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1 History and motivation
1.1 The brachistochrone problem
Consider a particle sliding on a wire under the influence of gravity between two fixed points in the
plane. What is the shape of the wire that produces the shortest travel time between the end points,
given that the particle starts at rest? This problem is known as the brachistochrone problem, an
archetypical variational problem. Suppose the end points are labelled 𝐴 and 𝐵, where 𝐴 is the origin,
i.e. (𝑥1, 𝑦1) = (0, 0), and where 𝐵 has coordinates (𝑥2, 𝑦2). Note that 𝑦2 < 0 in order that the particle
has sufficient energy to reach the destination. The travel time 𝑇 is given by

𝑇 = ∫ d𝑡 = ∫
𝐵

𝐴

dℓ
𝑣(𝑥, 𝑦)

Note that the kinetic energy and the potential energy sum to a constant.
1
2𝑚𝑣

2 +𝑚𝑔𝑦 = 𝑚𝑔𝑦1 = 0 ⟹ 𝑣 = √2𝑔√−𝑦

So we must find the function 𝑦 that minimises

𝑇[𝑦] = 1
√2𝑔

∫
𝑥2

0

√1 + 𝑦′2
√−𝑦

d𝑥

subject to 𝑦0 = 0, 𝑦(𝑥2) = 𝑦2. This problem’s solution will be explored in a later lecture.

1.2 Geodesics
A geodesic is the shortest path 𝛾 between two points on a surface Σ, assuming such a path exists.
Initially, let Σ = ℝ2. On this plane, the Pythagorean theorem for measuring distances holds. Using
a Cartesian coordinate system, we can say that a point 𝐴 has coordinates (𝑥1, 𝑦1), and a point 𝐵
has coordinates (𝑥2, 𝑦2). The distance from 𝐴 to 𝐵 along any path 𝛾 can be computed using a line
integral.

𝐷[𝑦] = ∫
𝐵

𝐴
dℓ = ∫

𝑥2

𝑥1
√1 + 𝑦′2 d𝑥

In this case, we have defined 𝑦 as a function of 𝑥, and we seek to minimise 𝐷 by varying the path 𝛾
on which we are moving.

1.3 Calculus of variations
A variational problem involves minimising an object of the form

𝐹[𝑦] = ∫
𝑥2

𝑥1
𝑓(𝑥, 𝑦(𝑥), 𝑦′(𝑥)) d𝑥

subject to fixed values of 𝑦 at the end points. We call such an 𝐹 a functional; it is a function on the
space of functions. Calculus applied to functionals is called the calculus of variations; we would
like to find minima and maxima of functionals. In order to talk about functionals rigorously, we
must define first the space of functions we are operating on; analogously to how we must define the
domain of a function we are analysing when dealing with real or complex analysis. We write 𝐶(ℝ)
for the space of continuous functions on ℝ, and 𝐶𝑘(ℝ) for the space of functions with continuous
𝑘th derivatives on ℝ. Sometimes, the notation 𝐶𝑘

(𝛼,𝛽)(ℝ) is used to denote 𝐶𝑘(ℝ) such that 𝑓(𝛼) and
𝑓(𝛽) are fixed, typically fixed to zero.
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1.4 Variational principles
We can now define what variational principles are: they are such principles where laws follow from
finding the minima or maxima of functionals. An introductory example is Fermat’s principle, which
states that light that travels between two points takes the path which requires the least travel time.
There is also the principle of least action. Consider a particle moving under some potential 𝑉(x), and
let 𝑇 = 1

2
𝑚|ẋ|2 be its kinetic energy. We can define

𝑆[𝛾] = ∫
𝑡2

𝑡1
(𝑇 − 𝑉) d𝑡

where 𝛾 represents the path along which the particle travels. The left hand side 𝑆[𝛾] is called the
action, and the principle of least action states that the action is minimised along paths of motion.
Then, Newton’s laws of motion should follow from this principle by minimising action.

2 Calculus for functions on ℝ𝑛

2.1 Introduction
Let 𝑓 ∈ 𝐶2(ℝ𝑛), so 𝑓∶ ℝ𝑛 → ℝwith all continuous second partial derivatives. We say that the point
a ∈ ℝ𝑛 is stationary if

∇𝑓(a) = 0
Consider a Taylor series expansion near a stationary point.

𝑓(x) = 𝑓(a) + 1
2(𝑥𝑖 − 𝑎𝑖)(𝑥𝑗 − 𝑎𝑗) 𝜕2𝑖𝑗𝑓

|||a
+ 𝑂(‖x − a‖2)

The Hessian matrix is defined as 𝐻𝑖𝑗 = 𝜕𝑖𝜕𝑗𝑓 = 𝐻𝑗𝑖, where 𝜕𝑖 ≡
𝜕
𝜕𝑥𝑖

. For convenience, we will shift
the origin to let a = 0. The Hessian, evaluated at 0, written 𝐻(0), is a real symmetric matrix and
hence can be diagonalised using an orthogonal transformation.

𝐻′ = 𝑅⊺𝐻(0)𝑅 =
⎛
⎜
⎜
⎝

𝜆1 0 ⋯ 0
0 𝜆2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜆𝑛

⎞
⎟
⎟
⎠

Then
𝑓(x′) − 𝑓(0) = 1

2 ∑𝜆𝑖(𝑥′𝑖)2 + 𝑂(‖x‖2)

We can characterise the stationary point using the eigenvalues of the Hessian.

(i) If all 𝜆𝑖 > 0, then 𝑓(x′) > 𝑓(0) so 𝑓(x′) is a local minimum.
(ii) If all 𝜆𝑖 < 0, then 𝑓(x′) < 𝑓(0) so 𝑓(x′) is a local maxmimum.
(iii) If the eigenvalues have mixed signs, this is a saddle point. 𝑓(x′) increases in some directions,

but decreases in other directions.

(iv) If some eigenvalues are zero, we must consider higher-order terms of the Taylor expansion.
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When 𝑛 = 2, this is a special case. We can compute properties of the eigenvalues using the trace and
determinant of the matrix.

det𝐻 = 𝜆1𝜆2; tr𝐻 = 𝜆1 + 𝜆2
(i) If det𝐻 > 0, tr𝐻 > 0 then we have a local minimum.
(ii) If det𝐻 > 0, tr𝐻 < 0 then we have a local maximum.
(iii) If det𝐻 < 0 then we have a saddle point.
(iv) If det𝐻 = 0 we need to consider higher-order terms.
Note that if 𝑓∶ 𝐷 → ℝ where 𝐷 ⊂ ℝ𝑛, it is possible that we have a local maximum which is not
the global maximum, if such a global maximum actually lies on the boundary and is not a stationary
point.

Now, let us suppose that 𝑓 is harmonic, i.e. ∇2𝑓(x) = 0 on 𝐷 ⊂ ℝ2. Hence, tr𝐻 = 0 which implies
that if there exists a turning point it is a saddle point. The minimum or maximum of a harmonic
function must therefore occur on the boundary.

Example. Let
𝑓(𝑥, 𝑦) = 𝑥3 + 𝑦3 − 3𝑥𝑦

∇𝑓(x) = (3𝑥
2 − 3𝑦

3𝑦2 − 3𝑥) = (00) ⟹ (𝑥𝑦) = (00) or (
1
1)

The Hessian is

𝐻 = (6𝑥 −3
−3 6𝑦) ⟹ 𝐻(0) = ( 0 −3

−3 0 ) ; 𝐻 (11) = ( 6 −3
−3 6 )

The determinant is negative at zero, giving us a saddle point. At the other point, the determinant is
positive and the trace is positive, giving a local minimum.

2.2 Constraints and Lagrange multipliers
Example. Find the circle centered at (0, 0) with smallest radius that intersects the parabola 𝑦 =
𝑥2 − 1. There are essentially two approaches.

• First, we consider the ‘direct’ method. We solve the constraints directly, which in this case
means solving the equations

𝑓 = 𝑥2 + 𝑦2
𝑦 = 𝑥2 − 1

for minimal 𝑓. This gives
𝑓 = 𝑥2 + (𝑥2 − 1)2 = 𝑥4 − 𝑥2 + 1

Then by setting 𝜕𝑥𝑓 = 0 we have

4𝑥3 − 2𝑥 = 0 ⟹ 𝑥 ∈ {0, 1
√2

, −1
√2

}

which gives

𝑥 = ±1
√2

⟹ 𝑦 = −1
2 ; 𝑟 = √3

2
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The other solution for 𝑥 yields a larger radius. This method works fine for simple problems
like this where the constraints are solvable. Therefore, we present an alternative method that
works in the more general case.

• This method uses ‘Lagrange multipliers’. We define a new function

ℎ(𝑥, 𝑦, 𝜆) = 𝑓(𝑥, 𝑦) − 𝜆𝑔(𝑥, 𝑦)

where 𝑔(𝑥, 𝑦) is defined such that 𝑔 = 0 is the constraint. 𝜆 is called the Lagrange multiplier.
In this example,

ℎ(𝑥, 𝑦, 𝜆) = 𝑥2 + 𝑦2 − 𝜆(𝑦 − 𝑥2 + 1)
We now extremise ℎ over all free variables without constraints.

∇ℎ = (
𝜕ℎ/𝜕𝑥
𝜕ℎ/𝜕𝑦
𝜕ℎ/𝜕𝜆

) = (
2𝑥 + 2𝜆𝑥
2𝑦 − 𝜆

𝑦 − 𝑥2 + 1
)

Solving ∇ℎ = 0, we have

2𝑥 + 4𝑥𝑦 = 0 ⟹ 𝑥 = 0 or 𝑦 = −1
2

and the same results follow as before by substitution.

2.3 Geometric justification of Lagrange multipliers
Consider a curve given by 𝑔 = 0. At each point on this curve, there is a normal to the curve of gradient
∇𝑔. In particular, ∇𝑔 is perpendicular to 𝑔 = 0. The function 𝑓 has gradient perpendicular to the
function 𝑓 = 𝑐 for some constant 𝑐. So at the extremum, ∇𝑓 ∝ ∇𝑔, so ∇𝑓 − 𝜆𝑔 = 0 for some 𝜆. This
guides the creation of the new function ℎ, for which we can optimise without constraints. This same
reasoning generalises to functions in higher dimensions and with multiple constraints.

