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1 Introdution and review of IA Probability

1.1 Introduction

Statistics can be defined as the science of making informed decisions. The field comprises, for ex-
ample:

« the design of experiments and studies;

« visualisation of data;

« formal statistical inference (which is the focus of this course);
« communication of uncertainty and risk; and

« formal decision theory.

This course concerns itself with parametric inference. Let X, ... , X,, bei.i.d. (independent and identic-
ally distributed) random variables, where we assume that the distribution of X; belongs to some fam-
ily with parameter 6 € ©. For instance, let X; ~ Poi(u), where 6 = u and ® = (0, ). Another
example is X; ~ N(u,0?),and 6 = (u,0?) and © = R x (0, c0). We use the observed X = (X, ..., X,)
to make inferences about the parameter 6:

(i) we can estimate the value of 6 using a point estimate written 8(X);
(ii) we can make an interval estimate of 8, written (8,(X), 8,(X));

(iii) hypotheses about 8 can be tested, for instance the hypothesis H, : 6 = 1, by checking whether
there is evidence in the data X against the hypothesis H,.

Remark. In general, we will assume that the family of distributions of the observations X; is known
a priori, and the parameter 6 is the only unknown. There will, however, be some remarks later in
the course where we can make weaker assumptions about the family.

1.2 Review of IA Probability

This subsection reviews material covered in the IA Probability course. Some keywords are measure-
theoretic, and are not defined.

Let Q be the sample space of outcomes in an experiment. A measurable subset of Q is called an event,
and we denote the set of events by F. A probability measure P : F — [0, 1] satisfies the following
properties.

(i) P(@)=0;
(i) P =1
(iii) P (Uzl Ai) = Zzl P (4;) if (4;) is a sequence of disjoint events.

A random variable is a measurable function X : Q — R. The distribution function of a random vari-
able X is the function Fx(x) = P (X < x). We say that a random variable is discrete when it takes
values in a countable set X C R. The probability mass function of a discrete random variable is the
function px(x) = P (X = x). We say that X has a continuous distribution if it has a probability density
function fx(x) such that P (x € A) = [, fx(x)dx for ‘nice’ sets A.



The expectation of a random variable X is defined as

Divex XPx(x)  if X discrete
S5 xfx(x)dx if X continuous

[E[X]={

Ifg: R - R, we define E [g(X)] by considering the fact that g(X) is also a random variable. For
instance, in the continuous case,

(e8]

E [g00)] = f £(0) f () dx

The variance of a random variable X is defined as E [(X — E [X])?].

We say that a set of random variables X, ..., X), are independent if, for all x,, ..., x,,, we have

H:D(Xl S xl,...,Xn < xn) = H:D(Xl S xl)"'P(Xn S xn)

If and only if X7, ..., X,, have probability density (or mass) functions fi, ..., f,, then the joint probab-
ility density (respectively mass) function is

Jx(x) = Hin (x1)
i=1

If Y = max{Xj,...,X,} where the X; are independent, then the distribution function of Y is given
by
PY<y)=PX; <y)PX,<y)

The probability density function of Y (if it exists) is obtained by the differentiating the above.

Under alinear transformation, the expectation and variance have certain properties. Leta = (a, ... ,a,)T €
R" be a constant in R".
Ela X + -+ + a, X, ] = E[a’X] = a"E[X]

where E [X] is defined componentwise. Note that independence of X; is not required for linearity of
the expectation to hold. Similarly,

Var (a'X) = Z a;a; Cov(X;,X;) = a’ Var(X)a
i,j

where we define Cov(X,Y) = E[(X — E[X])Y — E[Y])], and Var (X) is the variance-covariance
matrix with entries (Var (X));; = Cov (Xl-,Xj). We can say that the variance is bilinear.

1.3 Standardised statistics
Suppose that Xi, ..., X, are i.i.d. and E [X;] = u, Var (X;) = 0. We define

— S
S, = ZiXi; X, = 7"
where X,, is called the sample mean. By linearity of expectation and bilinearity of variance,

_ o2
E[X,| = Var(xn)=7



We further define

S, —nu X, —
Z, = =2 =1/n
n o’\/z \/_

E[Z,]=0; Var(z,)=1

which has the properties that

1.4 Moment generating functions

The moment generating function of a random variable X is the function Mx(t) = E [etX ], provided
that this function exists for ¢ in some neighbourhood of zero, This can be thought of as the Laplace
transform of the probability density function. Note that

dn

E[X"] = — Mx(t)

den =0
Under broad conditions, moment generating functions uniquely define a distribution function of a
random variable. In other words, the Laplace transform is invertible. They are also useful for finding
the distribution of sums of independent random variables. For instance, let X, ..., X, bei.i.d. Poisson
random variables with parameter u. Then, the moment generating function of X; is

MX (t) =E [etX ] = Z etxe—;u"‘ e Z (e 'u) _:“e:“e =e —u(1—et)
x=0
Now,
n
MSn(t) =[E [etSn] = E [etXi] — e—nu(l—e‘)

i=1
This defines a Poisson distribution with parameter nu by inspection.

1.5 Limit theorems

The weak law of large numbers states that for alle > 0, P (|)_( n— ,u| > s) — 0 as x — oo. Note that the
event |)_(n - /x| > ¢ depends only on Xj, ..., Xj,.

The strong law of large numbers states that P ()_( n— ,u) = 1. In this formulation, the event depends on
the whole sequence of random variables Xj, since the limit is inside the probability calculation.

n—hH

The central limit theorem states that Z,, = is approximately a N(0, 1) random variable when n

is large. More precisely, P (Z, < z) - ®(z) forall z € R.

1.6 Conditional probability

If X,Y are discrete random variables, we can define the conditional probability mass function to
be
PX=x,Y=y)

P =y)
when P(Y = y) # 0. If X, Y are continuous, we define the joint probability density function to be
fx,y(x,¥) such that

pX|Y(x ly) =

x
PX<xY<y) = f f Gy dy dx!



The conditional probability density function is
fxy(x,)
f_"f,o fX,Y(x’ y)dx

The denominator is sometimes referred to as the marginal probability density function of Y, written
fy(¥). Now, we can define the conditional expectation by

fxiy(x | y) =

2 Xpxy(x | Y)  if X discrete
Jo xfxy(x | Y)dx if X continuous

[E[XlY]:{

The conditional expectation is itself a random variable, as it is a function of the random variable
Y. The conditional variance is defined similarly, and is a random variable. The tower property is
that

E[E[X | Y]] =E[X]

The law of total variance is that

Var (X) =E[Var(X | Y)]+ Var(E[X | Y])

1.7 Change of variables in two dimensions

Suppose that (x, y) ~ (u,v) is a differentiable bijection from R? to itself. Then, the joint probability
density function of U, V' can be written as

fuy,v) = fx y(x(u,v), y(u,v))|detJ|

where J is the Jacobian matrix,

_dx,y) 6x/6u 6x/6v
I= o(u,v) (dy/au éy/av)

1.8 Common distributions

X has the binomial distribution with parameters n, p if X represents the number of successes in n
independent Bernoulli trials with parameter p.

X has the multinomial distribution with parameters n; p, ..., pi if there are n independent trials
with k types, where p; is the probability of type j in a single trial. Here, X takes values in Nk, and X;
is the amount of trials with type j. Each X; is marginally binomially distributed.

X has the negative binomial distribution with parameters k, p if, in i.i.d. Bernoulli trials with para-
meter p, the variable X is the time at which the kth success occurs. The negative binomial with
parameter k = 1 is the geometric distribution.

The Poisson distribution with parameter A is the limit of the distribution Bin(n, 1/n)asn — 0.
IfX; ~ I'(a;,A) fori = 1,...,nwith X, ..., X,, independent, then the distribution of S,, is given by the
product of the moment generating functions. By inspection,

Mo 0= ()

or oo if t > A. Hence the sum of these random variables is S,, ~ F(Z ; oci,ﬂ.), where the shape para-
meter « is constructed from the sum of the shape parameters of the original functions. We call 1
the rate parameter, and A1 is called the scale parameter. If X ~ I'(a, 1), then for all b > 0 we have
bX ~ T'(x, A/b). Special cases of the T distribution include:



« I'(1,2) = Exp(2);

o T(k/2,1/2) = )(i with k degrees of freedom, which is the distribution of a sum of k i.i.d. squared
standard normal random variables.

2 Estimation

2.1 Estimators

Suppose X, ..., X, are i.i.d. observations with a p.d.f. (or p.m.f.) fx(x | 8), where 8 is an unknown
parameter in some parameter space ©. Let X = (X, ..., X,,).

Definition. An estimator is a statistic, or a function of the data, written T(X) = 6, which is
used to approximate the true value of 8. This does not depend (explicitly) on 6. The distribu-
tion of T(X) is called its sampling distribution.

Example. Let X;,...,X, ~ N(0,1) beiid. Letg = T(X) = X,. The sampling distribution is
T(X) ~N <,u, i) Note that this sampling distribution in general depends on the true parameter u.

Definition. The bias of 8 is X X
bias(6) = Eg [6] — 6

Note that 8 is a function only of X3, ..., X},, and the expectation operator Eg assumes that the
true value of the parameter is 6.

Remark. In general, the bias is a function of the true parameter 6, even though it is not explicit in
the notation.

Definition. An estimator with zero bias for all 8 is called an unbiased estimator.

Example. The estimator  in the above example is unbiased, since
[E;,c [a] = [Ey [)_(n] =H

forall u € R.
Definition. The mean squared error of 6 is defined as
A A 2
mse(6) = Eo| (6 - 6|
Remark. Like the bias, the mean squared error is, in general, a function of the true parameter 6.

2.2 Bias-variance decomposition

The mean squared error can be written as

mse(6) = Eo | (6 — Es [6] + Es [6] - 6)°| = Varg (6) + bias"(9)



Note that both the variance and bias squared terms are positive. This implies a tradeoff between bias
and variance when minimising error.

