Algebraic Geometry

Cambridge University Mathematical Tripos: Part II

17th May 2024

Contents

1 Affine varieties 3
1.1 Introduction 3
1.2 Affine space 3
1.3 Affine varieties 4
1.4 Irreducible varieties 5
1.5 Zariski and Euclidean topologies 6
1.6 Ideals from zero sets 6
2 Structures on varieties 7
2.1 Coordinate rings 7
2.2 Morphisms 8
2.3 Pullbacks 9
2.4 Rational functions 10
3 Projective varieties 11
3.1 Definition 11
3.2 Projective varieties 12
3.3 Homogenisation and projective closure 14
3.4 Rational functions 16
3.5 Rational maps 17
3.6 Composition of rational maps 19
4 Dimension 21
4.1 Tangent spaces 21
4.2 Smooth and singular points 23
4.3 Transcendental extensions 24
5 Algebraic curves 25
5.1 Curves 25
5.2 Maps between curves 28
5.3 Divisors 30
5.4 Function spaces from divisors 32
6 Differentials 33
6.1 Differentials over fields 33
6.2 Rational differentials 35
6.3 Differentials on plane curves 37
6.4 The Riemann-Roch theorem 38
6.5 Equations for curves using Riemann-Roch 41

1 Affine varieties

1.1 Introduction

Algebraic geometry studies the duality between systems of polynomial equations and the geometry or topology of their solution sets. If we have a system of polynomials

$$
f_{1}, \ldots, f_{r} \in \mathbb{k}\left[X_{1}, \ldots, X_{n}\right]=\mathbb{k}[\mathbf{X}]
$$

we can form its solution set

$$
V=\left\{P \in \mathbb{k}^{n} \mid f_{1}(P)=\cdots=f_{r}(P)=0\right\} \subseteq \mathbb{k}^{n}
$$

On the algebraic side, we have the ideal

$$
I=\left(f_{1}, \ldots, f_{r}\right) \triangleleft \mathbb{k}[\mathbf{X}]
$$

The duality we are interested in is between $R=\mathbb{k}[\mathbf{X}] / I$ and the geometry of V.
We may impose some assumptions on the field \mathbb{k}.

- We might assume that \mathbb{k} is algebraically closed, which is a natural assumption since we wish to consider roots to polynomials with coefficients in \mathbb{k}.
- We could also take the stronger assumption that k is algebraically closed and has characteristic 0 . Occasionally, we may want to differentiate a polynomial, and so it becomes inconvenient to do algebra without this assumption.
- Throughout the course, we will in fact assume $\mathbb{k}=\mathbb{C}$, as we are not particularly interested in the subtleties of such fields other than \mathbb{C}, and it is useful for intuition.

Questions we may ask about this duality are:

- To what extent do R and V determine each other?
- What is the right notion of dimension of V, in terms of algebra?
- Can we detect whether $V \subseteq \mathbb{C}^{n}$ is a manifold based on the information contained within R ?
- Is V compact? If not, is there a natural way to compactify the space into some space \bar{V} that is in some sense algebraic?

1.2 Affine space

Definition. The affine space of dimension n, implicitly over \mathbb{C}, is the set $\mathbb{A}^{n}=\mathbb{C}^{n}$. The elements of \mathbb{A}^{n} are called points, denoted $P=(\mathbf{a})=\left(a_{1}, \ldots, a_{n}\right)$.

Definition. An affine subspace of \mathbb{A}^{n} is any subset of the form $v+U \subseteq \mathbb{C}^{n}$ where $U \subseteq \mathbb{C}^{n}$ is any linear subspace, and $v \in \mathbb{C}^{n}$.
\mathbb{A}^{n} is the natural set on which $\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ is a ring of functions. Given $f \in \mathbb{C}[\mathbf{X}]$, we obtain a function $f: \mathbb{A}^{n} \rightarrow \mathbb{C}$. The subset $\mathbb{C} \subseteq \mathbb{C}[\mathbf{X}]$ is the set of constant functions.

Proposition. The polynomial ring $\mathbb{C}[\mathbf{X}]$ satisfies the following properties.
(i) $\mathbb{C}[X]$ is a unique factorisation domain.
(ii) Every ideal in $\mathbb{C}[\mathbf{X}]$ is finitely generated (equivalently, $\mathbb{C}[\mathbf{X}]$ is Noetherian), due to the Hilbert basis theorem.

1.3 Affine varieties

Definition. Let $S \subseteq \mathbb{C}[\mathbf{X}]$ be any subset of $\mathbb{C}[\mathbf{X}]$. The vanishing locus of S is defined to be $\mathbb{V}(S)=\left\{P \in \mathbb{A}^{n} \mid \forall f \in S, f(P)=0\right\}$.

Definition. An affine (algebraic) variety in \mathbb{A}^{n} is a set of the form $\mathbb{V}(S)$ for some S.
Note that there is some inconsistency between definitions in different textbooks; some authors also impose an irreducibility condition.
Example. (i) Let $n=1$. The polynomial $f \in \mathbb{C}[X]$ gives the vanishing locus $\mathbb{V}(f) \subseteq \mathbb{A}^{1}$, the set of zeroes of f. Conversely, if $V \subseteq \mathbb{A}^{1}$ is finite, then $V=\mathbb{V}(f)$ where $f=\prod_{a \in V}(x-a)$.
(ii) A hypersurface in \mathbb{A}^{n} is a variety of the form $\mathbb{V}(f)$ where $f \in \mathbb{C}[X]$.
(iii) It is often convenient to represent varieties not by equations but parametrically. The affine twisted cubic is $C=\left\{\left(t, t^{2}, t^{3}\right) \mid t \in \mathbb{C}\right\} \subset \mathbb{A}^{3}$. This is a variety, as it is the vanishing locus of the two polynomials $X_{1}^{2}-X_{2}$ and $X_{1}^{3}-X_{3}$.

Theorem. Let $S \subseteq \mathbb{C}[\mathbf{X}]$. Then,
(i) Let $I \subseteq \mathbb{C}[\mathbf{X}]$ be the ideal generated by S. Then, $\mathbb{V}(S)=\mathbb{V}(I)$.
(ii) There exists a finite subset $\left\{f_{j}\right\}$ of S such that $\mathbb{V}(S)=\mathbb{V}\left(\left\{f_{j}\right\}\right)$.

Proof. Part (i). Suppose $P \in \mathbb{A}^{n}$. Then, $f(P)=0$ for all $f \in S$ if and only if $f(P)=0$ for all $f \in I$, by the basic properties of ideals.
Part (ii). By (i), $\mathbb{V}(S)=\mathbb{V}(I)$. I is finitely generated, so there exist functions $h_{1}, \ldots, h_{r} \in I$ that generate I. Reversing (i), $\mathbb{V}(I)=\mathbb{V}\left(\left\{h_{i}\right\}\right)$. But since I is generated by S, each h_{i} can be written as a linear combination of finitely many elements of S. So $h_{i}=\sum_{j} g_{i j} f_{j}$ where $f_{j} \in S$. Then $\mathbb{V}(S)=$ $\mathbb{V}\left(\left\{f_{j}\right\}\right)$.

Proposition. Let $S, T \subseteq \mathbb{C}[\mathbf{X}]$. Then,
(i) $S \subseteq T$ implies $\mathbb{V}(T) \subseteq \mathbb{V}(S)$.
(ii) $\mathbb{V}(0)=\mathbb{A}^{n}$, and $\mathbb{V}(\mathbb{C}[\mathbf{X}])=\mathbb{V}(\lambda)=\varnothing$ where $\lambda \in \mathbb{C} \backslash\{0\}$.
(iii) $\bigcap_{j} \mathbb{V}\left(I_{j}\right)=\mathbb{V}\left(\sum_{j} I_{j}\right)$ for any family of ideals I_{j}.
(iv) $\mathbb{V}(I) \cup \mathbb{V}(J)=\mathbb{V}(I \cap J)$.

Proof. Part (i) and (ii) are trivial.
Part (iii). We have $\bigcap_{j} \mathbb{V}\left(I_{j}\right)=\mathbb{V}\left(\bigcup_{j} I_{j}\right)$. To conclude, note that the ideal generated by $\bigcup_{j} I_{j}$ is $\sum_{j} I_{j}$.

Part (iv). We have already seen that $\mathbb{V}(I) \cup \mathbb{V}(J) \subseteq \mathbb{V}(I \cap J)$. For the reverse containment, suppose $P \in \mathbb{V}(I \cap J)$, and suppose $P \notin \mathbb{V}(I)$. Then, there exists some $g \in I$ such that $g(P)=0$. Moreover, for all elements $f \in J, f g \in I \cap J$, so $(f g)(P)=0$. Hence $f(P)=0$ for all $f \in J$, so $P \in \mathbb{V}(J)$.

1.4 Irreducible varieties

Definition. A variety V is called irreducible if whenever $V=V_{1} \cup V_{2}$, where V_{1}, V_{2} are varieties, we have $V=V_{1}$ or $V=V_{2}$. A variety that is not irreducible is called reducible.

Example. The variety $V=\mathbb{V}(X Y)$ is reducible, as it is the union of $\mathbb{V}(X)$ and $\mathbb{V}(Y)$.
Proposition. Every affine variety V is a finite union of irreducible varieties.
This proof uses a 'bisection' argument.
Proof. If V is irreducible, there is nothing to prove. Otherwise, $V=V_{1} \cup V_{1}^{\prime}$, where $V_{1}, V_{1}^{\prime} \neq V$. If V_{1}, V_{1}^{\prime} are finite unions of irreducible varieties, the proof is already complete. Suppose V_{1} is not a finite union of irreducibles. Then, it follows that $V_{1}=V_{2} \cup V_{2}^{\prime}$ nontrivially. Inductively, we obtain

$$
V=V_{0} \supsetneq V_{1} \supsetneq V_{2} \supsetneq V_{3} \supsetneq \ldots
$$

This infinite descending chain never stabilises. Define

$$
W=\bigcap_{j=0}^{\infty} V_{j}=\mathbb{V}\left(\sum_{j=0}^{\infty} I_{j}\right)
$$

But $\sum_{j=0}^{\infty} I_{j}$ is finitely generated. So $\sum_{j=0}^{\infty} I_{j}=\sum_{j \leq N} I_{j}$ for some $N \in \mathbb{N}$. Hence, $W=\bigcap_{j \leq N} V_{j}$ contradicting that the descending chain never stabilises.

Definition. Let V be an affine variety. A minimal decomposition of V is a representation of V as a finite union of distinct irreducibles V_{i} such that no V_{i} is contained within V_{j}.

Proposition. Minimal decompositions of affine varieties are unique up to ordering.

Proof sketch. This proof is left as an exercise. One can compare two decompositions by intersecting the irreducible components of one decomposition with the other.

Given uniqueness of minimal decompositions, we can refer to the irreducibles appearing in such a decomposition as the irreducible components of a variety.

1.5 Zariski and Euclidean topologies

Definition. The Zariski topology on \mathbb{A}^{n} is the topology where the closed sets are precisely the affine varieties. If $V \subseteq \mathbb{A}^{n}$ is a (sub)variety, the Zariski topology on V is the subspace topology for the Zariski topology on \mathbb{A}^{n}.

Remark. This is in fact a topology, as all of the relevant axioms have been proven.

Definition. The Euclidean topology or analytic topology on \mathbb{A}^{n} is the topology induced by the metric space structure on \mathbb{C}^{n}. If $V \subseteq \mathbb{A}^{n}$, the Euclidean topology on V is the subspace topology of the Euclidean topology on \mathbb{A}^{n}.

Proposition. The Zariski topology on A^{1} coincides with the cofinite topology; the closed sets are exactly the finite sets. This topology is not Hausdorff but it is compact. The Euclidean topology on \mathbb{A}^{1} is Hausdorff but not compact.

Remark. \mathbb{A}^{2} with the Zariski topology is not homeomorphic to $\mathbb{A}^{1} \times \mathbb{A}^{1}$ with the product of the Zariski topologies.

1.6 Ideals from zero sets

Theorem (weak form of Hilbert's Nullstellensatz). Every maximal ideal in $\mathbb{C}[\mathbf{X}]$ has the form $\left(X_{1}-a_{1}, \ldots, X_{n}-a_{n}\right)$ for $a_{i} \in \mathbb{C}$. Moreover, if I is any non-unit ideal, $\mathbb{V}(I) \neq \varnothing \subseteq \mathbb{A}^{n}$.

We prove this over the complex numbers; the given proof only works for this case, but the statement holds for all algebraically closed fields.

Proof. Every ideal of this form has quotient \mathbb{C}, so they are all maximal. Let $\mathfrak{m} \triangleleft \mathbb{C}[\mathbf{X}]$ be a maximal ideal, and let $K=\mathbb{C}[\mathbf{X}] / \mathfrak{m}$. K is a field as \mathfrak{m} is maximal, and it is a field extension of \mathbb{C}. Define a_{i} to be the coset $X_{i}+\mathfrak{m}$. If $a_{i} \in \mathbb{C}$ for all i, this gives the result as required because the ideal is generated by $\left(X_{1}-a_{1}, \ldots, X_{n}-a_{n}\right)$.
Otherwise, $K \supsetneq \mathbb{C}$. But \mathbb{C} is algebraically closed, so there exists $t \in K \backslash \mathbb{C}$ which is transcendental over \mathbb{C}. Let U_{m} be the \mathbb{C}-span inside K of products of the form $a_{1}^{r_{1}} \ldots a_{n}^{r_{n}}$ where the r_{i} are nonnegative, and $\sum_{i=1}^{n} r_{i} \leq m$. Observe that U_{m} is finite-dimensional, and $K=\bigcup_{m \geq 0} U_{m}$ is countable-dimensional. One can show that the elements $\left\{\left.\frac{1}{t-c} \right\rvert\, c \in \mathbb{C}\right\}$ are linearly independent over \mathbb{C}. There are uncountably many such elements, giving a contradiction.

For the last part, let I be a nonzero ideal. There exists a maximal ideal $\mathfrak{m} \supseteq I$, so $\mathbb{V}(I) \supseteq \mathbb{V}(\mathfrak{m})$, but $\mathbb{V}(\mathfrak{m})$ is nonempty as it contains the point $\left(a_{1}, \ldots, a_{m}\right)$.

Definition. Let $V \subseteq \mathbb{A}^{n}$ be an affine variety. The ideal of functions vanishing on V is $I(V)=$ $\{f \in \mathbb{C}[\mathbf{X}] \mid \forall P \in V, f(P)=0\}$.

Proposition. Let $V \subseteq \mathbb{A}^{n}$ be an affine variety. Then,
(i) If $V=\mathbb{V}(S)$ where $S \subseteq \mathbb{C}[\mathbf{X}]$, then $S \subseteq I(V)$. In particular, $I(V)$ is the largest ideal vanishing on V.
(ii) $V=\mathbb{V}(I(V))$.
(iii) Varieties $V, W \subseteq \mathbb{A}^{n}$ are equal if and only if $I(V)=I(W)$.

Proof. Follows from the definitions.
Therefore, we have an injective map I from the space of affine varieties in \mathbb{A}^{n} to the space of ideals in $\mathbb{C}[\mathbf{X}]$, and \mathbb{V} gives a left inverse.

Proposition. If V, W are affine varieties, $V \subseteq W$ if and only if $I(W) \subseteq I(V)$.

Proof. The forward implication follows from set theory. For the reverse, if $V \nsubseteq W$, we can choose $P \in V \backslash W$. Since $P \notin \mathbb{V}(I(W))$, there exists a function $f \in I(W)$ such that $f(P) \neq 0$, so $f \notin I(V)$.

Proposition. Let V be a variety. Then V is irreducible if and only if $I(V)$ is a prime ideal.

Recall that $I(V)$ is prime when $f_{1} f_{2} \in I(V)$ implies $f_{1} \in I(V)$ or $f_{2} \in I(V)$. Geometrically, the ideal is not prime when we can find two functions where the product is zero on V but are individually not zero on all of V.

Proof. Recall that $I\left(V_{1} \cup V_{2}\right)=I\left(V_{1}\right) \cap I\left(V_{2}\right)$. Suppose V were reducible, so $V=V_{1} \cup V_{2}$ where $V_{1}, V_{2} \neq V$. In particular, $V_{1} \nsubseteq V_{2} \nsubseteq V_{1}$. Now, let $I_{j}=I\left(V_{j}\right)$, giving $I_{1} \nsupseteq I_{2} \nsupseteq I_{1}$, and $I(V)=I_{1} \cap I_{2}$. Therefore, there exists $f_{1} \in I_{1} \backslash I_{2}$ and $f_{2} \in I_{2} \backslash I_{1}$. Each f_{i} is not an element of $I(V)$, but $f_{1} f_{2} \in I(V)$. So $I(V)$ cannot be prime.
Conversely, suppose $I(V)$ is not prime, so $f_{1} f_{2} \in I(V)$ but $f_{1}, f_{2} \notin I(V)$. Define $V_{1}=V \cap \mathbb{V}\left(f_{1}\right)$ and $V_{2}=V \cap \mathbb{V}\left(f_{2}\right)$. Since neither f_{i} is contained in $I(V), V_{i} \neq V$. Also, if $P \in V$, we have $f_{1}(P) f_{2}(P)=0$, so $P \in V_{1} \cup V_{2}$. So V is reducible.

Example. Let $V=\mathbb{V}(X Y) \subset \mathbb{A}^{2}$. Then $V=\mathbb{V}(X) \cup \mathbb{V}(Y)$ is a decomposition of V into irreducible components. Indeed, $\mathbb{V}(X)$ is irreducible, as $I(\mathbb{V}(X))=(X)$ is a prime ideal in $\mathbb{C}[X, Y]$, and similarly for Y.

2 Structures on varieties

2.1 Coordinate rings

Consider a polynomial $f \in \mathbb{C}[\mathbf{X}]$. We obtain a function $f: \mathbb{A}^{n} \rightarrow \mathbb{A}^{1}$, If $V \subseteq \mathbb{A}^{n}$ and $f, g \in \mathbb{C}[\mathbf{X}]$, we are interested in when f, g induce the same set-theoretic function on V. We intend to show that f, g induce the same function if and only if $f-g \in I(V)$. Therefore, we can study polynomials modulo this relation by taking the quotient with respect to this ideal.

Definition. Let $V \subseteq \mathbb{A}^{n}$ be a variety. The coordinate ring of V, or the ring of regular functions of V, is defined as $\mathbb{C}[\mathbf{X}] / I(V)$, denoted $\mathbb{C}[V]$ or $\mathcal{O}(V)$.

Corollary. Let V be a variety. Then V is irreducible if and only if $\mathbb{C}[V]$ is an integral domain.

Remark. $\mathbb{C}[V]$ does not precisely determine V or $I(V)$. For instance, consider a surjective homomorphism $\theta: \mathbb{C}[\mathbf{X}] \rightarrow \mathbb{C}[V]$, then $\operatorname{ker} \theta=I$ is an ideal, and $\mathbb{V}(I)$ is a variety with coordinate ring $\mathbb{C}[V]$. However, there is not a unique such homomorphism in general. For instance, $\mathbb{C}[X] \simeq \mathbb{C}[X, Y] /(Y)$.

