Methods

Cambridge University Mathematical Tripos: Part IB

21st May 2024

Contents

1 Fourier series 4
1.1 Periodic functions . . . . . .. ... . L 4
1.2 Properties of trigonometric functions . . . . .. ... ..o Lo o oL 4
1.3 Periodic functionspace . . . . . . . . ... 4
1.4 Fourierseries . . . . . . . . . . e 5
1.5 Dirichlet conditions . . . .. . . . . ... . e 6
1.6 Integration . . . . . . . . . 7
1.7 Differentiation . . . . . . .. . . .. L 7
1.8 Parseval’stheorem . . . ... ... ... ... ... . .. 8
1.9 Half-rangeseries . . . . .. .. ... . e 8
1.10  Complex representation of Fourierseries . . . . . ... ... ... ... ....... 9
1.11  Self-adjoint matrices . . . . . . . . . e e e e 10
1.12  Solving inhomogeneous ODEs with Fourierseries . . . . . ... ... ... ... .. 11

2 Sturm-Liouville theory 12
2.1 Second-order linear ODEs . . . . . . . . . . ... e 12
2.2 Sturm-Liouvilleform . ... .. ... ... .. L 12
2.3 Converting to Sturm-Liouvilleform . ... ... ... ... ... ... ... . ... 13
2.4 Self-adjointoperators . . . . . . . .. ... 13
2.5 Self-adjoint compatible boundary conditions . . . . . ... ... ... oL 14
2.6 Properties of self-adjoint operators . . . . . . . ... ... ... . ..., 14
2.7 Real eigenvalues . . . . . . . . . . . . e 14
2.8 Orthogonality of eigenfunctions . . . . . . .. . ... ... ... .. ... ..... 15
2.9 Eigenfunction expansions . . . . .. . ... ... .. 15
2.10 Completeness and Parseval’sidentity . . . . ... ... ... ... ... ... .. 16
2.11  Legendre’sequation . . . . . . . ... ...t e 17
2.12  Properties of Legendre polynomials . . . . . . ... ... ... ... .. ... ... 18
2.13  Legendre polynomials as eigenfunctions . . . . ... ... . ... . ... ... . 19
2.14  Solving inhomogeneous differential equations . . . . . ... ... .. ... ... .. 19
2.15 Integralsolutions . . . . . ... .. ... .. e 20
2.16 Wavesonanelasticstring . . . .. ... ... L oo 20

3 Separation of variables 21
31 Separation of variables . . . . . ... ... L 21
3.2 Boundary conditions and normalmodes . . . . . . ... ... ... . L. 21



3.3 Initial conditions and temporal solutions . . . . . . . ... ... ... L. 22
3.4 Separation of variables methodology . . . . .. ... ... ... .. ......... 23
3.5 Energyofoscillations . . . . . . . .. .. . e 24
3.6 Wave reflection and transmission . . . . .. ... ... o L. 24
3.7 Wave equation in plane polar coordinates . . . . . .. ... ... ... ... ... 25
3.8 Bessel'sequation . . . . . . .. . . ... e 26
3.9 Asymptotic behaviour of Bessel functions . . . ... ... ... ... ........ 27
310 ZeroesofBesselfunctions . . . ... .. ... ... L o o o 27
311 Solving thevibratingdrum . . . . . .. .. ... .. o oL 28
3.12  Diffusion equation derivation with Fourier’slaw . .. ... ... ... ... .. .. 29
3.13  Diffusion equation derivation with statistical dynamics . . . . . . .. ... ... .. 30
3.14 Similaritysolutions . . . . . . ... Lo 30
3.15 Heatconductioninafinitebar . .. .. ... ... .. ... .. . o .. 31
3.16  Particular solution to diffusion equation . . . ... ... ... ... ... ... .. 32
3.17 Laplace’sequation . . . . . . . .. . .. e e e e e e e e e 33
3.18 Laplace’s equation in three-dimensional Cartesian coordinates . . ... ... ... 33
3.19 Laplace’s equation in plane polar coordinates . . . .. ... ... ... ....... 34
3.20 Laplace’s equation in cylindrical polar coordinates . . . . ... ... ... ... .. 35
3.21 Laplace’s equation in spherical polar coordinates . . . ... ... ... ... .. .. 36
3.22  Generating function for Legendre polynomials . . . .. ... ... ... ...... 37
4 Green’s functions 38
4.1 DiracSfunction. . . . . . . . .. L e e 38
4.2 Integral and derivative of § function . . . .. ... ... ... ... ... .. .. .. 39
4.3 Propertiesof § function . . . . ... ... ... 39
44 Fourier series expansion of § function . . . . .. ... ... .. ... ... ... . 40
4.5 Arbitrary eigenfunction expansion of § function . . . . ... ... ... ... .. 40
4.6 Motivation for Green’s functions . . . ... ... .. ... . ... . Lo oL 41
4.7 Definition of Green’s function . . . . . . .. ... ... ... 42
4.8 Explicit form for Green’s functions . . . .. ... ... ... ... ... 43
4.9 Solving boundary value problems . . . . ... ... ... ... .. 44
410 Higher-order ODES . . . . . . . . ot ittt e e e e e e e e 45
411 Eigenfunction expansions of Green’s functions . ... ... ... .......... 45
412  Constructing Green’s function for an initial value problem . . . . .. .. ... ... 46
5 Fourier transforms 46
5.1 Definitions . . . . . . . . . . e 46
5.2 Converting Fourier series into Fourier transforms . . . . . ... ... ... ..... 48
5.3 Properties of Fourierseries . . . . . . . . . . . . ... e 49
5.4 Convolution theorem . . . . . . . ... .. .. L 50
5.5 Parseval’stheorem . . . ... .. ... . ... ... ... L 51
5.6 Fourier transforms of generalised functions . . . . . ... ... ... ........ 51
5.7 Trigonometric functions . . . . . ... ... L L Lo L o 52
5.8 Heaviside functions . . . . . . . . . . . .. e 52
5.9 Dirichlet discontinuousformula . . . . . ... ... ... ... . L. 53
510 Solving ODEs for boundary value problems . . . ... ... ............. 53
511  Signal processing . . . . . . . oL e e e e e e e 53
512  General transfer functionsfor ODEs . . . . . .. .. .. ... .. ... ....... 54
513 Dampedoscillator . . . . . . . ... e e e e 55



5.14  Discrete sampling and the Nyquist frequency . . ... ... .. ... ........ 56
515 Nyquist-Shannon sampling theorem . . . . . ... ... ... ... ... ..... 56
5.16 Discrete Fourier transform . . . . . . . . . ... . L 57
5.17  Fast Fourier transform (non-examinable) . . . . . . .. .. .. ... ... ...... 58
6 Method of characteristics 59
6.1 Well-posed Cauchy problems . . . . .. ... ... .. ... ... . . . ... ... 59
6.2 Method of characteristics . . . . . . . ... .. . . 59
6.3 Characteristicsof afirstorder PDE . . . . . ... ... ... .. ... ....... 60
6.4 Inhomogeneous firstorder PDEs . . . . . .. ... ... ... ... . ..., 62
6.5 Classification of secondorder PDES . . . . . . . .. ... ... ... 63
6.6 Characteristic curves of second order PDEs . . . . ... ... ... ......... 63
6.7 Characteristic coordinates . . . . . . . . . . . ... . 64
6.8 General solution to wave equation . . . . .. ... ... ... ... 65
7 Solving partial differential equations with Green’s functions 66
7.1 Diffusion equation and Fourier transform . . . . . .. ... ... ... ....... 66
7.2 Gaussian pulse for heatequation . . . ... ... ... ... ... . ... ..., 66
7.3 Forced diffusion equation . . . . .. ... ... ... ... 67
7.4 Duhamel’s principle . . . . . .. . .. .. e 68
7.5 Forced wave equation . . . . . . . . . . . e 68
7.6 Poisson’sequation . . . . . . . . .. .. e e 69
7.7 Green’sidentities . . . . . . . . . .. L e e 70
7.8 Dirichlet Green’sfunction . . . . ... ... ... . ... ... o 71
7.9 Method of images for Laplace’s equation . . . . . . . ... ... ........... 72
7.10  Method of images for wave equation . . . ... ... ... Lo Lo oL 72



1 Fourier series

1.1 Periodic functions

A function f(x) is periodic if f(x + T) = f(x) for all x, where T is the period. For example, simple
harmonic motion is periodic. In space, we consider the wavelength 4 = 2%, and the (angular) wave

number k is defined conversely by k = 27”

1.2 Properties of trigonometric functions

Consider the set of functions

nmwx . n7IX
- h,(x) = sin —

gn(x) = cos T

where n € N. These functions are periodic with period T = 2L. Recall that
1
cosSAcCosB = E(COS(A — B) + cos(A + B));
1
sinAsinB = z(cos(A — B) — cos(A + B));

sinAcosB = %(sin(A — B) +sin(A + B))

1.3 Periodic function space

We define the inner product
2L
Fo= [ seeeox
0

The functions g, and h,, are mutually orthogonal on the interval [0,2L) with respect to the inner
product above.

o nmx
(hy, W) = f sin < sin
0

2L
1 /' <cos (n-—mmx cos (n+ m)7rx> dx
A L L

mmx
dx

2
2L
1L[ 1 . (n—mmx 1 (n+m)7rx]
=== in - sin
2r|ln—m L n+m L 0

=0whenn#m

If n = m, we have

2L nmwx 1 2L 2mTnx
— a2 _ = — —_ =
(hy, hy) = L sin” — dx 3 /(; <1 cos — )dx L

Thus,
Lé,, nm#0
0 nm=20

(hps i) = {



Similarly, we can show

LS, nm#0
(8n-8m) =10 exactly one of m, n is zero
2L nm=0

and
<hn’ gm> =0

Now, we assert that {g,,, h,, } form a complete orthogonal set; they span the space of all ‘well-behaved’
periodic functions of period 2L. Further, the set {g,, h,} is linearly independent.

1.4 Fourier series

Since g,,, h,, span the space of ‘well-behaved’ periodic functions of period 2L, we can express any such
function as a sum of such eigenfunctions.

Definition. The Fourier series of f is

1 - nmwx - . nmx
flx) = 5a0+ Z ap COS —— + Z bnsmT
n=1 n=1
where a,, b, are constants such that the right hand side is convergent for all x where f is con-
tinuous. At a discontinuity x, the Fourier series approaches the midpoint of the supremum
and infimum of the function in a close neighbourhood of x. That is, we replace the left hand
side with

20 + 200

Let m > 0, and consider taking the inner product (h,,, f) and substituting the Fourier series of

f.

2 . mmx
(hm,f)=f sin T f(x)dx
0

= (W, bhy)
= Lb,,

Thus,
2L

by =7 (b f) = 7 fo sin "% £ ) dx

and analogously
1 1 2 nmwx
an =7 f)=1 cos —— f(x) dx
0

Note that lao is the average of the function. Note further that we may integrate over any range as
long as the total length is one period, 2L. Notably, we may integrate over the interval [—L, L].



Example. Consider the sawtooth wave; defined by f(x) = x for x € [-L, L) and periodic elsewhere.

Here,
L

an=—/ xcosnLﬂdx=O
-L

and

L

-2 naxit 2 nwx

= — xcos—] + — cos — dx
nmw L 1o nm o L

—2L 2L
= — cOSnmT + ——=sinnxw
nmw 2

(nm)
2L, .,
= I’lﬂ(_l) *

1.5 Dirichlet conditions
The Dirichlet conditions are sufficiency conditions for a well-behaved function, that will imply the

existence of a unique Fourier series.

Theorem. If f(x)isabounded periodic function of period 2L with a finite number of minima,
maxima and discontinuities in [0, 2L), then the Fourier series converges to f at all points at
which f is continuous, and at discontinuities the series converges to the midpoint.

Remark. (i) These are some relatively weak conditions for convergence, compared to Taylor series.
However, this definition still eliminates pathological functions such as l, sin l, 1(Q) and so on.
X X

(ii) The converse is not true; for example, sin - does in fact have a Fourier series.
X

(iii) The proof is difficult and will not be given.

The rate of convergence of the Fourier series depends on the smoothness of the function.

Theorem. If f(x) has continuous derivatives up to a pth derivative which is discontinuous,
then the Fourier series converges with order Oo(n=P*D)asn - .

Example (p = 0). Consider the square wave

1 0<x<1
X) =
() {—1 -1<x<0
Then the Fourier series is
— sin(2m — 1)7x
x)=4 _—
F&) mz=:1 2m-1)rm

Example (p = 1). Consider the general ‘seesaw’ wave, defined by

x1-¢& o0<x<¢

f(x)z{f(l—x) E<xx1



and defined as an odd function for —1 < x < 0. The Fourier series is

sin nz€ sin nzrx

o0
fo=2)
m=1 (n77:)2
For instance, if £ = %, we can show that

_ -~ ma15in(2m — Dzx
100 =2 2 0 =T

Example (p = 2). Let
£ = 3x(1 =)

for 0 < x < 1, and defined as an odd function for —1 < x < 0. We can show that

sin(2m — 1)7x

Fo9 = 4;::1 Gm =Dy

Example (p = 3). Consider
fG)=QQ—x%?

with Fourier series

1.6 Integration

It is always valid to take the integral of a Fourier series term by term. Defining F(x) = j’_xL f(x)dx,
we can show that F satisfies the Dirichlet conditions if f does. For instance, a jump discontinuity
becomes continuous in the integral.

1.7 Differentiation

Differentiating term by term is not always valid. For example, consider the square wave above:

f(x) 24 i cos(2m — 1)7zx

m=1

which is an unbounded series.

Theorem. If f(x)is continuous and satisfies the Dirichlet conditions, and f’(x) also satisfies
the Dirichlet conditions, then f’(x) can be found term by term by differentiating the Fourier
series of f(x).

Example. We can differentiate the seesaw function with § = %, even though the derivative is not

. . . 1 o
continuous. The result is an offset square wave, or by mapping x — x + 5 We recover the original
square wave.



1.8 Parseval’s theorem

Parseval’s theorem relates the integral of the square of a function with the squares of the function’s
Fourier series coefficients.

