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1 Introdution and review of IA Probability
1.1 Introduction
Statistics can be defined as the science of making informed decisions. The field comprises, for ex-
ample:

• the design of experiments and studies;

• visualisation of data;

• formal statistical inference (which is the focus of this course);

• communication of uncertainty and risk; and

• formal decision theory.

This course concerns itself with parametric inference. Let𝑋1,… , 𝑋𝑛 be i.i.d. (independent and identic-
ally distributed) random variables, where we assume that the distribution of 𝑋1 belongs to some fam-
ily with parameter 𝜃 ∈ Θ. For instance, let 𝑋1 ∼ Poi(𝜇), where 𝜃 = 𝜇 and Θ = (0,∞). Another
example is 𝑋1 ∼ 𝑁(𝜇, 𝜎2), and 𝜃 = (𝜇, 𝜎2) and Θ = ℝ× (0,∞). We use the observed 𝑋 = (𝑋1,… , 𝑋𝑛)
to make inferences about the parameter 𝜃:
(i) we can estimate the value of 𝜃 using a point estimate written ̂𝜃(𝑋);
(ii) we can make an interval estimate of 𝜃, written ( ̂𝜃1(𝑋), ̂𝜃2(𝑋));
(iii) hypotheses about 𝜃 can be tested, for instance the hypothesis𝐻0 ∶ 𝜃 = 1, by checking whether

there is evidence in the data 𝑋 against the hypothesis 𝐻0.

Remark. In general, we will assume that the family of distributions of the observations 𝑋𝑖 is known
a priori, and the parameter 𝜃 is the only unknown. There will, however, be some remarks later in
the course where we can make weaker assumptions about the family.

1.2 Review of IA Probability
This subsection reviews material covered in the IA Probability course. Some keywords are measure-
theoretic, and are not defined.

LetΩ be the sample space of outcomes in an experiment. Ameasurable subset ofΩ is called an event,
and we denote the set of events by ℱ. A probability measure ℙ∶ ℱ → [0, 1] satisfies the following
properties.

(i) ℙ (∅) = 0;
(ii) ℙ (ℱ) = 1;
(iii) ℙ (⋃∞

𝑖=1 𝐴𝑖) = ∑∞
𝑖=1 ℙ (𝐴𝑖) if (𝐴𝑖) is a sequence of disjoint events.

A random variable is a measurable function 𝑋 ∶ Ω → ℝ. The distribution function of a random vari-
able 𝑋 is the function 𝐹𝑋(𝑥) = ℙ (𝑋 ≤ 𝑥). We say that a random variable is discrete when it takes
values in a countable set 𝒳 ⊂ ℝ. The probability mass function of a discrete random variable is the
function 𝑝𝑋(𝑥) = ℙ (𝑋 = 𝑥). We say that 𝑋 has a continuous distribution if it has a probability density
function 𝑓𝑋(𝑥) such that ℙ (𝑥 ∈ 𝐴) = ∫𝐴 𝑓𝑋(𝑥) d𝑥 for ‘nice’ sets 𝐴.

3



The expectation of a random variable 𝑋 is defined as

𝔼 [𝑋] = {∑𝑥∈𝑋 𝑥𝑝𝑋(𝑥) if 𝑋 discrete
∫∞
−∞ 𝑥𝑓𝑋(𝑥) d𝑥 if 𝑋 continuous

If 𝑔∶ ℝ → ℝ, we define 𝔼 [𝑔(𝑋)] by considering the fact that 𝑔(𝑋) is also a random variable. For
instance, in the continuous case,

𝔼 [𝑔(𝑋)] = ∫
∞

−∞
𝑔(𝑥)𝑓𝑋(𝑥) d𝑥

The variance of a random variable 𝑋 is defined as 𝔼 [(𝑋 − 𝔼 [𝑋])2].
We say that a set of random variables 𝑋1,… , 𝑋𝑛 are independent if, for all 𝑥1,… , 𝑥𝑛, we have

ℙ (𝑋1 ≤ 𝑥1,… , 𝑋𝑛 ≤ 𝑥𝑛) = ℙ (𝑋1 ≤ 𝑥1)⋯ℙ (𝑋𝑛 ≤ 𝑥𝑛)

If and only if 𝑋1,… , 𝑋𝑛 have probability density (or mass) functions 𝑓1,… , 𝑓𝑛, then the joint probab-
ility density (respectively mass) function is

𝑓𝑋(𝑥) =
𝑛
∏
𝑖=1

𝑓𝑋𝑖 (𝑥𝑖)

If 𝑌 = max {𝑋1,… , 𝑋𝑛} where the 𝑋𝑖 are independent, then the distribution function of 𝑌 is given
by

ℙ (𝑌 ≤ 𝑦) = ℙ (𝑋1 ≤ 𝑦)⋯ℙ (𝑋𝑛 ≤ 𝑦)
The probability density function of 𝑌 (if it exists) is obtained by the differentiating the above.

Under a linear transformation, the expectation and variancehave certain properties. Let𝑎 = (𝑎1,… , 𝑎𝑛)⊺ ∈
ℝ𝑛 be a constant in ℝ𝑛.

𝔼 [𝑎1𝑋1 +⋯+ 𝑎𝑛𝑋𝑛] = 𝔼 [𝑎⊺𝑋] = 𝑎⊺𝔼 [𝑋]
where 𝔼 [𝑋] is defined componentwise. Note that independence of 𝑋𝑖 is not required for linearity of
the expectation to hold. Similarly,

Var (𝑎⊺𝑋) = ∑
𝑖,𝑗
𝑎𝑖𝑎𝑗 Cov (𝑋𝑖, 𝑋𝑗) = 𝑎⊺ Var (𝑋) 𝑎

where we define Cov (𝑋, 𝑌) ≡ 𝔼 [(𝑋 − 𝔼 [𝑋])(𝑌 − 𝔼 [𝑌])], and Var (𝑋) is the variance-covariance
matrix with entries (Var (𝑋))𝑖𝑗 = Cov (𝑋𝑖, 𝑋𝑗). We can say that the variance is bilinear.

1.3 Standardised statistics
Suppose that 𝑋1,… , 𝑋𝑛 are i.i.d. and 𝔼 [𝑋1] = 𝜇, Var (𝑋1) = 𝜎2. We define

𝑆𝑛 = ∑
𝑖
𝑋𝑖; 𝑋𝑛 =

𝑆𝑛
𝑛

where 𝑋𝑛 is called the sample mean. By linearity of expectation and bilinearity of variance,

𝔼 [𝑋𝑛] = 𝜇; Var (𝑋𝑛) =
𝜎2
𝑛
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We further define
𝑍𝑛 =

𝑆𝑛 − 𝑛𝜇
𝜎√𝑛

= √𝑛𝑋𝑛 − 𝜇
𝜎

which has the properties that
𝔼 [𝑍𝑛] = 0; Var (𝑍𝑛) = 1

1.4 Moment generating functions
The moment generating function of a random variable 𝑋 is the function 𝑀𝑋(𝑡) = 𝔼 [𝑒𝑡𝑋], provided
that this function exists for 𝑡 in some neighbourhood of zero, This can be thought of as the Laplace
transform of the probability density function. Note that

𝔼 [𝑋𝑛] = d𝑛
d𝑡𝑛 𝑀𝑋(𝑡)

|||𝑡=0
Under broad conditions, moment generating functions uniquely define a distribution function of a
random variable. In other words, the Laplace transform is invertible. They are also useful for finding
the distribution of sums of independent randomvariables. For instance, let𝑋1,… , 𝑋𝑛 be i.i.d. Poisson
random variables with parameter 𝜇. Then, the moment generating function of 𝑋𝑖 is

𝑀𝑋1(𝑡) = 𝔼 [𝑒𝑡𝑋𝑖 ] =
∞
∑
𝑥=0

𝑒𝑡𝑥𝑒−𝜇𝜇
𝑥

𝑥! = 𝑒−𝜇
∞
∑
𝑥=0

(𝑒𝑡𝜇)𝑥
𝑥! = 𝑒−𝜇𝑒𝜇𝑒𝑡 = 𝑒−𝜇(1−𝑒𝑡)

Now,

𝑀𝑆𝑛(𝑡) = 𝔼 [𝑒𝑡𝑆𝑛] =
𝑛
∏
𝑖=1

𝔼 [𝑒𝑡𝑋𝑖 ] = 𝑒−𝑛𝜇(1−𝑒𝑡)

This defines a Poisson distribution with parameter 𝑛𝜇 by inspection.

1.5 Limit theorems
The weak law of large numbers states that for all 𝜀 > 0, ℙ (||𝑋𝑛 − 𝜇|| > 𝜀) → 0 as 𝑥 → ∞. Note that the
event ||𝑋𝑛 − 𝜇|| > 𝜀 depends only on 𝑋1,… , 𝑋𝑛.

The strong law of large numbers states thatℙ (𝑋𝑛 → 𝜇) = 1. In this formulation, the event depends on
thewhole sequence of randomvariables𝑋𝑖, since the limit is inside the probability calculation.

The central limit theorem states that 𝑍𝑛 =
𝑆𝑛−𝑛𝜇
𝜎√𝑛

is approximately a N(0, 1) random variable when 𝑛
is large. More precisely, ℙ (𝑍𝑛 ≤ 𝑧) → Φ(𝑧) for all 𝑧 ∈ ℝ.

1.6 Conditional probability
If 𝑋, 𝑌 are discrete random variables, we can define the conditional probability mass function to
be

𝑝𝑋∣𝑌 (𝑥 ∣ 𝑦) =
ℙ (𝑋 = 𝑥, 𝑌 = 𝑦)

ℙ (𝑌 = 𝑦)
when ℙ (𝑌 = 𝑦) ≠ 0. If 𝑋, 𝑌 are continuous, we define the joint probability density function to be
𝑓𝑋,𝑌 (𝑥, 𝑦) such that

ℙ (𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦) = ∫
𝑥

−∞
∫

𝑦

−∞
𝑓(𝑥′, 𝑦′) d𝑦′ d𝑥′

5



The conditional probability density function is

𝑓𝑋∣𝑌 (𝑥 ∣ 𝑦) =
𝑓𝑋,𝑌 (𝑥, 𝑦)

∫∞
−∞ 𝑓𝑋,𝑌 (𝑥, 𝑦) d𝑥

The denominator is sometimes referred to as the marginal probability density function of 𝑌 , written
𝑓𝑌 (𝑦). Now, we can define the conditional expectation by

𝔼 [𝑋 ∣ 𝑌] = {∑𝑥 𝑥𝑝𝑋∣𝑌 (𝑥 ∣ 𝑌) if 𝑋 discrete
∫𝑥 𝑥𝑓𝑋∣𝑌 (𝑥 ∣ 𝑌) d𝑥 if 𝑋 continuous

The conditional expectation is itself a random variable, as it is a function of the random variable
𝑌 . The conditional variance is defined similarly, and is a random variable. The tower property is
that

𝔼 [𝔼 [𝑋 ∣ 𝑌]] = 𝔼 [𝑋]
The law of total variance is that

Var (𝑋) = 𝔼 [Var (𝑋 ∣ 𝑌)] + Var (𝔼 [𝑋 ∣ 𝑌])

1.7 Change of variables in two dimensions
Suppose that (𝑥, 𝑦) ↦ (𝑢, 𝑣) is a differentiable bijection from ℝ2 to itself. Then, the joint probability
density function of 𝑈,𝑉 can be written as

𝑓𝑈,𝑉 (𝑢, 𝑣) = 𝑓𝑋,𝑌 (𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣))|det 𝐽|
where 𝐽 is the Jacobian matrix,

𝐽 = 𝜕(𝑥, 𝑦)
𝜕(𝑢, 𝑣) = (𝜕𝑥/𝜕𝑢 𝜕𝑥/𝜕𝑣

𝜕𝑦/𝜕𝑢 𝜕𝑦/𝜕𝑣
)

1.8 Common distributions
𝑋 has the binomial distribution with parameters 𝑛, 𝑝 if 𝑋 represents the number of successes in 𝑛
independent Bernoulli trials with parameter 𝑝.
𝑋 has the multinomial distribution with parameters 𝑛; 𝑝1,… , 𝑝𝑘 if there are 𝑛 independent trials
with 𝑘 types, where 𝑝𝑗 is the probability of type 𝑗 in a single trial. Here, 𝑋 takes values in ℕ𝑘, and 𝑋𝑗
is the amount of trials with type 𝑗. Each 𝑋𝑗 is marginally binomially distributed.
𝑋 has the negative binomial distribution with parameters 𝑘, 𝑝 if, in i.i.d. Bernoulli trials with para-
meter 𝑝, the variable 𝑋 is the time at which the 𝑘th success occurs. The negative binomial with
parameter 𝑘 = 1 is the geometric distribution.
The Poisson distributionwith parameter 𝜆 is the limit of the distribution Bin(𝑛, 𝜆/𝑛) as 𝑛 → ∞.

If 𝑋𝑖 ∼ Γ(𝛼𝑖, 𝜆) for 𝑖 = 1,… , 𝑛with 𝑋1,… , 𝑋𝑛 independent, then the distribution of 𝑆𝑛 is given by the
product of the moment generating functions. By inspection,

𝑀𝑆𝑛(𝑡) = ( 𝜆
𝜆 − 𝑡)

∑𝑖 𝛼𝑖

or∞ if 𝑡 ≥ 𝜆. Hence the sum of these random variables is 𝑆𝑛 ∼ Γ(∑𝑖 𝛼𝑖, 𝜆), where the shape para-
meter 𝛼 is constructed from the sum of the shape parameters of the original functions. We call 𝜆
the rate parameter, and 𝜆−1 is called the scale parameter. If 𝑋 ∼ Γ(𝛼, 𝜆), then for all 𝑏 > 0 we have
𝑏𝑋 ∼ Γ(𝑥, 𝜆/𝑏). Special cases of the Γ distribution include:
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• Γ(1, 𝜆) = Exp(𝜆);
• Γ(𝑘/2, 1/2) = 𝜒2𝑘 with 𝑘 degrees of freedom, which is the distribution of a sum of 𝑘 i.i.d. squared
standard normal random variables.

2 Estimation
2.1 Estimators
Suppose 𝑋1,… , 𝑋𝑛 are i.i.d. observations with a p.d.f. (or p.m.f.) 𝑓𝑋(𝑥 ∣ 𝜃), where 𝜃 is an unknown
parameter in some parameter space Θ. Let 𝑋 = (𝑋1,… , 𝑋𝑛).

Definition. An estimator is a statistic, or a function of the data, written 𝑇(𝑋) = ̂𝜃, which is
used to approximate the true value of 𝜃. This does not depend (explicitly) on 𝜃. The distribu-
tion of 𝑇(𝑋) is called its sampling distribution.

Example. Let 𝑋1,… , 𝑋𝑛 ∼ 𝑁(0, 1) be i.i.d. Let 𝜇̂ = 𝑇(𝑋) = 𝑋𝑛. The sampling distribution is
𝑇(𝑋) ∼ 𝑁(𝜇, 1

𝑛
). Note that this sampling distribution in general depends on the true parameter 𝜇.

Definition. The bias of ̂𝜃 is
bias( ̂𝜃) = 𝔼𝜃 [ ̂𝜃] − 𝜃

Note that ̂𝜃 is a function only of 𝑋1,… , 𝑋𝑛, and the expectation operator 𝔼𝜃 assumes that the
true value of the parameter is 𝜃.

Remark. In general, the bias is a function of the true parameter 𝜃, even though it is not explicit in
the notation.

Definition. An estimator with zero bias for all 𝜃 is called an unbiased estimator.

Example. The estimator 𝜇̂ in the above example is unbiased, since

𝔼𝜇 [𝜇̂] = 𝔼𝜇 [𝑋𝑛] = 𝜇

for all 𝜇 ∈ ℝ.

Definition. Themean squared error of 𝜃 is defined as

mse( ̂𝜃) = 𝔼𝜃 [( ̂𝜃 − 𝜃)2]

Remark. Like the bias, the mean squared error is, in general, a function of the true parameter 𝜃.

2.2 Bias-variance decomposition
The mean squared error can be written as

mse( ̂𝜃) = 𝔼𝜃 [( ̂𝜃 − 𝔼𝜃 [ ̂𝜃] + 𝔼𝜃 [ ̂𝜃] − 𝜃)2] = Var𝜃 ( ̂𝜃) + bias2( ̂𝜃)

7



Note that both the variance and bias squared terms are positive. This implies a tradeoff between bias
and variance when minimising error.

Example. Let𝑋 ∼ Bin(𝑛, 𝜃)where 𝑛 is known and 𝜃 is an unknown probability. Let𝑇𝑈 = 𝑋/𝑛. This
is the proportion of successes observed. This is an unbiased estimator, since 𝔼𝜃 [𝑇𝑈] = 𝔼𝜃 [𝑋] /𝑛 = 𝜃.
The mean squared error for the estimator is then

Var𝜃 (𝑇𝑛) = Var𝜃 (
𝑋
𝑛 ) =

Var𝜃 (𝑋)
𝑛2 = 𝜃(1 − 𝜃)

𝑛
Now, consider an alternative estimator which has some bias:

𝑇𝐵 =
𝑋 + 1
𝑛 + 2 = 𝑤 𝑋

𝑛⏟
𝑇𝑈

+(1 − 𝑤)12 ; 𝑤 = 𝑛
𝑛 + 2

This interpolates between the estimator 𝑇𝑈 and the fixed estimator 1
2
. Here,

bias(𝑇𝐵) = 𝔼𝜃 [𝑇𝐵] − 𝜃 = 𝑛
𝑛 + 2𝜃 −

1
𝑛 + 2𝜃

The bias is nonzero for all but one value of 𝜃. Further,

Var𝜃 (𝑇𝐵) =
Var𝜃 (𝑋 + 1)
(𝑛 + 2)2 = 𝑛𝜃(1 − 𝜃)

(𝑛 + 2)2

We can calculate
mse(𝑇𝐵) = (1 − 𝑤)2(12 − 𝜃)

2
+ 𝑤2 𝜃(1 − 𝜃)

𝑛⏟⎵⏟⎵⏟
mse(𝑇𝑈 )

There exists a range of 𝜃 such that 𝑇𝐵 has a lower mean squared error, and similarly there exists a
range such that 𝑇𝑈 has a lower error. This indicates that prior judgement of the true value of 𝜃 can
be used to determine which estimator is better.