Definition. Let $I \triangleleft \mathbb{C}[\mathbf{X}]$. We define the radical ideal of I to be

$$
\sqrt{I}=\left\{f \in \mathbb{C}[\mathbf{X}] \mid \exists m>0, f^{m} \in I\right\}
$$

This is an ideal. $\sqrt{\sqrt{I}}=\sqrt{I}$. Note that $\mathbb{V}(I)=\mathbb{V}(\sqrt{I})$.
Theorem (strong form of Hilbert's Nullstellensatz). Let $I \triangleleft \mathbb{C}[\mathbf{X}]$ be an ideal, and $V=\mathbb{V}(I)$. Then $I(V)=\sqrt{I}$.

Therefore, the map $V \mapsto I(V)$ maps precisely onto the space of radical ideals, ideals which are equal to their radicals.

Example. Let $V=\{0\} \in \mathbb{A}^{1}$. We can write $V=\mathbb{V}\left(X^{2}\right)$, so its coordinate ring is

$$
\mathbb{C}[X] / I\left(\mathbb{V}\left(X^{2}\right)\right)=\mathbb{C}[X] / \sqrt{\left(X^{2}\right)}=\mathbb{C}[X] /(X) \simeq \mathbb{C}
$$

In building the coordinate ring, we forget the structure of X^{2}. If we had instead considered $\mathbb{C}[X] /\left(X^{2}\right)$, we would have certain nonzero elements whose squares are zero.

2.2 Morphisms

Let $V \subseteq \mathbb{A}^{n}$ and $W \subseteq \mathbb{A}^{m}$ be affine varieties.

Definition. A regular map or morphism from V to W is a function $\varphi: V \rightarrow W$ such that there exist elements $f_{1}, \ldots, f_{m} \in \mathbb{C}[V]$ such that

$$
\varphi(P)=\left(f_{1}(P), \ldots, f_{m}(P)\right)
$$

for all $P \in V$.
The set of all morphisms from V to W is denoted $\operatorname{Mor}(V, W)$.
Example. The morphisms V to \mathbb{A}^{1} are precisely the functions in the coordinate ring $\mathbb{C}[V]$.
Example. Linear projections $\mathbb{A}^{n} \rightarrow \mathbb{A}^{m}$ are morphisms. More generally, linear transformations and affine translations are also morphisms.

Example. If $V \subseteq W \subseteq \mathbb{A}^{n}$ where V, W are varieties, then the inclusion map $V \hookrightarrow W$ is a morphism.

Proposition. Let $\varphi: V \rightarrow W, \psi: W \rightarrow Z$ be morphisms. Then the composite map $\psi \circ \varphi$ is a morphism $V \rightarrow Z$.

Proof. The composition of polynomials is a polynomial.

2.3 Pullbacks

Definition. Let $\varphi: V \rightarrow W$ be a morphism, and let $g \in \mathbb{C}[W]$. Then, the pullback is $\varphi^{\star}(g)=$ $g \circ \varphi: V \rightarrow \mathbb{C}$. Note that $\varphi^{\star}(g) \in \mathbb{C}[V]$, so φ^{\star} gives a map $\mathbb{C}[W] \rightarrow \mathbb{C}[V]$.

Remark. This map φ^{\star} is a ring homomorphism, and restricts to the identity on \mathbb{C}.

Definition. A ring homomorphism $\mathbb{C}[X] \rightarrow \mathbb{C}[Y]$ that restricts to the identity on \mathbb{C} is called a \mathbb{C}-algebra homomorphism.

Theorem. Let $V \subseteq \mathbb{A}^{n}, W \subseteq \mathbb{A}^{m}$ be affine varieties. The map $\alpha: \varphi \mapsto \varphi^{\star}$ defines a bijection from $\operatorname{Mor}(V, W)$ to the space of \mathbb{C}-algebra homomorphisms $\mathbb{C}[W] \rightarrow \mathbb{C}[V]$.

Proof. Let $y_{1}, \ldots, y_{n} \in \mathbb{C}[W]$ be the coordinate functions on W, which are the restrictions of the standard linear coordinate functions on \mathbb{A}^{n}.
First, we show injectivity of α. Let $\varphi: V \rightarrow W$ be a morphism. For any point $P \in V$,

$$
\varphi(P)=\left(y_{1}(\varphi(P)), \ldots, y_{m}(\varphi(P))\right)=\left(\varphi^{\star}\left(y_{1}\right)(P), \ldots, \varphi^{\star}\left(y_{n}\right)(P)\right)
$$

So φ is determined by the values of $\varphi^{\star}\left(y_{1}\right), \ldots, \varphi^{\star}\left(y_{n}\right)$.
Now we show its surjectivity. Let $\lambda: \mathbb{C}[W] \rightarrow \mathbb{C}[V]$ be a \mathbb{C}-algebra homomorphism, and let $f_{i}=$ $\lambda\left(y_{i}\right) \in \mathbb{C}[V]$. We can now define the map $\varphi=\left(f_{1}, \ldots, f_{m}\right): V \rightarrow \mathbb{A}^{m}$. We will show that φ has image contained in W, so that we have $\varphi: V \rightarrow W$, which then shows that φ is a morphism $V \rightarrow W$. For $P \in V$, we must show $g(\varphi(P))=0$ for all $g \in I(W)$. We obtain $g\left(f_{1}(P), \ldots, f_{m}(P)\right)=\lambda(g)(P)$. But $g=0$ in $\mathbb{C}[W]$, so $g(\varphi(P))=0$ as required. Hence $\varphi: V \rightarrow W$ is a morphism, and $\lambda=\varphi^{\star}$ since $\varphi^{\star}\left(y_{i}\right)=f_{i}=\lambda\left(y_{i}\right)$.

Definition. Two affine varieties V, W are isomorphic if we have $\varphi: V \rightarrow W, \psi: W \rightarrow V$ where $\varphi \circ \psi=\mathrm{id}_{W}$ and $\psi \circ \varphi=\mathrm{id}_{V}$.

Theorem. V is isomorphic to W if and only if $\mathbb{C}[V]$ is isomorphic to $\mathbb{C}[W]$ as \mathbb{C}-algebras.

Proof. Use the previous theorem.
Example. The affine line A^{1} is isomorphic to the twisted cubic $\left\{\left(t, t^{2}, t^{3}\right) \mid t \in \mathbb{C}\right\}$. This can be easily shown by calculating the coordinate rings explicitly.

Example. Let $V \subseteq \mathbb{A}^{2}$ be given by $X_{1} X_{2}\left(X_{1}-X_{2}\right)=0$. This is the union of three lines, intersecting at the origin. Let $W \subseteq \mathrm{~A}^{3}$ be given by $X_{1} X_{2}=X_{2} X_{3}=X_{3} X_{1}=0$, which is also a union of three lines, which in this case are the coordinate axes. These are not isomorphic as varieties, because their coordinate rings are not isomorphic, which can be easily shown using tangent spaces, defined in later sections. Note, however, that V and W are homeomorphic in the Euclidean topology.

2.4 Rational functions

Definition. Let $V \subseteq \mathbb{A}^{n}$ be an irreducible variety. Its function field, field of rational functions, or field of meromorphic functions is the field of fractions $\mathbb{C}(V)=F F(\mathbb{C}[V])$ of $\mathbb{C}[V]$.

Remark. Since V is irreducible, $I(V)$ is prime, so $\mathbb{C}[V]$ is an integral domain. This allows us to construct the field of fractions.

Definition. Let φ be a rational function. A point $P \in V$ is called regular if φ can be expressed as a ratio $\frac{f}{g}$ with $g(P) \neq 0$.

Remark. If $\varphi=\frac{f}{g}$, we obtain a well-defined function $\varphi: V \backslash \mathbb{V}(g) \rightarrow \mathbb{C}$. The domain is an open set in V, since $\mathbb{V}(g)$ is Zariski closed.
Example. Consider the rational function $X_{1}^{2} / X_{2} \in \mathbb{C}\left(\mathbb{A}^{2}\right)$. This defines a map on the complement of the X_{2}-axis. Note that $X^{3} / X_{1} X_{2}$ defines the same function, but only on points other than $\mathbb{V}\left(X_{1} X_{2}\right)$. Note that $X^{3} / X_{1} X_{2}=X_{1}^{2} / X_{2} \in \mathbb{C}\left(\mathbb{A}^{2}\right)$, so we cannot quite think of elements of $\mathbb{C}\left(\mathbb{A}^{2}\right)$ as functions.

Remark. A rational function on V can be thought of as a pair (U, f) with $U \subseteq V$ Zariski open, such that f is a function $U \rightarrow \mathbb{C}$. We define the equivalence relation $(U, f) \sim\left(U^{\prime}, f^{\prime}\right)$ if f, f^{\prime} agree on some nonempty Zariski open set contained in U and U^{\prime}. Note that if V is irreducible, every nonempty open subset is dense in the Zariski topology.

Definition. A local ring is a ring R that contains a unique maximal ideal.

Definition. Let V be an irreducible variety, and let P. The local ring of V at P is $\mathcal{O}_{V, P}=$ $\{f \in \mathbb{C}(V) \mid f$ is regular at $P\}$.

Proposition. The local ring of an irreducible variety V at a point P is a local ring. Its unique maximal ideal is

$$
\mathfrak{m}_{V, P}=\left\{f \in \mathcal{O}_{V, P} \mid f(P)=0\right\}=\operatorname{ker}(f \mapsto f(P))
$$

Further, the invertible elements of $\mathcal{O}_{V, P}$ are precisely those f such that $f(P) \neq 0$.

The proof follows from the following more general lemma.

Lemma. A ring R is a local ring if and only if $R \backslash R^{\star}$ is an ideal. If so, the unique maximal ideal is $R \backslash R^{\star}$.

Proof. If $A \unlhd R$ is an ideal, then $A \neq R$ if and only if $A \subseteq R \backslash R^{\star}$, because if any unit lies in A, it must be all of R. Hence, if $R \backslash R^{\star}$ is an ideal, it is automatically the unique maximal ideal.
Conversely, let R be a local ring with unique maximal ideal \mathfrak{m}. Then $\mathfrak{m} \subseteq R \backslash R^{\star}$, and if $x \in R \backslash R^{\star}$ we must have $(x) \neq R$, so $(x) \subseteq \mathfrak{m}$ by maximality. Hence $\mathfrak{m}=R \backslash R^{\star}$.

Note that this proves the previous proposition, as $\frac{f}{g} \in \mathcal{O}_{V, P}$ is invertible if and only if $\left(\frac{f}{g}\right)(P) \neq$ 0.

Example. Let

$$
R=\left\{\left.\frac{f}{g} \in \mathbb{C}(t) \right\rvert\, \text { ignoring factors, } g(0) \neq 0\right\}=\mathcal{O}_{\mathbb{A}^{1}, 0}
$$

Here, the maximal ideal is (t), and $R /(t)=\mathbb{C}$.
Let $S=\mathbb{C} \llbracket t \rrbracket$ be the ring of formal power series in t. This is a local ring by the lemma; its maximal ideal is (t). Note that in fact $R \subseteq S$.

3 Projective varieties

We will construct the projective space \mathbb{P}^{n}, which will be an upgrade to \mathbb{A}^{n}; it is not immediately obvious why \mathbb{P}^{n} is considered 'better'. Projective space has some interesting properties, such as:

- every pair of lines in \mathbb{P}^{2} that are distinct meet at a unique point;
- if V is a projective variety (defined shortly) in \mathbb{P}^{2} defined by a degree d polynomial, if V is a manifold then V is homeomorphic in the Euclidean topology to a closed orientable topological surface of genus $\binom{d-1}{2}$.
- \mathbb{P}^{n} is compact in the Euclidean topology, but \mathbb{A}^{n} is not.

3.1 Definition

Definition. Let U be a finite-dimensional complex vector space. The projectivisation of U, written $\mathbb{P}(U)$, is the set of lines in U through the origin $\mathbf{0} \in U$. Define $\mathbb{P}^{n}=\mathbb{P}\left(\mathbb{C}^{n+1}\right)$.

We usually index the coordinates on \mathbb{C}^{n+1} with indices $0, \ldots, n$. A line in \mathbb{C}^{n+1} is therefore given by $\left\{\left(a_{0} t, \ldots, a_{n} t\right) \mid t \in \mathbb{C}\right\}$, and is written $L_{\left(a_{0}, \ldots, a_{n}\right)}$, where not all a_{i} are zero. We write $\left(a_{0}: a_{1}: \cdots:\right.$ $\left.a_{n}\right)$ for the corresponding element of \mathbb{P}^{n}. Therefore,

$$
\mathbb{P}^{n}=\left\{\left(a_{0}, \ldots, a_{n}\right) \mid a_{i} \in \mathbb{C}, \text { not all } a_{i}=0\right\} / \text { scaling by } \mathbb{C}^{\star}
$$

For example, $(2: 1:-2)=(4: 2:-4) \in \mathbb{P}^{2}$.
We can decompose \mathbb{P}^{1} as

$$
\begin{aligned}
\left\{\left(a_{0}: a_{1}\right) \mid a_{0} \neq 0\right\} \cup\left\{\left(a_{0}: a_{1}\right) \mid a_{0}=0\right\} & =\{(1: z) \mid z \in \mathbb{C}\} \cup\{(0: 1)\} \\
& =A^{1} \cup \text { a point at infinity }
\end{aligned}
$$

More generally,

$$
\mathbb{P}^{n}=\left\{\left(a_{0}: \cdots: a_{n}\right) \mid a_{0} \neq 0\right\} \cup\left\{\left(0: a_{1}: \cdots: a_{n}\right)\right\}=\mathbb{A}^{n} \amalg \mathbb{P}^{n-1}
$$

By induction, $\mathbb{P}^{n}=\mathbb{A}^{n} \cup \mathbb{A}^{n-1} \cup \cdots \cup \mathbb{A}^{1} \cup$ a point, where the terms other than \mathbb{A}^{n} are considered 'at infinity'.

Definition. The Zariski (respectively Euclidean) topology on projective space is the quotient topology for the subspace topology for the Zariski (respectively Euclidean) topology on $\mathbb{C}^{n+1} \backslash$ $\{\mathbf{0}\}$, where $\mathbb{P}^{n}=\mathbb{C}^{n+1} \backslash\{\mathbf{0}\} / \sim$ and $\mathbb{C}^{n+1} \backslash\{0\} \subseteq \mathbb{C}^{n+1}$.

There is a copy of $S^{2 n+1}$ inside $\mathbb{C}^{n+1} \backslash\{\mathbf{0}\}$, which therefore surjects onto \mathbb{P}^{n}.
Corollary. \mathbb{P}^{n} is compact.

Proof. It is the continuous image of the compact set $S^{2 n+1}$.

Definition. For $0 \leq j \leq n$, we define the j th coordinate hyperplane is the set $H_{j}=$ $\left\{\left(\mathbf{a}_{i}\right) \mid a_{j}=0\right\} \subseteq \mathbb{P}^{n}$.

We can naturally identify H_{j} with \mathbb{P}^{n-1}.
Definition. The j th standard affine patch U_{j} is the complement of H_{j}.

There is a natural bijection $U_{j} \rightarrow \mathbb{A}^{n}$ by mapping $\left(a_{0}: \cdots: a_{n}\right)$ to $\left(\frac{a_{0}}{a_{j}}, \ldots, \widehat{a_{j}}, \ldots, \frac{a_{n}}{a_{j}}\right)$ where the hat denotes 'forgetting' that element of the tuple. The inverse function maps $\left(b_{1}, \ldots, b_{n}\right)$ to $\left(b_{1}\right.$: $\left.\cdots: b_{j-1}: 1: b_{j}: \cdots: b_{n}\right)$. We observe that $\left\{U_{j}\right\}_{j=0}^{n}$ is an open cover of \mathbb{P}^{n} in the Zariski topology.

3.2 Projective varieties

Example. Consider the polynomial $X_{0}+1 \in \mathbb{C}\left[X_{0}, X_{1}\right]$. Note that $X_{0}+1$ does not define a function on \mathbb{P}^{1}. For example, $(-1: 0)=(1: 0)$, but $X_{0}+1$ vanishes on the first representative and not the second. The vanishing locus of $X_{0}+1$ on \mathbb{P}^{1} is therefore undefined. Therefore, we need a slightly more subtle definition of a variety in projective space.

Definition. A monomial in $\mathbb{C}[\mathbf{X}]=\mathbb{C}\left[X_{0}, \ldots, X_{n}\right]$ is an element of the form $X_{0}^{d_{0}} X_{1}^{d_{1}} \ldots X_{n}^{d_{n}}$ where $d_{i} \geq 0$. A term is a nonzero multiple of a monomial. The degree of a term $c X_{0}^{d_{0}} \ldots X_{n}^{d_{n}}$ is $\sum_{i=0}^{n} d_{i}$. A homogeneous polynomial of degree d is a finite sum of terms of degree d.

Any polynomial can be uniquely decomposed as a sum of homogeneous polynomials of different degree; we write $f=\sum_{i=0}^{\infty} f_{[i]}$ where the $f_{[i]}$ are homogeneous of degree i. Note that this sum is always finite.

Lemma. Let $f \in \mathbb{C}[\mathbf{X}]$ be homogeneous, and let $\left(a_{0}, \ldots, a_{n}\right) \in \mathbb{C}^{n+1} \backslash\{\mathbf{0}\}$. Then, if $f(\mathbf{a})=0$, we have $f(\lambda \mathbf{a})=0$ for all $\lambda \in \mathbb{C}^{\star}$.

Proof. Trivial by checking the definitions.

Corollary. Let $f \in \mathbb{C}[\mathbf{X}]$ be homogeneous. Then

$$
\mathbb{V}(f)=\left\{P \in \mathbb{P}^{n} \mid f(\mathbf{a})=0 \text { for any (or every) representative of } P\right\}
$$

is well-defined.

Definition. An ideal $I \unlhd \mathbb{C}[\mathbf{X}]$ is called homogeneous if it can be generated by homogeneous polynomials (of potentially different degrees).

Lemma. Let $I \unlhd \mathbb{C}[\mathbf{X}]$ be an ideal. Then I is homogeneous if and only if whenever $f \in I$, all of the homogeneous parts $f_{[r]}$ are also contained in I.

Proof. Suppose I is homogeneous. Then let g_{j} be homogeneous generators of I of degree d_{j}. Writing $f=\sum h_{j} g_{j}$ for arbitrary $h_{j} \in \mathbb{C}[\mathbf{X}]$, we can split each h_{j} into its pieces $h_{j[r]}$. Now, $h_{j[r]} g_{j} \in I$ is homogeneous, and its degree is $r d_{j}$. Hence, $f_{[r]}=\sum_{j} h_{j\left[r-d_{j}\right]} g_{j} \in I$ as required. The converse is trivial by decomposing the generators of the ideal.

Definition. Let $I \unlhd \mathbb{C}[\mathbf{X}]$ be a homogeneous ideal. Then, the vanishing locus is $\mathbb{V}(I)=$ $\left\{P=\left(\mathbf{a}_{i}\right) \in \mathbb{P}^{n} \mid \forall f \in I, f\left(\left(\mathbf{a}_{i}\right)\right)=0\right\}$. A projective variety in \mathbb{P}^{n} is any set of this form.

