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1 Fourier series
1.1 Periodic functions
A function 𝑓(𝑥) is periodic if 𝑓(𝑥 + 𝑇) = 𝑓(𝑥) for all 𝑥, where 𝑇 is the period. For example, simple
harmonic motion is periodic. In space, we consider the wavelength 𝜆 = 2𝜋

𝑘
, and the (angular) wave

number 𝑘 is defined conversely by 𝑘 = 2𝜋
𝜆
.

1.2 Properties of trigonometric functions
Consider the set of functions

𝑔𝑛(𝑥) = cos 𝑛𝜋𝑥𝐿 ; ℎ𝑛(𝑥) = sin 𝑛𝜋𝑥𝐿
where 𝑛 ∈ ℕ. These functions are periodic with period 𝑇 = 2𝐿. Recall that

cos𝐴 cos𝐵 = 1
2(cos(𝐴 − 𝐵) + cos(𝐴 + 𝐵));

sin𝐴 sin𝐵 = 1
2(cos(𝐴 − 𝐵) − cos(𝐴 + 𝐵));

sin𝐴 cos𝐵 = 1
2(sin(𝐴 − 𝐵) + sin(𝐴 + 𝐵))

1.3 Periodic function space
We define the inner product

⟨𝑓, 𝑔⟩ = ∫
2𝐿

0
𝑓(𝑥)𝑔(𝑥) d𝑥

The functions 𝑔𝑛 and ℎ𝑛 are mutually orthogonal on the interval [0, 2𝐿) with respect to the inner
product above.

⟨ℎ𝑛, ℎ𝑚⟩ = ∫
2𝐿

0
sin 𝑛𝜋𝑥𝐿 sin 𝑚𝜋𝑥𝐿 d𝑥

= 1
2 ∫

2𝐿

0
(cos (𝑛 − 𝑚)𝜋𝑥

𝐿 − cos (𝑛 + 𝑚)𝜋𝑥
𝐿 ) d𝑥

= 1
2
𝐿
𝜋[

1
𝑛 − 𝑚 sin (𝑛 − 𝑚)𝜋𝑥

𝐿 − 1
𝑛 + 𝑚 sin (𝑛 + 𝑚)𝜋𝑥

𝐿 ]
2𝐿

0
= 0 when 𝑛 ≠ 𝑚

If 𝑛 = 𝑚, we have

⟨ℎ𝑛, ℎ𝑛⟩ = ∫
2𝐿

0
sin2 𝑛𝜋𝑥𝐿 d𝑥 = 1

2 ∫
2𝐿

0
(1 − cos 2𝜋𝑛𝑥𝐿 ) d𝑥 = 𝐿

Thus,

⟨ℎ𝑛, ℎ𝑚⟩ = {𝐿𝛿𝑛𝑚 𝑛,𝑚 ≠ 0
0 𝑛𝑚 = 0
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Similarly, we can show

⟨𝑔𝑛, 𝑔𝑚⟩ =
⎧
⎨
⎩

𝐿𝛿𝑛𝑚 𝑛,𝑚 ≠ 0
0 exactly one of𝑚, 𝑛 is zero
2𝐿 𝑛,𝑚 = 0

and
⟨ℎ𝑛, 𝑔𝑚⟩ = 0

Now, we assert that {𝑔𝑛, ℎ𝑛} form a complete orthogonal set; they span the space of all ‘well-behaved’
periodic functions of period 2𝐿. Further, the set {𝑔𝑛, ℎ𝑛} is linearly independent.

1.4 Fourier series
Since 𝑔𝑛, ℎ𝑛 span the space of ‘well-behaved’ periodic functions of period 2𝐿, we can express any such
function as a sum of such eigenfunctions.

Definition. The Fourier series of 𝑓 is

𝑓(𝑥) = 1
2𝑎0 +

∞
∑
𝑛=1

𝑎𝑛 cos
𝑛𝜋𝑥
𝐿 +

∞
∑
𝑛=1

𝑏𝑛 sin
𝑛𝜋𝑥
𝐿

where 𝑎𝑛, 𝑏𝑛 are constants such that the right hand side is convergent for all 𝑥where 𝑓 is con-
tinuous. At a discontinuity 𝑥, the Fourier series approaches the midpoint of the supremum
and infimum of the function in a close neighbourhood of 𝑥. That is, we replace the left hand
side with 1

2𝑓(𝑥+) +
1
2𝑓(𝑥−)

Let 𝑚 > 0, and consider taking the inner product ⟨ℎ𝑚, 𝑓⟩ and substituting the Fourier series of
𝑓.

⟨ℎ𝑚, 𝑓⟩ = ∫
2𝐿

0
sin 𝑚𝜋𝑥𝐿 𝑓(𝑥) d𝑥

= ⟨ℎ𝑚, 𝑏𝑚ℎ𝑚⟩
= 𝐿𝑏𝑚

Thus,

𝑏𝑛 =
1
𝐿 ⟨ℎ𝑛, 𝑓⟩ =

1
𝐿 ∫

2𝐿

0
sin 𝑛𝜋𝑥𝐿 𝑓(𝑥) d𝑥

and analogously

𝑎𝑛 =
1
𝐿 ⟨𝑔𝑛, 𝑓⟩ =

1
𝐿 ∫

2𝐿

0
cos 𝑛𝜋𝑥𝐿 𝑓(𝑥) d𝑥

Note that 1
2
𝑎0 is the average of the function. Note further that we may integrate over any range as

long as the total length is one period, 2𝐿. Notably, we may integrate over the interval [−𝐿, 𝐿].
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Example. Consider the sawtooth wave; defined by 𝑓(𝑥) = 𝑥 for 𝑥 ∈ [−𝐿, 𝐿) and periodic elsewhere.
Here,

𝑎𝑛 =
1
𝐿 ∫

𝐿

−𝐿
𝑥 cos 𝑛𝜋𝑥𝐿 d𝑥 = 0

and

𝑏𝑛 =
2
𝐿 ∫

𝐿

0
𝑥 sin 𝑛𝜋𝑥𝐿 d𝑥

= −2
𝑛𝜋[𝑥 cos

𝑛𝜋𝑥
𝐿 ]

𝐿

0
+ 2
𝑛𝜋 ∫

𝐿

0
cos 𝑛𝜋𝑥𝐿 d𝑥

= −2𝐿
𝑛𝜋 cos𝑛𝜋 + 2𝐿

(𝑛𝜋)2 sin𝑛𝜋

= 2𝐿
𝑛𝜋(−1)

𝑛+1

1.5 Dirichlet conditions
The Dirichlet conditions are sufficiency conditions for a well-behaved function, that will imply the
existence of a unique Fourier series.

Theorem. If𝑓(𝑥) is a bounded periodic function of period 2𝐿with a finite number ofminima,
maxima and discontinuities in [0, 2𝐿), then the Fourier series converges to 𝑓 at all points at
which 𝑓 is continuous, and at discontinuities the series converges to the midpoint.

Remark. (i) These are some relativelyweak conditions for convergence, compared to Taylor series.
However, this definition still eliminates pathological functions such as 1

𝑥
, sin 1

𝑥
, 𝟙(ℚ) and so on.

(ii) The converse is not true; for example, sin 1
𝑥
does in fact have a Fourier series.

(iii) The proof is difficult and will not be given.

The rate of convergence of the Fourier series depends on the smoothness of the function.

Theorem. If 𝑓(𝑥) has continuous derivatives up to a 𝑝th derivative which is discontinuous,
then the Fourier series converges with order 𝑂(𝑛−(𝑝+1)) as 𝑛 → ∞.