Example. Let X ~ Bin(n, 8) where n is known and 6 is an unknown probability. Let T;; = X/n. This
is the proportion of successes observed. This is an unbiased estimator, since Eg [Ty] = Eg [X] /n = 6.
The mean squared error for the estimator is then

X Varg (X) 6(1-06)

V. T.) = V. Z) = =

arg (Ty) = Var (=) = =% -
Now, consider an alternative estimator which has some bias:

n
n+2

_X+1 X

1
T, =w—+1-w)=; w=
B n+2 _@+( )2

Ty

This interpolates between the estimator Ty; and the fixed estimator % Here,

. n 1
blaS(TB) = |E9 [TB] -0 = }"L_—i—2 - nt2

The bias is nonzero for all but one value of 6. Further,

Varg (X +1)  n6(1-0)

Vare (Te) = =0 5% = a2y
We can calculate 5
mse(Ty) = (1 - w?(3 ~ 6) +w? 2128
mse(Ty)

There exists a range of 6 such that T has a lower mean squared error, and similarly there exists a
range such that T;; has a lower error. This indicates that prior judgement of the true value of 6 can
be used to determine which estimator is better.

It is not necessarily desirable that an estimator is unbiased.

Example. Suppose X ~ Poi(4) and we wish to estimate 6 = P (X = O)2 = e~2A, For some estimator
T(X) of 6 to be unbiased, we need that

S Fet _  a
EA [TCO] =§T(x) =
Hence,
s X
Z T(x)/l— =e*
x!
x=0

But e~* has a known power series expansion, giving T(X) = (—1)X for all X. This is not a good
estimator, for example because it often predicts negative numbers for a positive quantity.

2.3 Sufficiency



Definition. A statistic T(X) is sufficient for 8 if the conditional distribution of X given T(X)
does not depend on 6. Note that 6 and T(X) may be vector-valued, and need not have the
same dimension.

Example. LetX, ..., X, bei.i.d. Bernoulli random variables with parameter 6 where 6 € [0, 1]. The

mass function is
n

fx(x16) = H 0%i(1 — 6)1—%i = OLXi(1 — =2

i=1

Note that this dependent only on x via the statistic T(X) = Z::1 X;. Here,
PeX=x,T(X)=1t)
(x| 6)=
If Y x; = t, we have
erXi(1—o)yX* 1
leT:t(x | 0) = ( ) = N

n — . T (n
ey ()
Hence T(X) is sufficient for 6.

2.4 Factorisation criterion

Theorem. T is sufficient for 0 if and only if

fx(x | 6) = g(T(x), 6)h(x)

for suitable functions g, h.

Proof. This will be proven in the discrete case; the continuous case can be handled analogously. Sup-
pose that the factorisation criterion holds. Then, if T(x) = ¢,

Pe(X =x,T(x)=1t)
Pg (T(x) = 1)
_ 8(T(x), 6)h(x)
fo CT(x)=t g&(T(x"), 6)h(x")
h(x)
- Zx’: T(x")=t h(x,)

which does not depend on 6. By definition, T(X) is sufficient.

Txir=e(x | T =1) =

Conversely, suppose that T(X) is sufficient.

fx(x6)=Ps(X =x)
=Pg(X =x,T(X) =T(x))
=Pg(X =x| T(X) = T(x))Pe (T(X) = T(x))
h(x) 8(T(x),6)




Example. Consider the above example with n Bernoulli random variables with mass function
fx(x16) = 0Xxi(1 - g)r-2xi

Let T(X) = ) x;, and then the above mass function is in the form of g(T(X), ) and we can set

h(x) = 1. Hence T(X) is sufficient.

Example. Let X,...,X, be i.i.d. from a uniform distribution on the interval [0, 8] for some 6 > 0.
The mass function is

Ix(x]6)= ﬁ %ﬂ{xi € [0,6]} = <%)nﬂ{m_in X > O}H{m_axxi < 6}
i=1 ! L

Let T(X) = max; X;. Then
n

g(T(X),0) = (é) ﬂ{miaxxi < 6}; h(x) = ﬂ{miin x; > O}

We can then conclude that T(X) is sufficient for 6.

2.5 Minimal sufficiency

Sufficient statistics are not unique. For instance, any bijection applied to a sufficient statistic is also
sufficient. Further, T(X) = X is always sufficient. We instead seek statistics that maximally compress
and summarise the relevant data in X and that discard extraneous data.

Definition. A sufficient statistic T(X) for 6 is minimal if it is a function of every other suffi-
cient statistic for 6. More precisely, if T'(X) is sufficient, T'(x) = T'(y) = T(x) = T(y).

Remark. Any two minimal statistics S, T for the same 0 are bijections of each other. That is, T(x) =
T(y) if and only if S(x) = S(y).

Theorem. Suppose that fx(x | 6)/fx(y | 6) is constant in 8 if and only if T(x) = T(y). Then
T is minimal sufficient.

1
Remark. This theorem essentially states the following. Let x ~ y if the above ratio of probability
density or mass functions is constant in 8. This is an equivalence relation. Similarly, we can define

2

x ~ yif T(x) = T(y). This is also an equivalence relation. The hypothesis in the theorem is that
1 2

the equivalence classes of ~ and ~ are equal. Further, we may always construct a minimal sufficient

. . . 1 .
statistic for any parameter since we can use the construction ~ to create equivalence classes, and set
T to be constant for all such equivalence classes.

Proof. Lett € Im T. Then let z; be a representative of the equivalence class {x : T(x) = t}. Then

_x&16)
Jx(Zreo 19)
By the hypothesis, the ratio on the right hand side does not depend on 6, so let this ratio be h(x).

Further, the other term depends only on T(x), so it may be g(T(x),6). Hence T is sufficient by the
factorisation criterion.

fx(x]6) = fX(ZT(x) | 6)

10



To prove minimality, let S be any other sufficient statistic, and then by the factorisation criterion
there exist gg and hg such that fx(x | 8) = gg(S(x), 8)hg(x). Now, suppose S(x) = S(y) for some x, y.

Then,
Sx(x19) _ gs(5(x),0)hs(x) _ hs(x)
Ix@16)  gs(S(»),Ohs(y)  hs(y)

1 2
which is constant in 6. Hence, x ~ y. By the hypothesis, we have x ~ y, so T(x) = T(y), which is
the requirement for minimality. O

Example. Let Xj, ..., X, be normal with unknown y, o

fele | a?) _ ot el 30— P
fX(y | :u’o-z) B 2\—n/2 {_ 1 }
(2mo?)=n% exp 202 3, (yi—p)?

-ooloan{g- 2ot (3

Hence, for minimality, this is constant in the parameters p, o? if and only if Z ; xi2 = Z ; yl2 and
> Xi = 2;¥i- Thus, a minimal sufficient statistic is (}}; X7, ), x;) is a minimal sufficient statistic.
A more common way of expressing the minimal sufficient statistic is

— — —\2

S(x) = (Xn’Sxx); Xn = %in; Sxx = Z (Xi _Xn)
i i

which is a bijection of the above.

Example. 6 and a minimal statistic T need not have the same dimension. Consider Xj, ..., X,, ~
N(u, 42). Here, there is a single parameter u but the minimal sufficient statistic is still S(x) as defined
above.

2.6 Rao-Blackwell theorem

Previously, the notation Eg and Py have been used to denote expectations and probabilities under
the model where the observations are i.i.d. with p.d.f. or p.m.f. fx. From now, we omit this subscript,
as it will be implied for much of the remainder of the course.

Theorem. Let T be a sufficient statistic for 8, and define an estimator 8 with E [52] < oo for
all 6. Now we define another estimator

6=E[6| T(x)]
Then, for all values of 6, we have
R 2 ~ 2
E[(6-0)| <E[(6-6)]

In other words, the mean squared error of 6 is not greater than the mean squared error of 8.
Further, the inequality is strict unless 6 is a function of T.

11



Remark. Starting from any estimator 8, if we condition on the sufficient statistic T we obtain a ‘bet-
ter’ statistic 6. Note that T must be sufficient, otherwise 6 may be a function of 6 and thus not an
estimator:

am=éav=fé@nmﬂxuom

does not depend on 6 as T is sufficient
Proof. By the tower property of the expectation, we can find
E[0]=E[E[6| T(x)]] = E[F]

Hence, subtracting § from both sides, we find bias(8) = bias(8). By the conditional variance formula,

Var(6) =E|[ Var(6| T) [ + var(E[8| T]) > Var (8)

20 Var(é)

By the bias-variance decomposition, we know that mse(é) > mse(é). The inequality is strict unless
Var (8 | T) = 0 almost surely. This requires that 0 is a function of T. O

Example. LetX, ..., X, bei.i.d. Poisson random variables with parameter 1. Thenlet6 = P (X; = 0) =
-1
e . Here,

e AT 6"(—log )X i
fx(xlxl)—W - fX(x|e)_T
Using the factorisation criterion, we find
1
g(T(x),6) = g(3 x.6) = 6"(~log O)Z%t;  h(x) = T
;!

so T(x) = Y x; is sufficient. Note that > X; has a Poisson distribution with parameter nA. Consider
the estimator 6 = 1{X; = 0}. This depends only on X;, hence it is a weak estimator. However, it is
unbiased, so when we apply the Rao-Blackwell theorem we will construct an unbiased 6, which is
precisely

6=E[61) X =t]=P(X,=0]) X;=¢)
_ PG =03X =1

PTX;=1)
P = OP(Tr, X =1
P(ZTi, X =1)
_ <n - 1)t
"\ n
This may also be written
R 1 X Xi
6= (1 - —)
n

A nin
which is an estimator with lower mean squared error than 1 for all 6. Note that 6 = <1 = l)
n
converges in the limit to e=X». By the strong law of large numbers, X,, — E[X;] = 4, so we arrive at

6 — e~* = 0 almost surely.