Note that we could have defined the vanishing locus using the quantifier 'for all homogeneous $f \in$ I'

Example. Let $U \subseteq \mathbb{C}^{n+1}$ be any vector subspace. Let the projectivisation of U is a subset of \mathbb{P}^{n}, and is a projective variety. More concretely, $U=\left\{\mathbf{v} \in \mathbb{C}^{n+1} \mid \forall j, \sum_{i=0}^{n} a_{i}^{(j)} v_{i}=0\right\}$ for a subset $\mathbf{a}^{(j)}=$ $\left(a_{0}^{(j)}, \ldots, a_{n}^{(j)}\right)$, as a vector subspace is the kernel of some linear map. Therefore, $\mathbb{P}(U)=\mathbb{V}(I)$ where I is the ideal generated by $F_{j}=\sum_{i} a_{i}^{(j)} X_{i} \in \mathbb{C}[\mathbf{X}]$. More generally, a projective linear space is the projectivisation of a linear subspace. Hence, projective linear spaces in \mathbb{P}^{n} are in bijection with linear subspaces in \mathbb{C}^{n+1}.
$G L_{n+1}(\mathbb{C})$ acts on \mathbb{P}^{n} coordinatewise. The normal subgroup of scalar matrices $\mathbb{C}^{\star} \subseteq G L_{n+1}(\mathbb{C})$ acts trivially on \mathbb{P}^{n}. The quotient is written $P G L_{n}(\mathbb{C})=G L_{n+1}(\mathbb{C}) / \mathbb{C}^{\star}$, and acts transitively on \mathbb{P}^{n}.
Example. The Segre surface is the hypersurface $S_{11}=\mathbb{V}\left(X_{0} X_{3}-X_{1} X_{2}\right) \subseteq \mathbb{P}^{3}$. Consider the map $\sigma_{11}: \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{3}$ given by $\sigma_{11}\left(\left(a_{0}: a_{1}\right),\left(b_{0}: b_{1}\right)\right)=\left(a_{0} b_{0}: a_{0} b_{1}: a_{1} b_{0}: a_{1} b_{1}\right)$. One can show that this map is well-defined, and in fact, $\operatorname{Im} \sigma_{11}=S_{11}$.
First, consider the map $\mathbb{C}^{2} \times \mathbb{C}^{2} \rightarrow \mathbb{C}^{4}$ where we identify \mathbb{C}^{4} with the space of 2×2 matrices on \mathbb{C}, given by the outer product. More precisely, $(v, w) \mapsto v w^{\top}$. The image of this map is precisely the set of matrices of rank at most 1 . Hence, the image is the vanishing locus of $X_{0} X_{3}-X_{1} X_{2}$, the determinant of such a matrix.

3.3 Homogenisation and projective closure

Recall that $\mathbb{P}^{n}=U_{0} \cup \cdots \cup U_{n}$, where $U_{i}=\mathbb{P}^{n} \backslash \mathbb{V}\left(X_{i}\right)$. We therefore have the following different descriptions of a Zariski topology on \mathbb{P}^{n} :
(i) the quotient of the subspace of the Zariski topology on \mathbb{C}^{n+1};
(ii) define that V is Zariski-closed if and only if $V=\mathbb{V}(I)$ where $I \triangleleft \mathbb{C}[\mathbf{X}]$ is homogeneous;
(iii) the gluing topology: define that a subset $Z \subseteq \mathbb{P}^{n}$ is closed if $Z \cap U_{i}$ is closed for all i, as the U_{i} are isomorphic to \mathbb{A}^{n}.

These three constructions coincide.
If $V \subseteq \mathbb{P}^{n}$ is a projective variety, consider $U_{0} \cap V \subseteq U_{0}$. If $V=\mathbb{V}(I)$, then $U_{0} \cap V=\mathbb{V}\left(I_{0}\right)$ where $I_{0}=$ $\left\{f=F\left(1, Y_{1}, \ldots, Y_{n}\right) \mid F \in I\right.$ homogeneous $\} \subseteq \mathbb{C}\left[Y_{1}, \ldots, Y_{n}\right]$. Identifying U_{0} with \mathbb{A}^{n} with coordinates Y_{1}, \ldots, Y_{n} (so $Y_{j}=\frac{X_{j}}{X_{0}}$), $V \cap U_{0}$ is naturally an affine variety.

Conversely, let $W \subseteq \mathbb{A}^{n}$ be an affine variety, and identify \mathbb{A}^{n} with U_{0}. Then, the Zariski closure \bar{W} of W inside \mathbb{P}^{n} is a projective variety. We are interested in studying the precise projective varieties obtained in this way.

Definition. Let $f \in \mathbb{C}\left[Y_{1}, \ldots, Y_{n}\right]$ be an arbitrary polynomial of total degree d. The homogenisation of f, written F or f^{h}, is

$$
f^{h}\left(X_{0}, \ldots, X_{n}\right)=X_{0}^{d} f\left(\frac{X_{1}}{X_{0}}, \ldots, \frac{X_{n}}{X_{0}}\right) \in \mathbb{C}\left[X_{0}, \ldots, X_{n}\right]
$$

This is homogeneous of degree d. Similarly, if I is an ideal in $\mathbb{C}\left[Y_{1}, \ldots, Y_{n}\right]$, its homogenisation $I^{\star}=I^{h}$ is the ideal generated by the homogenisation of the elements $f \in I$; this is a homogeneous ideal in $\mathbb{C}\left[X_{0}, \ldots, X_{n}\right]$. Given an affine variety $V \subseteq \mathbb{A}^{n}$, the projective closure of V is $\mathbb{V}\left(I(V)^{h}\right) \subseteq \mathbb{P}^{n}$.

Example. Let $f\left(Y_{1}, Y_{2}\right)=1+Y_{1}^{2}+Y_{1} Y_{2}^{2}$. Its homogenisation is $f^{h}\left(X_{0}, X_{1}, X_{2}\right)=X_{0}^{3}+X_{0} X_{1}^{2}+X_{1} X_{2}^{2}$. Remark. Let $I=\left(f_{1}, \ldots, f_{r}\right) \subseteq \mathbb{C}\left[Y_{1}, \ldots, Y_{n}\right]$, and let $J=\left(f_{1}^{h}, \ldots, f_{r}^{h}\right)$. Typically, $J \neq I^{h}$. If I is principal, this holds: $I=(f)$ implies $I^{h}=\left(f^{h}\right)$.

Proposition. Let $V \subseteq A^{n}$ be an affine variety. Then, the Zariski closure $\bar{V} \subseteq \mathbb{P}^{n}$ given by identifying $U_{0}=\mathbb{A}^{n}$ coincides with the projective closure $\mathbb{V}\left(I(V)^{h}\right) \subseteq \mathbb{P}^{n}$.

Proof. Let I be an ideal in $\mathbb{C}\left[Y_{1}, \ldots, Y_{n}\right]$, and let $V=\mathbb{V}(I)$. Let \bar{V} be the Zariski closure. Let I^{h} be the homogenisation of the ideal. Then $\mathbb{V}\left(I^{h}\right)$ is Zariski closed, and contains V. We will show that this is the smallest such set.

Suppose $Y \supseteq V$ is closed, so $Y=\mathbb{V}\left(I^{\prime}\right)$ where I^{\prime} is homogeneous. Any homogeneous element in I^{\prime} can be written as $X_{0}^{d} f^{h}$ for some $f \in \mathbb{C}\left[Y_{1}, \ldots, Y_{n}\right]$. Now, $X_{0}^{d} f^{h}=0$ on $V \subseteq \mathbb{P}^{n}$, so $f=0$ on $V \subseteq \mathbb{A}^{n}$. Hence $f \in I(V)=\sqrt{I}$ by the Nullstellensatz. So $f^{m} \in I$ for some $m>0$, so $\left(f^{m}\right)^{h}=\left(f^{h}\right)^{m} \in I^{h}$. Hence $f^{h} \in \sqrt{I^{h}}$, so $X_{0}^{d} f^{h} \in \sqrt{I^{h}}$. Therefore, $I^{\prime} \subseteq \sqrt{I^{h}}$.

Remark. Let $V \subseteq \mathbb{P}^{n}$, and let $W=V \cap U_{0} \subseteq \mathbb{A}^{n}$. Then $\bar{W} \subseteq \mathbb{P}^{n}$ is not in general equal to V. For example, let $V=\mathbb{V}\left(X_{0}\right)$, so $W=\varnothing$ and $\bar{W}=\varnothing$. This ambiguity arises due to the X_{0}^{d} term required in the above proof when dehomogenising a polynomial.

This shows that the topological notion of the Zariski closure and the algebraic notion of the projective closure agree.

Example. Let $V \subseteq \mathbb{P}^{2}$ be given by $\mathbb{V}\left(X_{0} X_{1}-X_{2}^{2}\right)$. We obtain $V_{0} \subseteq U_{0}$ given by setting $X_{0}=1$, $V_{1} \subseteq U_{1}$ given by setting $X_{1}=1$, and $V_{2} \subseteq U_{2}$ given by setting $X_{2}=1$. We find $V_{0}=\mathbb{V}\left(Y_{1}-Y_{2}^{2}\right)$ which is a parabola, and V_{1} is similar. $V_{2}=\mathbb{V}\left(X_{0} X_{1}-1\right)$, which is a rectangular hyperbola.

Theorem. Let $Q \subseteq \mathbb{P}^{n}$ be given by $\mathbb{V}(f)$ where f is a homogeneous quadratic polynomial. Then, after a change of coordinates $A \in P G L_{n}(\mathbb{C}), Q$ has the form $\mathbb{V}\left(X_{0}^{2}+\cdots+X_{r}^{2}\right)$ where r is the rank of the quadratic form f.

Proof. Use the results from IB Linear Algebra.

Theorem (projective Nullstellensatz). If $\mathbb{V}(I)=\varnothing \subseteq \mathbb{P}^{n}$ where I is a homogeneous ideal, then $I \supseteq\left(X_{0}^{m}, \ldots, X_{n}^{m}\right)$ for some $m \in \mathbb{N}$. Further, if $V=\mathbb{V}(I) \neq \varnothing$, then $I^{h}(V)=\sqrt{I}$, where $I^{h}(V)$ is the ideal generated by homogeneous polynomials vanishing on V.

Proof. We reduce to the affine case. Let I be a homogeneous ideal, and let $V^{a}=\mathbb{V}(I) \subseteq \mathbb{A}^{n+1}$. Note that $\mathbf{0} \in V^{a}$, assuming $V \neq \varnothing$. Then there is a continuous map $V^{a} \backslash\{0\} \rightarrow V$ obtained by the restriction of $\mathbb{A}^{n+1} \backslash\{\mathbf{0}\} \rightarrow \mathbb{P}^{n}$. Moreover, this map is surjective, so is a quotient map. Note that V is empty if and only if $V^{a}=\{\mathbf{0}\}$. So the result holds by the affine Nullstellensatz. The second part is similar.

Let V be a projective variety in \mathbb{P}^{n}. If $W \subseteq V$ is a variety closed in V, we say W is a closed subvariety of V. The complement $V \backslash W$ is an open subvariety. The closed (respectively open) subvarieties of V satisfy the axioms of the closed (open) sets of a topology. We say V is irreducible if V cannot be written as $V_{1} \cup V_{2}$ for proper closed subvarieties V_{1}, V_{2}.

Proposition. (i) Every projective variety is a finite union of irreducible varieties.
(ii) V is irreducible if and only if $I^{h}(V)$ is prime.

Proof. Part (i) is identical to the affine case. For part (ii), first observe that if I is a homogeneous ideal which is not prime, we can find homogeneous $F, G \notin I$ such that $F G \in I$, as I is generated by homogeneous elements. Then the proof for the affine case works as before.

Let $S \subseteq V$ be a subset. S is Zariski dense in V if and only if every homogeneous polynomial that vanishes on S vanishes on V.

Proposition. Let $V \subseteq \mathbb{P}^{n}$ be an irreducible projective variety. Let $W \subsetneq V$ be a proper closed subvariety. Then, $V \backslash W$ is dense in V.

Intuitively, W is lower-dimensional than V, and V with a lower-dimensional set removed is dense.

Proof. Let $f \in \mathbb{C}[\mathbf{X}]$ be a homogeneous polynomial that vanishes on $V \backslash W$. As $W \neq V$, there exists a polynomial $g \in I^{h}(W) \backslash I^{h}(V)$ by the projective Nullstellensatz. Then, $f g$ vanishes on all of V. But $I^{h}(V)$ is prime as V is irreducible, so $f \in I^{h}(V)$.

3.4 Rational functions

Homogeneous polynomials have well-defined zero sets in \mathbb{P}^{n}, but not a well-defined value. Therefore, we cannot define a coordinate ring $\mathbb{C}[V]$ in an analogous way. However, a ratio of homogeneous polynomials of the same degree does have a well-defined value on \mathbb{P}^{n} away from the vanishing locus of the denominator.

Definition. Let $V \subseteq \mathbb{P}^{n}$ be an irreducible projective variety. The function field or field of rational functions is

$$
\mathbb{C}(V)=\left\{\left.\frac{F}{G} \right\rvert\, F, G \in \mathbb{C}[\mathbf{X}] \text { homogeneous and have the same degree, } G \notin I^{h}(V)\right\} / \sim
$$

where $\frac{F_{1}}{G_{1}} \sim \frac{F_{2}}{G_{2}}$ if $F_{1} G_{2}-F_{2} G_{1} \in I^{h}(V)$.

Lemma. The relation \sim is an equivalence relation.

Proof. Reflexivity and symmetry are clear. Now suppose that $\frac{F_{1}}{G_{1}} \sim \frac{F_{2}}{G_{2}} \sim \frac{F_{3}}{G_{3}}$, so $F_{2} G_{1}-F_{1} G_{2} \in I^{h}(V)$ and $F_{3} G_{2}-F_{2} G_{3} \in I^{h}(V)$. Consider $F_{1} G_{3}-F_{3} G_{1}$. Multiplying by $G_{2}, F_{1} G_{2} G_{3}-F_{3} G_{1} G_{2}$. Since $G_{2} \notin I^{h}(V)$, primality of $I^{h}(V)$ implies that it suffices to show $F_{1} G_{2} G_{3}-F_{3} G_{1} G_{2} \in I^{h}(V)$. In the ring $\mathbb{C}[\mathbf{X}] / I^{h}(V)$, we have relations $F_{1} G_{2}=F_{2} G_{1}$ and $F_{3} G_{2}=F_{2} G_{3}$. Hence $F_{1} G_{2} G_{3}-F_{3} G_{1} G_{2}=0$ in $\mathbb{C}[\mathbf{X}] / I^{h}(V)$.

Note that $\mathbb{C}(V)$ is a field.

Proposition. The field $\mathbb{C}(V)$ is a finitely generated field extension of \mathbb{C}.
Note that $\mathbb{C}(t)$ is finitely generated as a field, but not finitely generated as a \mathbb{C}-module or a \mathbb{C}-algebra.
Proof. Suppose $V \neq \varnothing$. Then, there is some coordinate function X_{i} that is nonzero on V; without loss of generality let $i=0$. We claim that $\frac{X_{1}}{X_{0}}, \ldots, \frac{X_{n}}{X_{0}}$ generate $\mathbb{C}(V)$ over \mathbb{C}. Explicitly, if $\frac{F}{G}$ is a degree 0 ratio, it can be written in terms of the $\frac{X_{j}}{X_{0}}$ and the field operations. It suffices to show the result holds when $\frac{F}{G}$ is of the form $\frac{M}{G}$ where M is a monomial. Then, it suffices to show the result for $\frac{G}{M}$ where M is a monomial by taking reciprocals. Hence, it suffices to show the result for $\frac{M}{M^{\prime}}$ where M, M^{\prime} are monomials, and this is trivial.

Corollary. Let $V \subseteq \mathbb{P}^{n}$ be an irreducible projective variety, not contained in the hyperplane $\left\{X_{0}=0\right\}$. Let $V_{0}=V \cap U_{0}$, where $U_{0} \simeq \mathbb{A}^{n}$ is the first affine patch. Then, $\mathbb{C}\left(V_{0}\right)=\mathbb{C}(V)$, where $\mathbb{C}\left(V_{0}\right)=F F\left(\mathbb{C}\left[V_{0}\right]\right)$.

Proof. V_{0} has coordinate ring

$$
\mathbb{C}\left[\frac{X_{1}}{X_{0}}, \ldots, \frac{X_{n}}{X_{0}}\right]_{I\left(V_{0}\right)}
$$

Hence, $\mathbb{C}\left(V_{0}\right)=F F\left(\mathbb{C}\left[V_{0}\right]\right)$ is generated by the $\frac{x_{j}}{X_{0}}$.

Definition. Let $\varphi \in \mathbb{C}(V)$ and let $P \in V$. We say that φ is regular or defined at P if φ can be expressed as $\frac{F}{G}$ where F, G are homogeneous of the same degree with $G(P) \neq 0$. There is a partial function from the set of regular points of V to \mathbb{C}.

Definition. The local ring of V at P, written $\mathcal{O}_{V, P}$, is the set of $\varphi \in \mathbb{C}(V)$ such that φ is regular at P. This is a subring of $\mathbb{C}(V)$, which is a local ring in the sense of commutative algebra.

Proposition. Let $V \subseteq \mathbb{P}^{n}$ be an irreducible projective variety not contained in $\left\{X_{0}=0\right\}$. Let $V_{0}=V \cap U_{0}$ where $U_{0}=\left\{X_{0}=0\right\}$. Let P be a point in V_{0}. Then, there is a natural isomorphism $\mathcal{O}_{V, P} \rightarrow \mathcal{O}_{V_{0}, P}$ respecting the isomorphism $\mathbb{C}(V) \simeq \mathbb{C}\left(V_{0}\right)$.

Proof. Follows by unfolding the definitions.

3.5 Rational maps

Let $F_{0}, \ldots, F_{m} \in \mathbb{C}[\mathbf{X}]=\mathbb{C}\left[X_{0}, \ldots, X_{n}\right]$ be homogeneous of the same degree d. Define $\mathbf{F}=\left(F_{0}, \ldots, F_{m}\right): \mathbb{C}^{n+1} \rightarrow$ \mathbb{C}^{m+1} 。

Proposition. The map \mathbf{F} descends to a well-defined map of sets $\varphi: \mathbb{P}^{n} \backslash \bigcap_{j} \mathbb{V}\left(F_{j}\right) \rightarrow \mathbb{P}^{m}$. If P is represented by $\mathbf{a}=\left(a_{0}, \ldots, a_{n}\right)$, then $\varphi(P)$ is represented by $\left(F_{0}(\mathbf{a}), \ldots, F_{m}(\mathbf{a})\right)$.

