
Automata and Formal Languages

Cambridge University Mathematical Tripos: Part II

21st May 2024

Contents
1 Introduction 3

1.1 Exposition . 3
1.2 Basic definitions . 3
1.3 Revisiting Numbers and Sets . 3
1.4 Notation . 4

2 Rewrite systems 5
2.1 Definitions . 5
2.2 Relation to languages . 5
2.3 Grammars . 6
2.4 Equivalent grammars . 7
2.5 The Chomsky hierarchy . 8
2.6 Decision problems . 8
2.7 Closure problems . 9
2.8 The empty word . 11

3 Regular languages 11
3.1 Regular derivations . 11
3.2 Deterministic automata . 12
3.3 Nondeterministic automata . 14
3.4 The pumping lemma for regular languages . 15
3.5 Closure properties . 16
3.6 Emptiness problem . 17
3.7 Regular expressions . 17
3.8 Minimisation of deterministic automata . 19
3.9 Equivalence problem . 20

4 Context-free languages 22
4.1 Trees . 22
4.2 Parse trees . 23
4.3 Chomsky normal form . 24
4.4 The pumping lemma for context-free languages . 25
4.5 Closure properties . 26
4.6 Decision problems . 27

5 Register machines 27

1

5.1 Definition . 27
5.2 Strong equivalence . 28
5.3 Performing operations and answering questions . 29
5.4 Register machine API . 30

6 Computability theory 31
6.1 Computable functions and sets . 31
6.2 Computability of languages . 33
6.3 The shortlex ordering . 33
6.4 Church’s recursive functions . 34
6.5 Merging and splitting words . 37
6.6 Universality . 37
6.7 The halting problem . 39
6.8 Sets with quantifiers . 40
6.9 Closure properties . 41
6.10 The Church–Turing thesis . 43
6.11 Solvability of decision problems . 43
6.12 Reduction functions . 44
6.13 Rice’s theorem . 45

2

1 Introduction
1.1 Exposition
Computation, or computability, is central to modern mathematics. However, we very rarely think
about the precise definition of what it means for something to be ‘computable’. There is an important
difference between existence and algorithmic access to a witness. Contrast the statements ‘every
polynomial of order 𝑛 has a root’, and ‘there is an algorithm that, given a polynomial of order 𝑛, we
can find a root’. In many cases, there is an existence proof but no algorithm to construct the relevant
object.

In 1900, Hilbert gave a talk in Paris known asMathematical Problems, in which he described a list of
100 problems to be worked on in the coming 100 years. One of these problems, the tenth, relates to
an algorithm to determine whether solutions of Diophantine equations, those in ℤ[𝑋], exist. In 1928,
Ackermann wrote the book Grundzüge der theoretischen Logik, in which he described the famous
Entscheidungsproblem: given a formula 𝜑, determine whether 𝜑 is a tautology (true regardless of
how the variables are interpreted).

In both cases, Hilbert expected that solutions to these questions exist. Positive solutions to such
problems do not require a definition of words like ‘algorithm’ or ‘procedure’, because we can agree
on what an algorithm is when we see an example. However, to disprove such statements, we need to
rigorously define what an algorithm is, in order to rule all possible algorithms out.

1.2 Basic definitions
To talk about computation, we must first define the objects on which computation takes place. Nat-
urally, one would assume the objects to be some kind of number, but even the above two examples
do not have inputs as numbers; instead, we see polynomials and formulas. Modern computation
relies on encodings of complicated objects as strings of a finite set of symbols, such as the bits 0 and
1. We use a similar approach, using a set Ω, which is usually assumed to be finite, called the set
of symbols, and then we define Ω⋆ to be the set of finite sequences of objects of Ω, called the set of
Ω-strings.

1.3 Revisiting Numbers and Sets
Recall that a set 𝑋 is called countable if there is a surjection ℕ → 𝑋 , and that 𝑋 is called infinite if
there is an injection ℕ → 𝑋 .

Proposition. If 𝑋 is nonempty and countable, then 𝑋⋆ is infinite and countable.

Proof. Since 𝑋 ≠ ∅, there exists 𝑥 ∈ 𝑋 . 𝑋⋆ is infinite, as the function mapping 𝑛 ∈ ℕ to 𝑥𝑥…𝑥⏟⎵⏟⎵⏟
𝑛 times

is injective. Because 𝑋 is countable, there exists a surjection 𝜋 ∶ ℕ → 𝑋 . Each natural 𝑘 ∈ ℕ has
a unique prime number decomposition∏𝑖∈ℕ 𝑝

𝑘𝑖
𝑖 where 𝑝0 = 2, 𝑝1 = 3, 𝑝2 = 5,… are the primes

indexed by the naturals. Wewill interpret the 𝑘𝑖 as encoding a sequence of elements of 𝑋 , taking care
to preserve the relevance of zero. Reading 𝑘0 as the length of a sequence, the sequence (𝑘1,… , 𝑘𝑘0)
is a sequence of naturals. We then obtain the sequence (𝜋(𝑘1),… , 𝜋(𝑘𝑘0)) in 𝑋⋆. By surjectivity of 𝜋,
the function we have constructed 𝑘 ↦ (𝜋(𝑘1),… , 𝜋(𝑘𝑘0)) is also surjective.

3

Theorem (Cantor’s theorem). Let 𝑋 be infinite. Then its power set 𝒫(𝑋) is uncountable.

Proof. Asimple diagonalisation argument shows there is no surjection from the naturals to the power
set 𝒫(𝑋).

Proposition. If 𝑋 is countable, then the set Fin(𝑋) ⊆ 𝒫(𝑋) of all finite subsets of 𝑋 is count-
able.

Proof. We construct a surjection from 𝑋⋆ to Fin(𝑋); then by composition with the surjection ob-
tained in the first proposition we construct a surjection ℕ → Fin(𝑋). Consider the forgetful function
𝑓∶ 𝑋⋆ → Fin(𝑋), mapping (𝑥1,… , 𝑥𝑛) to {𝑥1,… , 𝑥𝑛}. Since 𝑋 is countable, 𝜋∶ ℕ → 𝑋 is surjective,
hence for 𝑥 ∈ 𝑋 , 𝜋−1(𝑥) ⊆ ℕ is a nonempty set of naturals. Therefore, let 𝑛𝑥 be the least element
of 𝜋−1(𝑥). Then, given 𝐹 ∈ Fin(𝑋), consider the set {𝑛𝑥 ∣ 𝑥 ∈ 𝐹}, order it in the usual way, and rep-
resent this as a sequence. This is a sequence of naturals with |𝐹| elements, and its 𝜋-image is exactly
𝐹.

1.4 Notation
We will use the following notational conventions.

• The natural numbers ℕ are defined as {0, 1, 2,… }.
• We use the standard set-theoretic construction of naturals as Von Neumann ordinals, 𝑛 =
{0, 1,… , 𝑛 − 1}. Therefore, a natural is the set of all lower naturals.

• 𝑋𝑛 is the set of sequence of 𝑋-strings of length 𝑛, defined as 𝑋𝑛 = 𝑛 → 𝑋 , treating 𝑛 as a set as
above.

• We write |𝛼| = domain(𝛼) for the length of a sequence.
• 𝑋0 = 0 → 𝑋 is a type with only one element 𝜀, which is the empty sequence.
• We can write 𝑋⋆ = ⋃𝑛∈ℕ 𝑋𝑛.

• Truncation of a sequence 𝛼 ∈ 𝑋𝑛 to the length 𝑘 ≤ 𝑛 is exactly 𝛼|𝑘: the unique sequence of
length 𝑘 such that 𝛼|𝑘 ⊆ 𝛼.

• Concatenation of sequences 𝛼, 𝛽 ∈ 𝑋⋆ where |𝛼| = 𝑚, |𝛽| = 𝑛, is denoted 𝛼𝛽 ∈ 𝑋𝑚+𝑛, defined
piecewise in the natural way.

• By recursion, we define 𝛼0 = 𝜀 and 𝛼𝑛+1 = 𝛼𝛼𝑛.
• We identify the sequence of length one with its entry: 𝑥 ∈ 𝑋 can represent the sequence (𝑥) ∈
𝑋1.

• If 𝑌, 𝑍 ⊆ 𝑋⋆, we write 𝑌𝑍 = {𝛼𝛽 ∣ 𝛼 ∈ 𝑌, 𝛽 ∈ 𝑍}.
• Similarly, if 𝑌 = {𝛼}, we can write 𝛼𝑍 = {𝛼𝛽 ∣ 𝛽 ∈ 𝑍}.
• If 𝑓∶ 𝑋 → 𝑌 , we can lift this function to the space 𝑋⋆ → 𝑌⋆ functorially to the function ̂𝑓.
Often, the hat is omitted.

4

2 Rewrite systems
2.1 Definitions

Definition. Let Ω be a finite set of symbols, and let Ω⋆ be the set of Ω-strings. We call
elements ofΩ⋆×Ω⋆ rewrite rules or production rules. Such elements (𝛼, 𝛽) are written 𝛼 → 𝛽.

Informally, we interpret a rewrite rule 𝛼 → 𝛽 as a procedure that replaces an occurrence of 𝛼 in a
string with 𝛽.

Definition. A pair 𝑅 = (Ω, 𝑃) is called a rewrite system if 𝑃 is a finite set of rewrite rules.

Proposition. If Ω is finite, there are only countably many rewrite systems on Ω.

Proof. Ω⋆ is countable, so Ω⋆ × Ω⋆ is countable. Every 𝑃 is an element of Fin(Ω⋆ × Ω⋆), hence this
is countable.

Definition. If 𝑅 = (Ω, 𝑃) is a rewrite system, and 𝜎, 𝜏 ∈ Ω⋆, we write 𝜎 𝑅−→1 𝜏, pronounced
‘𝜎 is rewritten to 𝜏 in one step’ or ‘𝑅 produces 𝜏 from 𝜎 in one step’, if there exist 𝛼, 𝛽, 𝛾, 𝛿 ∈ Ω⋆

such that 𝜎 = 𝛼𝛾𝛽, 𝜏 = 𝛼𝛿𝛽, and 𝛾 → 𝛿 ∈ 𝑃.
The relation

𝑅−→ is the reflexive and transitive closure of
𝑅−→1. The sequence 𝜎0

𝑅−→1 𝜎1
𝑅−→1

… 𝑅−→1 𝜎𝑛 is called a 𝑅-derivation of length 𝑛 of 𝜎𝑛 from 𝜎0. We write

𝒟(𝑅, 𝜎) = {𝜏 ∈ Ω⋆ ∣ 𝜎 𝑅−→ 𝜏}

for the set of strings that can be rewritten, produced, or derived from 𝜎.

2.2 Relation to languages
In language, we can think of Ω as representing letters, and Ω⋆ representing words. We could altern-
atively consider Ω to represent words, and Ω⋆ to represent sentences. Further, Ω could represent
sentences, and then Ω⋆ would represent texts.

However, not all elements of Ω⋆ in each level is a valid word, sentence, or text. We therefore would
like to describe which elements of Ω⋆ are well-formed. Natural languages spoken by humans are
finite, and normally the way we determine whether a string is a word is by consulting a dictionary,
which at its core is a lookup table that determines whether any given string is or is not a word.

Even though in practice languages are finite, Chomsky realised that it makes more sense to model
them as infinite sets, due to a property known as linguistic recursion that seems to be an important
feature of human language. Linguistic recursion can be seen through the following example: when
𝑋 is a sentence in English, ‘𝐸 observes that 𝑋 ’ is also a grammatical sentence in English. If we define
an upper sentence length in English, we have to arbitrarily define an upper limit on this form of
recursion.

5

There is a difference between a sentence being grammatical and being meaningful. One notable ex-
ample is the grammatically correct ‘colourless green ideas sleep furiously’ that does not have mean-
ing, to contrast with ‘furiously sleep ideas green colourless’ which is neither grammatically correct
or meaningful. We can use grammar to distinguish these two sentences, but we cannot distinguish
algebraically whether a sentence has meaning.

Example. Consider the following generative grammar of rewrite rules for English.

𝑆 → NP VP
NP→ Adj NP
NP→ Noun
VP→ Verb
VP→ Verb Adv

This rewrite system allows us to derive the sentence ‘colourless green ideas sleep furiously’ from 𝑆.

2.3 Grammars

Definition. Let Σ be an alphabet of letters or terminal symbols, and let 𝑉 be a set of variables
or nonterminal symbols, such that Σ, 𝑉 are nonempty and disjoint. Let Ω = Σ ∪ 𝑉 . 𝑎, 𝑏, 𝑐,…
refer to letters and 𝐴, 𝐵, 𝐶,… refer to variables. Elements of𝕎 = Σ⋆ ⊆ Ω⋆ are called words.
𝑢, 𝑣, 𝑤,… refer to words. We denote𝕎+ = Σ⋆ ∖ {𝜀} for the set of nonempty words. A subset
of𝕎 is called a language.

Note that there are uncountably many languages over any nonempty alphabet.

Definition. A tuple 𝐺 = (Σ, 𝑉, 𝑃, 𝑆) is called a grammar if Σ, 𝑉 are nonempty and disjoint
denoting Ω = Σ ∪ 𝑉 , such that 𝑅 = (Ω, 𝑃) is a rewrite system, and 𝑆 ∈ 𝑉 is the start symbol.
Since grammars give rise to a natural rewrite system, our notation for rewrite systems may
also be used for grammars. For example,

𝒟(𝐺, 𝜎) = 𝒟(𝑅, 𝜎); 𝜎 𝐺−→(1) 𝜏 ⟺ 𝜎 𝑅−→(1) 𝜏

We define the language generated by the grammar to be

ℒ(𝐺) = 𝒟(𝐺, 𝑆) ∩𝕎

Example. If there is no rule of the form 𝑆 → 𝛼 in 𝑃, then𝒟(𝐺, 𝑆) = {𝑆} and thus ℒ(𝐺) = ∅ because
the start symbol is not a word. Likewise, if there is no rule of the form 𝛼 → 𝑤 for 𝑤 ∈ 𝕎 in 𝑃, then
𝒟(𝐺, 𝑆) contains no words, so ℒ(𝐺) = ∅.
Example. Let Σ = {𝑎}, 𝑉 = {𝑆}, 𝑃0 = {𝑆 → 𝑎𝑎𝑆, 𝑆 → 𝑎}, 𝐺0 = (Σ, 𝑉, 𝑃, 𝑆). We will show ℒ(𝐺0) =
{𝑎2𝑛+1 ∣ 𝑛 ∈ ℕ}. First, every element of 𝒟(𝐺, 𝑆) that is produced by 𝐺0 is of odd length, which can
be seen by induction on the length of the derivation, since each production rule preserves parity of
length. Conversely, each 𝑎2𝑛+1 can be produced by the rewrite rules, by applying 𝑆 → 𝑎𝑎𝑆 a total of
𝑛 times, and then applying 𝑆 → 𝑎.
Note that the only requirement of the proof was that odd length is preserved. Thus, the following
sets of production rules also produce the same language.

6

• 𝑃1 = {𝑆 → 𝑎𝑆𝑎, 𝑆 → 𝑎}
• 𝑃2 = {𝑆 → 𝑆𝑎𝑎, 𝑆 → 𝑎}
• 𝑃3 = {𝑆 → 𝑎𝑎𝑆, 𝑆 → 𝑎𝑎𝑆𝑎𝑎, 𝑆 → 𝑎}

This notion is called equivalence of grammars.

2.4 Equivalent grammars

Definition. Grammars 𝐺,𝐺′ are equivalent if ℒ(𝐺) = ℒ(𝐺′).

We intend to show that for a fixed finite set Σ, there are only countably many languages of the form
ℒ(𝐺) for a grammar 𝐺 (which may have arbitrary variable sets 𝑉).

Definition. Let 𝐺 = (Σ, 𝑉, 𝑃, 𝑆), 𝐺′ = (Σ, 𝑉 ′, 𝑃′, 𝑆′) be grammars on the same alphabet Σ. A
function 𝑓∶ Ω → Ω′ = Σ ∪ 𝑉 → Σ ∪ 𝑉 ′ is called an isomorphism if
(i) 𝑓|Σ = id;
(ii) 𝑓(𝑆) = 𝑆′;
(iii) 𝑓|𝑉 is a bijection from 𝑉 to 𝑉 ′;
(iv) 𝛼 → 𝛽 ∈ 𝑃 ⟺ 𝑓(𝛼) → 𝑓(𝛽) ∈ 𝑃′.
Note that here, since 𝛼, 𝛽 ∈ Ω⋆, 𝑓(𝛼) = ̂𝑓(𝛼) is the extension of 𝑓 to Ω⋆.

Proposition. Isomorphic grammars are equivalent.

Proof. If 𝑓 is an isomorphism from 𝐺 to 𝐺′, 𝑓−1 is an isomorphism from 𝐺′ to 𝐺. Thus, by antisym-
metry of ⊆, it suffices to show that ℒ(𝐺) ⊆ ℒ(𝐺′). Let 𝑤 ∈ ℒ(𝐺). Then there is a derivation in 𝐺 of
𝑤 from 𝑆:

𝑆 = 𝜎0
𝐺−→1 𝜎1

𝐺−→1 …
𝐺−→1 𝜎𝑛 = 𝑤

Applying 𝑓 to each element of this sequence,

𝑆′ = 𝑓(𝜎0)
𝐺′
−−→1 𝑓(𝜎1)

𝐺′
−−→1 …

𝐺′
−−→1 𝑓(𝜎𝑛) = 𝑤

The start and end symbols take these values due to property (i) and (ii). Each arrow holds by property
(iv). This is a derivation of 𝑤 from 𝑆′ in 𝐺. Hence 𝑤 ∈ ℒ(𝐺′).

Proposition. If 𝐺 = (Σ, 𝑉, 𝑃, 𝑆) and 𝑉 ′ is such that |𝑉| = |𝑉 ′|, then there exist 𝑃′, 𝑆′ such
that ℒ(𝐺) = ℒ(𝐺′) with 𝐺′ = (Σ, 𝑉 ′, 𝑃′, 𝑆′).

Proof. Since |𝑉| = |𝑉 ′|, there exists a bijection 𝑓∶ 𝑉 → 𝑉 ′. Then, extending this to Ω = Σ ∪ 𝑉 by
letting 𝑓(𝑎) = 𝑎 for all 𝑎 ∈ Σ, this satisfies properties (i) and (iii) of the definition of an isomorphism.
Define 𝑆′ = 𝑓(𝑆) and 𝑃′ = {𝑓(𝛼) → 𝑓(𝛽) ∣ 𝛼 → 𝛽 ∈ 𝑃}, so that properties (ii) and (iv) are satisfied.
Then (Σ, 𝑉, 𝑃, 𝑆) is isomorphic to (Σ, 𝑉 ′, 𝑃′, 𝑆′) and thus they have the same language.

7

Proposition. There are only countably many languages of the formℒ(𝐺) for some grammar
𝐺 on a fixed alphabet Σ.

Proof. Let ℒ be the set of all such languages. For a fixed 𝑉 , there are only countably many rewrite
systems with this choice of Σ and 𝑉 . Hence, the set 𝒢𝑉 of all grammars with fixed 𝑉 is a finite union
(over all start symbols) of countable sets. Therefore ℒ𝑉 = {ℒ(𝐺) ∣ 𝐺 ∈ 𝒢𝑉 } is also countable.
By the previous result, we can define ℒ𝑛 = ℒ𝑉 for some 𝑛-element set 𝑉 . Now, ℒ = ⋃𝑛>0 ℒ𝑛, which
is a countable union of countable sets and is thus countable.

Remark. The set of languages produced by grammars is countable, but the set of all languages 𝒫(𝕎)
is uncountable.

2.5 The Chomsky hierarchy
Production rules may have certain properties.

Definition. Let 𝛼 → 𝛽 be a production rule. We call this rule:
(i) noncontracting, if |𝛼| ≤ |𝛽|;
(ii) context-sensitive, if ∃𝐴 ∈ 𝑉, ∃𝛾, 𝛿 ∈ Ω⋆, ∃𝜂 ∈ Ω+, 𝛼 = 𝛾𝐴𝛿, 𝛽 = 𝛾𝜂𝛿;
(iii) context-free, if 𝛼 = 𝐴 ∈ 𝑉 and |𝛽| > 0;
(iv) regular, if 𝛼 = 𝐴 ∈ 𝑉 and 𝛽 is either 𝑎 ∈ Σ or 𝑎𝐵 ∈ Σ𝑉 .
Regular implies context-free, context-free implies context-sensitive, context-sensitive implies
noncontracting. Let ℚ be any of the above four properties. We say that a grammar is ℚ if all
its production rules are ℚ. A language is ℚ if it admits a grammar which is ℚ.