3 Euler–Lagrange equation
3.1 Fundamental lemma of calculus of variations
Consider again the functional

𝐹[𝑦] = ∫
𝛽

𝛼
𝑓(𝑥, 𝑦, 𝑦′) d𝑥

where 𝑓 is given, and 𝑓(𝛼, ⋅ , ⋅ ) and 𝑓(𝛽, ⋅ , ⋅ ) are fixed. Consider a small perturbation

𝑦 ↦ 𝑦 + 𝜀𝜂(𝑥); 𝜂(𝛼) = 𝜂(𝛽) = 0

In order to compute the functional for this new function, we first need an additional lemma.

Lemma (Fundamental lemma of calculus of variations). If 𝑔∶ [𝛼, 𝛽] → ℝ is continuous on
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this interval, and is such that

∀𝜂 continuous, 𝜂(𝛼) = 𝜂(𝛽) = 0, ∫
𝛽

𝛼
𝑔(𝑥)𝜂(𝑥) d𝑥 = 0

Then
∀𝑥 ∈ (𝛼, 𝛽), 𝑔(𝑥) ≡ 0

Proof. Suppose that there exists a value 𝑥 ∈ (𝛼, 𝛽) such that 𝑔(𝑥) ≠ 0. Without loss of generality
suppose that this value is positive. Then, by continuity, there exists a sub-interval [𝑥1, 𝑥2] ⊂ (𝛼, 𝛽)
where 𝑔(𝑥) > 𝑐 for some positive real 𝑐 in this sub-interval. So we will construct an 𝜂 such that 𝜂 > 0
in [𝑥1, 𝑥2] and 𝜂 = 0 outside this interval, for example

𝜂(𝑥) = {(𝑥 − 𝑥1)(𝑥2 − 𝑥) 𝑥 ∈ [𝑥1, 𝑥2]
0 otherwise

Then the integrand is non-negative everywhere, and is lower bounded by a positive number:

∫
𝛽

𝛼
𝑔(𝑥)𝜂(𝑥) > 𝑐∫

𝑥2

𝑥1
(𝑥 − 𝑥1)(𝑥2 − 𝑥) d𝑥 > 0

So this leads to a contradiction.

Remark. We call such an 𝜂 function a ‘bump function’. In general it is possible to construct a 𝐶𝑘

bump function, e.g.

𝜂 = {[(𝑥 − 𝑥1)(𝑥2 − 𝑥)]𝑘+1 𝑥 ∈ [𝑥1, 𝑥2]
0 otherwise

3.2 Euler–Lagrange equation
Now, we can evaluate the original functional. Using a Taylor expansion,

𝐹[𝑦 + 𝜀𝜂] = ∫
𝛽

𝛼
𝑓(𝑥, 𝑦 + 𝜀𝜂, 𝑦′ + 𝜀𝜂′)

= 𝐹[𝑦] + 𝜀∫
𝛽

𝛼
(𝜕𝑓𝜕𝑦 𝜂 +

𝜕𝑓
𝜕𝑦′ 𝜂

′) d𝑥 + 𝑂(𝜀2)

For an extremum,
d𝐹
d𝜀
|||𝜀=0

= 0

So we want the first order term to vanish, so

𝜀∫
𝛽

𝛼
(𝜕𝑓𝜕𝑦 𝜂 +

𝜕𝑓
𝜕𝑦′ 𝜂

′) d𝑥 = 0

7



Integrating by parts, we have

0 = ∫
𝛽

𝛼
(𝜕𝑓𝜕𝑦 𝜂 −

d
d𝑥(

𝜕𝑓
𝜕𝑦′ 𝜂)) d𝑥 + [ 𝜕𝑓𝜕𝑦′ 𝜂]

𝛽

𝛼

= ∫
𝛽

𝛼
(𝜕𝑓𝜕𝑦 𝜂 −

d
d𝑥(

𝜕𝑓
𝜕𝑦′ 𝜂)) d𝑥

= ∫
𝛽

𝛼
(𝜕𝑓𝜕𝑦 −

d
d𝑥(

𝜕𝑓
𝜕𝑦′ ))⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟

𝑔(𝑥)

𝜂 d𝑥

We can apply the lemma above, showing that a necessary condition for the optimum is

d
d𝑥(

𝜕𝑓
𝜕𝑦′ ) −

𝜕𝑓
𝜕𝑦 = 0

This is the Euler–Lagrange equation.

Remark. Note that

• This can be seen as a second-order differential equation for 𝑦(𝑥) with boundary conditions at
𝛼 and 𝛽.

• The left hand side of the Euler–Lagrange equation is called a ‘functional derivative’ of 𝑦, and is
written

𝛿𝐹[𝑦]
𝛿𝑦(𝑥)

Sometimes, the notation
𝛿𝑦 = 𝜀𝜂(𝑥)

is used, but is not used in this course. Note that in this notation,

𝐹[𝑦 + 𝛿𝑦] = 𝐹[𝑦] + 𝛿𝐹[𝑦]; 𝛿𝐹[𝑦] = ∫
𝛽

𝛼
[𝛿𝐹[𝑦]𝛿𝑦(𝑥) 𝛿𝑦(𝑥)] d𝑥

• Other boundary conditions, such as 𝜕𝑓
𝜕𝑦′

|||𝛼,𝛽
can be used.

• Note that when computing the derivatives, we regard 𝑥, 𝑦, 𝑦′ as independent;
𝜕𝑓
𝜕𝑦 = 𝜕𝑓

𝜕𝑦
|||𝑥,𝑦′

We can also compute a total derivative, for instance

d
d𝑥 = 𝜕

𝜕𝑥 + 𝜕
𝜕𝑦𝑦

′ + 𝜕
𝜕𝑦′ 𝑦

″

Note that these give different results. As an example, let 𝑓(𝑥, 𝑦, 𝑦′) = 𝑥[(𝑦′)2 − 𝑦2]. Then
𝜕𝑓
𝜕𝑥 = (𝑦′)2 − 𝑦2; 𝜕𝑓

𝜕𝑦 = −2𝑥𝑦; 𝜕𝑓
𝜕𝑦′ = 2𝑥𝑦′

Hence
d𝑓
d𝑥 = (𝑦′)2 − 𝑦2 − 2𝑥𝑦𝑦′ + 2𝑥𝑦′𝑦″
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3.3 First integral of Euler–Lagrange equation (eliminating 𝑦)
In some cases, we can integrate the Euler–Lagrange equation to give a first-order ordinary differential
equation. Suppose 𝑓 does not explicitly depend on 𝑦. Then

𝜕𝑓
𝜕𝑦 = 0 ⟹ d

d𝑥(
𝜕𝑓
𝜕𝑦′ ) = 0

Hence,
𝜕𝑓
𝜕𝑦′ = 𝑐; 𝑐 ∈ ℝ

Example. Consider geodesics on ℝ2; we want to find curves on which the length is minimised.

𝐹[𝑦] = ∫
𝛽

𝛼
√d𝑥2 + d𝑦2 = ∫

𝛽

𝛼 √1+ d𝑦
d𝑥

2

⏟⎵⎵⏟⎵⎵⏟
𝑓(𝑦′)

d𝑥

We can apply this ‘first integral’ form of the Euler–Lagrange equation to get

𝑦′

√1 + (𝑦′)2
= 𝑐

Hence 𝑦′ is a constant, so let 𝑦′ = 𝑚 for𝑚 ∈ ℝ. Hence 𝑦 = 𝑚𝑥 + 𝑐.

3.4 Geodesics on a sphere
Consider the unit sphere 𝑆2 ⊂ ℝ3, and two points 𝐴, 𝐵 ∈ 𝑆2 which we wish to connect by a path of
minimal length, where the path is constrained to the sphere. We will parametrise the sphere with
spherical polar coordinates:

𝑥 = sin 𝜃 sin𝜙
𝑦 = sin 𝜃 cos𝜙
𝑧 = cos 𝜃

where 𝜃 ∈ [0, 𝜋]; 𝜙 ∈ [0, 2𝜋]. We can calculate the length of a path using the Pythagorean the-
orem:

d𝑠2 = d𝑥2 + d𝑦2 + d𝑧2 = d𝜃2 + sin2 𝜃 d𝜙2

We will parametrise the path by thinking of 𝜙 as a function of 𝜃. This gives

d𝑠 = √1 + sin2 𝜃(𝜙′)2 d𝜃

We wish to extremise the functional 𝐹, given by

𝐹[𝜙] = ∫
𝜃2=𝛽

𝜃1=𝛼
d𝑠 = ∫

𝜃2

𝜃1
d𝑠 = √1 + sin2 𝜃(𝜙′)2 d𝜃

The integrand does not depend on 𝜙 but only on its derivative; so d𝑓
d𝜙

= 0. Using the first integral
form of the Euler–Lagrange equation, we have

𝜕𝑓
𝜕𝜙′ = 𝑘

9



Now, we have

sin2 𝜃𝜙′

√1+ sin2 𝜃(𝜙′)2
= 𝑘

sin4 𝜃(𝜙′)2 = 𝑘2(1 + sin2 𝜃(𝜙′)2)

(𝜙′)2 = 𝑘2

sin2 𝜃(sin2 𝜃 − 𝑘2)
d𝜙
d𝜃 = ±

√
𝑘2

sin2 𝜃(sin2 𝜃 − 𝑘2)

𝜙 = ±∫ 𝑘 d𝜃
sin 𝜃√sin2 𝜃 − 𝑘2

The two solutions correspond to the two directions in which we can trace the path. We then can
arrive at

±√1 − 𝑘2
𝑘 cos(𝜙 − 𝜙0) = cot 𝜃

Wewill be able to see that this corresponds to a great circle; that is, the intersection of a plane through
the origin with the sphere. We will show later that geodesics on a sphere are only segments of a great
circle.