Proof. Since all F_{j} are homogeneous of the same degree $d, \lambda \mathbf{a}=\left(\lambda a_{0}, \ldots, \lambda a_{n}\right)$ gives

$$
\left(F_{0}(\lambda \mathbf{a}), \ldots, F_{m}(\lambda \mathbf{a})\right)=\lambda^{d}\left(F_{0}(\mathbf{a}), \ldots, F_{m}(\mathbf{a})\right)
$$

which is equivalent to $\varphi(P)$.
We will denote such maps $\mathbf{F}=\left(F_{0}, \ldots, F_{m}\right)$ by $\varphi: \mathbb{P}^{n} \ldots \mathbb{P}^{m}$.
Let G be a nonzero homogeneous polynomial in X_{0}, \ldots, X_{n}. Given $\mathbf{F}: \mathbb{P}^{n} \ldots \mathbb{P}^{m}$, we can also consider $G \mathbf{F}=\left(G F_{0}, \ldots, G F_{n}\right): \mathbb{P}^{n} \rightarrow \mathbb{P}^{m}$. Observe that the maps \mathbf{F} and $G \mathbf{F}$ have different domains, but coincide at points where they are both defined. Note that there is a 'best' representative \mathbf{F}, as $\mathbb{C}[\mathbf{X}]$
is a unique factorisation domain, but we will not use this notion here, because not all rings that we will use are unique factorisation domains.

Definition. Let $V \subseteq \mathbb{P}^{n}$ be an irreducible projective variety. Let F_{0}, \ldots, F_{m} be homogeneous polynomials in $\mathbb{C}\left[X_{0}, \ldots, X_{n}\right]$ of fixed degree d, and not all contained in $I^{h}(V)$. They determine a map of sets $V \backslash \bigcap_{j} \mathbb{V}\left(F_{j}\right) \rightarrow \mathbb{P}^{n}$ by the previous construction. Two such tuples $\left(F_{0}, \ldots, F_{m}\right)$ and $\left(G_{0}, \ldots, G_{m}\right)$ are said to determine the same map if $F_{i} G_{j}-F_{j} G_{i} \in I^{h}(V)$. A rational map from V to \mathbb{P}^{m} is an equivalence class of tuples $\left(F_{0}, \ldots, F_{m}\right)$ as above, where two tuples are equivalent if they determine the same map.

Definition. A point $P \in V$ is a regular point of a rational map $\varphi: V \cdots \mathbb{P}^{n}$ if there is a representative $\left(F_{0}, \ldots, F_{m}\right)$ of φ such that $F_{j}(P) \neq 0$ for some j. The domain of φ is the set of regular points of φ. A rational map φ is called a morphism if the domain of φ is V; in this case, we write $V \rightarrow \mathbb{P}^{m}$.

Example. A linear map $\varphi: \mathbb{P}^{n} \ldots \mathbb{P}^{m}$ is given by an $(m+1) \times(n+1)$ matrix $A=\left(a_{i j}\right)$. Concretely, we can define $\varphi=\left(F_{0}, \ldots, F_{m}\right)$ where $F_{j}=\sum_{i} a_{i j} X_{i}$. If A has rank $n+1 \leq m+1$, then φ is a morphism.
Example (projection from a point). Let $P=(0: 0: 1) \in \mathbb{P}^{2}$. The projection from P is the rational $\operatorname{map} \pi: \mathbb{P}^{2} \rightarrow \mathbb{P}^{1}$ defined by $\left(a_{0}: a_{1}: a_{2}\right) \mapsto\left(a_{0}: a_{1}\right) . \pi$ is not regular at P, and regular everywhere else.
Let $C=\mathbb{V}\left(f_{d}\right)$ where f_{d} is a homogeneous polynomial of degree d. Suppose that $P \notin C$. The composition is therefore a morphism $\varpi: C \rightarrow \mathbb{P}^{1}$. One can show that for almost all choices of $Q \in \mathbb{P}^{1}$, the fibre $\varpi^{-1}(Q)$ is a set of size d.
Example. Let $C=\mathbb{V}\left(X_{0} X_{2}-X_{1}^{2}\right) \subseteq \mathbb{P}^{2}$. Consider the projection from ($0: 0: 1$), and restrict this projection to C to obtain a map $\pi: C \rightarrow \mathbb{P}^{1}$ defined by $\pi\left(a_{0}: a_{1}: a_{2}\right)=\left(a_{0}: a_{1}\right)$. By changing representatives, we can show π is a morphism, even though $(0: 0: 1) \in C$.
The map π is determined by $\left(X_{0}, X_{1}\right)$; we must look for other pairs $\left(F_{0}, F_{1}\right)$ that determine the same rational map as π, so $F_{0} X_{1}-F_{1} X_{0} \in I^{h}(C)=\left(X_{0} X_{2}-X_{1}^{2}\right)$. Notice that this relation is satisfied by $\left(X_{1}, X_{2}\right)$, so π agrees with the function $\pi^{\prime}\left(a_{0}: a_{1}: a_{2}\right)=\left(a_{1}: a_{2}\right)$ on C. So π is regular at ($0: 0: 1$) $\in C$, so π is a morphism.
Observe that for $\pi: C \rightarrow \mathbb{P}^{1}, \pi^{-1}(q)$ is a single point for $q \in \mathbb{P}^{1}$. One can show also that π is surjective.

If W is a projective variety, a rational map (or morphism) $V \rightarrow W$ is a rational map (or morphism) $V \rightarrow \mathbb{P}^{m}$ with image contained in W. A morphism $\varphi: V \rightarrow W$ is an isomorphism if it has a two-sided inverse morphism.

Proposition. Let C be the vanishing locus of a homogeneous polynomial $f \in \mathbb{C}\left[X_{0}, X_{1}, X_{2}\right]$ of degree 2 in \mathbb{P}^{2}. Then, if f is irreducible then $C \simeq \mathbb{P}^{1}$.

Proof. By changing coordinates, we can assume $f=X_{0} X_{2}-X_{1}^{2}$; the rank of the quadratic form is 2 as f is irreducible. By the example above, we have a morphism $\pi: C \rightarrow \mathbb{P}^{1}$ by projection from ($0: 0: 1$). We define an inverse map $\mu: \mathbb{P}^{1} \rightarrow \mathbb{P}^{2}$ by $\mu\left(Y_{0}: Y_{1}\right)=\left(Y_{0}^{2}: Y_{0} Y_{1}: Y_{1}^{2}\right)$. The image of μ lies in C, and the compositions are inverse.

There is only one conic in two-dimensional projective space, up to changing coordinates.
Example (Cremona transformation). Consider the rational map $\mathbb{P}^{2} \ldots \mathbb{P}^{2}$ given by

$$
\kappa\left(X_{0}: X_{1}: X_{2}\right)=\left(X_{1} X_{2}: X_{0} X_{2}: X_{0} X_{1}\right)
$$

This can be thought of as a coordinatewise reciprocal map. The Cremona transformation maps lines into conics. Suppose ℓ is a line not given by the vanishing locus of any of the coordinate functions X_{i}. Then, consider the subset $\mathcal{K}(\operatorname{dom} \mathcal{K} \cap \ell) \subseteq \mathbb{P}^{2}$; this is the analogue of the image in the case of rational maps. One can show that the closure of this set is a conic.

Example (Veronese embedding). Let F_{0}, \ldots, F_{m} be the list of monomials of degree d in X_{0}, \ldots, X_{n}, so $m=\binom{n+d}{d}-1$. We define the $v_{d}: \mathbb{P}^{n} \rightarrow \mathbb{P}^{m}$ mapping (a) to $\left(F_{0}(\mathbf{a}), \ldots, F_{m}(\mathbf{a})\right)$. One can show this is a morphism. Note that the map $\mu\left(Y_{0}: Y_{1}\right)=\left(Y_{0}^{2}: Y_{0} Y_{1}: Y_{1}^{2}\right)$ used in the previous proposition is an instance of this embedding. In general, v_{d} is injective, and the image of ν_{d} is a projective variety isomorphic to \mathbb{P}^{n}. This fact has a straightforward but tedious proof.

Note that $\mathbb{P}^{n} \times \mathbb{P}^{m} \nsim \mathbb{P}^{n+m}$.
Example (Segre embedding). Let $n, m>0$ be integers. The Segre embedding is the map $\sigma_{m n}: \mathbb{P}^{m} \times$ $\mathbb{P}^{n} \rightarrow \mathbb{P}^{m n+m+n}$ defined by $\sigma_{m n}\left(\left(x_{i}\right),\left(y_{j}\right)\right)=\left(x_{i} y_{j}\right)$. We label the coordinates of $\mathbb{P}^{m n+m+n}$ using $Z_{i j}$ for $0 \leq i \leq m$ and $0 \leq j \leq n$. Note that $(m+1)(n+1)-1$; we have a map $U \times V \rightarrow U \otimes V$ and then take the projectivisation, giving the correct dimension.

Theorem. The map $\sigma_{m n}$ is a bijection between $\mathbb{P}^{m} \times \mathbb{P}^{n}$ and the projective variety $\mathbb{V}(I)$ where I is the ideal generated by the $Z_{i j} Z_{p q}-Z_{i q} Z_{p j}$.

Proof. Clearly, $\sigma_{m n}\left(\mathbb{P}^{m} \times \mathbb{P}^{n}\right) \subseteq V=\mathbb{V}(I)$. Now, consider the affine piece $V_{00}=V \cap\left\{Z_{00} \neq 0\right\} \subseteq$ $\mathbb{A}^{m n+m+n}$. The inhomogeneous ideal defining V_{00} is generated by $Y_{i j}-Y_{i 0} Y_{0 j}$ where $1 \leq i \leq m$ and $1 \leq j \leq n$, and $Y_{i j}=\frac{Z_{i j}}{Z_{00}}$. Note that elements $Y_{i j} Y_{p q}-Y_{i q} Y_{p j}$ for other indices automatically lie in this ideal. On this patch, $\sigma_{m n}$ defines a morphism $\mathbb{A}^{m} \times \mathbb{A}^{n} \rightarrow \mathbb{V}\left(I_{00}\right)$. There is an inverse $\mathbb{A}^{m n+m+n} \rightarrow \mathbb{A}^{m} \times \mathbb{A}^{n}$, given by

$$
\left(Y_{i j}\right) \mapsto\left(\left(Y_{10}, \ldots, Y_{m 0}\right),\left(Y_{01}, \ldots, Y_{0 n}\right)\right)
$$

One can check that this is indeed an inverse; this process can be repeated for all other patches $\left\{Z_{i j} \neq 0\right\}$, so $\sigma_{m n}$ is as claimed.

Hence, if V, W are projective varieties, $V \times W$ is naturally also a projective variety.

3.6 Composition of rational maps

Let $\varphi: V \rightarrow W$ and $\psi: W \rightarrow Z$ be rational maps between irreducible varieties. The composition $\psi \circ \varphi$ of rational maps may not be well-defined, as the image of the domain of φ could lie entirely inside the locus of indeterminacy of ψ.

Definition. A rational map $\varphi: V \rightarrow W$ is dominant $\operatorname{if} \varphi(\operatorname{dom} \varphi)$ is Zariski dense in W.

Proposition. If φ is dominant, then $\psi \circ \varphi$ is well-defined for any rational map $\psi: W \rightarrow Z$.

Proof. Let U denote a dense open set in $\operatorname{dom} \varphi$, and let U^{\prime} be a dense open set in dom ψ. Then, let $U^{\prime \prime}=U \cap \varphi^{-1}\left(U^{\prime}\right)$, which is open in V. The composition $\psi \circ \varphi$ is well-defined on $U^{\prime \prime}$. This is a rational map as the composition of polynomials is a polynomial.

Definition. If $\varphi: V \rightarrow W$ and $\psi: W \rightarrow V$ are such that $\varphi \circ \psi$ and $\psi \circ \varphi$ are equivalent to the identity map on W and V respectively, we say that V and W are birational and that φ and ψ are birational maps.

Example. Any isomorphism is birational.
Example. Consider the Cremona map $\kappa: \mathbb{P}^{2} \cdots \mathbb{P}^{2}$ defined as above by $\left(x_{0}: x_{1}: x_{2}\right) \mapsto\left(x_{1} x_{2}\right.$: $\left.x_{0} x_{2}: x_{0} x_{1}\right)$. Intuitively, $\left(x_{0}: x_{1}: x_{2}\right) \mapsto\left(\frac{1}{x_{0}}: \frac{1}{x_{1}}: \frac{1}{x_{2}}\right)$. Then κ is self-inverse as a rational map, hence birational. It is not an isomorphism as it is not defined everywhere.
Remark. One can construct the group $\operatorname{Bir}\left(\mathbb{P}^{2}\right)$ of birational automorphisms of \mathbb{P}^{2}. This group contains a copy of $P G L_{2}(\mathbb{C})$ and the subgroup generated by κ above.

Theorem. Let V, W be irreducible projective varieties. Then V is birational to W if and only if $\mathbb{C}(V)$ and $\mathbb{C}(W)$ are isomorphic as fields.

Recall the similar result that if V, W are affine varieties, V is isomorphic to W if and only if $\mathbb{C}[V]$ and $\mathbb{C}[W]$ are isomorphic as \mathbb{C}-algebras.

Proof. Suppose first that V is birational to W, so $\varphi: V \rightarrow W$ is a birational map. Let $f \in \mathbb{C}(W)$. Then, f gives a function $W \rightarrow \mathbb{A}^{1}=\mathbb{C}$, and composition gives a map of fields $\varphi^{\star}: \mathbb{C}(W) \rightarrow \mathbb{C}(V)$ defined by $f \mapsto f \circ \varphi$. Similarly, φ^{-1} gives a map $\mathbb{C}(V) \rightarrow \mathbb{C}(W)$, and the compositions are identical, so we obtain an isomorphism of fields.

For the converse, suppose we have $\mathbb{C}(V) \simeq \mathbb{C}(W)$ as fields. Suppose that $V \subseteq \mathbb{P}^{n}$ is not contained in $\left\{X_{0}=0\right\}$, and $W \subseteq \mathbb{P}^{m}$ is not contained in $\left\{Y_{0}=0\right\}$. We have shown that $\mathbb{C}(V)=\mathbb{C}\left(x_{1}, \ldots, x_{n}\right)$ where x_{i} is the rational function determined by $\frac{x_{i}}{x_{0}}$. Similarly, $\mathbb{C}(W)=\mathbb{C}\left(y_{1}, \ldots, y_{m}\right)$ where y_{j} is determined by $\frac{Y_{j}}{Y_{0}}$.
An isomorphism $\mathbb{C}(V) \simeq \mathbb{C}(W)$ identifies each y_{j} with $f_{j}(\mathbf{x})$ where f_{j} is a rational function in n variables. Writing each $f_{j}(\mathbf{x})$ as a rational function in the $\frac{X_{i}}{X_{0}}$, we can clear denominators by multiplying by some polynomial in the $\frac{X_{i}}{X_{0}}$ and homogenise with respect to X_{0}. We then obtain homogeneous polynomials F_{0}, \ldots, F_{m} in X_{0}, \ldots, X_{n} such that

$$
f_{j}\left(\frac{X_{1}}{X_{0}}, \ldots, \frac{X_{n}}{X_{0}}\right)=\frac{F_{j}\left(X_{0}, \ldots, X_{n}\right)}{F_{0}\left(X_{0}, \ldots, X_{n}\right)}
$$

Now, F_{0}, \ldots, F_{m} determine a rational map $V \rightarrow W$. This can be repeated with the x_{i} and y_{j} reversed to obtain a rational map $W \rightarrow V$. One can show that these are inverses.

4 Dimension

4.1 Tangent spaces

Let $V \subseteq \mathbb{A}^{n}$ be an affine hypersurface, so $V=\mathbb{V}(f)$. We assume that f is irreducible, so V is also irreducible. Let $P=\left(a_{1}, \ldots, a_{n}\right)=(\mathbf{a}) \in V$. An affine line through P has the form $L=$ $\left\{\left(a_{1}+b_{1} t, \ldots, a_{n}+b_{n} t\right) \mid t \in \mathbb{C}\right\}$ for $(\mathbf{b}) \in \mathbb{C}^{n} \backslash\{\mathbf{0}\}$ is fixed.

The intersection $V \cap L$ is the set of points on L where f vanishes. This gives $0=f\left(a_{1}+b_{1} t, \ldots, a_{n}+\right.$ $\left.b_{n} t\right)=g(t)=\sum_{r} c_{r} t^{r}$, a polynomial in t. Since $P \in V \cap L, c_{0}=0$. The linear term c_{1} is given by $c_{1}=\sum_{i} b_{i} \frac{\partial f}{\partial X_{i}}$. Geometric tangency of L to V is equivalent to the statement that $c_{1}=0$.

Definition. The line L through P is tangent to $V=\mathbb{V}(f)$ at P if it is contained in the tangent space of V at P, defined by $T_{V, P}^{\text {aff }}=\mathbb{V}(g) \subseteq \mathbb{A}^{n}$ where

$$
g=\sum_{i=1}^{n}\left(\frac{\partial f}{\partial X_{i}}(P)\right)\left(X_{i}-a_{i}\right)
$$

Note that g is linear. $T_{V, P}^{\text {aff }}$ is n-dimensional if $g=0$ and ($n-1$)-dimensional otherwise, taking the dimensions as an affine space.

Definition. If $\operatorname{dim} T_{V, P}^{\text {aff }}=n$, we say that P is a singular point of V. Otherwise, it is a smooth point.

Example (nodal cubic). Consider the affine hypersurface $C=\mathbb{V}\left(Y^{2}-X^{2}(X+1)\right)$. One can show by direct calculation that the only singular point is $(0,0)$.
Example (cusp). Consider $C=\mathbb{V}\left(Y^{2}-X^{3}\right)$. Again, the point $(0,0)$ is the only singular point.
Let $V \subseteq \mathbb{V}(F) \subseteq \mathbb{P}^{n}$ for F an irreducible homogeneous polynomial.

Definition. The projective tangent space to V at P is $T_{V, P}^{\text {proj }}=\mathbb{V}(G)$ where

$$
G=\sum_{i=0}^{n}\left(\frac{\partial F}{\partial X_{i}}(P)\right) X_{i}
$$

To see that $P \in \mathbb{V}(G)$, note that $F\left(X_{0}, \ldots, X_{n}\right)=\frac{1}{\operatorname{deg} F} \sum_{i=0}^{n} X_{i} \frac{\partial F}{\partial X_{i}}$; this is sometimes known as Euler's formula. Smooth points and singular points are defined as in the affine case. From the inverse function theorem, if all points are smooth, the tangent space is a manifold.
The affine and projective tangent spaces are compatible in a particular sense. Let $V=\mathbb{V}(F) \nsubseteq$ $\left\{X_{0}=0\right\}$, and consider $V_{0}=V \cap U_{0}$. If $P \in V_{0} \subseteq V$, we can compute $T_{V, P}^{\text {proj }} \cap U_{0}$ and $T_{V_{0}, P}^{\text {aff }}$, which are both subsets of \mathbb{A}^{n}. Let $V_{0}=\mathbb{V}(f)$, then $F\left(X_{0}, \ldots, X_{n}\right)=X_{0}^{\operatorname{deg} F} f\left(\frac{X_{1}}{X_{0}}, \ldots, \frac{X_{n}}{X_{0}}\right)$. By computing $\frac{\partial F}{\partial X_{i}}$, we find that if $P \in V_{0}, T_{V, P}^{\text {proj }} \cap U_{0}=T_{V_{0}, P}^{\text {aff }}$.

Proposition. The set of singular points on a nonempty irreducible projective hypersurface is a proper Zariski closed subset. In particular, the set of smooth points is dense.