Theorem (Chomsky). A language is noncontracting if and only if it is context-sensitive.

Chomsky used the following notation: a language ℒ is

• type 0, if it is of the form ℒ(𝐺) for some 𝐺;
• type 1, if it is of the form ℒ(𝐺) for some 𝐺 context-sensitive;

• type 2, if it is of the form ℒ(𝐺) for some 𝐺 context-free;

• type 3, if it is of the form ℒ(𝐺) for some 𝐺 regular.

We can easily find production rules that are context-sensitive but not context-free, for example. How-
ever, it is less obvious to show that there is a language that can be defined using a context-sensitive
grammar but no context-free grammar. One thing motivating our work will be the development of
techniques to distinguish the different classes of languages in the Chomsky hierarchy.

2.6 Decision problems
We present three important decision problems.

(i) Consider the word problem. The input to this problem is a grammar and a word; the question
is to determine whether the word lies in the language generated by the grammar.

8

(ii) The emptiness problem considers a grammar 𝐺. The question is whether ℒ(𝐺) = ∅.
(iii) The equivalence problem asks whether two grammars 𝐺,𝐺′ are equivalent.

Definition. We call a problem solvable if there is an algorithm that gives the correct answer.
Otherwise, we call such a problem unsolvable.

Posed for all grammars, all three problems above are unsolvable. However, when restricted to certain
classes of the Chomsky hierarchy, the problems are more approachable.

Lemma. If 𝐺 is a noncontracting grammar and 𝑤 ∈ 𝕎, there exists a bound 𝑁 ∈ ℕ depend-
ing only on |𝑤| and |Ω| such that 𝑤 ∈ ℒ(𝐺) if and only if 𝑤 has a 𝐺-derivation of length at
most 𝑁.

Proof. Consider a 𝐺-derivation 𝑆 = 𝜎0,… , 𝜎𝑛 = 𝑤 of 𝑤, and consider the length of each element
of the sequence. As the grammar is noncontracting, the sequence 1 = |𝜎0|,… , |𝜎𝑛| = |𝑤| is non-
decreasing. Consider a part of the derivation 𝜎𝑖,… , 𝜎𝑖+𝑘 for which the length of the |𝜎𝑖| does not
change, so |𝜎𝑖| = |𝜎𝑖+𝑘|. If 𝜎𝑟 = 𝜎𝑠 for some 𝑟 ≠ 𝑠 ∈ {𝑖,… , 𝑖 + 𝑘}, we can shrink the derivation to
𝜎𝑖,… , 𝜎𝑟, 𝜎𝑠+1,… , 𝜎𝑖+𝑘.
Therefore, without loss of generality, we can assume 𝜎0,… , 𝜎𝑛 is a derivation of minimal length, so
all 𝜎𝑖 are distinct. Then by the pigeonhole principle,

𝑛 ≤
|𝑤|
∑
ℓ=1

|Ω|ℓ = 𝑁

Corollary. The word problem is solvable on noncontracting, context-sensitive, context-free,
and regular grammars.

Proof. Let𝑤 ∈ 𝕎. There is a finite, enumerable collection of possible derivations for𝑤 by the above
lemma. Check each derivation manually.

2.7 Closure problems
Closure problems are concerned with operations on languages to produce new languages. Let 𝐿,𝑀
be languages. Commonly used operations include 𝐿𝑀, 𝐿∪𝑀, 𝐿∩𝑀, 𝐿∖𝑀,𝕎+ ∖𝐿. Note that we use
𝕎+∖𝐿 instead of 𝐿𝑐 because noncontracting languages cannot contain the empty word. If 𝒞 is a class
of languages, such as the class of all regular languages, we say that 𝒞 is closed under an operation
if applying that operation to elements of 𝒞 yields a result which also lies in 𝒞. We would like to see
which classes are closed under which operations. Note that some closure properties imply others; for
instance, closure under complement and intersection implies closure under union by De Morgan’s
laws.

Definition. Let 𝐺 = (Σ, 𝑉, 𝑃, 𝑆), 𝐺′ = (Σ, 𝑉 ′, 𝑃′, 𝑆′) be grammars. Then 𝐻 = (Σ, 𝑉 ∪ 𝑉 ′ ∪

9

{𝑇}, 𝑃⋆, 𝑇) is called the concatenation grammar, where 𝑇 is a new variable, and

𝑃⋆ = 𝑃 ∪ 𝑃′ ∪ {𝑇 → 𝑆𝑆′}

𝐻′ = (Σ, 𝑉 ∪ 𝑉 ′ ∪ {𝑇}, 𝑃⋆⋆, 𝑇) is called the union grammar, where 𝑇 is a new variable, and

𝑃⋆⋆ = 𝑃 ∪ 𝑃′ ∪ {𝑇 → 𝑆, 𝑇 → 𝑆′}

Remark. ℒ(𝐺)ℒ(𝐺′) ⊆ ℒ(𝐻) by construction, and ℒ(𝐺) ∪ ℒ(𝐺′) ⊆ ℒ(𝐻′), but it is not true a priori
that the converse holds, because 𝑃 and 𝑃′ could share some variables. We can assume that 𝑉, 𝑉 ′

are disjoint by relabelling, but that is insufficient for the converses to hold, because there may be
interaction on the level of letters in Σ, which cannot be relabelled. The concatenation grammar on
context-free grammars is context-free, and the union grammar on regular languages is regular.

Definition. A production rule 𝛼 → 𝛽 is variable-based if all symbols occurring in 𝛼 are
variables. A grammar is called variable-based if all its rules are variable-based.

Remark. Regular and context-free languages are variable-based. Context-sensitive languages are not
all variable-based.

Lemma. Every grammar is equivalent to a variable-based grammar.

Proof. Let 𝐺 = (Σ, 𝑉, 𝑃, 𝑆). For each letter 𝑎 ∈ Σ, we allocate a new variable 𝑋𝑎. We define the map
𝑋 ∶ Ω → Ω by 𝑋(𝑎) = 𝑋𝑎 for 𝑎 ∈ Σ, and 𝑋(𝐴) = 𝐴 for 𝐴 ∈ 𝑉 . Then 𝑋 extends in the natural way
to a map 𝑋 ∶ Ω⋆ → Ω⋆. We can map each production rule in 𝐺 to a version that uses only variables
and no letters by applying 𝑋 to both sides. Hence, we define 𝑃′ = {𝑋(𝛼) → 𝑋(𝛽) ∣ 𝛼 → 𝛽 ∈ 𝑃}. Then,
defining 𝑃″ = {𝑋𝑎 → 𝑎 ∣ 𝑎 ∈ Σ}, let 𝐺′ = (Σ, 𝑉 ∪ {𝑋𝑎 ∣ 𝑎 ∈ Σ}, 𝑃′ ∪ 𝑃″, 𝑆). This grammar is variable-
based and so it suffices to show that it defines the same language as 𝐺.
Any 𝐺-derivation of 𝑤 is transformed into a 𝐺′-derivation of 𝑋(𝑤) by the operation 𝛼 → 𝑋(𝛼). Sim-
ilarly, if we have a 𝐺′-derivation that contains no letters anywhere, all strings occurring are of the
form 𝑋(𝛼) for some 𝛼 ∈ Ω⋆, and the operation of replacing all occurrences of 𝑋𝑎 with 𝑎 transforms
that derivation into a 𝐺-derivation. Thus, 𝑤 ∈ ℒ(𝐺) if and only if 𝑋(𝑤) ∈ 𝒟(𝐺′, 𝑆).
If 𝑋(𝑤) ∈ 𝒟(𝐺′, 𝑆) then, by applying rules of the form 𝑋𝑎 → 𝑎 as needed, we have 𝑤 ∈ ℒ(𝐺′).
Conversely, suppose 𝑤 ∈ ℒ(𝐺′) and let 𝑆 = 𝜎0,… , 𝜎𝑚 = 𝑤 be a 𝐺′-derivation of 𝑤. Applying the
operation 𝑋 to this derivation, we obtain a sequence 𝑆 = 𝜏0,… , 𝜏𝑚. This sequence is not necessarily
a 𝐺′-derivation. If 𝜎𝑖

𝐺′
−−→1 𝜎𝑖+1 was an application of a rule of the form 𝑋(𝛼) → 𝑋(𝛽), then the same

rule gives 𝑋(𝜎𝑖)
𝐺′
−−→1 𝑋(𝜎𝑖+1). In the other case, 𝜎𝑖

𝐺′
−−→1 𝜎𝑖+1 was an application of a rule of the form

𝑋𝑎 → 𝑎, so applying𝑋 gives𝑋(𝜎𝑖) = 𝑋(𝜎𝑖+1). Since for each letter 𝑎 there is only one production rule
that produces 𝑎, we know that |𝑤|-many steps of the derivationmust be of this form. Thus, removing
these steps will make the remainder of the sequence 𝜏0,… , 𝜏𝑚 a 𝐺′-derivation of length 𝑚 − |𝑤| of
𝑋(𝑤). Then 𝑤 ∈ ℒ(𝐺) as required.

Remark. The classes of context-free, context-sensitive, and noncontracting grammars are stable un-
der the action of turning a grammar into its equivalent variable-based grammar; all added rules are
regular. Regularity is not necessarily preserved.

10

Theorem. Let𝐺 = (Σ, 𝑉, 𝑃, 𝑆), 𝐺′ = (Σ, 𝑉 ′, 𝑃′, 𝑆′) be variable-based grammarswith𝑉∩𝑉 ′ =
∅. Then ℒ(𝐻) = ℒ(𝐺)ℒ(𝐺′), and ℒ(𝐻′) = ℒ(𝐺) ∪ ℒ(𝐺′). The classes of regular, context-
free, context-sensitive, and noncontracting languages are closed under union. The classes
of context-free, context-sensitive, and noncontracting languages are closed under concatena-
tion.

Proof. First, convert 𝐺,𝐺′ into variable-based grammars with disjoint variable sets. Then, the con-
catenation grammar and union grammar for 𝐺,𝐺′ must produce the required language by disjoint-
ness.

2.8 The empty word
Remark. By induction, we can easily show that noncontracting grammars cannot produce the empty
word, so we usually work with𝕎+ in place of𝕎. In general, adding the rule 𝑆 → 𝜀 to a grammar in
order to allow the empty word may introduce side-effects due to reuse of 𝑆.

Definition. A rule 𝛼 → 𝛽 is 𝑆-safe if it does not contain 𝑆 in 𝛽. A grammar is 𝜀-adequate if
all rules are 𝑆-safe.

An 𝜀-adequate grammar admits the addition of the rule 𝑆 → 𝜀 converting the language ℒ(𝐺) into
ℒ(𝐺) ∪ {𝜀}. We can easily convert a grammar into an equivalent 𝜀-adequate grammar by mapping
𝐺 = (Σ, 𝑉, 𝑃, 𝑆) to 𝐺′ = (Σ, 𝑉 ∪ {𝑇}, 𝑃 ∪ {𝑇 → 𝑆}, 𝑇) where 𝑇 is a new variable.

3 Regular languages
3.1 Regular derivations

Definition. A rule of the form 𝐴 → 𝑎 is called a terminal rule. A rule of the form 𝐴 → 𝑎𝐵 is
called a nonterminal rule.

Lemma. Let 𝐺 be a regular grammar. If 𝑆 𝐺−→ 𝛼, then 𝛼 ∈ 𝕎 ∪𝕎𝑉 .

Proof. This is shown by induction on the length of the derivation. The length-zero derivation gives
𝛼 = 𝑆 = 𝜀𝑆 ∈ 𝕎𝑉 . Suppose 𝑆 𝐺−→ 𝛽 𝐺−→1 𝛼 where 𝛽 ∈ 𝕎 ∪𝕎𝑉 . If 𝛽 ∈ 𝕎, 𝛽 contains no variables,
but all rules rewrite a variable. This contradicts that 𝛽 𝐺−→1 𝛼. So suppose 𝛽 = 𝑤𝐴 for 𝑤 ∈ 𝕎, 𝐴 ∈ 𝑉 .
Then the rule must be of the form 𝐴 → 𝑎 or 𝐴 → 𝑎𝐵. Hence 𝛽 = 𝑤𝑎 or 𝛽 = 𝑤𝑎𝐵. In either case, the
required invariant holds.

Lemma. If 𝑆 𝐺−→ 𝑤 for 𝑤 ∈ 𝕎, then the derivation has length |𝑤| and consists of precisely
|𝑤| − 1 nonterminal rules and one final terminal rule.

11

Proof. Terminal rules preserve the length of a string, and decrement the amount of variables. Nonter-
minal rules increment the length of a string, and preserve the amount of variables. Given that 𝑆 is
a string of length one with one variable, we must apply |𝑤| − 1 nonterminal rules to increment the
length of the string |𝑤| − 1 times. By the previous lemma, the number of variables in each derived
string is always 0 or 1. If the number ever reaches zero, nothing can be rewritten. Given 𝑤 ∈ 𝕎, the
number must reach zero, so a single terminal rule must be applied at the end.

Note that the derivation is not uniquely determined.

Lemma. Regular languages are closed under concatenation.

Proof. Let 𝐺 = (Σ, 𝑉, 𝑃, 𝑆), 𝐺′ = (Σ, 𝑉 ′, 𝑃′, 𝑆′), where without loss of generality 𝑉 ∩ 𝑉 ′ = ∅. Let 𝑃⋆

be the set of production rules given by 𝑃, but for each terminal rule 𝐴 → 𝑎 in 𝑃, replace it with a
nonterminal rule 𝐴 → 𝑎𝑆′. Then let 𝐻 = (Σ, 𝑉 ∪ 𝑉 ′, 𝑃⋆ ∪ 𝑃′, 𝑆). We claim ℒ(𝐻) = ℒ(𝐺)ℒ(𝐺′).

Suppose 𝑆 𝐺−→ 𝑣 and 𝑆′ 𝐺′
−−→ 𝑤. Then 𝑆 𝐻−→ 𝑣𝑆′, and so 𝑆 𝐻−→ 𝑣𝑤 as required.

Conversely, suppose 𝑆 𝑢−→ for 𝑢 ∈ 𝕎. By the above lemma, the derivation is of the form

𝑆 = 𝜎0
𝐻−→1 …

𝐻−→1 𝜎𝑛 = 𝑢

where 𝜎𝑖 = 𝑤𝑖𝑋𝑖 for some𝑤𝑖 ∈ 𝕎,𝑋𝑖 ∈ 𝑉 . An initial segment of the 𝑋𝑖 belongs to 𝑉 , until rewritten
as 𝑆′ by a rule added into 𝑃⋆. Then, the rest of the 𝑋𝑖 belong to 𝑉 ′, because only the new rules in
𝑃⋆ map variables between 𝑉 and 𝑉 ′. Hence the derivation splits into two halves, 𝑢 = 𝑣𝑤 where

𝑆 𝐺−→ 𝑣, 𝑆′ 𝐺′
−−→ 𝑤, giving the concatenation as required.

3.2 Deterministic automata

Definition. Let Σ be an alphabet. Then a deterministic automaton is a tuple of the form
𝐷 = (Σ,𝑄, 𝛿, 𝑞0, 𝐹)where𝑄 is a finite set of states, 𝑞0 ∈ 𝑄 is the start state, 𝐹 ⊆ 𝑄∖ {𝑞0} is the
accept states, and 𝛿∶ 𝑄 × Σ → 𝑄 is the transition function.

We graphically represent deterministic automata using labelled directed graphs. The nodes are ele-
ments of 𝑄, circled twice for accept states and circled once for other states. Each node has |Σ|-many
outgoing arrows labelled with the corresponding letter.

𝑞0start

𝑞1

𝑞2

0

1

0

1

0, 1

12

We intuitively interpret a deterministic automaton as a machine that starts at 𝑞0 and reads a word
𝑤 ∈ 𝕎 symbol-by-symbol, transitioning to a new state according to 𝛿 at each step. After all symbols
in the word are parsed, we check whether the machine lies in an accept state or not. We say the
automaton accepts 𝑤 if the final state is an accept state; otherwise, it rejects 𝑤.

Definition. We define by recursion a function ̂𝛿 ∶ 𝑄×𝕎 → 𝑄 by ̂𝛿(𝑞, 𝜀) = 𝑞 and ̂𝛿(𝑞, 𝑎𝑤) =
̂𝛿(𝛿(𝑞, 𝑎), 𝑤). The language accepted by 𝐷 is

ℒ(𝐷) = {𝑤 ∣ ̂𝛿(𝑞0, 𝑤) ∈ 𝐹}

The sequence of states produced from 𝑞0 and reading𝑤 is uniquely determined and of length
|𝑤| + 1, known as the state sequence of the computation.

We claim that in the example above,ℒ(𝐷) = {𝑤 ∣ 𝑤 contains at least one 0}. Note that ̂𝛿(𝑞0, 𝑤) = 𝑞0 if
and only if𝑤 = 𝜀. There are three transitions in the diagram for the letter 0, but all such 0-transitions
lead to 𝑞1 hence every string with a zero goes to 𝑞1. All transitions from 𝑞1 go back to 𝑞1, so any string
containing a zero must end at 𝑞1. All other strings are of the form 1111…1, which end at 𝑞2.

Definition. Let 𝐷 = (Σ,𝑄, 𝛿, 𝑞0, 𝐹), 𝐷′ = (Σ,𝑄′, 𝛿′, 𝑞′0, 𝐹′) be deterministic automata. Then
a map 𝑓∶ 𝑄 → 𝑄′ is called a homomorphism from 𝐷 to 𝐷′ if
(i) for all 𝑞 ∈ 𝑄 and 𝑎 ∈ Σ, we have 𝛿′(𝑓(𝑞), 𝑎) = 𝑓(𝛿(𝑞, 𝑎));
(ii) 𝑓(𝑞0) = 𝑞′0;
(iii) 𝑞 ∈ 𝐹 if and only if 𝑓(𝑞) ∈ 𝐹′.

In particular, if 𝑓 is bijective, it has an inverse and is called an isomorphism. We can show by in-
duction that ̂𝛿′(𝑓(𝑞), 𝑤) = 𝑓(̂𝛿(𝑞, 𝑤)). Note that if a homomorphism 𝑓 is not surjective, the states
not in its range are not accessible from 𝑞′0. If 𝑓 is not injective, so 𝑓(𝑝) = 𝑓(𝑞) for 𝑝 ≠ 𝑞, then we
have 𝑓(̂𝛿(𝑝, 𝑤)) = ̂𝛿′(𝑓(𝑝), 𝑤) = ̂𝛿′(𝑓(𝑞), 𝑤) = 𝑓(̂𝛿(𝑞, 𝑤)); we will say that such states 𝑝, 𝑞 are in-
distinguishable. We will observe that failure to be bijective only affects inaccessible states or pairs of
indistinguishable states.

Proposition. Let 𝑓 be a homomorphism (not a priori an isomorphism) from 𝐷 to 𝐷′. Then
ℒ(𝐷) = ℒ(𝐷′).

Proof. Let 𝑤 ∈ ℒ(𝐷), so ̂𝛿(𝑞0, 𝑤) ∈ 𝐹. Applying 𝑓, 𝑓(̂𝛿(𝑞0, 𝑤)) = ̂𝛿′(𝑓(𝑞0), 𝑤) = ̂𝛿′(𝑞′0, 𝑤) ∈ 𝐹′ as
required. All implications are bi-implications, so the converse holds.

Theorem. Any language of the form ℒ(𝐷) for a deterministic automaton 𝐷 is regular.