Theorem. Suppose f has Fourier coefficients a;, b;. Then

fo P - /0 :

We can remove cross terms, since the basis functions are orthogonal.
L 1 = 1772 - nwx
T . 2 N7
= Zaj+ ), ajcos? ==+ ) bisin® —— [dx
4 L L
0 n=1 n=1

1 ()
sa} + ). (ak +b2)
n=1

2

1 -~ krx < nmwx
—a aj COS —— b, sin —— | dx

=L
2

This is also called the completeness relation: the left hand side is greater than or equal to the right
hand side if any of the basis functions are missing.

Example. Let us apply Parseval’s theorem to the sawtooth wave.

L L
2
f [f(x)]?dx = / x?dx = =13
-L -L 3
The right hand side gives
i A2 4P Q1
272 g2 2
— nim m? ~ n?
Parseval’s theorem then implies
0 2
LIz
> =
= 6

Remark. Parseval’s theorem for functions is equivalent to Pythagoras’ theorem for vectors in R": we
can find the norm of a linear combination by computing the sum of the norms of the components.

1.9 Half-range series

Consider f(x) defined only on 0 < x < L. We can extend the range of f to be the full range —L <
x < L in two simple ways:

(i) require f to be odd, so f(—x) = —f(x). Hence, a,, = 0 and
2 L nmwx
bn = Z ./0‘ f(X) Sin T dx
So
. nTX
fx)= ngl b, sin <

which is called a Fourier sine series.



(ii) require f to be even, so f(—x) = f(x). In this case, b, = 0 and

2 L nmwx
a, = E f(.X') CosS T dx
0

and

1 o~ nmx
Sof(x) = 5ao0+ Z @ COS ——
n=1

which is a Fourier cosine series.

1.10 Complex representation of Fourier series

Recall that
ntx 1, :
cos T — E(emﬂ'x/L + e—mrrx/L);
nmwx 1 . .
sin —= = — elmrx/L _ e—lmrx/L
T = )

Therefore, a Fourier series can be written as

Lo 15 N o
f(x) = an + 5 Z [(an _ lbn)elmrx/L + (an + lbn)e mﬂx/L]
n=1
[0¢]
- Z ¢, eimmx/L
m

m=—oco

where for m > 0 we have m = n,c,, = %(an — ib,), and for m < 0 we have n = —m,c,, =

1 . 1 .
E(a_m +ib_,,), and where m = 0 we have ¢, = 590 In particular,

L
— 1 —immx/L
Cm = 57 ./_Lf(x)e dx

where the negative sign comes from the complex conjugate. This is because, for complex-valued f, g,
we have

L
g = f frgdx
L

The orthogonality conditions are

L
/ e—imax/Loinzx/L 4y — 2L,
—-L

Parseval’s theorem now states

L L 0
f F(Of () dx = f FEPdx=2L Y lenl’
L L

m=—oo



1.11 Self-adjoint matrices

Much of this section is a recap of IA Vectors and Matrices. Suppose thatu, v € CN with inner product
(u,v) = u'v
The N X N matrix A is self-adjoint, or Hermitian, if
Vu,v € CN,(Au,v) = (u,Av) <= AT =A
The eigenvalues 4,, and eigenvectors v,, satisfy
Av, = 1,0,

They have the following properties:
@ A5 =4y
(i) Ap # Al = (U Um) = 0;
(iii) we can create an orthonormal basis from the eigenvectors.

Given b € C", we can solve for x in the general matrix equation Ax = b by expressing b in terms of
the eigenvector basis:

N
b= by,
n=1
We seek a solution of the form
N
X = Z Uy
n=1

At this point, the b, are known and the c,, are our target. Substituting into the matrix equation,
orthogonality of basis vectors gives

N N
A Z CplUy = Z b,v,
n=1 n=1

N N
Z CnAnUp = Z bnvy,
n=1 n=1

Cpldy = by,
b
c, = /1—:

Therefore,
N
x=y

provided 4,, # 0, or equivalently, the matrix is invertible.

10



1.12 Solving inhomogeneous ODEs with Fourier series

We wish to find y(x) given a source term f(x) for the general differential equation

with boundary conditions y(0) = y(L) = 0. The related eigenvalue problem is

LYn = 2AnYn, Yn(0) =y,(L) =0

nTx nrw

L M= (T)
We can show that this is a self-adjoint linear operator with orthogonal eigenfunctions. We seek solu-
tions of the form of a half-range sine series. Consider

which has solutions R

Yu(x) = sin

oo
. n7TX
y(x) = nZ::l Cp SN ——

The right hand side is
X

n
fx)= Zb sin —— 7
We can find b,, by
L
Zf . h7X
== f(x)sin — dx
L o L

Substituting, we have

By orthogonality,

Therefore the solution is

L\, . nmx b
y(x) = Z (E) b, sin I = Z /TnYn
n n

n

which is equivalent to the solution we found for self-adjoint matrices for which the eigenvalues and
eigenvectors are known.

Example. Consider an odd square wave with L = 1,s0 f(x) = 1from0 < x < 1.

_ sin(2m — 1)zrx
fo = 4; @em-Dr
Then the solution to £y = f should be (with odd n = 2m — 1)

Z sin2m — 1)mrx

b,

11



This is exactly the Fourier series for
1
y(x) = 3x(1 - %)

so this y is the solution to the differential equation. We can in fact integrate £y = 1 directly with the
boundary conditions to verify the solution. We can also differentiate the Fourier series for y twice to
find the square wave.

2 Sturm-Liouville theory

2.1 Second-order linear ODEs
This section is a review of IA Differential Equations.

We wish to solve a general inhomogeneous ODE, written

Ly = a(x)y" + Bx)y" +y(x)y = f(x)

The homogeneous version has f(x) = 0, so £y = 0, which has two independent solutions y;, y,.
The general solution, also the complementary function for the inhomogeneous ODE, is y.(x) =
Ay1(x) + By,(x). The inhomogeneous equation £y = f(x) has a solution called the particular integ-
ral, denoted y,(x). The general solution to this equation is then y, + y..

We need two boundary or initial conditions to find the particular solution to the differential equa-
tion. Suppose x € [a, b]. We can create boundary conditions by defining y(a), y(b), often called the
Dirichlet conditions. Alternatively, we can consider y(a), y'(a), called the Neumann conditions. We
could also used some kind of mixed condition, for instance y + ky'. Homogeneous boundary condi-
tions are such that y(a) = y(b) = 0. In this part of the course, homogeneous boundary conditions
are often assumed. Note that we can add a complementary function y, to the solution, for instance
y = y + Ay, + By, such that y(a) = y(b) = 0. This would allow us to construct homogeneous
boundary conditions even when they are not present a priori in the problem. We could also specify
initial data, such as solving for x > a, given y, )’ at x = a.

To solve the inhomogeneous equation, we want to use eigenfunction expansions such as Fourier
series. In order to do this, we must first solve the related eigenvalue problem. In this case, that
is

a(x)y” + B(x)y" +y(x)y = =Ap(x)y
We must solve this equation with the same boundary conditions as the original problem. This form of

equation often arises as a result of applying a separation of variables, particularly for PDEs in several
dimensions.

2.2 Sturm-Liouville form

For two complex-valued functions f, g on [a, b], we define the inner product as

b
(frg) = f Fr (g dx

The eigenvalue problem above greatly simplifies if £ is self-adjoint, that is, if it can be expressed in
Sturm-Liouville form:

Ly =(=py') +qy = Awy
A is an eigenvalue, and w is the weight function, which must be non-negative.

12



2.3 Converting to Sturm-Liouville form
Suppose we have the eigenvalue problem
a(x)y" +B(X)y" +y(x)y = —Ap(x)y
Multiply this by an integrating factor F to give
Fay" + FBy' + Fyy = —AFpy
%(Focy’) —F'ay' —Fa'y+ FBy' + Fyy = —AFpy

To eliminate the y’ term, we require F'a = F(8 — «’). Thus,

F  g-ad *B—a
— = F = d
7 T = expf 5 dx

and further,
(Fay')' + Fyy = —AFpy

hence
p=Fa
q=Fy
w=Fp

and F(x) > 0 hence w > 0.

Example. Consider the Hermite equation,
y'=2xy' +2ny=0

In this case,
x —2X 2
F=expf de:e‘x

Then the equation, in Sturm-Liouville form, is

!/

Ly = —(e‘xzy’) = 2ne‘x2y

2.4 Self-adjoint operators

L is a self-adjoint operator on [a, b] for all pairs of functions y;, y, satisfying appropriate boundary
conditions if

01, Ly2) = (Ly1,¥2)

Written explicitly,
b b

f Yi()Ey,(x) dx = f (Cy1(x)) ya(x) dx

13



Substituting Sturm-Liouville form into the above,
b
V1, LY2) =Ly, y2) = f [=y1(py5) + y19y2 + y2(py1)' — y2qy1]dx
ab
= f [=01(py5) + y19y2 + y2(py1)' — y2qy1]dx
ab
= [ ey + natoviy1 e
a
Adding -y py; + 1Py,
b
= f [—(py1y2) + (py1y2)'1dx
a

= [—py1y5 + pyiy1d

which must be zero for an equation in Sturm-Liouville form to be self-adjoint.

2.5 Self-adjoint compatible boundary conditions

+ Suppose y(a) = y(b) = 0. Then certainly the Sturm-Liouville form of the differential equa-
tion is self-adjoint. We could also choose y'(a) = y'(b) = 0. Collectively, the act of using
homogeneous boundary conditions is known as the regular Sturm-Liouville problem.

Periodic boundary conditions could also be used, such as y(a) = y(b).

« If a and b are singular points of the equation, i.e. p(a) = p(b) = 0, this is self-adjoint compat-
ible.

+ We could also have combinations of the above properties, one at a and one at b.

2.6 Properties of self-adjoint operators

The following properties hold for any self-adjoint differential operator £.
(i) The eigenvalues A,, are real.
(ii) The eigenfunctions y, are orthogonal.

(iii) The y,, are a complete set; they span the space of all functions hence our general solution can
be written in terms of these eigenfunctions.

Each property is proven in its own subsection.

2.7 Real eigenvalues

Proof. Suppose we have some eigenvalue 4,,, so £Ly,, = 4,,wy,,. Taking the complex conjugate, Ly;, =
A,wyr, since £, w are real. Now, consider

b
f nLyn — ynLyn)dx
a

14



which must be zero if £ is self-adjoint. This can be written as

b
(e = 2 f 0yLya dx
a

The integral is nonzero, hence 1,,—4;, = 0 which implies 4,, isreal. Note, if the 4,, are non-degenerate
(simple), i.e. with a unique eigenfunction y,, then y;, = y,, hence they are real. We can in fact show
that (for a second-order equation) it is always possible to take linear combinations of eigenfunctions
such that the result is linear, for example in the exponential form of the Fourier series. Hence, we
can assume that y,, is real. We can further prove that the regular Sturm-Liouville problem must
have simple (non-degenerate) eigenvalues 4,,, by considering two possible eigenfunctions u, v for
the same A, and use the expression for self-adjointness. We find ulv — (Lu)v = [—p(uv’ — u'v)]’
which contains the Wronskian. We can integrate and impose homogeneous boundary conditions to
get the required result. O

2.8 Orthogonality of eigenfunctions

Suppose L£y,, = A, wy,, and Ly, = 4,,wy,, where 1,, # 1,,. Then, we can integrate to find

b b
f Omlyn — ynlym)dx = (4, — lm)/ wYy,Ym dx = 0 by self-adjointness
a a

Since 4,, # 4,,, we have
b

Vn # m,f WY, Vmdx =0
a

Hence, y,, and y,, are orthogonal with respect to the weight function w on [a, b].

Definition. We define the inner product with respect to w to be

b

(.8 = f wf*gdx

Note,
<fsg>w =(wf,g) = (f, wg)

Hence, the orthogonality relation becomes

Vn’ # ma<yn’ym>w = 0

2.9 Eigenfunction expansions

The completeness of the family of eigenfunctions (which is not proven here) implies that we can
approximate any ‘well-behaved’ f(x) on [a, b] by the series

fx) = Z anyn(x)

n=1

15



This is comparable to Fourier series. To find the coefficients a,,, we will take the inner product with
an eigenfunction. By orthogonality,

b b b

[So]
f wy,,fdx = Z a, | wy,ymdx= amf wy?, dx
a n=1 a a
Hence, )
_Jy wynfdx
n — b 5
fa wysn dx
We can normalise eigenfunctions, for instance
()
V(o) = —2m2
b 1
( S, wyh dx)2

hence
<Yn’ Ym>w = anm
giving an orthonormal set of eigenfunctions. In this case,

f) =AY,
n=1

where
b

Ay =f wY, fdx
a

Example. Recall Fourier series in Sturm-Liouville form:

d%y
Lyn = Tdxe2 = AnYn

where in this case we have

2.10 Completeness and Parseval’s identity

Consider R

b 0
f [f(x)_zanyn] wdx
a n=1

By orthogonality, this is equivalently

b
f[fZ—ZfZanyn+Za%yﬁ]wdx

Note that the second term can be extracted using the definition of a,,, giving

I

b b

wfzdx—Zai wy? dx
n=1 a

16



If the eigenfunctions are complete, then the result will be zero, showing that the series expansion

converges.
b

f wftdx= ) ak wyndx—Z:A2
a

n=1 a

If some eigenfunctions are missing, this is Bessel’s inequality:

b

f wfrdx > > A2
a

n=1
We define the partial sum to be
N
Sn(x) = Z anyn
n=1
with f(x) = limpy_ o Sy(x). Convergence is defined in terms of the mean-square error. In particular,
if we have a complete set of eigenfunctions,
b

ey = f W[ () = Sp()2dx = 0

This ‘global’ definition of convergence is convergence in the mean, not pointwise convergence as in
Fourier series. The error in partial sum S is minimised by a,, above for the N = oo expansion.

b N b
Ot
a—N = —Zf Yaw| f =D apy, [dx = —Zf (wfy, — a,wys)dx =0
Qn a n=1 a
2
It is minimal because we can show :— 2 f wy? dx > 0. Thus the a, given above is the best

possible choice for the coefficient at all N.

2.11 Legendre’s equation

Legendre’s equation is
(1—-x2)y" —2xy'+ 1y =0

n [—1, 1], with boundary conditions that y is finite at x = +1, at the regular singular points of the
ODE. This equation is already in Sturm-Liouville form with

p=1-x}q=0w=1
We seek a power series solution centred on x = 0:
y= Z cpx"
n
Substituting into the differential equation,

1- xz)z n(n—1)x,x" 2 — ZxZ c,ct + /12 c,x" =0
n n n

Equating powers,
(n+2)n+1)cy.p —n(n—1)c, —2nc, + Ac, =0

17



which gives a recursion relation between c,,, and c,,.