It is not necessarily desirable that an estimator is unbiased.

Example. Suppose 𝑋 ∼ Poi(𝜆) and we wish to estimate 𝜃 = ℙ (𝑋 = 0)2 = 𝑒−2𝜆. For some estimator
𝑇(𝑋) of 𝜃 to be unbiased, we need that

𝔼𝜆 [𝑇(𝑋)] =
∞
∑
𝑥=0

𝑇(𝑥)𝜆
𝑥𝑒−𝜆
𝑥! = 𝑒−2𝜆

Hence,
∞
∑
𝑥=0

𝑇(𝑥)𝜆
𝑥

𝑥! = 𝑒−𝜆

But 𝑒−𝜆 has a known power series expansion, giving 𝑇(𝑋) ≡ (−1)𝑋 for all 𝑋 . This is not a good
estimator, for example because it often predicts negative numbers for a positive quantity.

2.3 Sufficiency
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Definition. A statistic 𝑇(𝑋) is sufficient for 𝜃 if the conditional distribution of 𝑋 given 𝑇(𝑋)
does not depend on 𝜃. Note that 𝜃 and 𝑇(𝑋) may be vector-valued, and need not have the
same dimension.

Example. Let 𝑋1,… , 𝑋𝑛 be i.i.d. Bernoulli random variables with parameter 𝜃where 𝜃 ∈ [0, 1]. The
mass function is

𝑓𝑋(𝑥 ∣ 𝜃) =
𝑛
∏
𝑖=1

𝜃𝑥𝑖 (1 − 𝜃)1−𝑥𝑖 = 𝜃∑𝑥𝑖 (1 − 𝜃)𝑛−∑𝑥𝑖

Note that this dependent only on 𝑥 via the statistic 𝑇(𝑋) = ∑𝑛
𝑛=1 𝑥𝑖. Here,

𝑓𝑋∣𝑇=𝑡(𝑥 ∣ 𝜃) =
ℙ𝜃 (𝑋 = 𝑥, 𝑇(𝑋) = 𝑡)

ℙ𝜃 (𝑇(𝑥) = 𝑡)

If∑𝑥𝑖 = 𝑡, we have

𝑓𝑋∣𝑇=𝑡(𝑥 ∣ 𝜃) =
𝜃∑𝑥𝑖 (1 − 𝜃)𝑛−∑𝑥𝑖

(𝑛
𝑡
)𝜃𝑡(1 − 𝜃)𝑛−∑𝑥𝑖

= 1
(𝑛
𝑡
)

Hence 𝑇(𝑋) is sufficient for 𝜃.

2.4 Factorisation criterion

Theorem. 𝑇 is sufficient for 𝜃 if and only if

𝑓𝑋(𝑥 ∣ 𝜃) = 𝑔(𝑇(𝑥), 𝜃)ℎ(𝑥)

for suitable functions 𝑔, ℎ.

Proof. This will be proven in the discrete case; the continuous case can be handled analogously. Sup-
pose that the factorisation criterion holds. Then, if 𝑇(𝑥) = 𝑡,

𝑓𝑋∣𝑇=𝑡(𝑥 ∣ 𝑇 = 𝑡) = ℙ𝜃 (𝑋 = 𝑥, 𝑇(𝑥) = 𝑡)
ℙ𝜃 (𝑇(𝑥) = 𝑡)

= 𝑔(𝑇(𝑥), 𝜃)ℎ(𝑥)
∑𝑥′ ∶ 𝑇(𝑥′)=𝑡 𝑔(𝑇(𝑥′), 𝜃)ℎ(𝑥′)

= ℎ(𝑥)
∑𝑥′ ∶ 𝑇(𝑥′)=𝑡 ℎ(𝑥′)

which does not depend on 𝜃. By definition, 𝑇(𝑋) is sufficient.
Conversely, suppose that 𝑇(𝑋) is sufficient.

𝑓𝑋(𝑥 ∣ 𝜃) = ℙ𝜃 (𝑋 = 𝑥)
= ℙ𝜃 (𝑋 = 𝑥, 𝑇(𝑋) = 𝑇(𝑥))
= ℙ𝜃 (𝑋 = 𝑥 ∣ 𝑇(𝑋) = 𝑇(𝑥))⏟⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏟

ℎ(𝑥)

ℙ𝜃 (𝑇(𝑋) = 𝑇(𝑥))⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟
𝑔(𝑇(𝑋),𝜃)
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Example. Consider the above example with 𝑛 Bernoulli random variables with mass function

𝑓𝑋(𝑥 ∣ 𝜃) = 𝜃∑𝑥𝑖 (1 − 𝜃)𝑛−∑𝑥𝑖

Let 𝑇(𝑋) = ∑𝑥𝑖, and then the above mass function is in the form of 𝑔(𝑇(𝑋), 𝜃) and we can set
ℎ(𝑥) ≡ 1. Hence 𝑇(𝑋) is sufficient.
Example. Let 𝑋1,… , 𝑋𝑛 be i.i.d. from a uniform distribution on the interval [0, 𝜃] for some 𝜃 > 0.
The mass function is

𝑓𝑋(𝑥 ∣ 𝜃) =
𝑛
∏
𝑖=1

1
𝜃 𝟙{𝑥𝑖 ∈ [0, 𝜃]} = (1𝜃 )

𝑛
𝟙{min

𝑖
𝑥𝑖 ≥ 0}𝟙{max

𝑖
𝑥𝑖 ≤ 𝜃}

Let 𝑇(𝑋) = max𝑖 𝑋𝑖. Then

𝑔(𝑇(𝑋), 𝜃) = (1𝜃 )
𝑛
𝟙{max

𝑖
𝑥𝑖 ≤ 𝜃}; ℎ(𝑥) ≡ 𝟙{min

𝑖
𝑥𝑖 ≥ 0}

We can then conclude that 𝑇(𝑋) is sufficient for 𝜃.

2.5 Minimal sufficiency
Sufficient statistics are not unique. For instance, any bijection applied to a sufficient statistic is also
sufficient. Further, 𝑇(𝑋) = 𝑋 is always sufficient. We instead seek statistics thatmaximally compress
and summarise the relevant data in 𝑋 and that discard extraneous data.

Definition. A sufficient statistic 𝑇(𝑋) for 𝜃 isminimal if it is a function of every other suffi-
cient statistic for 𝜃. More precisely, if 𝑇 ′(𝑋) is sufficient, 𝑇 ′(𝑥) = 𝑇 ′(𝑦) ⟹ 𝑇(𝑥) = 𝑇(𝑦).

Remark. Any two minimal statistics 𝑆, 𝑇 for the same 𝜃 are bijections of each other. That is, 𝑇(𝑥) =
𝑇(𝑦) if and only if 𝑆(𝑥) = 𝑆(𝑦).

Theorem. Suppose that 𝑓𝑋(𝑥 ∣ 𝜃)/𝑓𝑋(𝑦 ∣ 𝜃) is constant in 𝜃 if and only if 𝑇(𝑥) = 𝑇(𝑦). Then
𝑇 is minimal sufficient.

Remark. This theorem essentially states the following. Let 𝑥 1∼ 𝑦 if the above ratio of probability
density or mass functions is constant in 𝜃. This is an equivalence relation. Similarly, we can define
𝑥 2∼ 𝑦 if 𝑇(𝑥) = 𝑇(𝑦). This is also an equivalence relation. The hypothesis in the theorem is that
the equivalence classes of 1∼ and 2∼ are equal. Further, we may always construct a minimal sufficient
statistic for any parameter since we can use the construction 1∼ to create equivalence classes, and set
𝑇 to be constant for all such equivalence classes.

Proof. Let 𝑡 ∈ Im𝑇. Then let 𝑧𝑡 be a representative of the equivalence class {𝑥∶ 𝑇(𝑥) = 𝑡}. Then

𝑓𝑋(𝑥 ∣ 𝜃) = 𝑓𝑋(𝑧𝑇(𝑥) ∣ 𝜃)
𝑓𝑋(𝑥 ∣ 𝜃)

𝑓𝑋(𝑧𝑇(𝑥) ∣ 𝜃)

By the hypothesis, the ratio on the right hand side does not depend on 𝜃, so let this ratio be ℎ(𝑥).
Further, the other term depends only on 𝑇(𝑥), so it may be 𝑔(𝑇(𝑥), 𝜃). Hence 𝑇 is sufficient by the
factorisation criterion.
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To prove minimality, let 𝑆 be any other sufficient statistic, and then by the factorisation criterion
there exist 𝑔𝑆 and ℎ𝑆 such that 𝑓𝑋(𝑥 ∣ 𝜃) = 𝑔𝑆(𝑆(𝑥), 𝜃)ℎ𝑆(𝑥). Now, suppose 𝑆(𝑥) = 𝑆(𝑦) for some 𝑥, 𝑦.
Then,

𝑓𝑋(𝑥 ∣ 𝜃)
𝑓𝑋(𝑦 ∣ 𝜃)

= 𝑔𝑆(𝑆(𝑥), 𝜃)ℎ𝑆(𝑥)
𝑔𝑆(𝑆(𝑦), 𝜃)ℎ𝑆(𝑦)

= ℎ𝑆(𝑥)
ℎ𝑆(𝑦)

which is constant in 𝜃. Hence, 𝑥 1∼ 𝑦. By the hypothesis, we have 𝑥 2∼ 𝑦, so 𝑇(𝑥) = 𝑇(𝑦), which is
the requirement for minimality.

Example. Let 𝑋1,… , 𝑋𝑛 be normal with unknown 𝜇, 𝜎2.

𝑓𝑋(𝑥 ∣ 𝜇, 𝜎2)
𝑓𝑋(𝑦 ∣ 𝜇, 𝜎2)

=
(2𝜋𝜎2)−𝑛/2 exp{− 1

2𝜎2
∑𝑖(𝑥𝑖 − 𝜇)2}

(2𝜋𝜎2)−𝑛/2 exp{− 1
2𝜎2∑𝑖(𝑦𝑖−𝜇)2

}

= exp{− 1
2𝜎2 (∑𝑖

𝑥2𝑖 −∑
𝑖
𝑦2𝑖 ) +

𝜇
𝜎2 (∑𝑖

𝑥𝑖 −∑
𝑖
𝑦𝑖)}

Hence, for minimality, this is constant in the parameters 𝜇, 𝜎2 if and only if ∑𝑖 𝑥2𝑖 = ∑𝑖 𝑦2𝑖 and
∑𝑖 𝑥𝑖 = ∑𝑖 𝑦𝑖. Thus, a minimal sufficient statistic is (∑𝑖 𝑥2𝑖 ,∑𝑖 𝑥𝑖) is a minimal sufficient statistic.
A more common way of expressing the minimal sufficient statistic is

𝑆(𝑥) = (𝑋𝑛, 𝑆𝑥𝑥); 𝑋𝑛 =
1
𝑛 ∑𝑖

𝑥𝑖; 𝑆𝑥𝑥 = ∑
𝑖
(𝑋𝑖 − 𝑋𝑛)

2

which is a bijection of the above.

Example. 𝜃 and a minimal statistic 𝑇 need not have the same dimension. Consider 𝑋1,… , 𝑋𝑛 ∼
𝑁(𝜇, 𝜇2). Here, there is a single parameter 𝜇 but theminimal sufficient statistic is still 𝑆(𝑥) as defined
above.

2.6 Rao–Blackwell theorem
Previously, the notation 𝔼𝜃 and ℙ𝜃 have been used to denote expectations and probabilities under
the model where the observations are i.i.d. with p.d.f. or p.m.f. 𝑓𝑋 . From now, we omit this subscript,
as it will be implied for much of the remainder of the course.

Theorem. Let 𝑇 be a sufficient statistic for 𝜃, and define an estimator ̃𝜃 with 𝔼 [ ̃𝜃2] < ∞ for
all 𝜃. Now we define another estimator

̂𝜃 = 𝔼 [ ̃𝜃 ∣ 𝑇(𝑥)]

Then, for all values of 𝜃, we have

𝔼 [( ̂𝜃 − 𝜃)2] ≤ 𝔼 [( ̃𝜃 − 𝜃)2]

In other words, the mean squared error of ̂𝜃 is not greater than the mean squared error of ̃𝜃.
Further, the inequality is strict unless ̃𝜃 is a function of 𝑇.
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Remark. Starting from any estimator ̃𝜃, if we condition on the sufficient statistic 𝑇 we obtain a ‘bet-
ter’ statistic ̂𝜃. Note that 𝑇 must be sufficient, otherwise ̂𝜃 may be a function of 𝜃 and thus not an
estimator:

̂𝜃(𝑋) = ̂𝜃(𝑇) = ∫ ̂𝜃(𝑥) 𝑓𝑋∣𝑇(𝑥 ∣ 𝑇)⏟⎵⎵⏟⎵⎵⏟
does not depend on 𝜃 as 𝑇 is sufficient

d𝑥

Proof. By the tower property of the expectation, we can find

𝔼 [ ̂𝜃] = 𝔼 [𝔼 [ ̃𝜃 ∣ 𝑇(𝑥)]] = 𝔼 [ ̃𝜃]

Hence, subtracting ̃𝜃 from both sides, we find bias( ̂𝜃) = bias( ̃𝜃). By the conditional variance formula,

Var ( ̃𝜃) = 𝔼[Var ( ̃𝜃 ∣ 𝑇)⏟⎵⎵⏟⎵⎵⏟
≥0

] + Var (𝔼 [ ̃𝜃 ∣ 𝑇])⏟⎵⎵⎵⏟⎵⎵⎵⏟
Var( ̂𝜃)

≥ Var ( ̂𝜃)

By the bias-variance decomposition, we know that mse( ̃𝜃) ≥ mse( ̂𝜃). The inequality is strict unless
Var ( ̃𝜃 ∣ 𝑇) = 0 almost surely. This requires that ̃𝜃 is a function of 𝑇.

Example. Let𝑋1,… , 𝑋𝑛 be i.i.d. Poisson randomvariableswith parameter𝜆. Then let 𝜃 = ℙ (𝑋1 = 0) =
𝑒−𝜆. Here,

𝑓𝑋(𝑥 ∣ 𝜆) =
𝑒−𝑛𝜆𝜆∑𝑥𝑖

∏𝑥𝑖!
⟹ 𝑓𝑋(𝑥 ∣ 𝜃) =

𝜃𝑛(− log 𝜃)∑𝑥𝑖

∏𝑥𝑖!
Using the factorisation criterion, we find

𝑔(𝑇(𝑥), 𝜃) = 𝑔(∑𝑥𝑖, 𝜃) = 𝜃𝑛(− log 𝜃)∑𝑥𝑖 ; ℎ(𝑥) = 1
∏𝑥𝑖!

so 𝑇(𝑥) = ∑𝑥𝑖 is sufficient. Note that∑𝑋𝑖 has a Poisson distribution with parameter 𝑛𝜆. Consider
the estimator ̃𝜃 = 𝟙{𝑋1 = 0}. This depends only on 𝑋1, hence it is a weak estimator. However, it is
unbiased, so when we apply the Rao–Blackwell theorem we will construct an unbiased ̂𝜃, which is
precisely

̂𝜃 = 𝔼 [ ̃𝜃 ∣ ∑𝑋𝑖 = 𝑡] = ℙ (𝑋1 = 0 ∣ ∑𝑋𝑖 = 𝑡)

= ℙ (𝑋1 = 0,∑𝑋𝑖 = 𝑡)
ℙ (∑𝑋𝑖 = 𝑡)

=
ℙ (𝑋1 = 0)ℙ (∑𝑛

𝑖=2 𝑋𝑖 = 𝑡)
ℙ (∑𝑛

𝑖=1 𝑋𝑖 = 𝑡)

= (𝑛 − 1
𝑛 )

𝑡

This may also be written

̂𝜃 = (1 − 1
𝑛)

∑𝑥𝑖

which is an estimator with lower mean squared error than 1̃ for all 𝜃. Note that ̂𝜃 = (1 = 1
𝑛
)
𝑛𝑋𝑛

converges in the limit to 𝑒−𝑋𝑛 . By the strong law of large numbers, 𝑋𝑛 → 𝔼[𝑋1] = 𝜆, so we arrive at
̂𝜃 → 𝑒−𝜆 = 𝜃 almost surely.
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Example. Let 𝑋1,… , 𝑋𝑛 be i.i.d. uniform random variables in an interval [0, 𝜃]. We wish to estimate
𝜃 > 0. We observed that 𝑇 = max𝑋𝑖 is sufficient for 𝜃. Let ̃𝜃 = 2𝑋1. This is an unbiased estimator of
𝜃. Then the Rao–Blackwellised estimator ̂𝜃 is

̂𝜃 = 𝔼 [ ̃𝜃 ∣ 𝑇 = 𝑡]
= 2𝔼 [𝑋1 ∣ max𝑋𝑖 = 𝑡]
= 2𝔼 [𝑋1 ∣ max𝑋𝑖 = 𝑡, 𝑋1 = max𝑋𝑖] ℙ (𝑋1 = max𝑋𝑖 ∣ max𝑋𝑖 = 𝑡)
+ 2𝔼 [𝑋1 ∣ max𝑋𝑖 = 𝑡, 𝑋1 ≠ max𝑋𝑖] ℙ (𝑋1 ≠ max𝑋𝑖 ∣ max𝑋𝑖 = 𝑡)

Since 𝑋1,… , 𝑋𝑛 are i.i.d., the conditional probability ℙ (𝑋1 = max𝑋𝑖 ∣ max𝑋𝑖 = 𝑡) can be reduced to
ℙ (𝑋1 = max𝑋𝑖) =

1
𝑛
. The complementary event may be reduced in an analogous way. The expecta-

tion 𝔼 [𝑋1 ∣ max𝑋𝑖 = 𝑡, 𝑋1 = max𝑋𝑖] can be reduced to 𝑡.