Example (𝑝 = 0). Consider the square wave

𝑓(𝑥) = {1 0 ≤ 𝑥 < 1
−1 −1 ≤ 𝑥 < 0

Then the Fourier series is

𝑓(𝑥) = 4
∞
∑
𝑚=1

sin(2𝑚 − 1)𝜋𝑥
(2𝑚 − 1)𝜋

Example (𝑝 = 1). Consider the general ‘seesaw’ wave, defined by

𝑓(𝑥) = {𝑥(1 − 𝜉) 0 ≤ 𝑥 < 𝜉
𝜉(1 − 𝑥) 𝜉 ≤ 𝑥 < 1
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and defined as an odd function for −1 ≤ 𝑥 < 0. The Fourier series is

𝑓(𝑥) = 2
∞
∑
𝑚=1

sin𝑛𝜋𝜉 sin𝑛𝜋𝑥
(𝑛𝜋)2

For instance, if 𝜉 = 1
2
, we can show that

𝑓(𝑥) = 2
∞
∑
𝑚=1

(−1)𝑚+1 sin(2𝑚 − 1)𝜋𝑥
((2𝑚 − 1)𝜋)2

Example (𝑝 = 2). Let
𝑓(𝑥) = 1

2𝑥(1 − 𝑥)

for 0 ≤ 𝑥 < 1, and defined as an odd function for −1 ≤ 𝑥 < 0. We can show that

𝑓(𝑥) = 4
∞
∑
𝑛=1

sin(2𝑚 − 1)𝜋𝑥
((2𝑚 − 1)𝜋)3

Example (𝑝 = 3). Consider
𝑓(𝑥) = (1 − 𝑥2)2

with Fourier series
𝑎𝑛 = 𝑂( 1𝑛4 )

1.6 Integration
It is always valid to take the integral of a Fourier series term by term. Defining 𝐹(𝑥) = ∫𝑥

−𝐿 𝑓(𝑥) d𝑥,
we can show that 𝐹 satisfies the Dirichlet conditions if 𝑓 does. For instance, a jump discontinuity
becomes continuous in the integral.

1.7 Differentiation
Differentiating term by term is not always valid. For example, consider the squarewave above:

𝑓(𝑥) ?= 4
∞
∑
𝑚=1

cos(2𝑚 − 1)𝜋𝑥

which is an unbounded series.

Theorem. If 𝑓(𝑥) is continuous and satisfies the Dirichlet conditions, and 𝑓′(𝑥) also satisfies
the Dirichlet conditions, then 𝑓′(𝑥) can be found term by term by differentiating the Fourier
series of 𝑓(𝑥).

Example. We can differentiate the seesaw function with 𝜉 = 1
2
, even though the derivative is not

continuous. The result is an offset square wave, or by mapping 𝑥 ↦ 𝑥 + 1
2
we recover the original

square wave.
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1.8 Parseval’s theorem
Parseval’s theorem relates the integral of the square of a function with the squares of the function’s
Fourier series coefficients.

Theorem. Suppose 𝑓 has Fourier coefficients 𝑎𝑖, 𝑏𝑖. Then

∫
2𝐿

0
[𝑓(𝑥)]2 d𝑥 = ∫

2𝐿

0
[12𝑎0 +

∞
∑
𝑛=1

𝑎𝑘 cos
𝑘𝜋𝑥
𝐿 +

∞
∑
𝑛=1

𝑏𝑛 sin
𝑛𝜋𝑥
𝐿 ]

2

d𝑥

We can remove cross terms, since the basis functions are orthogonal.

= ∫
2𝐿

0
[14𝑎

2
0 +

∞
∑
𝑛=1

𝑎2𝑛 cos2
𝑛𝜋𝑥
𝐿 +

∞
∑
𝑛=1

𝑏2𝑛 sin2
𝑛𝜋𝑥
𝐿 ] d𝑥

= 𝐿[12𝑎
2
0 +

∞
∑
𝑛=1

(𝑎2𝑛 + 𝑏2𝑛)]

This is also called the completeness relation: the left hand side is greater than or equal to the right
hand side if any of the basis functions are missing.

Example. Let us apply Parseval’s theorem to the sawtooth wave.

∫
𝐿

−𝐿
[𝑓(𝑥)]2 d𝑥 = ∫

𝐿

−𝐿
𝑥2 d𝑥 = 2

3𝐿
3

The right hand side gives

𝐿
∞
∑
𝑛=1

4𝐿2
𝑛2𝜋2 =

4𝐿3
𝜋2

∞
∑
𝑛=1

1
𝑛2

Parseval’s theorem then implies
∞
∑
𝑛=1

1
𝑛2 =

𝜋2
6

Remark. Parseval’s theorem for functions is equivalent to Pythagoras’ theorem for vectors inℝ𝑛: we
can find the norm of a linear combination by computing the sum of the norms of the components.

1.9 Half-range series
Consider 𝑓(𝑥) defined only on 0 ≤ 𝑥 < 𝐿. We can extend the range of 𝑓 to be the full range −𝐿 ≤
𝑥 < 𝐿 in two simple ways:
(i) require 𝑓 to be odd, so 𝑓(−𝑥) = −𝑓(𝑥). Hence, 𝑎𝑛 = 0 and

𝑏𝑛 =
2
𝐿 ∫

𝐿

0
𝑓(𝑥) sin 𝑛𝜋𝑥𝐿 d𝑥

So

𝑓(𝑥) =
∞
∑
𝑛=1

𝑏𝑛 sin
𝑛𝜋𝑥
𝐿

which is called a Fourier sine series.
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(ii) require 𝑓 to be even, so 𝑓(−𝑥) = 𝑓(𝑥). In this case, 𝑏𝑛 = 0 and

𝑎𝑛 =
2
𝐿 ∫

𝐿

0
𝑓(𝑥) cos 𝑛𝜋𝑥𝐿 d𝑥

and

𝑆𝑜𝑓(𝑥) = 1
2𝑎0 +

∞
∑
𝑛=1

𝑎𝑛 cos
𝑛𝜋𝑥
𝐿

which is a Fourier cosine series.

1.10 Complex representation of Fourier series
Recall that

cos 𝑛𝜋𝑥𝐿 = 1
2(𝑒

𝑖𝑛𝜋𝑥/𝐿 + 𝑒−𝑖𝑛𝜋𝑥/𝐿);

sin 𝑛𝜋𝑥𝐿 = 1
2𝑖 (𝑒

𝑖𝑛𝜋𝑥/𝐿 − 𝑒−𝑖𝑛𝜋𝑥/𝐿)

Therefore, a Fourier series can be written as

𝑓(𝑥) = 1
2𝑎0 +

1
2

∞
∑
𝑛=1

[(𝑎𝑛 − 𝑖𝑏𝑛)𝑒𝑖𝑛𝜋𝑥/𝐿 + (𝑎𝑛 + 𝑖𝑏𝑛)𝑒−𝑖𝑛𝜋𝑥/𝐿]

=
∞
∑

𝑚=−∞
𝑐𝑚𝑒𝑖𝑚𝜋𝑥/𝐿

where for 𝑚 > 0 we have 𝑚 = 𝑛, 𝑐𝑚 = 1
2
(𝑎𝑛 − 𝑖𝑏𝑛), and for 𝑚 < 0 we have 𝑛 = −𝑚, 𝑐𝑚 =

1
2
(𝑎−𝑚 + 𝑖𝑏−𝑚), and where𝑚 = 0 we have 𝑐0 =

1
2
𝑎0. In particular,

𝑐𝑚 = 1
2𝐿 ∫

𝐿

−𝐿
𝑓(𝑥)𝑒−𝑖𝑚𝜋𝑥/𝐿 d𝑥

where the negative sign comes from the complex conjugate. This is because, for complex-valued 𝑓, 𝑔,
we have

⟨𝑓, 𝑔⟩ = ∫
𝐿

−𝐿
𝑓⋆𝑔 d𝑥

The orthogonality conditions are

∫
𝐿

−𝐿
𝑒−𝑖𝑚𝜋𝑥/𝐿𝑒𝑖𝑛𝜋𝑥/𝐿 d𝑥 = 2𝐿𝛿𝑚𝑛

Parseval’s theorem now states

∫
𝐿

−𝐿
𝑓⋆(𝑥)𝑓(𝑥) d𝑥 = ∫

𝐿

−𝐿
|𝑓(𝑥)|2 d𝑥 = 2𝐿

∞
∑

𝑚=−∞
|𝑐𝑚|

2
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1.11 Self-adjoint matrices
Muchof this section is a recap of IAVectors andMatrices. Suppose that𝑢, 𝑣 ∈ ℂ𝑁 with inner product

⟨𝑢, 𝑣⟩ = 𝑢†𝑣

The 𝑁 × 𝑁 matrix 𝐴 is self-adjoint, or Hermitian, if

∀𝑢, 𝑣 ∈ ℂ𝑁 , ⟨𝐴𝑢, 𝑣⟩ = ⟨𝑢, 𝐴𝑣⟩ ⟺ 𝐴† = 𝐴

The eigenvalues 𝜆𝑛 and eigenvectors 𝑣𝑛 satisfy

𝐴𝑣𝑛 = 𝜆𝑛𝑣𝑛

They have the following properties:

(i) 𝜆⋆
𝑛 = 𝜆𝑛;

(ii) 𝜆𝑛 ≠ 𝜆𝑚 ⟹ ⟨𝑣𝑛, 𝑣𝑚⟩ = 0;
(iii) we can create an orthonormal basis from the eigenvectors.