_ nn+1)—24
2= D+ 2) "

Hence, specifying c,, c; gives two independent solutions. In particular,

Yeven = Co[l + (_Z?)xz + © _i!)(_/l)x“ + ... ]

x+ﬂx3+...]

yOdd = Cl 3!

+

C . . . .
Asn — oo, 22 5 1. So these are geometric series, with radius of convergence |x| < 1, hence there

Cn
is divergence at x = +1. So taking a power series does not give a useful solution.
Suppose we chose 4 = €(€ +1). Then eventually we have n such that the numerator vanishes. In par-

ticular, by taking A = €(€+ 1), either the series for yeyen O Yoqq terminates. These functions are called
the Legendre polynomials, denoted P,(x), with the normalisation convention P,(1) = 1.

« £=0,1=0,R(x) =1
e ¢=1,1=2,B(x)=x

3x2-1

+ 6=2,2=6B(x) = =

5x3-3x

e £=3,1=12,B(x) =

Note, P,(x) has ¢ zeroes. The polynomials oscillate in parity.

2.12 Properties of Legendre polynomials
Since Legendre polynomials come from a self-adjoint operator, they must have certain conditions,

such as orthogonality. For n # m,
1

/ P,B,dx =0
-1
1

2
BZdx =
f_l” T ot

We can prove this with Rodrigues’ formula:

They are also normalisable,

B(x) = zfm(%)n(xz —1y

Alternatively we could use a generating function:

- 1 1 3 2
2 RO = e = 14 5 (2xt = 2) + (200 = £2) 4.,

n=0 v1—2xt+t2

— 1 2 _ 2
=1+xt+ 2(3x e+ ..

18



There are some useful recursion relations.
€(€ + 1)P€+1 = (2€ + 1)XP€(X) - €P€_1(x)

Also, q
(2¢ + 1)Py(x) = a[Peﬂ(x) — Pp_1(X)]

2.13 Legendre polynomials as eigenfunctions

Any (well-behaved) function on [—1, 1] can be expressed as

f(x) = D agPy(x)
€=0

where

1
a =22 [ feorioax
-1

with no boundary conditions (e.g. periodicity conditions) on f.

2.14 Solving inhomogeneous differential equations

This can be thought of as the general case of Fourier series discussed previously.

Consider the problem
Ly = f(x) = w(x)F(x)

on x € [a, b] assuming homogeneous boundary conditions. Given eigenfunctions y,(x) satisfying
Ly, = 4,wy,, we wish to expand this solution as

y(x) = Z CnYn(X)

and

F(x) = 3 anyn(x)

where a,, are known and c,, are unknown:

j;lb wFy, dx
n= "} >
J, wyndx
Substituting,
Ly = chnyn = chn/lnyn = wz anyYn
n n n
By orthogonality,
al’l
Chhn=0a, = ¢, = =—
An

In particular,

¥ = ) Fyn()
n=1""1

19



We can further generalise; we can permit a driving force, which often induces a linear response term
Awy.

Ly = wy = f(x)
where 1 is fixed. The solution becomes

[e5]

) = 3 ()

2.15 Integral solutions

Recall that b

W=3 9y = 22 Ry de

e ,;Any V=L, )Y Y
where

N, = / wy? dx
This then gives
o) = f Zy"( ) wr(e)as = f Gx: ) (&) dg
Al RG)
G(x,8)

where

G(x, &) = Z yn(/f)])\"[n(g)

is the eigenfunction expansion of the Green’s functlon. Note that the Green’s function does not de-
pend on f, but only on £ and the boundary conditions. In this sense, it acts like an inverse oper-
ator

“= [aeep

analogously to how Ax = b = x = A~!b for matrix equations.

2.16 Waves on an elastic string

Consider a small displacement y(x, t) on a stretched string with fixed ends at x = 0 and x = L, that
is, with boundary conditions y(0, t) = y(L, t) = 0. We can determine the string’s motion for specified

initial conditions y(x,0) = p(x) and C;—}: = q(x). We derive the equation of motion governing the

motion of the string by balancing forces on a string segment (x, x + dx) and take the limit as x — 0.
Let T; be the tension force acting to the left at angle 6, from the horizontal. Analogously, let T, be

the rightwards tension force at angle 8,. We assume at any point on the string that (—Zy ‘ < 1, so the
X
angles of the forces are small. In the x dimension,

Ticosf; =T,cos0, = T1~T, =T

So the tension T is constant up to an error of order O<|Z—y| ) In the y dimension, since 6 are
X

_ Oy 3%y
" ax >~ T5xa0x

small,
dy

Fr = T,sin 6, — T 6~T
T = T,sin 6, — T sin 6, <6x

X+06x

20



By F = ma,
3%y
W Ta 25x g,u5x

where F, is the gravitational force and u is the linear mass density. We define the wave speed as

T
c=,/=
u

3% _Td% _ ,0%

2 " mox2 87 5x2

We often assume gravity is negligible to produce the pure wave equation

FT + F (,uax)

and find

1%y _ oy
c2 o2 9x2?

3 Separation of variables

3.1 Separation of variables

We wish to solve the wave equation subject to certain boundary and initial conditions. Consider a
possible solution of separable form:
y(x, 1) = X(X)T(1)

Substituting into the wave equation,
iy = Ixi=xr
a2y =Y 27 T

Then
17T X’

2T~ X

However, ; depends only on ¢ and X; depends only on x. Thus, both sides must be equal to some

separation constant —A.
1

Xl/
> =Y=_/l

o
SN

Hence,
X'+2X=0; T+A*T=0
3.2 Boundary conditions and normal modes

We will begin by first solving the spatial part of the solution. One of A > 0,1 < 0,4 = 0 must be true.
The boundary conditions restrict the possible A.

(i) First, suppose A < 0. Take y? = —A. Then,
X(x) = AeX* + Be™** = C cosh(yx) + D sinh(yx)

The boundary conditions are x(0) = x(L) = 0, so only the trivial solution is possible: C = D =
0.
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(ii) Now, suppose 4 = 0. Then
X(x)=Ax+B

Again, the boundary conditions impose A = B = 0 giving only the trivial solution.

(iii) Finally, the last possibility is 4 > 0.

X(x) =Acos (ﬁx) + Bsin (ﬁx)

The boundary conditions give
A=0; Bsin(ﬁL) =0 = \/ZL =nn

The following are the eigenfunctions and eigenvalues.
X, (x) = B, sin @; Ap = (E)z

L L

These are also called the ‘normal modes’ of the system. The spatial shape in x does not change in
time, but the amplitude may vary. The fundamental mode is the lowest frequency of vibration, given

by
2

T
n=1—= A = 573

The second mode is the first overtone, and is given by
47
n=2 —= /12 = F

3.3 Initial conditions and temporal solutions

Substituting 4,, into the time ODE,

2,22
..  N°mec
T+ 7 T=0
Hence,
nm nrmct
T,(t) =Cy, D, sin —
(1) cos — L + T

Therefore, a specific solution of the wave equation satisfying the boundary conditions is (absorbing
the B, into the C,,, D,,):

n7w ct) . nmx
L

Vau(x,t) = T,()X,(x) = (C cos —— L +Dn HT sin

To find a particular solution for a given set of initial conditions, we must consider a linear superpos-
ition of all possible y,,.

niwx

[So]
et
y(x,t) = Z (C cos 24 + D, s in 22 )sin —
i L L L

By construction, this y(x, t) satisfies the boundary conditions, so now we can impose the initial con-
ditions.

y(x,0) = p(x) = Z C, sin — nrx
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We can find the C,, using standard Fourier series techniques, since this is exactly a half-range sine
series. Further,

6y(x0) ()—ZED sin@

At = L " L
Again we can solve for the D, in a similar way. In particular,
2 t nmx
C, = E/o p(x) sinT dx
t nmx
Dn = % A q(X) sin T dx

Example. Consider the initial condition of a see-saw wave parametrised by &, and let L = 1. This
can be visualised as plucking the string at position &.

x1-¢& o0<x<¢
,0 = =
¥(x,0) = p(x) {5(1—x) fex el
We also define
oy(x, O) 4(x) =
at a
The Fourier series for p is given by
2sinnmé _
SR

Hence the solution to the wave equation is

y(x,t) = Z ( )2 sin n7é sin nzrx cos nzct

3.4 Separation of variables methodology
A general strategy for solving higher-dimensional partial differential equations is as follows.
(i) Obtain a linear PDE system, using boundary and initial conditions.
(ii) Separate variables to yield decoupled ODEs.
(iii) Impose homogeneous boundary conditions to find eigenvalues and eigenfunctions.
(iv) Use these eigenvalues (constants of separation) to find the eigenfunctions in the other variables.
(v) Sum over the products of separable solutions to find the general series solution.
(vi) Determine coefficients for this series using the initial conditions.

Example. We will solve the wave equation instead in characteristic coordinates. Recall the sine and
cosine summation identities:

o0

y(x,t) = % 2 [(Cn sin 2% (x —ct)+ D, cos 2% (x — ct))

. nmw nzw
+ (Cn sin T(x + ct) — D, cos T(x + ct))

= f(x—ct) + g(x +ct)
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The standing wave solution can be interpreted as a superposition of a right-moving wave and a left-
moving wave. A special case is q(x) = 0, implying f = g = % p. Then,

Y0, 0) = 3[pCx = et) + plx + )]

3.5 Energy of oscillations

A vibrating string has kinetic energy due to its motion.

1 L dy 2
Kinetic energy = SH fo <§> dx

It has potential energy given by

T 3y 2 1 L 3y 2
Potential energy = TAx = T[ ( 1+<a> —l)dxz ET/O <§) dx

assuming that the disturbances on the string are small, that is, | =

e[ [(3) +e(3) o

Substituting the solution, using the orthogonality conditions,

0 L
1 nmc nmc nrct . 2 NTX
= — — —D - -
2“;0[( Cusin T + “FEDy cos M) sin’ 7

string, given ¢ = T/u, is given by

dx

5 nct o et *n2n? og2 X
c“{ Gy, cos —

1 — l’l27T26'
= K Z (C3+D3)

n=1

which is an analogous result to Parseval’s theorem. This is true since

2 PX :1
fcos I dx=3

and cos? + sin® = 1. We can think of this energy as the sum over all the normal modes of the energy
in that specific mode. Note that this quantity is constant over time.

3.6 Wave reflection and transmission
The travelling wave has left-moving and right-moving modes. A simple harmonic travelling wave
is

y = Re[Aei®=*/9] = A cos [w(t — x/c) + ¢]

24



where the phase ¢ is equal to arg A, and the wavelength A is 27zc/w. In further discussion, we assume
only the real part is used. Consider a density discontinuity on the string at x = 0 with the following

properties.
4 forx <o c_=1/1 forx <0
M= { - — C = K-

Uy forx >0 cy = /L forx>o0
M+

assuming a constant tension 7. As a wave from the negative direction approaches the discontinuity,
some of the wave will be reflected, given by Bel@(t+x/c2) and some of the wave will be transmitted,
given by Del®(!=*/¢+) The boundary conditions at x = 0 are

(i) y is continuous for all ¢ (the string does not break), so
A+B=D (%)

.. el e} . e} . .
(ii) The forces balance, T —y| =T7Z which means =% must be continuous for all ¢. This
Ox lx=0- Ox Ix=0+ ox
gives
—iwA  iwB _ —iwD
c_ c. ¢y

()

We can eliminate B from (x) by subtracting %(T).

c D
2A=D+D—=—(c, +c_)
cy C4

Hence, given A, we have the solution for the transmitted amplitude and reflected amplitude to be

2c
D= +

cy —cC_
= A; B= +
c_+cy

T c_+cy

In general A, B, D are complex, hence different phase shifts are possible.
There are a number of limiting cases, for example
(i) Ifc_ =c, wehave D = A and B = 0 so we have full transmission and no reflection.

(ii) (Dirichlet boundary conditions) If B+ _, o, this models a fixed end at x = 0. We have Z—* -0

Mo _
giving D = 0 and B = —A. Notice that the reflection has occurred with opposite phase, ¢ = 7.

(iii) (Neumann boundary conditions) Consider B+ _, 0, this models a free end. Then & — oo

M _
giving D = 2A, B = A. This gives total reflection but with the same phase.