̂𝜃 = 2𝑡
𝑛 + 2(𝑛 − 1)

𝑛 𝔼 [𝑋1 ∣ 𝑋1 < 𝑡,
𝑛

max
𝑖=2

𝑋𝑖 = 𝑡]

= 2𝑡
𝑛 + 2(𝑛 − 1)

𝑛 𝔼 [𝑋1 ∣ 𝑋1 < 𝑡]

= 2𝑡
𝑛 + 2(𝑛 − 1)

𝑛
𝑡
2

= 2𝑡
𝑛 + 𝑡(𝑛 − 1)

𝑛 = 𝑛 + 1
𝑛 max

𝑖
𝑋𝑖

By the Rao–Blackwell theorem, the mean squared error of ̂𝜃 is not greater than the mean squared
error of ̃𝜃. This is also an unbiased estimator.

2.7 Maximum likelihood estimation
Let 𝑋1,… , 𝑋𝑛 be i.i.d. random variables with mass or density function 𝑓𝑋(𝑥 ∣ 𝜃).

Definition. For fixed observations 𝑥, the likelihood function 𝐿∶ Θ → ℝ is given by

𝐿(𝜃) = 𝑓𝑋(𝑥 ∣ 𝜃) =
𝑛
∏
𝑖=1

𝑓𝑋𝑖 (𝑥𝑖 ∣ 𝜃)

We will denote the log-likelihood by

ℓ(𝜃) = log𝐿(𝜃) =
𝑛
∑
𝑖=1

log𝑓𝑋𝑖 (𝑥𝑖 ∣ 𝜃)

Definition. A maximum likelihood estimator is an estimator that maximises the likelihood
function 𝐿 over Θ. Equivalently, the estimator maximises ℓ.

Example. Let 𝑋1,… , 𝑋𝑛 be i.i.d. Bernoulli random variables with parameter 𝑝. The log-likelihood
function is

ℓ(𝑝) =
𝑛
∑
𝑖=1
[𝑋𝑖 log𝑝 + (1 − 𝑋𝑖) log(1 − 𝑝)] = log𝑝 +∑𝑋𝑖 + log(1 − 𝑝)(𝑛 −∑𝑋𝑖)
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The derivative is
ℓ′(𝑝) = ∑𝑋𝑖

𝑝 + 𝑛 −∑𝑋𝑖
1 − 𝑝

which has a single stationary point at 𝑝 = 1
𝑛
∑𝑋𝑖 = 𝑋𝑛. We have 𝔼 [ ̂𝑝] = 𝑝, so the maximum

likelihood estimator in this case is unbiased.

Example. Let 𝑋1,… , 𝑋𝑛 be i.i.d. normal random variables with unknown mean 𝜇 and variance 𝜎2.

ℓ(𝜇, 𝜎2) = −𝑛2 log(2𝜋) −
𝑛
2 log𝜎

2 − 1
2𝜎2 ∑(𝑋𝑖 − 𝜇)2

This function is concave in 𝜇 and 𝜎2, so there exists a uniquemaximiser. In particular, ℓ is maximised
when 𝜕ℓ

𝜕𝜇
= 𝜕ℓ

𝜕𝜎2
= 0.

𝜕ℓ
𝜕𝜇 = − 1

𝜎2 ∑(𝑋𝑖 − 𝜇)

This is zero if 𝜇 = 𝑋𝑛. Further,

𝜕ℓ
𝜕𝜎2 = − 𝑛

2𝜎2 +
1
2𝜎4 ∑(𝑋𝑖 − 𝜇)2 = − 𝑛

2𝜎2 +
1
2𝜎4 ∑(𝑋𝑖 − 𝑋𝑛)2

This is zero if and only if
𝜎2 = 1

𝑛 ∑(𝑋𝑖 − 𝑋𝑛)2 =
𝑆𝑥𝑥
𝑛

Hence, the maximum likelihood estimator is (𝜇̂, 𝜎̂2) = (𝑋𝑛,
1
𝑛
𝑆𝑥𝑥). We can show that 𝜇̂ is unbiased.

We will later prove that
𝑆𝑥𝑥
𝜎2 = 𝑛𝜎̂2

𝜎2 ∼ 𝜒2𝑛−1
Hence

𝔼 [𝜎̂2] = 𝜎2
𝑛 𝔼 [𝜒

2
𝑛−1] = 𝜎2 𝑛 − 1

𝑛
This is therefore a biased estimator, but the bias converges to zero as 𝑛 → ∞: 𝜎̂2 is asymptotically
unbiased.

Example. Let 𝑋1,… , 𝑋𝑛 be i.i.d. uniform random variables on [0, 𝜃]. Here, we derived the unbiased
estimator ̂𝜃 = 𝑛+1

𝑛
max𝑋𝑖. The likelihood is given by

𝐿(𝜃) = 1
𝜃𝑛 𝟙{max𝑋𝑖 ≤ 𝜃}

This function ismaximised at ̂𝜃mle = max𝑋𝑖. By comparison to the ̂𝜃 derived from the Rao–Blackwell
process, ̂𝜃mle is biased. In particular,

𝔼 [ ̂𝜃mle] =
𝑛

𝑛 + 1𝔼 [
̂𝜃] = 𝑛

𝑛 + 1𝜃

Remark. If 𝑇 is a sufficient statistic for 𝜃, then the maximum likelihood estimator is a function of 𝑇.
Indeed, since 𝑋 and 𝑇 are fixed, the maximiser of 𝐿(𝜃) = 𝑔(𝑇, 𝜃)ℎ(𝑋) depends on 𝑋 only through 𝑇.
If 𝜑 = 𝐻(𝜃) for a bijection𝐻, then if ̂𝜃 is the maximum likelihood estimator for 𝜃, we have that𝐻( ̂𝜃)
is the maximum likelihood estimator for 𝜑.
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Under some regularity conditions, as 𝑛 → ∞ the statistic √𝑛( ̂𝜃 − 𝜃) is approximately normal with
mean zero and covariance matrix Σ. More precisely, for ‘nice’ sets 𝐴, we have

ℙ (√𝑛( ̂𝜃 − 𝜃) ∈ 𝐴) → ℙ (𝑍 ∈ 𝐴) ; 𝑍 ∼ 𝑁(0, Σ)
We say that the maximum likelihood estimator is asymptotically normal. The limiting covariance
matrix Σ is a known function of ℓ, which will not be defined in this course. In some sense, Σ is the
smallest variance that any estimator can achieve asymptotically.

For practical purposes, this estimator can often be found numerically by maximising ℓ or 𝐿.

3 Inference
3.1 Confidence intervals

Definition. A 100𝛾% confidence interval for a parameter 𝜃 is a random interval (𝐴(𝑋), 𝐵(𝑋))
such that ℙ (𝐴(𝑋) ≤ 𝜃 ≤ 𝐵(𝑋)) = 𝛾 for all 𝜃 ∈ Θ. Note that the parameter 𝜃 is assumed to be
fixed for the event {𝐴(𝑋) ≤ 𝜃 ≤ 𝐵(𝑋)}, and the confidence interval holds uniformly over 𝜃.

Remark. Suppose that an experiment is repeated many times. On average, 100𝛾% of the time, the
random interval (𝐴(𝑋), 𝐵(𝑋))will contain the true parameter 𝜃. This is the frequentist interpretation
of the confidence interval.

A misleading interpretation is as follows. Given that a single value of 𝑋 is observed, there is a prob-
ability 𝛾 that 𝜃 ∈ (𝐴(𝑥), 𝐵(𝑥)). This is wrong, as will be demonstrated later.
Example. Let 𝑋1,… , 𝑋𝑛 be i.i.d. normal random variables with unit variance. We will find the 95%
confidence interval for 𝜇 = 𝜃. We have

𝑋 = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖 ∼ 𝑁(𝜃, 1𝑛); 𝑍 = √𝑛(𝑋 − 𝜃) ∼ 𝑁(0, 1)

Let 𝑎, 𝑏 be numbers such that Φ(𝑏) − Φ(𝑎) = 0.95. Then

ℙ (𝑎 ≤ √𝑛(𝑋 − 𝜃) ≤ 𝑏) = 0.95 ⟹ ℙ(𝑋 − 𝑏
√𝑛

≤ 𝜃 ≤ 𝑋 − 𝑎
√𝑛

) = 0.95

Hence, (𝑋 − 𝑏
√𝑛
, 𝑋 − 𝑎

√𝑛
) is a 95% confidence interval for 𝜃. Typically, we wish to centre the interval

around some estimator ̂𝜃 such that its range is minimised for a given 𝛾. In this case, we want to set
−𝑎 = 𝑏 = 𝑧0.025 ≈ 1.96, where 𝑧𝛼 = Φ−1(1 − 𝛼). Hence, the confidence interval is (𝑋 ± 1.96

√𝑛
).

Remark. In general, to find a confidence interval:

(i) Find a quantity 𝑅(𝑋, 𝜃) where the distribution ℙ𝜃 does not depend on 𝜃. This is known as a
pivot. In the example above, 𝑅(𝑋, 𝜃) = √𝑛(𝑋 − 𝜃).

(ii) Consider ℙ (𝑐1 ≤ 𝑅(𝑋, 𝜃) ≤ 𝑐2) = 𝛾. Given some desired level of confidence 𝛾, find 𝑐1 and 𝑐2
using the distribution function of the pivot.

(iii) Rearrange such that ℙ (𝐴(𝑋) ≤ 𝜃 ≤ 𝐵(𝑋)) = 𝛾, then (𝐴(𝑋), 𝐵(𝑋)) is the confidence interval as
required.
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Proposition. Let 𝑇 be a monotonically increasing function, and let (𝐴(𝑋), 𝐵(𝑋)) be a 100𝛾%
confidence interval for 𝜃. Then (𝑇(𝐴(𝑋)), 𝑇(𝐵(𝑋))) is a 100𝛾% confidence interval for 𝑇(𝜃).

Remark. If 𝜃 is a vector, we can consider confidence sets instead of confidence intervals. A confidence
set is a set 𝐴(𝑋) such that ℙ (𝜃 ∈ 𝐴(𝑋)) = 𝛾.
Example. Let 𝑋1,… , 𝑋𝑛 be i.i.d. normal random variables with zero mean and unknown variance
𝜎2. We will find a 95% confidence interval for 𝜎2. Note that 𝑋1

𝜎
∼ 𝑁(0, 1) is a valid pivot, but it

considers only one data point. We will instead consider

𝑅(𝑋, 𝜎2) = ∑
𝑖

𝑋2
𝑖
𝜎2 ∼ 𝜒2𝑛

Now, we can define 𝑐1 = 𝐹−1𝜒2𝑛
(0.025) and 𝑐2 = 𝐹−1𝜒2𝑛

(0.975), giving

ℙ(𝑐1 ≤
𝑛
∑
𝑖=1

𝑋2
𝑖
𝜎2 ≤ 𝑐2) = 0.95

Rearranging, we have

ℙ(∑𝑋2
𝑖

𝑐2
≤ 𝜎2 ≤ ∑𝑋2

𝑖
𝑐1

) = 0.95

Hence, the interval∑𝑛
𝑖=1 𝑋2

𝑖 (
1
𝑐2
, 1
𝑐1
) is a 95% confidence interval for 𝜎2.

Example. Let 𝑋1,… , 𝑋𝑛 be i.i.d. Bernoulli random variables with parameter 𝑝. Suppose 𝑛 is large.
We will find an approximate 95% confidence interval for 𝑝. The maximum likelihood estimator is

̂𝑝 = 𝑋 = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖

By the central limit theorem, ̂𝑝 is asymptotically distributed according to 𝑁(𝑝, 𝑝(1−𝑝)
𝑛

). Hence,

√𝑛 ̂𝑝 − 𝑝
√𝑝(1 − 𝑝)

has approximately a standard normal distribution. We have

ℙ(−𝑧0.025 ≤ √𝑛 ̂𝑝 − 𝑝
√𝑝(1 − 𝑝)

≤ 𝑧0.025) ≈ 0.95

Instead of directly rearranging the inequalities, we will make an approximation for the denominator
of the central term, letting √𝑝(1 − 𝑝) ↦ √ ̂𝑝(1 − ̂𝑝). When 𝑛 is large, this approximation becomes
more accurate.

ℙ(−𝑧0.025 ≤ √𝑛 ̂𝑝 − 𝑝
√ ̂𝑝(1 − ̂𝑝)

≤ 𝑧0.025) ≈ 0.95

This is much easier to rearrange, leading to

ℙ( ̂𝑝 − 𝑧0.025
√ ̂𝑝(1 − ̂𝑝)

√𝑛
≤ 𝑝 ≤ ̂𝑝 + 𝑧0.025

√ ̂𝑝(1 − ̂𝑝)
√𝑛

) ≈ 0.95

This gives the approximate 95% confidence interval as required.

16



Remark. Note that the size of the confidence interval is maximised at 𝑝 = 1
2
, with a length of

2𝑧0.025
1

2√𝑛
≈ 1

√𝑛
. This is a conservative 95% confidence interval; it may be wider than necessary

but holds for all values of 𝜃.

3.2 Interpreting the confidence interval
Example. Let 𝑋1, 𝑋2 be i.i.d. uniform random variables in (𝜃 − 1

2
, 𝜃 + 1

2
). We wish to estimate the

value of 𝜃 with a 50% confidence interval. Observe that

ℙ (𝜃 ∈ (min𝑋𝑖,max𝑋𝑖)) = ℙ (𝑋1 ≤ 𝜃 ≤ 𝑋2) + ℙ (𝑋2 ≤ 𝜃 ≤ 𝑋1) =
1
2

Hence, (min𝑋1,max𝑋𝑖) is a 50% confidence interval for 𝜃. The frequentist interpretation is exactly
correct; 50% of the time, 𝜃 will lie between 𝑋1 and 𝑋2. However, suppose that |𝑋1 − 𝑋2| >

1
2
. Then

we know that 𝜃 ∈ (min𝑋𝑖,max𝑋𝑖). Suppose 𝑋1 = 0.1, 𝑋2 = 0.9, then it is not sensible to say that
there is a 50% chance that 𝜃 ∈ [0.1, 0.9].

4 Bayesian analysis
4.1 Introduction
Frequentist analysis considers the value 𝜃 to be fixed, and then we can make inferential statements
about 𝜃 in the context of repeated experiments on a random variable 𝑋 . Bayesian analysis is an
alternative to frequentist analysis, where 𝜃 is itself treated as a random variable taking values in the
parameter space Θ. We say that the prior distribution 𝜋(𝜃) is a distribution representing the beliefs
of the investigator about 𝜃 before observing data. The data 𝑋 has a p.d.f. or p.m.f. conditional on 𝜃
given by 𝑓𝑋( ⋅ ∣ 𝜃). Having observed 𝑋 , we can combine this information with the prior distribution
to form the posterior distribution 𝜋(𝜃 ∣ 𝑋), which is the conditional distribution of 𝜃 given 𝑋 . This
contains updated information about the value of 𝜃. By Bayes’ rule,

𝜋(𝜃 ∣ 𝑥) = 𝜋(𝜃)𝑓𝑋(𝑥 ∣ 𝜃)
𝑓𝑋(𝑥)

where 𝑓𝑋(𝑥) is the marginal distribution of 𝑋 , defined by

𝑓𝑋(𝑥) = {∫Θ 𝑓𝑋(𝑥 ∣ 𝜃)𝜋(𝜃) d𝜃 𝜃 continuous
∑Θ 𝑓𝑋(𝑥 ∣ 𝜃)𝜋(𝜃) 𝜃 discrete

More simply,
𝜋(𝜃 ∣ 𝑋) ∝ 𝜋(𝜃) ⋅ 𝑓𝑋(𝑋 ∣ 𝜃)

The proportionality here is with respect to 𝜃. So the posterior is proportional to the prior multiplied
by the likelihood. It is often easy to recognise that the right hand side of this expression is in some
family of distributions, such as 𝑁 or Γ, up to some normalising constant.
Remark. By the factorisation criterion, if𝑇 is a sufficient statistic for 𝜃, the posterior𝜋(𝜃 ∣ 𝑥) depends
on 𝑋 only through 𝑇. More precisely,

𝜋(𝜃 ∣ 𝑋) ∝ 𝜋(𝜃)𝑔(𝑇(𝑋), 𝜃)ℎ(𝑋) ∝ 𝜋(𝜃)𝑔(𝑇(𝐶), 𝜃)
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Example. Consider a patient who we will test for the presence of a disease, where we have no in-
formation about the health or lifestyle of the patient. Let 𝜃 take the value 1 if the patient is infected
and 0 otherwise. We have a random variable 𝑋 which takes the value 1 if a given test returns a posit-
ive result and 0 if the test is negative. We know the sensitivity of the test 𝑓𝑋(𝑋 = 1 ∣ 𝜃 = 1), and the
specificity of the test 𝑓𝑋(𝑋 = 0 ∣ 𝜃 = 0). This fully specifies the likelihood function.
We now must choose a prior distribution. For example, let 𝜋(𝜃 = 1) be the estimated proportion of
the general population that have the given disease. The posterior is the probability of an infection
given the test result.

