞(𝑦). Let 𝑜𝑝(𝑦) = 2𝑡, so
0 ≤ 𝑡 < 𝑎. Then 𝑦2𝑡 ≡ 1mod 𝑝, but 𝑦2𝑡 ≢ 1mod 𝑞. So (𝑦2𝑡 − 1,𝑁) = 𝑝 as required.

The proof of part (ii) will be seen later.

In the RSA cryptosystem, the private key consists of large distinct primes 𝑝, 𝑞 chosen at random. Let
𝑁 = 𝑝𝑞, and choose the encrypting exponent 𝑒 randomly such that (𝑒, 𝜑(𝑁)) = 1, for instance taking
𝑒 prime larger than 𝑝, 𝑞. By Euclid’s algorithm, there exist 𝑑, 𝑘 such that 𝑑𝑒 − 𝑘𝜑(𝑁) = 1; 𝑑 is called
the decrypting exponent.

The public key is (𝑁, 𝑒), and we encrypt 𝑚 ∈ ℳ as 𝑐 ≡ 𝑚𝑒 mod 𝑁. The private key is (𝑁, 𝑑), and
we decrypt 𝑐 ∈ 𝒞 as 𝑥 ≡ 𝑐𝑑 mod 𝑁. By the Fermat–Euler theorem, 𝑥 ≡ 𝑚𝑑𝑒 ≡ 𝑚1+𝑘𝜑(𝑁) ≡ 𝑚 mod
𝑁, noting that the probability that (𝑚,𝑁) ≠ 1 is small enough to be ignored. Hence, the decrypting
function is inverse to the encrypting function.

Corollary. Finding the RSA private key (𝑁, 𝑑) is essentially as difficult as factoring 𝑁.

Proof. We have already shown that if we can factorise 𝑁, we can find 𝑑. Conversely, suppose there
is an algorithm to find 𝑑 given 𝑁 and 𝑒. Then 𝑑𝑒 ≡ 1mod 𝜑(𝑁). Taking 𝑚 = 𝑑𝑒 − 1 in the proof of
part (i) of the theorem above, we can factorise 𝑁. If this fails, repeat until the probability of failure is
acceptably low. After 𝑟 such random choices, we find a factor of 𝑁 with probability 1 − ( 1

2
)
𝑟
.

We now prove part (ii) of the above theorem.

Proof. The Chinese remainder theorem provides a multiplicative group isomorphism

(ℤ⟋𝑁ℤ)
×
→ (ℤ⟋𝑝ℤ)

×
× (ℤ⟋𝑞ℤ)

×

mapping 𝑥 to (𝑥mod 𝑝, 𝑥mod 𝑞). We claim that if we partition (ℤ⟋𝑝ℤ)
×
according to the value of

𝑜𝑝(𝑥𝑏), then each equivalence class has size at most

1
2
|||(
ℤ⟋𝑝ℤ)

×||| =
1
2(𝑝 − 1)

We show that one of these subsets has size exactly 1
2
(𝑝 − 1). Let 𝑔 be a primitive root mod 𝑝, so

(ℤ⟋𝑝ℤ)
×
= ⟨𝑔⟩. By Fermat’s little theorem, 𝑔𝑝−1 ≡ 1mod 𝑝, so 𝑔𝑚 = 𝑔2𝑎𝑏 ≡ 1mod 𝑝. Hence, 𝑜𝑝(𝑔𝑏)

is a power of 2, say 2𝑡 ≤ 𝑎. Let 𝑥 = 𝑔𝑘 for some 0 ≤ 𝑘 ≤ 𝑝− 2, then 𝑥𝑏 = (𝑔𝑏)𝑘, so 𝑜𝑝(𝑥𝑏) =
2𝑡