Given 𝑏 ∈ ℂ𝑛, we can solve for 𝑥 in the general matrix equation 𝐴𝑥 = 𝑏 by expressing 𝑏 in terms of
the eigenvector basis:

𝑏 =
𝑁
∑
𝑛=1

𝑏𝑛𝑣𝑛

We seek a solution of the form

𝑥 =
𝑁
∑
𝑛=1

𝑐𝑛𝑣𝑛

At this point, the 𝑏𝑛 are known and the 𝑐𝑛 are our target. Substituting into the matrix equation,
orthogonality of basis vectors gives

𝐴
𝑁
∑
𝑛=1

𝑐𝑛𝑣𝑛 =
𝑁
∑
𝑛=1

𝑏𝑛𝑣𝑛

𝑁
∑
𝑛=1

𝑐𝑛𝜆𝑛𝑣𝑛 =
𝑁
∑
𝑛=1

𝑏𝑛𝑣𝑛

𝑐𝑛𝜆𝑛 = 𝑏𝑛

𝑐𝑛 =
𝑏𝑛
𝜆𝑛

Therefore,

𝑥 =
𝑁
∑
𝑛=1

𝑏𝑛
𝜆𝑛
𝑣𝑛

provided 𝜆𝑛 ≠ 0, or equivalently, the matrix is invertible.
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1.12 Solving inhomogeneous ODEs with Fourier series
We wish to find 𝑦(𝑥) given a source term 𝑓(𝑥) for the general differential equation

ℒ𝑦 ≡ −d
2𝑦
d𝑥2 = 𝑓(𝑥)

with boundary conditions 𝑦(0) = 𝑦(𝐿) = 0. The related eigenvalue problem is

ℒ𝑦𝑛 = 𝜆𝑛𝑦𝑛, 𝑦𝑛(0) = 𝑦𝑛(𝐿) = 0

which has solutions
𝑦𝑛(𝑥) = sin 𝑛𝜋𝑥𝐿 , 𝜆𝑛 = (𝑛𝜋𝐿 )

2

We can show that this is a self-adjoint linear operator with orthogonal eigenfunctions. We seek solu-
tions of the form of a half-range sine series. Consider

𝑦(𝑥) =
∞
∑
𝑛=1

𝑐𝑛 sin
𝑛𝜋𝑥
𝐿

The right hand side is

𝑓(𝑥) =
∞
∑
𝑛=1

𝑏𝑛 sin
𝑛𝜋𝑥
𝐿

We can find 𝑏𝑛 by

𝑏𝑛 =
2
𝐿 ∫

𝐿

0
𝑓(𝑥) sin 𝑛𝜋𝑥𝐿 d𝑥

Substituting, we have

ℒ𝑦 = − d2
d𝑥2 (∑𝑛

𝑐𝑛 sin
𝑛𝜋𝑥
𝐿 ) = ∑

𝑛
𝑐𝑛(

𝑛𝜋
𝐿 )

2
sin 𝑛𝜋𝑥𝐿 = ∑

𝑛
𝑏𝑛 sin

𝑛𝜋𝑥
𝐿

By orthogonality,

𝑐𝑛(
𝑛𝜋
𝐿 )

2
= 𝑏𝑛 ⟹ 𝑐𝑛 = ( 𝐿𝑛𝜋)

2
𝑏𝑛

Therefore the solution is
𝑦(𝑥) = ∑

𝑛
( 𝐿𝑛𝜋)

2
𝑏𝑛 sin

𝑛𝜋𝑥
𝐿 = ∑

𝑛

𝑏𝑛
𝜆𝑛
𝑦𝑛

which is equivalent to the solution we found for self-adjoint matrices for which the eigenvalues and
eigenvectors are known.

Example. Consider an odd square wave with 𝐿 = 1, so 𝑓(𝑥) = 1 from 0 ≤ 𝑥 < 1.

𝑓(𝑥) = 4∑
𝑚

sin(2𝑚 − 1)𝜋𝑥
(2𝑚 − 1)𝜋

Then the solution to ℒ𝑦 = 𝑓 should be (with odd 𝑛 = 2𝑚 − 1)

𝑦(𝑥) = ∑
𝑛

𝑏𝑛
𝜆𝑛
𝑦𝑛 = 4∑

𝑛

sin(2𝑚 − 1)𝜋𝑥
((2𝑚 − 1)𝜋)3
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This is exactly the Fourier series for
𝑦(𝑥) = 1

2𝑥(1 − 𝑥)
so this 𝑦 is the solution to the differential equation. We can in fact integrate ℒ𝑦 = 1 directly with the
boundary conditions to verify the solution. We can also differentiate the Fourier series for 𝑦 twice to
find the square wave.

2 Sturm–Liouville theory
2.1 Second-order linear ODEs
This section is a review of IA Differential Equations.

We wish to solve a general inhomogeneous ODE, written

ℒ𝑦 ≡ 𝛼(𝑥)𝑦″ + 𝛽(𝑥)𝑦′ + 𝛾(𝑥)𝑦 = 𝑓(𝑥)

The homogeneous version has 𝑓(𝑥) = 0, so ℒ𝑦 = 0, which has two independent solutions 𝑦1, 𝑦2.
The general solution, also the complementary function for the inhomogeneous ODE, is 𝑦𝑐(𝑥) =
𝐴𝑦1(𝑥) + 𝐵𝑦2(𝑥). The inhomogeneous equation ℒ𝑦 = 𝑓(𝑥) has a solution called the particular integ-
ral, denoted 𝑦𝑝(𝑥). The general solution to this equation is then 𝑦𝑝 + 𝑦𝑐.
We need two boundary or initial conditions to find the particular solution to the differential equa-
tion. Suppose 𝑥 ∈ [𝑎, 𝑏]. We can create boundary conditions by defining 𝑦(𝑎), 𝑦(𝑏), often called the
Dirichlet conditions. Alternatively, we can consider 𝑦(𝑎), 𝑦′(𝑎), called the Neumann conditions. We
could also used some kind of mixed condition, for instance 𝑦 + 𝑘𝑦′. Homogeneous boundary condi-
tions are such that 𝑦(𝑎) = 𝑦(𝑏) = 0. In this part of the course, homogeneous boundary conditions
are often assumed. Note that we can add a complementary function 𝑦𝑐 to the solution, for instance
𝑦 = 𝑦 + 𝐴𝑦1 + 𝐵𝑦2 such that 𝑦(𝑎) = 𝑦(𝑏) = 0. This would allow us to construct homogeneous
boundary conditions even when they are not present a priori in the problem. We could also specify
initial data, such as solving for 𝑥 ≥ 𝑎, given 𝑦, 𝑦′ at 𝑥 = 𝑎.
To solve the inhomogeneous equation, we want to use eigenfunction expansions such as Fourier
series. In order to do this, we must first solve the related eigenvalue problem. In this case, that
is

𝛼(𝑥)𝑦″ + 𝛽(𝑥)𝑦′ + 𝛾(𝑥)𝑦 = −𝜆𝜌(𝑥)𝑦
Wemust solve this equationwith the same boundary conditions as the original problem. This form of
equation often arises as a result of applying a separation of variables, particularly for PDEs in several
dimensions.

2.2 Sturm–Liouville form
For two complex-valued functions 𝑓, 𝑔 on [𝑎, 𝑏], we define the inner product as

⟨𝑓, 𝑔⟩ = ∫
𝑏

𝑎
𝑓⋆(𝑥)𝑔(𝑥) d𝑥

The eigenvalue problem above greatly simplifies if ℒ is self-adjoint, that is, if it can be expressed in
Sturm–Liouville form:

ℒ𝑦 ≡ (−𝑝𝑦′)′ + 𝑞𝑦 = 𝜆𝑤𝑦
𝜆 is an eigenvalue, and 𝑤 is the weight function, which must be non-negative.
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2.3 Converting to Sturm–Liouville form
Suppose we have the eigenvalue problem