Proof. Let 𝐷 = (Σ,𝑄, 𝛿, 𝑞0, 𝐹), and define a grammar 𝐺 = (Σ, 𝑉, 𝑃, 𝑆) by 𝑉 = 𝑄, 𝑆 = 𝑞0, and

𝑃 = {𝑝 → 𝑎𝑞 ∣ 𝛿(𝑝, 𝑎) = 𝑞} ∪ {𝑝 → 𝑎 ∣ 𝛿(𝑝, 𝑎) ∈ 𝐹}

We will show ℒ(𝐷) = ℒ(𝐺). Suppose 𝑤 = 𝑎0…𝑎𝑛 ∈ ℒ(𝐷). Then ̂𝛿(𝑞0, 𝑤) ∈ 𝐹, so there exist
𝑞0,… , 𝑞𝑛+1 such that 𝑞𝑖+1 = 𝛿(𝑞𝑖, 𝑎𝑖), and 𝑞𝑛+1 ∈ 𝐹. By definition of 𝐺, this holds if and only if
there exist 𝑞0,… , 𝑞𝑛+1 such that 𝑞𝑖 → 𝑎𝑖𝑞𝑖+1 ∈ 𝑃 and 𝑞𝑛 → 𝑎𝑛 ∈ 𝑃. This holds if and only if

13

there exists 𝑞0,… , 𝑞𝑛+1 such that 𝑞0
𝐺−→1 𝑎0𝑞1

𝐺−→1 … 𝐺−→1 𝑎0…𝑎𝑛−1𝑞𝑛
𝐺−→1 𝑤, so there exists a

derivation 𝑤 ∈ ℒ(𝐺). By regularity of 𝐺, all derivations are of this form, so we have bi-implications,
and ℒ(𝐷) = ℒ(𝐺).

We will show that if 𝐿 is a regular language, we can find a deterministic automaton 𝐷 such that 𝐿 =
ℒ(𝐷). However, regular grammars can have multiple rules that may be used when reaching a single
symbol, for instance 𝑝 → 𝑎𝑞 and 𝑝 → 𝑎𝑞′, so we cannot perform an obvious translation from this
grammar into a deterministic automaton. To encapsulate this notion, we introduce nondeterministic
automata.

3.3 Nondeterministic automata

Definition. A nondeterministic automaton is a tuple of the form 𝑁 = (Σ,𝑄, 𝛿, 𝑞0, 𝐹) where
𝑄 is a finite set of states, 𝑞0 ∈ 𝑄, 𝐹 ⊆ 𝑄 ∖ {𝑞0}, but in contrast with deterministic automata,
we have 𝛿∶ 𝑄 × Σ → 𝒫(𝑄).

We interpret 𝛿(𝑞, 𝑎) as the set of possible states that the machine can transition into when reading 𝑎
from state 𝑞. The graphical representation of such an automaton is the same.

𝑞0start 𝑞1

𝑞2

𝑎

𝑎

𝑎

𝑎

𝑏

Here, we define ̂𝛿 ∶ 𝑄 ×𝕎 → 𝒫(𝑄), by the equations

̂𝛿(𝑞, 𝜀) = {𝑞}; ̂𝛿(𝑞, 𝑤𝑎) = ⋃
𝑝∈ ̂𝛿(𝑞,𝑤)

𝛿(𝑝, 𝑎)

This produces a unique state set sequence, not a deterministic state sequence. We define

ℒ(𝑁) = {𝑤 ∣ ̂𝛿(𝑞0, 𝑤) ∩ 𝐹 ≠ ∅}

Remark. Deterministic automata can be seen as a special case of nondeterministic automata.

Theorem. Let 𝑁 be a nondeterministic automaton. Then there exists a deterministic auto-
maton 𝐷 such that ℒ(𝑁) = ℒ(𝐷).

Our proof will involve a subset construction.

Proof. Let 𝑁 = (Σ,𝑄, 𝛿, 𝑞0, 𝐹). We define 𝐷 = (Σ, 𝒫(𝑄), Δ, {𝑞0}, 𝐺), where

Δ(𝑋, 𝑎) = ⋃
𝑞∈𝑋

𝛿(𝑞, 𝑎); 𝐺 = {𝑋 ∈ 𝒫(𝑄) ∣ 𝑋 ∩ 𝐹 ≠ ∅}

14

We show that these two automata produce the same language. Consider the state sequence of 𝐷 on
input 𝑤.

𝑋0 = {𝑞0}; 𝑋𝑖+1 = ⋃
𝑞∈𝑋𝑖

𝛿(𝑞, 𝑎𝑖)

The state set sequence of 𝑁 on input 𝑤 is

𝑌0 = {𝑞0}; 𝑌 𝑖+1 = ⋃
𝑞∈𝑌𝑖

𝛿(𝑞, 𝑎𝑖)

Clearly, these exactly match, so 𝑋𝑖 = 𝑌 𝑖. So 𝑤 is accepted by 𝐷 if and only if it is accepted by 𝑁.

Remark. Although this construction always works, we have transformed an automaton on 𝑛 states
into one on 2𝑛 states.

Theorem. Let 𝐺 be a regular grammar. Then there exists a nondeterministic automaton 𝑁
such that ℒ(𝐺) = ℒ(𝑁).

Proof. Let𝐺 = (Σ, 𝑉, 𝑃, 𝑆). Let𝐻 ∉ Σ∪𝑉 be a new symbol, known as the halt state. Let𝑄 = 𝑉 ∪{𝐻}.
Define 𝑁 = (Σ,𝑄, 𝛿, 𝑆, {𝐻}) where

𝛿(𝐴, 𝑎) = {{𝐵 ∣ 𝐴 → 𝑎𝐵 ∈ 𝑃} if 𝐴 → 𝑎 ∉ 𝑃
{𝐵 ∣ 𝐴 → 𝑎𝐵 ∈ 𝑃} ∪ {𝐻} if 𝐴 → 𝑎 ∈ 𝑃

We claim that ℒ(𝐺) = ℒ(𝑁). If 𝑤 ∈ 𝐿(𝐺), we have a sequence 𝐴0,… , 𝐴𝑛+1 of variables such that

𝑆 = 𝐴0
𝐺−→1 …

𝐺−→1 𝑎0…𝑎𝑛+1𝐴𝑛+1
𝐺−→1 𝑤

In particular, 𝐴𝑖 → 𝑎𝑖𝐴𝑖+1 ∈ 𝑃 and 𝐴𝑛+1 → 𝑎𝑛 ∈ 𝑃. By definition of 𝛿, there exists a sequence
𝐴1,… , 𝐴𝑛+1 such that 𝐴𝑖+1 ∈ 𝛿(𝐴𝑖, 𝑎𝑖) and 𝐻 ∈ 𝛿(𝐴𝑛, 𝑎𝑛). Hence 𝐻 ∈ ̂𝛿(𝑆, 𝑤), so 𝑤 ∈ ℒ(𝑁). All
implications are bi-implications so the converse holds.

3.4 The pumping lemma for regular languages

Definition. A language 𝐿 satisfies the regular pumping lemma with pumping number 𝑛 if
every word 𝑤 ∈ 𝐿 with length at least 𝑛 can be split into three parts 𝑤 = 𝑥𝑦𝑧, such that
|𝑦| > 0, |𝑥𝑦| ≤ 𝑛 and for all 𝑘 ∈ ℕ, we have 𝑥𝑦𝑘𝑧 ∈ 𝐿. We call 𝑦 a pump for the word 𝑥𝑦𝑧.

Theorem (regular pumping lemma). Every regular language satisfies the pumping lemma.

Remark. If any word can be pumped, the language must be infinite.

Proof. Let𝐿 be a regular language. Then there exists a deterministic automaton𝐷 such that𝐿 = ℒ(𝐷).
We show that 𝐿 has pumping number 𝑛 = |𝑄|. Let 𝑤 ∈ 𝐿(𝐷) be a word with |𝑤| ≥ 𝑛. We can write
𝑤 = 𝑎0𝑎1…𝑎𝑛−1𝑣 where 𝑣 ∈ 𝕎.

The state sequence of 𝐷 reading 𝑎0,… , 𝑎𝑛−1 is 𝑞0,… , 𝑞𝑛; it has length 𝑛 + 1 since there are 𝑛 state
transitions. But there are only 𝑛 states, so by the pigeonhole principle, one state must repeat. Let

15

𝑖 < 𝑗 ≤ 𝑛 such that 𝑞𝑖 = 𝑞𝑗 . Let 𝑥 = 𝑎0…𝑎𝑖−1, 𝑦 = 𝑎𝑖…𝑎𝑗−1, 𝑧 = 𝑎𝑗…𝑎𝑛−1𝑣, so we have 𝑥𝑦𝑧 = 𝑤,
|𝑦| > 0, |𝑥𝑦| ≤ 𝑛 by construction.
We show that we can pump the word. After reading 𝑥, we have ̂𝛿(𝑞0, 𝑥) = 𝑞𝑖, and ̂𝛿(𝑞𝑖, 𝑦) = 𝑞𝑗 =
𝑞𝑖, and finally ̂𝛿(𝑞𝑖, 𝑧) = ̂𝛿(𝑞𝑗 , 𝑧) ∈ 𝐹. Hence, ̂𝛿(𝑞0, 𝑥𝑦𝑘) = 𝑞𝑖 by induction on 𝑘. In particular,
̂𝛿(𝑞0, 𝑥𝑦𝑘𝑧) ∈ 𝐹 as required.

Example. Let 𝐿 = {0𝑘1𝑘, 𝑘 > 0}. We claim this is not a regular language. Suppose 𝐿 is regular, and
has pumping number 𝑁. Consider the word 0𝑁1𝑁 ∈ 𝐿; this word has more than 𝑁 letters, so the
word can be pumped. The pump must lie in the first 𝑁 letters, all of which are zeroes. Pumping
down, 0𝑁−ℓ1𝑁 ∈ 𝐿 where ℓ is the length of the pump. This is a contradiction since the length of the
pump is nonzero. Note that this language is context-free, so we know that the inclusion of regular
languages in context-free languages is proper.

Example. Let 𝑛 > 0, and let 𝐿 = {0𝑛𝑤,𝑤 ∈ 𝕎}. We show this is regular, but any deterministic
automaton 𝐷 such that 𝐿 = ℒ(𝐷) has more than 𝑛 states. For regularity, we can simply write down
a grammar.

𝑃 = {𝑆 → 0𝑋0, 𝑋0 → 0𝑋1,… , 𝑋𝑛−2 → 0𝑋𝑛−1, 𝑋𝑛−2 → 0,
𝑋𝑛−1 → 0,𝑋𝑛−1 → 1,𝑋𝑛−1 → 0𝑋𝑛−1, 𝑋𝑛−1 → 1𝑋𝑛−1}

This has exactly 𝑛+1 states. Suppose that an automaton with at most 𝑛 states has the same language.
Then 𝐿 satisfies the pumping lemma with pumping number 𝑛. In particular, we can pump down the
word 0𝑛, obtaining a word with fewer zeroes, and this is not in the language.
Example. Some non-regular languages also satisfy the pumping lemma. Let Σ = {0, 1}. If a word
𝑤 ∈ 𝕎 contains at least one zero, we say the tail of the word is the number of ones that follow the
last zero. Let 𝑋 ⊆ ℕ be an arbitrary set of naturals, and define 𝐿𝑋 to be the set of words that contain
no zeroes, or have a tail which lies in 𝑋 . If 𝑋 ≠ 𝑌 , we have 𝐿𝑋 ≠ 𝐿𝑌 , so 𝐿 is an injection from𝒫(ℕ) to
the space of languages on Σ. Since there are uncountably many 𝑋 ⊆ ℕ, but there are only countably
many regular languages, there must be some non-regular languages of the form 𝐿𝑋 .
We claim that all 𝐿𝑋 satisfy the pumping lemma, so then there must be some 𝐿𝑋 which are non-
regular which satisfy the pumping lemma. Let 𝑋 ⊆ ℕ; we claim this has pumping number 2. Let
𝑤 ∈ 𝐿𝑥 such that |𝑤| ≥ 2.
Suppose 𝑤 starts with a zero, so 𝑤 = 0𝑧. Then let 𝑥 = 𝜀, 𝑦 = 0, so 𝑤 = 𝑥𝑦𝑧. Pumping up does not
change the tail; pumping down either does not change the tail or there are now no zeroes, but in
either case, the new word lies in the language.

Conversely, suppose 𝑤 starts with a one, so 𝑤 = 1𝑧. Let 𝑥 = 𝜀, 𝑦 = 1, so 𝑤 = 𝑥𝑦𝑧 as before. If
𝑧 contains no zeroes, after pumping 𝑦, there are still no zeroes, so the new word is in the language.
If 𝑧 contains a zero, there is a tail, and pumping 𝑦 does not influence the tail. Hence, the pumping
lemma is satisfied.

3.5 Closure properties
We have already shown that regular languages are closed under concatenation and union. We will
now show that they are closed under complement, intersection, and difference. For this, it suffices
to show they are closed under complement, because intersection and difference can be expressed in
terms of complement and union.

16

Consider an automaton 𝐷 = (Σ,𝑄, 𝛿, 𝑞0, 𝐹). Without loss of generality, we can ensure that 𝛿(𝑞𝑖, 𝑎) ≠
𝑞0 for all 𝑖, 𝑎. Now define 𝐷′ = (Σ,𝑄, 𝛿, 𝑞0, ℚ ∖ (𝐹 ∪ {𝑞0})). Then, ℒ(𝐷′) = 𝕎+ ∖ ℒ(𝐷).
There is an alternative construction to obtain union and intersection, known as the product auto-
maton construction. Let 𝐷 = (Σ,𝑄, 𝛿, 𝑞0, 𝐹) and 𝐷′ = (Σ,𝑄′, 𝛿′, 𝑞′0, 𝐹′). We can define the pointwise
product𝐷″ = (Σ,𝑄×𝑄′, 𝛿×𝛿′, (𝑞0, 𝑞′0), 𝐹″), where (𝛿×𝛿′)((𝑞, 𝑞′), 𝑎) = (𝛿(𝑞, 𝑎), 𝛿′(𝑞′, 𝑎)), and either
𝐹″ = {(𝑞, 𝑞′) ∣ 𝑞 ∈ 𝐹, 𝑞′ ∈ 𝐹′} or 𝐹″ = {(𝑞, 𝑞′) ∣ 𝑞 ∈ 𝐹 or 𝑞′ ∈ 𝐹′}. We can see that the language gen-
erated by this new automaton is ℒ(𝐷) ∩ ℒ(𝐷′) or ℒ(𝐷) ∪ ℒ(𝐷′).

3.6 Emptiness problem

Lemma. Let 𝐿 be a nonempty regular language with pumping number 𝑛. Then there is a
word 𝑤 ∈ 𝐿 such that |𝑤| < 𝑛.

Proof. Let𝑤 be a word in 𝐿. If |𝑤| < 𝑛, we are already done. Otherwise, it can be pumped down into
a smaller word. By induction, we can obtain a word of length less than 𝑛.

Corollary. The emptiness problem for regular grammars is solvable.

Proof. Given a regular grammar, we can obtain its pumping number. We can check everyword below
this length because theword problem is solvable; if nowords are accepted, the language is empty.

3.7 Regular expressions

Definition. The Kleene star operation on a language 𝐿, written 𝐿⋆, is given by

𝐿⋆ = {𝑤 ∣ ∃ sequence of words in 𝐿,𝑤 = their concatenation}

In particular 𝜀 ∈ 𝐿⋆. The Kleene plus operation is 𝐿+ = 𝐿⋆ ∖ {𝜀}.

Definition. A regular expression on an alphabet Σ is defined inductively by:
(i) the symbol ∅ is a regular expression;
(ii) 𝜀 is a regular expression;
(iii) for all 𝑎 in Σ, 𝑎 is a regular expression;
(iv) if 𝑅, 𝑆 are regular expressions, (𝑅 + 𝑆) is a regular expression;
(v) if 𝑅, 𝑆 are regular expressions, (𝑅𝑆) is a regular expression;
(vi) if 𝑅 is a regular expression, 𝑅⋆ is a regular expression;
(vii) if 𝑅 is a regular expression, 𝑅+ is a regular expression.
By definition, nothing else is a regular expression. By recursion, we can assign a language
ℒ(𝐸) to each regular expression 𝐸.
(i) ℒ(∅) = ∅;
(ii) ℒ(𝜀) = {𝜀};
(iii) for 𝑎 ∈ Σ, ℒ(𝑎) = {𝑎};
(iv) if 𝑅, 𝑆 are regular expressions, ℒ(𝑅 + 𝑆) = ℒ(𝑅) ∪ ℒ(𝑆);

17

(v) if 𝑅, 𝑆 are regular expressions, ℒ(𝑅𝑆) = ℒ(𝑅)ℒ(𝑆);
(vi) if 𝑅 is a regular expression, ℒ(𝑅⋆) = ℒ(𝑅)⋆;
(vii) if 𝑅 is a regular expression, ℒ(𝑅+) = ℒ(𝑅)+.

Note that rules (iv) and (v) introduce parentheses, occasionally unnecessarily. When the meaning is
unambiguous, these parentheses are omitted. The binding power of concatenation 𝑅𝑆 is higher than
union 𝑅 + 𝑆, so we can write 𝑅𝑆 + 𝑇 for ((𝑅𝑆) + 𝑇).
We say that a language is essentially regular if there is a regular language 𝐿′ such that 𝐿 = 𝐿′ or
𝐿 = 𝐿′ ∪ {𝜀}.

Theorem. If 𝐸 is a regular expression, ℒ(𝐸) is essentially regular.

This is an equivalence, but the converse (often called Kleene’s algorithm) is not required for this
course.

Proof. Observe that (i), (ii), (iii) are essentially regular languages, so it suffices to show that essentially
regular languages are closed under (iv), (v), (vi), (vii). We have already shown that regular languages
are closed under union and concatenation, and the proof for essentially regular languages follows
easily. Note that ℒ(𝐸⋆) = ℒ(𝐸 + 𝐸+), so it suffices to show closure of regular languages under the
Kleene plus; we can then perform case analysis to prove the same for essentially regular languages.

Let 𝐺 = (Σ, 𝑉, 𝑃, 𝑆) be a regular grammar. Let 𝑃+ = 𝑃 ∪ {𝐴 → 𝑎𝑆 ∣ 𝐴 → 𝑎 ∈ 𝑃}. It suffices to show
that 𝐺+ = (Σ, 𝑉, 𝑃+, 𝑆) has the language ℒ(𝐺+) = ℒ(𝐺)+.
Suppose 𝑤 ∈ ℒ(𝐺)+, so 𝑤 = 𝑤0…𝑤𝑛 for 𝑤𝑖 ∈ ℒ(𝐺). If 𝑛 = 0, 𝑤 ∈ ℒ(𝐺) and any derivation can be
translated easily into 𝐺+. Otherwise, suppose 𝑤0…𝑤𝑛−1 ∈ ℒ(𝐺+) by induction. Therefore there is
a derivation 𝑆 𝐺+

−−→ 𝑤0…𝑤𝑛−1. This derivation ends with a terminal rule 𝐴 → 𝑎, so we can replace
it with a nonterminal rule 𝐴 → 𝑎𝑆, giving 𝑆 𝐺+

−−→ 𝑤0…𝑤𝑛−1𝑆
𝐺−→ 𝑤0…𝑤𝑛−1𝑤𝑛, so 𝑤 ∈ ℒ(𝐺) as

required.

Now suppose 𝑤 ∈ ℒ(𝐺+). Without loss of generality we can assume that 𝐺 is 𝜀-adequate, so 𝑆 does
not occur on the right-hand side of a rule. Supposewehave a derivation 𝑆 𝐺+

−−→ 𝑤. Let𝑛 be the number
of times that 𝑆 occurs in the derivation. We then prove 𝑤 ∈ ℒ(𝐺)+ by induction on 𝑛. 𝑛 cannot be
zero. Suppose all words 𝑣 ∈ ℒ(𝐺+) lie in ℒ(𝐺)+ if they have a derivation with 𝑛 − 1 occurrences of
𝑆. Since 𝑛 ≥ 1, we have 𝑆 𝐺+

−−→ 𝑣𝑆 𝐺+
−−→ 𝑤 where 𝑣𝑆 is the last occurrence of 𝑆 in the derivation of

𝑤. In particular, 𝑆 𝐺+
−−→ 𝑣 with 𝑛 − 1 occurrences, since the last rule of 𝑆 𝐺+

−−→ 𝑣𝑆 is one of the added
rules in 𝑃+. By induction, 𝑣 ∈ ℒ(𝐺)+. Since 𝑣𝑆 𝐺+

−−→ 𝑤, we know that 𝑤 = 𝑣𝑤′ by considering the

possible derivations in regular languages. Hence 𝑆 𝐺+
−−→ 𝑤′ with only one occurrence of 𝑆 at the start.