(2𝑡 ,𝑘)
. So

𝑜𝑝(𝑥𝑏) = 2𝑡 if and only if 𝑘 is odd, so

𝑜𝑝(𝑥𝑏) = 𝑜𝑝(𝑔𝑏𝑘) = {𝑜𝑝(𝑔
𝑏) = 2𝑡 if 𝑘 odd

< 2𝑡 if 𝑘 even
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Thus, {𝑔𝑘 mod 𝑝 ∣ 𝑘 odd} is the set as required, proving the claim. To finish, for each 𝑦 ∈ (ℤ⟋𝑞ℤ)
×
,

the set
{𝑥 ∈ (ℤ⟋𝑝ℤ)

× ||| 𝑜𝑝(𝑥
𝑏) ≠ 𝑜𝑞(𝑥𝑏)}

has at least 1
2
(𝑝 − 1) elements. Applying the Chinese remainder theorem,

|𝑋| = |||{(𝑥, 𝑦) ∈ (ℤ⟋𝑝ℤ)
×
× (ℤ⟋𝑞ℤ)

× ||| 𝑜𝑝(𝑥
𝑏) ≠ 𝑜𝑞(𝑥𝑏)}||| ≥

1
2(𝑝 − 1)(𝑞 − 1) = 1

2𝜑(𝑁)

Remark. We have shown that finding (𝑁, 𝑑) from the public key (𝑁, 𝑒) is as hard as factoring 𝑁. It is
unknown whether decrypting messages sent via RSA is as hard as factoring.

RSA avoids the issue of needing to share keys, but it is slow. Symmetric ciphers are often faster.

Example (Shamir’s padlock example). Let 𝒜 = ℤ𝑝. Alice chooses 𝑎 ∈ ℤ⋆
𝑝−1 and computes 𝑔𝑎. She

finds 𝑎′ such that 𝑎𝑎′ = 1mod 𝑝 − 1. Bob chooses 𝑏 ∈ ℤ⋆
𝑝−1 and computes 𝑔𝑏. He similarly finds 𝑏′

such that 𝑏𝑏′ = 1mod 𝑝 − 1.
Let𝑚 be amessage inℤ𝑝. She encodes𝑚 as 𝑐 = 𝑚𝑎mod𝑝. She then sends this to Bob, who computes
𝑑 = 𝑐𝑏mod 𝑝. He sends this back to Alice, who computes 𝑒 = 𝑑𝑎′ mod 𝑝. She sends this back to Bob,
who computes 𝑒𝑏′ mod 𝑝. By Fermat’s little theorem, 𝑒𝑏′ ≡ 𝑑𝑎′𝑏′ ≡ 𝑐𝑏𝑎′𝑏′ ≡ 𝑚𝑎𝑏𝑎′𝑏′ ≡ 𝑚.

𝑚 𝑚𝑎 𝑐𝑏 𝑑𝑎′ 𝑒𝑏′𝐴 𝐵 𝐴 𝐵

Example (Diffie–Hellman key exchange). Alice and Bob wish to agree on a secret key 𝑘. Let 𝑝 be a
large prime, and 𝑔 a primitive root mod 𝑝. Alice chooses an exponent 𝛼 ∈ ℤ𝑝−1 and sends 𝑔𝛼 mod
𝑝 to Bob. Bob chooses an exponent 𝛽 and sends 𝑔𝛽 mod 𝑝 to Alice. Both Alice and Bob compute
𝑘 = 𝑔𝛼𝛽, which can be used as their secret key. An eavesdropper must find 𝑔𝛼𝛽 knowing 𝑔, 𝑔𝛼, and
𝑔𝛽. Diffie and Hellman conjectured that this problem is as difficult as solving the discrete logarithm
problem.

6.7 Secrecy and attacks
Consider a message 𝑚 sent by Alice to Bob. Here are some possible aims that the participants may
have in communication.

(i) Secrecy: Alice and Bob can be sure that no third party can read the message.

(ii) Integrity: Alice and Bob can be sure that no third party can alter the message.

(iii) Authenticity: Bob can be sure that Alice sent the message.

(iv) Non-repudiation: Bob can prove to a third party that Alice sent the message.