𝛼(𝑥)𝑦″ + 𝛽(𝑥)𝑦′ + 𝛾(𝑥)𝑦 = −𝜆𝜌(𝑥)𝑦

Multiply this by an integrating factor 𝐹 to give

𝐹𝛼𝑦″ + 𝐹𝛽𝑦′ + 𝐹𝛾𝑦 = −𝜆𝐹𝜌𝑦
d
d𝑥(𝐹𝛼𝑦

′) − 𝐹′𝛼𝑦′ − 𝐹𝛼′𝑦 + 𝐹𝛽𝑦′ + 𝐹𝛾𝑦 = −𝜆𝐹𝜌𝑦

To eliminate the 𝑦′ term, we require 𝐹′𝛼 = 𝐹(𝛽 − 𝛼′). Thus,

𝐹′
𝐹 = 𝛽 − 𝛼′

𝛼 ⟹ 𝐹 = exp∫
𝑥 𝛽 − 𝛼′

𝛼 d𝑥

and further,
(𝐹𝛼𝑦′)′ + 𝐹𝛾𝑦 = −𝜆𝐹𝜌𝑦

hence

𝑝 = 𝐹𝛼
𝑞 = 𝐹𝛾
𝑤 = 𝐹𝜌

and 𝐹(𝑥) > 0 hence 𝑤 > 0.
Example. Consider the Hermite equation,

𝑦″ − 2𝑥𝑦′ + 2𝑛𝑦 = 0

In this case,

𝐹 = exp∫
𝑥 −2𝑥

1 d𝑥 = 𝑒−𝑥2

Then the equation, in Sturm–Liouville form, is

ℒ𝑦 ≡ −(𝑒−𝑥2𝑦′)
′
= 2𝑛𝑒−𝑥2𝑦

2.4 Self-adjoint operators
ℒ is a self-adjoint operator on [𝑎, 𝑏] for all pairs of functions 𝑦1, 𝑦2 satisfying appropriate boundary
conditions if

⟨𝑦1, ℒ𝑦2⟩ = ⟨ℒ𝑦1, 𝑦2⟩
Written explicitly,

∫
𝑏

𝑎
𝑦⋆
1(𝑥)ℒ𝑦2(𝑥) d𝑥 = ∫

𝑏

𝑎
(ℒ𝑦1(𝑥))⋆𝑦2(𝑥) d𝑥
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Substituting Sturm–Liouville form into the above,

⟨𝑦1, ℒ𝑦2⟩ − ⟨ℒ𝑦1, 𝑦2⟩ = ∫
𝑏

𝑎
[−𝑦1(𝑝𝑦′2)′ + 𝑦1𝑞𝑦2 + 𝑦2(𝑝𝑦′1)′ − 𝑦2𝑞𝑦1] d𝑥

= ∫
𝑏

𝑎
[−𝑦1(𝑝𝑦′2)′ + 𝑦1𝑞𝑦2 + 𝑦2(𝑝𝑦′1)′ − 𝑦2𝑞𝑦1] d𝑥

= ∫
𝑏

𝑎
[−𝑦1(𝑝𝑦′2)′ + 𝑦2(𝑝𝑦′1)′] d𝑥

Adding −𝑦′1𝑝𝑦′2 + 𝑦′1𝑝𝑦′2,

= ∫
𝑏

𝑎
[−(𝑝𝑦1𝑦′2)′ + (𝑝𝑦′1𝑦2)′] d𝑥

= [−𝑝𝑦1𝑦′2 + 𝑝𝑦′1𝑦2]𝑏𝑎

which must be zero for an equation in Sturm–Liouville form to be self-adjoint.

2.5 Self-adjoint compatible boundary conditions
• Suppose 𝑦(𝑎) = 𝑦(𝑏) = 0. Then certainly the Sturm–Liouville form of the differential equa-
tion is self-adjoint. We could also choose 𝑦′(𝑎) = 𝑦′(𝑏) = 0. Collectively, the act of using
homogeneous boundary conditions is known as the regular Sturm–Liouville problem.

• Periodic boundary conditions could also be used, such as 𝑦(𝑎) = 𝑦(𝑏).
• If 𝑎 and 𝑏 are singular points of the equation, i.e. 𝑝(𝑎) = 𝑝(𝑏) = 0, this is self-adjoint compat-
ible.

• We could also have combinations of the above properties, one at 𝑎 and one at 𝑏.

2.6 Properties of self-adjoint operators
The following properties hold for any self-adjoint differential operator ℒ.
(i) The eigenvalues 𝜆𝑛 are real.
(ii) The eigenfunctions 𝑦𝑛 are orthogonal.
(iii) The 𝑦𝑛 are a complete set; they span the space of all functions hence our general solution can

be written in terms of these eigenfunctions.

Each property is proven in its own subsection.

2.7 Real eigenvalues
Proof. Supposewe have some eigenvalue 𝜆𝑛, soℒ𝑦𝑛 = 𝜆𝑛𝑤𝑦𝑛. Taking the complex conjugate,ℒ𝑦⋆

𝑛 =
𝜆⋆
𝑛𝑤𝑦⋆

𝑛, since ℒ,𝑤 are real. Now, consider

∫
𝑏

𝑎
(𝑦⋆

𝑛ℒ𝑦𝑛 − 𝑦𝑛ℒ𝑦⋆
𝑛) d𝑥
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which must be zero if ℒ is self-adjoint. This can be written as

(𝜆𝑛 − 𝜆⋆
𝑛)∫

𝑏

𝑎
𝑤𝑦⋆

𝑛𝑦𝑛 d𝑥

The integral is nonzero, hence 𝜆𝑛−𝜆⋆
𝑛 = 0which implies 𝜆𝑛 is real. Note, if the 𝜆𝑛 are non-degenerate

(simple), i.e. with a unique eigenfunction 𝑦𝑛, then 𝑦⋆
𝑛 = 𝑦𝑛 hence they are real. We can in fact show

that (for a second-order equation) it is always possible to take linear combinations of eigenfunctions
such that the result is linear, for example in the exponential form of the Fourier series. Hence, we
can assume that 𝑦𝑛 is real. We can further prove that the regular Sturm–Liouville problem must
have simple (non-degenerate) eigenvalues 𝜆𝑛, by considering two possible eigenfunctions 𝑢, 𝑣 for
the same 𝜆, and use the expression for self-adjointness. We find 𝑢ℒ𝑣 − (ℒ𝑢)𝑣 = [−𝑝(𝑢𝑣′ − 𝑢′𝑣)]′
which contains the Wrońskian. We can integrate and impose homogeneous boundary conditions to
get the required result.

2.8 Orthogonality of eigenfunctions
Suppose ℒ𝑦𝑛 = 𝜆𝑛𝑤𝑦𝑛, and ℒ𝑦𝑚 = 𝜆𝑚𝑤𝑦𝑚 where 𝜆𝑛 ≠ 𝜆𝑚. Then, we can integrate to find

∫
𝑏

𝑎
(𝑦𝑚ℒ𝑦𝑛 − 𝑦𝑛ℒ𝑦𝑚) d𝑥 = (𝜆𝑛 − 𝜆𝑚)∫

𝑏

𝑎
𝑤𝑦𝑛𝑦𝑚 d𝑥 = 0 by self-adjointness

Since 𝜆𝑛 ≠ 𝜆𝑚, we have

∀𝑛 ≠ 𝑚,∫
𝑏

𝑎
𝑤𝑦𝑛𝑦𝑚 d𝑥 = 0

Hence, 𝑦𝑛 and 𝑦𝑚 are orthogonal with respect to the weight function 𝑤 on [𝑎, 𝑏].

Definition. We define the inner product with respect to 𝑤 to be

⟨𝑓, 𝑔⟩𝑤 = ∫
𝑏

𝑎
𝑤𝑓⋆𝑔 d𝑥

Note,
⟨𝑓, 𝑔⟩𝑤 = ⟨𝑤𝑓, 𝑔⟩ = ⟨𝑓, 𝑤𝑔⟩

Hence, the orthogonality relation becomes

∀𝑛 ≠ 𝑚, ⟨𝑦𝑛, 𝑦𝑚⟩𝑤 = 0

2.9 Eigenfunction expansions
The completeness of the family of eigenfunctions (which is not proven here) implies that we can
approximate any ‘well-behaved’ 𝑓(𝑥) on [𝑎, 𝑏] by the series

𝑓(𝑥) =
∞
∑
𝑛=1

𝑎𝑛𝑦𝑛(𝑥)
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This is comparable to Fourier series. To find the coefficients 𝑎𝑛, we will take the inner product with
an eigenfunction. By orthogonality,

∫
𝑏

𝑎
𝑤𝑦𝑚𝑓 d𝑥 =

∞
∑
𝑛=1

𝑎𝑛∫
𝑏

𝑎
𝑤𝑦𝑛𝑦𝑚 d𝑥 = 𝑎𝑚∫

𝑏

𝑎
𝑤𝑦2𝑚 d𝑥

Hence,

𝑎𝑛 =
∫𝑏
𝑎 𝑤𝑦𝑛𝑓 d𝑥
∫𝑏
𝑎 𝑤𝑦2𝑛 d𝑥

We can normalise eigenfunctions, for instance

𝑌𝑛(𝑥) =
𝑦𝑛(𝑥)