In particular none of our new rules were used, so 𝑆 𝐺−→ 𝑤′, so 𝑤′ ∈ ℒ(𝐺)+, hence 𝑤 ∈ ℒ(𝐺)+.

18

3.8 Minimisation of deterministic automata

Definition. A state 𝑞 is called accessible if there is a word 𝑤 such that 𝑞 = ̂𝛿(𝑞0, 𝑤). A state
that is not accessible is called inaccessible.

Definition. States 𝑞 and 𝑞′ are distinguished by a word 𝑤 if ̂𝛿(𝑞, 𝑤) ∈ 𝐹 and ̂𝛿(𝑞′, 𝑤) ∉ 𝐹, or
vice versa. States that are distinguished by some word are called distinguishable. States that
are not distinguished by any word are called indistinguishable.

If 𝑓∶ 𝑄 → 𝑄′ is a homomorphism, then

(i) if 𝑝, 𝑞 are distinguishable, 𝑓(𝑝) ≠ 𝑓(𝑞);
(ii) if 𝑞′ ∈ 𝑄′ is accessible, 𝑞′ lies in the range of 𝑓.

In particular, if 𝑓 is a homomorphism from 𝐷 to 𝐷′ and all pairs of nonequal states in 𝐷 are distin-
guishable, 𝑓 is injective; if all states in 𝐷′ are accessible, 𝑓 is surjective.

Definition. An automaton 𝐷 is called irreducible if all pairs of nonequal states are distin-
guishable and all states are accessible.

Hence, any homomorphism between irreducible automata is an isomorphism.

Defining 𝑞 ∼ 𝑞′ if 𝑞 and 𝑞′ are indistinguishable, ∼ is an equivalence relation. As usual, we write
[𝑞] for the equivalence class of states indistinguishable from 𝑞. We can therefore define the quotient
automaton by

𝐷⟋∼ = (Σ,𝑄⟋∼, [𝛿], [𝑞0], [𝐹]); [𝛿]([𝑞], 𝑎) = [𝛿(𝑞, 𝑎)]; [𝐹] = {[𝑞] ∣ 𝑞 ∈ 𝐹}

Note that if an equivalence class contains an accept state, the class is completely contained in 𝐹, so
being an accept state is a class property. The map [𝛿] is well-defined: indeed, if 𝑞 ∼ 𝑞′, we have
𝛿(𝑞, 𝑎) ∼ 𝛿(𝑞′, 𝑎), because if 𝛿(𝑞, 𝑎) ≁ 𝛿(𝑞′, 𝑎), there would exist a word 𝑤 that distinguishes these
two states, but then 𝑎𝑤 would distinguish 𝑞 and 𝑞′.
If 𝑞 ≁ 𝑞′, we can show the two states are distinguished in the quotient automaton. By induction,
[̂𝛿]([𝑞], 𝑤) = [̂𝛿(𝑞, 𝑤)]. Suppose without loss of generality that ̂𝛿(𝑞, 𝑤) ∈ 𝐹, ̂𝛿(𝑞′, 𝑤) ∉ 𝐹. Then
[̂𝛿]([𝑞], 𝑤) ∈ [𝐹], but [̂𝛿]([𝑞′], 𝑤) ∉ [𝐹]. So 𝑤 distinguishes [𝑞] and [𝑞′]. In particular, each pair of
nonequal states is distinguishable.

Note further that ℒ(𝐷) = ℒ(𝐷⟋∼), because the quotient map 𝑞 ↦ [𝑞] is a homomorphism. If 𝐷 had
no inaccessible states,𝐷⟋∼ also has no inaccessible states, since the quotient map is surjective.

Theorem. For every deterministic automaton, there is an irreducible deterministic auto-
maton 𝐼 such that ℒ(𝐷) = ℒ(𝐼).

Proof. Let𝐴 ⊆ 𝑄 be the set of accessible states in𝐷. Let𝐷⋆ = (Σ, 𝐴, 𝛿|𝐴×Σ , 𝑞0, 𝐹 ∩ 𝐴). The inclusion
map from 𝐷⋆ to 𝐷 is a homomorphism, so their languages are the same. Now let 𝐼 = 𝐷⋆⟋∼. By the
above discussion, 𝐼 is irreducible and has the same language as 𝐷⋆.

19

Remark. The number of states in 𝐼 is at most the number of states in 𝐷.

Theorem. If 𝐼, 𝐼′ are irreducible deterministic automata and ℒ(𝐼) = ℒ(𝐼′), then 𝐼 and 𝐼′ are
isomorphic.

Proof. It suffices to construct a homomorphism between the two automata, since any homomorph-
ismbetween irreducible automata is an isomorphism. Let 𝐼 = (Σ, 𝑄, 𝛿, 𝑞0, 𝐹) and 𝐼′ = (Σ,𝑄′, 𝛿′, 𝑞′0, 𝐹′),
and without loss of generality let 𝑄∩𝑄′ = ∅. We can extend ∼ to 𝑄∪𝑄′, by defining 𝑞 ∼ 𝑞′ if for all
𝑤, ̂𝛿(𝑞, 𝑤) ∈ 𝐹 if and only if ̂𝛿′(𝑞′, 𝑤) ∈ 𝐹′. We know 𝑞0 ∼ 𝑞′0, because by assumption, the languages
of the two automata are the same.

We show that for all 𝑞 ∈ 𝑄, there exists 𝑞′ ∈ 𝑄′ such that 𝑞 ∼ 𝑞′. Let sp(𝑞) be the length of the
shortest path from 𝑞0 to 𝑞. Since 𝐼 is irreducible, this is well-defined and finite for all 𝑞 ∈ 𝑄. We
prove this claim by induction on sp(𝑞). The base case is sp(𝑞) = 0 so 𝑞 = 𝑞0, and we have already
shown 𝑞0 ∼ 𝑞′0 as required.
Now suppose sp(𝑞) = 𝑘 + 1. Then there exists 𝑝 ∈ 𝑄 and 𝑎 ∈ Σ such that 𝛿(𝑝, 𝑎) = 𝑞 and sp(𝑝) = 𝑘.
By the induction hypothesis, we can find 𝑝′ ∈ 𝑄′ such that 𝑝 ∼ 𝑝′. Then let 𝑞′ = 𝛿′(𝑝′, 𝑎), then
𝑞′ ∼ 𝛿(𝑝, 𝑎) = 𝑞. Hence each 𝑞 ∈ 𝑄 has a 𝑞′ ∈ 𝑄′ such that 𝑞 ∼ 𝑞′.
We now will show that if 𝑞′ ∼ 𝑞 ∼ 𝑝′, we have 𝑞′ = 𝑝′. By transitivity, 𝑞′ ∼ 𝑝′, but by irreducibility
of 𝐼′, 𝑞′ = 𝑝′.
Because of the above results, we can construct a function 𝑓∶ 𝑄 → 𝑄′ defined by 𝑞 ↦ 𝑞′ where
𝑞 ∼ 𝑞′. This is well-defined and unique. We now claim 𝑓 is a homomorphism. Since 𝑞0 ∼ 𝑞′0, we
have 𝑓(𝑞0) = 𝑞′0. The requirement 𝑞 ∈ 𝐹 ⟺ 𝑓(𝑞) ∈ 𝐹′ follows by definition of ∼. Now fix 𝑞 ∈ 𝑄
and 𝑞′ = 𝑓(𝑞), so 𝑞 ∼ 𝑞′. Then, 𝛿(𝑞, 𝑎) ∼ 𝛿′(𝑞′, 𝑎), so 𝑓(𝛿(𝑞, 𝑎)) ∼ 𝛿′(𝑞′, 𝑎) = 𝛿′(𝑓(𝑞), 𝑎).

Remark. There is a unique (up to isomorphism) irreducible automaton that accepts a given regular
language, and its size is smaller than all other automata that accept the same language.

3.9 Equivalence problem
We have already solved the word problem for noncontracting grammars and the emptiness problem
for regular grammars. To solve the equivalence problem, we will construct minimal automata for
two given regular grammars, and check whether they are isomorphic; if so, the languages are the
same, and otherwise, the languages are different. We must check that this idea can be formulated
into an algorithm which must complete in finitely many steps.

Proposition. Let 𝐷 be a deterministic automaton and 𝑞 ∈ 𝑄 a state. Then it is solvable
whether 𝑞 is accessible.

Proof. If there is a word𝑤 such that ̂𝛿(𝑞0, 𝑤) = 𝑞, then the shortest such word has length at most |𝑄|,
which can be easily proven using the technique from the pumping lemma. We can explicitly check
each word of length at most |𝑄|.

20

Theorem (the table filling algorithm). Let 𝐷 be a deterministic automaton and 𝑞, 𝑞′ ∈ 𝑄
states. Then the proposition 𝑞 ∼ 𝑞′ is solvable.

Proof. Form a matrix 𝐴 with entries indexed by 𝑄 × 𝑄. The entry indexed by (𝑞, 𝑞′) contains in-
formation about distinguishability of 𝑞, 𝑞′. In particular, 𝐴𝑞,𝑞′ contains either nothing or a word 𝑤
distinguishing 𝑞 and 𝑞′. Since ∼ is an equivalence relation, it suffices to consider the upper triangu-
lar part of the matrix, excluding the diagonal. To initialise the matrix, if 𝑞 ∈ 𝐹 and 𝑞′ ∉ 𝐹 we set
𝐴𝑞,𝑞′ = 𝜀, since the empty word distinguishes 𝑞, 𝑞′.
Then, for each 𝑞, 𝑞′ ∈ 𝑄 that do not have a filled entry𝐴𝑞,𝑞′ already, and for each 𝑎 ∈ Σ, we can check
the entry indexed by (𝛿(𝑞, 𝑎), 𝛿(𝑞′, 𝑎)). If these two states are distinguished by a word 𝑤, 𝑞 and 𝑞′ are
distinguished by 𝑎𝑤. So we can set 𝐴𝑞,𝑞′ = 𝑎𝑤. This single step will terminate in a finite amount of
time, on the order of |𝑄|2|Σ|-many steps.
We then repeat this inductive step until nomore assignments into thematrix can bemade in an single
iteration. This will happen in finitely many steps.

We now must show that after this process completes, 𝐴𝑞,𝑞′ contains a word 𝑤 if and only if 𝑞 and 𝑞′
are distinguishable, and in this case, 𝑤 distinguishes 𝑞 and 𝑞′. If 𝐴𝑞,𝑞′ contains a word 𝑤, it is clear
that 𝑤 distinguishes 𝑞 and 𝑞′, since ̂𝛿(𝑞, 𝑤) ∈ 𝐹 and ̂𝛿(𝑞′, 𝑤) ∉ 𝐹 or vice versa. Now suppose there
exists a word 𝑤 that distinguishes some states 𝑞 and 𝑞′, but 𝑞, 𝑞′ are unmarked in 𝐴. Let 𝑞, 𝑞′ be a
pair of states with a distinguishing word 𝑤 of minimal length.

Either 𝑤 = 𝜀 or 𝑤 = 𝑎𝑣. If 𝑤 = 𝜀, 𝑞 ∈ 𝐹 and 𝑞′ ∉ 𝐹 or vice versa, so 𝐴𝑞,𝑞′ is marked. Otherwise,
𝑤 = 𝑎𝑣. Since 𝑣 is shorter than the smallest word that distinguishes two states that are not marked
in 𝐴, we must have that the entry (𝛿(𝑞, 𝑎), 𝛿(𝑞′, 𝑎)) is marked with some word in 𝐴. So at some step
in the algorithm, this entry was added into 𝐴. But then the algorithm would mark 𝑞, 𝑞′ with a word
in the next step.

Example. Consider the following automaton.

𝑞0start 𝑞1

𝑞2𝑞3

a

b a

b

a, ba, b

In step zero, we find
𝑞0 𝑞1 𝑞2 𝑞3

𝑞0 𝜀 𝜀
𝑞1 𝜀 𝜀
𝑞2
𝑞3

21

In step one, checking 𝛿(𝑞0, 𝑎) and 𝛿(𝑞1, 𝑎), we arrive at
𝑞0 𝑞1 𝑞2 𝑞3

𝑞0 𝑎 𝜀 𝜀
𝑞1 𝜀 𝜀
𝑞2
𝑞3

The only remaining entry is (𝑞2, 𝑞3), and this is not filled in a single step. Hence 𝑞2 ∼ 𝑞3.

Corollary. The equivalence problem for regular grammars is solvable.

Hence, for regular grammars, all of our desirable closure properties are true, and all of ourmotivating
decision problems are solvable.

4 Context-free languages
4.1 Trees
Recall that the language {0𝑘1𝑘 ∣ 𝑘 > 0} is context-free but not regular, so context-free languages are
indeed a proper superset of regular languages. The structure of regular derivations was very simple;
each intermediate step was of the form 𝑤𝐴 for a word 𝑤 and a variable 𝐴 ∈ 𝑉 . However, the struc-
ture of context-free derivations is more complicated: we use a parse tree instead of a linear deriva-
tion.

Definition. A set 𝑇 ⊆ ℕ⋆ is called a (finitely-branching) tree if it is closed under initial seg-
ments, and for every 𝑡 ∈ 𝑇, there is a branching number 𝑛 ∈ ℕ such that for all 𝑘, the sequence
𝑡𝑘 lies in 𝑇 if and only if 𝑘 < 𝑛. A node 𝑡 ∈ 𝑇 with no sucessors is called a leaf. The empty
sequence, which is an element of every tree, is called the root. A node 𝑡 ∈ 𝑇 has level 𝑘 if the
length of the sequence is 𝑘, so |𝑡| = 𝑘. If 𝑇 is finite, there is a maximum level, called the height
of the tree. For a node 𝑡 ∈ 𝑇, the sequence 𝑡|0 , 𝑡|1 ,… , 𝑡||𝑡| = 𝑡 is called the branch leading to
𝑡.

Example. This is an example of a tree.
𝜀

0 1 2

00 01 10 20 21 22

000 001 100 101 210 220 221

0010

22

Definition. Let 𝑇 be a tree and 𝑡 ∈ 𝑇. Then 𝑇𝑡 = {𝑠 ∣ 𝑡𝑠 ∈ 𝑇} is the subtree starting from 𝑡.

Definition. We define a partial order on 𝑇 by 𝑡 < 𝑠 if 𝑡 ≠ 𝑠 and if there exists 𝑘 such that
𝑡(𝑘) ≠ 𝑠(𝑘) and 𝑘0 is minimal with this property, then 𝑡(𝑘0) < 𝑠(𝑘0). This is called the left-to-
right order.

Remark. This order is only a partial order since it does not order two distinct nodes that lie on the
same branch, for example, 0 and 00. For each level 𝑘, the nodes of length 𝑘 are totally ordered. The
leaves are totally ordered.

4.2 Parse trees

Definition. Let 𝐺 be a context-free grammar. A pair 𝕋 = (𝑇, ℓ) is a 𝐺-parse tree if 𝑇 is a
finitely-branching tree and ℓ∶ 𝑇 → Ω is a labelling function such that:
(i) ℓ(𝜀) ∈ 𝑉 , we say 𝑇 starts with ℓ(𝜀);
(ii) if ℓ(𝑡) ∈ Σ, 𝑡 has no successors;
(iii) if 𝑡 has 𝑛 + 1 successors and ℓ(𝑡) = 𝐴 ∈ 𝑉 , then 𝐴 → ℓ(𝑡0)ℓ(𝑡1)…ℓ(𝑡𝑛) ∈ 𝑃.
If 𝕋 = (𝑇, ℓ) is a 𝐺-parse tree, and 𝑡0,… , 𝑡𝑚 are its leaves written in the left-to-right order,
then the string parsed by 𝕋 is 𝜎𝕋 = ℓ(𝑡0)…ℓ(𝑡𝑚).

Remark. If 𝑡 ∈ 𝑇, 𝜎𝕋 = 𝛼𝜎𝕋𝑡𝛽 where 𝕋𝑡 = (𝑇𝑡, ℓ𝑡), ℓ𝑡(𝑠) = ℓ(𝑡𝑠).

Proposition. Let 𝐺 be a context-free grammar. Then 𝑤 ∈ ℒ(𝐺) if and only if there is a
𝐺-parse tree 𝕋 starting from 𝑆 such that 𝜎𝕋 = 𝑤.

Proof. Observe that certain sequences of parse trees correspond to derivations. In particular, a se-
quence 𝕋0,… , 𝕋𝑛 of 𝐺-parse trees is derivative if 𝕋0 = ({𝜀}, ℓ0) with ℓ0(𝜀) = 𝑆, and 𝑇𝑖+1 ⊇ 𝑇𝑖 is
constructed by considering a leaf 𝑡 ∈ 𝑇𝑖 such that ℓ𝑖(𝑡) = 𝐴 ∈ 𝑉 and 𝐴 → 𝑥0…𝑥𝑛 ∈ 𝑃, and giving
it 𝑛 + 1 successors with ℓ𝑖+1(𝑡𝑘) = 𝑥𝑘. There is a one-to-one correspondence between 𝐺-derivations
starting from 𝑆 and such derivative sequences of parse trees. In particular, any derivation yields a
derivative sequence of parse trees, and hence the last parse tree in the sequence has 𝜎𝕋𝑛 = 𝑤.
Conversely, given a parse tree 𝕋, it suffices to construct such a derivative sequence of parse trees,
because then the correspondence yields a derivation as required. We start with the trivial tree 𝕋0 =
({𝜀}, ℓ|{𝜀}). In each step, suppose 𝕋0,… , 𝕋𝑖 already form a derivative sequence, and 𝑇𝑖 ≠ 𝑇. Let
𝑡 ∈ 𝑇 ∖ 𝑇𝑖. Then there is a terminal node in 𝑇𝑖 on the branch containing 𝑡 in 𝑇, which is not a
terminal node in 𝑇. We can then create 𝑇𝑖+1 by adding the 𝑇-successors of 𝑡 to 𝑇𝑖. Since 𝑇 is finite,
after finitely many steps we are done. In particular, 𝕋0,… , 𝕋𝑛 is a derivative sequence, and thus
𝑆 𝐺−→ 𝜎𝕋𝑛 = 𝜎𝕋 = 𝑤 as required.

Suppose 𝕋 is a parse tree and 𝑡 ∈ 𝑇 such that ℓ(𝑡) = 𝐴, and 𝕋′ is a parse tree starting from 𝐴. Then,
we can remove the subtree 𝑇𝑡, and replace it with 𝑇 ′, which also yields a parse tree. This technique
is known as grafting.

23

Definition. We define graft(𝕋, 𝑡, 𝕋′) = (𝑆, ℓ⋆) where

𝑆 = {𝑠 ∈ 𝑇 ∣ 𝑡 ⊈ 𝑠} ∪ {𝑡𝑢 ∣ 𝑢 ∈ 𝑇 ′}

and

ℓ⋆(𝑠) = {ℓ(𝑠) 𝑡 ⊈ 𝑠
ℓ′(𝑢) ∃𝑢 ∈ 𝑇 ′, 𝑠 = 𝑡𝑢

Then we have
𝜎graft(𝕋,𝑡,𝕋′) = 𝛼𝜎𝕋′𝛽; 𝜎𝕋 = 𝛼𝜎𝕋𝑡𝛽

4.3 Chomsky normal form

Definition. A grammar is in Chomsky normal form if all of its rules are of the form 𝐴 → 𝐵𝐶
or 𝐴 → 𝑎. Rules of the form 𝐴 → 𝐵𝐶 are called binary; rules of the form 𝐴 → 𝑎 are called
unary.

Every grammar in Chomsky normal form is context-free.

Lemma. Let 𝐺 be a grammar in Chomsky normal form, and 𝑤 ∈ ℒ(𝐺) with |𝑤| = 𝑛. Then
every 𝐺-derivation of 𝑤 has length 2𝑛 − 1.

Proof. Binary rules increment the length, and increment the variable count. Unary rules preserve
the length, and decrement the variable count. Since 𝑤 is comprised only of letters, exactly 𝑛 − 1
binary rules and 𝑛 unary rules were used.