Example (authenticity using RSA). Suppose Alice uses a private key (𝑁, 𝑑) to encrypt 𝑚. Anyone
can decrypt 𝑚 using the public key (𝑁, 𝑒) as (𝑚𝑑)𝑒 = (𝑚𝑒)𝑑 = 𝑚, but they cannot forge a message
sent by Alice. Suppose Bob picks a random message 𝑚 and sends it to Alice; if Bob then receives a
message back from Alice which after decryption ends in𝑚, then he can be sure it comes from Alice.

Signature schemes preserve integrity and non-repudiation. They also prevent tampering in the fol-
lowing sense.
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Example (homomorphism attack). Suppose a bank sends messages of the form (𝑀1,𝑀2) where
𝑀1 represents the client’s name and𝑀2 represents an amount of money to be transferred into their
account. Suppose thatmessages are encodedusingRSAas (𝑍1, 𝑍2) = (𝑀𝑒

1 ,𝑀𝑒
2), where all calculations

are performed modulo 𝑁. A client 𝐶 transfers £100 to their account, and observes the encrypted
message (𝑍1, 𝑍2). Then, sending (𝑍1, 𝑍32) to the bank, 𝐶 becomes a millionaire without breaking
RSA. Alternatively, one could simply send (𝑍1, 𝑍2) to the bank many times, gaining more money
each time; this particular attack is defeated by timestamping the messages.

Definition. A message𝑚 is signed as (𝑚, 𝑠) where the signature 𝑠 = 𝑠(𝑚, 𝑘) is a function of
𝑚 and the private key 𝑘.

The recipient can check the signature using the public key to verify authenticity of the message. The
signature function or trapdoor function 𝑠∶ ℳ ×𝒦 → 𝒮 is designed such that without knowledge of
the private key, one cannot sign messages, but anyone can check whether a signature is valid. Note
that the signature is associated to each message, not to each sender.

Example (signatures using RSA). SupposeAlice has a private key (𝑁, 𝑑), and broadcasts a public key
(𝑁, 𝑒). She signs a message 𝑚 as (𝑚, 𝑠) where 𝑠 = 𝑚𝑑 mod 𝑁. The signature is verified by checking
𝑠𝑒 = 𝑚.
This technique is vulnerable to the homomorphism attack. This is also vulnerable to the existential
forgery attack, in which an attacker produces valid signed messages of the form (𝑠𝑒 mod 𝑁, 𝑠) after
choosing 𝑠 first. Hopefully, such messages are not meaningful.
To solve these problems, we could use a better signature scheme. In addition, rather than signing
a message 𝑚, we instead sign the digest ℎ(𝑚) where ℎ∶ ℳ → {1,… ,𝑁 − 1} is a hash function. A
hash function is a publicly known function for which it is very difficult to find pairs of messages with
matching hashes; such a pair is called a collision. Examples of hash functions include MD5 and the
SHA family.

6.8 Elgamal signature scheme
Alice chooses a large prime 𝑝 and a random integer 𝑢 with 1 < 𝑢 < 𝑝. Let 𝑔 be a primitive root
mod 𝑝. The public key is 𝑝, 𝑔, 𝑦 = 𝑔𝑢 mod 𝑝. The private key is 𝑢. Let ℎ∶ ℳ → {1,… , 𝑝 − 1} be a
collision-resistant hash function.