12



Example. LetX;, ..., X, beiid. uniform random variables in an interval [0, 6]. We wish to estimate
6 > 0. We observed that T = max.X; is sufficient for 6. Let 6 = 2X;. This is an unbiased estimator of
6. Then the Rao-Blackwellised estimator 6 is
6=E[0|T=t]
=2F [X; | max X; = t]
=2E [X; | max X; = £,X; = max X;| P (X; = maxX; | maxX; = t)
+2E[X; | maxX; = t,X; # maxX;| P (X; # maxX; | maxX; =t)

Since X, ..., X}, are i.i.d., the conditional probability P (X; = max X; | maxX; = t) can be reduced to
P(X; = maxX;) = % The complementary event may be reduced in an analogous way. The expecta-
tion E [X; | maxX; = t,X; = maxX;] can be reduced to ¢.
6=2L 2= Dl | X <t maxX, = ¢
n n i=2
_2t 2n

-1)

2t 2(n—1)t
_2a 2n=Dt
n n 2
2t tin—1) n+1
— - =

max X;
n n i

By the Rao-Blackwell theorem, the mean squared error of 8 is not greater than the mean squared
error of 6. This is also an unbiased estimator.

2.7 Maximum likelihood estimation

Let X3, ..., X}, be i.i.d. random variables with mass or density function fx(x | 6).

Definition. For fixed observations x, the likelihood function L : ® — R is given by

L(O) = fx(x 16) = [ [ fx,(x; 1 6)
i=1

We will denote the log-likelihood by

€(6) = log L(6) = ), log fx,(x; | 6)

i=1

Definition. A maximum likelihood estimator is an estimator that maximises the likelihood
function L over ©. Equivalently, the estimator maximises €.

Example. Let X, ..., X, be i.i.d. Bernoulli random variables with parameter p. The log-likelihood
function is

n

o(p) = Y [X;log p+ (1 — X;)log(1 — p)] = log p + Y, X; +log(1 — p)(n — ) X;)

i=1

13



The derivative is s x s x
reoN i, n— i
O(p)==—t+ 5" >
which has a single stationary point at p = % X = X,. We have E[p] = p, so the maximum
likelihood estimator in this case is unbiased.

Example. Let Xy, ..., X, bei.i.d. normal random variables with unknown mean u and variance o2.

n n 1
¢, 0%) = =5 log(2m) — 5 logo® — 5 DX — p)?

This function is concave in u and ¢, so there exists a unique maximiser. In particular, £ is maximised
when 2 = 2% — ¢
ou 802
a¢ 1
Eriaiar DX —w
This is zero if u = X,,. Further,

o¢ n 1 2 n 1 = \2
507 = 207 ¥ 207 LK = magm * 353 2~ X

This is zero if and only if
1 = S
o = L =Xy = 5

Hence, the maximum likelihood estimator is (22, §%) = ()_( s lex>. We can show that f is unbiased.
n
We will later prove that

S A2
% = r;iz X;%—l
Hence 5
. c n—1
E[6?] = Z[E[)(fl_l] =g? -

This is therefore a biased estimator, but the bias converges to zero as n — oo: 62 is asymptotically
unbiased.

Example. Let X, ..., X, bei.i.d. uniform random variables on [0, 6]. Here, we derived the unbiased
estimator 6 = 2% max X;. The likelihood is given by
n

1
L(®) = e—nﬂ{maXXi < 6}
This function is maximised at 8,,,, = maxX;. By comparison to the 8 derived from the Rao-Blackwell

process, 6, is biased. In particular,

A n

n
- n+1[E[6]: n+1

E [Orme]

Remark. If T is a sufficient statistic for 6, then the maximum likelihood estimator is a function of T.
Indeed, since X and T are fixed, the maximiser of L(6) = g(T, 6)h(X) depends on X only through T.
If = H(O) for a bijection H, then if 6 is the maximum likelihood estimator for 6, we have that H(9)
is the maximum likelihood estimator for ¢.
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Under some regularity conditions, as n — oo the statistic ﬁ(é — 0) is approximately normal with
mean zero and covariance matrix X. More precisely, for ‘nice’ sets A, we have

P(Vn(6-6)€A)>P(Ze€A); Z~N(©O3)

We say that the maximum likelihood estimator is asymptotically normal. The limiting covariance
matrix X is a known function of ¢, which will not be defined in this course. In some sense, X is the
smallest variance that any estimator can achieve asymptotically.

For practical purposes, this estimator can often be found numerically by maximising € or L.

3 Inference

3.1 Confidence intervals

Definition. A 100y% confidence interval for a parameter 6 is a random interval (A(X), B(X))
such that P (A(X) < 6 < B(X)) = y for all 6 € ®. Note that the parameter 6 is assumed to be
fixed for the event {A(X) < 6 < B(X)}, and the confidence interval holds uniformly over 6.

Remark. Suppose that an experiment is repeated many times. On average, 100y% of the time, the
random interval (A(X), B(X)) will contain the true parameter 6. This is the frequentist interpretation
of the confidence interval.

A misleading interpretation is as follows. Given that a single value of X is observed, there is a prob-
ability y that 6 € (A(x), B(x)). This is wrong, as will be demonstrated later.

Example. Let Xj, ..., X, bei.i.d. normal random variables with unit variance. We will find the 95%
confidence interval for 4 = 6. We have

- 1 1 —
X:r—l;Xi~N(6,z); Z =+/n(X - 6) ~ N(0,1)

Let a, b be numbers such that ®(b) — ®(a) = 0.95. Then
P(a < \(X - 6) < b) = 0.95 — u»(;?-i < es;?_i) - 095
N Jn
Hence, ()_( - i,)_( - i) is 2 95% confidence interval for 6. Typically, we wish to centre the interval

Vn Vn

around some estimator 8 such that its range is minimised for a given y. In this case, we want to set
—a =b = zy p5 & 1.96, where z, = ®~1(1 — a). Hence, the confidence interval is ()_( + %).

n
Remark. In general, to find a confidence interval:

(i) Find a quantity R(X, ) where the distribution Py does not depend on 6. This is known as a
pivot. In the example above, R(X, 0) = \/E(X - 9).

(ii) Consider P(c; < R(X,6) < c,) = y. Given some desired level of confidence y, find ¢; and ¢,
using the distribution function of the pivot.

(iii) Rearrange such that P (A(X) < 6 < B(X)) = ¥, then (A(X), B(X)) is the confidence interval as
required.
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Proposition. Let T be a monotonically increasing function, and let (A(X), B(X)) be a 100y%
confidence interval for 6. Then (T(A(X)), T(B(X))) is a 100y% confidence interval for T(6).

Remark. If 6is a vector, we can consider confidence sets instead of confidence intervals. A confidence
set is a set A(X) such that P (6 € A(X)) =y.
Example. Let X, ..., X, be ii.d. normal random variables with zero mean and unknown variance
o?. We will find a 95% confidence interval for 2. Note that }% ~ N(0,1) is a valid pivot, but it
considers only one data point. We will instead consider

X2
2\ i 2
R(X,0%) =3, > ~ 1

1
Now, we can define ¢; = Fx‘zl(0.025) andc, = Fx‘zl(O.975), giving
n o2
P(clsZ;gc)=o.95
i=1

Rearranging, we have

IA

2 2
P(ZXi SO'Z in
C2 €1

) =0.95

Hence, the interval Z?:l Xiz(ci, 5) is a 95% confidence interval for o?.
2 1

Example. Let X, ..., X, bei.i.d. Bernoulli random variables with parameter p. Suppose 7 is large.
We will find an approximate 95% confidence interval for p. The maximum likelihood estimator is

p=X= X;

Si
M=

i=1

By the central limit theorem, p is asymptotically distributed according to N < ps @)

. Hence,

p-p
\/z\/p(l—p)

has approximately a standard normal distribution. We have

p—-p
|]j’<—Z0 025 S VH——= < zg 5 | ® 0.95
' Vp(l-p)

Instead of directly rearranging the inequalities, we will make an approximation for the denominator
of the central term, letting \/p(1 — p) = 1/ p(1 — p). When n is large, this approximation becomes

more accurate.
u»<_zms cynb=p ) ~ 095

— — = Zg.025
L 2)
This is much easier to rearrange, leading to
V(A - p)
NF

This gives the approximate 95% confidence interval as required.

V= p)
N

) ~ 0.95

P (p = Z0.025 <SP =P+ 2Zoozs
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Remark. Note that the size of the confidence interval is maximised at p = % with a length of

1 1 o ; . . ;
zzo.ozsm ~ ok This is a conservative 95% confidence interval; it may be wider than necessary

but holds for all values of 6.

3.2 Interpreting the confidence interval

Example. Let X;,X, be i.i.d. uniform random variables in (6 — %, 0+ é) We wish to estimate the
value of 6 with a 50% confidence interval. Observe that

P8 € (minX;, maxX;)) = P (X, <6 < X))+ P (X, <6 < X;) = %

Hence, (min X;, max X;) is a 50% confidence interval for 6. The frequentist interpretation is exactly
correct; 50% of the time, 0 will lie between X; and X,. However, suppose that |[X; — X,| > % Then

we know that 6 € (min X;, maxX;). Suppose X; = 0.1,X, = 0.9, then it is not sensible to say that
there is a 50% chance that 8 € [0.1,0.9].