𝜋(𝜃 = 1 ∣ 𝑋 = 1) = 𝜋(𝜃 = 1)𝑓𝑋(𝑋 = 1 ∣ 𝜃 = 1)
𝜋(𝜃 = 1)𝑓𝑋(𝑋 = 1 ∣ 𝜃 = 1) + 𝜋(𝜃 = 0)𝑓𝑋(𝑋 = 1 ∣ 𝜃 = 0)

Evenwith a positive test result, the posterior distributionmay still yield a low probability for 𝜃, which
may happen if 𝜋(𝜃 = 1) ≪ 𝜋(𝜃 = 0).
Example. Let 𝜃 be the mortality rate of a particular surgery, which will take values in [0, 1]. In the
first ten operations, we observed that none of the patients died. We will model 𝑋 ∼ 𝐵(10, 𝜃) and
observe 𝑋 = 0.
We must choose a prior. Suppose that we have data from other hospitals that suggests that the mor-
tality for the surgery ranges from 3% to 20%, with an average of 10%. We can choose the prior to be
the beta distribution, 𝜋(𝜃) ∼ Beta(𝑎, 𝑏), since the value of 𝜃 should range between zero and one. Let
𝑎 = 3 and 𝑏 = 27, which will give 𝔼 [𝜃] = 0.1 and ℙ (0.03 < 𝜃 < 0.2) ≈ 0.9. In this case, the posterior
is

𝜋(𝜃 ∣ 𝑋) ∝ 𝜋(𝜃)𝑓𝑋(𝑥 = 0 ∣ 𝜃) ∝ 𝜃𝑎−1(1 − 𝜃)𝑏−1𝜃𝑥(1 − 𝜃)𝑛−𝑥 = 𝜃𝑥+𝑎−1(1 − 𝜃)𝑏−𝑛−𝑥−1

This is again a beta distribution with parameters 𝑥+𝑎 and 𝑛−𝑥+𝑏. The normalising constant does
not need to be explicitly calculated since the form of the distribution can be recognised.

With the above data, we obtain 𝜋(𝜃 ∣ 𝑥 = 0) ∼ Beta(3, 37). This posterior has a smaller variance than
the prior, and a smaller expectation due to observing no deaths. In this case, the prior and posterior
have the same distribution. This is known as conjugacy.

4.2 Inference from the posterior
The posterior distribution 𝜋(𝜃 ∣ 𝑥) represents information about 𝜃 after having observed some data
𝑋 . This can be used to make decisions under uncertainty.
(i) We first choose some decision 𝛿 ∈ Δ. For instance, in the first example, a decision could be to

ask the patient to isolate from others to reduce transmission.

(ii) We define a loss function 𝐿(𝜃, 𝛿), which defines what loss is incurred by making decision 𝛿
given the true value of 𝜃. In the above example, 𝐿(𝜃 = 1, 𝛿 = 1) is the loss incurred by asking
the patient to isolate given that they have the disease.

(iii) We can now choose the decision 𝛿 that minimises

∫
Θ
𝐿(𝜃, 𝛿)𝜋(𝜃 ∣ 𝑥) d𝜃

which is the posterior expectation of the loss.
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4.3 Point estimation
We can use Bayesian analysis to represent an estimate for the value of 𝜃 as a decision.

Definition. The Bayes estimator ̂𝜃(𝐵) minimises

ℎ(𝛿) = ∫
Θ
𝐿(𝜃, 𝛿)𝜋(𝜃 ∣ 𝑥) d𝜃

Example. Suppose the loss function is quadratic, given by 𝐿(𝜃, 𝛿) = (𝜃 − 𝛿)2. Here,

ℎ(𝛿) = ∫
Θ
(𝜃 − 𝛿)2𝜋(𝜃 ∣ 𝑥) d𝜃

Thus, ℎ(𝛿) = 0 if
∫
Θ
(𝜃 − 𝛿)𝜋(𝜃 ∣ 𝑥) d𝜃 = 0 ⟺ 𝛿 = ∫

Θ
𝜃𝜋(𝜃 ∣ 𝑥) d𝑥

Under the quadratic loss function, ̂𝜃(𝐵) can be described as the expectation of 𝜃 under the posterior
distribution.

Example. Consider the absolute error loss, given by 𝐿(𝜃, 𝛿) = |𝜃 − 𝛿|. In this case we have

ℎ(𝛿) = ∫
Θ
|𝜃 − 𝛿|𝜋(𝜃 ∣ 𝑥) d𝜃 = ∫

𝛿

−∞
−(𝜃 − 𝛿)𝜋(𝜃 ∣ 𝑥) d𝜃 +∫

∞

𝛿
(𝜃 − 𝛿)𝜋(𝜃 ∣ 𝑥) d𝜃

We can differentiate, using the fundamental theorem of calculus, to find

ℎ′(𝛿) = ∫
𝛿

−∞
𝜋(𝜃 ∣ 𝑥) d𝜃 −∫

∞

𝛿
𝜋(𝜃 ∣ 𝑥) d𝜃

This is zero if and only if

∫
𝛿

−∞
𝜋(𝜃 ∣ 𝑥) d𝜃 = ∫

∞

𝛿
𝜋(𝜃 ∣ 𝑥) d𝜃

This yields the median of the posterior distribution.

4.4 Credible intervals

Definition. A 100𝛾% credible interval (𝐴(𝑥), 𝐵(𝑥)) satisfies

𝜋(𝐴(𝑥) ≤ 𝜃 ≤ 𝐵(𝑥) ∣ 𝑥) = 𝛾

Remark. Unlike confidence intervals, credible intervals can be interpreted conditionally on the data.
For example, we could say that given a specific observation 𝑥, we are 100𝛾% certain that 𝜃 lies within
(𝐴(𝑥), 𝐵(𝑥)). This credible interval is also dependent on the choice of prior distribution.
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5 Hypothesis testing
5.1 Hypotheses

Definition. A hypothesis is an assumption about the distribution of the data 𝑋 . Scientific
questions are often phrased as a decision between two hypotheses. The null hypothesis 𝐻0 is
usually a basic hypothesis, often representing the simplest possible distribution of the data.
The alternative hypothesis 𝐻1 is the alternative, if 𝐻0 were found to be false.

Example. Let𝑋 = (𝑋1,… , 𝑋𝑛) be i.i.d. Bernoulli random variables with parameter 𝜃. We could take,
for example, 𝐻0 ∶ 𝜃 =

1
2
and 𝐻1 ∶ 𝜃 =

3
4
. Alternatively, we could take 𝐻0 ∶ 𝜃 =

1
2
and 𝐻1 ∶ 𝜃 ≠

1
2
.

Example. Suppose 𝑋𝑖 takes values 0, 1,…. We can take 𝐻0 ∶ 𝑋𝑖
iid∼ Poi(𝜆) for some 𝜆, and 𝐻1 ∶ 𝑋𝑖

iid∼
𝑓1 for some other distribution 𝑓1. This is known as a goodness of fit test, which checks how well the
model used for the data fits.

Definition. A simple hypothesis is a hypothesis which fully specifies the p.d.f. or p.m.f. of the
data. A hypothesis that is not simple is called composite.

Example. In the first example above, 𝐻0 ∶ 𝜃 = 1
2
is simple, and 𝐻1 ∶ 𝜃 ≠ 1

2
is composite. In the

second example, 𝐻0 ∶ 𝑋𝑖
iid∼ Poi(𝜆) is composite since 𝜆 was not fixed.

5.2 Testing hypotheses

Definition. A test of the null hypothesis 𝐻0 is defined by a critical region 𝐶 ⊆ 𝒳. When
𝑋 ∈ 𝐶, we reject the null hypothesis. This is a positive result. When 𝑋 ∉ 𝐶 we fail to
reject the null hypothesis, or find no sufficient evidence against the null hypothesis. This is the
negative result.
A type I error, or a false positive, is the error made by rejecting the null hypothesis when it is
true. A type II error, or a false negative, is the errormade by failing to reject the null hypothesis
when it is not true. When 𝐻0, 𝐻1 are simple, we define

𝛼 = ℙ𝐻0 (𝐻0 is rejected) = ℙ𝐻0 (𝑋 ∈ 𝐶) ; 𝛽 = ℙ𝐻1 (𝐻0 is not rejected) = ℙ𝐻1 (𝑋 ∉ 𝐶)

The size of a test is 𝛼, which is the probability of a type I error. The power of a test is 1 − 𝛽,
which is the probability of not finding a type II error.
There is typically a tradeoff between 𝛼 and 𝛽. Often, statisticians will choose an ‘acceptable’
value for the probability of type I errors 𝛼, and then maximise the power with respect to this
fixed 𝛼. Computing the size of a test is typically simpler since it does not depend on 𝐻1.

5.3 Neyman–Pearson lemma
Let 𝐻0 and 𝐻1 be simple, and let 𝑋 have a p.d.f. or p.m.f. 𝑓𝑖 under 𝐻𝑖. The likelihood ratio statistic is
defined by

Λ𝑥(𝐻0; 𝐻1) =
𝑓1(𝑥)
𝑓0(𝑥)
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The likelihood ratio test is a test that rejects 𝐻0 when Λ𝑥 exceeds a set value 𝑘, or more formally,
𝐶 = {𝑥∶ Λ𝑥(𝐻0; 𝐻1) > 𝑘}.

Lemma. Suppose that 𝑓0, 𝑓1 are nonzero on the same set, and suppose that there exists 𝑘 > 0
such that the likelihood ratio test with critical region 𝐶 = {𝑥∶ Λ𝑥(𝐻0; 𝐻1) > 𝑘} has size 𝛼.
Then out of all tests of size upper bounded by 𝛼, this test has the largest power.

Remark. A likelihood ratio test with size 𝛼 does not always exist for any given 𝛼. However, in general
we can find a randomised test with arbitrary size 𝛼. This is a test where, for some values of 𝑋 , we
reject the null hypothesis; for some values, we fail to reject the null hypothesis; and for some values
we reject the null hypothesis with a random chance of rejecting the null hypothesis.

Proof. Let 𝐶 be the complement of 𝐶 in 𝒳. Then, the likelihood ratio test has

𝛼 = ∫
𝐶
𝑓0(𝑥) d𝑥 ; 𝛽 = ∫

𝐶
𝑓1(𝑥) d𝑥

Let 𝐶⋆ be a critical region for a different test, with type I and II error probabilities 𝛼⋆, 𝛽⋆. Here,

𝛼⋆ = ∫
𝐶⋆
𝑓0(𝑥) d𝑥 ; 𝛽⋆ = ∫

𝐶⋆
𝑓1(𝑥) d𝑥

Suppose 𝛼⋆ ≤ 𝛼. Then, we will show 𝛽 ≤ 𝛽⋆.

𝛽 − 𝛽⋆ = ∫
𝐶
𝑓1(𝑥) d𝑥 −∫

𝐶⋆
𝑓1(𝑥) d𝑥

By cancelling the integrals on the intersection, and using the definition of 𝐶,

𝛽 − 𝛽⋆ = ∫
𝐶∩𝐶⋆

𝑓1(𝑥) d𝑥 −∫
𝐶⋆∩𝐶

𝑓1(𝑥) d𝑥

= ∫
𝐶∩𝐶⋆

𝑓1(𝑥)
𝑓0(𝑥)⏟
≤𝑘

𝑓0(𝑥) d𝑥 −∫
𝐶⋆∩𝐶

𝑓1(𝑥)
𝑓0(𝑥)⏟
≥𝑘

𝑓0(𝑥) d𝑥

≤ 𝑘[∫
𝐶∩𝐶⋆

𝑓0(𝑥) d𝑥 −∫
𝐶

⋆
∩𝐶

𝑓0(𝑥) d𝑥]

= 𝑘[∫
𝐶∩𝐶⋆

𝑓0(𝑥) d𝑥 +∫
𝐶∩𝐶⋆

𝑓0(𝑥) d𝑥 −∫
𝐶∩𝐶⋆

𝑓0(𝑥) d𝑥 −∫
𝐶

⋆
∩𝐶

𝑓0(𝑥) d𝑥]

= 𝑘[∫
∩𝐶⋆

𝑓0(𝑥) d𝑥 −∫
𝐶
𝑓0(𝑥) d𝑥]

= 𝑘[𝛼⋆ − 𝛼]
≤ 0

Example. Let 𝑋1,… , 𝑋𝑛 ∼ 𝑁(𝜇, 𝜎20) be i.i.d., where 𝜎20 is known and 𝜇 is an unknown. We wish to
find the most powerful test of fixed size 𝛼 for the hypotheses𝐻0 ∶ 𝜇 = 𝜇0 and𝐻1 ∶ 𝜇 = 𝜇1 > 𝜇0. The
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likelihood ratio is

Λ𝑥(𝐻0; 𝐻1) =
(2𝜋𝜎20)−𝑛/2 exp{

−1
2𝜎20

∑(𝑥𝑖 − 𝜇0)2}

(2𝜋𝜎20)−𝑛/2 exp{
−1
2𝜎20

∑(𝑥𝑖 − 𝜇1)2}

= exp
⎧⎪
⎨⎪
⎩

𝜇1 − 𝜇0
𝜎20⏟⎵⏟⎵⏟
≥0

𝑛𝑋 + 𝑛(𝜇0 − 𝜇1)2
2𝜎20

⎫⎪
⎬⎪
⎭

which depends only on𝑋 , and ismonotonically increasingwith respect to the samplemean𝑋 . There-
fore, this is also monotonically increasing with respect to the statistic

𝑍 = √𝑛𝑋 − 𝜇0
𝜎0

Thus, Λ𝑥 > 𝑘 if and only if 𝑍 > 𝑘′ for some 𝑘′. Hence, the likelihood ratio test has critical region
{𝑥∶ 𝑍(𝑥) > 𝑘′} for some𝑘′. It thus suffices to find a critical region of𝑍with size𝛼 in order to construct
the most powerful test of this size. Under 𝐻0, 𝑍 ∼ 𝑁(0, 1). Hence, the critical region is given by
𝑘′ = Φ−1(1 − 𝛼). This is known as a 𝑍-test, since we are using the 𝑍 statistic.

5.4 𝑝-values

Definition. Let 𝐶 be a critical region of the form {𝑥 ∶ 𝑇(𝑥) > 𝑘} for some test statistic 𝑇. Let
𝑥⋆ denote the observed data. Then, the 𝑝-value is

ℙ𝐻0 (𝑇(𝑋) > 𝑇(𝑥⋆))

Typically, when reporting the results of a test, we describe the conclusion of the test as well as the
𝑝-value. In the example above, suppose 𝜇0 = 5, 𝜇1 = 6, 𝛼 = 0.05, and 𝑥⋆ = (5.1, 5.5, 4.9, 5.3). Here,
𝑥⋆ = 5.2 and 𝑧⋆ = 0.4. The likelihood ratio test has critical region

{𝑥 ∶ 𝑍(𝑥) > Φ−1(0.95) ≈ 1.645}

The conclusion of the test here is to not reject 𝐻0. The 𝑝-value is 1 − Φ(𝑧⋆) ≈ 0.35.

Proposition. Under the null hypothesis 𝐻0, the 𝑝-value is a uniform random variable in
[0, 1].

Proof. Let 𝐹 be the distribution of the test statistic 𝑇, which we will assume for this proof is continu-
ous. Then,

ℙ𝐻0 (𝑝 < 𝑢) = ℙ𝐻0 (1 − 𝐹(𝑇) < 𝑢)
= ℙ𝐻0 (𝐹(𝑇) > 1 − 𝑢)
= ℙ𝐻0 (𝑇 > 𝐹−1(1 − 𝑢))
= 1 − 𝐹(𝐹−1(1 − 𝑢)) = 𝑢
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5.5 Composite hypotheses
Let 𝑋 ∼ 𝑓𝑋( ⋅ ∣ 𝜃) where 𝜃 ∈ Θ. Let 𝐻0 = 𝜃 ∈ Θ0 ⊂ Θ and 𝐻1 = 𝜃 ∈ Θ1 ⊆ Θ. The probabilities
of type I and type II error are now dependent on the precise value of 𝜃, rather than simply on which
hypothesis is taken.

Definition. The power function for a test 𝐶 is

𝑊(𝜃) = ℙ𝜃 (𝑋 ∈ 𝐶)

The size of a test 𝐶 is
𝛼 = sup

𝜃∈Θ0
𝑊(𝜃)

A test is uniformly most powerful of size 𝛼 if, for any test 𝐶⋆ with power function𝑊 ⋆ and size
upper bounded by 𝛼, for all 𝜃 ∈ Θ1 we have 𝑊(𝜃) ≥ 𝑊 ⋆(𝜃). Such tests need not exist. In
simple models, many likelihood ratio tests are uniformly most powerful.