To send a message𝑚 with 0 ≤ 𝑚 ≤ 𝑝 − 1, Alice randomly chooses 𝑘 with 1 ≤ 𝑘 ≤ 𝑝 − 2 coprime to
𝑝 − 1. She computes 𝑟, 𝑠 with 1 ≤ 𝑟 ≤ 𝑝 − 1 and 1 ≤ 𝑠 ≤ 𝑝 − 2 satisfying

𝑟 ≡ 𝑔𝑘 mod 𝑝; ℎ(𝑚) ≡ 𝑢𝑟 + 𝑘𝑠 mod (𝑝 − 1)

Since 𝑘 is coprime to 𝑝− 1, the congruence for 𝑠 always has a solution. Alice signs the message with
the signature (𝑟, 𝑠). Now,

𝑔ℎ(𝑚) ≡ 𝑔𝑢𝑟+𝑘𝑠 ≡ (𝑔𝑢)𝑟(𝑔𝑘)𝑠 ≡ 𝑦𝑟𝑟𝑠 mod 𝑝

Bob accepts a signature if 𝑔ℎ(𝑚) ≡ 𝑦𝑟𝑟𝑠 mod 𝑝. To forge a signature, obvious attacks involve the
discrete logarithm problem, finding 𝑢 from 𝑦 = 𝑔𝑢.

Lemma. Let 𝑎, 𝑏,𝑚 ∈ ℕ and consider the congruence 𝑎𝑥 ≡ 𝑏 mod 𝑚. This has either no
solutions or gcd(𝑎,𝑚) solutions for 𝑥mod𝑚.
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Proof. Let 𝑑 = gcd(𝑎,𝑚). If 𝑑 ∤ 𝑏, there is no solution. If 𝑑 ∣ 𝑏, we can rewrite the congruence as
𝑎
𝑑
𝑥 ≡ 𝑏

𝑑
mod 𝑚

𝑑
. Note that 𝑎

𝑑
, 𝑚
𝑑
are coprime, so this congruence has a unique solution.

It is vital that Alice chooses a new value of 𝑘 to sign each message. Suppose she sends𝑚1, 𝑚2 using
the same value of 𝑘. Denote the signatures (𝑟, 𝑠1) and (𝑟, 𝑠2); note that 𝑟 depends only on 𝑘 and is
hence fixed.

ℎ(𝑚1) ≡ 𝑢𝑟 + 𝑘𝑠1 mod (𝑝 − 1); ℎ(𝑚2) ≡ 𝑢𝑟 + 𝑘𝑠2 mod (𝑝 − 1)

Hence,
ℎ(𝑚1) − ℎ(𝑚2) ≡ 𝑘(𝑠1 − 𝑠2) mod (𝑝 − 1)

Let 𝑑 = gcd(𝑝−1, 𝑠1−𝑠2). By the previous lemma, this is the number of solutions for 𝑘modulo 𝑝−1.
Choose the solution that gives the correct value in the first congruence 𝑟 ≡ 𝑔𝑘 mod 𝑝. Then,

𝑠1 ≡
ℎ(𝑚1) − 𝑢𝑟

𝑘 mod (𝑝 − 1)

This gives 𝑢𝑟 ≡ ℎ(𝑚1) − 𝑘𝑠1. Hence, using the lemma again, there are gcd(𝑝 − 1, 𝑟) solutions for 𝑢.
Choose the solution for 𝑢 that gives 𝑦 ≡ 𝑔𝑢. This allows us to deduce Alice’s private key 𝑢, as well as
the exponent 𝑘 used in both messages.

6.9 The digital signature algorithm
The digital signature algorithm is a variant of the Elgamal signature scheme developed by the NSA.
The public key is (𝑝, 𝑞, 𝑔) constructed as follows.

• Let 𝑝 be a prime of exactly 𝑁 bits, where 𝑁 is a multiple of 64 such that 512 ≤ 𝑁 ≤ 1024, so
2𝑁−1 < 𝑝 < 2𝑁 .

• Let 𝑞 be a prime of 160 bits, such that 𝑞 ∣ 𝑝 − 1.

• Let 𝑔 ≡ ℎ
𝑝−1
𝑞 mod 𝑝, where ℎ is a primitive root mod 𝑝; in particular, 𝑔 is an element of order

𝑞 in ℤ×𝑝 .
• Alice chooses a private key 𝑥 with 1 < 𝑥 < 𝑞 and publishes 𝑦 = 𝑔𝑥.