3.5 First integral of Euler–Lagrange equation (eliminating 𝑥)
For any 𝑓(𝑥, 𝑦, 𝑦′), consider the quantity

d
d𝑥(𝑓 − 𝑦′ 𝜕𝑓𝜕𝑦′ )

This is exactly

d
d𝑥(𝑓 − 𝑦′ 𝜕𝑓𝜕𝑦′ ) =

𝜕𝑓
𝜕𝑥 + 𝑦′ 𝜕𝑓𝜕𝑦 + 𝑦″ 𝜕𝑓𝜕𝑦′ − 𝑦″ 𝜕𝑓𝜕𝑦′ − 𝑦′ dd𝑥(

𝜕𝑓
𝜕𝑦′ )

= 𝜕𝑓
𝜕𝑥 + 𝑦′ 𝜕𝑓𝜕𝑦 − 𝑦′ dd𝑥(

𝜕𝑓
𝜕𝑦′ )

= 𝑦′ (𝜕𝑓𝜕𝑦 −
d
d𝑥

𝜕𝑓
𝜕𝑦′ )⏟⎵⎵⎵⏟⎵⎵⎵⏟

zero by Euler–Lagrange

+𝜕𝑓𝜕𝑥

= 𝜕𝑓
𝜕𝑥

So, in the case that 𝑓 does not depend explicitly on 𝑥 (that is, 𝜕𝑓
𝜕𝑥

≡ 0), then we have another first
integral condition from the Euler–Lagrange equation:

𝑓 − 𝑦′ 𝜕𝑓𝜕𝑦′ = constant
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3.6 Solving the brachistochrone problem
Consider a curve in the plane with a fixed endpoint at the origin and another fixed endpoint at 𝑥 = 𝛽.
We want to find a path such that the time taken for a particle to travel along this curve is minimised.
We previously computed that the travel time is given by

𝐹[𝑦] = 1
√2𝑔

∫
𝛽

0

√1 + (𝑦′)2
√−𝑦

d𝑥

This does not depend on 𝑥, so we can write (ignoring the 1
√2𝑔

factor)

𝑓 − 𝑦′ 𝜕𝑓𝜕𝑦′ =
√1 + (𝑦′)2
√−𝑦

− 𝑦′ 𝑦′

√1 + (𝑦′)2√−𝑦
= 𝑘

This gives

1
√1 + (𝑦′)2

= 𝑘√−𝑦

𝑦′ = ±√1 + 𝑘2𝑦2
𝑘√−𝑦

𝑥 = ±𝑘∫ √−𝑦
√1 + 𝑘2𝑦

d𝑦

We will parametrise further:

𝑦 = −1
𝑘2 sin

2 𝜃
2 ⟹ d𝑦 = −1

𝑘2 sin
𝜃
2 cos

𝜃
2

Hence,

𝑥 = ±𝑘∫ −1
𝑘2

sin2 𝜃
2
cos 𝜃

2

√1− sin2 𝜃
2

d𝜃

= ∓ 1
2𝑘2 ∫(1 − cos 𝜃) d𝜃

= ∓ 1
2𝑘2 (𝜃 − sin 𝜃) + 𝑐

The initial condition at (0, 0) gives
𝜃0 = 0 ⟹ 𝑐 = 0

Taking the positive solution, we have

𝑥 = 𝜃 − sin 𝜃
2𝑘2

𝑦 = −1
𝑘2 sin

2 𝜃
2

This can be shown to be a parametrised equation of a cycloid.

11



3.7 Fermat’s principle
Fermat’s principle states that as light travels between two points, it takes the path of least time. Let
a ray of light be represented by a path 𝑦(𝑥). The speed of light is given by a function 𝑐(𝑥, 𝑦) since it
depends on the material it is in. Then the time taken is

𝐹[𝑦] = ∫ dℓ
𝑐 = ∫

𝛽

𝛼

√1 + (𝑦′)2
𝑐(𝑥, 𝑦) d𝑥

In this general form, 𝑓 depends on 𝑥, 𝑦, 𝑦′. Now, let us assume 𝑐 depends only on 𝑥 and not on 𝑦.
Then we can use a first integral form to get

𝜕𝑓
𝜕𝑦′ = constant

This gives
𝑦′

𝑐(𝑥)√1 + (𝑦′)2
= constant

Suppose that at 𝛼, the light ray’s path has an angle 𝜃1 with the 𝑥-axis, and at 𝛽 the angle is 𝜃2. Note
that 𝜃1 = arctan 𝑦′|𝛼 and the corresponding result for 𝛽. Then,

sin 𝜃1
𝑐(𝑥1)

= sin 𝜃
𝑐(𝑥)

This is known as Snell’s law.

Suppose we have a material in which 𝑐 increases with 𝑥. In such a material, we then have that 𝜃
increases with 𝑥. In a material in which 𝑐 decreases as 𝑥 increases, 𝜃 naturally decreases.
Now, suppose we have a slow material with 𝑐 = 𝑐𝑆 and a fast material with 𝑐 = 𝑐𝐹 adjacent to each
other. Wemight like to find the path that light takes in its path between points that cross thematerial
boundary. Snell’s law can be used to determine that the ratio between the sine of the angle and the
speed of light remains constant along the light ray’s path.

4 Extensions to the Euler–Lagrange equation
4.1 Euler–Lagrange equation with constraints
Given a functional𝐹[𝑦] = ∫𝛽

𝛼 𝑓(𝑥, 𝑦, 𝑦′) d𝑥, wewould like to extremise𝐹 subject to𝐺[𝑦] = ∫𝛽
𝛼 𝑔(𝑥, 𝑦, 𝑦′) d𝑥 =

𝑘 for some constant 𝑘. We can use the method of Lagrange multipliers. Instead of extremising 𝐹, we
will extremise

Φ[𝑦; 𝜆] = 𝐹[𝑦] − 𝜆𝐺[𝑦]
Thus, we replace 𝑓 in the Euler–Lagrange equation with 𝑓 − 𝜆𝑔, giving

d
d𝑥(

𝜕
𝜕𝑦′ (𝑓 − 𝜆𝑔)) − 𝜕

𝜕𝑦 (𝑓 − 𝜆𝑔) = 0
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4.2 Dido’s isoparametric problem
Given a fixed perimeter, we wish to find the simple and closed plane curve which maximises the
enclosed area. We can restrict ourselves to convex curves. This is because any concave curve can be
transformed into a convex curve with greater area and equal perimeter, by reflecting the non-convex
region. We will parametrise the curve in ℝ2 by letting the minimal and maximal values of 𝑥 be 𝛼, 𝛽.
Then, as we trace out the curve, 𝑥 monotonically increases from 𝛼 to 𝛽, and then monotonically
decreases as we return from 𝛽 to 𝛼. This induces two functions 𝑦1, 𝑦2 on (𝛼, 𝛽) where 𝑦2 > 𝑦1. The
infinitesimal area is given by d𝐴 = (𝑦2 − 𝑦1) d𝑥. Thus, the area functional is given by

𝐴[𝑦] = ∫
𝛽

𝛼
(𝑦2(𝑥) − 𝑦1(𝑥)) d𝑥 = ∮

𝐶
𝑦(𝑥) d𝑦

The constraint functional is

𝐿[𝑦] = ∮
𝐶
dℓ = ∮

𝐶
√1+ (𝑦′)2 d𝑥 = 𝐿

where 𝐿 is the fixed perimeter. Using Lagrange multipliers, we can define

ℎ = 𝑦 − 𝜆√1 + (𝑦′)2

Note that we do not need to consider a boundary term in the derivation of the Euler–Lagrange equa-
tion, since the curve has no boundary. Using a first integral form of the Euler–Lagrange equation on
ℎ, we have

𝑘 = ℎ − 𝑦′ dℎd𝑦′ = 𝑦 − 𝜆√1 + (𝑦′)2 + 𝑦′𝜆 𝑦′

√1 + (𝑦′)2
= 𝑦 − 𝜆

√1 + (𝑦′)2

for some constant 𝑘. Hence,
(𝑦′)2 = 𝜆2

(𝑦 − 𝑘)2 − 1

A solution here is the circle of radius 𝜆:

(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 = 𝜆2

Here, 𝐿 = 2𝜋𝜆 so we can write the solution in terms of 𝐿 instead, giving

(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 =
𝐿2
4𝜋2

4.3 The Sturm–Liouville problem
Let 𝜌(𝑥), 𝜎(𝑥) be defined for 𝑥 ∈ [𝛼, 𝛽], and let 𝜌(𝑥) > 0 on this interval. Consider the func-
tional

𝐹[𝑦] = ∫
𝛽

𝛼
[𝜌(𝑦′)2 + 𝜎𝑦2] d𝑥

Let us extremise 𝐹 subject to the constraint

𝐺[𝑦] = ∫
𝛽

𝛼
𝑦2 d𝑥 = 1
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We have
Φ[𝑦; 𝜆]𝐹[𝑦] − 𝜆(𝐺[𝑦] − 1)

This induces the integrand
ℎ = 𝜌(𝑦′)2 + 𝜎𝑦2 − 𝜆(𝑦2 − 1

𝛽 − 𝛼)

We consider the derivatives for the Euler–Lagrange equation:

𝜕ℎ
𝜕𝑦′ = 2𝜌𝑦′; 𝜕ℎ

𝜕𝑦 = 2𝜎𝑦 − 2𝜆𝑦

Hence,
− d
d𝑥(𝜌𝑦

′) + 𝜎𝑦 = 𝜆𝑦

We can write this as ℒ(𝑦) = 𝜆𝑦, where the ℒ is known as the Sturm–Liouville operator. This is
essentially an eigenvalue problem, since ℒ is a linear operator. For example, if 𝜌 = 1, this eigenvalue
problem is exactly the time-independent Schrödinger equation where 𝜎 is the quantum-mechanical
potential.

Suppose 𝜎 > 0. Then the functional 𝐹[𝑦] is also greater than zero. Then, the positive minimum of 𝐹
(if it exists) is the lowest eigenvalue.