3.7 Wave equation in plane polar coordinates

Consider the two-dimensional wave equation for u(r, 6, t) given by

1 d%u

— 2
a2z -V

with boundary conditions at ¥ = 1 on a unit disc given by

u(1,6,t) =0
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and initial conditions for ¢t = 0 given by

u(r,6,0) = ¢(r,0); % =(r,0)

Suppose that this equation is separable. First, let us consider temporal separation. Suppose that
u(r,6,t) = T(t)V(r,0)
Then we have
T+A2T=0; V2V+AV=0
In plane polar coordinates, we can write the spatial equation as

62_V 19V 1%V

a7 Y rar Tree TAV =0

We will perform another separation, supposing
V(r,6) = R(r)©(6)

to give
©" +u®=0; r*R"+rR +(Ar*—u)R=0
where 4,u are the separation constants. The polar solution is constrained by periodicity ®(0) =
©(2), since we are working on a disc. We also consider only x > 0. The eigenvalue is then given by
u = m?, where m € N.
0,,(6) = A,, cosmb + B, sin mb

Or, in complex exponential form,

0,,(8) = Cpre™®;, mez

3.8 Bessel’s equation

We can solve the radial equation (in the previous subsection) by converting it first into Sturm-Liouville
form, which can be accomplished by dividing by r.

d, . m?
E(I’R ) - 7 = —ArR

where p(r) = r,q(r) = mTz,w(r) = r, with self-adjoint boundary conditions with R(1) = 0. We will
require R is bounded at R(0), and since p(0) = 0 there is a regular singular point at r = 0. This

particular equation for R is known as Bessel’s equation. We will first substitute z = ﬁr, then we
find the usual form of Bessel’s equation,

d’R  dR
2 2 _ p2\p —
de2+de+(z m*)R=0

We can use the method of Frobenius by substituting the following power series:

(6]
— n
R=2zP Z a,z
n=0
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to find

(o]
Z [an(n+ p)(n+ p—1)z"P + (n+ p)z"™*P + 2"PH2 4 m?z"P| =0

n=0

Equating powers of z, we can find the indicial equation
pPP—-m?*=0 = p=m,—m

The regular solution, given by p = m, has recursion relation
(n+m)’a, + a,_, —m?a, =0

which gives

-1
an )an—z

- n(n+2m

Hence, we can find
(="

=% 22npln+m)(n+m—1)...(m+1)

aon

If, by convention, we let
1

o = 2Mm!

we can then write the Bessel function of the first kind by

%@=@W2a%%@@)

n=0

2n

3.9 Asymptotic behaviour of Bessel functions

If z is small, the leading-order behaviour of J,,,(z) is
Jo(z) =1
1 /z\"™
In@ = 7(3)

Now, let us consider large z. In this case, the function becomes oscillatory;

Jn(2) ~ \/gcos(z - % - %)

3.10 Zeroes of Bessel functions

We can see from the asymptotic behaviour that there are infinitely many zeroes of the Bessel functions
of the first kind as z — co. We define jy,,,, to be the nth zero of J,,, for z > 0. Approximately,

cos(z mr ﬂ)—O:'z mr n—mr i
2 4) 2 4 2
Hence
mm T .
Zzn7T+T—2=mn
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3.11 Solving the vibrating drum

Recall that the radial solutions become
Rpn(2) = Rpy(VAx) = Aly(VAx) + BY,,(V2x)

Imposing the boundary condition of boundedness at r = 0, we must have B = 0. Further imposing
r =1and R = 0 gives Jm(\/jl) = 0. These zeroes occur at j,,, ~ nmt+ % — %. Hence, the eigenvalues

must be j2,,. Therefore, the spatial solution is

Vian(r, 0) = 0, ()R (W A1) = (A, €08 MO + Byyyyy Sin mO)Jp, (i)
The temporal solution is
T =-AcT = T,u(t) = cos(jpnct), sin(jnct)

Combining everything together, the full solution is

[
u(r,6,6) = Y Jo(jonr)(AOR cos jouct + Cop Sin jonct)

n=1

+ Z Z I Umn) (A c0s MO + By, sin mO) cos j,,ct

m=1n=1

+ Z Z Jn(Gmn? (Cyppp cOs MO + Dy, sSin mO) sin j,,Ct

m=1n=1

Now, we impose the boundary conditions

u(r,6,0) = ¢(r,0) = Z Z Jn(Gmn?) (A cos mO + B, sin mo)

m=0n=1

and
[se] [s+]

ou . . .
5, (1-6,0) =9(r,0) = D0 > jmnCIn(mn)(Cpun €08 MO + Dy sin mo)

m=0n=1

We need to find the coefficients by multiplying by J,,, cos, sin and using the orthogonality relations,
which are

1
, . 1., .. 1 .
f Jm(]mnr)]m(Jmkr)r dr = E[Jm(Jmn)]zank = z[]m+1(]mn)]25nk
0

by using a recursion relation of the Bessel functions. We can then integrate to obtain the coefficients

Apn-
1

27
. T . 2
f dé cos p@f rdrJ,(jpgH)e(r,6) = E[JPH(JPQ)] Apq
0 0
where the g coefficient is 27 for p = 0. We can find analogous results for the By,,,, Cyyns Dyn-

Example. Consider an initial radial profile u(r, 6,0) = ¢(r) = 1 — r2. Then, m = 0, B,,,, = 0 for all
m and A,,,,, = 0 for all m # 0. Then

ou
a(r, 0,00=0
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hence Cy,,,, Dy, = 0. We just now need to find

1

2 f ToGonr)(1 = P2rdr =
0

~ Jo(jon)?

Then the approximate solution is

2 D(jon) ~ J>(jon)
Jo(jon)? jén

Aop asn — oo

[eo]
u(r, 6,) = 3 AonJo(jonT) €S jonct

n=1

The fundamental frequency is wy = jmc% ~ 4.82 where d is the diameter of the drum. Comparing

this to a string with length d, this has a fundamental frequency of wg = % ~ 0.77w,.

3.12 Diffusion equation derivation with Fourier’s law

In a volume V, the overall heat energy Q is given by

Q= f cypfdvV
14
where ¢y, is the specific heat of the material, p is the mass density, and 6 is the temperature. The rate

of change due to heat flow is
dQ _ 06
@ s

q=-kV6

Fourier’s law for heat flow is

where q is the heat flux. We will integrate this over the surface S = 9V, giving

The negative sign is due to the normals facing outwards. This is exactly
_do _ f(—kV@) - nds = f —kv20dV
dt : v
Equating these two forms for ﬂ, we find

dt
f(ch@ —kV20)dV =0
(P

Since V was arbitrary, the integrand must be zero. So we have

Bk g29-¢
ot cypp
LetD = % be the diffusion constant. Then we have the diffusion equation
14
% _ DV26=0
ot
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3.13 Diffusion equation derivation with statistical dynamics

We can derive this equation in another way, using statistical dynamics. Gas particles diffuse by scat-
tering every fixed time step At with probability density function p(£) of moving by a displacement £.
On average, we have

& = f p(O)EdE =0

since there is no bias the direction in which any given particle is travelling. Suppose that the probab-
ility density function after NAt time is described by Pya;(x). Then, for the next time step,

Pivansi(0) = f P(E)Pya(x — £)dE

Using the Taylor expansion,

[« 2
Povsom @)% [ 90| P 0+ Boad (-9 + Riae (05 + | e

(&)

~ Pyar(x) = Bya () (6) + P]\’I’At(x)T T

(&)

~ Pyas(x) + PI\’,’At(x)T + -

since [ p(€) d¢ = 1. Identifying Pya;(x) = P(x, NAt), we can write

& (%)
P(x,(N + 1)At) — P(x, NAt) = mP(x, NAt)T
()

Assuming that the variance = is proportional to DAt, then for small At, we find

v _ o
ot T ox2

which is exactly the diffusion equation.

3.14 Similarity solutions

The characteristic relation between the variance and time suggests that we seek solutions with a
dimensionless parameter. If we can a change of variables of the form 6(n) = 6(x, t), then it will likely
be easier to solve. Consider

X
n=
2Dt
Then,
B _md _-1_x o, _=ln,
ot~ dtdn 2 \[ppr 2t
and

320 o (09 (1 \N_ D, 1,
Doe ”a(a%) = Da(r,—m@ ) TR

Substituting into the diffusion equation,

6// — _2176/
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Lety = 6'. Then
% = —2n = Iny = —n? + constant

Then, choosing a constant of ci

N
P = cie"}2 = 0(n) = ci /7] e du = cerf(n) = cerf( X )
Vr V7 Jo 2/Dt

where

T

erf(z) = 2 / ) e du
V7 Jo

This describes discontinuous initial conditions that spread over time.

3.15 Heat conduction in a finite bar

Suppose we have a bar of length 2L with —L < x < L and initial temperature

1 if0<x<L

6(x,0)=H(x):{O if —L<x<O0

with boundary conditions (L, t) = 1, 6(—L, t) = 0. Currently the boundary conditions are not homo-
geneous, so Sturm-Liouville theory cannot be used directly. If we can identify a steady-state solution
(time-independent) that reflects the late-time behaviour, then we can turn it into a homogeneous set
of boundary conditions. We will try a solution of the form

6,(x)=Ax+B

since this certainly satisfies the diffusion equation. To satisfy the boundary conditions,

Hence we have a solution
_x+L

6. =
STo2L
We will subtract this solution from our original equation for 6, giving

B(x,t) = 6(x, ) — 65(x)
with homogeneous boundary conditions
6(-L,t)=6(L,1) =0
and initial conditions

X+ L
2L

We will now separate variables in the usual way. We will consider the ansatz

6(x,0) = H(x) —

6(x.t) = X(X)T(t) = X" = —AX;T = —DAT
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The boundary conditions imply 4 > 0 and give the Fourier modes X(x) = A cos ﬁx + Bsin ﬁx.
For cos \/EL = 0, we require \/4,, = % for m odd. Also, sin ﬁL = 0 gives /1, = "—Lﬂ for n even.
Since 8 is odd due to our initial conditions, we can take

niwx n-m

ananinT; Ay = ——

Substituting into T = —DAT, we have

Dn?n?
T,(t) =c, exp(—Tt>

In general, the solution is

A - . n7TX Dn?r?
O(x,t) = ,1Z=:1 b,, sin < exp(——t)

I2
3.16 Particular solution to diffusion equation
Recall that
5 = . hmx Dn?r?
o(x,t) = ;::1 b, sin < exp(—Tt>

Att = 0, we have a pure Fourier sine series. We can then impose the initial conditions, to give

L
1 7 . nmXx
b, = E[L¢(x,0)51anx

where .
y x
$(x,0) = H(x) - =
Hence, we can use the half-range sine series and find
L
2 1 P
bn = Zfo () = 3)sin °T= de— £ 37 sin 7 dx
square wave/2 sawtooth/2L
which gives
_ 2 B (_1)n+1
" 2m-1r nir

where n = 2m — 1, and the first term vanishes for n even. For n odd or even, we find the same
result

1
b, = —
nmw
Hence
o0 2.2
A 1 nrx —_pt7m,;
O(x,t) = — sin —e¢ 12
.0 HZI nmw L

For the inhomogeneous boundary conditions,

o)

x+L 1 . nmx _pr7
Q(X,t)= 2-54 +EESIHT6 b L2
n=1

The similarity solution %(1 + erf(%)) is a good fit for early ¢, but it does not necessarily satisfy the
boundary conditions, so for large ¢ it is a bad approximation.
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3.17 Laplace’s equation

Laplace’s equation is
V29 =0

This equation describes (among others) steady-state heat flow, potential theory F = —V¢, and in-
compressible fluid flow v = V¢. The equation is solved typically on a domain D, where boundary
conditions are specified often on the boundary surface. The Dirichlet boundary conditions fix ¢ on
the boundary surface dD. The Neumann boundary conditions fix 72 - V¢ on dD.

3.18 Laplace’s equation in three-dimensional Cartesian coordinates

In R3 with Cartesian coordinates, Laplace’s equation becomes

2  P¢p 0%

2 e e T
We seek separable solutions in the usual way:

$(x,y,2) = X(x)Y(»)Z(2)

Substituting,
X'YZ+XY"Z+XYZ" =0

Dividing by XY Z as usual,

Xl/ _ _Y// Z// _ A

Xy z 7

Y// _ _Z/l X// _ A

Y z x ™M

Z// _X/l Y//

7= X —7=—/‘Ln=/1€+/1m

From the eigenmodes, our general solution will be of the form

¢, 3,2) = D AomnXe(X)Yin(0)Z0(2)

£,m,n

Consider steady (% = 0) heat flow in a semi-infinite rectangular bar, with boundary conditions

p=0atx=0,x=a,y=0andy=b;andp =1atz=0and ¢ - 0asz — oo. We will solve for
each eigenmode successively. First, consider X" = —1,X with X(0) = X(a) = 0. This gives

r? . brx
Ag = 7, Xg = sin T
where ¢ > 0,¢ € N. By symmetry,
m?m? . mmy
Am = R Y, = sin 5

For the z mode,

. €2 mZ
7' =27 =Qp+2,)7Z = n2<a + ﬁ>z
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Since ¢ — 0 as z — o0, the growing exponentials must vanish. Therefore,

2 m2 1/2
Zom = €Xp _<§ + ﬁ) nz

Thus the general solution is

1/2
. fmx . mmy 2 m?
$(x,y,2) = ;naem sin — = sin — exp[—(; + 3] 7z
Now, we will fix a,,,, using ¢(x, y,0) = 1 using the Fourier sine series.

b a
2 2 . fmx . mmy
= — —_ 1 —_
Aom b_/; a-/o‘ sin —= sin — dxdy

square wave square wave

So only the odd terms remain, giving

P 4a . 4b
m = a2k — 1D b2p—x

where ¢ = 2k — 1 is odd and m = 2p — 1 is odd. Simplifying,

16
Ao = m for €,m0dd

So the heat flow solution is

m2ém

1/2
16 . fnx . €ny €2 m?
¢(x,y,z)—gn;)dd—SIIlTsu‘lTexp[_(;+ﬁ Tz

As z increases, every contribution but the lowest mode will be very small. So low ¢, m dominate the
solution.

3.19 Laplace’s equation in plane polar coordinates
In plane polar coordinates, Laplace’s equation becomes
19 /( ¢ 10%
rorlra) g =0
Consider a separable form of the answer, given by

¢(r,6) = R(r)©(6)

We then have
0" +u®=0; r(*R’Y —uR=0

The polar equation can be solved easily by considering periodic boundary conditions. This gives
u = m? and the eigenmodes
0,,(6) = cos mb, sin mb
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The radial equation is not Bessel’s equation, since there is no second separation constant. We simply
have
r(bR') —m?R =0

We will try a power law solution, r = arf. We find
B-m?=0 = B=+m

So the eigenfunctions are
R, (r)=r"r™m

which is one regular solution at the origin and one singular solution. In the case m = 0, we have
(rR') =0 = rR' = constant = R =logr

So
Ry(r) = constant, logr

The general solution is therefore

¢(r,0) = % +cologr + Z (ay, cosmb + b, sin mO)r'"™ + Z (¢;, cos mbB + d,,, sin mO@)r—™m

m=1 m=1

Example. Consider a soap film on a unit disc. We wish to solve Laplace’s equation with a vertically
distorted circular wire of radius r = 1 with boundary conditions ¢(1, 8) = f(6). The z displacement
of the wire produces the f(6) term. We wish to find ¢(r, 0) for r < 1, assuming regularity at r = 0.
Then, ¢,, = d,, = 0 and the solution is of the form

¢(r,0) = % + D (ap, cos MO + by, sin mO)r™
m=1

Atr=1,
#(1,0) = f(6) = % + > (ay oS MO + by, sin mo)

m=1

which is exactly the Fourier series. Thus,

1 2 1 27
a,, = ;[ f(@)cosmbdd; b, = Ef f(6)sinmbdo
0 0

We can see from the equation that high harmonics are confined to have effects only near r = 1.