Proof. The set of singular points is the intersection of V with $\bigcap_{i} \mathbb{V}\left(\frac{\partial F}{\partial X_{i}}\right)$, so is a closed subvariety of V. If $V \cap \bigcap_{i} \mathbb{V}\left(\frac{\partial F}{\partial X_{i}}\right)=V$, then by the Nullstellensatz, $\frac{\partial F}{\partial X_{i}} \in I^{h}(V)$. However, $I^{h}(V)$ is principal and generated by F. Since $\frac{\partial F}{\partial X_{i}}$ is homogeneous and of smaller degree, $\left.\frac{\partial F}{\partial X_{i}} \right\rvert\, F$ gives that $\frac{\partial F}{\partial X_{i}}=0$. So F is a constant polynomial, giving $V=\mathbb{P}^{n}$ as it is nonempty, which has no singular points.

We can extend the definition of a tangent space to general varieties not generated by a single polynomial.

Definition. Let $V \subseteq \mathbb{A}^{n}$ be an affine variety, and let $P \in V$. Then the tangent space to V at P is

$$
T_{V, P}=\left\{\mathbf{v} \in \mathbb{C}^{n} \left\lvert\, \sum_{i=1}^{n} v_{i} \frac{\partial f}{\partial x_{i}}(P)=0\right. \text { for all } f \in I(V)\right\} \subseteq \mathbb{C}^{n}
$$

This is a vector subspace of \mathbb{C}^{n}.

Definition. Let $V \subseteq \mathbb{P}^{n}$ be a projective variety, and let $P \in V$. Suppose $V_{j}=V \cap\left\{X_{j} \neq 0\right\}$ is an affine piece containing P. Then the tangent space to V at P is $T_{V, P}=T_{V_{j}, P}$.

Note that this definition requires a choice of j; it is not clear that this is well-defined. This will be addressed by the following propositions.
Recall that \mathbb{P}^{n} is covered by U_{0}, \ldots, U_{n}, and $U_{i} \simeq \mathbb{A}^{n}$. Each point $P \in \mathbb{P}^{n}$ is contained in at least one of these U_{i}. If the index is unimportant, we will write $\mathbb{A}_{n} \subseteq \mathbb{P}^{n}$ rather than $U_{i} \subseteq \mathbb{P}^{n}$.
Let $V \subseteq \mathbb{P}^{n}, W \subseteq \mathbb{P}^{m}$ be irreducible varieties and $\varphi: V \rightarrow W$ be a rational map. Given $P \in \operatorname{dom} \varphi \subseteq$ V and $Q=\varphi(P) \subseteq W \cap \mathbb{A}^{m}$, we will now define $\mathrm{d} \varphi_{P}: T_{V, P} \rightarrow T_{W, P}$. Suppose φ is determined by $\left(F_{0}, \ldots, F_{m}\right)$, where the F_{i} are homogeneous and of the same degree. By restricting to \mathbb{A}^{n}, we can write $\frac{F_{j}}{F_{0}}\left(1, X_{1}, \ldots, X_{n}\right)=f_{j} \in \mathbb{C}\left(X_{1}, \ldots, X_{n}\right)$. This gives rational functions f_{1}, \ldots, f_{m} on $V \cap \mathbb{A}^{n}$. The derivative of φ at P or linearisation of φ at P is defined by

$$
\mathrm{d} \varphi_{P}(v)=\left(\sum_{i=1}^{n} v_{i} \frac{\partial f_{j}}{\partial X_{i}}(P)\right)_{j}
$$

which is initially a function $T_{V, P} \rightarrow \mathbb{C}^{m}$. This can be thought of as an application of the matrix of derivatives of f at P to the vector v.

Proposition. (i) $\mathrm{d} \varphi_{P}\left(T_{V, P}\right) \subseteq T_{W, Q}$;

(ii) the linear map $\mathrm{d} \varphi_{P}$ depends only on φ and not the representatives;
(iii) if $\psi: W \rightarrow Z$ is rational with $\varphi(P) \in \operatorname{dom} \psi$, then $\mathrm{d}(\psi \circ \varphi)_{P}=\mathrm{d} \psi_{\varphi(P)} \circ \mathrm{d} \psi_{P}$;
(iv) if φ is birational and φ^{-1} is regular at $\varphi(P)$, then $\mathrm{d} \varphi_{P}$ is an isomorphism $T_{V, P} \simeq T_{W, Q}$.

Proof. Part (i). We use Y_{j} for coordinates in W. Replace V with V_{0} and W with W_{0}. Let $g \in I(W)$, and consider its linearisation at Q. Applying the $\operatorname{map} \varphi^{\star}$ on function fields, we obtain $\varphi^{\star}(g)=h=$ $g\left(f_{1}, \ldots, f_{m}\right) \in \mathbb{C}(V)$. Choose a representative in $\mathbb{C}(X)$, representing a rational function on V that is regular at P. This map vanishes when it is regular as $\varphi(\operatorname{dom} \varphi) \subseteq W$. By the chain rule,

$$
\frac{\partial h}{\partial X_{i}}(P)=\sum_{j} \frac{\partial g}{\partial Y_{j}}(Q) \frac{\partial f_{j}}{\partial X_{i}}(P)
$$

Hence, $v \in T_{V, P}$ gives $\mathrm{d} \varphi_{P}(v) \in T_{W, Q}$.
$\operatorname{Part}(i i) . \operatorname{If}\left(F_{0}^{\prime}, \ldots, F_{m}^{\prime}\right)$ is another representation of φ with corresponding rational functions $f_{1}^{\prime}, \ldots, f_{m}^{\prime} \in$ $\mathbb{C}(V)$. Then $f_{j}-f_{j}^{\prime}$ vanishes on V whenever it is defined, or equivalently, $f_{j}-f_{j}^{\prime}=\frac{p_{j}}{q_{j}}$ where $p_{j} \in I(V)$ and $q_{j}(P) \neq 0$. Applying the quotient rule and the fact that $p_{j} \in I(V)$,

$$
\frac{\partial\left(f_{j}-f_{j}^{\prime}\right)}{\partial X_{i}}=\frac{-1}{q_{j}(P)}=\frac{\partial p_{j}}{\partial X_{i}}(P)=0
$$

Hence, $v \in T_{V, P}$ gives $\sum_{i} v_{i} \frac{\partial\left(f_{j}-f_{j}^{\prime}\right)}{\partial X_{i}}(P)=0$ as required.
Part (iii). Follows from the chain rule from multivariate calculus.
Part (iv). Immediate from (iii).
Note that if $P \in U_{i} \cap U_{j}$, we have two different definitions of the tangent space $T_{V, P}$. Suppose that $V=\mathbb{P}^{n}$, then there is a birational map $p_{i j}: U_{i} \rightarrow U_{j}$ which is the identity on $U_{i} \cap U_{j}$. Part (iv) of the above proposition gives an isomorphism from $T_{P, U_{i}}$ to $T_{P, U_{j}}$ given by $\mathrm{d} p_{i j}$.

4.2 Smooth and singular points

Definition. Let V be an affine or projective variety. If V is irreducible, the dimension of V, written $\operatorname{dim} V$, is the minimum dimension of a tangent space for a point in V. If $P \in V$ and V is irreducible, we say P is a smooth point of V if $\operatorname{dim} T_{V, P}=\operatorname{dim} V$. Otherwise, P is a singular point. If V is reducible, we define $\operatorname{dim} V$ to be the maximum dimension of an irreducible component of V.

Theorem. Let V be a nonempty irreducible affine or projective variety. Then the set of smooth points of V is a nonempty open subset of V.

Proof. The fact that the set is nonempty is clear as the minimum dimension must be attained at a point. We can assume $V \subseteq \mathbb{A}^{n}$ is affine. If $P \in V$,

$$
T_{V, P}=\left\{\mathbf{v} \in \mathbb{C}^{n} \left\lvert\, \sum_{i=1}^{n} v_{i} \frac{\partial f_{j}}{\partial x_{i}}(P)=0\right.\right\}
$$

where f_{j} is some finite set of functions with $\mathbb{V}\left(\left\{f_{j}\right\}\right)=V$. Then

$$
\operatorname{dim} T_{V, P}=n-\operatorname{rank} \frac{\partial f_{j}}{\partial X_{i}}(P)
$$

For any $r \in \mathbb{N}$,

$$
\left\{P \in V \mid \operatorname{dim} T_{V, P} \geq r\right\}=\left\{P \in V \left\lvert\, \operatorname{rank} \frac{\partial f_{j}}{\partial X_{i}}(P) \leq n-r\right.\right\}
$$

This is the subvariety given by the vanishing locus of the $(n-r+1) \times(n-r+1)$ minors of this matrix $\frac{\partial f_{j}}{\partial X_{i}}(P)$, which is closed.

Corollary. If V, W are irreducible and birational, then $\operatorname{dim} V=\operatorname{dim} W$.

4.3 Transcendental extensions

If $K \subseteq L$ are fields and $\alpha \in L$, we say that α is transcendental over K if it is not a solution to a nontrivial polynomial $f \in K[t]$. More generally, if $S \subseteq L$ is any set of elements, we say they are algebraically independent if they do not satisfy a nontrivial polynomial relation over K. A field extension K / \mathbb{C} is a pure transcendental extension if K is generated by transcendental algebraically independent elements $x_{1}, \ldots, x_{n} \in K$.
If V is an irreducible affine variety, recall that $\mathbb{C}(V)=F F(\mathbb{C}[\mathbf{X}] / I(V))$. If $V=\mathbb{P}^{1}, \mathbb{C}(V) \simeq \mathbb{C}(X)$.
Proposition. Let K / \mathbb{C} be a finitely generated field extension. Then, there exists a pure transcendental subfield $K_{0}=\mathbb{C}\left(x_{1}, \ldots, x_{m}\right) \subseteq K$ such that K / K_{0} is finite (and hence algebraic). Moreover, $K=K_{0}(y)$ for some $y \in K$.

Proof. The final statement follows from the primitive element theorem from Part II Galois Theory. We now prove the first part. K is finitely generated, so let $x_{1}, \ldots x_{n}$ generate K. There is a maximal algebraically independent subset which after relabelling is given by $\left\{x_{1}, \ldots, x_{m}\right\}$ for $m \leq n$. Then x_{m+1}, \ldots, x_{n} are algebraic over $K_{0}=\mathbb{C}\left(x_{1}, \ldots, x_{m}\right)$.

Proposition. Let $K=\mathbb{C}\left(x_{1}, \ldots, x_{n}\right)$, where x_{1}, \ldots, x_{n} are algebraically independent. Let x_{n+1} be algebraic over K. Define

$$
I=\left\{g \in \mathbb{C}\left[X_{1}, \ldots, X_{n+1}\right] \mid g\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)=0\right\}
$$

Then I is a principal ideal generated by an irreducible element $f \in \mathbb{C}[\mathbf{X}]$. Moreover, if f contains the variable X_{i}, then $\left\{x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}, x_{n+1}\right\}$ is algebraically independent.

Proof. As x_{1}, \ldots, x_{n} are algebraically independent, the subring $R=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] \subseteq K$ is isomorphic to the polynomial ring $\mathbb{C}\left[X_{1}, \ldots, X_{n}\right] . \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ is a unique factorisation domain. There exist polynomials $g \in K[T]$ where x_{n+1} is a root, as it is algebraic. Since $K[T]$ is a principal ideal domain, the ideal of such polynomials is principal, and generated by a unique monic polynomial $h(t)$, called the minimal polynomial of x_{n+1}. The minimal polynomial is irreducible.
Let b be the least common multiple of the denominators in $h(t)$, so $b \in R$. By Gauss' lemma, $f=b h$ is irreducible in $R[T]$. By the isomorphism $R \simeq \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$, we can think of f as an element of $\mathbb{C}\left[X_{1}, \ldots, X_{n+1}\right]$.

We show that f generates I. Suppose $g \in \mathbb{C}[\mathbf{X}]$ such that $g\left(x_{1}, \ldots, x_{n+1}\right)=0$. In $K[T], g\left(x_{1}, \ldots, x_{n}, T\right)$ is divisible by $f\left(x_{1}, \ldots, x_{n}\right)$. By Gauss' lemma, $f \mid g$ in $\mathbb{C}[\mathbf{X}]$. Hence f generates I as required. The last part is left as an exercise.

Corollary. Let V be any irreducible variety. Then V is birational to a hypersurface.

Proof. Let K be the function field of V. By the above discussion, we can find elements that generate K that are given by x_{1}, \ldots, x_{n+1} where x_{1}, \ldots, x_{n} are algebraically independent and x_{n+1} is algebraic over $\mathbb{C}\left(x_{1}, \ldots, x_{n}\right)$. By the previous proposition, $K \supseteq \mathbb{C}\left[x_{1}, \ldots, x_{n+1}\right]=\mathbb{C}\left[X_{1}, \ldots, X_{n+1}\right] /(f)$. We take the hypersurface $\mathbb{V}(f) \subseteq \mathbb{A}^{n+1}$.

We have shown above that birational varieties have the same dimension. We therefore have the following corollary.

Corollary. Let W be an irreducible variety, and let $V=\mathbb{V}(f) \subseteq \mathbb{A}^{n}$ be an affine hypersurface birational to W, where f is non-constant. Then the dimension of W is equal to $n-1$.

In the language of field theory, the dimension of W is the transcendence degree of the field $\mathbb{C}(W)$.

5 Algebraic curves

5.1 Curves

Definition. A curve is a variety of dimension 1 .
For our purposes, a curve is taken to mean a smooth irreducible projective variety of dimension 1. By convention, a curve C implicitly has an expression as $\mathbb{V}(I) \subseteq \mathbb{P}^{n}$, but this ambient space will not play an important role.

Example. Let $f_{d} \in \mathbb{C}[X, Y, Z]$ be homogeneous of degree d. For almost all choices of coefficients, $\mathbb{V}\left(f_{d}\right)$ is a (smooth irreducible projective) curve. We will show that for $d, d^{\prime} \geq 2, \mathbb{V}\left(f_{d}\right)$ and $\mathbb{V}\left(f_{d^{\prime}}\right)$ are never isomorphic.

Proposition. Let C be a curve, and let $D \subsetneq C$ be a proper Zariski closed subset. Then D is a finite union of points.

Proof. It suffices to prove this for irreducible affine curves $V \subseteq \mathbb{A}^{n}$. Let $W \subsetneq V$ be a proper irreducible closed subset; we will show this is a single point. By the Nullstellensatz, there is a strict containment $I(V) \subsetneq I(W)$.

If $t \in \mathbb{C}[W] \backslash \mathbb{C}$, we can use this to produce an element $y \in \mathbb{C}[V]$ as follows. $\varphi: W \hookrightarrow V$ gives the pullback $\operatorname{map} \varphi^{\star}: \mathbb{C}[V] \rightarrow \mathbb{C}[W]$ which is a surjection. Take any y such that $\varphi^{\star}(y)=t$.
We can also take $x \in \mathbb{C}[V]$ such that $\varphi^{\star}(x)=0$, so $x \notin \mathbb{C}$. One can show that x, y are algebraically independent in $\mathbb{C}(V)$, as t is transcendental. This gives two algebraically independent elements of
$C(V)$, which has transcendence degree 1 . So no such t can exist, so $\mathbb{C}[W]=\mathbb{C}$. Therefore W is a point.

Recall that if V is an irreducible variety, it has a coordinate ring (if it is affine), a function field, a local ring at each point, and the maximal ideal of functions vanishing at the given point in the local ring. These can be specialised in the case of curves. Note that if C is a smooth irreducible projective curve, there exists $t \in \mathbb{C}(V)$ such that $\mathbb{C}(V) / \mathbb{C}(t)$ is finite.

Theorem. Let P be a smooth point of an irreducible curve V. Then, the ideal $\mathfrak{m}_{P} \unlhd \mathcal{O}_{V, P}$ is principal.

A generator π_{P} of \mathfrak{m}_{P} is called a local parameter, a local coordinate, or a uniformiser.
Proof. We assume P lies in the affine patch V_{0} of V. By changing coordinates, we can set $P=0 \in \mathbb{A}^{n}$.

$$
\begin{aligned}
\mathbb{C}\left[V_{0}\right] & =\mathbb{C}\left[X_{1}, \ldots, X_{n}\right] / I\left(V_{0}\right)=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] \\
\mathcal{O}_{P} & =\mathcal{O}_{V_{0}, P}=\left\{\left.\frac{f}{g} \right\rvert\, f, g \in \mathbb{C}\left[V_{0}\right], g \notin\left(x_{1}, \ldots, x_{n}\right)\right\} \\
\mathfrak{m}_{P} & =\left\{\left.\frac{f}{g} \right\rvert\, f \in\left(x_{1}, \ldots, x_{n}\right), g \notin\left(x_{1}, \ldots, x_{n}\right)\right\}=x_{1} \mathcal{O}_{P}+\cdots+x_{n} \mathcal{O}_{P} \subseteq \mathcal{O}_{P}
\end{aligned}
$$

where x_{i} is the image of X_{i} under the quotient map. More generally, if $J \unlhd \mathcal{O}_{P}$ is any ideal, $\frac{f}{g} \in J$ if and only if $f \in J$. Therefore,

$$
J=\left\{\left.\frac{f}{g} \right\rvert\, f \in J \cap \mathbb{C}\left[V_{0}\right], g \in \mathbb{C}\left[V_{0}\right], g(P) \neq 0\right\}
$$

In particular, J is finitely generated.
Since P is smooth, $T_{V_{0}, P}^{\text {aff }}$ is a line, and by changing coordinates,

$$
T_{V, P}=\left\{X_{2}=X_{3}=\cdots=X_{n}=0\right\}
$$

We claim that x_{1} generates \mathfrak{m}_{P}. Since $T_{V, P}$ is cut out by linearisations at $P=0$ of elements in $I\left(V_{0}\right)$, there exist functions $f_{2}, \ldots, f_{n} \in I\left(V_{0}\right)$ such that $f_{j}=X_{j}-h_{j}$ where h_{j} has no terms of degree less than $2 . \operatorname{In} \mathcal{O}_{P}$,

$$
x_{j}=h_{j}\left(x_{1}, \ldots, x_{n}\right) \in\left(x_{1}^{2}, x_{1} x_{2}, \ldots, x_{n}^{2}\right)=\mathfrak{m}_{P}^{2}
$$

Thus, $\mathfrak{m}_{P}=\sum_{j=1}^{n} x_{i} \mathcal{O}_{P}=x_{1} \mathcal{O}_{P}+\mathfrak{m}_{P}^{2}$. The result that \mathfrak{m}_{P} is generated by x_{1} follows from Nakayama's lemma.

Lemma (Nakayama). Let R be a ring, let M be a finitely generated R-module, and let $J \unlhd R$ be an ideal. Then,
(i) if $J M=M$, there exists $r \in J$ such that $(1+r) M=0$; and
(ii) if $N \leq M$ is a submodule such that $J M+N=M$, then there exists $r \in J$ such that $(1+r) M \subseteq N$.

Let

$$
R=\mathcal{O}_{L} \supseteq J=\mathfrak{m}_{P}=M \supseteq N=\left(x_{1}\right)
$$

and apply part (ii) of Nakayama's lemma to conclude.

Corollary. Let $V=\mathbb{V}(f) \subseteq \mathbb{A}^{2}$ be an irreducible affine curve. Then, if $P \in V$ is a smooth point, the function $V \rightarrow \mathbb{C}$ defined by $Q \mapsto X(Q)-X(P)$ is a local parameter if and only if $\frac{\partial f}{\partial Y}(P) \neq 0$.