Proof. Using the result from the Euler–Lagrange equation, we can multiply by 𝑦 and integrate by
parts giving

−𝑦 d
d𝑥(𝜌𝑦

′) + 𝜎𝑦2 = 𝜆𝑦2

𝐹[𝑦] − [𝑦𝑦′𝜌]𝛽𝛼⏟⎵⏟⎵⏟
zero

= 𝜆𝐺[𝑦]⏟
one

Thus, the lowest eigenvalue is the minimum of 𝐹[𝑦]/𝐺[𝑦].

4.4 Multiple dependent variables
Suppose we have some vector

y(𝑥) = (𝑦1(𝑥), 𝑦2(𝑥),… , 𝑦𝑛(𝑥))
Suppose we want to extremise the functional

𝐹[y] = ∫
𝛽

𝛼
𝑓(𝑥, 𝑦1,… , 𝑦𝑛, 𝑦′1,… , 𝑦′𝑛) d𝑥

If there is some critical point y, we perturb by a small amount 𝜀𝛈 = 𝜀(𝜂1(𝑥),… , 𝜂𝑛(𝑥)), where 𝛈(𝛼) =
𝛈(𝛽) = 0. Following the derivation of the one-dimensional Euler–Lagrange equation, we can deduce
that

𝐹[y + 𝜀𝛈] − 𝐹[y] = ∫
𝛽

𝛼

𝑛
∑
𝑖=1

𝜂𝑖(
d
d𝑥

𝜕𝑓
𝜕𝑦′𝑖

− 𝜕𝑓
𝜕𝑦𝑖

) d𝑥 + boundary term + 𝑂(𝜀2)

We can apply the fundamental lemma, choosing 𝜂𝑖 in a useful way, we can show that a necessary
condition for a critical point is

d
d𝑥

𝜕𝑓
𝜕𝑦′𝑖

− 𝜕𝑓
𝜕𝑦𝑖

= 0
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for all 𝑖. This is a second-order system of 𝑛 ODEs that we can solve. If 𝑓 does not depend on one of
the 𝑦𝑖, then we have a first integral form for this particular equation. In particular, if 𝜕𝑓

𝜕𝑦𝑗
≡ 0 then

𝜕𝑓
𝜕𝑦′𝑗

= constant. If 𝑓 does not depend on 𝑥, then we have 𝑓 −∑𝑖 𝑦′𝑖
𝜕𝑓
𝜕𝑦′𝑖

= constant.

4.5 Geodesics on surfaces
Consider a surface Σ in ℝ3, given by

Σ = {x∶ 𝑔(x) = 0}
Consider two points 𝐴, 𝐵 on Σ. What are the geodesics (the shortest paths on the surface) between
the two points, if one exists at all? Consider a parametrisation of such a path given by 𝑡 ∈ [0, 1]where
𝐴 = x(0), 𝐵 = x(1). We wish to extremise

Φ[x, 𝜆] = ∫
1

0
{√ ̇𝑥2 + ̇𝑦2 + ̇𝑧2 − 𝜆(𝑡)𝑔(x)} d𝑡

The Lagrange multiplier, a function of 𝑡, since we want the entire curve (for all 𝑡) to lie on Σ. We
substitute the integrand ℎ in the Euler–Lagrange equation. Considering the variation with respect
to 𝜆, we have

d
d𝑡
𝜕ℎ
𝜕 ̇𝜆

− 𝜕ℎ
𝜕𝜆 = 0

But ℎ does not depend on ̇𝜆, hence 𝜕ℎ
𝜕𝜆

= 0, giving 𝑔(x) = 0 for all x. Considering the variation with
respect to 𝑥𝑖, we have

d
d𝑡

𝜕ℎ
𝜕 ̇𝑥𝑖

− 𝜕ℎ
𝜕𝑥𝑖

= 0

Hence
d
d𝑡(

̇𝑥𝑖

√ ̇𝑥21 + ̇𝑥22 + ̇𝑥23
) + 𝜆 𝜕𝑔𝜕𝑥𝑖

= 0

We could alternatively solve the constraint 𝑔 = 0, and parametrise the surface according to this
solution.

4.6 Multiple independent variables
In the most general case, wemay havemultiple independent variables in a variational problem. This
converts the Euler–Lagrange equation into a partial differential equation. Suppose 𝜙∶ ℝ𝑛 → ℝ𝑚. If
𝑛 = 3, for example, we have

𝐹[𝜙] =∭
𝒟
𝑓(𝑥, 𝑦, 𝑧⏟
independent

, 𝜙, 𝜙𝑥, 𝜙𝑦, 𝜙𝑧) d𝑥 d𝑦 d𝑧

where 𝒟 ⊂ ℝ3, and 𝜙𝑥𝑖 ≔ 𝜕𝜙/𝜕𝑥𝑖 . Suppose there exists some extremum 𝜙, and consider a small
variation 𝜙 ↦ 𝜙(𝑥, 𝑦, 𝑧) + 𝜀𝜂(𝑥, 𝑦, 𝑧)where 𝜂 = 0 on 𝜕𝒟. Evaluating the functional on this perturbed
𝜙 gives

𝐹[𝜙 + 𝜀𝜂] − 𝐹[𝜙] = 𝜀∭
𝒟
{𝜂𝜕𝑓𝜕𝜙 + 𝜂𝑥

𝜕𝑓
𝜕𝜙𝑥

+ 𝜂𝑦
𝜕𝑓
𝜕𝜙𝑦

+ 𝜂𝑧
𝜕𝑓
𝜕𝜙𝑧

} d𝑥 d𝑦 d𝑧 + 𝑂(𝜀2)
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= 𝜀∭
𝒟

⎧⎪
⎨⎪
⎩

𝜂𝜕𝑓𝜕𝜙 + ∇ ⋅ (𝜂( 𝜕𝑓𝜕𝜙𝑥
, 𝜕𝑓𝜕𝜙𝑦

, 𝜕𝑓𝜕𝜙𝑧
))

⏟⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏟
apply divergence theorem since 𝜂 vanishes on 𝜕𝒟

−𝜂∇ ⋅ ( 𝜕𝑓𝜕𝜙𝑥
, 𝜕𝑓𝜕𝜙𝑦

, 𝜕𝑓𝜕𝜙𝑧
)
⎫⎪
⎬⎪
⎭

d𝑥 d𝑦 d𝑧 + 𝑂(𝜀2)

= 𝜀∭
𝒟
𝜂{𝜕𝑓𝜕𝜙 − ∇ ⋅ ( 𝜕𝑓𝜕𝜙𝑥

, 𝜕𝑓𝜕𝜙𝑦
, 𝜕𝑓𝜕𝜙𝑧

)} d𝑥 d𝑦 d𝑧 + 𝑂(𝜀2)

Now, we can apply the fundamental lemma to give the Euler–Lagrange equation for multiple inde-
pendent variables.

𝜕𝑓
𝜕𝜙 − ∇ ⋅ ( 𝜕𝑓𝜕𝜙𝑥

, 𝜕𝑓𝜕𝜙𝑦
, 𝜕𝑓𝜕𝜙𝑧

) = 0

Or, in suffix notation (with the summation convention),

𝜕𝑓
𝜕𝜙 − 𝜕𝑖

𝜕𝑓
𝜕(𝜕𝑖𝜙)

= 0

This result applies for any 𝑛. Note that this is now a partial differential equation for 𝜙, instead of an
ordinary differential equation.

4.7 Potential energy and the Laplace equation
Consider the functional

𝐹[𝜙] =∬
𝒟⊂ℝ2

1
2[𝜙

2
𝑥 + 𝜙2𝑦] d𝑥 d𝑦

Note that 𝜕𝑓
𝜕𝜙

= 0 and 𝜕𝑓
𝜕𝜙𝑥

= 𝜙𝑥;
𝜕𝑓
𝜕𝜙𝑦

= 𝜙𝑦. The Euler–Lagrange equation becomes

𝜕
𝜕𝑥𝜙𝑥 +

𝜕
𝜕𝑦𝜙𝑦 = 0 ⟹ 𝜙𝑥𝑥 + 𝜙𝑦𝑦 = 0

This produces the Laplace equation.

4.8 Minimal surfaces
Considerminimising the area of a surface Σ ⊂ ℝ3, where wewant the surface to have two boundaries
defined by fixed closed curves. This is sometimes known as Plateau’s problem. We will let Σ =
{x = ℝ3 ∶ 𝑘(𝑥, 𝑦, 𝑧) = 0}, and assume there exists a parametrisation of Σ given by 𝑧 = 𝜙(𝑥, 𝑦). The
line element is given by

d𝑠2 = d𝑥2 + d𝑦2 + d𝑧2

We have d𝑧 = 𝜙𝑥 d𝑥 + 𝜙𝑦 d𝑦 hence

d𝑠2 = (1 + 𝜙2𝑥) d𝑥2 + (1 + 𝜙2𝑦) d𝑦2 + 2𝜙𝑥𝜙𝑦 d𝑥 d𝑦

This is a quadratic form in the differentials d𝑥 , d𝑦, known as the first fundamental form (also the
Riemannian metric). Alternatively,

d𝑠2 = 𝑔𝑖𝑗 d𝑥𝑖 d𝑥𝑗

where
𝑔 = (1 + 𝜙2𝑥 𝜙𝑥𝜙𝑦

𝜙𝑥𝜙𝑦 1 + 𝜙2𝑦
)
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From this, we can compute the area element, which is defined as

d𝐴 = √det 𝑔 d𝑥 d𝑦
We will extremise the area functional

𝐴[𝜙] = ∫
𝒟
√1+ 𝜙2𝑥 + 𝜙2𝑦 d𝑥 d𝑦

Let the integrand be ℎ, and apply the Euler–Lagrange equation.
𝜕ℎ
𝜕𝜙𝑥

= 𝜙𝑥

√1+ 𝜙2𝑥 + 𝜙2𝑦
; 𝜕ℎ

𝜕𝜙𝑦
=

𝜙𝑦

√1+ 𝜙2𝑥 + 𝜙2𝑦
Hence

𝜕𝑥(
𝜙𝑥

√1+ 𝜙2𝑥 + 𝜙2𝑦
) + 𝜕𝑦(

𝜙𝑥

√1+ 𝜙2𝑥 + 𝜙2𝑦
) = 0

which can be expanded to give

(1 + 𝜙2𝑦)𝜙𝑥𝑥 + (1 + 𝜙2𝑥)𝜙𝑦𝑦 − 2𝜙𝑥𝜙𝑦𝜙𝑥𝑦 = 0
This is known as the minimal surface equation. We will solve a special case, where there is circular
(cylindrical) symmetry, so 𝑧 = 𝜙(𝑟). Since 𝑟 = √𝑥2 + 𝑦2, we can find that