4 Bayesian analysis

4.1 Introduction

Frequentist analysis considers the value 6 to be fixed, and then we can make inferential statements
about 6 in the context of repeated experiments on a random variable X. Bayesian analysis is an
alternative to frequentist analysis, where 0 is itself treated as a random variable taking values in the
parameter space @. We say that the prior distribution 7(6) is a distribution representing the beliefs
of the investigator about 6 before observing data. The data X has a p.d.f. or p.m.f. conditional on 8
given by fx(- | 6). Having observed X, we can combine this information with the prior distribution
to form the posterior distribution 7(6 | X), which is the conditional distribution of 8 given X. This
contains updated information about the value of 6. By Bayes’ rule,

7(6)fx(x16)
@] x)= —="r——=
G0 ="
where fx(x) is the marginal distribution of X, defined by

Jo fx(x | ©)m(8)d® 6 continuous

() = {Z@ Fe(x | 0)(6) 6 discrete

More simply,
70| X) x 7(6) - fx(X | 6)

The proportionality here is with respect to 6. So the posterior is proportional to the prior multiplied
by the likelihood. It is often easy to recognise that the right hand side of this expression is in some
family of distributions, such as N or T, up to some normalising constant.

Remark. By the factorisation criterion, if T is a sufficient statistic for 6, the posterior (6 | x) depends
on X only through T. More precisely,

7(6 | X) « m(8)g(T(X), O)h(X) o 7(8)8(T(C), 6)
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Example. Consider a patient who we will test for the presence of a disease, where we have no in-
formation about the health or lifestyle of the patient. Let 8 take the value 1 if the patient is infected
and 0 otherwise. We have a random variable X which takes the value 1 if a given test returns a posit-
ive result and O if the test is negative. We know the sensitivity of the test fx(X =1 | 6 = 1), and the
specificity of the test fx(X = 0| 6 = 0). This fully specifies the likelihood function.

We now must choose a prior distribution. For example, let 7(6 = 1) be the estimated proportion of
the general population that have the given disease. The posterior is the probability of an infection
given the test result.

@ =1fxX=1]6=1)
7@ =DfxX=110=1)+70=0)fxX=1]0=0)

7@=1|X=1)=

Even with a positive test result, the posterior distribution may still yield a low probability for 8, which
may happen if 7(6 = 1) < 7(6 = 0).

Example. Let 6 be the mortality rate of a particular surgery, which will take values in [0, 1]. In the
first ten operations, we observed that none of the patients died. We will model X ~ B(10,6) and
observe X = 0.

We must choose a prior. Suppose that we have data from other hospitals that suggests that the mor-
tality for the surgery ranges from 3% to 20%, with an average of 10%. We can choose the prior to be
the beta distribution, 7(6) ~ Beta(a, b), since the value of 6 should range between zero and one. Let
a = 3 and b = 27, which will give E [6] = 0.1 and PP (0.03 < 6 < 0.2) = 0.9. In this case, the posterior
is

70| X) x 1(0)fx(x =0 68) x 6471(1 — 6)P~19%(1 — §)"~* = gx+a-1(1 — g)b—n—x-1

This is again a beta distribution with parameters x + a and n — x + b. The normalising constant does
not need to be explicitly calculated since the form of the distribution can be recognised.

With the above data, we obtain 7(6 | x = 0) ~ Beta(3, 37). This posterior has a smaller variance than
the prior, and a smaller expectation due to observing no deaths. In this case, the prior and posterior
have the same distribution. This is known as conjugacy.

4.2 Inference from the posterior

The posterior distribution 7(6 | x) represents information about 8 after having observed some data
X. This can be used to make decisions under uncertainty.

(i) We first choose some decision § € A. For instance, in the first example, a decision could be to
ask the patient to isolate from others to reduce transmission.

(i) We define a loss function L(6,5), which defines what loss is incurred by making decision &
given the true value of 6. In the above example, L(6 = 1,8 = 1) is the loss incurred by asking
the patient to isolate given that they have the disease.

(iii) We can now choose the decision § that minimises
/ L(6,8)7(6 | x)dé
e}

which is the posterior expectation of the loss.
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4.3 Point estimation

We can use Bayesian analysis to represent an estimate for the value of 0 as a decision.

Definition. The Bayes estimator ) minimises

h(d) = f L(6,6)x(6 | x)dé
®

Example. Suppose the loss function is quadratic, given by L(6, §) = (6 — 6)?. Here,
h(s) = f(@ —8)*n(6 ] x)do
e}

Thus, h(6) = 0if
f(@—é)n’(@ |x)d6=0 < 6= f 67(6 | x)dx
)

(€]

Under the quadratic loss function, 8 can be described as the expectation of 8 under the posterior
distribution.

Example. Consider the absolute error loss, given by L(6, §) = |6 — &|. In this case we have

8

h() = f |6—6|m(0] x)d6 = f —(6-06)n(6]x)db +f 6—-8n(6|x)dé
(€] —00 é

We can differentiate, using the fundamental theorem of calculus, to find

)

h'(6) = / (6 | x)d@—f (6| x)dé
-0 )

This is zero if and only if

é o0
f (6| x)do = f (6| x)dé
—0 <)

This yields the median of the posterior distribution.

4.4 Credible intervals

Definition. A 100y% credible interval (A(x), B(x)) satisfies
mA(x) KO <B(x) | x)=y
Remark. Unlike confidence intervals, credible intervals can be interpreted conditionally on the data.

For example, we could say that given a specific observation x, we are 100y% certain that 6 lies within
(A(x), B(x)). This credible interval is also dependent on the choice of prior distribution.
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5 Hypothesis testing

5.1 Hypotheses

Definition. A hypothesis is an assumption about the distribution of the data X. Scientific
questions are often phrased as a decision between two hypotheses. The null hypothesis H is
usually a basic hypothesis, often representing the simplest possible distribution of the data.
The alternative hypothesis H, is the alternative, if H, were found to be false.

Example. LetX = (Xj,...,X,,) bei.i.d. Bernoulli random variables with parameter 6. We could take,
for example, Hy : 6 = % andH,: 6 = %. Alternatively, we could take Hy : 6 = % and H, : 0 # ;
Example. Suppose X; takes values 0, 1, .... We can take H;, : X; X Poi(A) for some A, and H; : X; X
f1 for some other distribution f;. This is known as a goodness of fit test, which checks how well the
model used for the data fits.

Definition. A simple hypothesis is a hypothesis which fully specifies the p.d.f. or p.m.f. of the
data. A hypothesis that is not simple is called composite.

Example. In the first example above, H,: 6 = % is simple, and H; : 6 # % is composite. In the

second example, Hy : X; X Poi(4) is composite since A was not fixed.
5.2 Testing hypotheses

Definition. A fest of the null hypothesis H,, is defined by a critical region C C X. When
X € C, we reject the null hypothesis. This is a positive result. When X ¢ C we fail to
reject the null hypothesis, or find no sufficient evidence against the null hypothesis. This is the
negative result.

A type I error, or a false positive, is the error made by rejecting the null hypothesis when it is
true. A type Il error, or a false negative, is the error made by failing to reject the null hypothesis
when it is not true. When Hy, H, are simple, we define

a = Py, (Hy is rejected) = Py, (X € C);  f = Pp, (Hy is not rejected) = Pg, (X & C)

The size of a test is &, which is the probability of a type I error. The power of a testis 1 — 3,
which is the probability of not finding a type II error.

There is typically a tradeoff between a and 8. Often, statisticians will choose an ‘acceptable’
value for the probability of type I errors «, and then maximise the power with respect to this
fixed . Computing the size of a test is typically simpler since it does not depend on H;.

5.3 Neyman-Pearson lemma

Let Hy and H, be simple, and let X have a p.d.f. or p.m.f. f; under H;. The likelihood ratio statistic is
defined by
fi(x)

Jo(x)

A (Ho; Hy) =
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The likelihood ratio test is a test that rejects H, when A, exceeds a set value k, or more formally,
C = {x . Ax(HO’Hl) > k}

Lemma. Suppose that f, f; are nonzero on the same set, and suppose that there exists k > 0
such that the likelihood ratio test with critical region C = {x: A,(Hy; H;) > k} has size a.
Then out of all tests of size upper bounded by «, this test has the largest power.

Remark. A likelihood ratio test with size o does not always exist for any given a. However, in general
we can find a randomised test with arbitrary size a. This is a test where, for some values of X, we
reject the null hypothesis; for some values, we fail to reject the null hypothesis; and for some values
we reject the null hypothesis with a random chance of rejecting the null hypothesis.

Proof. Let C be the complement of C in XX. Then, the likelihood ratio test has

a=LMMM;5=éﬂmM

Let C* be a critical region for a different test, with type I and II error probabilities a*, 5*. Here,

w=mem;&=Aﬁmm

Suppose a* < a. Then, we will show 8 < 5*.

ﬁ—&=LMMM—Lﬁwm

By cancelling the integrals on the intersection, and using the definition of C,

B—p = filx)dx — filx)dx

CcnC~ c*nC

fi(x) { i)
dx — = d
Jo(x)dx i Jox)dx

<k >k

=

<

mwm—[*ﬁmm4
C nC

LJCNC~

:ki d dx — dx —
faer [ peoar Lwhwx L*

LJCNC

mww]

nC

—k mmm—/mmw]
C

LJnC-
= k[a* — a
<0

O

Example. Let X, ..., X, ~ N(u, 03) be i.i.d., where 0'(2) is known and u is an unknown. We wish to
find the most powerful test of fixed size « for the hypotheses Hy : u = ugand H; : u = uy > ug. The
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likelihood ratio is

(2mag)™"/? exp{_—1 Y(x; — Mo)z}

203

(2mad)—n/2 exp{% 2(xi = /«fl)z}

2
0

A (Hop; Hy) =

M1 — Mo

_ N2
= exp . nx + n(uog — pq)

ol 20¢
>0

which depends only on X, and is monotonically increasing with respect to the sample mean X. There-
fore, this is also monotonically increasing with respect to the statistic

7= \/ZX ;Ollo

Thus, A, > kifand only if Z > k' for some k’. Hence, the likelihood ratio test has critical region
{x: Z(x) > k'}forsome k’. It thus suffices to find a critical region of Z with size ¢ in order to construct
the most powerful test of this size. Under Hy, Z ~ N(0,1). Hence, the critical region is given by
k' = ®}(1 — «). This is known as a Z-test, since we are using the Z statistic.