Proof. Use the proof of the above theorem.

Corollary. Let P be a smooth point of a curve V. Then there exists a surjective group homomorphism $\nu_{P}: \mathbb{C}(V)^{\star} \rightarrow \mathbb{Z}$ called the valuation at P or order of vanishing at P, such that
(i) $\mathcal{O}_{V, P}=\{0\} \cup\left\{f \in \mathbb{C}(V)^{\star} \mid \nu_{P}(f) \geq 0\right\}$;
(ii) $\mathfrak{m}_{p}=\{0\} \cup\left\{f \in \mathbb{C}(V)^{\star} \mid \nu_{P}(f)>0\right\}$;
(iii) if $f \in \mathbb{C}(V)^{\star}$, then for any local parameter π_{P}, we can write $f=\pi_{P}^{\nu_{P}(f)} u$ where $u \in$ $\mathcal{O}_{V, P}^{\star}=\mathcal{O}_{V, P} \backslash \mathfrak{m}_{P}$.

We will 'filter' the ring $\mathcal{O}_{V, P}$ by ideals generated generated by powers π_{P}^{k} for $k \geq 0$.
Proof. We know that $\mathfrak{m}_{P}=\left(\pi_{P}\right)$, so $\mathfrak{m}_{P}^{n}=\left(\pi_{P}^{n}\right)$. Define $J=\bigcap_{n \geq 0} \mathfrak{m}_{P}^{n}$. Note that $J \unlhd \mathcal{O}_{V, P}$ is a finitely generated ideal as we have seen in the previous proof, and moreover, $\mathfrak{m}_{P} J=\pi_{P} J=J$. By part (i) of Nakayama's lemma, it follows that $J=0$. So only the zero function vanishes to infinite order.

For every $f \in \mathcal{O}_{V, P} \backslash\{0\}$, there exists a unique n such that $f \in \mathfrak{m}_{P}^{n} \backslash \mathfrak{m}_{P}^{n+1}$. Define $\nu_{P}(f)=n$ for this n. If $f \in \mathbb{C}(V) \backslash \mathcal{O}_{V, P} \backslash\{0\}$, we claim $f^{-1} \in \mathcal{O}_{V, P}$. Indeed, $f=\frac{g}{h}$ for $g, h \in \mathcal{O}_{V, P}$, so we can write $g=\pi_{P}^{k} u$ and $h=\pi_{P}^{e} u^{\prime}$ where $k, l \geq 0$ and $u, u^{\prime} \in \mathcal{O}_{V, P}^{\star}$. Since $f \notin \mathcal{O}_{V, P}$, it follows that $k<\ell$, so $f^{-1} \in \mathcal{O}_{V, P}$ as required. Given this, we can define $\nu_{P}(f)=-v_{P}\left(f^{-1}\right)$ for such f.

As \mathfrak{m}_{P} is a local ring, $\mathcal{O}_{V, P} \backslash \mathfrak{m}_{P}=\mathcal{O}_{V, P}^{\star}$, so every nonzero $f \in \mathbb{C}(V)$ is $\pi_{P}^{\nu_{P}(f)} u$ where $u \in \mathcal{O}_{V, P}^{\star}$, giving ν_{P} as desired.

Example. Let $V=\mathbb{A}^{1}$ and $P=0 \in \mathbb{A}^{1}$. Then

$$
\mathcal{O}_{\mathbb{A}^{1}, 0}=\left\{\left.\frac{f(t)}{g(t)} \right\rvert\, g(0) \neq 0\right\} ; \quad \mathfrak{m}_{0}=\left\{\left.\frac{f(t)}{g(t)} \right\rvert\, f(0)=0, g(0) \neq 0\right\}
$$

So \mathfrak{m}_{0} is the set of $\frac{f(t)}{g(t)}$ where $t \mid f$. Then \mathfrak{m}_{0}^{k} is the set of $\frac{f(t)}{g(t)}$ where $t^{k} \mid f$.
We can think of $\frac{f(t)}{g(t)}$ where $g(t)=a_{0}+a_{1} t+\cdots+a_{k} t^{k}$ as $f(t)$ multiplied by the power series expansion of $g(t)^{-1}$ which has nonzero constant term. This product can be written as t^{M} multiplied by another power series with nonzero constant term. The valuation of f is $\nu_{0}\left(\frac{f}{g}\right)=M$.

Corollary. Let V be an irreducible curve and $f \in \mathbb{C}(V)$. If P is a smooth point, f or f^{-1} is regular at P.

Proof. f is regular at P if and only if $f \in \mathcal{O}_{V, P}$. The statement then follows by checking the sign of $\nu_{P}(f)$.

Corollary. Let V be a smooth curve. Then any rational map $V \rightarrow \mathbb{P}^{m}$ is a morphism.

Proof. Reordering coordinates, we can assume the image of $\varphi: V \rightarrow \mathbb{P}^{m}$ is not contained in $\left\{X_{0}=0\right\}$. We write $\varphi=\left(G_{0}, \ldots, G_{m}\right)=\left(1: g_{1}: \cdots: g_{m}\right)$ where $g_{j}=\frac{G_{J}}{G_{0}} \in \mathbb{C}(V)$. If all $g_{j} \in \mathcal{O}_{V, P}$, the result holds. Otherwise, let $t=\min _{j}\left\{\nu_{P}\left(g_{j}\right)\right\}$, so $t<0$. Note that $\min _{j}\left\{\nu_{P}\left(\pi_{P}^{-t} g_{j}\right)\right\}=0$. Then $\varphi \sim\left(\pi_{P}^{-t}: \pi_{P}^{-t} g_{1}: \cdots: \pi_{P}^{-t} g_{m}\right)$ which is regular at P.

Since every projective variety is contained in \mathbb{P}^{m}, any rational map from a curve to a projective variety is a morphism.

5.2 Maps between curves

Example. Let $C_{d} \subseteq \mathbb{P}^{2}$ be a smooth plane curve of degree d, so $C_{d}=\mathbb{V}(f)$ where f is homogeneous of degree d. Let $P \in \mathbb{P}^{2}$. Then, the projection from P, which is a rational map $\mathbb{P}^{2} \ldots \mathbb{P}^{1}$, automatically restricts to a morphism $C_{d} \rightarrow \mathbb{P}^{1}$. This morphism is surjective, and most points in \mathbb{P}^{1} have a fibre of size d.

Proposition. Let $\varphi: V \rightarrow W$ be a non-constant morphism of irreducible (possibly singular) projective curves. Then, for all $Q \in W$, the fibre $\varphi^{-1}(Q)$ is finite. The map φ induces an inclusion $\varphi^{\star}: \mathbb{C}(W) \hookrightarrow \mathbb{C}(V)$ which makes $\mathbb{C}(V)$ a finite extension of $\mathbb{C}(W)$.

Proof. For the first statement, $\varphi^{-1}(Q)$ is Zariski closed in V, so is either V or a finite set of points. As φ is not constant, the fibre is a finite set of points. V is infinite, so by the first part, $\varphi(V)$ is infinite and therefore dense in W. Since φ is dominant, φ^{\star} is defined. The map is automatically injective. Let $t \in \mathbb{C}(W) \backslash \mathbb{C}$ with $\varphi^{\star}(t)=x$. Since $\mathbb{C}(V)$ has transcendence degree 1 over $\mathbb{C}, \mathbb{C}(V)$ is finite over $\mathbb{C}(x)$, so also over $\mathbb{C}(W)$.

Definition. Let $\varphi: V \rightarrow W$ be a non-constant morphism of curves. The degree of φ is the degree of the field extension $\mathbb{C}(V) / \varphi^{\star} \mathbb{C}(W)$.

Definition. Let $\varphi: V \rightarrow W$ be a non-constant morphism of curves, let $P \in V$ be a smooth point, and define $Q=\varphi(P)$. We define the ramification degree of φ at P by $e_{P}=e(\varphi, P)=$ $\nu_{P}\left(\varphi^{\star} \pi_{Q}\right)$, where π_{Q} is a local coordinate at Q.

Example. Consider the morphism $\varphi: \mathbb{A}^{1} \rightarrow \mathbb{A}^{1}$ defined by $z \mapsto z^{d}$ for some $d \geq 1$. On rings, this is given by $\varphi^{\star}: \mathbb{C}[Y] \rightarrow \mathbb{C}[X]$ with $\varphi^{\star}(Y)=X^{d}$. On function fields, this map satisfies $\varphi^{\star} \mathbb{C}(Y)=\mathbb{C}\left(X^{d}\right)$, a subfield of $\mathbb{C}(X)$. The degree of φ is d. Let $P=0 \in \mathbb{A}^{1}$, so $Q=0 \in \mathbb{A}^{1}$. A local parameter near Q is Y, and $\varphi^{\star}(Y)=X^{d} . \nu_{0}\left(X^{d}\right)=d$, so the ramification degree of φ at 0 is d.
Now suppose $P=1, \varphi(P)=Q=1$. The local coordinate at Q is $Y-1$. We can find $\nu_{P}\left(\varphi^{\star}(Y-1)\right)=1$, so the ramification degree of φ at 1 is 1 . Note that $\varphi^{-1}(1)$ is the set of d th roots of unity, which is a set of d points $R_{1}, \ldots, R_{d} \cdot \nu_{R_{i}}\left(\varphi^{\star}(Y-1)\right)=1$ for each i.

Theorem. Let $\varphi: V \rightarrow W$ be a non-constant morphism of irreducible projective curves.
(i) φ is surjective.
(ii) Suppose V, W are smooth. Then, for any $Q \in W, \operatorname{deg} \varphi=\sum_{P \in \varphi^{-1}(Q)} e_{P}$.
(iii) At all but finitely many points $P \in V, e_{P}=1$.

Definition. A quasi-projective variety U is a Zariski-open subset of a projective variety $V \subseteq$ P^{n}.

Example. All projective varieties are quasi-projective. All affine varieties are also quasi-projective. Products of affine and projective varieties are quasi-projective, such as $\mathbb{P}^{n} \times \mathbb{A}^{m}$. Note that rational functions, rational maps, morphisms, irreducibility, function fields, local rings, and other algebraic geometric concepts are defined for quasi-projective varieties in the same way.

Proposition (fundamental theorem of elimination theory). The projection map $\mathbb{P}^{n} \times \mathrm{A}^{m} \rightarrow$ A^{m} is a Zariski closed map.

Preimages and images of closed sets are closed under this map.
Remark. Consider the map $\pi: \mathbb{A}^{2} \rightarrow \mathbb{A}^{1}$ given by projection onto the x-axis. Observe that π is not a closed map, as $\mathbb{V}(X Y-1)$ has image $\mathbb{A}^{1} \backslash\{0\}$, which is not closed.

Given this proposition, we prove the following result.
Proposition. Let $\varphi: V \rightarrow W$ be a morphism of quasi-projective varieties. Suppose that V is projective. Then φ is closed.

Proof. Factorise φ as $V \rightarrow \Gamma_{\varphi} \subseteq V \times W \rightarrow W$, where $\Gamma_{\varphi}=\{(x, \varphi(x)) \mid x \in V\}$ is the graph of φ. Note that Γ_{φ} is closed as it is the preimage of the diagonal $\varphi \times \mathrm{id}: V \times W \rightarrow W \times W$. The diagonal $W \subseteq W \times W$ is closed, even though $W \times W$ is not given the product topology. Now, $V \subseteq \mathbb{P}^{n}$ is a closed subset as it is a projective variety. Hence, it suffices to show that the projection map $\mathbb{P}^{n} \times W \rightarrow W$ is closed. Moreover, if W is covered by affine varieties $\left\{U_{i}\right\}$, it further suffices to show that $\mathbb{P}^{n} \times U_{i} \rightarrow U_{i}$ is closed for all i. Any quasi-projective variety is covered by affine varieties as required. Finally, each U_{i} is a closed subset of \mathbb{A}^{m} for some m with its subspace topology. It therefore suffices to show $\mathbb{P}^{n} \times \mathbb{A}^{m} \rightarrow \mathbb{A}^{m}$ is closed, which is the fundamental theorem of elimination theory.

We can now prove part (i) of the above theorem. Part (ii) is nonexaminable, and part (iii) will be shown later.

Corollary. Let $\varphi: V \rightarrow W$ be a non-constant map between irreducible projective curves. Then φ is surjective.

Proof. The image of φ is closed, so either a finite set of points or W itself. Since it is non-constant, φ is surjective.

Corollary. Let V be a smooth projective irreducible curve, and let $f \in \mathbb{C}(V)^{\star}$. Then,
(i) if f is regular at all points $P \in V$, then $f \in \mathbb{C}^{\star}$ is a constant;
(ii) the set of $P \in V$ such that $v_{P}(f) \neq 0$ is finite, and $\sum_{P \in V} \nu_{P}(f)=0$.

Proof. Part (i). Given f, consider the morphism $\varphi=(1: f): V \rightarrow \mathbb{P}^{1} . \varphi$ is a morphism because C is smooth. We want to find zeroes and poles of $f . \varphi(P)=(1: 0)$ if and only if $f(P)=0$, and $\varphi(P)=(0: 1)$ if and only if f is not regular at P. This means that if f is everywhere regular, φ is not surjective, so it is constant.
Part (ii). We can assume f is non-constant. Let t denote the rational function $\frac{X_{1}}{X_{0}}$ on \mathbb{P}^{1}. By the pullback, we obtain $\varphi^{\star} t \in \mathbb{C}(V)$ is exactly $\frac{f}{1}=f$. For convenience, $(1: 0) \in \mathbb{P}^{1}$ will be denoted 0 , and $(0: 1) \in \mathbb{P}^{1}$ will be denoted ∞.
Observe that t is a local parameter at $0 \in \mathbb{P}^{1}$, so if $f(P)=0, e_{P}=\nu_{P}\left(\varphi^{\star} t\right)=\nu_{P}(f)$. Similarly, $\frac{1}{t}=\frac{X_{0}}{X_{1}}$ is a local parameter at $\infty \in \mathbb{P}^{1}$, so if $f(P)=\infty$, we have $e_{P}=\nu_{P}\left(\varphi^{\star} \frac{1}{t}\right)=-v_{P}(f)$. Finally, if $f(P) \neq 0, \infty$, then $\nu_{P}(f)=0$. By the previous theorem, $\operatorname{deg} \varphi=\sum_{\varphi(P)=0} \nu_{P}(f)=\sum_{\varphi(P)=\infty}-v_{P}(f)$, giving the desired result.

Hence, there are no non-constant holomorphic functions.

5.3 Divisors

We will only consider smooth projective irreducible curves from now on. Let V be a curve. There is a natural inclusion from the space of functions defined everywhere on V (isomorphic to \mathbb{C}) to the field of rational functions on V. However, this field $\mathbb{C}(V)$ is very large and difficult to study directly. The goal of divisor theory is to organise $\mathbb{C}(V)$ into manageable (finite-dimensional) pieces.

Note that a rational function $f \in \mathbb{C}(V)$ determines an open subset $U \subseteq V$ on which f is well-defined as a function $U \rightarrow \mathbb{C}$. For instance, we could define $U=V \backslash\left\{x \mid \nu_{P}(f)<0\right\}$, which is V with a finite set of points removed. One idea is to study functions $f \in \mathbb{C}(V)$ that are well-defined away from a fixed set $\left\{P_{1}, \ldots, P_{n}\right\}$.

Definition. A divisor D on a curve V is a finite formal linear combination $\sum_{P \in V} n_{P}[P]$, or equivalently, an element of the free abelian group $\bigoplus_{P \in V} \mathbb{Z}[P]$. If $D=\sum_{P \in V} n_{P}[P]$, its degree is $\operatorname{deg} D=\sum_{P \in V} n_{P} \in \mathbb{Z}$.

Note that deg: $\operatorname{Div}(V) \rightarrow \mathbb{Z}$ is a group homomorphism. The kernel of deg is denoted $\operatorname{Div}^{0}(V)$. If $D=\sum n_{P}[P]$, we write $\nu_{P}(D)=n_{P}$.

Definition. Let $D \in \operatorname{Div}(V)$. The space of rational functions on V with poles bounded by D is

$$
L(D)=\left\{f \in \mathbb{C}(V) \mid f=0 \text { or } \forall P \in V, \nu_{P}(f)+\nu_{P}(D) \geq 0\right\}
$$

For instance, if $\nu_{P}(D)>0, f$ is allowed to have a pole at P of order at most $\nu_{P}(D)$. If $\nu_{P}(D)<0, f$ is forced to have a zero at P of order at least $-\nu_{P}(D)$.

Definition. Let $f \in \mathbb{C}(V)^{\star}$. The divisor of f is $\operatorname{div}(f)=\sum_{P \in V} \nu_{P}(f)[P]$.

Divisors of rational functions must have degree 0 . Divisors of the form $\operatorname{div}(f)$ are called principal divisors. The set $\operatorname{Prin}(V)$ is the set of divisors $D \in \operatorname{Div}(V)$ such that $D=\operatorname{div}(f)$ for some $f \in \mathbb{C}(V)^{\star}$, and this is a subgroup of $\operatorname{Div}^{0}(V), \operatorname{as} \operatorname{div}(f \cdot g)=\operatorname{div} f+\operatorname{div} g$.
The quotient $\operatorname{Div}(V) / \operatorname{Prin}(V)$ is noted $\operatorname{Pic}(V)=\mathrm{Cl}(V)$, and this is called the Picard group or class group of V. The Picard group and class group coincide for smooth varieties, but are different in the study of general varieties and schemes.
Divisors D, D^{\prime} are called linearly equivalent if $D-D^{\prime}$ is $\operatorname{div}(f)$ for some $f \in \mathbb{C}(V)^{\star}$, so D is equivalent to D^{\prime} in $\operatorname{Pic}(V)$. We write $D \sim D^{\prime}$.

Proposition. Every degree 0 divisor on \mathbb{P}^{1} is principal.
Note that every principal divisor is degree 0 in general.
Proof. Identify \mathbb{P}^{1} with $\mathbb{C} \cup\{\infty\}$, where $\mathbb{C} \hookrightarrow\{(1: z) \mid z \in \mathbb{C}\}$. Then, $D=\sum_{a \in \mathbb{C}} n_{a}[a]+n_{\infty}[\infty]$. Note that $n_{\infty}=-\sum_{a \in \mathbb{C}} n_{a}$. Let $f=\prod_{a \in \mathbb{C}}(t-a)^{n_{a}}$. This has a zero of order n_{a} at a. Hence, $\operatorname{div} f=D$; clearly, $v_{a}(\operatorname{div} f)=n_{a}$ for $a \in \mathbb{C}$, and $\frac{1}{t-a}$ is a local coordinate at ∞ for all $a \in \mathbb{C}$ where $t=\frac{X_{1}}{X_{0}}$, then we can calculate explicitly $\nu_{\infty}(\operatorname{div} f)=n_{\infty}$.

It is not always the case that every degree 0 divisor on a curve V is principal and $\operatorname{Pic}(V)$ is nontrivial; this gives rise to the notion of genus.