𝜙𝑥 = 𝑧′ 𝑥𝑟 ; 𝜙𝑦 = 𝑧′ 𝑦𝑟
and we can analogously compute 𝜙𝑥𝑥, 𝜙𝑦𝑦, 𝜙𝑥𝑦. This gives

𝑟𝑧″ + 𝑧′ + (𝑧′)3 = 0

We can integrate this by first setting 𝑧′ = 𝑤 and multiplying through by 𝑤.
1
2𝑟

d
d𝑟𝑤

2 + 𝑤2 + 𝑤4 = 0

Now let 𝑤2 = 𝑢 to make this a separable equation for 𝑢. Solving this, we can find that the solution
surface is given by

𝑟 = 𝑟0 cosh (
𝑧 − 𝑧0
𝑟0

)

This is known as the catenoid. At the maximal and minimal values of 𝑧, we have the circular bound-
aries with radii 𝑅. At 𝑧 = 𝑧0, the radius is minimal, and the circle here has radius 𝑟0. Supposing
𝑧0 = 0 and that the maximal value of 𝑧 is 𝐿, we have

𝑅
𝐿 = 𝑟0

𝐿 cosh ( 𝐿𝑟0
)

Let 𝐿 = 1 without loss of generality. This essentially chooses a scale for the coordinate system. This
gives

𝑅 = 𝑟0 cosh
1
𝑟0

Plotting 𝑅 as a function of 𝑟0, there exists a minimum point 𝑟0 = 𝜇 ≈ 0.833which gives 𝑅 ≈ 1.5. So if
𝑅 > 1.5, there exist two distinct minimal surfaces, one with 𝑟0 > 𝜇 and one with 𝑟0 < 𝜇. The ‘tighter’
minimal surface (with 𝑟0 < 𝜇) is unstable, but the ‘looser’ surface is stable (however this cannot be
shown from our current understanding of variational principles).
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4.9 Higher derivatives
Consider the functional

𝐹[𝑦] = ∫
𝛽

𝛼
𝑓(𝑥, 𝑦, 𝑦′,… , 𝑦(𝑛)) d𝑥

We can find an analogous Euler–Lagrange equation to extremise this functional. Let 𝜂 be a variation
where 𝜂(𝑘) = 0 for 𝑘 ∈ {1,… , 𝑛 − 1} at the endpoints 𝛼, 𝛽. Now,

𝐹[𝑦 + 𝜀𝜂] − 𝐹[𝑦] = 𝜀∫
𝛽

𝛼
(𝜕𝑓𝜕𝑦 𝜂 +

𝜕𝑓
𝜕𝑦′ 𝜂

′ +⋯+ 𝜕𝑓
𝜕𝑦(𝑛) 𝜂

(𝑛)) d𝑥 + 𝑂(𝜀2)

We can repeatedly integrate each term by parts, integrating the 𝜂(𝑘) term 𝑘 times. Many of these
terms will vanish due to the boundary conditions we specified for 𝜂. This then gives

𝐹[𝑦 + 𝜀𝜂] − 𝐹[𝑦] = 𝜀∫
𝛽

𝛼
(𝜕𝑓𝜕𝑦 𝜂 −

d
d𝑥

𝜕𝑓
𝜕𝑦′ 𝜂 +⋯+ (−1)𝑛 d𝑛

d𝑥𝑛
𝜕𝑓
𝜕𝑦(𝑛) 𝜂) d𝑥 + 𝑂(𝜀2)

Applying the fundamental lemma of calculus of variations, we have

𝜕𝑓
𝜕𝑦 −

d
d𝑥

𝜕𝑓
𝜕𝑦′ +⋯+ (−1)𝑛 d𝑛

d𝑥𝑛
𝜕𝑓
𝜕𝑦(𝑛) = 0

This is the Euler–Lagrange equation in the context of a function with higher derivatives. The altern-
ating signs come from the negative signs produced in the iterated integration by parts.

4.10 First integral for 𝑛 = 2
Suppose 𝑛 = 2. If 𝜕𝑓

𝜕𝑦
= 0, we have

d
d𝑥

𝜕𝑓
𝜕𝑦′ −

d2
d𝑥2

𝜕𝑓
𝜕𝑦″ = 0

Hence
𝜕𝑓
𝜕𝑦′ −

d
d𝑥

𝜕𝑓
𝜕𝑦″ = constant

Example. Extremise the functional

𝐹[𝑦] = ∫
1

0
(𝑦″)2 d𝑥

subject to the conditions
𝑦(0) = 𝑦′(0) = 0; 𝑦(1) = 0; 𝑦′(1) = 1

Using the above first integral form, we have

d
d𝑥(2𝑦

″) = constant ⟹ 𝑦‴ = 𝑘

for some 𝑘 ∈ ℝ. Imposing the boundary conditions on this cubic gives

𝑦 = 𝑥3 − 𝑥2
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Now, we are going to show that this is an absolute minimum of the functional, not just a stationary
point. Let 𝑦0 = 𝑥2 − 𝑥2. Consider a variation 𝜂 of 𝑦0, where all relevant endpoints of 𝜂 are zero. In
this case, we are not going to assume that 𝜂 is small; we will simply look at all possible variations.

𝐹[𝑦0 + 𝜂] − 𝐹[𝑦0] = ∫
1

0
(𝜂″)2 d𝑥

⏟⎵⎵⏟⎵⎵⏟
>0

+2∫
1

0
𝑦″0𝜂″ d𝑥

Substituting for 𝑦0, given that 𝜂 ≢ 0,

𝐹[𝑦0 + 𝜂] − 𝐹[𝑦0] > 4∫
1

0
(3𝑥 − 1)𝜂″ d𝑥

= 4{[−𝜂′]10 +∫
1

0
[ dd𝑥(3𝑥𝜂

′) − 𝜂′] d𝑥}

= 4{∫
1

0
[ dd𝑥(3𝑥𝜂

′) − 𝜂′] d𝑥}

= 4{[3𝑥𝜂′]10 − [3𝜂]10}
= 0

Hence 𝑦0 is an absolute minimum of 𝐹. This method of showing 𝑦0 is an absolute minimum is easier
than calculating second variations, where we know the solution 𝑦0.

4.11 Principle of least action
Consider a particle moving in ℝ3 with kinetic energy 𝑇 and potential energy 𝑉 . We define the Lag-
rangian to be

𝐿(x, ẋ, 𝑡) = 𝑇 − 𝑉
We now define the action to be

𝑆[x] = ∫
𝑡2

𝑡1
𝐿 d𝑡

Wecannow formulate the principle of least (or stationary) action: on the path ofmotion of a particle,
𝛿𝑆
𝛿x = 0

Equivalently, 𝐿 satisfies the Euler–Lagrange equations:
𝜕𝐿
𝜕𝑥𝑖

− d
d𝑡

𝜕𝐿
𝜕 ̇𝑥𝑖

= 0

Consider
𝑇 = 1

2𝑚|ẋ|
2; 𝑉 = 𝑉(x)

The Euler–Lagrange equations are now
d
d𝑡

𝜕𝐿
𝜕 ̇𝑥𝑖

= 𝜕𝐿
𝜕𝑥𝑖

𝑚 ̈𝑥𝑖 = −𝜕𝑉𝜕𝑥𝑖
⟹ 𝑚ẍ = −∇𝑉

This is exactly Newton’s second law, derived from the principle of stationary action.
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4.12 Central forces
Example. Consider a central force in the plane. The Lagrangian is

𝐿 = 𝑇 − 𝑉 = 1
2𝑚( ̇𝑟

2 + 𝑟2 ̇𝜃2) − 𝑉(𝑟)

The Euler–Lagrange equation gives

d
d𝑡
𝜕𝐿
𝜕 ̇𝑟 −

𝜕𝐿
𝜕𝑟 = 0

d
d𝑡
𝜕𝐿
𝜕 ̇𝜃

− 𝜕𝐿
𝜕𝜃 = 0

Since 𝜕𝐿
𝜕𝜃

= 0, we have a first integral form:

𝜕𝐿
𝜕 ̇𝜃

= 𝑚𝑟2 ̇𝜃 = constant

This can be interpreted physically as the law of conservation of angular momentum. Further, we
have 𝜕𝐿

𝜕𝑡
= 0 so we have another first integral:

̇𝑟 𝜕𝐿𝜕 ̇𝑟 +
̇𝜃 𝜕𝐿
𝜕 ̇𝜃

− 𝐿 = constant

𝑚 ̇𝑟2 +𝑚𝑟2 ̇𝜃2 − 1
2𝑚 ̇𝑟2 − 1

2𝑚𝑟
2 ̇𝜃2 + 𝑉(𝑟) = constant

1
2𝑚( ̇𝑟

2 + 𝑟2 ̇𝜃2) + 𝑉(𝑟) = constant

The left hand side is the total energy of the system, denoted 𝐸. This is the law of conservation of
energy.

4.13 Configuration space and generalised coordinates
Example. Consider𝑁 particles moving inℝ3. Typically we represent each point as a distinct vector
in ℝ3 that changes over time. We can alternatively consider a point in ℝ3𝑁 , which contains the in-
formation about every point. This is called the configuration space. The Lagrangian in configuration
space is

𝐿 = 𝐿(𝑞𝑖, ̇𝑞𝑖, 𝑡)
where q is the combined position vector of all 𝑁 points, and likewise q̇ is the combined velocity.