3.20 Laplace’s equation in cylindrical polar coordinates

In cylindrical coordinates,
2 2
ror\ or

42462 " 322
With ¢ = R(r)©(6)Z(z), we find

Q" =—-u0; ZzZ"=1Z;, r(rR) +Mr*—wWR=0
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The polar equation can be easily solved by
U = m?;  0,,(0) = cosmb,sinmb
The radial equation is Bessel’s equation, giving solutions
R = J, (kr), Y,,(kr)

Setting boundary conditions in the usual way, defining R = 0 at r = a means that
J(ka) =0 = k=1%

The radial solution is

Rpn(r) = Jm<j'2" r)

We have eliminated the Y, term since we require r = 0 to give a finite ¢. Finally, the z equation
gives
7' =k*Z = Z=ek2 k2

We typically eliminate the e mode due to boundary conditions, such as Z — 0 as z — oco. The
general solution is therefore

(r,6,z) = Z Z (an cos m8 + b,,, sin m6)1m<JmT”r)e—fracjmnra
m=0n=1
3.21 Laplace’s equation in spherical polar coordinates
In spherical polar coordinates,
r20r\ dr) r2sin696 30) " j24in%0 09

We will consider the axisymmetric case; supposing that there is no ¢ dependence. We seek a separable
solution of the form
@(r,6) = R(r)©(6)

which gives
(sin6®’) 4+ Asin6® =0; (r*R’) —AR=0

. _— d A . .. de . Ad®
Consider the substitution x = cos 9, £ = —sin 0 in the polar equation. This gives -5 = —sin 6;
and hence

| . 2 ,dO . _ d NLC) _
—s1nea[—s1n Ga]+/lsm6®—0 = dx[(l X )dx]+/l®—0

This gives Legendre’s equation, so it has solutions of eigenvalues 1, = (¢ + 1) and eigenfunc-
tions
©4(8) = Py(x) = P,(cos 6)

The radial equation then gives
(r*R') — (6 +1)R=0

We will seek power law solutions: R = ar®. This gives

BB+1)—€(+1)=0 = B=¢=—¢-1
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Thus the radial eigenmodes are

£ —t—1

Ry, =7r"r

Therefore the general axisymmetric solution for spherical polar coordinates is

®(r,6) = D (apr’ + br=¢=1)P,(cos 6)
£=0

The a,, b, are determined by the boundary conditions. Orthogonality conditions for the P, can be
used to determine coefficients. Consider a solution to Laplace’s equation on the unit sphere with
axisymmetric boundary conditions given by

®(1,6) = f(9)

Given that we wish to find the interior solution, b,, = 0 by regularity. Then,
f(©) =D apPy(cos6)
£=0
By defining f(6) = F(cos 6),
F(x) = Y acPo(x)
€=0
We can then find the coefficients in the usual way, giving

1
a, = 2€2+ 1 / F(x)P,(x)dx
-1

3.22 Generating function for Legendre polynomials
Consider a charge at ry = (x,y,z) = (0,0, 1). Then, the potential at a point P becomes

1 1
[r—rol — (X2 +y2 + (x —1)2)12
_ 1
(r2(sin® ¢ + cos? ¢) sin” 6 + r2 cos? 6 — 2r cos 6 + 1)1/2
_ 1
(r2sin® 6 + r2 cos? 6 — 2r cos 6 + 1)1/2
_ 1
© (r2—2rcos6 +1)1/2
_ 1
(2 -2rx +1)12

o(r) =

where X = cos 6. This function @ is a solution to Laplace’s equation where r # r,. Note that we can
represent any axisymmetric solution as a sum of Legendre polynomials. Now,

1 [ee]
= D agPy(x)r’

Vr2=2rx+1 ¢=0
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With the normalisation condition for the Legendre polynomials P,(1) = 1, we find
1 o g
= Z Qapr
L-r £=0

Using the geometric series expansion, we arrive at a, = 1. This gives

1 o0
—————— =) Py’
V2 =2rx+1 ¢=0

which is the generating function for the Legendre polynomials.

4 Green’s functions

4.1 Dirac 6 function

Definition. We define a generalised function §(x — &) such that
(1) 6(x—¢&) =0forall x # &;
(i) S5, 8(x—&)dx = 1.
This acts as a linear operator f dx §(x — &) on some function f(x) to produce a number f(£).

f dx8(x — £)1 () = f(&)

(s

This relationship holds provided that f(x) is sufficiently ‘well-behaved’ at x = £ and x — *c0.

Remark. Strictly, the § ‘function’ is classified as a distribution, not as a function. For this reason,
we will never use § outside an integral, although such an integral may be implied. The 6 function
represents a unit point source or impulse.

We can approximate the & function using a Gaussian approximation.
1 x?
6.(x) = — exp[——]
) e e
Therefore,

f_: f0)8(x)dx = lii%/;m L\/—exp[—z—j]f(x) e

00 E\NTT
=tim | #eXp[—yz]f(sy) dy
=tim |~ % exp[—3?|LF(0) + ey f'(0) + -1 dy
- ()

for all well-behaved functions f at 0, +o0. We could alternatively use the Dirichlet kernel

sinnx 1 "
Sp(x) = = —/ etkx dkc
—-n

X 27
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or even n
2
Sn(x) = 2 sech” nx

4.2 Integral and derivative of § function

We define the Heaviside step function by

1 x>0

H(x)={0 X <0

For x # 0, we have
pe
H(x) = / o(t)dt

Thus,
d
aH (x) =8(x)

where this identification takes place under an implied integral. We define §'(x) using integration by
parts.

/ 5'(x — £)f(x) dx = [8(x — E)F O] - f 5(x — £)f'(x) dx

- f 5(x — E)f'(x) dx
= ()

This is valid for all f that are smooth at x = £.
Example. Consider the Gaussian approximation:
2
5:(x) = —= exp[—x—
N

Then,

4.3 Properties of § function

Note that
f§) a<f<b

0 otherwise

b
f FGO3(x — £)dx = {

So the § function only ‘samples’ values within the integral range. This is known as the sampling
property. Let u = —(x — &), and consider

f FOOB(=(x — £ dx = f £ — wB)(= du)

oo

- f £ =18 du
- 1(®)
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Hence,

f FOOS(—(x — £) dx = / FOO3(x - £)dx

o) —0o0

This is called the even property. Now, consider

f FGO8(alx — £) dx = - (&)

|al

This is the scaling property. Let g(x) be a function with n isolated roots at x,, ..., x,,. Then, assuming

g'(x) does not vanish at the x;,
n

0(x — x;)
6(g(x) = ), ———r
5D = 2 g
This is a generalisation of the above, known as the advanced scaling property. Now, if g(x) is continu-
ous at x = 0, then g(x)d(x) equivalent to g(0)5(x) inside an integral. This is known as the isolation

property.

4.4 Fourier series expansion of § function

Consider a complex Fourier series expansion,

[+ L
. 1 . 1

5(x) — Cnemnx/L; Cp = 5(x)e—m7rx/L dx =
Z 2L I 2L

n=-—oo

Hence,

1 [s9)
— intx/L
0(x) = oL E e
n=—oo

o

Let f(x) be a function, so f(x) = ), d,e™™/L_Then, their inner product is given by

n=—oo

f_ i F4(0)8(x) dx = i nio d, f_

The Fourier expansion of the § function can be extended periodically to the whole real line. This
infinite set of § functions is known as the Dirac comb, given by

L 0
einn'x/Leimrx/L dx = Z dn — f(O)

L n=—oo

> s(x—2mL)= ) e/l

m=—oo n=—oo

4.5 Arbitrary eigenfunction expansion of 5 function

In general, suppose
[c9)
S(x—§) = Z anyn(x)
n=1
with coefficients

_ Jy Wy (08— §dx _ w(@yu(®)
T Putoprdx [P wyadx

= wn(g)Yn(‘E)
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Then,
6(x — &) = w() Z Y, (§)Yn(x) = w(x) Z Y, (§)Yn(x)
n=1 n=1

since ?5()6 — &) =6(x — &). Hence,

n

50— &) = wx) Y W
n=1

b . —
where N,, =/, wyj, dx is a normalisation factor.

Example. Consider a Fourier series for y(0) = y(1) = 0, with y,(x) = sin nzx. From the sine series
coefficient expression,

S(x—¢&) =2 Z sin nzé sin nzrx

n=1

where 0 < £ < 1.

4.6 Motivation for Green’s functions

Consider a massive static string with tension T and linear mass density u, suspended between fixed
ends y(0) = y(1) = 0. By resolving forces, we have the time independent form

d?y
Tz —18=0
2
We will solve the inhomogeneous ODE —37}2) = f(x) with f(x) = —“—f. This has been placed in
Sturm-Liouville form. We can integrate directly and find
2
-y = —ﬁxz + ki x + ky

Imposing boundary conditions,

y00) = (-58) - 3x(1 - )

Consider alternatively a solution obtained by solving the equation for a single point mass dm =
udx suspended at x = & on an very light string. We can then superimpose the solutions for each
point mass to find the overall solution. For a single point mass, the solution is given by two straight
lines from (0,0) and (1, 0) to the point mass (£;, y;(§;)). The angles of these straight lines from the
horizontal are given by 6;, 6,. Resolving in the y direction,

0 = T(sin 6, + sin6,) — dmg
(i, Vi )
_T( 3 +1—§i> omg
=T = &) +yi&) = omgsi(1 = &)
Sy = %gi(l -§)
So the solution is
x(1-§) x<§
§Q—-x) x>¥§;

yix) = %{
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which is the generalised sawtooth. This can alternatively be written

fi(§)G(x, §)

where f; is a source term, and G(x, &) is the Green’s function, the solution for a unit point source.
Since the differential equation is linear, we can sum the solutions, giving

N
y(x) =D fi)G(x, &)
i=1

Taking a continuum limit,

fi(§) = % = %&cg = f(x)dx = f(x)= —T,ug

which gives

1
Y(x) = / FECx &) de
0

Substituting the Green’s function,

y0) = (‘T"‘g)[fox 5(1—x)d§+fx1x<1—§)d§]
-l Sao] 5]
@005 5)
(228 b

So we have found the correct solution in two ways; once by direct integration, and once by superim-
posing point solutions. In general, direct integration is not trivial, and Green’s functions are useful
in this case.

4.7 Definition of Green’s function

We wish to solve the inhomogeneous ODE

Ly = a(x)y” + By +y(x)y = f(x)

ona < x < b, where @ # 0 and «, 8, y are continuous and bounded, taking homogeneous boundary
conditions y(a) = y(b) = 0. The Green’s function for £ in this case is defined to be the solution for
a unit point source at x = £. That is, G(x, £) is the function that satisfies the boundary conditions
and

L£G(x,§) =6(x—§)

so G(a, &) = G(b, £) = 0. Then, by linearity, the general solution is given by
b
¥ = [ 60 DS
a
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where y(x) satisfies the homogeneous boundary conditions. We can verify this by checking

b

b
Ly = f £G(x, £)f(€) d = f 5(x — E)f(E)dE = f(x)

So the solution is given by the inverse operator

b

y=L7lf; L‘1=f d€G(x, &)

a

The Green’s function spits into two parts;

Gi(x,&) a<x<
G(x, %—) — 1 § g
G,(x,&) &<x<b
For all x # &, we have LG, = LG, = 0, so the parts are homogeneous solutions. G satisfies the
homogeneous boundary conditions, so G;(a,£) = 0 and G,(b,§) = 0. G must be continuous at
x = &, hence G(£, &) = G,(&, ). There is a jump condition; the derivative of G is discontinuous at
x = &. This satisfies
_ 46,
x=t, dx

1

nér _ 4Gy _
7] e O

&7 dx

4.8 Explicit form for Green’s functions

We want to solve
LG(x,§) =d(x - &)

on a < x < b, subject to homogeneous boundary conditions G(a, §) = G(b, ) = 0. The functions
G, G, satisfy the homogeneous equation, so £G;(x,£) = 0. Suppose there exist two independent
homogeneous solutions y; (x), y,(x) to Ly = 0. Then, G; = Ay, +By,, such that Ay;(a)+By,(a) = 0,
which gives a constraint between A and B. This defines a complementary function y_(x) such that
y_(a) = 0. The general homogeneous solution with G,(a) = 0is

Gl = Cy_

C will be found later. Similarly we can define y, as a linear combination of y,, y, such that y_ (b) =
0.
G, =Dy,

We require G;(§, &) = G,(&, &) for continuity, hence

Cy_(§) =Dy, (9

Since [G’]gir = %g),we have
Dy, (&) - CY/(§) = %5)
We can solve these equations for C, D simultaneously to find
oy _ -
CO=zowe 9= owm
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where W(£) is the Wroniskian

W(&) = y_()y+(§) — y+(E)y_(§)

which is nonzero if y_, y, are linearly independent. Hence,

G S T 1
_)agwe TS
G(x,ﬁ)—{m E<x<b
a@wE T

4.9 Solving boundary value problems

We know that the solution of Ly = f is

b
y() = f G(x. £)1(£) de

We can split this into two intervals given that G = G, for £ > x and G = G, for < x.

b

Y(x) = f Ga(x, £)F() At + f G1(x, E)F(6) dE

_ Y- (©OF© 2 OF) o
‘y+(x)fa a@we) ¥ - )f oW *

Note that if £ is in Sturm-Liouville form, so 8 = o/, then the denominator a(§)W (&) is a constant.
Further, G is symmetric; G(x, &) = G(&, x). Often, by convention, we take @ = 1 (however Sturm-
Liouville form typically takes ¢ < 0).

Example. Consider y” —y = f(x) with y(0) = y(1) = 0. Homogeneous solutions are y; = e,
y, = e~*. Imposing boundary conditions,

_ |Csinhx 0<x<¢§
" |Dsinhl—x) E<x<b

Continuity at x = £ implies

. . sinh(1 —§)
h & = Dsinh(1 — =D——=
Csinh & sinh(1-§&) = C Sinh Z
The jump condition is
—Dcosh(1—-§&)—Ccoshé =1

Hence,

—D[cosh(1 — &) sinh & + sinh(1 — &) cosh £] = sinh £
—D[sinh((1 — &) + £)] =sinh &
—Dsinh1 =sinh &
sinh &
sinh 1
—sinh(1 — &)
sinh 1

D=
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Therefore,

—sinh(1 — sinh x

X) !
() = ~Smh f sinh £7(6)¢ — S5 [ sinh(1 - 7€) ¢

Suppose we have inhomogeneous boundary conditions. In this case, we want to find a homogeneous
solution y, that solves the inhomogeneous boundary conditions. That is, Ly, = 0 but y,(a), y,(b)
are as required for the boundary conditions. Then, by subtracting this solution from the original

equation, we can solve using a homogeneous set of boundary conditions. For instance, in the above

sinh x

example, suppose y(0) = 0,y(1) = 1. We can find a solution y, = - which has the inhomogen-

eous boundary conditions but solves the homogeneous problem.