5.4 p-values

Definition. Let C be a critical region of the form {x : T(x) > k} for some test statistic T. Let
x* denote the observed data. Then, the p-value is

Ph, (T(X) > T(x"))

Typically, when reporting the results of a test, we describe the conclusion of the test as well as the
p-value. In the example above, suppose (o = 5, 4; = 6, & = 0.05, and x* = (5.1,5.5,4.9, 5.3). Here,
x* = 5.2 and z* = 0.4. The likelihood ratio test has critical region

{x : Z(x) > 71(0.95) ~ 1.645}
The conclusion of the test here is to not reject H,. The p-value is 1 — ®(z*) = 0.35.

Proposition. Under the null hypothesis H, the p-value is a uniform random variable in
[0,1].

Proof. Let F be the distribution of the test statistic T', which we will assume for this proof is continu-
ous. Then,
Py, (p <u) =Py, (1 - F(T) <u)
= Py, (F(T) > 1—u)
=Py, (T>F'Q1-w)
=1-FF11-uw)=u
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5.5 Composite hypotheses

LetX ~ fx(- | ©) where 6 € ©. Let Hy = 6 € Oy C ©® and H; = 6 € ®, C 0©. The probabilities
of type I and type II error are now dependent on the precise value of 6, rather than simply on which
hypothesis is taken.

Definition. The power function for a test C is
W) =Py(X €C)

The size of a test C is
a = sup W(6)
CIECN
A test is uniformly most powerful of size « if, for any test C* with power function W* and size
upper bounded by a, for all 6 € ©; we have W(8) > W*(6). Such tests need not exist. In
simple models, many likelihood ratio tests are uniformly most powerful.

Example (one-sided test for normal location). Let Xj, ..., X,, ~ N(u, 03) be i.i.d. where o7 is known
and u is unknown. Let Hy: u < ug and Hy : u > g for some fixed py. We claim that the simple
hypothesis test given by H, : u = uyand Hy : u = uy > Hg is uniformly most powerful for H, and
H,. The power function is

W) = P, (@

_p (VX = Ve —p)
TH 0o a (of

0

=Z<z,=071(1 —cx))

—1 —@(xa +ﬁ@)
0

The test has size a since SUp,co, W(u) = a. It remains to show that this power function dominates
all other power functions W* of size « in the alternative space @,. First, observe that the critical
region depends only on yq, and not on u,. In particular, for any u; > uo, we have that the critical
region C is the likelihood ratio test for the simple hypothesis test H}, : u = uy and Hy : u = u;. We
can also see C* as a test of H, versus Hj, and for these simple hypotheses, C* has size

W*(uo) < sup W*(u) < a
M<Ho

By the Neyman-Pearson lemma, C has power no smaller than C* for Hy, against Hj:

W(uy) = W*(uy)

Since this is true for all u; > g, the result holds, and the test C satisfies the property for being
uniformly most powerful.
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5.6 Generalised likelihood ratio test

Definition. Suppose we have nested hypotheses, i.e. Hy: 6 € O, and H; : 6 € ©,, where
©, C 0,. The generalised likelihood ratio is given by

SUPgeo, fi(x | 6)

Ax<H0;Hl) = Supeeeo fX(x I e)

Large values indicate a better fit under the alternative hypothesis. The generalised likelihood
ratio test rejects the null hypothesis when A, is sufficiently large.

Example (two-sided test for normal location). Let Xy, ..., X, ~ N(u,03) be i.i.d. where o3 is known
and u is unknown. Let Hy : u = ugand H; : u € R for some fixed uy. In this model, the generalised
likelihood ratio is

_ -1 =
(2mad) "2 exp{EZ{;l(xi — X)Z}
Ay (Ho; Hy) =

-1
(2mag)—"/2 eXP{EZ?ﬂ(xi - #0)2}
0

n J—
2logAy = ?(X _/"0)2
0

Under Hy, ﬁX_”O
[of

0
likelihood ratio test is

~ N(0,1). Hence, 2log A, ~ x3. Therefore, the critical region of this generalised

¢ =fx: AX-po? > @]
%o

where y?(a) is the upper « point of 3. This is called a two-sided test since there are two tails on the

critical region, plotting with respect to \/n Xoko,
5]

5.7 Wilks’ theorem

Definition. The dimension of a hypothesis Hy : 6 € 0 is the number of ‘free parameters’
in this space.

Example. If 0, = {6 e R¥: 6, = --- = §, = 0}, then the dimension of Hy is k — p.

Let A € RP*K be a p x k matrix with linearly independent rows. Let b € RP for p < k, then we define
©y = {6 € R¥: A0 = b}. Then the dimension of 6 is k — p.

Let ®( be a Riemannian manifold. We use differential geometry to deduce the dimensionality of
such a manifold.

Theorem. Suppose O, C ©;,and dim ©; —dim ©, = p. LetX = (X, ..., X},) bei.i.d. random
variables under f,(- | ) where 6 € ®. Then, under some regularity conditions, as n — oo
we have

2log Ay ~ X5
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More precisely, forall ¢ € R,

lim Pg (2logA, <€) =P(E<€); E~ x5
n—oo

Remark. If nis large, this theorem allows us to implement a generalised likelihood ratio test even if
we cannot find the exact distribution of 2log A,. Frequentist guarantees obtained from such a test
will be approximate.

Example. In the two-sided test for normal location, dim ®; = 1 and dim ®, = 0 hence the difference
in dimensions is 1. Then, Wilks’ theorem implies that 2 log A, is approximately distributed according
to x?, although the result is exact in this particular case.

5.8 Goodness of fit

LetX, ..., X, beii.d. samples taking valuesin{l, ..., k}. Let p; = P (X; = i), and let N; be the number
of samples equal to i, so Zi pi = 1 and Zi N,; = n. The parameters here are p = (py, ..., px), which
has k — 1 dimensions. A goodness of fit test has a null hypothesis of the form H,, : p; = p; for all i, for
a fixed p = (py, ..., Dx)- The alternative hypothesis H; does not constrain p.

The model is (N, ..., N) ~ Multi(n; py, ... , pr)- The likelihood function is

L(p) x pll\’1 pgk = ¢(p) = constant + ZNi log p;
i
The generalised likelihood ratio is

2log Ay = 2( sup £(p) — sup €(p)) = 2(¢(p) — ¢(p))
PEB; PEB,

where p is the maximum likelihood estimator under H;. To find p, we typically use the method of

Lagrange multipliers.

£L(p, 1) =ZNi10gPi —/1(2 pi— 1)

We can compute that
Ni

n
This is simply the fraction of observed samples of type i.

pi =

5.9 Pearson statistic

Let 0; = N; be the observed number of samples of type i, and e; = np; be the expected value under
the null hypothesis of the number of samples of type i. Here, we can write

2logA =2) N; 10g<i~i> = ZZoilogﬂ
i np; i €;
Let§; = 0; —e;. Then
%

€i

N
small when n large

2logA = ZZ(e,- +6;)log|1+
i
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By taking the Taylor expansion, we arrive at

8§ &7
2o 5 -2)
1

1
Note that )}, §; = }’.(0; —e;) = n— n = 0, so we can simplify and find
25_12 :Z(Oi_ei)z
~ e - €;
1 L
This is Pearson’s x? statistic. This is also referred to a y7_, when performing a hypothesis test.

Example. Mendel performed an experiment in which 556 different pea plants were created from a
small set of ancestors. Each descendent was either yellow or green, and either wrinkled or smooth,
giving four possibilities in total. The observed result was

N=(3_Ls,1_(z§,m,z>;)
SG SY WG WYy

Mendel’s theory gives a null hypothesis Hy: p=p = (19—6, 13—6, %, i) Here,
(0; —e;)?
2log A = 0.618; —— =0.604
og 22

i 1

These are referred to a y3 distribution. We observe that ¥3(0.05) = 7.815, so we fail to reject the null
hypothesis with a test of size 5%. We can compute that the p-value is P (x% > 0.6) ~ 0.96, so there is
a very high probability of observing a more extreme value than observed.

5.10 Goodness of fit for composite null

Suppose Hy : p; = p;(0) for some 6 € @Oy, and H; : p has any distribution on {1, ..., k}. We can
compute

2logA = 2(sup £(p) — sup €(p(6))>
p 6€0

We can sometimes compute these quantities explicitly, and hence find a test which refers this test
statistic to a y; distribution where p = dim ©; — dim ©, = (k — 1) — dim ©,.

Example. Consider a population of individuals who may have one of three genotypes, which occur
with probabilities (py, p,, p;) = (62,26(1 — 6),(1 — 6)?). In this case, we can find the maximum
likelihood estimator under the null hypothesis to be

6o 2N+

2n
Hence, A
2log A = 2(£(p) — €(8))

where p; = % as found previously. This can be computed explicitly and referred to a y? distribution.
We can check that, in this model,

2logA = Zoilog%
i i

A e )2
where 0; = N; and e; = np;(0). We can approximate this using the Pearson statistic, 7, M
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5.11 Testing independence in contingency tables

Suppose we have observations (X;, Y;), ... , (X,;, ;) which are i.i.d., where the X; take valuesin 1, ..., r
and the Y'; take values in 1, ..., c. We wish to test whether the X; and Y; are independent. We will
summarise this data into a sufficient statistic known as a contingency table N, given by

Nijj=[{¢:1<¢<nXY,) =1 DY
So N is the number of samples of type (i, j).