Wewill show that every context-free grammar is equivalent to a Chomsky normal form grammar, and
there is an algorithm to produce such a grammar. There are three types of rules that are obstructions
to a context-free grammar being in Chomsky normal form:

(i) rules 𝐴 → 𝛼 where |𝛼| ≥ 2 and 𝛼 contains a letter;
(ii) rules of the form 𝐴 → 𝐵, called unit rules.
(iii) rules 𝐴 → 𝛼 where |𝛼| > 2 and 𝛼 contains only variables.
Suppose we have a rule of the form 𝐴 → 𝛼 where |𝛼| ≥ 2, and 𝛼 contains a letter. For each letter
𝑎 ∈ Σ, we can add a variable 𝑋𝑎 and a rule 𝑋𝑎 ↦ 𝑎. Then we convert 𝛼 to 𝑋(𝛼), where 𝑋 is the
map converting each 𝑎 into 𝑋𝑎. Then 𝛼 contains no letter. We can therefore suppose without loss of
generality that a given context-free grammar has no rules of this form.

Now consider a unit rule𝐴 → 𝐵. A grammar is called unit closed if for all𝐴 → 𝐵 ∈ 𝑃 and 𝐵 → 𝛼 ∈ 𝑃,
we also have 𝐴 → 𝛼 ∈ 𝑃. We can easily convert each grammar into an equivalent unit closed
grammar by adding at most |𝑉| ⋅ |𝑃| new rules. If a context-free grammar 𝐺 is unit closed, we will
show that we can remove all unit rules to give a grammar𝐺′ without changing the language. Clearly
ℒ(𝐺′) ⊆ ℒ(𝐺). Suppose 𝑤 ∈ ℒ(𝐺), then 𝑤 has a shortest 𝐺-derivation. Suppose this 𝐺-derivation of
𝑤 contains a unit rule, so

𝑆 𝐺−→ 𝛼𝐴𝛽 𝐺−→1 𝛼𝐵𝛽
𝐺−→ 𝑤

24

where this use of the unit rule is the last such usage. Since 𝑤 contains no variables, we must have
applied a rule 𝐵 𝐺−→1 𝜁.

𝑆 𝐺−→ 𝛼𝐴𝛽 𝐺−→1 𝛼𝐵𝛽
𝐺−→ 𝛾𝐵𝛿 𝐺−→1 𝛾𝜁𝛿

𝐺−→ 𝑤

where the 𝐵 𝐺−→1 𝜁 is the first usage of a rule for 𝐵. Since 𝛼𝐵𝛽 𝛾−→ 𝐵𝛿 did not use any 𝐵-rule by
assumption, by unit closure we can replace this derivation with

𝑆 𝐺−→ 𝛼𝐴𝛽 𝐺−→ 𝛾𝐴𝛿 𝐺−→1 𝛾𝜁𝛿
𝐺−→ 𝑤

This is clearly shorter. So the shortest 𝐺-derivation contains no use of a unit rule, so is also a 𝐺′-
derivation.

Finally, let us consider a rule 𝐴 → 𝛼 where |𝛼| > 2 and 𝛼 contains only variables. Suppose 𝛼 =
𝐴1…𝐴𝑛. We define new variables 𝑋1,… , 𝑋𝑛−2, and add new rules 𝐴 → 𝐴1𝑋1, 𝑋1 → 𝐴2𝑋2,…𝑋𝑛−2 →
𝐴𝑛−1𝐴𝑛. Then, performing this for all such rules, we obtain a grammar without any such rules. This
grammar is in Chomsky normal form.

Theorem (Chomsky). Let𝐺 be a context-free grammar. Thenwe can compute an equivalent
context-free grammar 𝐺′ in Chomsky normal form.

Proof. Remove problems due to rules of the form 𝐴 → 𝛼 where 𝛼 contains a letter and has length at
least 2. Form the unit closure, then remove unit rules. Remove problems due to rules of the form
𝐴 → 𝐴1𝐴2𝐴3…𝐴𝑛.

4.4 The pumping lemma for context-free languages

Definition. Let 𝐿 be a context-free language, and let 𝑛 ∈ ℕ. Suppose that for all 𝑤 ∈ 𝐿 such
that |𝑤| ≥ 𝑛, there are 𝑥, 𝑦, 𝑧, 𝑢, 𝑣 such that 𝑤 = 𝑥𝑢𝑦𝑣𝑧, and |𝑢𝑦𝑣| ≤ 𝑛, |𝑢𝑣| > 0, and for all
𝑘, 𝑥𝑢𝑘𝑦𝑣𝑘𝑧 ∈ 𝐿. Then 𝐿 satisfies the pumping lemma for context-free languages with pumping
number 𝑛. We call 𝑢, 𝑣 the pump.

Remark. The pump now has two parts, and one part may be the empty string. There is no longer a
constraint on the position of the pump in a word; 𝑥 and 𝑧 may be of any length. The regular pump-
ing lemma implies the context-free pumping lemma. Since there are uncountably many languages
satisfying the regular pumping lemma, there are also uncountably many languages satisfying the
context-free pumping lemma. In particular, the context-free pumping lemma cannot characterise
the countable class of all context-free languages.

Theorem. Every context-free language satisfies the context-free pumping lemma for some
pumping number 𝑛.

Proof. Let𝐿 be a context-free language. Then𝐿has aChomskynormal formgrammar𝐺 = (Σ, 𝑉, 𝑃, 𝑆),
so ℒ(𝐺) = 𝐿. Let𝑚 = |𝑉|, and 𝑛 = 2𝑚. We claim 𝑛 is a pumping number for 𝐺.
If 𝕋 is a𝐺-parse tree where the height of 𝕋 is ℎ+1 and 𝜎𝕋 is a word, then |𝜎𝕋| ≤ 2ℎ. Indeed, the largest
possible tree of height ℎ + 1 has 2ℎ+1 leaves. Since 𝜎𝕋 is a word, we must have applied a unary rule

25

for each letter. Every unary rule reduces the amount of leaves by one. Thus, the tree must contain
2ℎ+1 − |𝜎𝕋| leaves. Hence |𝜎𝕋| ≤ 2ℎ.
Consider a word 𝑤 ∈ ℒ(𝐺)with |𝑤| ≥ 2𝑚 = 𝑛. Then, if 𝕋 is a 𝐺-parse tree of 𝑤, so 𝜎𝕋 = 𝑤, we know
by the previous claim that the height of 𝕋 is at least 𝑚 + 1. Let 𝑡 ∈ 𝑇 such that the length of the
branch to 𝑡 is the height ℎ ≥ 𝑚+1 of the tree. Then, the path from 𝜀 to 𝑡 has ℎ+1 labels, so contains
ℎ variables and one letter.
Let 𝑠 be an element of the branch of 𝑡 such that the height of the subtree 𝑇𝑠 is exactly𝑚 + 1. Hence
||𝜎𝕋𝑠 || ≤ 2𝑚 = 𝑛. In particular, the path from 𝑠 to 𝑡 has𝑚+2 labels, so contains exactly𝑚+1 variables
and one letter. By the pigeonhole principle, there are two nodes 𝑡0 ⊊ 𝑡1 on the branch from 𝑠 to 𝑡with
the same label 𝐴 ∈ 𝑉 . Let

𝜎𝕋 = 𝑎𝜎𝕋𝑠𝑏; 𝜎𝕋𝑠 = 𝑥′𝜎𝕋𝑡0 𝑧
′; 𝜎𝕋𝑡0 = 𝑢𝜎𝕋𝑡1𝑣; 𝜎𝕋𝑡1 = 𝑦

Then let 𝑥 = 𝑎𝑥′; 𝑧 = 𝑧′𝑏 in the definition of the pumping lemma. Since 𝑡0 ≠ 𝑡1, we have |𝑢𝑣| > 0.
Note that 𝑢𝑦𝑣 = 𝜎𝕋𝑡0 , which has length at most ||𝜎𝕋𝑠 ||, which has length at most 2

𝑚 = 𝑛.

Pumping down is accomplished by grafting 𝑇𝑡1 into 𝑇𝑡0 ; conversely, pumping up is accomplished
by iteratively grafting 𝑇𝑡0 into 𝑇𝑡1 . Define 𝕋(0) = 𝕋𝑡1 , and 𝕋(𝑖+1) = graft(𝕋𝑡0 , 𝑡1, 𝕋(𝑖)). Then 𝕋𝑘 =
graft(𝕋, 𝑡1, 𝕋(𝑘)), and 𝜎𝕋𝑘 = 𝑥𝑢𝑘𝑦𝑣𝑘𝑧, thus proving the pumping lemma.

Example. Consider the language 𝐿 = {𝑎𝑛𝑏𝑛𝑐𝑛 ∣ 𝑛 > 0} is not context-free. Suppose it is context-free.
Then it has a pumping number 𝑁 ∈ ℕ. Consider the word 𝑎𝑁𝑏𝑁𝑐𝑁 ∈ 𝐿. Then 𝑎𝑁𝑏𝑁𝑐𝑁 = 𝑥𝑢𝑦𝑣𝑧
where |𝑢𝑦𝑣| ≤ 𝑁, |𝑢𝑣| > 0. Since |𝑢𝑦𝑣| ≤ 𝑁, the string 𝑢𝑦𝑣 cannot consist of all three letters 𝑎, 𝑏, 𝑐. In
any case, pumping up the string will increase the quantity of one letter, but not increase the quantity
of some other letter. Then the new word does not lie in 𝐿.

4.5 Closure properties
We have seen that 𝐿 = {𝑎𝑛𝑏𝑛𝑐𝑛 ∣ 𝑛 > 0} is not context-free. However, 𝐿0 = {𝑎𝑛𝑏𝑛𝑐𝑘 ∣ 𝑛, 𝑘 > 0} and
𝐿1 = {𝑎𝑘𝑏𝑛𝑐𝑛 ∣ 𝑛, 𝑘 > 0} are context-free, as the concatenation of context-free languages. But the
intersection𝐿0∩𝐿1 is exactly𝐿, so context-free languages are not closed under intersection. Therefore,
they are also not closed under complement or difference, because this, along with closure under
union, would imply closure under intersection. Note that any model of computation corresponding
to context-free grammars cannot have a product construction, because such a construction would
imply closure of context-free languages under intersection.

It can be shown that context-free languages correspond to pushdown automata, which are similar to
deterministic automata, except that they also have a stack, which is a way of storing a sequence of
arbitrary symbols. The stack has a push operation allowing a symbol to be pushed onto the top of the
stack, and a pop operation that removes the topmost element currently on the stack. In particular, the
stack does not have random access, and any symbol pushed can be popped at most once. Sequences
that are pushed onto the stack are popped off in reverse order.

The transition function 𝛿 has an additional input denoting the topmost element currently on the
stack, and an additional output describing an operation to perform on the stack, if any.

Theorem. A language is context-free if and only if there is a pushdown automaton for the
language.

26

4.6 Decision problems
Theword problem is already solved for context-free languages. The emptiness problem can be solved
by the pumping lemma, similarly to the solution for regular languages. Indeed, if 𝑛 is a pumping
number, no word with length at most 𝑛 can be the shortest word, since it can be pumped down. So
we can explicitly check each word of length less than 𝑛 to solve the emptiness problem. Note that
the choice of pumping lemma to use does not matter in this argument.

5 Register machines
5.1 Definition
A register machine uses an alphabet Σ, has finitely many states, and finitely many registers, which
are last-in first-out storage units containing a word 𝑤 ∈ 𝕎. The machine is able to access the last
letter of the word, remove it, or push a new letter. A configuration or snapshot of length 𝑛 + 1 is a
tuple of the form (𝑞, 𝑤0,… ,𝑤𝑛) ∈ 𝑄 ×𝕎𝑛+1. A configuration defines the state of the computation
at a particular point in time.

The transition function should now be of the form 𝛿∶ 𝑄 ×𝕎𝑛+1 → 𝑄 ×𝕎𝑛+1. However, not every
such function represents a real computation; there are uncountably many such functions, and the
action on the registers is unrestricted.

Definition. Let Σ be an alphabet, and 𝑄 be a nonempty finite set of states. A tuple of the
form

(0, 𝑘, 𝑎, 𝑞) ∈ ℕ × ℕ × Σ × 𝑄
(1, 𝑘, 𝑎, 𝑞, 𝑞′) ∈ ℕ × ℕ × Σ × 𝑄 × 𝑄
(2, 𝑘, 𝑞, 𝑞′) ∈ ℕ × ℕ × 𝑄 × 𝑄
(3, 𝑘, 𝑞, 𝑞′) ∈ ℕ × ℕ × 𝑄 × 𝑄

is called a (Σ, 𝑄)-instruction. For improved readability, we write

+(𝑘, 𝑎, 𝑞) = (0, 𝑘, 𝑎, 𝑞)
?(𝑘, 𝑎, 𝑞, 𝑞′) = (1, 𝑘, 𝑎, 𝑞, 𝑞′)
?(𝑘, 𝜀, 𝑞, 𝑞′) = (2, 𝑘, 𝑞, 𝑞′)
−(𝑘, 𝑞, 𝑞′) = (3, 𝑘, 𝑞, 𝑞′)

Intuitively,

• +(𝑘, 𝑎, 𝑞) represents pushing the letter 𝑎 onto register 𝑘, then advancing to state 𝑞.
• ?(𝑘, 𝑎, 𝑞, 𝑞′) checks if the letter 𝑎 is currently at the top of register 𝑘. If so, we advance to state
𝑞, and otherwise, we advance to state 𝑞′.

• ?(𝑘, 𝜀, 𝑞, 𝑞′) checks if register 𝑘 is empty. If so, we advance to state 𝑞, and otherwise, we advance
to state 𝑞′.

• −(𝑘, 𝑞, 𝑞′) pops the topmost letter from register 𝑘. If the register was already empty, we advance
to state 𝑞, and otherwise, we advance to state 𝑞′.

27

These semantics are defined formally later. Let Instr(Σ, 𝑄) be the set of (Σ, 𝑄)-instructions. This is in
principle an infinite set, but finite if 𝑘 is bounded.

Definition. A tuple 𝑀 = (Σ,𝑄, 𝑃) is called a Σ-register machine if Σ is an alphabet, 𝑄 is a
finite set of states with two distinguished states 𝑞𝑆 ≠ 𝑞𝐻 , called the start state and halt state
respectively, and 𝑃∶ 𝑄 → Instr(Σ, 𝑄) is the program. If 𝑄 = {𝑞0,… , 𝑞𝑛}, we can describe 𝑃 as
a finite collection of program lines 𝑞𝑖 ↦ 𝑃(𝑞𝑖). Since 𝑄 is finite, only finitely many registers 𝑘
are referenced by 𝑃; we call the largest such 𝑘 the upper register index of𝑀.

Definition. Let𝑀 be a register machine with upper register index 𝑛 andw = (𝑤0,… ,𝑤𝑛) ∈
𝕎𝑛+1. For configurations 𝐶, 𝐶′, we say𝑀 transforms 𝐶 into 𝐶′ if one of the following holds.

• 𝑃(𝑞) = +(𝑘, 𝑎, 𝑞′) and 𝐶′ = (𝑞′, 𝑤0,… ,𝑤𝑘−1, 𝑤𝑘𝑎,𝑤𝑘+1,… ,𝑤𝑚).
• 𝑃(𝑞) = ?(𝑘, 𝑎, 𝑞′, 𝑞″), and

– 𝑤𝑘 = 𝑤𝑎 for some 𝑤 and 𝐶′ = (𝑞′, 𝑤0,… ,𝑤𝑚), or
– 𝑤𝑘 ≠ 𝑤𝑎 for all 𝑤 and 𝐶′ = (𝑞″, 𝑤0,… ,𝑤𝑚).

• 𝑃(𝑞) = ?(𝑘, 𝜀, 𝑞′, 𝑞″), and
– 𝑤𝑘 = 𝜀 and 𝐶′ = (𝑞′, 𝑤0,… ,𝑤𝑚), or
– 𝑤𝑘 ≠ 𝜀 and 𝐶′ = (𝑞″, 𝑤0,… ,𝑤𝑚).

• 𝑃(𝑞) = −(𝑘, 𝑞′, 𝑞″), and
– 𝑤𝑘 = 𝜀 and 𝐶′ = (𝑞′, 𝑤0,… ,𝑤𝑚), or
– 𝑤𝑘 = 𝑤𝑎 and 𝐶′ = (𝑞″, 𝑤0,… ,𝑤𝑘−1, 𝑤, 𝑤𝑘+1,… ,𝑤𝑚).

Then we define the computation sequence of𝑀 with inputw by 𝐶(0,𝑀,w) = (𝑞𝑆,w), 𝐶(𝑘 +
1,𝑀,w) = 𝐶′ where𝑀 transforms 𝐶(𝑘,𝑀,w) into 𝐶′.

Remark. This recursive definition requires that the length ofw is at least 𝑛+1, where 𝑛 is the upper
register index. By convention, ifw is too short, we pad it with copies of the empty word 𝜀.
Remark. As defined above, all computation sequences are infinite, because every configuration is
transformed by𝑀 into some other.

Definition. We say that the computation of𝑀 with inputw halts at time 𝑘 or in 𝑘 steps if 𝑘 is
the smallest natural such that 𝐶(𝑘,𝑀,w) = (𝑞𝐻 , v). In this case, we say that v is the register
content at time of halting, or the output of the computation. If such a 𝑘 does not exist, we say
the computation does not halt.

5.2 Strong equivalence

Definition. We say that register machines 𝑀,𝑀′ are strongly equivalent if for all 𝑘 and w,
𝐶(𝑘,𝑀,w) and 𝐶(𝑘,𝑀′,w) have the same register content, and for all w, we have that 𝑀
halts after 𝑘 steps with inputw if and only if𝑀′ halts after 𝑘 steps with inputw.

Remark. If |𝑄| = |𝑄′|, then for every (Σ, 𝑄, 𝑃) there exists a strongly equivalent register machine
(Σ, 𝑄′, 𝑃′) by relabelling the states in 𝑃.

28

Proposition (the padding lemma). Let 𝑀 be a register machine. Then there are infinitely
many different register machines that are strongly equivalent to𝑀.

Proof. Let𝑀 = (Σ,𝑄, 𝑃). The registermachine completely determines the computation sequence, so
after adding a new state ̂𝑞 to𝑄, ̂𝑞 is never a state in any computation sequence. So (Σ, 𝑄∪ { ̂𝑞}, 𝑃 ∪ { ̂𝑝})
is strongly equivalent to𝑀 for any program line ̂𝑝 for ̂𝑞.

Proposition. Up to strong equivalence, there are only countably many register machines.

Proof. Only the cardinality of 𝑄 matters up to strong equivalence. Let 𝑀𝑛,𝑘 be the collection of re-
gister machines with a fixed state set with |𝑄| = 𝑛 and upper register index at most 𝑘. By checking
cases, we find |Instr(Σ, 𝑄)| = (𝑘+1)𝑛|Σ|+ (𝑘+1)𝑛2|Σ|+ (𝑘+1)𝑛2+(𝑘+1)𝑛2 = 𝑁𝑛,𝑘, which is finite.
Therefore, there are 𝑁𝑛

𝑛,𝑘 different programs, and hence ||𝑀𝑛,𝑘|| = 𝑁𝑛
𝑛,𝑘 is finite. Then the collection

of all register machines up to strong equivalence is⋃𝑛,𝑘𝑀𝑛,𝑘 which is countable.

5.3 Performing operations and answering questions

Definition. An operation is a partial function 𝑓∶ 𝕎𝑛+1 ⇀ 𝕎𝑛+1. We write 𝑓(w) ↓ if w
lies in the domain of 𝑓, and we say the operation is defined or converges. We write 𝑓(w) ↑
otherwise, and say that the operation is undefined or diverges. A register machine𝑀 performs
an operation 𝑓 if for all w, 𝑓(w) ↓ if and only if 𝑀 halts on input w, and in this case, the
register content at time of halting is 𝑓(w).

Example. The operation ‘never halt’ is the empty function, dom𝑓 = ∅. Then any program that
never references the halt state in the right hand side of a program line performs this operation. For
example, 𝑞𝑆 ↦ +(0, 𝑎, 𝑞𝑆) and 𝑞𝐻 ↦ +(0, 𝑎, 𝑞𝑆) suffices.
Remark. There are many register machines that perform the same operation, including many that
are not strongly equivalent.

Example. The operation ‘halt without doing anything’ is the function 𝑓(w) = w with dom𝑓 =
𝕎𝑛+1. An example of a program to perform this is 𝑞𝑆 ↦ ?(0, 𝑎, 𝑞𝐻 , 𝑞𝐻). This halts after one step,
and preserves the register content.