(∫𝑏
𝑎 𝑤𝑦2𝑛 d𝑥)

1
2

hence
⟨𝑌𝑛, 𝑌𝑚⟩𝑤 = 𝛿𝑛𝑚

giving an orthonormal set of eigenfunctions. In this case,

𝑓(𝑥) =
∞
∑
𝑛=1

𝐴𝑛𝑌𝑛

where

𝐴𝑛 = ∫
𝑏

𝑎
𝑤𝑌𝑛𝑓 d𝑥

Example. Recall Fourier series in Sturm–Liouville form:

ℒ𝑦𝑛 ≡ −d
2𝑦
d𝑥2 = 𝜆𝑛𝑦𝑛

where in this case we have
𝜆𝑛 = (𝑛𝜋𝐿 )

2

2.10 Completeness and Parseval’s identity
Consider

∫
𝑏

𝑎
[𝑓(𝑥) −

∞
∑
𝑛=1

𝑎𝑛𝑦𝑛]
2

𝑤 d𝑥

By orthogonality, this is equivalently

∫
𝑏

𝑎
[𝑓2 − 2𝑓∑

𝑛
𝑎𝑛𝑦𝑛 +∑

𝑛
𝑎2𝑛𝑦2𝑛]𝑤 d𝑥

Note that the second term can be extracted using the definition of 𝑎𝑛, giving

∫
𝑏

𝑎
𝑤𝑓2 d𝑥 −

∞
∑
𝑛=1

𝑎2𝑛∫
𝑏

𝑎
𝑤𝑦2𝑛 d𝑥
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If the eigenfunctions are complete, then the result will be zero, showing that the series expansion
converges.

∫
𝑏

𝑎
𝑤𝑓2 d𝑥 =

∞
∑
𝑛=1

𝑎2𝑛∫
𝑏

𝑎
𝑤𝑦2𝑛 d𝑥 =

∞
∑
𝑛=1

𝐴2
𝑛

If some eigenfunctions are missing, this is Bessel’s inequality:

∫
𝑏

𝑎
𝑤𝑓2 d𝑥 ≥

∞
∑
𝑛=1

𝐴2
𝑛

We define the partial sum to be

𝑆𝑁(𝑥) =
𝑁
∑
𝑛=1

𝑎𝑛𝑦𝑛

with 𝑓(𝑥) = lim𝑁→∞ 𝑆𝑁(𝑥). Convergence is defined in terms of themean-square error. In particular,
if we have a complete set of eigenfunctions,

𝜀𝑁 = ∫
𝑏

𝑎
𝑤[𝑓(𝑥) − 𝑆𝑛(𝑥)]

2 d𝑥 → 0

This ‘global’ definition of convergence is convergence in the mean, not pointwise convergence as in
Fourier series. The error in partial sum 𝑆𝑁 isminimised by 𝑎𝑛 above for the𝑁 = ∞ expansion.

𝜕𝜀𝑁
𝜕𝑎𝑛

= −2∫
𝑏

𝑎
𝑦𝑛𝑤[𝑓 −

𝑁
∑
𝑛=1

𝑎𝑛𝑦𝑛] d𝑥 = −2∫
𝑏

𝑎
(𝑤𝑓𝑦𝑛 − 𝑎𝑛𝑤𝑦2𝑛) d𝑥 = 0

It is minimal because we can show 𝜕2𝜀
𝜕𝑎2𝑛

= 2∫𝑏
𝑎 𝑤𝑦2𝑛 d𝑥 ≥ 0. Thus the 𝑎𝑛 given above is the best

possible choice for the coefficient at all 𝑁.

2.11 Legendre’s equation
Legendre’s equation is

(1 − 𝑥2)𝑦″ − 2𝑥𝑦′ + 𝜆𝑦 = 0
on [−1, 1], with boundary conditions that 𝑦 is finite at 𝑥 = ±1, at the regular singular points of the
ODE. This equation is already in Sturm–Liouville form with

𝑝 = 1 − 𝑥2, 𝑞 = 0,𝑤 = 1

We seek a power series solution centred on 𝑥 = 0:

𝑦 = ∑
𝑛
𝑐𝑛𝑥𝑛

Substituting into the differential equation,

(1 − 𝑥2)∑
𝑛
𝑛(𝑛 − 1)𝑥𝑛𝑥𝑛−2 − 2𝑥∑

𝑛
𝑐𝑛𝑐𝑛−1 + 𝜆∑

𝑛
𝑐𝑛𝑥𝑛 = 0

Equating powers,
(𝑛 + 2)(𝑛 + 1)𝑐𝑛+2 − 𝑛(𝑛 − 1)𝑐𝑛 − 2𝑛𝑐𝑛 + 𝜆𝑐𝑛 = 0
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which gives a recursion relation between 𝑐𝑛+2 and 𝑐𝑛.

𝑐𝑛+2 =
𝑛(𝑛 + 1) − 𝜆
(𝑛 + 1)(𝑛 + 2)𝑐𝑛

Hence, specifying 𝑐0, 𝑐1 gives two independent solutions. In particular,

𝑦even = 𝑐0[1 +
(−𝜆)
2! 𝑥2 + (6 − 𝜆)(−𝜆)

4! 𝑥4 +…]

𝑦odd = 𝑐1[𝑥 +
(2 − 𝜆)
3! 𝑥3 +…]

As 𝑛 → ∞, 𝑐𝑛+2
𝑐𝑛

→ 1. So these are geometric series, with radius of convergence |𝑥| < 1, hence there
is divergence at 𝑥 = ±1. So taking a power series does not give a useful solution.
Suppose we chose 𝜆 = ℓ(ℓ+1). Then eventually we have 𝑛 such that the numerator vanishes. In par-
ticular, by taking 𝜆 = ℓ(ℓ+1), either the series for 𝑦even or 𝑦odd terminates. These functions are called
the Legendre polynomials, denoted 𝑃ℓ(𝑥), with the normalisation convention 𝑃ℓ(1) = 1.

• ℓ = 0, 𝜆 = 0, 𝑃0(𝑥) = 1
• ℓ = 1, 𝜆 = 2, 𝑃1(𝑥) = 𝑥

• ℓ = 2, 𝜆 = 6, 𝑃2(𝑥) =
3𝑥2−1

2

• ℓ = 3, 𝜆 = 12, 𝑃3(𝑥) =
5𝑥3−3𝑥

2

Note, 𝑃ℓ(𝑥) has ℓ zeroes. The polynomials oscillate in parity.

2.12 Properties of Legendre polynomials
Since Legendre polynomials come from a self-adjoint operator, they must have certain conditions,
such as orthogonality. For 𝑛 ≠ 𝑚,

∫
1

−1
𝑃𝑛𝑃𝑚 d𝑥 = 0

They are also normalisable,

∫
1

−1
𝑃2𝑛 d𝑥 =

2
2𝑛 + 1

We can prove this with Rodrigues’ formula:

𝑃𝑛(𝑥) =
1

2𝑛𝑛!(
d
d𝑥)

𝑛
(𝑥2 − 1)𝑛

Alternatively we could use a generating function:

∞
∑
𝑛=0

𝑃𝑛(𝑥)𝑡𝑛 =
1

√1 − 2𝑥𝑡 + 𝑡2
= 1 + 1

2(2𝑥𝑡 − 𝑡2) + 3
8(2𝑥𝑡 − 𝑡2)2 +…

= 1 + 𝑥𝑡 + 1
2(3𝑥

2 − 1)𝑡2 +…
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There are some useful recursion relations.

ℓ(ℓ + 1)𝑃ℓ+1 = (2ℓ + 1)𝑥𝑃ℓ(𝑥) − ℓ𝑃ℓ−1(𝑥)

Also,
(2ℓ + 1)𝑃ℓ(𝑥) =

d
d𝑥[𝑃ℓ+1(𝑥) − 𝑃ℓ−1(𝑥)]

2.13 Legendre polynomials as eigenfunctions
Any (well-behaved) function on [−1, 1] can be expressed as

𝑓(𝑥) =
∞
∑
ℓ=0

𝑎ℓ𝑃ℓ(𝑥)

where

𝑎ℓ =
2ℓ + 1
2 ∫

1

−1
𝑓(𝑥)𝑃ℓ(𝑥) d𝑥

with no boundary conditions (e.g. periodicity conditions) on 𝑓.

2.14 Solving inhomogeneous differential equations
This can be thought of as the general case of Fourier series discussed previously.