Example. Suppose we observe n samples, and each sample has probability p;; of being of type
(i, j). Flattening (N ;) into a vector, this has a multinomial distribution with parameters (p;;) (also
flattened into a vector). The null hypothesis is Hy : p;; = pi+p+j Where p;, = ), j Pij and p,; =
2.; Dij- The alternative hypothesis places no restrictions on the p;; apart from that it sums to 1 and
has nonnegative entries. We find
r C p~ .
2logA = 22 ZNij log — <)
i=1j=1 pi+ p+]

where p;; is the maximum likelihood estimator under H;, and where p;, and p, ; are the maximum
likelihood estimators under H,. These can be found using the method of Lagrange multipliers. In
particular,

N, j

. N C 1 r

1. A i+ _ . A — —
A R TI EE R

h j=1 h n i=1

S|

Writing 0ij = NL] and €ij = nﬁi+1§+]~,

0;i (0j; —€;;)?
2logA = Zoijlogi zzu
i €ij 4 €ij

By Wilks’ theorem, these test statistics have an approximate )(5 distribution, where p = dim©; —
dim@y=@c—1)—(r—-14c—-1)=(F—-1)(c—1).
The y? test for independence has a number of weaknesses.

(i) The y? approximation requires n to be large. A reasonable heuristic is to require N j > 5 for
all i, j. If this is not possible, we can perform an exact test (which is non-examinable).

(ii) The x? test often has a low power. Heuristically, this is because the alternative space 0, is too
large, and there are many possible models that lie in this space.

Note that this test also applies when 7 is a random variable with a Poisson distribution. This is often
the case when we do not fix the number of samples. The proof is not provided in this course.

5.12 Testing homogeneity in contingency tables

Example. Suppose we perform a clinical trial on 150 patients, who are randomly assigned to one of
three groups of equal size. The first two sets take a drug with different doses, and the third set takes
a placebo.

| improved no difference  worse |

placebo 18 17 15 50
half dose 20 10 20 50
full dose 25 13 12 50

27



In the previous section, we fixed the total number of samples. Here, we fix the total number of
samples, and the total number of samples in each row. We suppose

Ni, ..., Nj. ~ Multinomial(n;,; pi1, --- » Dic)

which are independent for each row i of the table. The null hypothesis for homogeneity is that
pij = p2j = ++ = pyj for all j. The alternative hypothesis assumes that pj, ..., pj is any arbit-
rary probability vector for each row i. Under the alternative hypothesis,

,
n;,! N; N;
Lp) =[] 57 pn" = Pic”
:il;l[ Nil! "'Nic! i1 ic
Hence,
€(p) = constant + ZNU’ log p;;
L,J
This is the same likelihood as the independence test above. To define the maximum likelihood es-
timator we can again use the method of Lagrange multipliers with constraints ) jbij = 1 for each i.
We find
by = i
Vg
Under the null hypothesis, we let p; = p;; for any i.

€(p) = constant + ZNU logp; = ZNH' log p;
Lj J

We have the constraint ), jpj = 1. Using the method of Lagrange multipliers,

by = Nt
T ng,
Hence, .
Dij Ni;
ZIOgA = ZZNU logA— = 2ZNU log—
ij p] i,j ni+N+j/n++
This is precisely the same test statistic as the test for independence above. The only difference is that
. . . . R Ny
n;, is fixed in this model. Further, if 0;; = N;; and e;; = n;, p; = 2T+ we have
Nyt
2
0ij (015 —eij)
2logA =2 ii — = _—
g ZOU log eij Z eij
i,Jj L,J

By Wilks’ theorem, this is asymptotically a )(5 distribution. Here,
p=dimO; —dimO,=r(c—-1)—(c—-1)=(r—-1)c—-1)

This is again exactly the same as in the y? test for independence. Operationally, the tests for homo-
geneity and independence are therefore completely identical; we reject the null hypothesis for one
test if and only if we reject the null for the other. In the example above,

2
2log A =5129; ), (”e—”) =5.173
i,j ij

Referring this to a x7 distribution, the upper 0.05-point is 9.488. Hence, we do not reject the null
hypothesis at the 5% significance level.
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5.13 Tests and confidence sets

Definition. The acceptance region A of a test is the complement of the critical region.

Theorem. Let X ~ fx(- | 6) for some 6 € ©. Suppose that for each 6, € O, there exists a
test of size a with acceptance region A(8,) for the null hypothesis 6 = 8,. Then

IX)={6: X € A©®)}

is a 100(1 — a)% confidence set.
Now suppose there exists a set I(X) which is a 100(1 — )% confidence set for 6. Then

A(6p) = {x: 6y € I(x)}

is the acceptance region of a test of size « for the hypothesis 8 = 6,.

Proof. Observe that for both parts of the theorem,
6 € I(X) < X € A(6)) < fail toreject H, with data X

For the first part, we assume that Py (fail to reject Hy with data X) = 1 — «, and we want to show
Pg (6 € I(X)) = 1 — a. The second part is the converse. O

Example. Let Xi,...,X, ~ N(u,0?) be i.i.d. with o2 known and x unknown. We found that a
100(1 — @)% confidence interval for u is

IX) = ()_( - M)
NFS
Hence, by the second part of the theorem above, we can find a test for H, : u = uo with size a by
- Z
A(ug) ={x: po € I(x)} = {x: Ho € [x + %:OH
This is equivalent to rejecting H, when

\/E:MO -X

)

> Zoc/z

This is a two-sided test for normal location.

6 The normal linear model

6.1 Multivariate normal distribution

Let X = (X;, ..., X,) be a vector of random variables. Then we define

E[Xi]
ExX]={ : |; VarX)=(E[(X;—E[XDX;—E [Xj])])i,j
E[X,]
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The familiar linearity results are
E[AX + b] = AE[X]+b; AVar(X)AT

where A € R¥*" p € R¥ are constant.

Definition. We say that X has a multivariate normal distribution if, for any fixed t € R", we
have t7X ~ N(u, o?) for some parameters u, o2.

Proposition. Let X be multivariate normal. Then AX + b is multivariate normal, where
A € Rk¥*n b e RK are constant.

Proof. Lett € R¥. Then,
tT(Ax +b) = (ATt)TX +t7b
N—
~N(u,02)

which is the sum of a normal random variable and a constant. So this is N(u + t7h, 2). O

Proposition. A multivariate normal distribution is fully specified by its mean and covariance
matrix.

Proof. Let X;,X, be multivariate normal vectors with the same mean x and the same covariance
matrix . We will show that these two random variables have the same moment generating function,
and hence the same distribution.

My, (t) = E [e"!'%1]

Note that t7X; is univariate normal. Hence, this is equal to
1 1
My, (t) = exp(l SE[0X ]+ 5 Var (¢1X;) - 12) = exp(tT,u + zﬂZt)

This depends only on ¢ and Z, and we obtain the same moment generating function for X,. O
6.2 Orthogonal projections

Definition. A matrix P € R"*" is an orthogonal projection onto its column space col(P) if,
for all v € col(P), we have Pv = v, and for all w € col(P)', we have Pw = 0.

Proposition. P is an orthogonal projection if and only if it is idempotent and symmetric.

Proof. If P is idempotent and symmetric, let v € col(P), so v = Pa for some a € R". Then, Pv =
PPa = Pa = v. Now, let w € col(P)*. By definition, PTw = 0. By symmetry, Pw = 0.

Now, suppose P is an orthogonal projection. Any vector a € R" can be uniquely writtenasa = v+ w
where v € col(P) and w € col(P)t. Then PPa = PPv+PPw = Pv = P(v+w) = Pa. As this holds for
all a, we have that P is idempotent. Let u;, u, € R", and note (Pu;) - (I — P)u,) = 0, as Pu; € col(P)
and (I — P)u, € col(P)*. We have u!PT(I — P)u, = 0. Since this holds for all u;,u,, PT(I — P) = 0 so
PT = PTP. Note that PTP is symmetric, so PT is symmetric, and hence P is symmetric. O
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Corollary. Let P be an orthogonal projection matrix. Then I — P is also an orthogonal pro-
jection matrix.

Proof. Clearly, if P is symmetric, so is I—P, so it suffices to prove idempotence. We have (I—P)(I—P) =
I—2P+P?>=]-2P+P =1- P asrequired. O

Proposition. If P is an orthogonal projection, then P = UUT where the columns of U are an
orthonormal basis for the column space of P.

Proof. First, we show that UUT is an orthogonal projection. This is clearly symmetric. It is idem-
potent: UUTUUT = UUT since UTU = I, as the columns of U form an orthonormal basis for the
column space of P. Further, the column space of P is exactly the column space of UUT. O

Proposition. The rank of an orthogonal projection matrix is equal to its trace.

Proof. The rank is the dimension of the column space, which is rank P = rank(UTU) = tr(UTU) =
tr(UUT) = tr P. O

Theorem. Let X be multivariate normal, where X ~ N(0,c?I), and let P be an orthogonal
projection. Then
(i) PX ~ N(0,0%P), and (I — P)X ~ N(0,0%(I — P)), and these two random variables are
independent;

2
o IPX| 2
(11) o2 ~ Xrank P-

Proof. The vector (P,I — P)TX is multivariate normal, since it is a linear function of X. This distribu-
tion is fully specified by its mean and variance.

- [((I i))lg)X)] - (15;:) E[X]=0
Further,

PX P P\ P2 P(I-P) P 0
Var((([—P)X))=<I—P)UZI(I—P> =C’2<P(1—P) (1—P)2)=°2<0 I—P)

Now we must show that the variables PX, (I — P)X are independent. Let Z ~ N(0,0%P),Z' ~
N(0,0%(I — P)) be independent. Then we can see that (Z, Z')T is multivariate normal with

P 0
p=0 E‘(0 I—P)

Hence (PX, (1 — P)X)T is equal in distribution to (Z, Z’)T. So PX is independent of (I — P)X.
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2
We must show that IPX]

~ X2« p- Note that

o2
IPX|? _ XTPTPX _ XT(UUN)'UUX _ |UTX|?
o2 o2 - o2 - g2
Note, UTX ~ N(0,02UTU) = N(0, 0%I,,px p)- SO
UTX); iid
(UTX); iid N(0,1)
o
fori =1,...,rank P. Hence
2 rankP 2
It Wy
2 - g Arank P

i=1

i
Theorem. Let X, ..., X, ~ N (u, 0%) for some unknown € R and o2 > 0. The maximum
likelihood estimators for ¢ and o are

A=X=

S

R e
; n n

Further,
J— 2
M X ~ N, Z);
n
.\ Sxx
(ii) 2 Xn—1;

(iii) X, Sy, are independent.