Example (one-sided test for normal location). Let 𝑋1,… , 𝑋𝑛 ∼ 𝑁(𝜇, 𝜎20) be i.i.d. where 𝜎20 is known
and 𝜇 is unknown. Let 𝐻0 ∶ 𝜇 ≤ 𝜇0 and 𝐻1 ∶ 𝜇 > 𝜇0 for some fixed 𝜇0. We claim that the simple
hypothesis test given by 𝐻′

0 ∶ 𝜇 = 𝜇0 and 𝐻′
1 ∶ 𝜇 = 𝜇1 > 𝜇0 is uniformly most powerful for 𝐻0 and

𝐻1. The power function is

𝑊(𝜇) = ℙ𝜇 (
√𝑛(𝑋 − 𝜇0)

𝜎0
= 𝑍 < 𝑧𝛼 = Φ−1(1 − 𝛼))

= ℙ𝜇 (
√𝑛(𝑋 − 𝜇)

𝜎0
> 𝑧𝛼 +

√𝑛(𝜇0 − 𝜇)
𝜎0

)

= 1 − Φ(𝑥𝛼 +√𝑛𝜇0 − 𝜇
𝜎0

)

The test has size 𝛼 since sup𝑤∈Θ0
𝑊(𝜇) = 𝛼. It remains to show that this power function dominates

all other power functions 𝑊 ⋆ of size 𝛼 in the alternative space Θ1. First, observe that the critical
region depends only on 𝜇0, and not on 𝜇1. In particular, for any 𝜇1 > 𝜇0, we have that the critical
region 𝐶 is the likelihood ratio test for the simple hypothesis test 𝐻′

0 ∶ 𝜇 = 𝜇0 and 𝐻′
1 ∶ 𝜇 = 𝜇1. We

can also see 𝐶⋆ as a test of 𝐻′
0 versus 𝐻′

1, and for these simple hypotheses, 𝐶⋆ has size

𝑊 ⋆(𝜇0) ≤ sup
𝜇<𝜇0

𝑊 ⋆(𝜇) ≤ 𝛼

By the Neyman–Pearson lemma, 𝐶 has power no smaller than 𝐶⋆ for 𝐻′
0 against 𝐻′

1:

𝑊(𝜇1) ≥ 𝑊 ⋆(𝜇1)

Since this is true for all 𝜇1 > 𝜇0, the result holds, and the test 𝐶 satisfies the property for being
uniformly most powerful.
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5.6 Generalised likelihood ratio test

Definition. Suppose we have nested hypotheses, i.e. 𝐻0 ∶ 𝜃 ∈ Θ0 and 𝐻1 ∶ 𝜃 ∈ Θ1, where
Θ0 ⊂ Θ1. The generalised likelihood ratio is given by

Λ𝑥(𝐻0; 𝐻1) =
sup𝜃∈Θ1

𝑓𝑋(𝑥 ∣ 𝜃)
sup𝜃∈Θ0

𝑓𝑋(𝑥 ∣ 𝜃)

Large values indicate a better fit under the alternative hypothesis. The generalised likelihood
ratio test rejects the null hypothesis when Λ𝑥 is sufficiently large.

Example (two-sided test for normal location). Let 𝑋1,… , 𝑋𝑛 ∼ 𝑁(𝜇, 𝜎20) be i.i.d. where 𝜎20 is known
and 𝜇 is unknown. Let𝐻0 ∶ 𝜇 = 𝜇0 and𝐻1 ∶ 𝜇 ∈ ℝ for some fixed 𝜇0. In this model, the generalised
likelihood ratio is

Λ𝑥(𝐻0; 𝐻1) =
(2𝜋𝜎20)−𝑛/2 exp{

−1
2𝜎20

Σ𝑛𝑖=1(𝑥𝑖 − 𝑋)2}

(2𝜋𝜎20)−𝑛/2 exp{
−1
2𝜎20

Σ𝑛𝑖=1(𝑥𝑖 − 𝜇0)2}

2 logΛ𝑥 =
𝑛
𝜎20
(𝑋 − 𝜇0)2

Under𝐻0,√𝑛
𝑋−𝜇0
𝜎0

∼ 𝑁(0, 1). Hence, 2 logΛ𝑥 ∼ 𝜒21 . Therefore, the critical region of this generalised
likelihood ratio test is

𝐶 = {𝑥∶ 𝑛
𝜎20
(𝑋 − 𝜇0)2 > 𝜒21(𝛼)}

where 𝜒21(𝛼) is the upper 𝛼 point of 𝜒21 . This is called a two-sided test since there are two tails on the
critical region, plotting with respect to√𝑛𝑋−𝜇0

𝜎0
.

5.7 Wilks’ theorem

Definition. The dimension of a hypothesis 𝐻0 ∶ 𝜃 ∈ Θ0 is the number of ‘free parameters’
in this space.

Example. If Θ0 = {𝜃 ∈ ℝ𝑘 ∶ 𝜃1 = ⋯ = 𝜃𝑝 = 0}, then the dimension of 𝐻0 is 𝑘 − 𝑝.

Let𝐴 ∈ ℝ𝑝×𝑘 be a 𝑝×𝑘matrix with linearly independent rows. Let 𝑏 ∈ ℝ𝑝 for 𝑝 < 𝑘, then we define
Θ0 = {𝜃 ∈ ℝ𝑘 ∶ 𝐴𝜃 = 𝑏}. Then the dimension of 𝜃 is 𝑘 − 𝑝.
Let Θ0 be a Riemannian manifold. We use differential geometry to deduce the dimensionality of
such a manifold.

Theorem. SupposeΘ0 ⊂ Θ1, and dimΘ1−dimΘ0 = 𝑝. Let𝑋 = (𝑋1,… , 𝑋𝑛) be i.i.d. random
variables under 𝑓𝑥( ⋅ ∣ 𝜃) where 𝜃 ∈ Θ∘

0. Then, under some regularity conditions, as 𝑛 → ∞
we have

2 logΛ𝑥 ∼ 𝜒2𝑝
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More precisely, for all ℓ ∈ ℝ+,

lim
𝑛→∞

ℙ𝜃 (2 logΛ𝑥 ≤ ℓ) = ℙ (Ξ ≤ ℓ) ; Ξ ∼ 𝜒2𝑝

Remark. If 𝑛 is large, this theorem allows us to implement a generalised likelihood ratio test even if
we cannot find the exact distribution of 2 logΛ𝑥. Frequentist guarantees obtained from such a test
will be approximate.

Example. In the two-sided test for normal location, dimΘ1 = 1 anddimΘ0 = 0hence the difference
in dimensions is 1. Then,Wilks’ theorem implies that 2 logΛ𝑥 is approximately distributed according
to 𝜒21 , although the result is exact in this particular case.

5.8 Goodness of fit
Let𝑋1,… , 𝑋𝑛 be i.i.d. samples taking values in {1,… , 𝑘}. Let𝑝𝑖 = ℙ (𝑋1 = 𝑖), and let𝑁 𝑖 be the number
of samples equal to 𝑖, so∑𝑖 𝑝𝑖 = 1 and∑𝑖 𝑁 𝑖 = 𝑛. The parameters here are 𝑝 = (𝑝1,… , 𝑝𝑘), which
has 𝑘−1 dimensions. A goodness of fit test has a null hypothesis of the form𝐻0 ∶ 𝑝𝑖 = 𝑝𝑖 for all 𝑖, for
a fixed 𝑝 = (𝑝1,… , 𝑝𝑘). The alternative hypothesis 𝐻1 does not constrain 𝑝.
The model is (𝑁1,… ,𝑁𝑘) ∼ Multi(𝑛; 𝑝1,… , 𝑝𝑘). The likelihood function is

𝐿(𝑝) ∝ 𝑝𝑁1
1 ⋯𝑝𝑁𝑘

𝑘 ⟹ ℓ(𝑝) = constant +∑
𝑖
𝑁 𝑖 log𝑝𝑖

The generalised likelihood ratio is

2 logΛ𝑥 = 2( sup
𝑝∈Θ1

ℓ(𝑝) − sup
𝑝∈Θ0

ℓ(𝑝)) = 2(ℓ( ̂𝑝) − ℓ(𝑝))

where ̂𝑝 is the maximum likelihood estimator under 𝐻1. To find ̂𝑝, we typically use the method of
Lagrange multipliers.

ℒ(𝑝, 𝜆) = ∑
𝑖
𝑁 𝑖 log𝑝𝑖 − 𝜆(∑𝑝𝑖 − 1)

We can compute that
̂𝑝𝑖 =

𝑁 𝑖
𝑛

This is simply the fraction of observed samples of type 𝑖.

5.9 Pearson statistic
Let 𝑜𝑖 = 𝑁 𝑖 be the observed number of samples of type 𝑖, and 𝑒𝑖 = 𝑛𝑝𝑖 be the expected value under
the null hypothesis of the number of samples of type 𝑖. Here, we can write

2 logΛ = 2∑
𝑖
𝑁 𝑖 log(

𝑁 𝑖
𝑛𝑝𝑖

) = 2∑
𝑖
𝑜𝑖 log

𝑜𝑖
𝑒𝑖

Let 𝛿𝑖 = 𝑜𝑖 − 𝑒𝑖. Then

2 logΛ = 2∑
𝑖
(𝑒𝑖 + 𝛿𝑖) log

⎛
⎜
⎜
⎝
1 + 𝛿𝑖

𝑒𝑖⏟
small when 𝑛 large

⎞
⎟
⎟
⎠
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By taking the Taylor expansion, we arrive at

2∑
𝑖
(𝛿𝑖 +

𝛿2𝑖
𝑒𝑖
− 𝛿2𝑖
2𝑒𝑖

)

Note that∑𝑖 𝛿𝑖 = ∑𝑖(𝑜𝑖 − 𝑒𝑖) = 𝑛 − 𝑛 = 0, so we can simplify and find

∑
𝑖

𝛿2𝑖
𝑒𝑖

= ∑
𝑖

(𝑜𝑖 − 𝑒𝑖)2
𝑒𝑖

This is Pearson’s 𝜒2 statistic. This is also referred to a 𝜒2𝑘−1 when performing a hypothesis test.
Example. Mendel performed an experiment in which 556 different pea plants were created from a
small set of ancestors. Each descendent was either yellow or green, and either wrinkled or smooth,
giving four possibilities in total. The observed result was

𝑁 = (315⏟
𝑆𝐺

, 108⏟
𝑆𝑌

, 102⏟
𝑊𝐺

, 31⏟
𝑊𝑌

)

Mendel’s theory gives a null hypothesis 𝐻0 ∶ 𝑝 = 𝑝 = ( 9
16
, 3
16
, 3
16
, 1
16
). Here,

2 logΛ = 0.618; ∑
𝑖

(𝑜𝑖 − 𝑒𝑖)2
𝑒𝑖

= 0.604

These are referred to a 𝜒23 distribution. We observe that 𝜒23(0.05) = 7.815, so we fail to reject the null
hypothesis with a test of size 5%. We can compute that the 𝑝-value is ℙ (𝜒23 > 0.6) ≈ 0.96, so there is
a very high probability of observing a more extreme value than observed.

5.10 Goodness of fit for composite null
Suppose 𝐻0 ∶ 𝑝𝑖 = 𝑝𝑖(𝜃) for some 𝜃 ∈ Θ0, and 𝐻1 ∶ 𝑝 has any distribution on {1,… , 𝑘}. We can
compute

2 logΛ = 2(sup
𝑝
ℓ(𝑝) − sup

𝜃∈Θ
ℓ(𝑝(𝜃)))

We can sometimes compute these quantities explicitly, and hence find a test which refers this test
statistic to a 𝜒2𝑝 distribution where 𝑝 = dimΘ1 − dimΘ0 = (𝑘 − 1) − dimΘ0.

Example. Consider a population of individuals who may have one of three genotypes, which occur
with probabilities (𝑝1, 𝑝2, 𝑝3) = (𝜃2, 2𝜃(1 − 𝜃), (1 − 𝜃)2). In this case, we can find the maximum
likelihood estimator under the null hypothesis to be

̂𝜃 = 2𝑁1 + 𝑁2
2𝑛

Hence,
2 logΛ = 2(ℓ( ̂𝑝) − ℓ( ̂𝜃))

where ̂𝑝𝑖 =
𝑁1
𝑛
as found previously. This can be computed explicitly and referred to a 𝜒21 distribution.

We can check that, in this model,
2 logΛ = ∑

𝑖
𝑜𝑖 log

𝑜𝑖
𝑒𝑖

where 𝑜𝑖 = 𝑁 𝑖 and 𝑒𝑖 = 𝑛𝑝𝑖( ̂𝜃). We can approximate this using the Pearson statistic,∑𝑖
(𝑜𝑖−𝑒𝑖)2

𝑒𝑖
.
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5.11 Testing independence in contingency tables
Suppose we have observations (𝑋1, 𝑌1),… , (𝑋𝑛, 𝑌𝑛)which are i.i.d., where the𝑋𝑖 take values in 1,… , 𝑟
and the 𝑌 𝑖 take values in 1,… , 𝑐. We wish to test whether the 𝑋𝑖 and 𝑌 𝑖 are independent. We will
summarise this data into a sufficient statistic known as a contingency table 𝑁, given by

𝑁 𝑖𝑗 = |{ℓ∶ 1 ≤ ℓ ≤ 𝑛, (𝑋ℓ, 𝑌 ℓ) = (𝑖, 𝑗)}|

So 𝑁 𝑖𝑗 is the number of samples of type (𝑖, 𝑗).
Example. Suppose we observe 𝑛 samples, and each sample has probability 𝑝𝑖𝑗 of being of type
(𝑖, 𝑗). Flattening (𝑁 𝑖𝑗) into a vector, this has a multinomial distribution with parameters (𝑝𝑖𝑗) (also
flattened into a vector). The null hypothesis is 𝐻0 ∶ 𝑝𝑖𝑗 = 𝑝𝑖+𝑝+𝑗 where 𝑝𝑖+ = ∑𝑗 𝑝𝑖𝑗 and 𝑝+𝑗 =
∑𝑖 𝑝𝑖𝑗 . The alternative hypothesis places no restrictions on the 𝑝𝑖𝑗 apart from that it sums to 1 and
has nonnegative entries. We find

2 logΛ = 2
𝑟
∑
𝑖=1

𝑐
∑
𝑗=1

𝑁 𝑖𝑗 log
̂𝑝𝑖𝑗

̂𝑝𝑖+ ̂𝑝+𝑗

where ̂𝑝𝑖𝑗 is the maximum likelihood estimator under𝐻1, and where ̂𝑝𝑖+ and ̂𝑝+𝑗 are the maximum
likelihood estimators under 𝐻0. These can be found using the method of Lagrange multipliers. In
particular,

̂𝑝𝑖𝑗 =
𝑁 𝑖𝑗
𝑛 ; ̂𝑝𝑖+ = 𝑁 𝑖+

𝑛 = 1
𝑛

𝑐
∑
𝑗=1

𝑁 𝑖𝑗 ; ̂𝑝+𝑗 =
𝑁+𝑗
𝑛 = 1

𝑛
𝑟
∑
𝑖=1

𝑁 𝑖𝑗

Writing 𝑜𝑖𝑗 = 𝑁 𝑖𝑗 and 𝑒𝑖𝑗 = 𝑛 ̂𝑝𝑖+ ̂𝑝+𝑗 ,

2 logΛ = ∑
𝑖,𝑗
𝑜𝑖𝑗 log

𝑜𝑖𝑗
𝑒𝑖𝑗

≈ ∑
𝑖,𝑗

(𝑜𝑖𝑗 − 𝑒𝑖𝑗)2
𝑒𝑖𝑗

By Wilks’ theorem, these test statistics have an approximate 𝜒2𝑝 distribution, where 𝑝 = dimΘ1 −
dimΘ0 = (𝑟𝑐 − 1) − (𝑟 − 1 + 𝑐 − 1) = (𝑟 − 1)(𝑐 − 1).
The 𝜒2 test for independence has a number of weaknesses.
(i) The 𝜒2 approximation requires 𝑛 to be large. A reasonable heuristic is to require 𝑁 𝑖𝑗 ≥ 5 for

all 𝑖, 𝑗. If this is not possible, we can perform an exact test (which is non-examinable).

(ii) The 𝜒2 test often has a low power. Heuristically, this is because the alternative space Θ1 is too
large, and there are many possible models that lie in this space.

Note that this test also applies when 𝑛 is a random variable with a Poisson distribution. This is often
the case when we do not fix the number of samples. The proof is not provided in this course.

5.12 Testing homogeneity in contingency tables
Example. Suppose we perform a clinical trial on 150 patients, who are randomly assigned to one of
three groups of equal size. The first two sets take a drug with different doses, and the third set takes
a placebo.

improved no difference worse
placebo 18 17 15 50
half dose 20 10 20 50
full dose 25 13 12 50
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In the previous section, we fixed the total number of samples. Here, we fix the total number of
samples, and the total number of samples in each row. We suppose

𝑁 𝑖1,… ,𝑁 𝑖𝑐 ∼ Multinomial(𝑛𝑖+; 𝑝𝑖1,… , 𝑝𝑖𝑐)
which are independent for each row 𝑖 of the table. The null hypothesis for homogeneity is that
𝑝1𝑗 = 𝑝2𝑗 = ⋯ = 𝑝𝑟𝑗 for all 𝑗. The alternative hypothesis assumes that 𝑝𝑖1,… , 𝑝𝑖𝑐 is any arbit-
rary probability vector for each row 𝑖. Under the alternative hypothesis,

𝐿(𝑝) =
𝑟
∏
𝑖=1

𝑛𝑖+!
𝑁 𝑖1!⋯𝑁 𝑖𝑐!

𝑝𝑁𝑖1
𝑖1 ⋯𝑝𝑁𝑖𝑐

𝑖𝑐

Hence,
ℓ(𝑝) = constant +∑

𝑖,𝑗
𝑁 𝑖𝑗 log𝑝𝑖𝑗

This is the same likelihood as the independence test above. To define the maximum likelihood es-
timator we can again use the method of Lagrange multipliers with constraints∑𝑗 𝑝𝑖𝑗 = 1 for each 𝑖.
We find

̂𝑝𝑖𝑗 =
𝑁 𝑖𝑗
𝑛𝑖+

Under the null hypothesis, we let 𝑝𝑗 = 𝑝𝑖𝑗 for any 𝑖.