5 Noether’s theorem
5.1 Statement and proof
Consider a functional

𝐹[y] = ∫
𝛽

𝛼
𝑓(𝑦𝑖, 𝑦′𝑖, 𝑥) d𝑥 ; 𝑖 = 1,… , 𝑛

Suppose there exists a one-parameter family of transformations

𝑦𝑖(𝑥) ↦ 𝑌 𝑖(𝑥, 𝑠); 𝑌 𝑖(𝑥, 0) = 𝑦𝑖(𝑥)
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This can be thought of as a change of variables parametrised by 𝑠 ∈ ℝ, where 𝑠 = 0 implies no change
of variables. This family is called a continuous symmetry of the Lagrangian 𝑓 if

d
d𝑠𝑓(𝑌 𝑖(𝑥, 𝑠), 𝑌 ′

𝑖 (𝑥, 𝑠), 𝑥) = 0

In this course, we only consider continuous symmetries, so they may be abbreviated as just ‘symmet-
ries’.

Theorem (Noether’s Theorem). Given a continuous symmetry 𝑌 𝑖(𝑥, 𝑠) of 𝑓,

𝜕𝑓
𝜕𝑦′𝑖

𝜕𝑌 𝑖
𝜕𝑠

|||𝑠=0
is a first integral of the Euler–Lagrange equation (where the summation convention applies).

Proof.

0 = d
d𝑠𝑓

|||𝑠=0
= 𝜕𝑓

𝜕𝑦𝑖
d𝑌 𝑖
d𝑠

|||𝑠=0
+ 𝜕𝑓
𝜕𝑦′𝑖

𝜕𝑌 ′
𝑖

𝜕𝑠
|||𝑠=0

= [ dd𝑥(
𝜕𝑓
𝜕𝑦′𝑖

)d𝑌 𝑖
d𝑠 + 𝜕𝑓

𝜕𝑦′𝑖
d
d𝑥(

d𝑌 𝑖
d𝑠 )]

|||𝑠=0
= d
d𝑥 [ 𝜕𝑓𝜕𝑦′𝑖

𝜕𝑌 𝑖
𝜕𝑠 ]

|||𝑠=0
∴ constant = 𝜕𝑓

𝜕𝑦′𝑖
𝜕𝑌 𝑖
𝜕𝑠

5.2 Conservation of momentum
Example. Consider a vector y = (𝑦, 𝑧) and the function

𝑓 = 1
2𝑦

′2 + 1
2𝑧

′2 − 𝑉(𝑦 − 𝑧)

Consider the symmetry

𝑌 = 𝑦 + 𝑠 ⟹ 𝑌 ′ = 𝑦′
𝑍 = 𝑧 + 𝑠 ⟹ 𝑍 = 𝑧′

∴ 𝑉(𝑌 − 𝑍) = 𝑉(𝑦 − 𝑧) ⟹ d
d𝑠𝑓 = 0

Then from Noether’s theorem,

constant = [ 𝜕𝑓𝜕𝑦′
d𝑌
d𝑠 +

𝜕𝑓
𝜕𝑧′

d𝑍
d𝑠 ]

|||𝑠=0
= 𝑦′ + 𝑧′

This can be thought of as a conserved momentum in the 𝑦 + 𝑧 direction.
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5.3 Conservation of angular momentum under central force
Example. Suppose Θ = 𝜃 + 𝑠, 𝑅 = 𝑟. Our space is isotropic, so d𝐿

d𝑠
= 0, hence

[𝜕𝐿
𝜕 ̇𝜃

𝜕Θ
𝜕𝑠 +

𝜕𝐿
𝜕 ̇𝑟

𝜕𝑅
𝜕𝑠 ]

|||𝑠=0
= 𝑚𝑟2 ̇𝜃

which shows that angular momentum is conserved.

6 Convexity and the Legendre transform
6.1 Convex functions
This subsection is covered by Lecture 1 of the IB Optimisation course.

Definition. A set 𝑆 ⊂ ℝ𝑛 is convex if ∀x, y ∈ 𝑆, ∀𝑡 ∈ [0, 1], (1 − 𝑡)x + 𝑡y ∈ 𝑆.

Definition. The graph of a function 𝑓∶ ℝ𝑛 → ℝ is the surface
{(x, 𝑧) ∈ ℝ𝑛+1 ∶ 𝑧 − 𝑓(x) = 0}.

Definition. A chord of a function 𝑓∶ ℝ𝑛 → ℝ is a line segment connecting two points on
the graph of 𝑓.

Definition. A function 𝑓∶ ℝ𝑛 → ℝ is convex if
(i) the domain of 𝑓 is a convex set; and
(ii) ∀x, y ∈ 𝑆, ∀𝑡 ∈ (0, 1), 𝑓((1 − 𝑡)x + 𝑡y) ≤ (1 − 𝑡)𝑓(x) + 𝑡𝑓(y)

Equivalently, 𝑓 is convex if the graph of 𝑓 lies below (or on) all of its chords. We say that 𝑓 is
concave if 𝑓 lies above (or on) all of its chords. Clearly, 𝑓 is convex if and only if−𝑓 is concave.
We say 𝑓 is strictly convex (or concave) if the inequality in (ii) becomes strict.

Example. Consider the function 𝑓∶ ℝ → ℝ defined by

𝑓(𝑥) = 𝑥2

The domain is clearly convex. To show convexity, we need

𝑓((1 − 𝑡)𝑥 + 𝑡𝑦) − (1 − 𝑡)𝑓(𝑥) − 𝑡𝑓(𝑦) ≤ 0

We have

[(1 − 𝑡)𝑥 + 𝑡𝑦]2 − (1 − 𝑡)𝑥2 − 𝑡𝑦2 = 𝑥2(1 − 𝑡)(−𝑡) + 𝑡𝑦2(1 − 𝑡) + 2(1 − 𝑡)𝑡𝑥𝑦 = −(1 − 𝑡)𝑡(𝑥 − 𝑦)2 < 0

as required. Hence 𝑓(𝑥) = 𝑥2 is a strictly convex function.
Example. Consider

𝑓(𝑥) = 1
𝑥

where the domain is ℝ ∖ {0}. This domain is not convex, so 𝑓 is not convex. However, restricted to
the domain {𝑥 ∈ ℝ∶ 𝑥 > 0}, 𝑓 can be shown to be convex.
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6.2 Conditions for convexity
Proofs for these conditions, where appropriate, are given inLecture 1 of the IBOptimisation course.

Theorem. If 𝑓 is a once-differentiable function, then 𝑓 is convex if and only if

𝑓(y) ≥ 𝑓(x) + (y − x) ⋅ ∇𝑓(x)

Corollary. If 𝑓 is convex, and has a stationary point, then it is a global minimum.

Proof. Suppose the stationary point is at x0, so ∇𝑓(x0) = 0. We then have

𝑓(y) ≥ 𝑓(x0) + (y − x0) ⋅ 0

which is larger than 𝑓(x0) as required.

Theorem. If 𝑓 is a once-differentiable function, then 𝑓 is convex if

(∇𝑓(y) − ∇𝑓(x)) ⋅ (y − x) ≥ 0

This can be thought of as stating that 𝑓′ is monotonically increasing.

Theorem. If 𝑓 is a twice-differentiable function, then 𝑓 is convex if and only if

∇2𝑓 ⪰ 0

i.e. all eigenvalues of the Hessian matrix are non-negative. Note that ∇2𝑓 ≻ 0 implies strict
convexity.

Example. Consider the function
𝑓(𝑥, 𝑦) = 1

𝑥𝑦
for 𝑥 > 0, 𝑦 > 0. Then the Hessian is

𝐻 = 1
𝑥𝑦 (

2
𝑥2

1
𝑥𝑦

1
𝑥𝑦

2
𝑦2
)

Then,
det𝐻 = 3

𝑥3𝑦3 > 0

tr𝐻 > 0
Hence the eigenvalues are both positive. So 𝑓 is strictly convex.

23



6.3 Legendre transform

Definition. The Legendre transform of a function 𝑓∶ ℝ𝑛 → ℝ is a function 𝑓⋆ given by

𝑓⋆(p) = sup
x
(p ⋅ x − 𝑓(x))

The domain of 𝑓⋆ is such that the supremum provided is finite. In one dimension, we can
consider 𝑓⋆(𝑝) to be the maximum vertical distance between the graphs of 𝑦 = 𝑓(𝑥) and
𝑦 = 𝑝𝑥.

Example. Consider the function 𝑓(𝑥) = 𝑎𝑥2, which is convex where 𝑎 > 0. Computing the derivat-
ive of the right hand side and setting it to zero,

𝑓⋆(𝑝) = sup
𝑥
(𝑝𝑥 − 𝑎𝑥2)

= 𝑝( 𝑝2𝑎) − 𝑎( 𝑝2𝑎)
2

= 𝑝2
4𝑎

We can apply the Legendre transform twice:

𝑓⋆⋆(𝑠) = sup
𝑝
(𝑠𝑝 − 𝑓⋆(𝑝)) = 𝑎𝑠2 = 𝑓(𝑠)

In fact, if 𝑓 is convex, then we always have 𝑓⋆⋆ = 𝑓. If 𝑎 < 0, the supremum does not exist so 𝑓⋆ has
an empty domain, and thus 𝑓⋆⋆ ≠ 𝑓.

Proposition. If the domain of 𝑓⋆ is non-empty, it is a convex set, and 𝑓⋆ is convex.

Proof. Given p,q in the domain of 𝑓⋆,

𝑓⋆((1 − 𝑡)p + 𝑡q) = sup
x
[(1 − 𝑡)p ⋅ x + 𝑡q ⋅ x − 𝑓(x)]

= sup
x
[(1 − 𝑡)(p ⋅ x − 𝑓(x)) + 𝑡(q ⋅ x − 𝑓(x))]

≤ sup
x
[(1 − 𝑡)(p ⋅ x − 𝑓(x))] + sup

x
[𝑡(q ⋅ x − 𝑓(x))]

< ∞

as required.