Consider the problem
ℒ𝑦 = 𝑓(𝑥) ≡ 𝑤(𝑥)𝐹(𝑥)

on 𝑥 ∈ [𝑎, 𝑏] assuming homogeneous boundary conditions. Given eigenfunctions 𝑦𝑛(𝑥) satisfying
ℒ𝑦𝑛 = 𝜆𝑛𝑤𝑦𝑛, we wish to expand this solution as

𝑦(𝑥) = ∑
𝑛
𝑐𝑛𝑦𝑛(𝑥)

and
𝐹(𝑥) = ∑

𝑛
𝑎𝑛𝑦𝑛(𝑥)

where 𝑎𝑛 are known and 𝑐𝑛 are unknown:

𝑎𝑛 =
∫𝑏
𝑎 𝑤𝐹𝑦𝑛 d𝑥
∫𝑏
𝑎 𝑤𝑦2𝑛 d𝑥

Substituting,
ℒ𝑦 = ℒ∑

𝑛
𝑐𝑛𝑦𝑛 = 𝑤∑

𝑛
𝑐𝑛𝜆𝑛𝑦𝑛 = 𝑤∑

𝑛
𝑎𝑛𝑦𝑛

By orthogonality,
𝑐𝑛𝜆𝑛 = 𝑎𝑛 ⟹ 𝑐𝑛 =

𝑎𝑛
𝜆𝑛

In particular,

𝑦(𝑥) =
∞
∑
𝑛=1

𝑎𝑛
𝜆𝑛
𝑦𝑛(𝑥)
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We can further generalise; we can permit a driving force, which often induces a linear response term
̃𝜆𝑤𝑦.

ℒ𝑦 − ̃𝜆𝑤𝑦 = 𝑓(𝑥)
where ̃𝜆 is fixed. The solution becomes

𝑦(𝑥) =
∞
∑
𝑛=1

𝑎𝑛
𝜆𝑛 − ̃𝜆

𝑦𝑛(𝑥)

2.15 Integral solutions
Recall that

𝑦(𝑥) =
∞
∑
𝑛=1

𝑎𝑛
𝜆𝑛
𝑦𝑛(𝑥) = ∑

𝑛

𝑦𝑛(𝑥)
𝜆𝑛𝜆𝑛𝑁𝑛

∫
𝑏

𝑎
𝑤(𝜉)𝐹(𝜉)𝑦𝑛(𝜉) d𝜉

where
𝑁𝑛 = ∫𝑤𝑦2𝑛 d𝑥

This then gives

𝑦(𝑥) = ∫
𝑏

𝑎

∞
∑
𝑛=1

𝑦𝑛(𝑥)𝑦𝑛(𝜉)
𝜆𝑛𝑁𝑛⏟⎵⎵⎵⏟⎵⎵⎵⏟

𝐺(𝑥,𝜉)

𝑤(𝜉)𝐹(𝜉)⏟⎵⏟⎵⏟
𝑓(𝜉)

d𝜉 = ∫
𝑏

𝑎
𝐺(𝑥; 𝜉)𝑓(𝜉) d𝜉

where

𝐺(𝑥, 𝜉) =
∞
∑
𝑛=1

𝑦𝑛(𝑥)𝑦𝑛(𝜉)
𝜆𝑛𝑁𝑛

is the eigenfunction expansion of the Green’s function. Note that the Green’s function does not de-
pend on 𝑓, but only on ℒ and the boundary conditions. In this sense, it acts like an inverse oper-
ator

ℒ− ≡ ∫ d𝜉 𝐺(𝑥, 𝜉)

analogously to how 𝐴𝑥 = 𝑏 ⟹ 𝑥 = 𝐴−1𝑏 for matrix equations.

2.16 Waves on an elastic string
Consider a small displacement 𝑦(𝑥, 𝑡) on a stretched string with fixed ends at 𝑥 = 0 and 𝑥 = 𝐿, that
is, with boundary conditions 𝑦(0, 𝑡) = 𝑦(𝐿, 𝑡) = 0. We can determine the string’s motion for specified
initial conditions 𝑦(𝑥, 0) = 𝑝(𝑥) and 𝜕𝑦

𝜕𝑡
= 𝑞(𝑥). We derive the equation of motion governing the

motion of the string by balancing forces on a string segment (𝑥, 𝑥 + 𝛿𝑥) and take the limit as 𝛿𝑥 → 0.
Let 𝑇1 be the tension force acting to the left at angle 𝜃1 from the horizontal. Analogously, let 𝑇2 be
the rightwards tension force at angle 𝜃2. We assume at any point on the string that ||

𝜕𝑦
𝜕𝑥
|| ≪ 1, so the

angles of the forces are small. In the 𝑥 dimension,
𝑇1 cos 𝜃1 = 𝑇2 cos 𝜃2 ⟹ 𝑇1 ≈ 𝑇2 = 𝑇

So the tension 𝑇 is constant up to an error of order 𝑂(||
𝜕𝑦
𝜕𝑥
||
2
). In the 𝑦 dimension, since 𝜃 are

small,
𝐹𝑇 = 𝑇2 sin 𝜃2 − 𝑇1 sin 𝜃1 ≈ 𝑇( 𝜕𝑦𝜕𝑥

|||𝑥+𝛿𝑥
− 𝜕𝑦
𝜕𝑥
|||𝑥
) ≈ 𝑇 𝜕

2𝑦
𝜕𝑥2 𝛿𝑥
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By 𝐹 = 𝑚𝑎,
𝐹𝑇 + 𝐹𝑔 = (𝜇𝛿𝑥)𝜕

2𝑦
𝜕𝑡2 = 𝑇 𝜕

2𝑦
𝜕𝑥2 𝛿𝑥 − 𝑔𝜇𝛿𝑥

where𝐹𝑔 is the gravitational force and𝜇 is the linearmass density. We define thewave speed as

𝑐 =
√

𝑇
𝜇

and find
𝜕2𝑦
𝜕𝑡2 = 𝑇

𝜇
𝜕2𝑦
𝜕𝑥2 − 𝑔 = 𝑐2 𝜕

2𝑦
𝜕𝑥2

We often assume gravity is negligible to produce the pure wave equation

1
𝑐2
𝜕2𝑦
𝜕𝑡2 = 𝜕2𝑦

𝜕𝑥2

3 Separation of variables
3.1 Separation of variables
We wish to solve the wave equation subject to certain boundary and initial conditions. Consider a
possible solution of separable form:

𝑦(𝑥, 𝑡) = 𝑋(𝑥)𝑇(𝑡)
Substituting into the wave equation,

1
𝑐2 ̈𝑦 = 𝑦″ ⟹ 1

𝑐2𝑋
̈𝑇 = 𝑋″𝑇

Then
1
𝑐2

̈𝑇
𝑇 = 𝑋″

𝑋

However,
̈𝑇

𝑇
depends only on 𝑡 and 𝑋″

𝑋
depends only on 𝑥. Thus, both sides must be equal to some

separation constant −𝜆.
1
𝑐2

̈𝑇
𝑇 = 𝑋″

𝑋 = −𝜆

Hence,
𝑋″ + 𝜆𝑋 = 0; ̈𝑇 + 𝜆𝑐2𝑇 = 0

3.2 Boundary conditions and normal modes
We will begin by first solving the spatial part of the solution. One of 𝜆 > 0, 𝜆 < 0, 𝜆 = 0must be true.
The boundary conditions restrict the possible 𝜆.
(i) First, suppose 𝜆 < 0. Take 𝜒2 = −𝜆. Then,

𝑋(𝑥) = 𝐴𝑒𝜒𝑥 + 𝐵𝑒−𝜒𝑥 = 𝐶 cosh(𝜒𝑥) + 𝐷 sinh(𝜒𝑥)

The boundary conditions are 𝑥(0) = 𝑥(𝐿) = 0, so only the trivial solution is possible: 𝐶 = 𝐷 =
0.
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(ii) Now, suppose 𝜆 = 0. Then
𝑋(𝑥) = 𝐴𝑥 + 𝐵

Again, the boundary conditions impose 𝐴 = 𝐵 = 0 giving only the trivial solution.
(iii) Finally, the last possibility is 𝜆 > 0.

𝑋(𝑥) = 𝐴 cos (√𝜆𝑥) + 𝐵 sin (√𝜆𝑥)

The boundary conditions give

𝐴 = 0; 𝐵 sin (√𝜆𝐿) = 0 ⟹ √𝜆𝐿 = 𝑛𝜋

The following are the eigenfunctions and eigenvalues.