ℓ(𝑝) = constant +∑
𝑖,𝑗
𝑁 𝑖𝑗 log𝑝𝑗 = ∑

𝑗
𝑁+𝑗 log𝑝𝑗

We have the constraint∑𝑗 𝑝𝑗 = 1. Using the method of Lagrange multipliers,

̂𝑝𝑗 =
𝑁+𝑗
𝑛++

Hence,
2 logΛ = 2∑

𝑖,𝑗
𝑁 𝑖𝑗 log

̂𝑝𝑖𝑗
̂𝑝𝑗
= 2∑

𝑖,𝑗
𝑁 𝑖𝑗 log

𝑁 𝑖𝑗
𝑛𝑖+𝑁+𝑗/𝑛++

This is precisely the same test statistic as the test for independence above. The only difference is that
𝑛𝑖+ is fixed in this model. Further, if 𝑜𝑖𝑗 = 𝑁 𝑖𝑗 and 𝑒𝑖𝑗 = 𝑛𝑖+ ̂𝑝𝑗 =

𝑛𝑖+𝑁+𝑗

𝑛++
, we have

2 logΛ = 2∑
𝑖,𝑗
𝑜𝑖𝑗 log

𝑜𝑖𝑗
𝑒𝑖𝑗

≈ ∑
𝑖,𝑗

(𝑜𝑖𝑗 − 𝑒𝑖𝑗)2
𝑒𝑖𝑗

By Wilks’ theorem, this is asymptotically a 𝜒2𝑝 distribution. Here,
𝑝 = dimΘ1 − dimΘ0 = 𝑟(𝑐 − 1) − (𝑐 − 1) = (𝑟 − 1)(𝑐 − 1)

This is again exactly the same as in the 𝜒2 test for independence. Operationally, the tests for homo-
geneity and independence are therefore completely identical; we reject the null hypothesis for one
test if and only if we reject the null for the other. In the example above,

2 logΛ = 5.129; ∑
𝑖,𝑗

(𝑜𝑖𝑗 − 𝑒𝑖𝑗)2
𝑒𝑖𝑗

= 5.173

Referring this to a 𝜒24 distribution, the upper 0.05-point is 9.488. Hence, we do not reject the null
hypothesis at the 5% significance level.
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5.13 Tests and confidence sets

Definition. The acceptance region 𝐴 of a test is the complement of the critical region.

Theorem. Let 𝑋 ∼ 𝑓𝑋( ⋅ ∣ 𝜃) for some 𝜃 ∈ Θ. Suppose that for each 𝜃0 ∈ Θ, there exists a
test of size 𝛼 with acceptance region 𝐴(𝜃0) for the null hypothesis 𝜃 = 𝜃0. Then

𝐼(𝑋) = {𝜃∶ 𝑋 ∈ 𝐴(𝜃)}

is a 100(1 − 𝛼)% confidence set.
Now suppose there exists a set 𝐼(𝑋) which is a 100(1 − 𝛼)% confidence set for 𝜃. Then

𝐴(𝜃0) = {𝑥∶ 𝜃0 ∈ 𝐼(𝑥)}

is the acceptance region of a test of size 𝛼 for the hypothesis 𝜃 = 𝜃0.

Proof. Observe that for both parts of the theorem,

𝜃0 ∈ 𝐼(𝑋) ⟺ 𝑋 ∈ 𝐴(𝜃0) ⟺ fail to reject 𝐻0 with data 𝑋

For the first part, we assume that ℙ𝜃 (fail to reject 𝐻0 with data 𝑋) = 1 − 𝛼, and we want to show
ℙ𝜃 (𝜃0 ∈ 𝐼(𝑋)) = 1 − 𝛼. The second part is the converse.

Example. Let 𝑋1,… , 𝑋𝑛 ∼ 𝑁(𝜇, 𝜎20) be i.i.d. with 𝜎20 known and 𝜇 unknown. We found that a
100(1 − 𝛼)% confidence interval for 𝜇 is

𝐼(𝑋) = (𝑋 ± 𝑍𝛼/2𝜎0
√𝑛

)

Hence, by the second part of the theorem above, we can find a test for 𝐻0 ∶ 𝜇 = 𝜇0 with size 𝛼 by

𝐴(𝜇0) = {𝑥∶ 𝜇0 ∈ 𝐼(𝑥)} = {𝑥∶ 𝜇0 ∈ [𝑥 ± 𝑍𝛼/2𝜎0
√𝑛

]}

This is equivalent to rejecting 𝐻0 when

|
|
|
√𝑛𝜇0 − 𝑋

𝜎0
|
|
|
> 𝑍𝛼/2

This is a two-sided test for normal location.

6 The normal linear model
6.1 Multivariate normal distribution
Let 𝑋 = (𝑋1,… , 𝑋𝑛) be a vector of random variables. Then we define

𝔼 [𝑋] = (
𝔼 [𝑋1]
⋮

𝔼 [𝑋𝑛]
) ; Var (𝑋) = (𝔼 [(𝑋𝑖 − 𝔼 [𝑋𝑖])(𝑋𝑗 − 𝔼 [𝑋𝑗])])𝑖,𝑗
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The familiar linearity results are

𝔼 [𝐴𝑋 + 𝑏] = 𝐴𝔼 [𝑋] + 𝑏; 𝐴Var (𝑋) 𝐴⊺

where 𝐴 ∈ ℝ𝑘×𝑛, 𝑏 ∈ ℝ𝑘 are constant.

Definition. We say that 𝑋 has amultivariate normal distribution if, for any fixed 𝑡 ∈ ℝ𝑛, we
have 𝑡⊺𝑋 ∼ 𝑁(𝜇, 𝜎2) for some parameters 𝜇, 𝜎2.

Proposition. Let 𝑋 be multivariate normal. Then 𝐴𝑋 + 𝑏 is multivariate normal, where
𝐴 ∈ ℝ𝑘×𝑛, 𝑏 ∈ ℝ𝑘 are constant.

Proof. Let 𝑡 ∈ ℝ𝑘. Then,
𝑡⊺(𝐴𝑥 + 𝑏) = (𝐴⊺𝑡)⊺𝑋⏟⎵⏟⎵⏟

∼𝑁(𝜇,𝜎2)
+𝑡⊺𝑏

which is the sum of a normal random variable and a constant. So this is 𝑁(𝜇 + 𝑡⊺𝑏, 𝜎2).

Proposition. Amultivariate normal distribution is fully specified by itsmean and covariance
matrix.

Proof. Let 𝑋1, 𝑋2 be multivariate normal vectors with the same mean 𝜇 and the same covariance
matrix Σ. We will show that these two random variables have the samemoment generating function,
and hence the same distribution.

𝑀𝑋1(𝑡) = 𝔼 [𝑒1⋅𝑡⊺𝑋1]
Note that 𝑡⊺𝑋1 is univariate normal. Hence, this is equal to

𝑀𝑋1(𝑡) = exp(1 ⋅ 𝔼 [𝑡⊺𝑋1] +
1
2 Var (𝑡

⊺𝑋1) ⋅ 12) = exp(𝑡⊺𝜇 + 1
2𝑡

⊺Σ𝑡)

This depends only on 𝜇 and Σ, and we obtain the same moment generating function for 𝑋2.

6.2 Orthogonal projections

Definition. A matrix 𝑃 ∈ ℝ𝑛×𝑛 is an orthogonal projection onto its column space col(𝑃) if,
for all 𝑣 ∈ col(𝑃), we have 𝑃𝑣 = 𝑣, and for all 𝑤 ∈ col(𝑃)⟂, we have 𝑃𝑤 = 0.

Proposition. 𝑃 is an orthogonal projection if and only if it is idempotent and symmetric.

Proof. If 𝑃 is idempotent and symmetric, let 𝑣 ∈ col(𝑃), so 𝑣 = 𝑃𝑎 for some 𝑎 ∈ ℝ𝑛. Then, 𝑃𝑣 =
𝑃𝑃𝑎 = 𝑃𝑎 = 𝑣. Now, let 𝑤 ∈ col(𝑃)⟂. By definition, 𝑃⊺𝑤 = 0. By symmetry, 𝑃𝑤 = 0.
Now, suppose 𝑃 is an orthogonal projection. Any vector 𝑎 ∈ ℝ𝑛 can be uniquely written as 𝑎 = 𝑣+𝑤
where 𝑣 ∈ col(𝑃) and𝑤 ∈ col(𝑃)⟂. Then 𝑃𝑃𝑎 = 𝑃𝑃𝑣+𝑃𝑃𝑤 = 𝑃𝑣 = 𝑃(𝑣+𝑤) = 𝑃𝑎. As this holds for
all 𝑎, we have that 𝑃 is idempotent. Let 𝑢1, 𝑢2 ∈ ℝ𝑛, and note (𝑃𝑢1) ⋅ ((𝐼 − 𝑃)𝑢2) = 0, as 𝑃𝑢1 ∈ col(𝑃)
and (𝐼 − 𝑃)𝑢2 ∈ col(𝑃)⟂. We have 𝑢⊺1𝑃⊺(𝐼 − 𝑃)𝑢2 = 0. Since this holds for all 𝑢1, 𝑢2, 𝑃⊺(𝐼 − 𝑃) = 0 so
𝑃⊺ = 𝑃⊺𝑃. Note that 𝑃⊺𝑃 is symmetric, so 𝑃⊺ is symmetric, and hence 𝑃 is symmetric.
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Corollary. Let 𝑃 be an orthogonal projection matrix. Then 𝐼 − 𝑃 is also an orthogonal pro-
jection matrix.

Proof. Clearly, if𝑃 is symmetric, so is 𝐼−𝑃, so it suffices to prove idempotence. Wehave (𝐼−𝑃)(𝐼−𝑃) =
𝐼 − 2𝑃 + 𝑃2 = 𝐼 − 2𝑃 + 𝑃 = 𝐼 − 𝑃 as required.

Proposition. If 𝑃 is an orthogonal projection, then 𝑃 = 𝑈𝑈⊺ where the columns of𝑈 are an
orthonormal basis for the column space of 𝑃.

Proof. First, we show that 𝑈𝑈⊺ is an orthogonal projection. This is clearly symmetric. It is idem-
potent: 𝑈𝑈⊺𝑈𝑈⊺ = 𝑈𝑈⊺ since 𝑈⊺𝑈 = 𝐼, as the columns of 𝑈 form an orthonormal basis for the
column space of 𝑃. Further, the column space of 𝑃 is exactly the column space of 𝑈𝑈⊺.

Proposition. The rank of an orthogonal projection matrix is equal to its trace.

Proof. The rank is the dimension of the column space, which is rank𝑃 = rank(𝑈⊺𝑈) = tr(𝑈⊺𝑈) =
tr(𝑈𝑈⊺) = tr𝑃.

Theorem. Let 𝑋 be multivariate normal, where 𝑋 ∼ 𝑁(0, 𝜎2𝐼), and let 𝑃 be an orthogonal
projection. Then
(i) 𝑃𝑋 ∼ 𝑁(0, 𝜎2𝑃), and (𝐼 − 𝑃)𝑋 ∼ 𝑁(0, 𝜎2(𝐼 − 𝑃)), and these two random variables are

independent;
(ii) ‖𝑃𝑋‖2

𝜎2
∼ 𝜒2rank𝑃 .

Proof. The vector (𝑃, 𝐼 − 𝑃)⊺𝑋 is multivariate normal, since it is a linear function of 𝑋 . This distribu-
tion is fully specified by its mean and variance.

𝔼 [( 𝑃𝑋
(𝐼 − 𝑃)𝑋)] = ( 𝑃

𝐼 − 𝑃)𝔼 [𝑋] = 0

Further,

Var (( 𝑃𝑋
(𝐼 − 𝑃)𝑋)) = ( 𝑃

𝐼 − 𝑃) 𝜎
2𝐼 ( 𝑃

𝐼 − 𝑃)
⊺
= 𝜎2 ( 𝑃2 𝑃(𝐼 − 𝑃)

𝑃(𝐼 − 𝑃) (𝐼 − 𝑃)2) = 𝜎2 (𝑃 0
0 𝐼 − 𝑃)

Now we must show that the variables 𝑃𝑋, (𝐼 − 𝑃)𝑋 are independent. Let 𝑍 ∼ 𝑁(0, 𝜎2𝑃), 𝑍′ ∼
𝑁(0, 𝜎2(𝐼 − 𝑃)) be independent. Then we can see that (𝑍, 𝑍′)⊺ is multivariate normal with

𝜇 = 0; Σ = (𝑃 0
0 𝐼 − 𝑃)

Hence (𝑃𝑋, (1 − 𝑃)𝑋)⊺ is equal in distribution to (𝑍, 𝑍′)⊺. So 𝑃𝑋 is independent of (𝐼 − 𝑃)𝑋 .
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We must show that ‖𝑃𝑋‖
2

𝜎2
∼ 𝜒2rank𝑃 . Note that

‖𝑃𝑋‖2
𝜎2 = 𝑋⊺𝑃⊺𝑃𝑋

𝜎2 = 𝑋⊺(𝑈𝑈⊺)⊺𝑈𝑈⊺𝑋
𝜎2 = ‖𝑈⊺𝑋‖2

𝜎2
Note, 𝑈⊺𝑋 ∼ 𝑁(0, 𝜎2𝑈⊺𝑈) = 𝑁(0, 𝜎2𝐼rank𝑃). So

(𝑈⊺𝑋)𝑖
𝜎

iid∼ 𝑁(0, 1)

for 𝑖 = 1,… , rank𝑃. Hence
‖𝑃𝑋‖2
𝜎2 =

rank𝑃
∑
𝑖=1

((𝑈
⊺𝑋)𝑖
𝜎 )

2
∼ 𝜒2rank𝑃

Theorem. Let 𝑋1,… , 𝑋𝑛
iid∼ 𝑁(𝜇, 𝜎2) for some unknown 𝜇 ∈ ℝ and 𝜎2 > 0. The maximum

likelihood estimators for 𝜇 and 𝜎 are

𝜇̂ = 𝑋 = 1
𝑛 ∑𝑖

𝑋𝑖; 𝜎̂2 = 𝑆𝑥𝑥
𝑛 =

∑𝑖 (𝑋𝑖 − 𝑋)
2

𝑛

Further,
(i) 𝑋 ∼ 𝑁(𝜇, 𝜎

2

𝑛
);

(ii) 𝑆𝑥𝑥
𝜎2

∼ 𝜒2𝑛−1;
(iii) 𝑋, 𝑆𝑥𝑥 are independent.

Proof. Let 𝑃 be the square 𝑛 × 𝑛 matrix with all entries 1
𝑛
. This is an orthogonal projection matrix,

as it is symmetric and idempotent. Note that

𝑃𝑋 = (
𝑋
⋮
𝑋
)

We will write the observations 𝑋 as

𝑋 = (
𝜇
⋮
𝜇
)

⏟
𝑀

+𝜀; 𝜀 ∼ 𝑁(0, 𝜎2𝐼)

Note that 𝑋 is a function of 𝑃𝜀, since 𝑋 = (𝑃𝑋)1 = (𝑃𝑀 + 𝑃𝜀)1. Further,

𝑆𝑥𝑥 = ∑
𝑖
(𝑋𝑖 − 𝑋)

2
= ‖𝑋 − 𝑃𝑋‖2 = ‖(𝐼 − 𝑃)𝑋‖2 = ‖(𝐼 − 𝑃)𝜀‖2

Hence 𝑆𝑥𝑥 is a function of (𝐼 −𝑃)𝜀. Since 𝑃𝜀 and (𝐼 −𝑃)𝜀 are independent, 𝑋 and 𝑆𝑥𝑥 are independent.
Since 𝐼 − 𝑃 is a projection with rank equal to its trace 𝑛− 1, we apply the previous theorem to obtain

𝑆𝑥𝑥 = ‖(𝐼 − 𝑃)𝜀‖2𝜒2𝑛−1
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6.3 Linear model
Suppose we have data in pairs (𝑥1, 𝑌1),… , (𝑥𝑛, 𝑌𝑛), where 𝑌 𝑖 ∈ ℝ, 𝑥𝑖 ∈ ℝ𝑝. The 𝑌 𝑖 are known
as the response variables, or the dependent variables. The 𝑥𝑖1, 𝑥𝑖𝑝 are the predictors, or independent
variables. We will model the expectation of the response 𝑌 𝑖 as a linear function of the predictors
(𝑥𝑖1,… , 𝑥𝑖𝑝).
Example. Let𝑌 𝑖 be thenumber of insurance claims that driver 𝑖makes in a given year, and𝑥𝑖1,… , 𝑥𝑖𝑝
is a set of variables about the specific driver. Predictors include age, the number of years they have
held their license, and the number of points on their license, for instance.

We assume that
𝑌 𝑖 = 𝛼 + 𝛽1𝑥𝑖1 +⋯+ 𝛽𝑝𝑥𝑖𝑝 + 𝜀𝑖

where 𝛼 ∈ ℝ is an intercept, 𝛽𝑖 are the coefficients, and 𝜀 is a noise vector, which is a random variable.
The intercept and coefficients are the parameters of interest. We will often eliminate the intercept by
making one of the predictors 𝑥𝑖1 = 1 for all 𝑖, so 𝛽1 plays the role of the intercept.
Note that we can use a linear model to model nonlinear relationships. For example, suppose 𝑌 𝑖 =
𝑎 + 𝑏𝑧𝑖 + 𝑐𝑧2𝑖 + 𝜀𝑖. We can rephrase this as a linear model with 𝑥𝑖 = (1, 𝑧𝑖, 𝑧2𝑖 ).
The coefficient 𝛽𝑗 can be interpreted as the effect on 𝑌 𝑖 of increasing 𝑥𝑖𝑗 by one, while keeping all
other predictors fixed. This cannot be interpreted as a causal relationship, unless this is a randomised
control experiment.

6.4 Matrix formulation
Let

𝑌 = (
𝑌1
⋮
𝑌𝑛
) ; 𝑋 = (

𝑥11 ⋯ 𝑥1𝑝
⋮ ⋱ ⋮
𝑥𝑛1 ⋯ 𝑥𝑛𝑝

) ; 𝛽 = (
𝛽1
⋮
𝛽𝑝
) ; 𝜀 = (

𝜀1
⋮
𝜀𝑛
)

We call 𝑋 the design matrix. The linear model is that

𝑌 = 𝑋𝛽 + 𝜀

𝑋𝛽 is considered fixed. Since 𝜀 is random, this makes 𝑌 into a random variable.

6.5 Assumptions
We make a number of moment assumptions on the noise vector 𝜀. This allows us to deduce more
results about the linear model.

(i) 𝔼 [𝜀] = 0 ⟹ 𝔼[𝑌 𝑖] = 𝑥⊺𝑖 𝛽;
(ii) Var (𝜀) = 𝜎2𝐼, which is equivalent to both Var (𝜀𝑖) = 𝜎2 and Cov (𝜀𝑖, 𝜀𝑗) = 0 for all 𝑖 ≠ 𝑗. This

property is known as homoscedasticity.