Definition. A question with 𝑘+1 answers is a partition of𝕎𝑛+1 into 𝑘+1 sets 𝐴𝑖. A register
machine answers a question if it has 𝑘+ 1 answer states 𝑞𝑖, and upon input ofw, after finitely
many steps its configuration is (𝑞𝑖,w) for the value of 𝑖 wherew ∈ 𝐴𝑖.

Example. The question ‘is register 𝑖 empty’ is performed by 𝑞𝑆 ↦ ?(𝑖, 𝜀, 𝑞𝑌 , 𝑞𝑁). The question ‘is
the final letter in register 𝑖 the letter 𝑎’ is performed by 𝑞𝑆 ↦ ?(𝑖, 𝑎, 𝑞𝑌 , 𝑞𝑁).
The following lemma allows us to concatenate register machines, or alternatively, to perform sub-
routines.

29

Lemma (concatenation). Let𝑀 perform 𝐹 ∶ 𝕎𝑛+1 ⇀ 𝕎𝑛+1, and𝑀′ perform 𝐹′ ∶ 𝕎𝑛+1 ⇀
𝕎𝑛+1. Then we can construct a register machine 𝑀̂ which performs 𝐹′ ∘ 𝐹.

Remark. If 𝐹(w) ↑, then (𝐹′ ∘ 𝐹)(w) ↑. If 𝐹(w) ↓ and 𝐹′(𝐹(w)) ↑, then (𝐹′ ∘ 𝐹)(w) ↑. Otherwise,
(𝐹′ ∘ 𝐹)(w) ↓.

Proof. We may assume without loss of generality that the state sets of the two machines are disjoint.
We define 𝑄̂ = 𝑄∪𝑄′ ∖ {𝑞𝐻}. We write 𝑃⋆ for the program 𝑃 with the rule 𝑞𝐻 ↦ 𝑃(𝑞𝐻) removed, and
then all instances of 𝑞𝐻 replaced with 𝑞′𝑆. We then define ̂𝑃 = 𝑃⋆ ∪ 𝑃′. Then 𝑀̂ = (Σ, 𝑄̂, ̂𝑃) clearly
performs 𝐹′ ∘ 𝐹.

Lemma (case distinction). Let 𝖰 be a question with 𝑘 + 1 answers. Let 𝐹𝑖 ∶ 𝕎𝑛+1 ⇀ 𝕎𝑛+1

be operations for 𝑖 ≤ 𝑘. Let 𝑀 be a register machine that answers 𝖰, and let 𝑀𝑖 be register
machines that perform 𝐹𝑖. Then there is a register machine that performs the operation given
by 𝐺(w) = 𝐹𝑖(w) ifw ∈ 𝐴𝑖.

Proof. We assume that 𝑄 is disjoint from each 𝑄𝑖, and ⋂𝑖≤𝑘 𝑄𝑖 = {𝑞𝐻}. Let 𝑃⋆
𝑖 be 𝑃𝑖 where all oc-

currences of 𝑞𝑆,𝑖 are replaced with the 𝑖th answer state 𝑞𝑖. Define 𝑄⋆ = 𝑄 ∪ ⋃𝑖≤𝑘 𝑄𝑖 ∖ {𝑞𝑆,𝑖} and
𝑃⋆ = 𝑃 ∪⋃𝑖≤𝑘 𝑃

⋆
𝑖 . Then𝑀⋆ = (Σ,𝑄⋆, 𝑃⋆) performs 𝐺.

5.4 Register machine API
We can perform many different operations and answer many different questions using register ma-
chines. We say that a register is unused if no program line references it. A register is empty if it
contains the empty word. Registers that are used only for computation and not the output are some-
times called scratch space or scratch registers.

• Consider

𝐹(w) = {w 𝑤𝑖 ≠ 𝜀
↑ 𝑤𝑖 = 𝜀

The question ‘is register 𝑖 empty’ is performed by a registermachine, and in this case, the ‘never
halt’ operation can be performed; in the other case, the ‘halt without doing anything’ operation
can be performed.

• The operation ‘delete the final letter of register 𝑖 if it exists’ is performed by the program 𝑞𝑆 ↦
−(𝑖, 𝑞𝐻 , 𝑞𝐻).

• The operation ‘add letter 𝑎 to register 𝑖’ is performed by 𝑞𝑆 ↦ +(𝑖, 𝑎, 𝑞𝐻). Note that this ma-
chine also performs the operation ‘guarantee that the 𝑖th register is nonempty’.

• The operation ‘delete the content of register 𝑖’ is performed by 𝑞𝑆 ↦ −(𝑖, 𝑞𝐻 , 𝑞𝑆).
• We can perform the operation ‘add a fixed word 𝑤 to register 𝑖’. If 𝑤 = 𝑎0…𝑎ℓ, we use the
concatenation lemma to perform the operation ‘add letter 𝑎𝑗 to register 𝑖’ for each letter in the
word.

• The operation ‘replace the register content of 𝑖 with the word 𝑤’ can be performed by concat-
enating the operations ‘delete the content of register 𝑖’ and ‘add 𝑤 to register 𝑖’.

30

• We can answer the question ‘what is the final letter of register 𝑖’. This question has |Σ| + 1
answers, since the register could be empty. For each letter 𝑎𝑗 ∈ Σ, we ask the question ‘does
register 𝑖 end in letter 𝑎𝑗 ’, and if yes, go to the corresponding answer state 𝑞𝑗 , and if not, go to
a state that asks the next question in the sequence. If no question answers ‘yes’, the register is
empty, and we go to an answer state 𝑞𝜀.

• In particular, we can perform the operation ‘copy the final letter of register 𝑖 into register 𝑗 if
it exists’, by asking what this letter is, and then in each case, pushing the relevant letter onto
register 𝑗.

• We can also ‘move the final letter of register 𝑖 into register 𝑗 if it exists’ by first copying the letter
and then removing the original from register 𝑖.

• The operation ‘move the content of register 𝑖 into register 𝑗 in reverse order’ is accomplished
by repeatedly moving a single letter until no more letters lie in register 𝑖.

• The operation ‘move the content of register 𝑖 into register 𝑗 in the correct order’ can be per-
formed by considering an unused empty register 𝑘. We move the register content from 𝑖 to 𝑘
in reverse order and then from 𝑘 to 𝑗 in reverse order.

• The operation ‘reverse the content of register 𝑖’ is performed by moving it in reverse order to
an unused empty register 𝑗, and then moving this into 𝑖 in the correct order.

• The operation ‘move the content of register 𝑖 into registers 𝑗 and 𝑘 in reverse order’ is easily
performed by copying the final letter of register 𝑖 into 𝑗 and then into 𝑘, then removing the
final letter in register 𝑖 iteratively until it is empty.

• The operation ‘copy the content of register 𝑖 into register 𝑗 in reverse order’ is accomplished by
moving the content of register 𝑖 into 𝑗 and an unused empty register 𝑘, and then moving the
register content of 𝑘 into 𝑖 in reverse order.

• The operation ‘copy the content of register 𝑖 into register 𝑗 in the correct order’ is accomplished
by copying in the reverse order, and then reversing the content of register 𝑗.

• Consider the question ‘is the content of register 𝑖 the word 𝑤’. Let 𝑤 = 𝑎0…𝑎𝑘. We define the
subroutine 𝑆ℓ to answer the question ‘is 𝑎ℓ the final letter of register 𝑖’. If no, move to a state
𝑞𝑁 . If yes, move the final letter to an unused empty register 𝑘 and run subroutine 𝑆ℓ−1, or if
ℓ = 0, move to a state 𝑞𝑌 . At state 𝑞𝑁 wemove the content of 𝑘 to 𝑖 and answer 𝑞𝑁 , and at state
𝑞𝑌 we move the content of 𝑘 to 𝑖 and answer 𝑞𝑌 .

6 Computability theory
6.1 Computable functions and sets
Remark. A lot of computations require the use of scratch space, and we want to reduce the math-
ematical information related to this scratch space. In the following definition, only register zero is
considered real output; all other registers are considered scratch space.

Definition. Let 𝑀 be a register machine, and let 𝑘 ∈ ℕ. Then we define 𝑓𝑀,𝑘 ∶ 𝕎𝑘 ⇀ 𝕎
by 𝑓𝑀,𝑘(w) ↑ when𝑀 does not halt on inputw, and 𝑓𝑀,𝑘(w) = 𝑣0 when𝑀 halts on inputw
with halting register content v.

31

Note that if𝑀,𝑀′ are strongly equivalent, 𝑓𝑀,𝑘 = 𝑓𝑀′,𝑘 for all 𝑘. The converse does not hold. For the
special case of 𝑘 = 1, we also write𝑊 𝑀 = dom𝑓𝑀,1.

Definition. A partial function 𝑓∶ 𝕎𝑘 ⇀ 𝕎 is called computable if there is a register ma-
chine𝑀 such that 𝑓 = 𝑓𝑀,𝑘.

Remark. There are only countably many computable functions, because there are only countably
many register machines up to strong equivalence. For each computable function 𝑓, there are infin-
itely many register machines𝑀 such that 𝑓 = 𝑓𝑀,𝑘, since any register machine has infinitely many
other strongly equivalent register machines. Due to the concatenation lemma and the case distinc-
tion lemma, computable functions are closed under concatenation and case distinction.

Example. The identity function on𝕎 is computable. Consider 𝑐∶ 𝕎𝑘 → 𝕎 is given by 𝑐(w) = 𝑣
for a fixed 𝑣. The operation ‘replace the content of register 0 with 𝑣’ is performable on a register
machine, so 𝑐 is computable. The projection 𝜋𝑖 ∶ 𝕎𝑘 →𝕎 given by 𝜋𝑖(w) = 𝑤𝑖 is computable since
the operation ‘replace the content of register 0with register 𝑖’ can be performed on a registermachine
by emptying register 0 and then moving the content of register 𝑖 to register 0.

Definition. Let𝑋 ⊆ 𝕎𝑘. We say that a total function𝑓∶ 𝕎𝑘 →𝕎 is a characteristic function
of 𝑋 if 𝑓(w) ≠ 𝜀 if and only ifw ∈ 𝑋 . Let 𝑎 ∈ Σ. We say that 𝑓 is the characteristic function
of 𝑋 if 𝑓(w) = 𝑎 ifw ∈ 𝑋 and 𝑓(w) = 𝜀 otherwise.

We use the notation 𝜒𝑋 for the characteristic function.

Definition. A set 𝑋 ⊆ 𝕎𝑘 is computable if the characteristic function 𝜒𝑋 of 𝑋 is computable.

Note that a language is a set of words, so we can now reason about computability of languages.

Definition. Let 𝑋 ⊆ 𝕎𝑘. A partial function 𝑓∶ 𝕎𝑘 ⇀ 𝕎 is called a pseudocharacteristic
function of 𝑋 if dom𝑓 = 𝑋 . 𝑓 is called the pseudocharacteristic function of 𝑋 if 𝑓(w) = 𝑎 if
w ∈ 𝑋 , and undefined otherwise.

We use the notation 𝜓𝑋 for the pseudocharacteristic function.

Definition. A set𝑋 ⊆ 𝕎𝑘 is computably enumerable if the pseudocharacteristic function 𝜓𝑋
is computable.

Remark. We will show that every computable set is computably enumerable, but the converse does
not hold. We will also show that the computably enumerable sets are exactly the type 0 languages
(those languages that have grammars), and that the class of computable languages is properly con-
tained between type 1 and type 0.

32

6.2 Computability of languages

Proposition. Let 𝑋 ⊆ 𝕎𝑘. Then:
(i) 𝑋 is computable if and only if 𝑋𝑐 is computable.
(ii) 𝑋 is computably enumerable if and only if there exists a register machine𝑀 such that

𝑋 = dom𝑓𝑀,𝑘.
(iii) If 𝑋 is computable, then 𝑋 is computably enumerable.

Proof. To simplify notation we consider the case 𝑘 = 1. Note that if 𝑔 and ℎ are computable, then by
the case distinction lemma, so is 𝑓 defined by 𝑓(𝑤) = 𝑔(𝑤) if 𝑤 ≠ 𝜀, and 𝑓(𝑤) = ℎ(𝑤) if 𝑤 = 𝜀.
For the first part, consider the computable function 𝑓1 given by 𝑔(𝑤) = 𝜀 and ℎ(𝑤) = 𝑎. Then
𝑓1 ∘ 𝜒𝑋 = 𝜒𝑋𝑐 , 𝑓1 ∘ 𝜒𝑋𝑐 = 𝜒𝑋 .
Now consider 𝑓2 given by 𝑔(𝑤) = 𝑎 and ℎ(𝑤) = 𝜀. If 𝑋 = dom𝑓, then 𝜓𝑋 = 𝑓2 ∘ 𝑓.
Finally, consider 𝑓3 given by 𝑔(𝑤) = 𝑎 and ℎ(𝑤) ↑. Then 𝜓𝑋 = 𝑓3 ∘ 𝜒𝑋 .

Theorem. Every regular language is computable.

Proof. Let 𝐿 be such a regular language. Let 𝐷 = (Σ,𝑄, 𝛿, 𝑞0, 𝐹) be a deterministic automaton such
that 𝐿 = ℒ(𝐷). The first step in our program is to reverse the content of register 0 into register
1, because register machines read words in the opposite order of deterministic automata. For each
𝑞 ∈ 𝑄, the register machine will have a set of states𝑄𝑞 that indicate that we are currently mimicking
𝐷 in state 𝑞. We will now move into the state set 𝑄𝑞0 .

When moving into each state set 𝑄𝑞, our program will read the final letter of register 1. If there are
no letters in register 1, go to a fixed accepting state if 𝑞 ∈ 𝐹 and the non-accepting state if 𝑞 ∉ 𝐹.
Otherwise, let 𝑏 be the last letter in register 1. Remove 𝑏 from register 1, and go to state set 𝑄𝛿(𝑞,𝑏).
We implicitly repeat this step, since we have now transitioned into a state set.

If the machine is in the given accepting state, we empty register 0, add 𝑎 to register 0, and then halt.
If the machine is in the non-accepting state, we empty register 0, and then halt.

6.3 The shortlex ordering
We wish to create an order < on 𝕎 such that (ℕ, <) is order-isomorphic to (𝕎,<). We first fix an
arbitrary total order < on Σ.

Definition. The shortlex ordering on𝕎 given by an ordering of Σ is given by 𝑤 < 𝑣 when
(i) |𝑤| < |𝑣|; or
(ii) |𝑤| = |𝑣| but 𝑤 ≠ 𝑣, and for the least 𝑚 such that the 𝑚th characters differ, the 𝑚th

character of 𝑤 is less than the𝑚th character of 𝑣.

This ordering first checks length, then the lexicographic ordering. This is a total ordering on𝕎; it is
irreflexive, transitive, and trichotomous. The empty word is the least element.

33

Example. Let Σ = {0, 1}, and fix 0 < 1. Then an initial segment of the ordering is

𝜀, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, 0000,…

We can identify each word with a natural number, given by its index in this sequence, counting from
zero. There are 2𝑘 words of length 𝑘, so the index of the natural number associated to the word 0𝑘 is
exactly 2𝑘 − 1.
We can naturally extend the operations of addition and multiplication on the set of words by acting
on the index of the word in this ordering. For example, 10 + 01 = 010, because the associated index
of 10 is 5, the index of 01 is 4, and the index of 010 is 9. This gives𝕎 the structure of a commutative
semiring.

Theorem. The shortlex ordering has the same order type as ℕ. We write (ℕ, <) ≅ (𝕎,<).

Proof. For a fixed𝑤, the set {𝑣 ∣ 𝑣 < 𝑤} is finite. Therefore, the function#∶ 𝕎 → ℕ given by#(𝑤) =
|{𝑣 ∣ 𝑣 < 𝑤}| is well-defined and is an order isomorphism.

Theorem. The set {(𝑣, 𝑤) ∣ 𝑣 < 𝑤} is computable. The successor function 𝑠∶ 𝕎 → 𝕎 with
#(𝑠(𝑤)) = #(𝑤) + 1 is computable.

Proof. The question to determine the ordering of |𝑤𝑖| and ||𝑤𝑗 || can be answered by a register machine
by copying 𝑖, 𝑗 into empty registers and repeatedly removing letters until one or both is empty. If they
have the same length, we again copy 𝑖, 𝑗 into empty registers in the reverse order, and check and
remove each letter until a difference is found.

To compute 𝑠(𝑤) for a word 𝑤, we find the last letter in 𝑤 that is not the largest letter in the ordering.
Replace this letter with the next letter in the ordering, and replace all subequent letters with the
least letter in the ordering. If all 𝑘 letters are the greatest letter, output the least letter (𝑘 + 1)-many
times.

6.4 Church’s recursive functions
The class of recursive functions is defined inductively.

Definition. The basic functions are

𝜋𝑘,𝑖 ∶ 𝕎𝑘 →𝕎
𝑐𝑘,𝜀 ∶ 𝕎𝑘 →𝕎
𝑠∶ 𝕎 → 𝕎

where 𝜋𝑘,𝑖(w) = 𝑤𝑖, 𝑐𝑘,𝜀(w) = 𝜀, and #𝑠(𝑤) = #𝑤 + 1.

We call 𝜋𝑘,𝑖 the projection functions, 𝑐𝑘,𝜀 the constant functions, and 𝑠 the successor function.
Let 𝑓∶ 𝕎𝑚 ⇀ 𝕎 and 𝑔1,… , 𝑔𝑚 ∶ 𝕎𝑘 ⇀ 𝕎. Then their composition is the function ℎ(w) =
𝑓(𝑔1(w),… , 𝑔𝑚(w)).

34

Let 𝑓∶ 𝕎𝑘 ⇀𝕎 and 𝑔∶ 𝕎𝑘+2 ⇀𝕎. Then the partial function ℎ∶ 𝕎𝑘+1 ⇀𝕎 defined by ℎ(w, 𝜀) =
𝑓(w) and ℎ(w, 𝑠(𝑣)) = 𝑔(w, 𝑣, ℎ(w, 𝑣)) is a function defined by recursion.
Let 𝑓∶ 𝕎𝑘+1 ⇀𝕎. Then the function ℎ∶ 𝕎𝑘 ⇀𝕎 defined by

ℎ(w) = {𝑣 if for all 𝑢 ≤ 𝑣, we have 𝑓(w, 𝑢) ↓ and 𝑣 is <-minimal such that 𝑓(w, 𝑣) = 𝜀
↑ if there is no 𝑣 satisfying the above property

is a function defined byminimisation.

Remark. If a class of functions has the basic functions and is closed under composition, it has all
constant functions 𝑐𝑘,𝑣(w) = 𝑣, because if 𝑣 = 𝑠𝑘(𝜀), 𝑐𝑘,𝑣 = 𝑠𝑘 ∘ 𝑐𝑘,𝜀.

Definition. A class 𝒞 of partial functions is closed under composition, recursion, and min-
imisation if whenever 𝑓1,… , 𝑓ℓ ∈ 𝒞, then the results of applying these operations also lie in
𝒞.

Remark. The class 𝒫 of all partial functions is closed under composition, recursion, and minimisa-
tion.

Definition. We call a partial function recursive if it lies in the smallest class 𝒞 that contains
the basic functions and is closed under composition, recursion, and minimisation. A partial
function is primitive recursive if it lies in the smallest class 𝒞 that contains the basic functions
and is closed under composition and recursion.

Example. 𝜋1,0 ∶ 𝕎1 → 𝕎 is the identity function, which is primitive recursive. 𝜋3,2 ∶ 𝕎3 → 𝕎
defined by 𝜋3,2(𝑢, 𝑣, 𝑤) = 𝑤 is primitive recursive as it is a basic function. The successor function
𝑠∶ 𝕎 → 𝕎 is primitive recursive. The function 𝑠 ∘ 𝜋3,2 is primitive recursive, as the composition of
primitive recursive functions.

The function ℎ defined by ℎ(𝑤, 𝜀) = 𝜋1,0(𝑤) and ℎ(𝑤, 𝑠(𝑣)) = 𝑠 ∘ 𝜋3,2(𝑤, 𝑣, ℎ(𝑤, 𝑣)) = 𝑠(ℎ(𝑤, 𝑣)) is
primitive recursive, which is exactly the addition function #ℎ(𝑛,𝑚) = #𝑛 + #𝑚. We can define
multiplication and exponentiation in a similar way, and so all of these are primitive recursive.