𝑋𝑛(𝑥) = 𝐵𝑛 sin
𝑛𝜋𝑥
𝐿 ; 𝜆𝑛 = (𝑛𝜋𝐿 )

2

These are also called the ‘normal modes’ of the system. The spatial shape in 𝑥 does not change in
time, but the amplitude may vary. The fundamental mode is the lowest frequency of vibration, given
by

𝑛 = 1 ⟹ 𝜆1 =
𝜋2
𝐿2

The second mode is the first overtone, and is given by

𝑛 = 2 ⟹ 𝜆2 =
4𝜋2
𝐿2

3.3 Initial conditions and temporal solutions
Substituting 𝜆𝑛 into the time ODE,

̈𝑇 + 𝑛2𝜋2𝑐2
𝐿2 𝑇 = 0

Hence,
𝑇𝑛(𝑡) = 𝐶𝑛 cos

𝑛𝜋𝑐𝑡
𝐿 + 𝐷𝑛 sin

𝑛𝜋𝑐𝑡
𝐿

Therefore, a specific solution of the wave equation satisfying the boundary conditions is (absorbing
the 𝐵𝑛 into the 𝐶𝑛, 𝐷𝑛):

𝑦𝑛(𝑥, 𝑡) = 𝑇𝑛(𝑡)𝑋𝑛(𝑥) = (𝐶𝑛 cos
𝑛𝜋𝑐𝑡
𝐿 + 𝐷𝑛 sin

𝑛𝜋𝑐𝑡
𝐿 ) sin 𝑛𝜋𝑥𝐿

To find a particular solution for a given set of initial conditions, we must consider a linear superpos-
ition of all possible 𝑦𝑛.

𝑦(𝑥, 𝑡) =
∞
∑
𝑛=1

(𝐶𝑛 cos
𝑛𝜋𝑐𝑡
𝐿 + 𝐷𝑛 sin

𝑛𝜋𝑐𝑡
𝐿 ) sin 𝑛𝜋𝑥𝐿

By construction, this 𝑦(𝑥, 𝑡) satisfies the boundary conditions, so now we can impose the initial con-
ditions.

𝑦(𝑥, 0) = 𝑝(𝑥) =
∞
∑
𝑛=1

𝐶𝑛 sin
𝑛𝜋𝑥
𝐿
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We can find the 𝐶𝑛 using standard Fourier series techniques, since this is exactly a half-range sine
series. Further,

𝜕𝑦(𝑥, 0)
𝜕𝑡 = 𝑞(𝑥) =

∞
∑
𝑛=1

𝑛𝜋𝑐
𝐿 𝐷𝑛 sin

𝑛𝜋𝑥
𝐿

Again we can solve for the 𝐷𝑛 in a similar way. In particular,

𝐶𝑛 =
2
𝐿 ∫

𝐿

0
𝑝(𝑥) sin 𝑛𝜋𝑥𝐿 d𝑥

𝐷𝑛 =
2
𝑛𝜋𝑐 ∫

𝐿

0
𝑞(𝑥) sin 𝑛𝜋𝑥𝐿 d𝑥

Example. Consider the initial condition of a see-saw wave parametrised by 𝜉, and let 𝐿 = 1. This
can be visualised as plucking the string at position 𝜉.

𝑦(𝑥, 0) = 𝑝(𝑥) = {𝑥(1 − 𝜉) 0 ≤ 𝑥 < 𝜉
𝜉(1 − 𝑥) 𝜉 ≤ 𝑥 < 1

We also define
𝜕𝑦(𝑥, 0)
𝜕𝑡 = 𝑞(𝑥) = 0

The Fourier series for 𝑝 is given by

𝐶𝑛 =
2 sin𝑛𝜋𝜉
(𝑛𝜋)2 ; 𝐷𝑛 = 0

Hence the solution to the wave equation is

𝑦(𝑥, 𝑡) =
∞
∑
𝑛=1

2
(𝑛𝜋)2 sin𝑛𝜋𝜉 sin𝑛𝜋𝑥 cos𝑛𝜋𝑐𝑡

3.4 Separation of variables methodology
A general strategy for solving higher-dimensional partial differential equations is as follows.

(i) Obtain a linear PDE system, using boundary and initial conditions.

(ii) Separate variables to yield decoupled ODEs.

(iii) Impose homogeneous boundary conditions to find eigenvalues and eigenfunctions.

(iv) Use these eigenvalues (constants of separation) to find the eigenfunctions in the other variables.

(v) Sum over the products of separable solutions to find the general series solution.

(vi) Determine coefficients for this series using the initial conditions.

Example. Wewill solve the wave equation instead in characteristic coordinates. Recall the sine and
cosine summation identities:

𝑦(𝑥, 𝑡) = 1
2

∞
∑
𝑛=1

[(𝐶𝑛 sin
𝑛𝜋
𝐿 (𝑥 − 𝑐𝑡) + 𝐷𝑛 cos

𝑛𝜋
𝐿 (𝑥 − 𝑐𝑡))

+ (𝐶𝑛 sin
𝑛𝜋
𝐿 (𝑥 + 𝑐𝑡) − 𝐷𝑛 cos

𝑛𝜋
𝐿 (𝑥 + 𝑐𝑡))]

= 𝑓(𝑥 − 𝑐𝑡) + 𝑔(𝑥 + 𝑐𝑡)
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The standing wave solution can be interpreted as a superposition of a right-moving wave and a left-
moving wave. A special case is 𝑞(𝑥) = 0, implying 𝑓 = 𝑔 = 1

2
𝑝. Then,

𝑦(𝑥, 𝑡) = 1
2[𝑝(𝑥 − 𝑐𝑡) + 𝑝(𝑥 + 𝑐𝑡)]

3.5 Energy of oscillations
A vibrating string has kinetic energy due to its motion.

Kinetic energy = 1
2𝜇∫

𝐿

0
(𝜕𝑦𝜕𝑡 )

2
d𝑥

It has potential energy given by

Potential energy = 𝑇Δ𝑥 = 𝑇∫
𝑇

𝑐
(√1 + (𝜕𝑦𝜕𝑥)

2
− 1) d𝑥 ≈ 1

2𝑇∫
𝐿

0
(𝜕𝑦𝜕𝑥)

2
d𝑥

assuming that the disturbances on the string are small, that is, ||
𝜕𝑦
𝜕𝑥
|| ≪ 1. The total energy on the

string, given 𝑐2 = 𝑇/𝜇, is given by

𝐸 = 1
2𝜇∫

𝐿

0
[(𝜕𝑦𝜕𝑡 )

2
+ 𝑐2(𝜕𝑦𝜕𝑥)

2
] d𝑥

Substituting the solution, using the orthogonality conditions,

𝐸 = 1
2𝜇

∞
∑
𝑛=1

∫
𝐿

0
[ − (𝑛𝜋𝑐𝐿 𝐶𝑛 sin

𝑛𝜋𝑐𝑡
𝐿 + 𝑛𝜋𝑐

𝐿 𝐷𝑛 cos
𝑛𝜋𝑐𝑡
𝐿 )

2
sin2 𝑛𝜋𝑥𝐿

+ 𝑐2(𝐶𝑛 cos
𝑛𝜋𝑐𝑡
𝐿 + 𝐷𝑛 sin

𝑛𝜋𝑐𝑡
𝐿 )

2 𝑛2𝜋2
𝐿2 cos2 𝑛𝜋𝑥𝐿 ] d𝑥

= 1
4𝜇

∞
∑
𝑛=1

𝑛2𝜋2𝑐2
𝐿 (𝐶2

𝑛 + 𝐷2
𝑛)

which is an analogous result to Parseval’s theorem. This is true since

∫ cos2 𝑛𝜋𝑥𝐿 d𝑥 = 1
2

and cos2 + sin2 = 1. We can think of this energy as the sum over all the normal modes of the energy
in that specific mode. Note that this quantity is constant over time.

3.6 Wave reflection and transmission
The travelling wave has left-moving and right-moving modes. A simple harmonic travelling wave
is

𝑦 = Re [𝐴𝑒𝑖𝜔(𝑡−𝑥/𝑐)] = 𝐴 cos [𝜔(𝑡 − 𝑥/𝑐) + 𝜙]
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where the phase 𝜙 is equal to arg𝐴, and the wavelength 𝜆 is 2𝜋𝑐/𝜔. In further discussion, we assume
only the real part is used. Consider a density discontinuity on the string at 𝑥 = 0 with the following
properties.