Let𝑚 be a message with 0 ≤ 𝑚 < 𝑞. She chooses a random 𝑘 with 1 < 𝑘 < 𝑞, and computes

𝑠1 ≡ (𝑔𝑘 mod 𝑝)mod 𝑞; 𝑠2 ≡ 𝑘−1(𝑚 + 𝑥𝑠1)mod 𝑞

The signature is (𝑠1, 𝑠2). To verify a signature, we perform the following procedure. Bob computes
𝑤 ≡ 𝑠−12 mod 𝑞, 𝑢1 ≡ 𝑚𝑤 mod 𝑞, 𝑢2 ≡ 𝑠1𝑤 mod 𝑞, and 𝑣 = (𝑔𝑢1𝑦𝑢2 mod 𝑝)mod 𝑞. He accepts the
signature if 𝑣 = 𝑠1.

Proposition. If a message is signed with the DSA and the message is not manipulated, the
signature is accepted.
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Proof. First, note that (𝑚 + 𝑥𝑠1)𝑤 = 𝑘𝑠2𝑠−12 mod 𝑞. Now, as 𝑔𝑞 = 1mod 𝑝,

𝑣 = (𝑔𝑢1𝑦𝑢2 mod 𝑝)mod 𝑞
= (𝑔𝑚𝑤𝑔𝑥𝑠1𝑤 mod 𝑝)mod 𝑞
= (𝑔(𝑚+𝑥𝑠1)𝑤 mod 𝑝)mod 𝑞
= (𝑔𝑘 mod 𝑝)mod 𝑞
= 𝑠1

Hence, for a correctly signed message, the verification succeeds.

Suppose that Alice sends𝑚1 to Bob and𝑚2 to Carol, and provides signatures for each message using
the DSA. One can show that if Alice uses the same value of 𝑘 for both transmissions, it is possible for
an eavesdropper to recover the private key 𝑥 from the signed messages.

6.10 Commitment schemes
Suppose Alice wants to send a bit𝑚 ∈ {0, 1} to Bob in such a way that
(i) Bob cannot determine the value of𝑚 without Alice’s help; and

(ii) Alice cannot change the bit once she has sent it.

Such a system can be used for coin tossing: suppose Alice and Bob are in different rooms, where
Alice tosses a coin and Bob guesses the result. The result of the coin and Bob’s guess can be viewed
as messages of this form. As another example, consider a poll whose result cannot be viewed until
everyone has voted. We will see two examples of such a commit-and-reveal strategy, known as bit
commitment.

Suppose that we have a publicly known encryption function 𝑒𝐴 and a decryption function 𝑑𝐴 known
only to Alice. Alice makes a choice for her message𝑚, and commits to Bob the ciphertext 𝑐 = 𝑒𝐴(𝑚).
Under the assumption that the cipher is secure, Bob cannot decipher the message. To reveal her
choice, Alice sends her private key to Bob, who can then use it to decipher the message 𝑑𝐴(𝑐) =
𝑑𝐴(𝑒𝐴(𝑚)) = 𝑚. He can also check that 𝑑𝐴, 𝑒𝐴 are inverse functions and thus ensure that Alice sent
the correct private key.

Alternatively, suppose that Alice has two ways to communicate to Bob: a clear channel which trans-
mits with no errors, and a binary symmetric channel with error probability 𝑝. Suppose 0 < 𝑝 < 1