Definition. Let $V \subseteq \mathbb{P}^{n}$ be a curve. Consider the hyperplane $\mathbb{V}(L) \subseteq \mathbb{P}^{n}$ where L is a homogeneous linear polynomial. Assume $V \nsubseteq \mathbb{V}(L)$. The hyperplane section of V by $\mathbb{V}(L)$ is $\operatorname{div} L=\sum_{P \in V} n_{P}[P]$, where if $X_{i}(P) \neq 0, n_{P}=v_{P}\left(\frac{L}{X_{i}}\right)$.

This is well-defined as $\nu_{P}\left(\frac{L}{x_{i}}\right)=\nu_{P}\left(\frac{L}{x_{j}}\right)$ for $X_{i}(p) \neq 0, X_{j}(P) \neq 0$, as $\frac{x_{i}}{X_{j}} \in \mathcal{O}_{V, P}^{\star}$ so $\nu_{P}\left(\frac{x_{i}}{x_{j}}\right)=0$. Note that all n_{P} are nonnegative in this case.

Proposition. Let $V \subseteq \mathbb{P}^{n}$ be as above, and let L, L^{\prime} be linear homogeneous polynomials, neither vanishing on V. Then there is an equality

$$
\operatorname{div} L-\operatorname{div} L^{\prime}=\operatorname{div}\left(\frac{L}{L^{\prime}}\right)
$$

In particular, $\operatorname{div} L-\operatorname{div} L^{\prime}$ is principal, and $\operatorname{deg} \operatorname{div} L=\operatorname{deg} \operatorname{div} L^{\prime}$.

Definition. Let $V \subseteq \mathbb{P}^{n}$ be a curve. Then the degree of V is $\operatorname{deg} \operatorname{div} L$ where $V \nsubseteq \mathbb{V}(L)$.

Remark. A line in \mathbb{P}^{2} is degree 1 . A conic is degree 2 .
We can generalise these notions.
(i) If $\varphi: V \rightarrow \mathbb{P}^{n}$ is any non-constant morphism, and L is a linear form, we can similarly define $\operatorname{div} L$ by using $\sum_{P \in V} n_{P}[P]$ where $n_{P}=v_{P}\left(\frac{\varphi^{\star} L}{X_{i}}\right)$ where $X_{i}(P) \neq 0$. This generalises the case where φ is an inclusion. As before, we assume $\mathbb{V}(L)$ does not contain $\operatorname{Im} \varphi$. Note that this map need not be injective.
(ii) If G is homogeneous of degree $m \geq 1$ and $\varphi: V \rightarrow \mathbb{P}^{n}$, one can similarly define $\operatorname{div} G=$ $\sum_{P \in V} n_{P}[P]$ where $n_{P}=\nu_{P}\left(\frac{\varphi^{\star} G}{X_{i}^{m}}\right)$ for any i such that $X_{i}(P) \neq 0$.

Theorem (weak form of Bézout's theorem). Let $V, V^{\prime} \subseteq \mathbb{P}^{2}$ be smooth projective irreducible curves of degrees m, n. Then if $V \neq V^{\prime}$, the number of intersection points of V and V^{\prime} is at most $m n$.

We have already shown that this is the case when V^{\prime} is a line on an example sheet.
Proof. Suppose V, V^{\prime} are cut out by $\mathbb{V}(F), \mathbb{V}(G)$ of degrees m, n. We claim that the degree of $\operatorname{div} G$ as a divisor on V is $m n$. We can replace G by any other homogeneous polynomial of degree m by the previous proposition as it gives a linearly equivalent divisor. Replace G with L^{m} for a homogeneous linear polynomial L. Now, $\mathbb{V}(L) \cap V$ has size at most $n=\operatorname{deg} V$, so $\operatorname{deg} \operatorname{div} \varphi^{\star} G=n m$ as required, since $\operatorname{div}\left(\varphi^{\star} G\right)=\sum_{P \in V \cap \vee(G)} n_{P}[P]$ where $n_{P}>0$ (note that if $n_{P}>0$ then G vanishes at P).

5.4 Function spaces from divisors

Definition. A divisor D is called effective if $D=\sum n_{P}[P]$ for $n_{P} \geq 0$.

Recall that

$$
L(D)=\{f \in \mathbb{C}(V) \mid f=0 \text { or } \operatorname{div} f+D \geq 0 \text { pointwise }\}
$$

is equivalently the set of $f \in \mathbb{C}(V)$ such that $\operatorname{div} f+D$ is effective.

Proposition. The set $L(D)$ is a complex vector subspace of $\mathbb{C}(V)$.

Proof. $\nu_{P}(f+g) \geq \min \left\{\nu_{P}(f), \nu_{P}(g)\right\}$, hence sums of the form $f+g$ lie in $L(D)$ if $f, g \in L(D)$. Clearly $L(D)$ is closed under scalar multiplication.

Definition. Denote $\ell(D)=\operatorname{dim}_{\mathbb{C}} L(D)$.
Example. Let ∞ denote the point $(0: 1) \in \mathbb{P}^{1}$, and let $D=m[\infty]$ where $m \geq 0$. Writing $t=\frac{X_{1}}{X_{0}}$, $L(D)$ is spanned by $1, t, t^{2}, \ldots, t^{m}$. Hence, $\ell(D)=m+1$.

Proposition. Let D be a divisor on V. Then,
(i) If $\operatorname{deg} D<0$, then $L(D)=0$.
(ii) If $\operatorname{deg} D \geq 0$, then $\ell(D) \leq \operatorname{deg} D+1$.
(iii) For any $P \in V, \ell(D) \leq \ell(D-P)+1$.

In particular, $L(D)$ is always finite-dimensional.

Proof. Part (i). If $L(D) \neq 0$ then there exists $f \neq 0$ with $f \in L(D)$ such that $\operatorname{div} f+D \geq 0$. But taking degrees, $\operatorname{deg} \operatorname{div} f=0$ hence $\operatorname{deg} D \geq 0$, a contradiction.

Part (iii). Let $n=\nu_{P}(D)$. Define $\mathrm{ev}_{P}: L(D) \rightarrow \mathbb{C}$ by $f \mapsto\left(\pi_{P}^{n} f\right)(P)$, intuitively extracting the first nonzero term of the power series defining f at P. The kernel of this homomorphism is $L(D-P)$.
Part (ii). This now follows from parts (i) and (iii). If $d=\operatorname{deg} D$, then $\ell(D) \leq \ell(D-(d+1) P)+d+1=$ $d+1$ where the latter equality holds as $\operatorname{deg}(D-(d+1) P)<0$.

Proposition. Let D, E be divisors on a curve V such that $D \sim E$, or equivalently, $D-E$ is principal. Then $L(D)$ and $L(E)$ are isomorphic as complex vector spaces. In particular, $\ell(D)=\ell(E)$.

Proof. If $D-E$ is principal, it can be written as $\operatorname{div}(g)$. Multiplication by g (respectively g^{-1}) gives a linear map (respectively its inverse) $L(D) \rightarrow L(E)$.

6 Differentials

6.1 Differentials over fields

Differentials on curves will allow us to tackle some interesting questions.
(i) Given $D \in \operatorname{Div}(V)$, can we calculate (or bound) $\ell(D)$?
(ii) (Brill-Noether theory) For what integers r, d does a curve V admit a morphism $\varphi: V \rightarrow \mathbb{P}^{r}$ of degree d such that $\operatorname{Im} V$ is not contained in a hyperplane?
(iii) (Hurwitz problem) When does there exist a morphism $V \rightarrow W$ of smooth projective curves?

Definition. Let K / \mathbb{C} be a field extension. The space of differentials, written $\Omega_{K / \mathbb{C}}$, is the quotient vector space M / N where M is the K-vector space spanned by symbols δx where $x \in K$, and N is the subspace of M generated by

$$
\delta(x+y)-\delta(x)-\delta(y) ; \quad \delta(x y)-x \delta(y)-y \delta(x) ; \quad \delta(a)
$$

where $x, y \in K, a \in \mathbb{C}$. Given $x \in K$, we define $\mathrm{d} x=\delta x+N \in \Omega_{K / \mathbb{C}}$. The exterior derivative is the \mathbb{C}-linear map d: $K \rightarrow \Omega_{K / \mathbb{C}}$ mapping x to $\mathrm{d} x$.

Remark. More generally, if $\varphi: A \rightarrow B$ is a ring homomorphism, we could have defined $\Omega_{\varphi}=\Omega_{B / A}$ as a B-module as above.

Definition. Let U be a K-vector space. A \mathbb{C}-linear transformation $D: K \rightarrow U$ is called a derivation if $D(x y)=x D(y)+y D(x)$.

Example. The map d:K $\rightarrow \Omega_{K / \mathbb{C}}$ is a derivation. The map $\frac{\mathrm{d}}{\mathrm{d} x}: \mathbb{C}(X) \rightarrow \mathbb{C}(X)$ is a derivation.

Lemma (universal property). Let U be a K-vector space A map $D: K \rightarrow U$ is a derivation if and only if there is a K-linear map $\lambda: \Omega_{K / \mathbb{C}} \rightarrow U$ such that $\lambda(\mathrm{d} x)=D(x)$ for all $x \in K$.

The proof is very simple and omitted. Intuitively, $\mathrm{d}: K \rightarrow \Omega_{K / \mathbb{C}}$ is the 'best possible' derivation.
Remark. For any derivation D, if $y \in K$ and $y \neq 0, D(x)=D\left(y \cdot \frac{x}{y}\right)=y D\left(\frac{x}{y}\right)+\frac{x}{y} D(y)$, giving the quotient rule.

$$
D\left(\frac{x}{y}\right)=\frac{y D x-x D y}{y^{2}}
$$

Lemma. (i) Let $f=\frac{h}{g} \in \mathbb{C}\left(X_{1}, \ldots, X_{n}\right)$ and write $y=f\left(x_{1}, \ldots, x_{n}\right)$ for $x_{1}, \ldots, x_{n} \in K$. Then

$$
\mathrm{d} y=\sum_{i=1}^{n} \frac{\partial f}{\partial X_{i}}\left(x_{1}, \ldots, x_{n}\right) \mathrm{d} x_{i}
$$

(ii) If $K=\mathbb{C}\left(x_{1}, \ldots, x_{n}\right)$ for $x_{i} \in K$, then $\Omega_{K / \mathbb{C}}$ is spanned by $\mathrm{d} x_{1}, \ldots, \mathrm{~d} x_{n}$ as a K-vector space.

Proof. Part (i) follows from the rules of calculus for $\mathrm{d}(x y), \mathrm{d}\left(\frac{x}{y}\right)$ and \mathbb{C}-linearity. Part (ii) is immediate from part (i).

We have obtained divisors in two different ways: from rational functions, and from hyperplane sections of $V \rightarrow \mathbb{P}^{r}$. We will do the reverse, we will first construct divisors, and then use them to build maps $V \rightarrow \mathbb{P}^{r}$. Differentials are another way to construct divisors.
From now, we will write Ω_{K} for $\Omega_{K / C}$.
Theorem. Let $K / \mathbb{C}(t)$ be finite, with t transcendental over \mathbb{C}. Then Ω_{K} is one-dimensional as a K-vector space, and is spanned by $\mathrm{d} t$.

Proof. First, suppose $K=\mathbb{C}(t)$, the function field of \mathbb{P}^{1}. By the lemma above, Ω_{K} is spanned by $\mathrm{d} t$. We need to show that Ω_{K} is nonzero, then it is clearly one-dimensional. By the universal property, it suffices to exhibit a single nonzero derivation on K. The function $\frac{\mathrm{d}}{\mathrm{d} t}$ is one such derivation.
Now suppose $K \neq \mathbb{C}(t)$. Write $K_{0}=\mathbb{C}(t)$, so $K=\mathbb{C}(t, \alpha)=K_{0}(\alpha)$ for $\alpha \in K \backslash K_{0}$ algebraic over K_{0}. Let $h(t) \in K_{0}[X]$ be the minimal polynomial of α. By minimality of $h, h^{\prime}(\alpha) \neq 0$ as it does not have a double root. By the previous lemma, $\mathrm{d} t, \mathrm{~d} \alpha$ span Ω_{K} as a K-vector space.

If $f \in K_{0}[X]$, write $D_{t} f$ for $\frac{\partial f}{\partial t}$, by t-differentiating the coefficients. The lemma gives $0=\mathrm{d}(h(\alpha))=$ $D_{t} h(\alpha) \mathrm{d} t+h^{\prime}(\alpha) \mathrm{d} \alpha$. Hence Ω_{K} is spanned by $\mathrm{d} t$, so it suffices to show Ω_{K} is nonzero. As in the first part, it suffices to exhibit a single nonzero derivation on K.
First, define $D: K_{0}[X] \rightarrow K$ by $D(f)=D_{t} f$ if $f \in K_{0}, D(X)=\frac{-\left(D_{t} h\right)(\alpha)}{h^{\prime}(\alpha)}$, and $D\left(X^{n}\right)=n \alpha^{n-1} D(X)$. One can check that the ideal $h K_{0}[X]$ is mapped to zero under D. This exhibits a nonzero derivation as required.

6.2 Rational differentials

Definition. Denote $\Omega_{V}=\Omega_{\mathbb{C}(V) / \mathbb{C}}$. Elements of Ω_{V} are called rational differentials. A differential $\omega \in \Omega_{V}$ is regular at a point $P \in V$ if ω can be expressed as $\sum_{i} f_{i} \mathrm{~d} g_{i}$ where $f_{i}, g_{i} \in \mathcal{O}_{V, P}$. Write

$$
\Omega_{V, P}=\left\{\omega \in \Omega_{V} \mid \omega \text { regular at } P\right\} \subseteq \Omega_{V}
$$

Note that $\Omega_{V, P}$ is not a vector subspace over $\mathbb{C}(V)$, since we can multiply by functions that are not regular. However, it is a module over $\mathcal{O}_{V, P}$.
Recall that $\mathcal{O}_{V, P}$ contains the maximal ideal \mathfrak{m}_{P}, which is principal, giving local coordinates. We can make a similar construction in the context of differentials.

Theorem. $\Omega_{V, P}$ is a free $\mathcal{O}_{V, P}$-module generated by $\mathrm{d} \pi_{P}$ where π_{P} is a local coordinate at P. In other words, $\Omega_{V, P}=\left\{f \mathrm{~d} \pi_{P} \mid f \in \mathcal{O}_{V, P}\right\}$.

Remark. If π, π^{\prime} are local coordinates at $P, \mathrm{~d} \pi=u \mathrm{~d} \pi^{\prime}$ where $u \in \mathcal{O}_{V, P}^{\star}$. More generally, if $\omega \in \Omega_{V}$, then $\pi^{j} \omega$ is regular, so lies in $\Omega_{V, P}$, for sufficiently large k. Given this theorem, we can always write $\omega \in \Omega_{V}$ as $f \mathrm{~d} \pi_{P}$ where π_{P} is a local coordinate at P and $f \in \mathbb{C}(V)$.

Definition. Let $\omega \in \Omega_{V}$ and $P \in V$. Define $\nu_{P}(\omega)=\nu_{P}(f)$ where $\omega=f \mathrm{~d} \pi_{P}$ and π_{P} is a local coordinate at P.

Lemma. Let $\omega \in \Omega_{V}$ be a nonzero differential. Then, $\nu_{P}(\omega) \neq 0$ for only finitely many points P.

Proof. As $\nu_{P}(f \mathrm{~d} g)=\nu_{P}(f)+\nu_{P}(\mathrm{~d} g)$ and $\nu_{P}(f)=0$ for all but finitely many points, it suffices to only prove this lemma for the case $\omega=\mathrm{d} g$. Moreover, as g must be non-constant as $\mathrm{d} g \neq 0$, we can assume that g is transcendental. hence, $\mathbb{C}(V) / \mathbb{C}(g)$ is a finite extension. Consider $(1: g): V \rightarrow \mathbb{P}^{1}$. By the finiteness theorem for rational functions, there are only finitely many $P \in V$ such that $g(P)=\infty$ or $e_{P}>1$.

If P is a point where $e_{P}=1$, so the function is unramified, $\varphi^{\star}(t-g(P))$ is a local coordinate at P. But $\varphi^{\star}(t-g(P))$ is $g-g(P)$, so $\nu_{P}(\mathrm{~d} g)=0$.

Differentials provide another source of divisors.

Definition. Let $\omega \in \Omega_{V}$. Then $\operatorname{div} \omega=\sum_{P \in V} \nu_{P}(\omega)[P]$.

Proposition. Let ω, ω^{\prime} be nonzero rational differentials on V. Then, $\operatorname{div} \omega-\operatorname{div} \omega^{\prime}$ is principal.

Proof. Since Ω_{V} is one-dimensional over $\mathbb{C}(V)$, we can write $\omega=f \omega^{\prime}$ where $f \in \mathbb{C}(V)$. It follows from the definitions that $\operatorname{div} \omega-\operatorname{div} \omega^{\prime}=\operatorname{div} f$.

If ω is a nonzero differential, $\operatorname{div} \omega$ gives a well-defined element in $\operatorname{Pic}(V)=\mathrm{Cl}(V)=\operatorname{Div}(V) / \operatorname{Prin}(V)$. We say that $\operatorname{div} \omega$ is a canonical divisor, and its equivalence class is the canonical class, denoted K_{V}. Sometimes K_{V} is also simply called the canonical divisor.
We now prove the above theorem.
Proof. We want to check that $\mathrm{d} \pi_{P}$ generates the module $\Omega_{V, P}$ over $\mathcal{O}_{V, P}$. Clearly $\mathcal{O}_{V, P} \mathrm{~d} \pi_{P} \subseteq \Omega_{V, P}$; we want to check that the converse holds. Given $f \in \mathcal{O}_{V, P}, f-f(P) \in \mathfrak{m}_{P}$. Hence, $f=f(P)+\pi_{P} g \in$ $\mathcal{O}_{V, P}$ where $g \in \mathcal{O}_{V, P}$. By the Leibniz rule, $\mathrm{d} f=g \mathrm{~d} \pi_{P}+\pi_{P} \mathrm{~d} g \in \mathcal{O}_{V, P} \mathrm{~d} \pi_{P}+\pi_{P} \Omega_{V, P}$. Assume that $\Omega_{V, P}$ is finitely generated. Observe that

$$
\mathcal{O}_{P} \mathrm{~d} \pi_{P} \subseteq \Omega_{V, P} \subseteq \mathcal{O}_{P} \mathrm{~d} \pi_{P}+\pi_{P} \Omega_{V, P}
$$

Apply Nakayama's lemma to $R=\mathcal{O}_{V, P}, J=\mathfrak{m}_{P}, M=\Omega_{V, P}, N=\mathcal{O}_{V, P} \mathrm{~d} \pi_{P}$.
To show $\Omega_{V, P}$ is finitely generated, choose an affine patch $V_{0} \subseteq V$ containing P. Then $C\left[V_{0}\right]=$ $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ where the x_{i} generate $\mathbb{C}\left[V_{0}\right]$. If $f \in \mathcal{O}_{V, P}$, we can write $f=\frac{g}{h}$ where g, h are polynomials and $h(P) \neq 0$. Thus

$$
\mathrm{d} f=\sum_{i=1}^{n}\left(\frac{h \frac{\partial g}{\partial x_{i}}-g \frac{\partial h}{\partial X_{i}}}{h^{2}}\right)\left(x_{1}, \ldots, x_{n}\right) \mathrm{d} x_{i}
$$

But $h(P) \neq 0$, so $\mathrm{d} f$ is in the $\mathcal{O}_{V, P}$-span of $\left\{\mathrm{d} x_{i}\right\}$.
Example. Let $V=\mathbb{P}^{1}$, and let t be the coordinate on the standard $\mathbb{A}^{1} \subseteq \mathbb{P}^{1}$. For any $a \in \mathbb{C}$, the rational function $(t-a)$ is a local coordinate. At infinity, $\frac{1}{t}$ is a local coordinate.