We can encode recursive functions in trees. Let 𝑇 be a finitely branching tree, and define a labelling
ℓ on 𝑇 with the labels

label arity branching number
projection 𝐵𝜋𝑘,𝑖 𝑘 0
constant 𝐵𝑐𝑘,𝑖 𝑘 0
successor 𝐵𝑠 1 0

composition 𝐶𝑛,𝑘 𝑘 𝑛 + 1
recursion 𝑅𝑘 𝑘 + 1 2

minimisation 𝑀𝑘 𝑘 1

Definition. A tree 𝑇 with a labelling ℓ is called a recursion tree if the branching of the tree
corresponds exactly to the branching numbers of its labels, and
(i) if ℓ(𝑠) = 𝐶𝑛,𝑘, then the first successor of 𝑠 has a label of arity 𝑛 and all other have labels

with arity 𝑘;
(ii) if ℓ(𝑠) = 𝑅𝑘, then the first successor of 𝑠 has arity 𝑘 and the other has arity 𝑘 + 2;

35

(iii) if ℓ(𝑠) = 𝑀𝑘, then the successor has arity 𝑘.
A recursion tree is primitive if it has no minimisation labels𝑀𝑘.

The following recursion tree describes the addition function defined above.

𝑅1

𝐵𝜋1,0 𝐶1,3

𝐵𝑠 𝐵𝜋3,2

We can assign a (partial) recursive function 𝑓𝑇,ℓ to every recursive tree (𝑇, ℓ). If the tree is primitive,
the function obtained is primitive recursive.

Theorem. A partial function 𝑓 is recursive if and only if there is a recursion tree (𝑇, ℓ) such
that 𝑓 = 𝑓𝑇,ℓ. It is primitive recursive if it admits a recursion tree that is primitive.

Proof. We can obtain the associated partial function from a recursion tree by induction on the height
on the tree. For the converse, it suffices to show that the class of functions 𝑓𝑇,ℓ contains the basic
functions and is closed under composition, recursion, and minimisation, which holds by construc-
tion.

Theorem. Every partial recursive function is computable.

Proof. The basic functions have already been shown to be computable. Computable functions are
closed under composition (previously called concatenation). So it suffices to show that the comput-
able functions are closed under recursion and minimisation.

Let 𝑓, 𝑔 be computable functions; wewant to show that ℎ defined by ℎ(w, 𝜀) = 𝑓(w) and ℎ(w, 𝑠(𝑣)) =
𝑔(w, 𝑣, ℎ(w, 𝑣)) is computable. We describe a register machine.
(i) Let 𝑘, ℓ be two empty unused registers.
(ii) Compute 𝑓(w), and write the result to register ℓ. Note that if 𝑓(w) is undefined, this produces

the desired result.

(iii) If 𝑣 = 𝜀, output the content of register ℓ. Otherwise, apply the successor function 𝑠 to register
𝑘 and perform the following subroutine.

(a) Compute 𝑔(w, 𝑣, 𝑢)where 𝑢 is the content of register ℓ, then overwrite register ℓ with the
result.

(b) Check whether 𝑣 is equal to the register content of 𝑘. If so, output register ℓ. Otherwise,
apply 𝑠 to register 𝑘 and restart the subroutine.

We now consider minimisation. Let 𝑓 be computable. Let 𝑘 be empty and unused. Perform the
following subroutine.

36

(i) Compute 𝑓(w, 𝑢) where 𝑢 is the content of register 𝑘. If this result is undefined, this is the
desired result.

(ii) Check whether the computation result is empty. If it is empty, output the register content of 𝑘.
Otherwise, apply the successor function 𝑠 to 𝑘 then restart the subroutine.

Remark. The proof showed that the computable functions are closed under recursion and minim-
isation, not just that all partial recursive functions are computable. Therefore, we can use recursion
and minimisation directly to construct computable functions or register machines.

6.5 Merging and splitting words
There is a bijection 𝑧∶ ℕ × ℕ → ℕ, called the Cantor zigzag function.

𝑧(𝑖, 𝑗) = (𝑖 + 𝑗)(𝑖 + 𝑗 + 1)
2 + 𝑗

This gives a bijection𝕎×𝕎→𝕎. All of these operations are computable by registermachines.

Definition. Let 𝑣, 𝑤 be words. Then we can merge the two words into 𝑣 ∗ 𝑤, which is the
unique word such that #(𝑣 ∗ 𝑤) = 𝑧(#𝑣, #𝑤). We can split a word 𝑤 into 𝑢, 𝑣 such that
#𝑤 = 𝑧(#𝑢,#𝑣). We write 𝑢 = 𝑤(0) and 𝑣 = 𝑤(1).

Technically, splitting a word is not a computable function, since computable functions are defined to
always have codomain𝕎. However, the operation of splitting a word can be performed.

6.6 Universality
Consider an alphabet Σ. We then have a notion of computability for sets 𝑋 ⊆ Σ⋆ = 𝕎. If Σ ⊆ Σ′,
then every Σ-register machine is a Σ′-register machine. However, the notion of Σ′-computability is
no stronger than Σ-computability. One can show that computability over any alphabet Σwith |Σ| ≥ 2
is equivalent to computability over the set {0, 1} by encoding each letter as a binary string.
In this subsection, we aim to show that there is a universal register machine, which is a machine that
can mimic every register machine. Let Σ be an alphabet, and add additional symbols

𝟎 𝟏 + − ? () , ↦ ◻

We name the new alphabet Σ′. When we encode a mathematical object 𝑜 as a word Σ′⋆, we write the
encoded result code(𝑜).

• We can encode ℕ in binary using 𝟎 and 𝟏, for instance, code(19) = 𝟏𝟎𝟎𝟏𝟏.
• If 𝑄 = {𝑞0,… , 𝑞𝑘}, we define code(𝑞𝑘) = code(𝑘).
• We encode instructions 𝐼 ∈ Instr(Σ, 𝑄) using + − ? , (); for instance, code(+(𝑘, 𝑎, ℓ)) =
+(code(𝑘), 𝑎, code(ℓ)).

• We encode program lines by code(𝑞 ↦ 𝐼) = code(𝑞) ↦ code(𝐼).
• We encode a register machine with program 𝑃 as code(𝑞0 ↦ 𝑃(𝑞0)),… , code(𝑞𝑛 ↦ 𝑃(𝑞𝑛)).

37

• We encode sequences of words byw by code(w) = ◻𝑤0◻…◻𝑤𝑘◻.
• We encode configurations (𝑞,w) by code(𝑞) code(w).

Lemma. The function ℎ defined by

ℎ(𝑤, 𝑢, 𝑣) = {code(𝐶(𝑀,w, #𝑣)) if ∃𝑀,w such that 𝑤 = code(𝑀), 𝑢 = code(w)
↑ otherwise

is computable.

Proof. Define by recursion

ℎ(code(𝑀), code(w), 𝜀) = code(𝑞0) code(w); ℎ(code(𝑀), code(w), 𝑠(𝑣)) = code(𝐶′)

where 𝐶′ is the result of transforming ℎ(code(𝑀), code(w), 𝑣) by the machine𝑀.

Corollary. The truncated computation function 𝑡𝑀,𝑘 defined by

𝑡𝑀,𝑘(w, 𝑣) = {𝑎 𝑀 has halted before time #𝑣 on inputw
𝜀 otherwise

is computable.

Proof. Using recursion on the function ℎ from the previous lemma, we check all values of ℎ for words
𝑢 such that #𝑢 < #𝑣. If any of the values is in state 𝑞𝐻 , output 𝑎, otherwise, output 𝜀.

Theorem (the software principle). The function 𝑔 defined by

𝑔(𝑣, 𝑢) = {𝑓𝑀,𝑘(w) if 𝑣 = code(𝑀), 𝑢 = code(w) andw has length 𝑘
↑ otherwise

is computable.

Proof. We have a computable function 𝑓 that maps 𝑤, 𝑢, 𝑣 to code(𝐶(𝑀,w, #𝑣)) if code(𝑀) = 𝑤 and
code(w) = 𝑢 by the previous lemma. We start by checking whether𝑤 is a code for a register machine
and 𝑢 is a code for a 𝑘-tuple of words; if not, never halt. Write𝑓′ for the computable functionmapping
𝑤, 𝑢, 𝑣 to 𝑎 if the state of 𝑓(𝑤, 𝑢, 𝑣) is 𝑞𝐻 , and 𝜀 otherwise. We minimise 𝑓′ to obtain the computable
function ℎ, such that ℎ(𝑤, 𝑢) is the least 𝑣 such that 𝑓(𝑤, 𝑢, 𝑣) is in state 𝑞𝐻 if it exists. If ℎ(𝑤, 𝑢) does
not halt, then there is no step at which the computation halts, as expected, since 𝑔(𝑤, 𝑢) should not
halt in this case. If ℎ(𝑤, 𝑢) halts, consider the configuration 𝐶(𝑀,w, #ℎ(𝑤, 𝑢)) and find the code for
its 0th register, and write this into the actual 0th register.

Remark. A register machine 𝑈 that computes 𝑔 is called a universal register machine. 𝑈 has a finite
amount of used registers and states, but can mimic the behaviour of any register machine using an
arbitrarily large amount of registers and states.

38

This allows us to streamline notation; for a word 𝑣 ∈ 𝕎, we can write

𝑓𝑣,𝑘(w) = 𝑓𝑈,2(𝑣, code(w)) = 𝑓𝑀,𝑘(w)
if code(𝑀) = 𝑣. Similarly, we can write 𝑊𝑣 = dom𝑓𝑣,1, so {𝑊𝑣 ∣ 𝑣 ∈ 𝕎} is the set of computably
enumerable sets.

Theorem (𝑠–𝑚–𝑛 theorem; parameter theorem). Let 𝑔∶ 𝕎𝑘+1 ⇀ 𝕎 be computable. Then
there exists a total computable function ℎ∶ 𝕎 → 𝕎 such that 𝑓ℎ(𝑣),𝑘(w) = 𝑔(w, 𝑣).

This process is called currying, after Haskell Curry.

Remark. 𝑔𝑣(w) = 𝑔(w, 𝑣) is a function in 𝑘 variables. This is computable, so there is a mathematical
function ℎ such that 𝑔𝑣 = 𝑓ℎ(𝑥),𝑘, but this ℎ is not a priori computable.

Proof. First, the operation w ↦ (w, 𝑣) is performed by a register machine 𝑀𝑣; this is the register
machine that writes 𝑣 into register 𝑘. Therefore, we have a computable function 𝑣 ↦ code(𝑀𝑣).
Now, since 𝑔 is computable, there is a register machine 𝑀 such that 𝑓𝑀,𝑘+1 = 𝑔. Therefore, 𝑔𝑣 is
computed by the sequence of register machines 𝑀𝑣 then 𝑀. We can computably concatenate two
register machines, so we can compute a code for𝑀 ∘ 𝑀𝑣. Hence the function ℎ(𝑣) = code(𝑀 ∘ 𝑀𝑣)
is total and computable.

We must show that 𝑓ℎ(𝑣),𝑘(w) = 𝑔(w, 𝑣). Indeed,
𝑓ℎ(𝑣),𝑘(w) = 𝑓code(𝑀∘𝑀𝑣),𝑘(w) = 𝑓𝑀∘𝑀𝑣 ,𝑘(w) = 𝑔𝑣(w) = 𝑔(w, 𝑣)

as required.

6.7 The halting problem
Consider the sets

𝕂0 = {(𝑤, 𝑣) ∣ 𝑓𝑤,1(𝑣) ↓}; 𝕂 = {𝑤 ∣ 𝑓𝑤,1(𝑤) ↓}

Theorem. 𝕂0 and 𝕂 are computably enumerable.

Proof. It suffices to show that 𝕂0, 𝕂 are the domains of computable functions. By the software prin-
ciple, 𝑓𝑈,2(𝑤, 𝑣) = 𝑓𝑤,1(𝑣) and dom𝑓𝑈,2 = 𝕂0 as required. Observe that the diagonal function
Δ(𝑤) = (𝑤,𝑤) is computable, so 𝑓𝑈,2 ∘ Δ is computable, and dom(𝑓𝑈,2 ∘ Δ) = 𝕂.

Theorem (the halting problem). Neither 𝕂0 nor 𝕂 are computable.

Proof. We prove the result for 𝕂0. Suppose that 𝕂0 is computable, so the characteristic function 𝜒𝕂0
is computable. Now, define

𝑓(𝑤) = {↑ if 𝜒𝕂0(𝑤,𝑤) = 𝑎
𝜀 if 𝜒𝕂0(𝑤,𝑤) = 𝜀

This is a computable function, so there is a machine 𝑑 ∈ 𝕎 such that 𝑓𝑑,1 = 𝑓. Now,
𝑓(𝑑) ↓⟺ 𝑓𝑑,1(𝑑) ↓⟺ (𝑑, 𝑑) ∈ 𝕂0 ⟺ 𝜒𝕂0(𝑑, 𝑑) = 𝑎 ⟺ 𝑓(𝑑) ↑

The proof is almost exactly the same for 𝕂.

39

6.8 Sets with quantifiers

Definition. 𝑋 ⊆ 𝕎𝑘 is called Σ1 if there is a computable set 𝑌 ⊆ 𝕎𝑘+1 such thatw ∈ 𝑋 ⟺
∃𝑦, (w, 𝑦) ∈ 𝑌 . We say 𝑋 = 𝑝(𝑌) = {w ∣ ∃𝑦, (w, 𝑦) ∈ 𝑌} is the projection of 𝑌 . We say 𝑋 is
Π1 if it is the complement of a Σ1 set. We say 𝑋 is Δ1 if it is Σ1 and it is Π1.

Remark. The notationΣ is chosen to symbolise an existential quantifier, andΠ symbolises the univer-
sal quantifier. In logic, sums and existentials are related, and products and universal quantifiers are
also related. Δ is chosen for the German word Durchschnitt (‘intersection’), as Δ1 is the intersection
of Σ1 and Π1.

Proposition. Every computable set is Δ1.

Proof. By closure under complement, it suffices to show every computable set is Σ1. The computable
set 𝑌 = {(w, 𝑦) ∣ w ∈ 𝑋} has projection 𝑋 . Logically, this adds a trivial existential quantification.

Theorem. The computably enumerable sets are exactly the Σ1 sets.

Proof. Suppose 𝑋 is computably enumerable. Then by definition, the pseudocharacteristic function
𝜓𝑋 is computable. Then there exists a register machine 𝑀 such that 𝜓𝑋 = 𝑓𝑀,𝑘. We define 𝑌 =
{(w, 𝑦) ∣ 𝑡𝑀,𝑘(w, 𝑦) = 𝑎} where 𝑡𝑀,𝑘 is the truncated computation function for the register machine
𝑀. 𝑌 is computable, since 𝑡𝑀,𝑘 = 𝜒𝑌 . Thenw ∈ 𝑋 ⟺ 𝜓𝑋(w) ↓⟺ ∃𝑦, (w, 𝑦) ∈ 𝑌 as required.

Now suppose 𝑋 is Σ1. Let 𝑌 be a computable set such that 𝑋 = 𝑝(𝑌). As the computable sets are
closed under complement, the characteristic function 𝜒𝑌𝑐 is computable. We apply minimisation to
𝜒𝑌𝑐 to obtain a function ℎ such that ℎ(w) is the minimal 𝑦 such that (w, 𝑦) ∈ 𝑌 . Then domℎ =
𝑝(𝑌) = 𝑋 , so 𝑋 is the domain of a partial computable function as required.

Example. Let𝑓∶ 𝕎2 ⇀𝕎 be a partial computable function in two variables. Then𝑋 = {𝑤 ∣ ∃𝑣, 𝑓(𝑤, 𝑣) ↓}
is computably enumerable. Note that 𝑓(𝑤, 𝑣) ↓ is not a computable predicate. Let 𝑀 be a register
machine such that 𝑓 = 𝑓𝑀,2, and let

𝑍 = {(𝑤, 𝑣0, 𝑣1) ∣ 𝑡𝑀,2(𝑤, 𝑣0, 𝑣1) = 𝑎}

Clearly 𝑍 is computable. Define

𝑌 = {(𝑤, 𝑢) ∣ (𝑤, 𝑢(0), 𝑢(1)) ∈ 𝑍}

This is also computable. Now,

∃𝑣, 𝑓(𝑤, 𝑣) ↓ ⟺ ∃𝑣0, ∃𝑣1, (𝑤, 𝑣0, 𝑣1) ∈ 𝑍
⟺ ∃𝑢, (𝑤, 𝑢(0), 𝑢(1)) ∈ 𝑍
⟺ (𝑤, 𝑢) ∈ 𝑌
⟺ 𝑤 ∈ 𝑝(𝑌)

So 𝑋 is Σ1 as required.

40

Remark. The previous argument is sometimes known as a zigzag argument; a pair of existential quan-
tifiers can be merged into a single existential by merging the two words. Hence, we can perform
infinitely many computations in parallel.

Corollary. The computable sets are exactly the Δ1 sets.

Proof. If𝑋 is computable, it must beΔ1 by a previous result. If 𝑋 isΔ1, we can use a zigzag technique.
We know that there are machines𝑀,𝑀′ such that 𝑤 ∈ 𝑋 ⟺ ∃𝑣, 𝑡𝑀,𝑘(w, 𝑣) = 𝑎 and 𝑤 ∉ 𝑋 ⟺
∃𝑣, 𝑡𝑀′,𝑘(w, 𝑣) = 𝑎. Now, consider

𝑓(w, 𝑣) = {𝑡𝑀,𝑘(w, 𝑣(1)) #𝑣(0) is even
𝑡𝑀′,𝑘(w, 𝑣(1)) #𝑣(0) is odd

This is computable. Apply minimisation to 𝑓 to obtain a function ℎ where ℎ(w) is the least 𝑣 such
that 𝑓(w, 𝑣) ≠ 𝜀. We output 𝑎 if #ℎ(w)(0) is even, and 𝜀 if #ℎ(w)(0) is odd.

Corollary. Σ1 is not closed under complement.

Proof. The complement of the halting set𝕎∖ 𝕂 is Π1 and not Δ1, so not Σ1.

Theorem. Every type 0 language is computably enumerable.

Proof. Let 𝐺 = (Σ, 𝑉, 𝑃, 𝑆) and let Σ′ = Ω ∪ {→}. We encode derivations as 𝜎0 → ⋯ → 𝜎𝑛; this is a
Σ′-word. We say 𝑤 ∈ (Σ′)⋆ is a derivation code if 𝑤 is of this form with (𝜎0,… , 𝜎𝑛) a 𝐺-derivation. In
this case, we call 𝜎0 the initial string and 𝜎𝑛 the final string. Let

𝑌 = {(𝑤, 𝑣) ∣ 𝑣 is a derivation code with initial string 𝑆 and final string 𝑤}

𝑌 is computable since we can produce a register machine that tests if a given derivation code can
be produced from a fixed given grammar. But 𝑤 ∈ ℒ(𝐺) ⟺ ∃𝑣, (𝑤, 𝑣) ∈ 𝑌 . This is Σ1, as
required.

Remark. The converse also holds; every computably enumerable set 𝑋 ⊆ 𝕎 is a type 0 language.
This will not be proven rigorously in this course; a sketch will be provided later.

6.9 Closure properties

Proposition. The computable sets are closed under intersection, union, complement, differ-
ence, and concatenation.

Proof. Let 𝐴, 𝐵 be computable sets, so 𝜒𝐴, 𝜒𝐵 are computable functions. We obtain

𝜒𝐴∩𝐵(w) = {𝑎 𝜒𝐴(w) = 𝑎 and 𝜒𝐵(w) = 𝑎
𝜀 otherwise

41

For complement,

𝜒𝕎∖𝐴(w) = {𝑎 𝜒𝐴(w) = 𝜀
𝜀 otherwise

For concatenation, we suppose 𝐴, 𝐵 ⊆ 𝕎 are one-dimensional. Given a word 𝑤, we can iterate over
all possible decompositions 𝑤 = 𝑣𝑢 and check if 𝑣 ∈ 𝐴, 𝑢 ∈ 𝐵. There are (|𝑤| + 1)-many such
decompositions, so this minimisation will always halt.

Remark. The result for intersection is analogous to the product construction from deterministic auto-
mata; two computable functions can be evaluated in parallel since they always terminate, and then
their results may be combined.