In practice, if 𝑓 is convex and differentiable, we compute 𝑓⋆(p) by considering the derivative:

∇(p ⋅ x − 𝑓(x)) = 0 ⟹ p = ∇𝑓

If 𝑓 is strictly convex, the condition p = ∇𝑓 has a unique inverse to give x as a function of p, so
𝑓⋆(p) = p ⋅ x(p) − 𝑓(x(p)). This eliminates the supremum condition.
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6.4 Applications to thermodynamics
If we consider the particles in a gas, we could theoretically solve the Euler–Lagrange equations for
a system of around 1023 particles. However, solving such a complicated system is difficult. Instead
of solving for each particle, we instead consider macroscopic quantities such as pressure 𝑃, volume
𝑉 , temperature 𝑇, and entropy 𝑆. A system has internal energy 𝑈(𝑆, 𝑉). The Helmholtz free energy
is

𝐹(𝑇, 𝑉) = min
𝑆
(𝑈(𝑆, 𝑉) − 𝑇𝑆)

= −max
𝑆
(𝑇𝑆 − 𝑈(𝑆, 𝑉))

= −𝑈⋆(𝑇, 𝑉)

where 𝑈⋆ is the Legendre transform of 𝑈 with respect to 𝑆, fixing 𝑉 constant. Assuming 𝑈 is con-
vex,

𝜕
𝜕𝑆 (𝑇𝑆 − 𝑈(𝑆, 𝑉))|||𝑇,𝑉

= 0 ⟹ 𝑇 = 𝜕𝑈
𝜕𝑆

|||𝑉
There are other thermodynamical quantities that can be represented using a Legendre transform, for
instance enthalpy 𝐻(𝑆, 𝑃).

𝐻(𝑆, 𝑃) = min
𝑉
(𝑈(𝑆, 𝑉) + 𝑃𝑉)

= −𝑈⋆(−𝑃, 𝑆)

At this minimum, 𝑃 = −𝜕𝑈
𝜕𝑉
||𝑆. We can think of the Legendre transform in this context as a way of

swapping from dependence on entropy and volume to dependence on other variables.

6.5 Legendre transform of the Lagrangian
Recall that the Lagrangian in mechanics was defined as

𝐿 = 𝑇 − 𝑉 = 𝐿(q, q̇, 𝑡)

This is a function on the configuration space. We define the Hamiltonian to be the Legendre trans-
form of 𝐿 with respect to q̇. We find, assuming that 𝐿 is convex,

𝐻(q,p, t) = sup
v
(p ⋅ v − 𝐿)

= p ⋅ v(p) − 𝐿(q, v(p), 𝑡)

where v(p) is the solution to 𝑝𝑖 =
𝜕𝐿
𝜕 ̇𝑞𝑖

. The p are referred to as generalised momenta or conjugate
momenta. Consider

𝑇 = 1
2𝑚|q̇|

2; 𝑉 = 𝑉(q)

Then,
p = 𝜕𝐿

𝜕q̇ = 𝑚q̇ ⟹ q̇ = 1
𝑚p
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The Hamiltonian is therefore

𝐻(q,p, 𝑡) = p ⋅ 1𝑚p − 𝐿

= p ⋅ 1𝑚p − (12𝑚
|p|2
𝑚2 − 𝑉(q))

= 1
2𝑚|p|2 + 𝑉(q)

= 𝑇 + 𝑉

6.6 Hamilton’s equations from Euler–Lagrange equation
Given that the Lagrangian satisfies theEuler–Lagrange equation, we can deduce analogous equations
for the Hamiltonian. We often write the indices of the generalised coordinates in superscript, as
follows, where the summation convention applies:

𝐻 = 𝐻(q,p, 𝑡) = 𝑝𝑖 ̇𝑞𝑖 − 𝐿(𝑞𝑖, ̇𝑞𝑖, 𝑡)

Using this equation, we can compute two expressions for the differential of the Hamiltonian:

d𝐻 = 𝜕𝐻
𝜕𝑞𝑖 d𝑞

𝑖 + 𝜕𝐻
𝜕𝑝𝑖

d𝑝𝑖 +
𝜕𝐻
𝜕𝑡 d𝑡

= 𝑝𝑖 d ̇𝑞𝑖 + ̇𝑞𝑖 d𝑝𝑖 −
𝜕𝐿
𝜕𝑞𝑖 d𝑞

𝑖 − 𝜕𝐿
𝜕 ̇𝑞𝑖 d ̇𝑞𝑖 − 𝜕𝐿

𝜕𝑡 d𝑡

Now, note that 𝜕𝐿
𝜕 ̇𝑞𝑖

= 𝑝𝑖. This cancels some terms. Makinguse of theEuler–Lagrange equation,

𝜕𝐿
𝜕𝑞𝑖 =

d
d𝑡

𝜕𝐿
𝜕 ̇𝑞𝑖 =

d
d𝑡𝑝𝑖 = ̇𝑝𝑖

This gives
d𝐻 = 𝜕𝐻

𝜕𝑞𝑖 d𝑞
𝑖 + 𝜕𝐻

𝜕𝑝𝑖
d𝑝𝑖 +

𝜕𝐻
𝜕𝑡 d𝑡 = ̇𝑞𝑖 d𝑝𝑖 − ̇𝑝𝑖 d𝑞𝑖 −

𝜕𝐿
𝜕𝑡 d𝑡

Comparing the differentials, we can see that

̇𝑞𝑖 = 𝜕𝐻
𝜕𝑝𝑖

; ̇𝑝𝑖 = −𝜕𝐻𝜕𝑞𝑖 ;
𝜕𝐿
𝜕𝑡 = −𝜕𝐻𝜕𝑡

This system of equations is known as Hamilton’s equations. Note that in the last equation, 𝜕
𝜕𝑡
||𝑞, ̇𝑞 ≠

𝜕
𝜕𝑡
||𝑝,𝑞. For now, we will assume that there is no explicit 𝑡 dependence in the Lagrangian. Then,

Hamilton’s equations are a system of 2𝑛 first-order ordinary differential equations. (Note, for com-
parison, that the Euler–Lagrange equations were a system of 𝑛 second-order differential equations,
which gives the same amount of initial conditions.) The initial conditions are typically a configur-
ation of p,q at some fixed 𝑡0. The solutions to Hamilton’s equations are called the trajectories in
2𝑛-dimensional phase space.
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6.7 Hamilton’s equations from extremising a functional
Note thatwe can also arrive atHamilton’s equations by extremising a functional in phase space.

𝑆[q,p] = ∫
𝑡2

𝑡1
( ̇𝑞𝑖𝑝𝑖 − 𝐻(q,p, 𝑡)) d𝑡

The integrand, denoted 𝑓, is a function of q,p, q̇, 𝑡. Writing the Euler–Lagrange equations for 𝑆,
varying first with respect to 𝑝𝑖,

𝜕𝑓
𝜕𝑝𝑖

− d
d𝑡

𝜕𝑓
𝜕 ̇𝑝𝑖⏟⎵⏟⎵⏟
0

= 0 ⟹ ̇𝑞𝑖 = 𝜕𝐻
𝜕𝑝𝑖

Now varying with respect to 𝑞𝑖,

𝜕𝑓
𝜕𝑞𝑖 −

d
d𝑡

𝜕𝑓
𝜕 ̇𝑞𝑖 = 0 ⟹ ̇𝑝𝑖 = −𝜕𝐻𝜕𝑞𝑖

These results are exactly Hamilton’s equations.

7 Second variations
7.1 Conditions for local minimisers
The Euler–Lagrange equation gives a necessary condition for a stationary point. We cannot tell
whether this leads to a minimum, a maximum, or a saddle point, just from the Euler–Lagrange
equation. We can analyse the nature of the stationary points by considering the second variation.
Consider the functional

𝐹[𝑦] = ∫
𝛽

𝛼
𝑓(𝑥, 𝑦, 𝑦′) d𝑥

where 𝑦 is perturbed by a perturbation 𝜀𝜂. Let us assume that 𝑦 is a solution to the Euler–Lagrange
equation, so has no first variation. We will then expand 𝐹[𝑦 + 𝜀𝜂] to second order.

𝐹[𝑦 + 𝜀𝜂] = ∫
𝛽

𝛼
[𝑓(𝑥, 𝑦 + 𝜀𝜂, 𝑦′ + 𝜀𝜂′)] d𝑥

𝐹[𝑦 + 𝜀𝜂] − 𝐹[𝑦] = ∫
𝛽

𝛼
[𝑓(𝑥, 𝑦 + 𝜀𝜂, 𝑦′ + 𝜀𝜂′) − 𝑓(𝑥, 𝑦, 𝑦′)] d𝑥

= 0 + 𝜀 ∫
𝛽

𝛼
𝜂(𝜕𝑓𝜕𝑦 −

d
d𝑥

𝜕𝑓
𝜕𝑦′ ) d𝑥⏟⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏟

zero by Euler–Lagrange equation

+ 1
2𝜀

2∫
𝛽

𝛼
(𝜂2 𝜕

2𝑓
𝜕𝑦2 + 𝜂′2 𝜕2𝑓

𝜕(𝑦′)2 + 2𝜂𝜂′ 𝜕
2𝑓

𝜕𝑦𝜕𝑦′ ) d𝑥 + 𝑂(𝜀3)

The last term (excluding the 𝜀2 component) is called the second variation. We write

𝛿2𝐹[𝑦] ≡ 1
2 ∫

𝛽

𝛼
(𝜂2 𝜕

2𝑓
𝜕𝑦2 + 𝜂′2 𝜕2𝑓

𝜕(𝑦′)2 +
d
d𝑥(𝜂

2) 𝜕2𝑓
𝜕𝑦𝜕𝑦′ ) d𝑥
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Integrating the last term by parts, using 𝜂 = 0 at 𝛼, 𝛽, we have

𝛿2𝐹[𝑦] = 1
2 ∫

𝛽

𝛼
(𝑄𝜂2 + 𝑃(𝜂′)2) d𝑥

where
𝑃 = 𝜕2𝑓

𝜕(𝑦′)2 ; 𝑄 = 𝜕2𝑓
𝜕𝑦2 −

d
d𝑥(

𝜕2𝑓
𝜕𝑦𝜕𝑦′ )

Thus, if 𝑦 is a solution to the Euler–Lagrange equation, and also 𝑄𝜂2 + 𝑃(𝜂′)2 > 0 for all 𝜂 vanishing
at 𝛼, 𝛽, then 𝑦 is a local minimiser of 𝐹.
Example. We will prove that the geodesic on a plane is a local minimiser of path length. The func-
tional we will analyse is given by

𝑓 = √1 + (𝑦′)2

Hence,

𝑃 = 𝜕2𝑓
𝜕(𝑦′)2 =

𝜕
𝜕𝑦′ (

𝑦′

√1 + (𝑦′)2
) = 1

(1 + (𝑦′)2)
3
2

> 0

𝑄 = 0
Therefore the second variation is positive, so any 𝑦 that satisfies the Euler–Lagrange equation min-
imises path length. In particular, straight lines minimise path length on the plane.