We will always assume that the design matrix 𝑋 has full rank 𝑝, or equivalently, that it has linearly
independent columns. Since𝑋 ∈ ℝ𝑛×𝑝, this requires that 𝑛 ≥ 𝑝, so we need at least asmany samples
as we have predictors.
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6.6 Least squares estimation

Definition. The least squares estimator ̂𝛽 minimises the residual sum of squares, which is

𝑆(𝛽) = ‖𝑌 − 𝑋𝛽‖2 = ∑
𝑖
(𝑌 𝑖 − 𝑥⊺𝑖 𝛽)

2

The term 𝑌 𝑖 − 𝑥⊺𝑖 𝛽 is called the 𝑖th residual.

Since 𝑆(𝛽) is a positive definite quadratic in 𝛽, it is minimised at the stationary point.

𝜕𝑆(𝛽)
𝜕𝛽𝑘

|||𝛽= ̂𝛽
= 0 ⟺ ∀𝑘, −2

𝑛
∑
𝑖=1

𝑥𝑖𝑘(𝑌 𝑖 −∑
𝑘
𝑥𝑖𝑗 ̂𝛽𝑗) = 0 ⟺ 𝑋⊺𝑋 ̂𝛽 = 𝑋⊺𝑌

As 𝑋 has full column rank, 𝑋⊺𝑋 is invertible.

̂𝛽 = (𝑋⊺𝑋)−1𝑋⊺𝑌

This is notably a linear function of 𝑌 , given fixed 𝑋 . Note that

𝔼 [ ̂𝛽] = (𝑋⊺𝑋)−1𝑋⊺𝔼 [𝑌] = (𝑋⊺𝑋)−1𝑋⊺𝑋𝛽 = 𝛽

So ̂𝛽 is an unbiased estimator. Further,

Var ( ̂𝛽) = (𝑋⊺𝑋)−1𝑋⊺ Var (𝑌) [(𝑋⊺𝑋)−1𝑋⊺]⊺

= (𝑋⊺𝑋)−1𝑋⊺𝜎2𝐼[(𝑋⊺𝑋)−1𝑋⊺]⊺

= 𝜎2(𝑋⊺𝑋)−1

Theorem (Gauss–Markov theorem). Let an estimator 𝛽⋆ of 𝛽 be unbiased and a linear func-
tion of 𝑌 , so 𝛽⋆ = 𝐶𝑌 . Then, for any fixed 𝑡 ∈ ℝ𝑝, we have

Var (𝑡⊺ ̂𝛽) ≤ Var (𝑡⊺𝛽⋆)

where ̂𝛽 is the least squares estimator. We say that ̂𝛽 is the best linear unbiased estimator
(BLUE).

Remark. We can think of 𝑡 ∈ ℝ𝑝 as a vector of predictors for a new sample. Then 𝑡⊺ ̂𝛽 is the prediction
for 𝔼 [𝑌 𝑖] for this new sample, using the least squares estimator. 𝑡⊺𝛽⋆ is the prediction with 𝛽⋆. In
both cases, the prediction is unbiased.

Proof. Note that
Var (𝑡⊺𝛽⋆) − Var (𝑡⊺ ̂𝛽) = 𝑡⊺[Var (𝛽⋆) − Var ( ̂𝛽)]𝑡

To prove that this quantity is always non-negative, we must show that Var (𝛽⋆) − Var ( ̂𝛽) is positive
semidefinite. Let 𝐴 = 𝐶 − (𝑋⊺𝑋)−1𝑋⊺. Note that 𝔼 [𝐴𝑌] = 𝔼 [𝛽⋆] − 𝔼 [ ̂𝛽] = 0. Also, 𝔼 [𝐴𝑌] =
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𝐴𝔼 [𝑌] = 𝐴𝑋𝛽. This holds for all 𝛽, so 𝐴𝑋 = 0. Now, since 𝑋⊺𝑋 is symmetric,

Var (𝛽⋆) = Var (𝐶𝑌)
= Var ((𝐴 + (𝑋⊺𝑋)−1𝑋⊺)𝑌)
= [𝐴 + (𝑋⊺𝑋)−1𝑋⊺]Var (𝑌) [𝐴 + (𝑋⊺𝑋)−1𝑋⊺]⊺

= [𝐴 + (𝑋⊺𝑋)−1𝑋⊺]𝜎2𝐼[𝐴 + (𝑋⊺𝑋)−1𝑋⊺]⊺

= 𝜎2(𝐴𝐴⊺ + (𝑋⊺𝑋)−1 + 𝐴𝑋(𝑋⊺𝑋)−1 + (𝑋⊺𝑋)−1𝑋⊺𝐴⊺)
= 𝜎2𝐴𝐴⊺ + Var ( ̂𝛽)

Var (𝛽⋆) − Var ( ̂𝛽) = 𝜎2𝐴𝐴⊺

Note that the outer product 𝐴𝐴⊺ is always positive semidefinite.

6.7 Fitted values and residuals

Definition. The fitted values are ̂𝑌 = 𝑋 ̂𝛽 = 𝑋(𝑋⊺𝑋)−1𝑋⊺𝑌 , where 𝑃 = 𝑋(𝑋⊺𝑋)−1𝑋⊺ is the
hat matrix. The residuals are 𝑌 − ̂𝑌 = (𝐼 − 𝑃)𝑌 .

Proposition. 𝑃 is the orthogonal projection onto the column space of the design matrix.

Proof. If 𝑣 is in the column space of 𝑋 , then 𝑣 = 𝑋𝑏 for some 𝑏. Hence

𝑃𝑣 = 𝑋(𝑋⊺𝑋)−1𝑋⊺𝑋𝑏 = 𝑋𝑏 = 𝑣

If 𝑤 is in the orthogonal complement, then

𝑃𝑤 = 𝑋(𝑋⊺𝑋)−1 𝑋⊺𝑤⏟
0

= 0

Corollary. The fitted values are an orthogonal projection of the response variables to the
column space of the design matrix. The residuals are orthogonal to the column space.

6.8 Normal linear model
The normal linear model is a linear model under the assumption that 𝜀 ∼ 𝑁(0, 𝜎2𝐼), where 𝜎2 is
unknown. The parameters in the model are now (𝛽, 𝜎2). The likelihood function in the normal
linear model is

𝐿(𝛽, 𝜎2) = 𝑓𝑌 (𝑦 ∣ 𝛽, 𝜎2) = (2𝜋𝜎2)−
𝑛
2 exp{− 1

2𝜎2 ∑𝑖
(𝑌 𝑖 − 𝑥⊺𝑖 𝛽)2}

The log-likelihood is
ℓ(𝛽, 𝜎2) = constant − 𝑛

2 log𝜎
2 − 1

2𝜎2 ‖𝑌 − 𝑋𝛽‖2
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To maximise this as a function of 𝛽 for any fixed 𝜎2, we must minimise the residual sum of squares
𝑆(𝛽) = ‖𝑌 − 𝑋𝛽‖2. So ̂𝛽 = (𝑋⊺𝑋)−1𝑋⊺𝑌 is the maximum likelihood estimator of 𝛽. Further, 𝜎̂2 =
𝑛−1‖‖𝑌 − 𝑋 ̂𝛽‖‖

2
= 𝑛−1‖‖ ̂𝑌 − 𝑌‖‖

2
= 𝑛−1‖(𝐼 − 𝑃)𝑌‖2.

Theorem. In the normal linear model,
(i) ̂𝛽 ∼ 𝑁(𝛽, 𝜎2(𝑋⊺𝑋)−1);
(ii) 𝑛 𝜎̂2

𝜎2
∼ 𝜒2𝑛−𝑝;

(iii) ̂𝛽, 𝜎̂2 are independent.

Proof. We prove each part separately.

(i) We already know that 𝔼 [ ̂𝛽] = 𝛽, and Var ( ̂𝛽) = 𝜎2(𝑋⊺𝑋)−1. So it suffices to show that ̂𝛽 is a
normal vector. Since ̂𝛽 = (𝑋⊺𝑋)−1𝑋⊺𝑌 , it is a linear function of a normal vector, so is a normal
vector.

(ii) Observe that

𝑛𝜎̂
2

𝜎2 =
‖(𝐼 − 𝑃)𝑌‖2

𝜎2 = ‖(𝐼 − 𝑃)(𝑋𝛽 + 𝜀)‖2
𝜎2

Since (𝐼 − 𝑃)𝑋 = 0 as 𝑃 is the orthogonal projection onto the column space of 𝑋 ,

𝑛𝜎̂
2

𝜎2 =
‖(𝐼 − 𝑃)𝜀‖2

𝜎2 ∼ 𝜒2tr(𝐼−𝑃)

where tr(𝐼 − 𝑃) = tr 𝐼 − tr𝑃 = 𝑛 − 𝑝 since 𝑋 ∈ ℝ𝑛×𝑝 is assumed to have full rank.

(iii) Note that 𝜎̂2 is a function of (𝐼 − 𝑃)𝜀, and
̂𝛽 = (𝑋⊺𝑋)−1𝑋⊺𝑌
= (𝑋⊺𝑋)−1𝑋⊺(𝑋𝛽 + 𝜀)
= 𝛽 + (𝑋⊺𝑋)−1𝑋⊺𝜀
= 𝛽 + (𝑋⊺𝑋)−1𝑋⊺𝑃𝜀

is a function of 𝑃𝜀. Since (𝐼 − 𝑃)𝜀 and 𝑃𝜀 are independent, so are ̂𝛽, 𝜎̂2.

Note,
𝔼 [𝑛𝜎̂

2

𝜎2 ] = 𝔼 [𝜒2𝑛−𝑝] = 𝑛 − 𝑝 ⟹ 𝔼[𝜎̂2] = 𝜎2 ⋅ 𝑛 − 𝑝
𝑛 < 𝜎2

Hence this 𝜎̂2 is a biased estimator, but asymptotically unbiased.

6.9 Inference

Definition. Let 𝑈 ∼ 𝑁(0, 1) and 𝑉 ∼ 𝜒2𝑛 be independent random variables. Then

𝑇 = 𝑈

√
𝑉
𝑛
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has a 𝑡𝑛-distribution.

As 𝑛 → ∞, this approaches the standard normal distribution.

Definition. Let 𝑉 ∼ 𝜒2𝑛 and𝑊 ∼ 𝜒2𝑚 be independent random variables. Then

𝐹 = 𝑉/𝑛
𝑊/𝑚

has an 𝐹𝑛,𝑚-distribution.

Example. We consider a 100(1−𝛼)% confidence interval for one of the coefficients 𝛽 in the normal
linear model 𝑌 = 𝑋𝛽 + 𝜀. Without loss of generality, we will consider 𝛽1.
We begin by finding a pivot, which is a distribution that does not depend on the parameters of the
model. By standardising the above form of ̂𝛽,

𝛽1 − ̂𝛽1

√𝜎2(𝑋⊺𝑋)−111
∼ 𝑁(0, 1)

where𝑀−1
11 is the top left entry in the matrix𝑀−1. This random variable is independent from 𝑛𝜎̂2

𝜎2
∼

𝜒2𝑛−𝑝. Now, to construct a pivot, we find

𝛽1− ̂𝛽1

√𝜎2(𝑋⊺𝑋)−111

√
𝜎̂2

𝜎2
⋅ 𝑛
𝑛−𝑝

∼ 𝑈

√
𝑉
𝑛

∼ 𝑡𝑛−𝑝

The 𝜎2 terms cancel, so the statistic is a function only of 𝛽1 and functions of the data. Then,

ℙ𝛽,𝜎2 (−𝑡𝑛−𝑝(
𝛼
2 ) ≤

̂𝛽1 − 𝛽1

√(𝑋⊺𝑋)−111
√

𝑛− 𝑝
𝑛𝜎̂2 ≤ 𝑡𝑛−𝑝(

𝛼
2 )) = 1 − 𝛼

since the 𝑡 distribution is symmetric about zero. Rearranging to find an interval for 𝛽1,

ℙ𝛽,𝜎2 ( ̂𝛽1 − 𝑡𝑛−𝑝(
𝛼
2 )
√(𝑋⊺𝑋)−111 𝜎̂2

√(𝑛 − 𝑝)/𝑛
≤ 𝛽1 ≤ ̂𝛽1 + 𝑡𝑛−𝑝(

𝛼
2 )
√(𝑋⊺𝑋)−111 𝜎̂2

√(𝑛 − 𝑝)/𝑛
) = 1 − 𝛼

Hence,

𝐼 = [ ̂𝛽1 ± 𝑡𝑛−𝑝(
𝛼
2 )
√(𝑋⊺𝑋)−111 𝜎̂2

√(𝑛 − 𝑝)/𝑛
]

is a 100(1 − 𝛼)% confidence interval for 𝛽1.
Consider a test for 𝐻0 ∶ 𝛽1 = 0, 𝐻1 ∶ 𝛽1 ≠ 0. By connecting tests and confidence intervals, we can
test𝐻0 with size 𝛼 by rejecting this null hypothesis when zero is not contained within the confidence
interval 𝐼.
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Consider a special case where 𝑌1,… , 𝑌𝑛
iid∼ 𝑁(𝜇, 𝜎2) where 𝜇, 𝜎2 are unknown, and we want to infer

results about 𝜇. Note that this is a special case of the normal linear model where

𝑋 = (
1
⋮
1
) ; 𝛽 = (𝜇)

So we can infer a confidence interval for 𝜇 using the above statistic.
Example. Consider a 100(1 − 𝛼)% confidence set for 𝛽 as a whole. Note that

̂𝛽 − 𝛽 ∼ 𝑁(0, 𝜎2(𝑋⊺𝑋)−1)

Then,
(𝑋⊺𝑋)1/2( ̂𝛽 − 𝛽) ∼ 𝑁(0, 𝜎2(𝑋⊺𝑋)1/2(𝑋⊺𝑋)−1(𝑋⊺𝑋)1/2) ∼ 𝑁(0, 𝜎2𝐼)

where (𝑋⊺𝑋)1/2 is obtained using the eigendecomposition of the positive definite matrix 𝑋⊺𝑋 . Hence,

‖
‖(𝑋⊺𝑋)1/2( ̂𝛽 − 𝛽)‖‖

2

𝜎2 ∼ 𝜒2𝑝

We can also write this as
‖
‖(𝑋⊺𝑋)1/2( ̂𝛽 − 𝛽)‖‖

2

𝜎2 =
‖
‖𝑋( ̂𝛽 − 𝛽)‖‖

2

𝜎2
Since this is a function of ̂𝛽, this is independent of any function of 𝜎̂2. In particular, it is independent
of 𝑛𝜎̂

2

𝜎2
∼ 𝜒2𝑛−𝑝. Thus, we can form a pivot by

‖
‖𝑋( ̂𝛽 − 𝛽)‖‖

2
/(𝜎2𝑝)

𝜎̂2𝑛/(𝜎2(𝑛 − 𝑝)) ∼
𝜒2𝑝/𝑝

𝜒2𝑛−𝑝/(𝑛 − 𝑝)
∼ 𝐹𝑝,𝑛−𝑝

This does not depend on 𝜎2. For all 𝛽, 𝜎2,

ℙ𝛽,𝜎2
⎛
⎜⎜
⎝

‖
‖𝑋( ̂𝛽 − 𝛽)‖‖

2
/𝑝

𝜎̂2𝑛/(𝑛 − 𝑝) ≤ 𝐹𝑝,𝑛−𝑝(𝛼)
⎞
⎟⎟
⎠
= 1 − 𝛼

because the 𝐹 distribution has support only on the positive real line. It is nontrivial to express this as
a region for 𝛽 since it is vector-valued. We can say, however, that

⎧
⎨
⎩
𝛽′ ∈ ℝ𝑝 ∶

‖
‖𝑋( ̂𝛽 − 𝛽)‖‖

2
/𝑝

𝜎̂2𝑛/(𝑛 − 𝑝) ≤ 𝐹𝑝,𝑛−𝑝(𝛼)
⎫
⎬
⎭

is a 100(1 − 𝛼)% confidence set for 𝛽.
This set is an ellipsoid centred at ̂𝛽. The shape of the ellipsoid depends on the design matrix 𝑋 ; the
principal axes are given by eigenvectors of 𝑋⊺𝑋 .
The above two results are exact; no approximations were made.
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6.10 𝐹-tests
We wish to test whether a collection of predictors 𝛽𝑖 are equal to zero. Without loss of generality, we
will take the first 𝑝0 ≤ 𝑝 predictors. We have 𝐻0 ∶ 𝛽1 = ⋯ = 𝛽𝑝0 = 0, and 𝐻1 = 𝛽 ∈ ℝ𝑝. We denote
𝑋 = (𝑋0, 𝑋1) as a block matrix with 𝑋0 ∈ ℝ𝑛×𝑝0 and 𝑋1 ∈ ℝ𝑛×(𝑝−𝑝0), and we denote 𝛽 = (𝛽0, 𝛽1)⊺
similarly. The null model has 𝛽0 = 0. This is a linear model 𝑌 = 𝑋𝛽 + 𝜀 = 𝑋1𝛽1 + 𝜀. We will write
𝑃 = 𝑋(𝑋⊺𝑋)−1𝑋⊺ and 𝑃1 = 𝑋1(𝑋⊺

1𝑋1)−1𝑋
⊺
1 . Note that as 𝑋 and 𝑃 have full rank, so must 𝑋1, 𝑃1.

Lemma. (𝐼 − 𝑃)(𝑃 − 𝑃1) = 0, and 𝑃 − 𝑃1 is an orthogonal projection with rank 𝑝0.