Proof. Let P be the square n X n matrix with all entries L. Thisisan orthogonal projection matrix,
n
as it is symmetric and idempotent. Note that

X
PX =

SThS

We will write the observations X as

u
X = (E)+s; € ~ N(0,0?%I)
u

——

M

Note that X is a function of P, since X = (PX), = (PM + P¢),. Further,

Sex = (X = X) = IX = BXI = |1 = P)XI = (1 ~ Pel]”

1

Hence S, is a function of (I — P)e. Since Pe and (I — P)e are independent, X and S, are independent.
Since I — P is a projection with rank equal to its trace n — 1, we apply the previous theorem to obtain

2
Sex = I = P)el” s
O
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6.3 Linear model

Suppose we have data in pairs (xy, ¥;), ..., (x,, Y,), where Y; € R,x; € RP. The Y; are known
as the response variables, or the dependent variables. The x;;, x;;, are the predictors, or independent
variables. We will model the expectation of the response Y; as a linear function of the predictors

(xil, ceey xip).

Example. LetY; be the number of insurance claims that driver i makes in a given year, and x;;, ..., X,
is a set of variables about the specific driver. Predictors include age, the number of years they have
held their license, and the number of points on their license, for instance.

We assume that
Yi=oa+pBixp+-+BpXipt&

where a € R is an intercept, §; are the coefficients, and ¢ is a noise vector, which is a random variable.
The intercept and coefficients are the parameters of interest. We will often eliminate the intercept by
making one of the predictors x;; = 1 for all i, so 3, plays the role of the intercept.

Note that we can use a linear model to model nonlinear relationships. For example, suppose Y; =
a + bz; + cz} + ;. We can rephrase this as a linear model with x; = (1, z;, z}).

The coefficient 8; can be interpreted as the effect on Y'; of increasing x;; by one, while keeping all
other predictors fixed. This cannot be interpreted as a causal relationship, unless this is a randomised
control experiment.

6.4 Matrix formulation
Let
Y, Xy o Xyp B1 €
Y, Xn1 0 Xpp ﬁp €n
We call X the design matrix. The linear model is that

Y=X(+¢

Xf is considered fixed. Since ¢ is random, this makes Y into a random variable.

6.5 Assumptions

We make a number of moment assumptions on the noise vector €. This allows us to deduce more
results about the linear model.

() E[e] =0 = E[Y;]=x[B;

(ii) Var(e) = oI, which is equivalent to both Var (¢;) = o® and Cov (g;,¢;) = 0 for all i # j. This
property is known as homoscedasticity.

We will always assume that the design matrix X has full rank p, or equivalently, that it has linearly
independent columns. Since X € R™*P, this requires that n > p, so we need at least as many samples
as we have predictors.
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6.6 Least squares estimation

Definition. The least squares estimator § minimises the residual sum of squares, which is
2 2
SE@) =Y =XBI" = 22 (Yi — x[p)
i
The term Y'; — x] 8 is called the ith residual.

Since S(B) is a positive definite quadratic in 3, it is minimised at the stationary point.

9S(B8)
B lg=p

n
=0 < Vk, —Zink(Yi —inj6j> =0 < X'XB=XTY
i=1 k

As X has full column rank, X7X is invertible.
f=X1X)IXTY
This is notably a linear function of Y, given fixed X. Note that
E[f] = XX)"'XTE[Y] = (XTX)"'XTXB = B
So ,@ is an unbiased estimator. Further,
Var (8) = (X7X)1XT Var (Y) [(X7X)XT]'

= (XTX) I XTR2I[(XTX) " XT]'
= g?(XTX)!

Theorem (Gauss-Markov theorem). Let an estimator * of 8 be unbiased and a linear func-
tion of Y, so 5* = CY. Then, for any fixed t € R?, we have
Var (¢18) < Var (t78*)

where § is the least squares estimator. We say that B is the best linear unbiased estimator
(BLUE).

Remark. We can think of t € RP as a vector of predictors for a new sample. Then 74 is the prediction
for E[Y ;] for this new sample, using the least squares estimator. t78* is the prediction with §*. In
both cases, the prediction is unbiased.

Proof. Note that
Var (t"B*) — Var (¢8) = (T[Var (8*) — Var (B)]¢

To prove that this quantity is always non-negative, we must show that Var (8*) — Var (B) is positive
semidefinite. Let A = C — (X7X)"'XT. Note that E[AY] = E[8*] — E[8] = 0. Also, E[AY] =
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AE[Y] = AXp. This holds for all 3, so AX = 0. Now, since XX is symmetric,

Var (*) = Var (CY)
= Var (A + (X'X)"'XT)Y)
=[A+ X)) X7 Var (V) [A + (XX)"'x7]'
= [A+ XX)"'XT]|o%1[A + X X) "' xT]'
= G2(AAT + (XTX)™! + AX(XTX)™! + (XTX)"IXTAT)
= 0?AAT + Var ()
Var (B*) — Var (B) = 02AAT

Note that the outer product AAT is always positive semidefinite. O

6.7 Fitted values and residuals

Definition. The fitted values are ¥ = X = X(X7X)"1XTY, where P = X(XTX)~'XT is the
hat matrix. The residuals are Y — Y = (I — P)Y.

Proposition. P is the orthogonal projection onto the column space of the design matrix.

Proof. If visin the column space of X, then v = Xb for some b. Hence
Pu=XX'X)"'XXb=Xb=v
If w is in the orthogonal complement, then

Pw=XXX)1Xw=0
0

Corollary. The fitted values are an orthogonal projection of the response variables to the
column space of the design matrix. The residuals are orthogonal to the column space.

6.8 Normal linear model

The normal linear model is a linear model under the assumption that ¢ ~ N(0,cI), where o? is
unknown. The parameters in the model are now (3, c?). The likelihood function in the normal
linear model is

L(B.6) = fy(y] £,0%) = (275)"2 expl =3 DV x!ﬁ)Z}

The log-likelihood is
2y _ h 2 1 2
¢(p,0%) = constant — > logo“ — EHY - X3
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To maximise this as a function of 8 for any fixed o2, we must minimise the residual sum of squares
S(B) = |Y —XB|*. So f = (XTX)"1XTY is the maximum likelihood estimator of 8. Further, 62 =

2 2
n-lHY —X/3H = n‘lu? - YH = n Y1 - P)Y|.

Theorem. In the normal linear model,
@) B~ N(B,*XX)™);
- 5.
(i) nZ ~ 233
(iii) B, 62 are independent.

Proof. We prove each part separately.
(i) We already know that E [3] = 8, and Var (8) = o2(X7X)™!. So it suffices to show that f is a
normal vector. Since B = (XTX)~1X7Y, it is a linear function of a normal vector, so is a normal

vector.
(ii) Observe that
A 2 2
6> _ la=P)Y|" _ |d=P)XB+e)|
n— = =
o2 o? o?
Since (I — P)X = 0 as P is the orthogonal projection onto the column space of X,

&% _ |a—Pyl’
”l; = I )(tzr(I—P)
where tr(I — P) = tr] — tr P = n — p since X € R"™*P is assumed to have full rank.

(iii) Note that &2 is a function of (I — P)e, and
g =XX)XTY
= (XTX)"IXT(XB +¢)
=B+ (XTX)"1XT¢
=B+ (XTX)"1XTPe

is a function of Pe. Since (I — P)e and Pe are independent, so are B &2,

A2 _
[E[E]:[E[)(%_p]=n—p — [E[éz]:az-nnp < ?

g2

Note,

Hence this 62 is a biased estimator, but asymptotically unbiased.

6.9 Inference
Definition. Let U ~ N(0,1) and V ~ x2 be independent random variables. Then
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has a t,,-distribution.
As n — o0, this approaches the standard normal distribution.

Definition. Let V ~ y2 and W ~ 2, be independent random variables. Then

_Vin
F= W/m

has an E, ,,,-distribution.

Example. We consider a 100(1 — a)% confidence interval for one of the coefficients 3 in the normal
linear model Y = X + . Without loss of generality, we will consider ;.

We begin by finding a pivot, which is a distribution that does not depend on the parameters of the
model. By standardising the above form of £,

ﬁl — él
\ XX

52
where M7;! is the top left entry in the matrix M~!. This random variable is independent from % ~
g

~ N(0,1)

)(%_p. Now, to construct a pivot, we find

B1-b1

\ o2(XTX)1} U
2. n
o2 n-p

The o terms cancel, so the statistic is a function only of 3, and functions of the data. Then,

~t

n-p

SRS

Pgo2 —tn_p(%) < B — B nngzp < tn_p<0(

since the t distribution is symmetric about zero. Rearranging to find an interval for 5,

a)\/(XTX)rfaz a)\/(XTX)rféz

e e e A e R
Hence,
s oy \ KTX)3' 62
il e =

isa 100(1 — a)% confidence interval for (3;.

Consider a test for Hy : 8; = 0, H; : 3; # 0. By connecting tests and confidence intervals, we can
test H, with size a by rejecting this null hypothesis when zero is not contained within the confidence
interval I.
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i
Consider a special case where Yy, ..., Yy, ~N (u, o?) where U, o? are unknown, and we want to infer
results about u. Note that this is a special case of the normal linear model where

1
X=(E); B = (1)
1

So we can infer a confidence interval for i using the above statistic.
Example. Consider a 100(1 — )% confidence set for § as a whole. Note that
B —B ~N(O,o*X™X)™)

Then,
XTX)V2(B - B) ~ N(0,2(X"X)V2(XTX)"1(XTX)"/2) ~ N(0, 52I)

where (XTX)'/2 is obtained using the eigendecomposition of the positive definite matrix XTX. Hence,

[ -p)|
o2 ~ Xz%

We can also write this as

lcx@-p|  [xé-p)|

o2 o2

Since this is a function of §, this is independent of any function of 2. In particular, it is independent

52
of % ~ )(,Zl_p. Thus, we can form a pivot by

. 2
[x@ - B[ 1o?p) 2/p
&nl(@2(n—p)  xr_p/n—p) PP

This does not depend on o?. For all 3, ¢2,

because the F distribution has support only on the positive real line. It is nontrivial to express this as
a region for f since it is vector-valued. We can say, however, that

, |x@ - v
Fer 62n/(n— p) < Bnp

is a 100(1 — )% confidence set for (.