4.10 Higher-order ODEs

Suppose Ly = f(x) where £ is an nth order linear differential operator, and a(x) is the coefficient for
the highest degree derivative. Suppose that homogeneous boundary conditions are satisfied. Then
we can define the Green’s function in this case to be the function that solves

L£G(x,§) =6(x—9)
which has the properties:
(i) G;, G, are homogeneous solutions satisfying the homogeneous boundary conditions;
() 6P = 6P &) fork € {0, ...,n— 2};

(i) 68PN -6 V) = .

4.11 Eigenfunction expansions of Green’s functions
Suppose £ is in Sturm-Liouville form with eigenfunctions y,(x) and eigenvalues 1,,. We seek G(x, £) =
Z:;l Apy,(x) satisfying £LG = §(x — ).
LG =) ALy,
n

= ZAn/lnw(x)yn(x)
n
The & function has expansion
S(x—-§ = w(x)z y—"(??}”(x); N, = /wyﬁ dx
n n

Hence,

yn(§)
An(§) = N,

Thus,
yn(g)yn(x) Y, ()Y n(x)
G(x, 5) Z A /- wyn dx Z /1nN

n=1

which was already obtained earlier in the course when studying Sturm-Liouville theory.
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4.12 Constructing Green’s function for an initial value problem

Suppose we want to solve Ly = f(t) for t > a with y(a) = y'(a) = 0, using G(¢, 7) satisfying
Lg=06(t—1). Fort < 7, we have

Gy = Ay1(t) + By,(t); Ayi(a) + By,(a) =0; Ayj(a) + Byy(a) =0

If A # B # 0, then we can solve this by dividing out A, B and find y,y, — y,¥1 = 0. Since the
Wronskian at a cannot be zero, A = B = 0. So G,(¢,7) = 0 for a < t < 7, so there is no change until
the ‘impulse’ at t = 7.
For t > 7, by continuity we must have G,(z,7) = 0. So we choose a complementary function G, =
Dy, (t) with y,(t) = Ay,(t) + By,(t), and y,(t) = 0. The discontinuity in the derivative implies
that 1

Gy(1,7) =Dy (1) = —=

a(t)
Hence, ) .
Ay (1) + Byy(1) = — = D(1) = ————
YROT BRI 50 a0y ()
Hence we have a non-trivial solution
0 t<t
G(t’ T) = y+(t) T
a(7)y4 (1)

The initial value problem has solution

t t
w0 = [ Gueas@ar= [ (1O,

Causality is ‘built in’ to this solution. Only forces which occur before t may have an impact on
y(o).

Example. Let us solve y” —y = f(¢t) with y(0) = y'(0) = 0. The homogeneous solution and initial
conditions are
t<t = G; =0

and
t>7 = G, =Ae' +Be™! = Dsinh(t — 1)

Now,

[Gl]lr'i = % =1 = G'(r,t) =Dcosh0=D=1

Hence, the solution is

t
y(t) = f f(©)sinh(t — 7)dr
0

5 Fourier transforms

5.1 Definitions
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Definition. The Fourier transform of a function f(x) is
foo =700 = [ s ax
The inverse Fourier transform is
_ g1 D S .
f) =F(f)) = 5- | e

Different internally-consistent definitions exist, which distribute the multiplicative constants
in different ways.

Theorem (Fourier inversion theorem). For a function f(x),
FHUFNX) = f(x)
with a sufficient condition that f and f are absolutely integrable, so
o0
f |f(x)|dx=M <
—00
In particular, f — 0as x - *oo.

Example. Consider the Gaussian,

f) = 6\1/; exp| -]

We wish to compute its Fourier transform. Since i sin kx is an odd function,
fk) = / exp[——] exp[—ikx]d f exp[——] cos(kx)dx
oy T ovE
Consider, using Leibniz’ rule,
o0 2
—-X
- = — xexp[ = ]smkxdx
—0o0

Integrating by parts,

r 2 42 © 2 2
d—f 1 [cr exp[i]sinkx] 1 kiexp[ - ]coskxdx
&~ oyl 2 w oVE )

2
a\/_f —_— xp[ ]coskxdx
=—Tf(k)

o)
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This is a differential equation for f, which gives

_ 2.2
oo = cexp| -7 |
Suppose k = 0. Then, in the original expression for the Fourier transform, we can directly find
~ 252
f(0) = 1. Hence Cexp[—OTG] =1 = C = 1. Hence,
~ k*a?
iy =] -£2
which is another Gaussian with the width parameter inverted.

5.2 Converting Fourier series into Fourier transforms

Recall that the complex form of the Fourier series is

flx) = Z c,etknX

n=—oo

where k,, = nL—” We can write in particular k,, = nAk where Ak = i—r Then,

L L
1 f —ik Ak —ik
— f(x)e~tnX dx = —f f(x)e *n* dx
L), 2 ),

Now, re-substituting into the Fourier series,

o)

L
f(x): Z ?_I;eiknx/ f(x/)e—iknx’ dx’
-L

n=—oo

Interpreting the sum multiplied by Ak as a Riemann integral,

) > f — eiknx f FGeem ks dx’ dk

Taking the limit L — oo,

)= 5= f dk etk f dx’ f(x)e '

oo

which is the inverse Fourier transform of the Fourier transform of f, which gives the Fourier inversion
theorem. Note that when f(x) is discontinuous at x, the Fourier transform gives

FHFN) = %(f(x_) +f(x4))

which is analogous to the result for Fourier series.
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5.3 Properties of Fourier series

Recall the definition of the Fourier transform.
foo= [ sooetax
The (inverse) Fourier transform is linear.
h(x) = Af(x) + ug(x) < h(k) = 2f(k) + ug(k)
Translated functions transform to multiplicative factors.
h(x) = f(x=2) = h(k) = e f(k)
This is because
00 = [ £ = e ax = [ g0 ay = ek
Frequency shifts transform to translations in frequency space.
h(x) = > f(x) = h(k) = f(k - 2)
A scalar multiple applied to the argument transforms into an inverse scalar multiple.
hx) = f(x) < h(k) = if('f)
B eV
Multiplication by x transforms into an imaginary derivative.
h(x) = xf(x) = h(k) = if (k)
This is because - -
. -1d )
—ikx _ - —ikx
/_oof(x)e dx = T dk [wf(x)e dx
Derivatives transform into a muliplication by ik.
h(x) = f'(x) < h(k) = ikf(k)

This is because we can integrate by parts and find
h(k) = / fr0)ek* dx = [ f(x)e-ikx]™_ +ik f f(x)e k> dx
~—————

—00 -0 —00

The general duality property states that by mapping x — —x, we have
flex= 2 [ et a
2 J_

hence mapping k < x, treating fnow as a function in position space, we have

f0 =5 [ Feoeax

49



Thus _
8x) = f(x) = g&k)=27nf(-k)
We can then write the corollary that

f(=3) = - FEFNE)

Finally,
FHf)(x) = 4 f(x)

Example. Consider a function defined by

1 |x|<a
0 otherwise

f(X)={

for some a > 0. By the definition of the Fourier transform,

o] a a
flk) = f flx)e Hkx dx = / e~tkx dx = / coskxdx = % sinka
-0 -a —a

By the Fourier inversion theorem,

1

;f eikx%sinkadk:f(x)

for x # a. Now, in this expression, let x = 0 and let k — x. We arrive at the Dirichlet discontinuous
formula.

Vs
® sinax Vo 2 @0
f dx = -sgna =40 a=0
() X 2 r
—; a<0

5.4 Convolution theorem

We want to multiply Fourier transforms in the frequency domain (transformed space). This is useful
for filtering or processing signals.

h(k) = fUog(k)

Consider the inverse.

M) = o= f Fg(e dk

- L

=5 ) ( f _feto dy)g(k)eikx dk

-/ f(y)(% | eogaoet dk)dy

[ 105 [ awerea)oy

f FO)gx = y)dy
- (W)

50



where f * g is called the convolution of f and g. By duality, we also have
~ 1 (% 1=
M@=f@k@)=¢h&)=5i[wﬂmﬂk—mdp—5#f*9&)

5.5 Parseval’s theorem

Consider h(x) = g*(—x). Then, by letting x = —y,

E(k):f g (—x)e~kx dx

= [ j: ) g(—x)etkx dx]
= [ f_ : gy)e Y dy]*

=gk

Substituting this into the convolution theorem, with g(x) — g*(—x), we have

*

f JFOg(y—x)dy = %T / Flk)g* (k)etk* dx

Taking x = 0 in this expression and mapping y — x, we find

| reoseoar= 5 [ oz doas

Equivalently,
1,
& =5-(&7F)

So the inner product is conserved under the Fourier transform (up to a factor of 277). Now, by setting
g" = f*, we have

| ireopar= 5 [ |of a

o)

This is Parseval’s theorem.

5.6 Fourier transforms of generalised functions

We can apply Fourier transforms to generalised functions by considering limiting distributions. Con-
sider the inversion

FHFUNE)

= — f(we™ “du]e‘ *dk

1 [ 1 (* .
= - —ik(x—u)
zﬂ/:mf(u)[zﬂf_ooe ik(x—u dk]du

8(x—u)

fx)
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In order to reconstruct f(x) on the right hand side for any function f, we must have that the bracketed
term is 8(x — u). So we identify

S(x—u) = % f etkCe=u) gk
—00

If f(x) = 6(x),
fk) = f S(x)elk* dx = 1

This can be thought of as the Fourier transform of an infinitely thin Gaussian, which becomes an
infinitely wide Gaussian (a constant). If f(x) = 1, then

flk) = f ) e kX dx = 278(k)

This can also be found by the duality formula. If f(x) = §(x — a), we have
k) = ek

This is a translation of the original Fourier transform for the 6 function above.

5.7 Trigonometric functions

Let f(x) = coswx = i(e"x + e~¥). Then,

flk) = n(6(k + w) + 6(k — w))

For f(x) = sin wx, we have _
fk) =in(6(k + w) — 8(k — w))

Using duality,
Flx) = %(5@ +a@)+8(x—a)) = (k) = coska

fx) = %(5()6 +a)—8(x—a)) = f(k)=sinka

5.8 Heaviside functions

Let H(x) be the Heaviside function, such that H(0) = % Then, H(x) + H(—x) = 1 for all x. We can
take the Fourier transform of this and find

H(k) + H(=k) = 278(k)

Recall that H'(x) = 6(x). Thus, _
ikH(x) =4(k) =1

Since k&(k) = 0, the two equations for H can be consistent if we take

(k) = 78(k) + %
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5.9 Dirichlet discontinuous formula

Recall the Dirichlet discontinuous formula:

Vs
o - a>0
sin ax T 2
dx = =sgna =40 a=0
0 X 2 e
—— a<o0
2
We can rewrite this as
1 1 [ elkx
—sgnx = — dk
2% ) ik

since the cosine term divided by ik is odd. Hence,
f(x) = ls nx < f(k)= 1
2% Tk
This is the preferred form for a Heaviside-type function when used in Fourier transforms.

5.10 Solving ODEs for boundary value problems

Consider y” — y = f(x) with homogeneous boundary conditions y — 0 as x — *oo. Taking the
Fourier transform of this expression, we find

(-k*-1y=7F
Thus, the solution is _
. —fk) _ 7. -
500 = 109 = Faogeo

where g(k) = % Note that g(k) is the Fourier transform of g(x) = —%e““. Applying the convolu-
tion theorem,

¥(x) = f Fwg(x - u)du
- _% /_ i Fwe ! du

_ _%[ /_ ) Flwe™ du + f ) Fwer— du]

This is in the form of a boundary value problem Green’s function. We can construct the same results
by constructing the Green’s function directly.

5.11 Signal processing

Suppose we have an input signal J(¢), which is acted on by some linear operator £;, to yield an output
O(t). The Fourier transform of the input J(w) is called the resolution.

7(cu)=/ J(t)e it dt

53



In the frequency domain, the action of £;, on J(t) means that J(w) is multiplied by a transfer function
R(w). Thus,

o) = % / R(@)T(@)el®" dao

The inverse Fourier transform of the transfer function, R, is called the response function, which is
given by

— i T s iowt
R() = > f_m R(w)e'*t dew
By the convolution theorem,
o) = f JW)R(t — u)du

Suppose there is no input (J(t) = 0) for ¢t < 0. By causality, there should be zero output for the
response function (R(t) = 0) for t < 0. Therefore, we require 0 < u < t and hence

t
o@) = / JW)R(t —u)du
0
which resembles an initial value problem Green’s function.

5.12 General transfer functions for ODEs

Suppose an input-output relationship is given by a linear ODE.

LO(t) = (z aidd—}:i>(9(t) = J(t)
i=0

Here, £;, = 1. We want to solve this ODE using a Fourier transform.
(ag + a1iw — @02 — aziw® + -+ + a,(iw)")O(w) = J(w)
We can solve this algebraically in Fourier transform space. The transfer function is

1
ag + -+ + ay(io)?

R(w) =

We factorise the denominator to find partial fractions. Suppose there are J distinct roots (iw — ¢ j)ki ,
where k; is the algebraic multiplicity of the jth root, so Z§=1 kj = n. So we can write

1

,'R(CU) = (l(l) _ Cl)kl (lCl) - c])kJ

Expressing this as partial fractions,

_ J ki T,
R@)=), >, ——

m1m=1 (lC() - Cj)m

The T}, terms are constant. To solve this, we must find the inverse Fourier transform of (iw — a)™.

Recall that
1 ( 1 > _fe* >0
iw—a 0 <0
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for Re a < 0. So we will require Re ¢; < 0 for all j to eliminate exponentially growing solutions. Note
that forn = 2,
i d ( 1 )
dw\ (iw — a)?

Ff©) = i7" (w)

$_1< 1 )_te‘“ t>0
(iw—a)?) o t<0

tm-1 at
f_1< 1 ):{(m—l)!e £>0

and recall that

Hence,

Inductively, we arrive at

(i — a)m 0 t<0

We can therefore invert any transfer function to obtain the response function. Thus the response

function takes the form
7k

ﬂ(t)—zz jm(m Cjt; t>0

j=1m=1

and zero for ¢ < 0. We can now solve such differential equations in Green’s function form, or directly
invert R(w)J(w) for a polynomial J(w).