7.2 Legendre condition for minimisers

Proposition (Legendre condition). If 𝑦0(𝑥) is a local minimiser, then 𝑃|𝑦=𝑦0 ≥ 0.

We can say that the Legendre condition is a necessary condition for aminimiser. In less formal terms,
𝑃 is ‘more important’ than 𝑄 when determining if a stationary point is a minimiser.

Proof. This condition is not proven rigorously. However, the general idea of the proof is to construct
a function 𝜂 which is small everywhere (giving a small 𝑄 contribution), but oscillates very rapidly
near some point 𝑥0, at which 𝑃 < 0. This gives a large 𝑃 contribution which can overpower the 𝑄
contribution. Then this gives 𝑄𝜂2 + 𝑃(𝜂′)2 < 0 if there exists some 𝑥0 where 𝑃|𝑦=𝑦0 < 0.

Note that the Legendre condition is not a sufficient condition for local minima, but 𝑃 > 0 and 𝑄 ≥ 0
is sufficient.

Example. Consider again the brachistochrone problem.

𝑓 =
√

1 + (𝑦′)2
−𝑦

We have
𝜕𝑓
𝜕𝑦 = − 1

2𝑦𝑓

𝜕𝑓
𝜕𝑦′ =

𝑦′

√1 + (𝑦′)2√−𝑦
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Hence
𝑃 = 1

(1 + (𝑦′)2)
3
2√−𝑦

> 0

𝑄 = 1
2√1 + (𝑦2)2𝑦2√−𝑦

> 0

Hence the cycloid is a local minimiser of the time taken to travel between the two points.

7.3 Associated eigenvalue problem
When deriving the minimiser condition, we had the integrand

𝑄𝜂2 + 𝑃(𝜂′)2

We can integrate this by parts:
𝑄𝜂2 + d

d𝑥(𝑃𝜂𝜂
′) − 𝜂 d

d𝑥(𝑃𝜂
′)

giving

𝛿2𝐹[𝑦] = 1
2 ∫

𝛽

𝛼
𝜂[−(𝑃𝜂′)′ + 𝑄𝜂] d𝑥

The bracketed term−(𝑃𝜂′)′+𝑄𝜂 is known as the Sturm–Liouville operator acting on 𝜂, denotedℒ(𝜂).
If there exists 𝜂 such that ℒ(𝜂) = −𝜔2𝜂, 𝜔 ∈ ℝ, and 𝜂(𝛼) = 𝜂(𝛽) = 0, then 𝑦 is not a minimiser, since
the integrand will be −𝜔2𝜂2 < 0.
Example. Consider

𝐹[𝑦] = ∫
𝛽

0
((𝑦′)2 − 𝑦2) d𝑥

such that
𝑦(0) = 𝑦(𝛽) = 0; 𝛽 ≠ 𝑘𝜋, 𝑘 ∈ ℕ

The Euler–Lagrange equation gives
𝑦″ + 𝑦 = 0

Thus, constrained to the boundary conditions, the only stationary point of 𝐹 is

𝑦 ≡ 0

Analysing the second variation,

𝛿2𝐹[0] = 1
2 ∫

𝛽

0
[𝜂′2 − 𝜂2] d𝑥

giving
𝑃 = 1 > 0; 𝑄 < 0

Let us now examine the eigenvalue problem, since we cannot find whether 𝑦 ≡ 0 is aminimiser from
what we know already. Consider the eigenvalue problem

−𝜂″ − 𝜂 = −𝜔2𝜂; 𝜂(0) = 𝜂(𝛽) = 0
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Let us take
𝜂 = 𝐴 sin(𝜋𝑥𝛽 )

to give

(𝜋𝛽 )
2
= 1 − 𝜔2

So this has a solution 𝜔 > 0 if and only if 𝛽 > 𝜋. If 𝑃 > 0, a problem may arise if the interval of
integration is ‘too large’ (in this case 𝛽 > 𝜋). Next lecture we will make this notion precise.

7.4 Jacobi accessory condition
Legendre tried to prove that 𝑃 > 0 implied local minimality; obviously this was impossible due to
the counterexample shown above. However, the method he used is still useful to analyse, since we
can find an actual sufficient condition using the same idea. Let 𝜙(𝑥) be any differentiable function
of 𝑥 on [𝛼, 𝛽]. Then note that

∫
𝛽

𝛼

d
d𝑥(𝜙𝜂

2) d𝑥 = 0

since 𝜂(𝛼) = 𝜂(𝛽) = 0. We can expand the integrand to give

∫
𝛽

𝛼
(𝜙′𝜂2 + 2𝜂𝜂′𝜙) d𝑥 = 0

We can add this new zero to both sides of the second variation equation.

𝛿2𝐹[𝑦] = 1
2 ∫

𝛽

𝛼
(𝑃(𝜂′)2 + 2𝜂𝜂′𝜙 + (𝑄 + 𝜙′)𝜂2) d𝑥

Now, suppose that 𝑃 > 0 at a particular 𝑦. Then, we can complete the square on the integrand,
giving

𝛿2𝐹[𝑦] = 1
2 ∫

𝛽

𝛼
(𝑃(𝜂′ + 𝜙

𝑃𝜂)
2
+ (𝑄 + 𝜙′ − 𝜙2

𝑃 )𝜂2) d𝑥

Ifwe could choose a𝜙 such that the secondbracket vanishes, then the integrandwould be𝑃(𝜂′ + 𝜙
𝑃
𝜂)

2
.

The only way the integral can be zero is if 𝜂′ + 𝜙
𝑃
𝜂 ≡ 0. Since 𝜂 = 0 at 𝛼, we have 𝜂′(𝛼) = 0. Hence,

𝜂 ≡ 0 by the uniqueness of solutions to first order differential equations. Therefore, by contradiction,
the integrand is not identically zero, and the second variation is positive. Now, such a 𝜙 function is
given by

𝜙2 = 𝑃(𝑄 + 𝜙′)
If a solution to this differential equation exists, then 𝛿2𝐹[𝑦] > 0. We can transform this non-linear
equation into a second order equation by the substitution 𝜙 = −𝑃 𝑢′

𝑢
for some function 𝑢 ≠ 0. We

have

𝑃(𝑢
′

𝑢 )
2
= 𝑄 − (𝑃𝑢

′

𝑢 )
′
= 𝑄 − (𝑃𝑢′)′

𝑢 + 𝑃(𝑢
′

𝑢 )
2

Hence,
−(𝑃𝑢′)′ + 𝑄𝑢 = 0

This is known as the Jacobi accessory condition. Note that the left hand side is just ℒ(𝑢), where ℒ is
the Sturm–Liouville operator.
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7.5 Solving the Jacobi condition
We need to find a solution to ℒ(𝑢) = 0, where 𝑢 ≠ 0 on [𝛼, 𝛽]. The solution we find may not be
nonzero on a large enough interval, in which case we would not have a local minimum.

Example. Consider

𝐹[𝑦] = 1
2 ∫

𝛽

𝛼
((𝑦′)2 − 𝑦2) d𝑥

The second variation is

𝛿2𝐹[𝑦] = 1
2 ∫

𝛽

𝛼
((𝜂′)2 − 𝜂2) d𝑥

In this case, 𝑃 = 1,𝑄 = −1. The Jacobi accessory equation is

𝑢″ + 𝑢 = 0

We can solve this to find
𝑢 = 𝐴 sin𝑥 − 𝐵 cos𝑥; 𝐴, 𝐵 ∈ ℝ

We want this to be nonzero on the interval [𝛼, 𝛽]. In particular,

tan𝑥 ≠ 𝐵
𝐴; ∀𝑥 ∈ [𝛼, 𝛽]

Note that tan𝑥 repeats every𝜋, so if |𝛽 − 𝛼| < 𝜋wehave a positive second variation for any stationary
𝑦.
Example. Consider again the geodesic on a sphere.

𝐹[𝜃] = ∫√d𝜃2 + sin2 𝜃 d𝜙2 = ∫√(𝜃′)2 + sin2 𝜃 d𝜙

We have already proven that critical points of this functional are segments of great circles. Consider-
ing an equatorial great circle (since all great circles are equatorial under a change of perspective),

𝜃 = 𝜋
2

Consider 𝜙1, 𝜙2 on this great circle. The minor arc is clearly the shortest path, but the major arc is
also a stationary point and must still be analysed.

𝑃 = 1; 𝑄 = −1

Thus,

𝛿2𝐹[𝜃0 =
𝜋
2 ] =

1
2 ∫

𝜙2

𝜙1
((𝜂′)2 − 𝜂2) d𝜙

which is exactly the example from above. This is a minimiser if |𝜙2 − 𝜙1| < 𝜋, which is exactly the
condition of being a minor arc. If 𝜙2 − 𝜙1 = 𝜋, we have an infinite amount of geodesics, since these
represent antipodal points. The set of geodesics exhibit rotational symmetry.
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