2
,

and the noisy channel corrupts bits independent of any action of Alice or Bob, so neither can affect
its behaviour. Bob publishes a binary linear code 𝐶 of length 𝑁 and minimum distance 𝑑, and Alice
publishes a random non-trivial linear map 𝜃∶ 𝐶 → 𝔽2. To send a bit 𝑚 ∈ 𝔽2, Alice chooses a ran-
dom codeword 𝑐 ∈ 𝐶 such that 𝜃(𝑐) = 𝑚, and sends 𝑐 to Bob via the noisy channel. Bob receives
𝑟 = 𝑐 + 𝑒 ∈ 𝔽𝑁2 where 𝑒 is the error pattern. The expected value of 𝑑(𝑟, 𝑐) = 𝑑(𝑒, 0) is 𝑁𝑝. 𝑁 is
chosen such that 𝑁𝑝 ≫ 𝑑, so Bob cannot tell what the original codeword 𝑐 was, and hence cannot
find 𝜃(𝑐) = 𝑚.
To reveal, Alice sends 𝑐 to Bob using the clear channel. Bob can check that 𝑑(𝑐, 𝑟) ≈ 𝑁𝑝; if so, he
accepts themessage. It is possible thatmanymore ormany fewer bits of 𝑐were corrupted by the noisy
channel, whichmaymake Bob reject the message even if Alice correctly committed and revealed the
message. 𝑁, 𝑑 should be chosen such that the probability of this occurring is negligible.
We have shown that Bob cannot readAlice’s guess until she reveals it. In addition, Alice cannot cheat
by changing her guess, because she knows 𝑐 but not how it was corrupted by the noisy channel. All
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she knows is that the received message 𝑟 has distance approximately 𝑁𝑝 from 𝑐. If she were to send
𝑐′ ≠ 𝑐, she must ensure that 𝑑(𝑟, 𝑐′) ≈ 𝑁𝑝, but the probability that this happens is small unless she
chooses 𝑐′ very close to 𝑐. But any two distinct codewords have distance at least 𝑑, so she cannot
cheat.

6.11 Secret sharing schemes
Suppose that the CMS is attacked by the MIO. The Faculty will retreat to a bunker known as MR2.
Entry to MR2 is controlled by a secret, which is a positive integer 𝑆. This secret is known only to the
Leader. Each of the 𝑛members of the Faculty knows a pair of numbers, called their shadow or share.
It is required that, in the absence of the Leader, any 𝑘 members of the Faculty can reconstruct the
secret from their shadows, but any 𝑘 − 1 cannot.

Definition. Let 𝑘, 𝑛 ∈ ℕ with 𝑘 < 𝑛. A (𝑘, 𝑛)-threshold scheme is a method of sharing a
message 𝑆 among a set of 𝑛 participants such that any subset of 𝑘 participants can reconstruct
𝑆, but no subset of smaller size can reconstruct 𝑆.

We discuss Shamir’s method for implementing such a scheme. Let 0 ≤ 𝑆 ≤ 𝑁 be the secret, which
can be chosen at random by the Leader. The Leader chooses and publishes a prime 𝑝 > 𝑛,𝑁. They
then choose independent random coefficients 𝑎1,… , 𝑎𝑘−1 with 0 ≤ 𝑎𝑗 ≤ 𝑝−1where we take 𝑎0 = 𝑆,
and distinct integers 𝑥1,… , 𝑥𝑛 with 1 ≤ 𝑥𝑗 ≤ 𝑝 − 1. Define

𝑃(𝑟) ≡ 𝑎0 +
𝑘−1
∑
𝑗=1

𝑎𝑗𝑥𝑗𝑟 mod 𝑝

choosing 0 ≤ 𝑃(𝑟) ≤ 𝑝 − 1. The 𝑟th participant is given their shadow pair (𝑥𝑟, 𝑃(𝑟)) to be kept secret.
The Leader can then discard their computations.

Suppose 𝑘members of the Faculty assemble with shadow pairs (𝑦𝑗 , 𝑄(𝑗)) = (𝑥𝑖𝑗 , 𝑃(𝑖𝑗)) for 1 ≤ 𝑗 ≤ 𝑘.
By properties of the Vandermonde determinant,

det
⎛
⎜
⎜
⎝

1 𝑦1 ⋯ 𝑦𝑘−11
1 𝑦2 ⋯ 𝑦𝑘−12
⋮ ⋮ ⋱ ⋮
1 𝑦𝑘 ⋯ 𝑦𝑘−1𝑘

⎞
⎟
⎟
⎠

= ∏
1≤𝑗<𝑖≤𝑘

(𝑦𝑖 − 𝑦𝑗)