5.13 Damped oscillator

We can use the Fourier transform method to solve the differential equation

Ly=y"+2py +(P*+ ¢y = f(t)

where p > 0. Consider homogeneous boundary conditions y(0) = y'(0) = 0. The Fourier transform
is

(iw)y + 2ipwy + (p* + ¢*)j = |
Hence,

y= A
—w? + 2ipw + p? + q?

=5

We can invert this using the convolution theorem by inverting R.

t
W) = / R(t = Df(2) dr
0

where the response function is

1 © iw(t—r)
R(t—1)= f

p? + q* + 2ipw — @? de

We can show that LR(t — 7) = §(t — 7); in other words, R is the Green’s function.
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5.14 Discrete sampling and the Nyquist frequency

Suppose a signal h(t) is sampled at equal times ¢,, = nA with a time step A and values h,, = h(t,) =
h(nA), for all n € Z. The sampling frequency is therefore A™!, so the sampling angular velocity is

Wy =27 fy = zf. The Nyquist frequency is f, = i, which is the highest frequency actually sampled
at A. Suppose we have a signal gy with a given frequency f. We will write

g(0) = AcosQft +¢) = Re (ACPT1H0) = Z(AI149) 4 ~(Ae-2m1f1+7)

where A € R. Note that this signal has two ‘frequencies’; a positive and a negative frequency. The
combination of these frequencies gives the full wave. Suppose we sample g;(¢) at the Nyquist fre-
quency, so f = f.. Then,

1
gr.(ty) = A cos(ZﬂﬂnA + go)

= Acos(n + @)
=Acosmncos¢ + Asinznsin ¢

= A’ cos(2xf, f,,)

where A" = Acos¢. This has removed half of the information about the wave; the amplitude and
the phase have become degenerate. We can identify f. with —f, when considering the remaining
information; we say that the two frequencies are aliased together. Now, suppose we sample at greater
than the Nyquist frequency, in particular f = f. + §f > f., where for simplicity welet §f < f.. We
have

gy (tn) = Acos2r(fe + 6/)t, + @)
= AcosQa(f, — )t, — )

So frequencies above the Nyquist frequency are reinterpreted after the sampling as a frequency lower
than the Nyquist frequency. This aliases f, +  f with f, — & f.

5.15 Nyquist-Shannon sampling theorem

Definition. A signal g(t) is bandwidth-limited if it contains no frequencies above w,,, =
27 f max- In other words, g(w) = 0 for all |w| > wp,.,. In this case,

— 1 ” 5 it — 1 e 5 it
20= 5 | a@ean= 5 [ gaenao

—Wmax

1

Suppose we set the sampling rate to the Nyquist frequency, so A = . Then,
1 C()]'l’lEiX
= — 5 I7TNW/Wmax
8n =8(tn) = 5 /_ _ g(w)e deo

This is a complex Fourier series coefficient c,,, multiplied by —=. The Fourier series is periodic in w
T
with period 2wy, not in space or time.

o0
- T i
gper(w) = a) Z 8ne N/ Wrma

max p—_ o
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The actual Fourier transform g is found by multiplying by a top hat window function

]‘/‘l‘(w) — {1 |CO| < Wmax

0 otherwise

Hence, _
&(w) = gper(w)h(w)
Note that this relation is exact. Inverting this expression,

o

1 N ~ .
E [00 gper(w)h(w)elwt dw

1 -~ Omax . nmw
o Z gn exp<lco(t — w_>> dw

max p—_ o max

g(®)

—Wmax

Only the cosine term is even, hence

i SiN(Wppaxt — 7T1)
S Dma? — 771

t) =
H0) 20 max s Wmaxl — TN

Hence, g(t) can be written exactly as a combination of countably many discrete sample points.

5.16 Discrete Fourier transform

Suppose we have a finite number of samples h,, = h(t,,) for t,, = mA, where m = 0,...,N — 1.
We will approximate the Fourier transform for N frequencies within the Nyquist frequency f. = =,

2A
using equally-spaced frequencies, given by Ay = 1% in the range —f, < f < f.. We could take the
convention f, = nAy = ﬁ forn = —%, s —%. However, this overcounts the Nyquist frequency

(which is aliased), giving N + 1 frequencies instead of the desired N. Since frequencies above the
Nyquist frequency are aliased to below it:

(g+m)Af=fC+5f»—><%]—m)Af=—(fc—5f)

we can instead use the convention f, = nAy = % forn = 0,...,N — 1. This counts the Nyquist
frequency only once. The Fourier transform at a frequency f,, becomes

h(f,) = / h(t)e~2mifnt 4t

N-1
~ A hye 27 ntm

=A hme—Zﬂimn/N
where the function h4(f,) is the discrete Fourier transform. The matrix [DFT],,,, = e~27""/N defines
the discrete Fourier transform for the vector h = {h,,,}. The discrete Fourier transform is then
hq = [DFT]h
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By inverting the discrete Fourier transform matrix, we find
—-17. 1 + I
h = [DFT]™'hy = S[DFT]"hy
since the inverse of the discrete Fourier transform matrix is its adjoint. The matrix is built from roots

of unity w = e~>™/N_ So, for instance, n = 4 gives w = e~ 274 = —j giving

[DFT] =

—
|
-
|
—_

The inverse discrete Fourier transform is
hy, = h(ty,)

— i s ity
=5 [ h(w)e dw
—o0

- | TR ds

N-1

1 ~ .
~ m Z:()Ahd<fn)e2mmn/N
n=

1 N=1
— = 1 p2mimn/N
=N Z h,e
n=0
Hence, we can interpolate the initial function from its samples.
1 N
h(t) = N‘ Z hneant/N
n=0
Parseval’s theorem becomes
N-1 , 1N
ml = 77 n
Y ol = 5 X [l
m=0 n=0

and the convolution theorem is

N-1
k=D 8mhiem <= G = G

m=0
5.17 Fast Fourier transform (non-examinable)

While the discrete Fourier transform is an order O(N?) operation, we can reduce this into an order
O(nlog N) operation. Such a simplification is called the fast Fourier transform. We can split the dis-
crete Fourier transform into even and odd parts, noting that wy = e~27/N implies wk = e 27 UN/2) =
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WN/2

N-1
he= D) hyoff
n=0

N/2-1 N/2-1

2mk (2m+1)k
= Z homay™ + Z ham1wn
m=0 m=0
N/2—-1 N/2-1
= Z h2m(w12\l)n1k+wlzi] Z h2m+1(w%\])mk
m=0 m=0
N/2-1 N/2—-1
k
= Z Rom(@n /)™ + @l Z Roms1 (@)™
m=0 m=0

This algorithm iteratively reduces the Fourier transform’s complexity by a factor of two, until the
trivial case of finding the discrete Fourier transform of two data points.

6 Method of characteristics

6.1 Well-posed Cauchy problems

Solving partial differential equations depends on the nature of the equations in combination with
the boundary or initial data. A Cauchy problem is the partial differential equation for some func-
tion ¢ together with the auxiliary data (in ¢ and its derivatives) specified on a surface (or a curve in
two dimensions), which is called Cauchy data. For a Cauchy problem to be well-posed, we require
that

(i) asolution exists (we do not have excessive auxiliary data);
(ii) the solution is unique (we do not have insufficient auxiliary data); and

(iii) the solution depends continuously on the auxiliary data.

6.2 Method of characteristics

Consider a parametrised curve C given by Cartesian coordinates (x(s), y(s)). The tangent vector

is
o= (26, 20)
“\ ds ’ ds
We then define the directional derivative of a function ¢(x, y) by

dp| _ dx(s)dp . dy(s)d¢ _
|l T as ax T as oy -V V¢

(o}

Suppose v - V¢ = 0 then % = 0 and hence ¢ is constant along the curve. Suppose there exists a

vector field

u = (alx,y), B(x,y))
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with a family of non-intersecting integral curves C which fill the plane (or domain of the function
more generally), such that at a point (x, y) the integral curve has tangent vector u(x, y). Now, define
a curve B by (x(t), y(¢)) such that B is transverse to u; its tangent is nowhere parallel to u.

w= (S0, 2D (e, ) = u

This can be used to parametrise the family of curves by labelling each curve C with the value of ¢ at
the intersection point between it and B. Along the curve, we use s such that s = 0 at the intersection.
The integral curves (x(s, t), y(s, t)) satisfy

dx _ . dy _
e a(x,y); i B(x,y)

We can solve these equations to find a family of characteristic curves, along which ¢ remains con-

stant. This yields a new coordinate system (s, ) associated with a differential equation we wish to
solve.

6.3 Characteristics of a first order PDE

Consider 54 56
a6,y gy +BOLY)F =0
with Cauchy data on an initial curve B, defined by (x(t), y(¢)):
$(x(1), y(0)) = f(1)
Note,
d¢

agy+Bgy =u- Vo= 5
C

This is exactly the directional derivative along the integral curve C, defined by u = («, 8). Since
¥ _ ag, + B¢, = 0 from the original PDE, the function ¢(x, y) is constant along this curve C. In

other words, the Cauchy data f(t) defined on B at s = 0 is propagated constantly along the integral
curves. This gives the solution

¢(s, 1) = p(x(s, 1), ¥(s, 1)) = f(£)

To obtain ¢ in the original coordinates, we need to transform from s, t-space into x, y-space. Provided
that the JacobianJ = x,;y,—Xx,Yy; is nonzero, we can invert the transformation and find s, t as functions
of x, y. This gives
$(x,y) = f(t(x,y))
To solve such a PDE, we will typically use the following steps.
(i) Find the characteristic equations Z—x =a,— =
N
(ii) Parametrise the initial conditions on B by (x(¢), y(t)).

(iii) Solve the characteristic equations to find x = x(s, t) and y = y(s, t) subject to the initial condi-
tions at s = 0.

(iv) Solve the equation for ¢ given by % = a¢,+p¢, = 0,50 ¢ is constant along the integral curves,
giving ¢(s, 1) = f(o).
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(v) Invert the relations s = s(x,y) and t = t(x, y), then find ¢ in terms of x, y.

Example. Consider the equation

dg(x.y) _
dx
such that
$(0,y) = h(y)
The characteristic equations are given by
i—)sc =a=1; % =f=0

The initial curve B is given by

(x(), y(©)) = (0, 1)

Solving the characteristic equations,
x=s+c(t);, y=d()

At x = 0, we must have s = 0, so ¢ = 0. Further, y = t hence d = ¢. Thus,

Thus,

% =0 = ¢(s,t) = h(t) = ¢(x,y) = h(y)

Example. Consider
¢+ ¢, =0; ¢(x,0)=coshx

The characteristic equations are
dx . dy

as ¢ ds_1

The initial conditions are
x(t)=t;, yt)=0
We solve the characteristic equation subject to these initial conditions, giving

—e*=s+c(t);, y=s+d()

s = 0 implies —e~f = ¢(t) and y = 0 = d(t). Hence

t—s y=s

Now,

d
s =0 = ¢(s,t) = cosht

Since s = y,e™! =y + e™*, we have t = —log(y + e™*). Thus,

¢(x,y) = cosh[—log(y + e™)]
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6.4 Inhomogeneous first order PDEs

Suppose we now wish to solve

a(x, y)¢x + B(x, )¢, = y(x,y)

with Cauchy data ¢(x(¢), y(t)) = f(t) along a curve B. The characteristic curves are the same as the
homogeneous case. However, the directional derivative no longer vanishes:

d

3|, = V=)
where ¢ = f(t) at s = 0 on B. So f(¢t) is no longer propagated constantly across characteristic
polynomials, but is instead propagated according to the ODE in s above. We must therefore solve
this ODE along C before reverting to x, y coordinates.

Example. Consider
¢x + 2¢y = yex; ¢(X, X) =sinx

The characteristic equation is given by

dx o dy _
=5 =2
The initial conditions are
x(H) =y(t) =t

From the characteristic equations,
x=s+c(t); y=2s+d(t)

Thus,
x=t=c(t); y=t=d()

So the solutions to the characteristics are
x=s5+t; y=2s+t

Now we solve

d¢_ — X — S+t
3 SV =ve =(2s+t)e

Note that %(Zses ) = 2€® + 2se%, so the solution is
(s, ) = (2s — 2 + D)es* + c(s)
for some constant term c(s). But ¢(0, t) = sin ¢, hence
sint = (t —2)e! +c(s) = ¢(s,t) = (2s—2 +1)eSt +sint — (2 — t)et
Inverting into x, y space,

d(x,y) = (y — 2)e* + (y — 2x + 2)e** ™Y + sin(2x — y)
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6.5 Classification of second order PDEs
In two dimensions, the general second order PDE is

o’¢
oy?

3¢
0xdy

62
Lo = a(x,y)ﬁ + 2b(x,y)

+ A0 )T + e )T + 0 )900)

+c(x,y)

The principal part is given by
ot o a(x.y) bx.y)\ (ke
GP(xa y, kxa ky) - k Ak (kx ky) (b(x, y) C(x, y) ky
The PDE is classified by the properties of the eigenvalues of A.

(i) If b> — ac < 0, the equation is elliptic. The eigenvalues have the same sign. An example is the
Laplace equation.

(ii) If b? — ac > 0, the equation is hyperbolic. The eigenvalues have opposite signs. An example is
the wave equation.

(iii) If b?> — ac = 0, the equation is parabolic, where at least one eigenvalue is zero. An example is
the heat equation.

Note that a differential equation may have different classifications at different points (x, y) in space.

6.6 Characteristic curves of second order PDEs

A curve defined by f(x, y) constant is a characteristic if

o 0 )

This is a generalisation of the first order case u - Vf = 0 where u = (, §). The curve can be written
as y = y(x) by the chain rule.

of ,dfdy _ Lo dy
xtaya YT T i

Substituting into the quadratic form,
dy 2 dy
a(a> —2ba+c—0
for which we have a quadratic solution given by
dy _bxyb*-ac
dx — a
(i) Hyperbolic equations have two such solutions, since b?> — ac > 0.
(ii) Parabolic equations have one solution.

(iii) Elliptic equations have no real characteristics.
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6.7 Characteristic coordinates

Transforming to characteristic coordinates u, v will set a = 0 and ¢ = 0. Hence, the PDE will take
the canonical form

9%¢
ek =0
dudv tot
where the omitted terms are lower order.
Example. Consider
—YPrx + ¢yy =0

Here, a = —y,b = 0,c = 1 hence b?> — ac = y. For y > 0, the equation is hyperbolic, for y < 0 it is
elliptic, and for y = 0 it is parabolic. Consider the characteristics for y > 0.