We now calculate div $\mathrm{d} t$. We have $\nu_{a}(\mathrm{~d} t)=\nu_{a}(\mathrm{~d}(t-a))=0$ for all $a \in \mathbb{C}$. Note that $\mathrm{d} t=-t^{2} \mathrm{~d}\left(\frac{1}{t}\right)$ so

$$
\nu_{\infty}(\mathrm{d} t)=\nu_{\infty}\left(\frac{-1}{\left(\frac{1}{t}\right)^{2}} \mathrm{~d}\left(\frac{1}{t}\right)\right)=-2
$$

Hence $\operatorname{div} \mathrm{d} t=-2[\infty]$, so the degree is nonzero, hence this divisor is not principal.

Definition. Let V be a curve. The genus of V is $g(V)=\ell\left(K_{V}\right)$.
$L\left(K_{V}\right)$ is not well-defined, but $\ell\left(K_{V}\right)$ is. Note that if $V=\mathbb{P}^{1}$, then $\operatorname{div} \mathrm{d} t=-2[\infty]$, so $\ell\left(K_{\mathbb{P}}\right)=$ 0 , as there are no rational functions on \mathbb{P}^{1} that vanish to order 2 at infinity, apart from the zero function.

6.3 Differentials on plane curves

We will study curves in \mathbb{P}^{2}.
Example (smooth plane cubics). Consider $V=\mathbb{V}(F) \subseteq \mathbb{P}^{2}$ where $F=X_{0} X_{2}^{2}-\prod_{i=1}^{3}\left(X_{1}-\lambda_{i} X_{0}\right)$ with $\lambda_{1}, \lambda_{2}, \lambda_{3}$ distinct complex numbers. This curve is nonsingular. To calculate the genus, we take the following steps.
(i) We first use the affine equation $f(x, y)=y^{2}-\prod_{i=1}^{3}\left(x-\lambda_{i}\right)$, and write $f(x, y)=y^{2}-g(x, y)$. Differentiating, $2 y \mathrm{~d} y=g^{\prime}(x) \mathrm{d} x$ is a nontrivial relation in Ω_{V}.
(ii) Using this relation, we choose a convenient differential $\omega \in \Omega_{V}$; in this case, we will choose $\omega=\frac{\mathrm{d} x}{y}$.
(iii) Calculate $\operatorname{div} \omega$ by using the fact that if $\frac{\partial f}{\partial y}(P)$ is nonzero, $x-x(P)$ is a local parameter, and if $\frac{\partial f}{\partial x}(P)$ is nonzero, $y-y(P)$ is a local parameter.

We find that $K_{V}=0$. Hence, $g(V)=1$ as $\ell(0)=1$.

Theorem. Let V be a smooth plane cubic. Then $g(V)=1$, and in particular, $V \nsimeq \mathbb{P}^{1}$.

Proof. Change coordinates into the example above.

Theorem. Let $V=\mathbb{V}(F) \subseteq \mathbb{P}^{2}$ be a smooth projective plane curve of degree d. Then $K_{V}=$ $(d-3) H$ where H is the divisor class associated to a hyperplane section of V.

Proof. First, we will select a differential $\omega \in \Omega_{V}$. Change coordinates such that $(0: 1: 0) \notin V$. Let $x=\frac{X_{1}}{X_{0}}, y=\frac{X_{2}}{X_{0}}$ be elements of $\mathbb{C}(V)$. Set $f(X, Y)=F(1, X, Y)$, so $f(x, y)=0$ in $\mathbb{C}(V)$. Differentiating, $\frac{\partial f}{\partial X}(x, y) \mathrm{d} x+\frac{\partial f}{\partial Y}(x, y) \mathrm{d} y=0$ is a relation in Ω_{V}. Choose

$$
\omega=\frac{\mathrm{d} x}{\frac{\partial f}{\partial Y}(x, y)}=\frac{-\mathrm{d} y}{\frac{\partial f}{\partial X}(x, y)}
$$

Then, we will calculate div $\mathrm{d} \omega$ in this affine patch. If $\frac{\partial f}{\partial Y}(P) \neq 0$, then $x-x(P)$ is a local coordinate at P. Then, $\nu_{P}(\omega)=\nu_{P}\left(\frac{1}{\frac{\partial f}{\partial Y}}(x, y)\right)=0$. Otherwise, $\frac{\partial f}{\partial X}(P) \neq 0$ by smoothness, so $y-y(P)$ is a local coordinate and $\nu_{P}(\omega)=0$.

Since ($0: 1: 0) \notin V$, any point at infinity in V is not contained in $\left\{X_{2}=0\right\}$. The equation for V on the patch $\left\{X_{2} \neq 0\right\}$ is $g(z, w)=0$ where $z=\frac{X_{0}}{X_{2}}=\frac{1}{y}$ and $y=\frac{X_{1}}{X_{2}}=\frac{x}{y}$ and $g(Z, W)=F(Z, W, 1)$ in $\mathbb{C}[Z, W]$. Select a different differential

$$
\eta=\frac{\mathrm{d} z}{\frac{\partial g}{\partial W}(z, w)}=\frac{-\mathrm{d} w}{\{g\} Z(z, w)}
$$

By the same argument as before, $\nu_{P}(\eta)=0$ for all P in the patch $\left\{X_{2} \neq 0\right\}$. Using $f(X, Y)=Y^{d} g\left(\frac{1}{X}, \frac{X}{Y}\right)$ and differentiating, we find $\omega=Z^{d-3} \eta$. If $X_{2}(P) \neq 0$, we calculate $\nu_{P}(\omega)=(d-3) \nu_{P}(z)+\nu_{P}(\eta)=$ $(d-3) \nu_{P}(z)$. As $Z=\frac{X_{0}}{X_{2}}, \operatorname{div} \omega=(d-3) \operatorname{div} X_{0}$ as claimed.

Proposition. If $f(x, y)=0$ is an affine patch equation for a smooth projective plane curve, and $\operatorname{deg} f \geq 3$, then

$$
\left\{\left.\frac{x^{r} y^{s} \mathrm{~d} x}{\frac{\partial f}{\partial y}} \right\rvert\, 0 \leq r, s ; r+s \leq d-3\right\}
$$

is a basis for $L\left(K_{V}\right)$ for the representative of K_{V} given by $(d-3) H$ where H is the hyperplane at infinity.

The $\mathrm{d} x$ term can be considered a dummy symbol, meant to indicate that we think of the term as a differential.

Proof. The proof is non-examinable, and follows from the same argument as the proof of the previous theorem.

Corollary. If $d, d^{\prime} \geq 2$ are distinct integers, then smooth plane curves of degrees d, d^{\prime} are never isomorphic.

Proof. $\operatorname{deg} K_{V}$ depends only on V up to isomorphism.
In particular, there are infinitely many distinct curves up to isomorphism.

6.4 The Riemann-Roch theorem

Theorem. Let V be a smooth irreducible projective curve of genus g, and let D be a divisor on V. Let K_{V} be the canonical divisor class. Then,

$$
\ell(D)-\ell\left(K_{V}-D\right)=\operatorname{deg}(D)-g+1
$$

The proof is beyond the scope of this course. This theorem is related to Stokes' theorem and the Gauss-Bonnet theorem.

Corollary. Let K be the canonical divisor on V. Then, $\operatorname{deg}(K)=2 g-2$.
Note that $2 g-2=-\chi(V)$, the negative of the Euler characteristic of V.
Proof. Let $D=K$ in the Riemann-Roch theorem, and use $\ell(0)=1$.

Corollary. Let V be a smooth projective plane curve of degree d. Then the genus is $g(V)=$ $\frac{(d-1)(d-2)}{2}$.

Proof. We have seen that if $d=1,2$ then $V \simeq \mathbb{P}^{1}$. If $d \geq 3$, we have seen that K is linearly equivalent to $(d-3) H$ where H is a hyperplane section. $\operatorname{But} \operatorname{deg}(H)=d$, hence the result follows from the Riemann-Roch theorem.

Given a divisor D on V, calculating $\ell(D)$ is hard with the techniques discussed so far. However, the Riemann-Roch theorem can be used to compute this for most D.

Corollary. If $\operatorname{deg}(D)>2 g-2$, then $e(D)=\operatorname{deg}(D)-g+1$.

Proof. The divisor $K-D$ has negative degree, hence $\ell(K-D)=0$.
We can compare this to the case $V=\mathbb{P}^{1}$, where we saw by direct calculation that $\ell(D)=\operatorname{deg}(D)+$ 1.

Corollary. Suppose $g(V)=1$. Then if D is a divisor with $\operatorname{deg}(D)>0$, then $\ell(D)=\operatorname{deg}(D)$.

Proof. $\ell(K-D)=\ell(-D)=0$.
Let V be a curve of genus 1 , and fix $P_{0} \in V$. Let $P, Q \in V$, then $P+Q-P_{0}$ is equivalent to a unique effective divisor of degree 1 . So $P+Q-P_{0}$ is equivalent to R for a unique $R \in V$. Indeed, $\operatorname{deg}\left(P+Q-P_{0}\right)=1$ hence $\ell\left(P+Q-P_{0}\right)=1$, so there exists a function $f \in \mathbb{C}(V)$ such that $\left(P+Q-P_{0}\right)+\operatorname{div}(f)$ is effective, and hence equal to a point R. It is unique as $\ell\left(P+Q-P_{0}\right)=1$, and scalar multiples of f give the same divisor.
In other words, given $E=\left(V, P_{0}\right)$ as above, we can define $P+_{E} Q=R$ using the preceding notation. The pair $\left(V, P_{0}\right)$ where $g(V)=1, P_{0} \in V$ is called an elliptic curve. Topologically, such V in the Euclidean topology are homeomorphic to $\mathbb{S}^{1} \times \mathbb{S}^{1}$; the group law defined by $+_{E}$ and that defined on $\mathbb{S}^{1} \times \mathbb{S}^{1}$ in fact coincide.

Theorem. The operation $+_{E}$ gives E the structure of an abelian group with identity P_{0}. Moreover, the map $E \rightarrow \mathrm{Cl}^{0}(E)=\mathrm{Cl}^{0}(V)$ defined by $P \mapsto\left[P-P_{0}\right]$ is an isomorphism of groups.

Proof. Let $\beta(P)=\left[P-P_{0}\right] \in \mathrm{Cl}^{0}(E)=\operatorname{Div}^{0}(E) / \operatorname{Prin}(E)$. First, we show injectivity. Suppose $\beta(P)=$ $\beta(Q)$, so $P-P_{0} \sim Q-P_{0}$, where \sim denotes linear equivalence. Hence $P \sim Q$. However, $\ell(P)=1$ by the Riemann-Roch theorem, so $P=Q$.
Now, we show surjectivity. Suppose D has degree 0 . We want to show D is equivalent to $\left[P-P_{0}\right.$] for some P. Since the degree of $D+P_{0}$ is $1, \ell\left(D+P_{0}\right)=1$ by Riemann-Roch. Hence there exists $P \in V$ such that $D+P_{0} \sim P$. So $D=\beta(P)$ as required.

Hence β is a bijection of sets, so it remains to check that β is a homomorphism; this is straightforward.

Theorem. Let $E=\left(V, P_{0}\right)$ be the elliptic curve given by $\mathbb{V}(F)$ where $F=X_{0} X_{2}^{2}-\prod_{i=1}^{3}\left(X_{1}-\right.$ $\left.\lambda_{i} X_{0}\right)$. Choose $P_{0}=(0: 0: 1)$. Then, $P+_{E} Q+_{E} R=0_{E}$ if and only if P, Q, R are collinear in \mathbb{P}^{2}.

The proof is nonexaminable.
Given a morphism $\varphi: V \rightarrow W$ of curves, we wish to understand the relation between $g(V)$ and $g(W)$. Let $\omega=f \mathrm{~d} t \in \Omega_{W}$, where $\mathbb{C}(W) / \mathbb{C}(t)$ is finite. Since $\mathbb{C}(V) / \mathbb{C}(t)$ is finite, Ω_{V} is generated by $\mathrm{d} \varphi^{\star} t$. Define the pullback $\Omega_{W} \rightarrow \Omega_{V}$ by $\varphi^{\star} \omega=\varphi^{\star} f \mathrm{~d} \varphi^{\star} t$. Let P be a point on V, and $Q=\varphi(P)$. We compare $\nu_{P}\left(\varphi^{\star} \omega\right)$ and $\nu_{Q}(\omega)$.

Lemma. Let π_{P}, π_{Q} be local parameters at P, Q. Let e_{P} be the ramification degree at P, so $\varphi^{\star}\left(\pi_{Q}\right)=u \pi_{P}^{e_{P}}$ where u is a unit in $\mathcal{O}_{V, P}$. Then, $\nu_{P}\left(\varphi^{\star}\left(\mathrm{d} \pi_{Q}\right)\right)=e_{P}-1$. More generally, $\nu_{P}\left(\varphi^{\star} \omega\right)=e_{P} \nu_{Q}(\omega)+e_{P}-1$.

This can be thought of as a generalisation of the rule $\frac{\mathrm{d}}{\mathrm{d} x}\left\{x^{n}\right\}=n x^{n-1}$.
Proof. For the first part, we have that $\varphi^{\star}\left(\pi_{Q}\right)=u \pi_{P}^{e_{P}}$, so differentiating and taking valuation gives the desired result. For a general ω, we can write $\omega=u \pi_{Q}^{m} \mathrm{~d} \pi_{Q}$ where u is a unit in $\mathcal{O}_{V, P}$ as $\Omega_{W, Q}$ is a free module generated by $\mathrm{d} \pi_{Q}$. Then, we can apply φ^{\star} and proceed as in the first part.

Theorem (Riemann-Hurwitz). Let $\varphi: V \rightarrow W$ be as above. Let $n=\operatorname{deg} \varphi, n \neq 0$. Then

$$
2 g(V)-2=n(2 g(W)-2)+\sum_{P \in V}\left(e_{P}-1\right)
$$

where e_{P} is the ramification of φ at P.
Note that the correction term $\sum_{P \in V}\left(e_{P}-1\right)$ is nonnegative.

Proof. Let $\omega \in \Omega_{W}$ be nonzero. Then, by the Riemann-Roch theorem, and the previous lemma,

$$
\begin{aligned}
2 g(V)-2 & =\operatorname{deg}\left(\operatorname{div}\left(\varphi^{\star} \omega\right)\right) \\
& =\sum_{P \in V} \nu_{P}\left(\varphi^{\star} \omega\right) \\
& =\sum_{Q \in W} \sum_{P \in \varphi^{-1}(Q)} v_{P}\left(\varphi^{\star} \omega\right) \\
& =\sum_{Q \in W} \sum_{P \in \varphi^{-1}(Q)}\left(e_{P} v_{Q}(\omega)+e_{P}-1\right) \\
& =\sum_{Q \in W}\left(n v_{Q}(\omega)+\sum_{P \in \varphi^{-1}(Q)}\left(e_{P}-1\right)\right) \\
& =n \operatorname{deg}(\operatorname{div}(\omega))+\sum_{P \in V}\left(e_{P}-1\right) \\
& =n(2 g(W)-2)+\sum_{P \in V}\left(e_{P}-1\right)
\end{aligned}
$$

Corollary. Let V, W be curves with $g(V)<g(W)$. Then any rational map $V \rightarrow W$ is constant.

Proof. Any rational map of this form is a morphism, then apply the Riemann-Hurwitz theorem.
For example, there is no map $\mathbb{P}^{1} \rightarrow V$ for $g(V) \geq 1$.

6.5 Equations for curves using Riemann-Roch

Let $V \subseteq \mathbb{P}^{n}$ be a curve not contained in any hyperplane; this can be done without loss of generality by iteratively reducing n. Let $D=\operatorname{div}\left(X_{0}\right)$ be the hyperplane section. Let $G \in \mathbb{C}[\mathbf{X}]$ be a homogeneous linear polynomial. Then $f=\frac{G}{X_{0}} \in \mathbb{C}(V)^{\star}$. Observe that $\operatorname{div} f+D=\operatorname{div} G$ is effective. Hence $f \in L(D)$.

We thus obtain an injective linear map from the space of linear homogeneous polynomials in $\mathbb{C}[\mathbf{X}]$ into $L(D)$ defined by $G \mapsto \frac{G}{X_{0}}$. This is injective because V is not contained inside a hyperplane. We make the following observations.
(i) For any point $P \in V$, there exist linear homogeneous polynomials F, G such that $F(P) \neq 0$ and $G(P)=0$.
(ii) If P is a smooth point and L is the tangent line in \mathbb{P}^{n}, we can find a linear homogeneous polynomial F such that $F(P)=0$ but F does not vanish on all of L.

Under this injection, we obtain the following condition. We say that a divisor D on V satisfies condition (\star) if for every $P, Q \in V$ not necessarily distinct, we have $\ell(D-P-Q)=\ell(D)-2$.

Definition. Let V be a curve, and let D a divisor with $\ell(D)=n+1 \geq 2$. Let $\left\{f_{0}, \ldots, f_{n}\right\}$ be a basis for $L(D)$. The morphism associated to D is $\varphi_{D}: V \rightarrow \mathbb{P}^{n}$ given by $\left(f_{0}: \cdots: f_{n}\right)$.

We say that φ_{D} is an embedding if it is an isomorphism onto its image.

Theorem. The morphism φ_{D} associated to D is an embedding if and only if D satisfies condition (\star).

The proof is omitted.

Corollary. Suppose D is a divisor with $\operatorname{deg} D>2 g$. Then φ_{D} is an embedding.

Proof. By Riemann-Roch, D satisfies (\star).

Corollary. Every curve of genus g can be embedded in \mathbb{P}^{m} for some m depending only on g.

Proof. If $g \geq 3$, take $[D]=2 K_{V}$. If $g=2$, take $[D]=3 K_{V}$. If $g=1$, take $[D]=3\left[P_{0}\right]$ for some $P_{0} \in V$. In any case, $\operatorname{deg} D>2 g$.

Definition. A curve V of genus $g(V) \geq 2$ is called hyperelliptic if there exists a degree 2 morphism $V \rightarrow \mathbb{P}^{1}$.

The following theorem is on the last example sheet.

Theorem. A curve of genus g is hyperelliptic if and only if there exists a divisor D such that $\operatorname{deg} D=2$ and $\ell(D)=2$.

Theorem. Let V be a curve of genus $g(V) \geq 2$ that is not hyperelliptic. Then, the morphism $\varphi_{K_{V}}: V \rightarrow \mathbb{P}^{g-1}$ is an embedding.

Proof. Suppose that φ_{K} is not an embedding. Then K violates (\star), so there exist points $P, Q \in V$ such that $\ell(K-P-Q) \geq g-1$. Then by Riemann-Roch, $D=P+Q$ has $\ell(D) \geq 2$. But this is the maximal value by the above inequalities, so the result follows.