This set is an ellipsoid centred at 8. The shape of the ellipsoid depends on the design matrix X; the
principal axes are given by eigenvectors of XTX.

The above two results are exact; no approximations were made.
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6.10 F-tests

We wish to test whether a collection of predictors 8; are equal to zero. Without loss of generality, we
will take the first py < p predictors. We have H, : §; = --- = 8, = 0,and H, = § € RP. We denote

X = (X,,X;) as a block matrix with X, € R™*Po and X; € R"*(P~Po), and we denote § = (8°, B1)T
similarly. The null model has 8 = 0. This is a linear model Y = X + ¢ = X; 8! + &. We will write
P =X(X'X)"XT and B, = X;(X{X;)"1X]. Note that as X and P have full rank, so must X, B.

Lemma. (I — P)(P— B) =0, and P — B, is an orthogonal projection with rank p,.

Proof. P — B, is symmetric since P and B are symmetric. It is also idempotent, since
(P-R)P-R)=P>—RP-PR+B=P-R-R+R=P-R

since B projects onto the column space of X;. Hence P — B is indeed an orthogonal projection matrix.
The rank isrank(P — B) =tr(P —B) =trP —trB = p— (p — py) = Do- Also,

(I-P)YP-B)=P-B—-P+PR=P-B—-P+B=0

Recall that the maximum log-likelihood in the normal linear model is given by

2
08,82 = _7" log 62 — g - constant = —Tn log I = PyYIE

The generalised likelihood ratio statistic is

+ constant

2logA=2 sup €(B,0%)—2 sup £(B,0?)

BERP,62>0 Bo=0,3,ERP~P0 52>0

2 2
IA=PYI | 10~ B)Y]
n n

=n|—log

Wilks’ theorem applies here, showing that 2log A ~ )(50 asymptotically as n — oo with p, p, fixed.
However, we can find an exact test, so using Wilks’ theorem will not be necessary. 2 log A is monotone
in

2 2
IT=R)Y|" _ |[d=P+P—-R)Y]|

It - Pyy)?* It - Py
_ la=PyYI” + (P - R)Y|* +2YT(I — PP — R)
It - Py’
_ la=Py| +[@ - R)Y|’
It - Py’
_, 4 le—Ryyr
|t - Py’

The generalised likelihood ratio test rejects when the F-statistic

_le—RrYl® 1/p

F
|a-Py|* n=p)
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is large.
Theorem. Under Hy : §; = --- = fp, = 0, in the normal linear model,

po IC-RYI  1py
I =py|> n-p) PP

Proof. Recall that
2 2
1T = P)Y[" = | = Pell” ~ xi—p - 0

Therefore it suffices to show that ||(P — Pl)Y||2 is an independent )(50 -2 random variable. Under H,
we have that
(P=R)Y =(P-R)XB+¢)=(P-R)X,p' +¢) =(P-R)e

since P, B, preserve X,. Hence, (P — B)Y]|* = (P = B)e||* ~ )(fank(P_Pl) -0? = xp,-0%. We must now
show independence between (I — P)Y and (P — B)Y. The vectors (I — P)e, (P — B )¢ are independent;

indeed,
_ (T —P)
E_<@—Hk
is a multivariate normal vector, and

N _ I—P I-PXP-R)\_(I-P 0O
E[E] = O; Var(E)_((I_P)(P_Pl) Pop 1)_< 0 P—Pl>

and since (I — P)e and (P — R )e are elements of a multivariate normal vector and are uncorrelated,
they are independent as required. O

The generalised likelihood ratio test of size « rejects Hy when F > Ii,;}n_p(oc). This is an exact test for
all n, p, py. Previously, we found a test for H, : 8; = 0 against H; : 8; # 0. This is a special case of
the F-test derived above, where p, = 1. The previous test of size a rejects H, when

5 ay | 62n(X1 X))
"8' > t"“’(f) n—p
We will show that these two tests are equivalent; they reject H, in the same critical region. The ¢-test
rejects if and only if
2 A2 T -1
52 a\ o n(X'X)1
B1 > tn—p(z) Thop

2
Note that tn_p(g) = F ,_p(a), since

U ~N(0,1); Wsiny? = T =

o T WS win”

where V ~ x?. Hence,
B/ XX

&2ni(n = p) > F p-p(@)
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It suffices to show that

5 2 N 2
B _IP-RYI|" &n _|I-P)Y]|
X1X)7 pp ~ n-p  n-p

=1

We have already shown the latter part. For ;, note that in this case, P — B is a projection of rank 1
onto the one-dimensional subspace spanned by the vector v = (I — P)X° where X? is the first column
in the matrix X. First, note the following identity.

Xo(I—R) =v" =v'(P—R) = X;(I-R)(P - R) = Xo(I - R)P

TN
m(m) Y\
_ Yy (XU -R)Y)
ol I = B)X,l
_ (XU = B)PY)?
IT = B)Xo |
_ (X3U - R)Xp)’
I = )X, |
Note that (I — B)X = [(I — B)X,,0, ..., 0]. Hence,

T = BB

Then,

I(P - B)Y|* =

2
I(P-R)Y|" = 5
I — R)Xo
2 ~
= It = R)Xol"51
Finally, we show that
1
XXy = ———
I — B)Xoll
using the Woodbury identity for blockwise matrix inversion. Hence,
A 2
——— = (P~ R)Y|
XX

as required.

6.11 Analysis of variance

Suppose we investigate responses of patients after receiving one of three treatments, including a con-
trol, which will be given index 1. We will consider only one predictor, denoting which treatment a
given patient received. Consider the linear model

Yij=OC+,Llj+Eij

where j = 1,2,3 is the treatment index, and i = 1, ..., N is the index of a patient in a given group.
Let (g;;) ~ N(O, 02) be independent. Without loss of generality, we can set u; = 0, since we have an
additional parameter a; this is known as a corner point constraint. Then, x; should be interpreted as
the effect of treatment j relative to treatment 1, which in this case is the control.
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Definition. The analysis of variance (ANOVA) test on the linear model
Yij=a+uj+¢g;
where u; = 0 is given by
Ho: pp=p3=--=0; Hy:pusus - €R

In particular, Hy gives E[Y ;] =«

In our example, Hy : u, = u3 = 0and H; : u,, 43 € R. This is a special case of the F-test, since we
are testing whether the coefficients y; are equal to zero.

1 0 O
1 0 O
1 1 0
X = 1 0 = (X1 XO)
1 01
1 0 1

The first column of X, denoted X, represents «, and the other columns, denoted X, represent u,, 3.
X is eliminated under the null hypothesis. The predictor can be called categorical; it is discrete,
and entirely dependent on which treatment category a given patient is placed in. Note that X has
3N rows, where each block of N consecutive rows is identical. Recall that the F-test uses the test
statistic 5
_IP=R)YI" _1/py
la—pyy|* M=p) T

For this test, P projects onto the space of vectors in R*" which are constant over treatment groups.
In other words, let

1
- Y~-
N ¢

YJ ij

™M=

Then,

PY = ?1,...,?1,?2,...,?2,?3,...,?3

N entries N entries N entries

B, projects onto the subspace of constant vectors in R3M, so

_ 1 N3 o\
Y = 3—22 Y;j = RY (YY)

3N entries

Hence, we can write the F statistic as

YN, - Y) 12

F= N 3 — \2
T 2o (Yij = Y;) /(3N - 3)
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We can generatlise this to the case where there are J > 3 treatment groups:

7 _ 2

_ 2 j=1 N (Yj - Y) /-1 __ variance between treatments

- ZN ZJ (Y 7 )2 JUN = T) " variance within treatments
i=1 j=1 ij— L -

Remark. This test is sometimes called one-way analysis of variance. Two-way analysis of variance is a
similar analysis in an experiment where groups are defined according to two variables. For instance,
the response could be a student’s performance in an exam, where the treatments are

(i) completion of supervisions (zero representing not complete, one representing complete); and

(i) whether a monetary incentive was given (zero representing no incentive, one representing an
incentive).

Here, we would have the result Y ; j; as the number of marks of student i in group (j, k). The model
would be
Yijk =a+u; + Ak + &jk

with a constraint without loss of generality that 4, = 45 = 0. The two-way analysis of variance test
is then
HO:/JIZAIZO; Hll,ul,/hElR

6.12 Simple linear regression

In a linear regression model, we often centre predictors to simplify certain expressions.

Yi=a+Bx—-X)+¢g

n

where X = - 2.i_, Xi» and the ¢; independently have the usual N(0, o?) distribution. In this case, the
L, Li=

maximum likelihood estimator (&, §) takes a simple form. Recall that (&, ) minimises

n

S@B) = (Y —a—plx—3)

i=1

Hence,
n

% =Z—Z(Yi—oc—,B(xi—@):iZ::l_z(Yi_a)

i=1
This gives the simple expression
n
Ei=1 Y,

xX= —— = ?
n
Now,
n
w = _Z(Yl — ? — ‘B(Xi - }))(xl - })
‘8 a=& i=1
This vanishes when " _ _
3 _ Zi=1 (Yi - Y)(xi -X) B ﬁ

S (= X)? Six

Sxy . . . .
Note that = is the sample covariance of X and Y, and Sxx i the sample variance of X.
n n
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