Q_ b++b2—ac

=+
dx a

<l

Hence,
3
/ﬁdy=ifdx = %yiix=C¢

Therefore, the characteristic curves are

Taking derivatives,

Hence,

Px = Pully + PpUx = Py — Py
¢y = \/y(¢u + ¢v)
Pxx = Puu — 2¢uv + Pov
1

¢yy = y(¢'uu + 20y, + ¢vv) + m((ﬁu + ¢v)

Substituting into the original PDE,

—YPxx + ¢yy = y(4¢uv + %(qbu + ¢v))
2y2

3
4 2 .
Note,u +v = 3 y2, hence we have the canonical form

1
Ay + m(¢u + ¢v) =0
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6.8 General solution to wave equation

The wave equation is
18% 3¢ 0
c2 o2 dx2

We wish to solve this with initial conditions ¢(x,0) = f(x), and ¢,(x,0) = g(x). Here, a = lz, b=
C
0,c = —1 hence b?> — ac > 0. The characteristic equation is

1
dx_Oi,/0+c—2
1

— = = *c
dt

CZ
Hence the characteristic coordinates are

u=x-—ct; v=x+ct

This yields the canonical form

3¢
3udv ~ °
This may be integrated directly to find

£ —re) = $=6w+ [ FO)dy =G+ HE

Imposing the initial conditions at ¢t = 0, we find
G(x)+ H(x) = f(x); —cG'(x)+ cH'(x) = g(x)
Differentiating the first equation, we find
G'(x)+H'(x) = f'(x)

We can combine this with the second equation to give

H() = 5(F/00 + 2800) = H) = (700 - [O0) + o fo g dy

Similarly,

G0 = 5(f'00) - 28) = G0 = 3¢ - FO) o /0 20 dy

The final solution is therefore

xX+ct

P(x,t) =G(x—ct)+ H(x +ct) = %(f(x—ct) + flx+ct))+ %f g(y)dy

x—ct

Waves propagate at a velocity ¢, hence ¢(x,t) is fully determined by values of f,g in the interval
[x —ct,x + ct].
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7 Solving partial differential equations with Green’s functions

7.1 Diffusion equation and Fourier transform
Recall the heat equation for a conducting wire given by

00 d’e
E(x, t) - Dm(x, t) =0

with initial conditions ©(x,0) = h(x) and boundary conditions ® — 0 as x — *oo. Taking the
Fourier transform with respect to x,

%@(k, t) = —Dk?0(k, t)

Integrating, we find
Ok, 1) = Ce~Pkt

The initial conditions give O(k, 0) = h(k) and therefore
O(k, t) = h(k)e Pkt

We take the inverse Fourier transform to find

o0
1 ~ .
O(x,t) = — f h(k)e—Dk*t gikx djc
—00 FT of Gaussian
Hence, by the convolution theorem,

1 = (x — u)?
0(x,t) = \/ﬁ [00 h(u) exp(—W) du

E/ h(u)Sq(x —u, t)du

where the fundamental solution is

Sd(x, l’) =

L exp(_x_z)
V4nDt 4Dt
which is the Fourier transform of exp(—Dkzt). Note, with localised initial conditions ©(x,0) =
0,6(x), the solution is exactly the fundamental solution:

®
O(x, 1) = OSq(x,t) = ——exp(-n?); 7=

\anDt 2\/Dt

where 7) is the similarity parameter.

7.2 Gaussian pulse for heat equation

Suppose that the initial conditions for the head equation are given by

fo) = @ Oge~ "
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Then, our previous solution gives

Ova % —u)?
O(x,t) = 0—\/_ exp| —au® — u] du
V42Dt J- 4Dt
Ova [T [ (1+4aDtu? —2xu + x*
= — exp| — ADr du
V42Dt J-
Ona [ [ 1+4aDt x —ax?
= — exp|— (u— )]exp —|du
42Dt Jos 4Dt 1+ 4aDt 1+ 4aDt
Recall that

g2

f exp[_(u—_#)z] du = o7

The integral above is a Gaussian, so its solution can be read off directly as

0\a exp[ —ax? ]
V(1 +4n2Dr) L1 +4aDt

So the width of the Gaussian pulse will get wider over time, according to o? ~ t, as it evolves according
to the heat equation. The area is constant, so heat energy is conserved in the system.

O(x,t) =

7.3 Forced diffusion equation

Consider the equation
d 3°0
a@(x, t) - DW = f(x, t)
subject to homogeneous initial conditions ®(x,0) = 0. We construct a two-dimensional Green’s
function G(x, t; €, 7) such that
d 3°G
EG(X, t) - Dﬁ = 5(x - 5)5(1’ - T)
subject to the same homogeneous boundary conditions G(x, 0; £, 7) = 0. Consider the Fourier trans-
form with respect to x.

oG ~
E + DkZG = e‘lk§5(t - T)
We can solve this using an integrating factor e” Kt and integrating with respect to time. Since G = 0

att =0,

%[eDkzté] — e—ik§+Dk2t5(t -7)

t t
f %[em‘zf/é’] dt’ = f e DI 5(¢ — 1) dt!
0 t 0

t
DKL G = e_ikgf PR 51 — 1) dr’
0

DRt G — e—ikgeDk%H(t -7)
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where H is the Heaviside step function. Thus,
G(k,t;£,7) = e ikEe=DR* (=D (¢ — 1)

The inverse Fourier transform gives the Green’s function.
oo
G(x,t;8,7) = H—(;; 0 f e~k gDk (1-7) gikx )¢
—00

This is a Gaussian; by changing variables into x’ = x — £ and t' = t — t we find

’ ©o , N2
G(x, ;€,1) = HZ(_:r)f oikx’ g=DK?t' g — H(t') exp[—(X) ]

Varpr L 4Dr

Converting back,

G(x,t;€,7) = _HE-9 [ (=82

\ArD(t — 1) S 4D(t 1)

where S is the fundamental solution as above. Thus, the general solution is

] =H({—-1)Sq(x—-&t—1)

@x,t = dr d&(; x,t;§,z é,l
Let § =u, then

t [«3)
O(x,t) = f d‘r/ du f(u,7)Sq(x —u,t — 1)
0 -

oo

7.4 Duhamel’s principle

In the above equation, omitting the integral over time, this is exactly the solution as found earlier
with initial conditions at t = 7, which was

O(x,t) = f du f(u)S4(x —u,t — 1)

The forced PDE with homogeneous boundary conditions can be related to solutions of the homogen-
eous PDE with inhomogeneous boundary conditions. The forcing term f(x,t) at t = 7 acts as an
initial condition for subsequent evolution. Thus, the solution is a superposition of the effects of the
initial conditions integrated over 0 < v < f. This relation between the homogeneous and inhomo-
geneous problems is known as Duhamel’s principle.

7.5 Forced wave equation

Consider the forced wave equation, given by

92 92
g =D

with ¢(x,0) = ¢,(x,0) = 0. We construct the Green’s function using

PG 2%C _ sx— b5t —1)

az  C axz
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with G(x, 0) = ¢,(x,0) = 0. We take the Fourier transform with respect to x, and find

6*G =~
67 + k%G = e‘lk§5(t - T)
We can solve this by inspection by comparing with the corresponding initial value problem Green’s
function, and find
~ {0 t<t
=) —iké sinke(t—1)
€ ke

t>7

Using the Heaviside function.

_ kg Sinkelt —17)

G e H(t—1)

We invert the Fourier transform.

G(x, t;§,1) = H—(Ztﬂ_c D) f eik(e- SO 7 D) kclgt =9 gk

Let A = x — £, and B = ct — 7. By oddness of sine, only the cosine term of the complex exponential
remains. Noting the similarity to the Dirichlet discontinuous function,

Gx 6,1 = TLD f cos(ked) sin(kB)
0

k
_H(t-1) [ sink(A+ B) —sink(A — B) dk
- 27 _/(; k
= P%[sgn(fl + B) — sgn(A — B)]

Since the H(t — 7) term is nonzero only for ¢t > 7, we must have B = ¢(t — t) > 0. The only way
that the bracketed term can be nonzero is when |A| < B;so [x — &| < ¢(t — 7). This is the domain of
dependence as found before, demonstrating the causality of the relation. Hence,

1

G(x,t;€,17) = %6

H(c(t—1)—|x—=§)

Thus, the solution is
B(x,1) = f dr f d& f(£, 066, 6:€,7)
0 —00

-5/ 4r | T e e

2c 0 x—c(t—7)

7.6 Poisson’s equation

Consider
V3¢ = —o(r)

defined on a three-dimensional domain D, with Dirichlet boundary conditions ¢ = 0 on a boundary
dD. The Dirac § function, when defined in R3, has the following properties.
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(i) 6(r—r")=0forallr #r;
(ii) fp8(r—r')d*r = 1ifr" € D, and zero otherwise;

(iit) Jp f(NS(r — 1) &r = f().

First, we consider D = R3 with the homogeneous boundary conditions that G — 0 as ||r|| = oo. This
is known as the free-space Green’s function, denoted Gyg. The potential here is spherically symmetric,
so the Green’s function is a function only of the distance between the point and the source. Without
loss of generality, let ¥’ = 0, so G is a function only of the radius, now denoted r. Integrating the left
hand side of Poisson’s equation over a ball B with radius r around zero, we find

/VZGFsd3r=/ VGrs - AdS = %—Grde
B 5B o

where dQ is the angle element. This gives

oG
/ V2Ggs dr = 4nr? /=5
B or

The right hand side of Poisson’s equation gives unity, since zero is contained in the ball. There-

fore,

or ~ 4mr?
Since G —» 0 asr — oo, we must have ¢ = 0. The fundamental solution is therefore the free-space
Green’s function given by

-1
Gre = — +
B = g €

1

T =

Thus, Poisson’s equation is solved by

o=k [ £ g
R

AT Jgs Ir =7l

7.7 Green’s identities

Consider scalar functions ¢, which are twice differentiable on a domain D. By the divergence
theorem, Green’s first identity is

f V. (¢Vy)dr = f (V2 + Vo - Vi) d3r = f ¢V - AdS
D D 8D
Switching 1 and ¢ and subtracting from the above, we arrive at Green’s second identity:
o o — 2 24\ 43
/6D<¢aﬁ ¢aﬁ>dS_L(¢V;b PYVig)dir

Suppose we remove a ball B,(r") from the domain. Without loss of generality let 7' = 0. Let ¢ be a
solution to Poisson’s equation, so V2¢ = —p and let ¥ be the free-space Green’s function. Thus, the
right hand side of the second identity becomes

f (¢V2GFS - GFSV2¢') d*r = f Gpsp d°r
D\B, D\B,
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The left hand side is

3Grs a¢) ( 3Grs a_¢>
faD<¢ +° = Grs3c ) dS + s $—52° — Grs3z ) dS

For the second integral, we take the limit as € — 0. Let ¢ be regular, and let 4 be the average value

and ? be the average derivative. This integral then becomes
n

3L -1 1 ¢
4me?  d7e on

)47‘[5 — —¢(0)

Combining the above, we find Green’s third identity, which is

Ors

601 = [ Grnra-pen@rs | (#05R0 - 6 Fho)as
D

The second integral provides the ability to use inhomogeneous boundary conditions

7.8 Dirichlet Green’s function

We will solve Poisson’s equation V2¢ = —p on D with inhomogeneous boundary conditions ¢(r) =
h(r) on dD. The Dirichlet Green’s function satisfies

(i) V2G(r;r') = 0forallr # r';
(i) G(r;r") =0o0n dD;

(i) G(r;r") = Ggs(r; ") + H(r; ") where H satisfies Laplace’s equation, the homogeneous version
of Poisson’s equation, for all r € D.

Green’s second identity with V2¢ = —p, V2H = 0 gives

oH _ 08 :
~/<3.D<¢aﬂ EP )dS /];der

Now, we set Ggg = G — H into Green’s third identity to find

601 = [@-mepere [ (4220 - G-mE)as

All of the H terms can be cancelled by substituting the form of the second identity the derived above.
Now, given G = 0,¢ = h on 0D, we have

601 = [ aorperers [ nnF e as
D oD

This is the general solution. The first integral is the Green’s function solution, and the second integral
yields the inhomogeneous boundary conditions.
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7.9 Method of images for Laplace’s equation

For symmetric domains D, we can construct Green’s functions with G = 0 on dD by cancelling
the boundary potential out by using an opposite ‘mirror image’ Green’s function placed outside the
domain. Consider Laplace’s equation V2¢ = 0 on half of R3, in particular, the subset of R? such
that z > 0. Let ¢(x,y,0) = h(x,y) and ¢ — 0 asr — oo. The free space Green’s function satisfies
Grs — 0 asr — oo, but does not satisfy the boundary condition that Ggg = 0 at z = 0. For Ggg at
r'=(x',y',z"), we will subtract a copy of Ggg located at r” = (x’,y’, —z"). This gives

1 -1

4zlr —r'| - 47|r —r"|
-1 1

TG0 G2 G YR I0 YRt G

G(r,r') =

Hence G((x,y,0),r") = 0, so this function satisfies the Dirichlet boundary conditions on all of the
boundary dD. We have

3G
o

3G

220 0z

-3/2
)

_=1f z=-Z z+ 2z
T 4x

) = L (=R G-y P+

z=0 |r—r’|3 |r—r’|3

The solution is then given by
1o o Z, ® ® N2 "2 "2 =3/2
(x',y,2') = 5 [(x=x)+(@—=y)+ ()] “hix,y)dxdy
—0o0 —0o0

7.10 Method of images for wave equation

Consider the one-dimensional wave equation

$—c*" = flx,0)

with Dirichlet boundary conditions ¢(0,t) = 0. We create matching Green’s functions with an op-
posite sign centred at —£.

1

G(x,t;€,1) = %

1
H(e(t = 7) = x = &) = 5-H(e, (t = 0) = |x + &)
We can replace the addition of the two terms with a subtraction to instead use Neumann boundary

conditions. Suppose we wish to solve the homogeneous problem with f = 0 for initial conditions of
a Gaussian pulse. Here, for x > 0 we have

$(x, 1) = exp[—(x — & + ct)*] — exp[—(—x — & + ct)?]

The solution travels to the left, cancelling with the image at t = i, which emerges and travels right
c
as the reflected wave.
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