Proof. 𝑃 − 𝑃1 is symmetric since 𝑃 and 𝑃1 are symmetric. It is also idempotent, since

(𝑃 − 𝑃1)(𝑃 − 𝑃1) = 𝑃2 − 𝑃1𝑃 − 𝑃𝑃1 + 𝑃21 = 𝑃 − 𝑃1 − 𝑃1 + 𝑃1 = 𝑃 − 𝑃1
since 𝑃1 projects onto the column space of 𝑋1. Hence 𝑃−𝑃1 is indeed an orthogonal projectionmatrix.
The rank is rank(𝑃 − 𝑃1) = tr(𝑃 − 𝑃1) = tr𝑃 − tr𝑃1 = 𝑝 − (𝑝 − 𝑝0) = 𝑝0. Also,

(𝐼 − 𝑃)(𝑃 − 𝑃1) = 𝑃 − 𝑃1 − 𝑃 + 𝑃𝑃1 = 𝑃 − 𝑃1 − 𝑃 + 𝑃1 = 0

Recall that the maximum log-likelihood in the normal linear model is given by

ℓ( ̂𝛽, 𝜎̂2) = −𝑛
2 log 𝜎̂2 − 𝑛

2 ⋅ constant =
−𝑛
2 log ‖(𝐼 − 𝑃)𝑌‖2

𝑛 + constant

The generalised likelihood ratio statistic is

2 logΛ = 2 sup
𝛽∈ℝ𝑝,𝜎2>0

ℓ(𝛽, 𝜎2) − 2 sup
𝛽0=0,𝛽1∈ℝ𝑝−𝑝0 ,𝜎2>0

ℓ(𝛽, 𝜎2)

= 𝑛[− log ‖(𝐼 − 𝑃)𝑌‖2
𝑛 + log ‖(𝐼 − 𝑃1)𝑌‖

2

𝑛 ]

Wilks’ theorem applies here, showing that 2 logΛ ∼ 𝜒2𝑝0 asymptotically as 𝑛 → ∞ with 𝑝, 𝑝0 fixed.
However, we can find an exact test, so usingWilks’ theoremwill not be necessary. 2 logΛ ismonotone
in

‖(𝐼 − 𝑃1)𝑌‖
2

‖(𝐼 − 𝑃)𝑌‖2
= ‖(𝐼 − 𝑃 + 𝑃 − 𝑃1)𝑌‖

2

‖(𝐼 − 𝑃)𝑌‖2

= ‖(𝐼 − 𝑃)𝑌‖2 + ‖(𝑃 − 𝑃1)𝑌‖
2 + 2𝑌 ⊺(𝐼 − 𝑃)(𝑃 − 𝑃1)

‖(𝐼 − 𝑃)𝑌‖2

= ‖(𝐼 − 𝑃)𝑌‖2 + ‖(𝑃 − 𝑃1)𝑌‖
2

‖(𝐼 − 𝑃)𝑌‖2

= 1 + ‖(𝑃 − 𝑃1)𝑌‖
2

‖(𝐼 − 𝑃)𝑌‖2

The generalised likelihood ratio test rejects when the 𝐹-statistic

𝐹 = ‖(𝑃 − 𝑃1)𝑌‖
2

‖(𝐼 − 𝑃)𝑌‖2
⋅ 1/𝑝0
1/(𝑛 − 𝑝)
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is large.

Theorem. Under 𝐻0 ∶ 𝛽1 = ⋯ = 𝛽𝑝0 = 0, in the normal linear model,

𝐹 = ‖(𝑃 − 𝑃1)𝑌‖
2

‖(𝐼 − 𝑃)𝑌‖2
⋅ 1/𝑝0
1/(𝑛 − 𝑝) ∼ 𝐹𝑝0,𝑛−𝑝

Proof. Recall that
‖(𝐼 − 𝑃)𝑌‖2 = ‖(𝐼 − 𝑃)𝜀‖2 ∼ 𝜒2𝑛−𝑝 ⋅ 𝜎2

Therefore it suffices to show that ‖(𝑃 − 𝑃1)𝑌‖
2 is an independent 𝜒2𝑝0 ⋅ 𝜎2 random variable. Under𝐻0,

we have that
(𝑃 − 𝑃1)𝑌 = (𝑃 − 𝑃1)(𝑋𝛽 + 𝜀) = (𝑃 − 𝑃1)(𝑋1𝛽1 + 𝜀) = (𝑃 − 𝑃1)𝜀

since 𝑃, 𝑃1 preserve𝑋1. Hence, ‖(𝑃 − 𝑃1)𝑌‖
2 = ‖(𝑃 − 𝑃1)𝜀‖

2 ∼ 𝜒2rank(𝑃−𝑃1) ⋅𝜎
2 = 𝜒2𝑝0 ⋅𝜎2. Wemust now

show independence between (𝐼 − 𝑃)𝑌 and (𝑃 − 𝑃1)𝑌 . The vectors (𝐼 − 𝑃)𝜀, (𝑃 − 𝑃1)𝜀 are independent;
indeed,

𝐸 = ( (𝐼 − 𝑃)𝜀
(𝑃 − 𝑃1)𝜀

)

is a multivariate normal vector, and

𝔼 [𝐸] = 0; Var (𝐸) = ( 𝐼 − 𝑃 (𝐼 − 𝑃)(𝑃 − 𝑃1)
(𝐼 − 𝑃)(𝑃 − 𝑃1) 𝑃 − 𝑃1

) = (𝐼 − 𝑃 0
0 𝑃 − 𝑃1

)

and since (𝐼 − 𝑃)𝜀 and (𝑃 − 𝑃1)𝜀 are elements of a multivariate normal vector and are uncorrelated,
they are independent as required.

The generalised likelihood ratio test of size 𝛼 rejects𝐻0 when 𝐹 > 𝐹−1𝑝0,𝑛−𝑝(𝛼). This is an exact test for
all 𝑛, 𝑝, 𝑝0. Previously, we found a test for 𝐻0 ∶ 𝛽1 = 0 against 𝐻1 ∶ 𝛽1 ≠ 0. This is a special case of
the 𝐹-test derived above, where 𝑝0 = 1. The previous test of size 𝛼 rejects 𝐻0 when

|| ̂𝛽|| > 𝑡𝑛−𝑝(
𝛼
2 )√

𝜎̂2𝑛(𝑋⊺𝑋)−111
𝑛 − 𝑝

Wewill show that these two tests are equivalent; they reject𝐻0 in the same critical region. The 𝑡-test
rejects if and only if

̂𝛽21 > 𝑡𝑛−𝑝(
𝛼
2 )

2 𝜎̂2𝑛(𝑋⊺𝑋)−111
𝑛 − 𝑝

Note that 𝑡𝑛−𝑝(
𝛼
2
)
2
= 𝐹1,𝑛−𝑝(𝛼), since

𝑈 ∼ 𝑁(0, 1); 𝑊 sin𝜒2𝑛 ⟹ 𝑇 = 𝑈
√𝑊/𝑛

⟹ 𝑇2 = 𝑈2

𝑊/𝑛 = 𝑉/1
𝑊/𝑛 ∼ 𝐹1,𝑛

where 𝑉 ∼ 𝜒21 . Hence,
̂𝛽1/(𝑋⊺𝑋)−111

𝜎̂2𝑛/(𝑛 − 𝑝) > 𝐹1,𝑛−𝑝(𝛼)
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It suffices to show that
̂𝛽1

(𝑋⊺𝑋)−111
= ‖(𝑃 − 𝑃1)𝑌‖

2

𝑝0⏟
=1

; 𝜎̂2𝑛
𝑛 − 𝑝 = ‖(𝐼 − 𝑃)𝑌‖2

𝑛 − 𝑝

We have already shown the latter part. For ̂𝛽1, note that in this case, 𝑃 − 𝑃1 is a projection of rank 1
onto the one-dimensional subspace spanned by the vector 𝑣 = (𝐼−𝑃)𝑋0 where 𝑋0 is the first column
in the matrix 𝑋 . First, note the following identity.

𝑋⊺
0(𝐼 − 𝑃1) = 𝑣⊺ = 𝑣⊺(𝑃 − 𝑃1) = 𝑋⊺

0(𝐼 − 𝑃1)(𝑃 − 𝑃1) = 𝑋⊺
0(𝐼 − 𝑃1)𝑃

Then,

‖(𝑃 − 𝑃1)𝑌‖
2 = ‖

‖‖
𝑣
‖𝑣‖(

𝑣
‖𝑣‖)

⊺
𝑌‖‖‖

2

= (𝑣⊺𝑌)2

‖𝑣‖2
= (𝑋⊺

0(𝐼 − 𝑃1)𝑌)2

‖(𝐼 − 𝑃1)𝑋0‖
2

= (𝑋⊺
0(𝐼 − 𝑃1)𝑃𝑌)2

‖(𝐼 − 𝑃1)𝑋0‖
2

= (𝑋⊺
0(𝐼 − 𝑃1)𝑋 ̂𝛽)2

‖(𝐼 − 𝑃1)𝑋0‖
2

Note that (𝐼 − 𝑃1)𝑋 = [(𝐼 − 𝑃1)𝑋0, 0,… , 0]. Hence,

‖(𝑃 − 𝑃1)𝑌‖
2 = ‖(𝐼 − 𝑃1)𝑋0‖

4 ̂𝛽1
‖(𝐼 − 𝑃1)𝑋0‖

2

= ‖(𝐼 − 𝑃1)𝑋0‖
2 ̂𝛽1

Finally, we show that
(𝑋⊺𝑋)−111 = 1

‖(𝐼 − 𝑃1)𝑋0‖
2

using the Woodbury identity for blockwise matrix inversion. Hence,
̂𝛽21

(𝑋⊺𝑋)−111
= ‖(𝑃 − 𝑃1)𝑌‖

2

as required.

6.11 Analysis of variance
Suppose we investigate responses of patients after receiving one of three treatments, including a con-
trol, which will be given index 1. We will consider only one predictor, denoting which treatment a
given patient received. Consider the linear model

𝑌 𝑖𝑗 = 𝛼 + 𝜇𝑗 + 𝜀𝑖𝑗
where 𝑗 = 1, 2, 3 is the treatment index, and 𝑖 = 1,… ,𝑁 is the index of a patient in a given group.
Let (𝜀𝑖𝑗) ∼ 𝑁(0, 𝜎2) be independent. Without loss of generality, we can set 𝜇1 = 0, since we have an
additional parameter 𝛼; this is known as a corner point constraint. Then, 𝜇𝑗 should be interpreted as
the effect of treatment 𝑗 relative to treatment 1, which in this case is the control.
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Definition. The analysis of variance (ANOVA) test on the linear model

𝑌 𝑖𝑗 = 𝛼 + 𝜇𝑗 + 𝜀𝑖𝑗

where 𝜇1 = 0 is given by

𝐻0 ∶ 𝜇2 = 𝜇3 = ⋯ = 0; 𝐻1 ∶ 𝜇2, 𝜇3,⋯ ∈ ℝ

In particular, 𝐻0 gives 𝔼 [𝑌 𝑖𝑗] = 𝛼.

In our example, 𝐻0 ∶ 𝜇2 = 𝜇3 = 0 and 𝐻1 ∶ 𝜇2, 𝜇3 ∈ ℝ. This is a special case of the 𝐹-test, since we
are testing whether the coefficients 𝜇𝑖 are equal to zero.

𝑋 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0
1 0 0
⋮ ⋮ ⋮
1 1 0
1 1 0
⋮ ⋮ ⋮
1 0 1
1 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= (𝑋1 𝑋0)

The first column of 𝑋 , denoted 𝑋1, represents 𝛼, and the other columns, denoted 𝑋0, represent 𝜇2, 𝜇3.
𝑋0 is eliminated under the null hypothesis. The predictor can be called categorical; it is discrete,
and entirely dependent on which treatment category a given patient is placed in. Note that 𝑋 has
3𝑁 rows, where each block of 𝑁 consecutive rows is identical. Recall that the 𝐹-test uses the test
statistic

𝐹 = ‖(𝑃 − 𝑃1)𝑌‖
2

‖(𝐼 − 𝑃)𝑌‖2
⋅ 1/𝑝0
1/(𝑛 − 𝑝) ∼ 𝐹𝑝0,𝑛−𝑝

For this test, 𝑃 projects onto the space of vectors in ℝ3𝑁 which are constant over treatment groups.
In other words, let

𝑌 𝑗 =
1
𝑁

𝑁
∑
𝑖=1

𝑌 𝑖𝑗

Then,

𝑃𝑌 = (𝑌 1,… , 𝑌 1⏟⎵⎵⏟⎵⎵⏟
𝑁 entries

, 𝑌2,… , 𝑌2⏟⎵⎵⏟⎵⎵⏟
𝑁 entries

, 𝑌3,… , 𝑌3⏟⎵⎵⏟⎵⎵⏟
𝑁 entries

)
⊺

𝑃1 projects onto the subspace of constant vectors in ℝ3𝑁 , so

𝑌 = 1
3𝑁

𝑁
∑
𝑖=1

3
∑
𝑗=1

𝑌 𝑖𝑗 ⟹ 𝑃1𝑌 = (𝑌,… , 𝑌⏟⎵⏟⎵⏟
3𝑁 entries

)
⊺

Hence, we can write the 𝐹 statistic as

𝐹 =
∑3

𝑗=1 𝑁(𝑌 𝑗 − 𝑌)
2
/2

∑𝑁
𝑖=1∑

3
𝑗=1 (𝑌 𝑖𝑗 − 𝑌 𝑗)

2
/(3𝑁 − 3)
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We can generatlise this to the case where there are 𝐽 > 3 treatment groups:

𝐹 =
∑𝐽

𝑗=1 𝑁(𝑌 𝑗 − 𝑌)
2
/(𝐽 − 1)

∑𝑁
𝑖=1∑

𝐽
𝑗=1 (𝑌 𝑖𝑗 − 𝑌 𝑗)

2
/(𝐽𝑁 − 𝐽)

= variance between treatments
variance within treatments

Remark. This test is sometimes called one-way analysis of variance. Two-way analysis of variance is a
similar analysis in an experiment where groups are defined according to two variables. For instance,
the response could be a student’s performance in an exam, where the treatments are

(i) completion of supervisions (zero representing not complete, one representing complete); and

(ii) whether a monetary incentive was given (zero representing no incentive, one representing an
incentive).

Here, we would have the result 𝑌 𝑖𝑗𝑘 as the number of marks of student 𝑖 in group (𝑗, 𝑘). The model
would be

𝑌 𝑖𝑗𝑘 = 𝛼 + 𝜇𝑗 + 𝜆𝑘 + 𝜀𝑖𝑗𝑘
with a constraint without loss of generality that 𝜇0 = 𝜆0 = 0. The two-way analysis of variance test
is then

𝐻0 ∶ 𝜇1 = 𝜆1 = 0; 𝐻1 ∶ 𝜇1, 𝜆1 ∈ ℝ

6.12 Simple linear regression
In a linear regression model, we often centre predictors to simplify certain expressions.

𝑌 𝑖 = 𝛼 + 𝛽(𝑥 − 𝑥) + 𝜀𝑖

where 𝑥 = 1
𝑛
∑𝑛

𝑖=1 𝑥𝑖, and the 𝜀𝑖 independently have the usual 𝑁(0, 𝜎2) distribution. In this case, the
maximum likelihood estimator (𝛼̂, ̂𝛽) takes a simple form. Recall that (𝛼̂, ̂𝛽)minimises

𝑆(𝛼, 𝛽) =
𝑛
∑
𝑖=1

(𝑌 𝑖 − 𝛼 − 𝛽(𝑥𝑖 − 𝑥))2

Hence,
𝜕𝑆(𝛼, 𝛽)
𝜕𝛼 =

𝑛
∑
𝑖=1

−2(𝑌 𝑖 − 𝛼 − 𝛽(𝑥𝑖 − 𝑥)) =
𝑛
∑
𝑖=1

−2(𝑌 𝑖 − 𝛼)

This gives the simple expression

𝛼 =
∑𝑛

𝑖=1 𝑌 𝑖
𝑛 = 𝑌

Now,
𝜕𝑆(𝛼, 𝛽)
𝜕𝛽

|||𝛼=𝛼̂
=

𝑛
∑
𝑖=1

−2(𝑌 𝑖 − 𝑌 − 𝛽(𝑥𝑖 − 𝑥))(𝑥𝑖 − 𝑥)

This vanishes when
̂𝛽 =

∑𝑛
𝑖=1 (𝑌 𝑖 − 𝑌)(𝑥𝑖 − 𝑥)
∑𝑛

𝑖=1(𝑥𝑖 − 𝑥)2
=
𝑆𝑥𝑦
𝑆𝑥𝑥

Note that 𝑆𝑥𝑦
𝑛
is the sample covariance of 𝑋 and 𝑌 , and 𝑆𝑥𝑥

𝑛
is the sample variance of 𝑋 .

43


	Introdution and review of IA Probability
	Introduction
	Review of IA Probability
	Standardised statistics
	Moment generating functions
	Limit theorems
	Conditional probability
	Change of variables in two dimensions
	Common distributions

	Estimation
	Estimators
	Bias-variance decomposition
	Sufficiency
	Factorisation criterion
	Minimal sufficiency
	Rao–Blackwell theorem
	Maximum likelihood estimation

	Inference
	Confidence intervals
	Interpreting the confidence interval

	Bayesian analysis
	Introduction
	Inference from the posterior
	Point estimation
	Credible intervals

	Hypothesis testing
	Hypotheses
	Testing hypotheses
	Neyman–Pearson lemma
	p-values
	Composite hypotheses
	Generalised likelihood ratio test
	Wilks' theorem
	Goodness of fit
	Pearson statistic
	Goodness of fit for composite null
	Testing independence in contingency tables
	Testing homogeneity in contingency tables
	Tests and confidence sets

	The normal linear model
	Multivariate normal distribution
	Orthogonal projections
	Linear model
	Matrix formulation
	Assumptions
	Least squares estimation
	Fitted values and residuals
	Normal linear model
	Inference
	F-tests
	Analysis of variance
	Simple linear regression