The 𝑦𝑖 are distinct, so this determinant does not vanish. Hence, we can uniquely solve the system of
𝑘 simultaneous equations

𝑧0 + 𝑦1𝑧1 + 𝑦21𝑧2 +⋯+ 𝑦𝑘−1𝑘 𝑧𝑘−1 ≡ 𝑄(1)
𝑧0 + 𝑦2𝑧1 + 𝑦22𝑧2 +⋯+ 𝑦𝑘−12 𝑧𝑘−1 ≡ 𝑄(2)

⋮
𝑧0 + 𝑦𝑘𝑧1 + 𝑦2𝑘𝑧2 +⋯+ 𝑦𝑘−1𝑘 𝑧𝑘−1 ≡ 𝑄(𝑘)

In particular, 𝑧0 = 𝑎0 = 𝑆 is the secret, as (𝑎0,… , 𝑎𝑘−1) is also a solution to these equations by
construction. Suppose 𝑘− 1 people attempt to reconstruct the secret. In this case, the Vandermonde
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determinant gives

det
⎛
⎜
⎜
⎝

𝑦1 𝑦21 ⋯ 𝑦𝑘−11
𝑦2 𝑦22 ⋯ 𝑦𝑘−12
⋮ ⋮ ⋱ ⋮

𝑦𝑘−1 𝑦2𝑘−1 ⋯ 𝑦𝑘−1𝑘−1

⎞
⎟
⎟
⎠

= 𝑦1𝑦2…𝑦𝑘−1 ∏
1≤𝑗<𝑖≤𝑘−1

(𝑦𝑖 − 𝑦𝑗)

This is nonzero modulo 𝑝, so the system of equations

𝑧0 + 𝑦1𝑧1 + 𝑦21𝑧2 +⋯+ 𝑦𝑘−1𝑘 𝑧𝑘−1 ≡ 𝑄(1)
𝑧0 + 𝑦2𝑧1 + 𝑦22𝑧2 +⋯+ 𝑦𝑘−12 𝑧𝑘−1 ≡ 𝑄(2)

⋮
𝑧0 + 𝑦𝑘−1𝑧1 + 𝑦2𝑘−1𝑧2 +⋯+ 𝑦𝑘−1𝑘−1𝑧𝑘−1 ≡ 𝑄(𝑘 − 1)

has solutions for 𝑧1,… , 𝑧𝑘−1 regardless of the value of 𝑧0. Thus, 𝑘−1members of the Faculty cannot
reconstruct the secret 𝑆, or even tell which values are more likely than others.
Remark. Note that a polynomial of degree 𝑘 − 1 can be recovered from its values at 𝑘 points, but
not on fewer points; this technique is known as Lagrange interpolation. The secret shadow pairs can
be changed without altering the secret 𝑆; the Leader simply chooses a different random polynomial
with the same constant term. Changing the polynomial frequently can increase security, since any
eavesdropper who has gathered some shadow pairs generated from one polynomial cannot use that
information to help decrypt a different polynomial.

Example. Consider a (3, 𝑛)-threshold scheme, where ordinary workers in a company have single
shares, the vice presidents have two shares, and the Leader has three. In this case, the secret can be
recovered by any three ordinary workers, any two workers if one of them is a vice president, or the
Leader alone. In such hierarchical schemes, the ‘importance’ of individuals determines howmany of
them are required to recover the secret.

Example. Suppose Alice has a private key that she wishes to store securely and reliably. She uses
a (𝑘, 2𝑘 − 1)-threshold scheme, where she forms 2𝑘 − 1 shadow pairs and stores them in different
locations. As long as she does not lose more than half of the pairs, she can recover her key, hence the
scheme is reliable. An eavesdropper needs to steal more than half of the pairs in order to recover the
key, hence the scheme is secure.
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