Proposition. The computably enumerable sets are closed under intersection, union, and
concatenation. They are not closed under complement or difference.

Proof. We have already shown that the complement of the halting set 𝕂 is Π1 but not Σ1, so the
computably enumerable sets are not closed under complement or difference. For intersection, the
same construction as before works.

𝜒𝐴∩𝐵(w) = {𝑎 𝜓𝐴(w) = 𝑎 and 𝜓𝐵(w) = 𝑎
↑ otherwise

This is because if 𝜓𝐴 or 𝜓𝐵 diverge, the result is ↑ as desired. For union, we cannot compute 𝜓𝐴 and
𝜓𝐵 serially, since if 𝜓𝐴 ↑ we never run 𝜓𝐵 at all. Using the zigzag technique, we can check 𝜓𝐴(w)
and 𝜓𝐵(w) in parallel, halting if either halts at any time index. This idea is elaborated on an example
sheet.

For concatenation, consider the set𝑍 of triples (𝑤, 𝑣, 𝑢) such that 𝑣 is an initial segment of𝑤, and after
#𝑢 steps, 𝜓𝐴(𝑣) = 𝑎 and 𝜓𝐵(𝑣′) = 𝑎, where 𝑤 = 𝑣𝑣′. Now define 𝑌 = {(𝑤, 𝑢) || (𝑤, 𝑢(0), 𝑢(1)) ∈ 𝑍}, so
𝑤 ∈ 𝐴𝐵 if and only if there exists 𝑣 such that (𝑤, 𝑣) ∈ 𝑌 .

Proposition. 𝑋 is computably enumerable if and only if there is a partial computable func-
tion 𝑓 such that 𝑋 = Im𝑓.

Remark. In fact, a stronger result is true: 𝑋 is computably enumerable if and only if there is a total
computable function 𝑓 such that 𝑋 = Im𝑓. This is seen on an example sheet. This result justifies
the name ‘computably enumerable’.

Proof. If 𝜓𝑋 is computable, then so is

𝑓(𝑤) = {𝑤 𝜓𝑋(𝑤) ↓
↑ otherwise

Clearly Im𝑓 = 𝑋 as required.

Conversely, suppose 𝑓∶ 𝕎 ⇀ 𝕎 with 𝑋 = Im𝑓. Suppose 𝑓 = 𝑓𝑐,1. We use the zigzag technique.
Define the set𝑍 of tuples (𝑤, 𝑣, 𝑢) such that 𝑡𝑐,1(𝑣, 𝑢) = 𝑎 and𝑓𝑐,1(𝑣) = 𝑤. Let𝑌 = {(𝑤, 𝑣) || (𝑤, 𝑣(0), 𝑣(1)) ∈ 𝑍},
so Im𝑓 = 𝑝(𝑌).

42

6.10 The Church–Turing thesis
Register machines and recursive functions can both be used to define computability. Historically,
Turing machines were also used to define and analyse computability. There is another alternative,
known as while programs. Notably, in this model, there is no special ‘halt state’; the program halts
simply when there are no more instructions to execute. Therefore the computation sequence in
this model may be finite. This gives rise to a notion of while computable functions, the functions
computed by a while program.

Theorem. Let 𝑓∶ 𝕎𝑘 ⇀𝕎. Then, the following are equivalent.
(i) 𝑓 is (register machine) computable.
(ii) 𝑓 is partial recursive.
(iii) 𝑓 is Turing computable.
(iv) 𝑓 is while computable.

Turing machines, register machines, recursive functions, and while programs are superficially com-
pletely different approaches, yet the classes of computable functions that they define are exactly
identical. The Church–Turing thesis is that this is universal; any reasonable notion of computation is
equivalent. Unfortunately, this is a nonmathematical statement, and cannot be made precise; this is
simply a statement that describes our intuition aboutwhat computationmeans. Accepting this thesis
allows us to freely choose which notion of computability we would like to use for a given task.

The following is a proof sketch of the fact that computably enumerable sets are type 0 languages. The
sketchmakes use of the fact that Turing computability is exactly register machine computability. For
more detail, see Formal Languages (Salomaa 1973).

Proof sketch. Let 𝑀 be a Turing machine computing 𝜓𝑋 . Without loss of generality, let the read-
write head be thenmoved to the front, so 𝑞𝑠◻𝑤◻

𝑀−→ 𝑞𝐻◻𝑎◻. This is a rewrite systemwith the rules
described by the definition of the Turing machine, transforming 𝑞𝑆◻𝑤◻ into 𝑞𝐻◻𝑎◻
We define a grammar which starts from 𝑆, with 𝑆 → 𝑞𝐻◻𝑎◻, and performs all Turing instructions
backwards. When 𝑞𝑆 is seen, it deletes everything except 𝑤.

6.11 Solvability of decision problems
We can use the Church–Turing thesis to give precise statements of our decision problems, without
relying on an informal notion of ‘algorithm’. First, we encode grammars in such a way that for all
𝑤 ∈ 𝕎, there exists a grammar 𝐺 such that code(𝐺) = 𝑤; we write 𝐺𝑤 for the associated grammar
for a word. We require that all grammars are of the form 𝐺𝑤 for some word 𝑤 ∈ 𝕎. Now,

(i) the word problem is {(𝑤, 𝑣) ∣ 𝑤 ∈ ℒ(𝐺𝑣)};
(ii) the emptiness problem is {𝑤 ∣ ℒ(𝐺𝑤) = ∅};
(iii) the equivalence problem is {(𝑤, 𝑣) ∣ ℒ(𝐺𝑤) = ℒ(𝐺𝑣)}.
These are sets of tuples of words, so we can use our notion of computability. We can now concretely
define that such a problem is solvable if the set is computable.

Theorem. The word problem for type 0 grammars is unsolvable.

43

Proof. Let 𝑊 = {(𝑤, 𝑣) ∣ 𝑤 ∈ ℒ(𝐺𝑣)}. We want to show that 𝑊 is not computable. Recall that
𝕂0 = {(𝑤, 𝑣) ∣ 𝑓𝑤,1(𝑣) ↓}; we will use a proof analogous to the one used for this set. Suppose 𝑊 is
computable, so let

𝑓(𝑤) = {↑ 𝑤 ∈ ℒ(𝐺𝑤)
𝑎 𝑤 ∉ ℒ(𝐺𝑤)

Then 𝑓 is a computable function. Hence, dom𝑓 is computably enumerable. So there exists a gram-
mar 𝐺 such that ℒ(𝐺) = dom𝑓. Let 𝑑 ∈ 𝕎 be such that 𝐺 = 𝐺𝑑. Then

𝑑 ∈ ℒ(𝐺𝑑) ⟺ 𝑑 ∈ dom𝑓 ⟺ 𝑑 ∉ ℒ(𝐺𝑑)

6.12 Reduction functions

Definition. Let 𝐴, 𝐵 ⊆ 𝕎. A function 𝑓∶ 𝕎 → 𝕎 is called a reduction from 𝐴 to 𝐵 if 𝑓 is
total computable and 𝑤 ∈ 𝐴 if and only if 𝑓(𝑤) ∈ 𝐵. We write 𝐴 ≤𝑚 𝐵 if there is a reduction
from 𝐴 to 𝐵.

Remark. Given a reduction 𝑓 from 𝐴 to 𝐵, the set 𝐴 is intuitively ‘at most as complicated as 𝐵’. Note
that 𝑓−1(𝐵) = 𝐴.
The subscript𝑚 in the notation 𝐴 ≤𝑚 𝐵 stands for ‘many-one’; the function 𝑓 need not be injective.
Note that ≤𝑚 is reflexive and transitive. This relation respects complements: 𝐴 ≤𝑚 𝐵 implies𝕎 ∖
𝐴 ≤𝑚 𝕎 ∖ 𝐵. The relation is not in general antisymmetric, so this does not form a partial order.
Instead, ≤𝑚 forms a (partial) preorder.

If ≤ is a preorder on a set 𝑋 , we can define the equivalence relation 𝑥 ∼ 𝑦 when 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥.
Then (𝑋⟋∼,≤) is a partial order. A preorder can therefore be understood as a partial order, except
that instead of ordering single elements, it orders clusters of equivalent elements.

If 𝐴 ≤𝑚 𝐵 and 𝐵 is computable, then 𝐴 is also computable. Similarly, if 𝐴 ≤𝑚 𝐵 and 𝐵 is computably
enumerable, then 𝐴 is also computably enumerable. This demonstrates the fact that 𝜒𝐴 = 𝜒𝐵 ∘ 𝑓
and 𝜓𝐴 = 𝜓𝐵 ∘ 𝑓, where 𝑓 is the reduction.
Note that if𝐴 ≤𝑚 𝐵 and𝐴 is not computable, then𝐵 is also not computable, and a similar result holds
for sets that are not computably enumerable. In particular, if 𝕂 ≤𝑚 𝐴, then 𝐴 is not computable. If
𝕎∖ 𝕂 ≤𝑚 𝐴, then 𝐴 is not computably enumerable.

Remark. Many of the previous proofs in this section have implicitly used the notion of a reduction
function, for instance, the claim that solvability of the set {(𝑤, 𝑣) ∣ 𝑤 ∈ ℒ(𝐺𝑣)} is equivalent to solv-
ability of the set {(𝑤, 𝑣) ∣ 𝑤 ∈ 𝑊𝑣}.

Proposition. Let 𝐴 be a computable set, and 𝐵 ≠ ∅,𝕎. Then 𝐴 ≤𝑚 𝐵.

Proof. Since 𝐵 ≠ ∅,𝕎, let 𝑣 ∈ 𝐵, 𝑢 ∉ 𝐵. Since 𝐴 is computable, we have the computable function

𝑓(𝑤) = {𝑣 𝑤 ∈ 𝐴
𝑢 𝑤 ∉ 𝐴

This is a reduction from 𝐴 to 𝐵 as required.

44

Note that𝕎∖𝕂 ≰𝑚 𝕂, otherwise 𝕂 is not computably enumerable. We also have 𝕂 ≰𝑚 𝕎∖𝕂 from
the first result, after considering complements. There are therefore various different degrees of un-
solvability: equivalence classes of ≤𝑚 that are strictly larger than the class of computable sets.

There are many more such classes than the ones containing 𝕂 and𝕎 ∖ 𝕂. Let {0, 1} ⊆ Σ. If 𝐴, 𝐵 are
sets, we can define the Turing join 𝐴⊕𝐵 = 0𝐴∪1𝐵. Then 𝐴 ≤𝑚 𝐴⊕𝐵 and 𝐵 ≤𝑚 𝐴⊕𝐵. The Turing
join produces an upper bound in the set of equivalence classes of sets of words, and it can be shown
that this is the least upper bound. Hence we obtain another class of sets represented by 𝕂⊕𝕎 ∖ 𝕂.
This is neither Σ1 nor Π1.

Definition. If 𝒞 is a class of sets, we say that 𝐴 is 𝒞-hard if for all 𝐵 ∈ 𝒞, we have 𝐵 ≤𝑚 𝐴.
We say that 𝐴 is 𝒞-complete if it is 𝒞-hard and 𝐴 ∈ 𝒞.

Remark. A 𝒞-hard set is ‘at least as hard as 𝒞’. A 𝒞-complete set is the ‘most complicated’ 𝒞 set.

Corollary. Let 𝐴 be Δ1 and 𝐴 ≠ ∅,𝕎. Then 𝐴 is Δ1-complete.

Proof. The Δ1 sets are the computable sets, so we simply apply the previous proposition.

Theorem. 𝕂 is Σ1-complete.

Proof. Clearly 𝕂 ∈ Σ1. Now, let 𝑋 be an arbitrary set in Σ1, so 𝑋 is computably enumerable. Let 𝑓 be
a partial computable function such that 𝑋 = dom𝑓. It suffices to show 𝑋 ≤𝑚 𝕂.
Consider the function 𝑔(𝑤, 𝑢) = 𝑓(𝑤). This is computable. We can therefore apply the 𝑠–𝑚–𝑛 the-
orem to obtain a total computable function ℎ such that 𝑓ℎ(𝑤)(𝑢) = 𝑔(𝑤, 𝑢) = 𝑓(𝑤). We claim that ℎ
is a reduction function from 𝑋 to 𝕂.
Suppose 𝑤 ∈ 𝑋 . Then 𝑤 ∈ dom𝑓, so 𝑓ℎ(𝑤) is the constant function 𝑓(𝑤). Hence𝑊 ℎ(𝑤) = 𝕎. So 𝑓
is total, and therefore 𝑓ℎ(𝑤)(ℎ(𝑤)) ↓. So ℎ(𝑤) ∈ 𝕂.
Now suppose 𝑤 ∉ 𝑋 , so 𝑤 ∉ dom𝑓. Then 𝑓ℎ(𝑤) does not halt for any input, giving𝑊 ℎ(𝑤) = ∅. So
𝑓ℎ(𝑤)(ℎ(𝑤)) ↑ and in particular ℎ(𝑤) ∉ 𝕂.

6.13 Rice’s theorem
We say that𝑀 and𝑀′ are weakly equivalent when dom𝑓𝑀,1 = 𝑊 𝑀 = 𝑊 𝑀′ = dom𝑓𝑀′,1. We can
extend this to words. Words 𝑣, 𝑢 are weakly equivalent when𝑊𝑣 = 𝑊𝑢, and write 𝑣 ∼ 𝑢.

Definition. A set 𝐼 ⊆ 𝕎 is called an index set if it is closed under weak equivalence.

Remark. Index sets are unions of equivalence classes.

Example. ∅ and𝕎 are the trivial index sets. Other index sets correspond to properties of comput-
ably enumerable sets. Emp = {𝑣 ∣ 𝑊𝑣 = ∅}, Fin = {𝑣 ∣ 𝑊𝑣 finite}, Inf = {𝑣 ∣ 𝑊𝑣 infinite}, Tot =
{𝑣 ∣ 𝑊𝑣 = 𝕎} are index sets. Note that the emptiness problem is precisely the index set Emp.

45

Theorem (Rice’s theorem). No nontrivial index set is computable.

Fix 𝑤 ∈ 𝕎 and consider the function

𝑔(𝑢, 𝑣) = {𝑓𝑤,1(𝑣) 𝑓𝑢(𝑢) ↓ or equivalently, 𝑢 ∈ 𝕂
↑ otherwise

This is computable, even though the case distinction itself is not computable. By the 𝑠–𝑚–𝑛 theorem,
there is a total function ℎ such that

𝑓ℎ(𝑢)(𝑣) = 𝑔(𝑢, 𝑣) = {𝑓𝑤,1(𝑣) 𝑢 ∈ 𝕂
↑ 𝑢 ∉ 𝕂

If 𝑢 ∈ 𝕂, then 𝑊 ℎ(𝑢) = 𝑊𝑤. If 𝑢 ∉ 𝕂, then 𝑊 ℎ(𝑢) = ∅. This ℎ will be used as a reduction
function.

Proof. Let 𝐼 be an index set. Let 𝑒 be such that𝑊𝑒 = ∅. Then either 𝑒 ∈ 𝐼, or 𝑒 ∉ 𝐼.
Suppose 𝑒 ∈ 𝐼. Since 𝐼 is nontrivial, there exists 𝑤 ∉ 𝐼, so𝑊𝑤 ≠ ∅. Consider the function 𝑔 from the
discussion above, instantiated with this choice of 𝑤, and apply the 𝑠–𝑚–𝑛 theorem to obtain a total
function ℎ. We claim that ℎ reduces𝕎 ∖ 𝕂 to 𝐼. If 𝑢 ∈ 𝕂, then𝑊 ℎ(𝑢) = 𝑊𝑤. Hence ℎ(𝑢) ∼ 𝑤, so
ℎ(𝑢) ∉ 𝐼. If 𝑢 ∉ 𝕂, then𝑊 ℎ(𝑢) = ∅, so ℎ(𝑢) ∼ 𝑒, so ℎ(𝑢) ∈ 𝐼.
Now suppose 𝑒 ∉ 𝐼. Then there exists𝑤 ∈ 𝐼, and𝑊𝑤 ≠ ∅. Take 𝑔 and ℎ as before. We claim now that
ℎ reduces 𝕂 to 𝐼. If 𝑢 ∈ 𝕂, then𝑊 ℎ(𝑢) = 𝑊𝑤, so ℎ(𝑢) ∼ 𝑤, so ℎ(𝑢) ∈ 𝐼. If 𝑢 ∉ 𝕂, then𝑊 ℎ(𝑢) = ∅,
so ℎ(𝑢) ∼ 𝑒, giving ℎ(𝑢) ∉ 𝐼.

Remark. The proof given for Rice’s theorem shows a stronger statement: if 𝑒 ∈ 𝐼 then𝕎∖𝕂 ≤𝑚 𝐼, and
if 𝑒 ∉ 𝐼 then 𝕂 ≤𝑚 𝐼. This allows us to show that certain index sets are not computably enumerable.
𝑒 ∈ Emp so𝕎 ∖ 𝕂 ≤𝑚 Emp. Similarly,𝕎 ∖ 𝕂 ≤𝑚 Fin. For the other two index sets, we can only
deduce that 𝕂 ≤𝑚 Inf and 𝕂 ≤𝑚 Tot, since 𝑒 does not lie in these sets.

Corollary. Emp,Fin, Inf,Tot are not computable.

Corollary. The emptiness problem for type 0 grammars is unsolvable.

Corollary. The equivalence problem for type 0 grammars is unsolvable.

Proof. WedefineEq = {(𝑤, 𝑣) ∣ 𝑊𝑤 = 𝑊𝑣}. The function 𝑔(𝑤) = (𝑤, 𝑒) can be performed by a register
machine for any 𝑒. If𝑊𝑒 = ∅, then 𝜒Emp = 𝜒Eq ∘ 𝑔. Hence, if Eq is computable, so is Emp.

Remark. One can show that Emp is many-one equivalent to𝕎 ∖ 𝕂, so it is Π1-complete, as proven
on the last example sheet. The other problems Tot, Inf,Fin are not in Σ1 or Π1.

Theorem. Fin is not Σ1 or Π1.

46

Proof. We know𝕎∖𝕂 ≤𝑚 Fin by the proof of Rice’s theorem, so Fin is not Σ1. To show it is notΠ1,
one must show that 𝕂 ≤𝑚 Fin. Consider

𝑔(𝑤, 𝑣) = {↑ 𝑡𝑤,1(𝑤, 𝑣) = 𝑎
𝜀 otherwise

Applying the 𝑠–𝑚–𝑛 theorem, we obtain a total function ℎ such that 𝑓ℎ(𝑤),1(𝑣) = 𝑔(𝑤, 𝑣). We show
ℎ reduces 𝕂 to Fin. If 𝑤 ∈ 𝕂, then 𝑓ℎ(𝑤),1 is undefined from 𝑣 onwards, where 𝑣 is the halting time
of 𝑓𝑤(𝑤). Hence,𝑊 ℎ(𝑤) is finite, so ℎ(𝑤) ∈ Fin. If𝑤 ∉ 𝕂, then 𝑔(𝑤, 𝑣) = 𝜀 for all 𝑣. So 𝑓ℎ(𝑤),1 is the
constant function with value 𝜀. Hence𝑊 ℎ(𝑤) = 𝕎 which is infinite, so ℎ(𝑤) ∉ Fin.

47

	Introduction
	Exposition
	Basic definitions
	Revisiting Numbers and Sets
	Notation

	Rewrite systems
	Definitions
	Relation to languages
	Grammars
	Equivalent grammars
	The Chomsky hierarchy
	Decision problems
	Closure problems
	The empty word

	Regular languages
	Regular derivations
	Deterministic automata
	Nondeterministic automata
	The pumping lemma for regular languages
	Closure properties
	Emptiness problem
	Regular expressions
	Minimisation of deterministic automata
	Equivalence problem

	Context-free languages
	Trees
	Parse trees
	Chomsky normal form
	The pumping lemma for context-free languages
	Closure properties
	Decision problems

	Register machines
	Definition
	Strong equivalence
	Performing operations and answering questions
	Register machine API

	Computability theory
	Computable functions and sets
	Computability of languages
	The shortlex ordering
	Church's recursive functions
	Merging and splitting words
	Universality
	The halting problem
	Sets with quantifiers
	Closure properties
	The Church–Turing thesis
	Solvability of decision problems
	Reduction functions
	Rice's theorem