𝜇 = {𝜇− for 𝑥 < 0
𝜇+ for 𝑥 > 0 ⟹ 𝑐 =

⎧⎪
⎨⎪
⎩

𝑐− =√
𝑇
𝜇−

for 𝑥 < 0

𝑐+ =√
𝑇
𝜇+

for 𝑥 > 0

assuming a constant tension 𝑇. As a wave from the negative direction approaches the discontinuity,
some of the wave will be reflected, given by 𝐵𝑒𝑖𝜔(𝑡+𝑥/𝑐−), and some of the wave will be transmitted,
given by 𝐷𝑒𝑖𝜔(𝑡−𝑥/𝑐+). The boundary conditions at 𝑥 = 0 are
(i) 𝑦 is continuous for all 𝑡 (the string does not break), so

𝐴 + 𝐵 = 𝐷 (∗)

(ii) The forces balance, 𝑇 𝜕𝑦
𝜕𝑥
||𝑥=0− = 𝑇 𝜕𝑦

𝜕𝑥
||𝑥=0+ whichmeans

𝜕𝑦
𝜕𝑥

must be continuous for all 𝑡. This
gives

−𝑖𝜔𝐴
𝑐−

+ 𝑖𝜔𝐵
𝑐−

= −𝑖𝜔𝐷
𝑐+

(†)

We can eliminate 𝐵 from (∗) by subtracting 𝑐−
𝑖𝜔
(†).

2𝐴 = 𝐷 + 𝐷𝑐−𝑐+
= 𝐷
𝑐+
(𝑐+ + 𝑐−)

Hence, given𝐴, wehave the solution for the transmitted amplitude and reflected amplitude to be

𝐷 = 2𝑐+
𝑐− + 𝑐+

𝐴; 𝐵 = 𝑐+ − 𝑐−
𝑐− + 𝑐+

In general 𝐴, 𝐵, 𝐷 are complex, hence different phase shifts are possible.

There are a number of limiting cases, for example

(i) If 𝑐− = 𝑐+ we have 𝐷 = 𝐴 and 𝐵 = 0 so we have full transmission and no reflection.
(ii) (Dirichlet boundary conditions) If 𝜇+

𝜇−
→∞, this models a fixed end at 𝑥 = 0. We have 𝑐+

𝑐−
→ 0

giving 𝐷 = 0 and 𝐵 = −𝐴. Notice that the reflection has occurred with opposite phase, 𝜙 = 𝜋.
(iii) (Neumann boundary conditions) Consider 𝜇+

𝜇−
→ 0, this models a free end. Then 𝑐+

𝑐−
→ ∞

giving 𝐷 = 2𝐴, 𝐵 = 𝐴. This gives total reflection but with the same phase.

3.7 Wave equation in plane polar coordinates
Consider the two-dimensional wave equation for 𝑢(𝑟, 𝜃, 𝑡) given by

1
𝑐2
𝜕2𝑢
𝜕𝑡2 = ∇2𝑢

with boundary conditions at 𝑟 = 1 on a unit disc given by

𝑢(1, 𝜃, 𝑡) = 0
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and initial conditions for 𝑡 = 0 given by

𝑢(𝑟, 𝜃, 0) = 𝜙(𝑟, 𝜃); 𝜕𝑢
𝜕𝑡 = 𝜓(𝑟, 𝜃)

Suppose that this equation is separable. First, let us consider temporal separation. Suppose that

𝑢(𝑟, 𝜃, 𝑡) = 𝑇(𝑡)𝑉(𝑟, 𝜃)

Then we have
̈𝑇 + 𝜆𝑐2𝑇 = 0; ∇2𝑉 + 𝜆𝑉 = 0

In plane polar coordinates, we can write the spatial equation as

𝜕2𝑉
𝜕𝑟2 + 1

𝑟
𝜕𝑉
𝜕𝑟 + 1

𝑟2
𝜕2𝑉
𝜕𝜃2 + 𝜆𝑉 = 0

We will perform another separation, supposing

𝑉(𝑟, 𝜃) = 𝑅(𝑟)Θ(𝜃)

to give
Θ″ + 𝜇Θ = 0; 𝑟2𝑅″ + 𝑟𝑅′ + (𝜆𝑟2 − 𝜇)𝑅 = 0

where 𝜆, 𝜇 are the separation constants. The polar solution is constrained by periodicity Θ(0) =
Θ(2𝜋), since we are working on a disc. We also consider only 𝜇 > 0. The eigenvalue is then given by
𝜇 = 𝑚2, where𝑚 ∈ ℕ.

Θ𝑚(𝜃) = 𝐴𝑚 cos𝑚𝜃 + 𝐵𝑚 sin𝑚𝜃
Or, in complex exponential form,

Θ𝑚(𝜃) = 𝐶𝑚𝑒𝑖𝑚𝜃; 𝑚 ∈ ℤ

3.8 Bessel’s equation
Wecan solve the radial equation (in the previous subsection) by converting it first into Sturm–Liouville
form, which can be accomplished by dividing by 𝑟.

d
d𝑟 (𝑟𝑅

′) − 𝑚2

𝑟 = −𝜆𝑟𝑅

where 𝑝(𝑟) = 𝑟, 𝑞(𝑟) = 𝑚2

𝑟
, 𝑤(𝑟) = 𝑟, with self-adjoint boundary conditions with 𝑅(1) = 0. We will

require 𝑅 is bounded at 𝑅(0), and since 𝑝(0) = 0 there is a regular singular point at 𝑟 = 0. This
particular equation for 𝑅 is known as Bessel’s equation. We will first substitute 𝑧 ≡ √𝜆𝑟, then we
find the usual form of Bessel’s equation,

𝑧2 d
2𝑅
d𝑧2 + 𝑧d𝑅d𝑧 + (𝑧2 −𝑚2)𝑅 = 0

We can use the method of Frobenius by substituting the following power series:

𝑅 = 𝑧𝑝
∞
∑
𝑛=0

𝑎𝑛𝑧𝑛
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to find
∞
∑
𝑛=0

[𝑎𝑛(𝑛 + 𝑝)(𝑛 + 𝑝 − 1)𝑧𝑛+𝑝 + (𝑛 + 𝑝)𝑧𝑛+𝑝 + 𝑧𝑛+𝑝+2 +𝑚2𝑧𝑛+𝑝] = 0

Equating powers of 𝑧, we can find the indicial equation

𝑝2 −𝑚2 = 0 ⟹ 𝑝 = 𝑚,−𝑚

The regular solution, given by 𝑝 = 𝑚, has recursion relation

(𝑛 + 𝑚)2𝑎𝑛 + 𝑎𝑛−2 −𝑚2𝑎𝑛 = 0

which gives
𝑎𝑛 =

−1
𝑛(𝑛 + 2𝑚)𝑎𝑛−2

Hence, we can find
𝑎2𝑛 = 𝑎0

(−1)𝑛
22𝑛𝑛!(𝑛 + 𝑚)(𝑛 + 𝑚 − 1)… (𝑚 + 1)

If, by convention, we let
𝑎0 =

1
2𝑚𝑚!

we can then write the Bessel function of the first kind by

𝐽𝑚(𝑧) = (𝑧2)
𝑚 ∞
∑
𝑛=0

(−1)𝑛
𝑛!(𝑛 + 𝑚)!(

𝑧
2)

2𝑛

3.9 Asymptotic behaviour of Bessel functions
If 𝑧 is small, the leading-order behaviour of 𝐽𝑚(𝑧) is

𝐽0(𝑧) ≈ 1

𝐽𝑚(𝑧) ≈
1
𝑚!(

𝑧
2)

𝑚

Now, let us consider large 𝑧. In this case, the function becomes oscillatory;

𝐽𝑚(𝑧) ≈ √
2
𝜋𝑧 cos(𝑧 −

𝑚𝜋
2 − 𝜋

4 )

3.10 Zeroes of Bessel functions
Wecan see from the asymptotic behaviour that there are infinitelymany zeroes of theBessel functions
of the first kind as 𝑧 → ∞. We define 𝑗𝑚𝑛 to be the 𝑛th zero of 𝐽𝑚, for 𝑧 > 0. Approximately,

cos(𝑧 − 𝑚𝜋
2 − 𝜋

4 ) = 0 ⟹ 𝑧 − 𝑚𝜋
2 − 𝜋

4 = 𝑛𝜋 − 𝜋
2

Hence
𝑧 ≈ 𝑛𝜋 + 𝑚𝜋

2 − 𝜋
4 ≡ ̃𝑗𝑚𝑛
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3.11 Solving the vibrating drum
Recall that the radial solutions become

𝑅𝑚(𝑧) = 𝑅𝑚(√𝜆𝑥) = 𝐴𝐽𝑚(√𝜆𝑥) + 𝐵𝑌𝑚(√𝜆𝑥)

Imposing the boundary condition of boundedness at 𝑟 = 0, we must have 𝐵 = 0. Further imposing
𝑟 = 1 and 𝑅 = 0 gives 𝐽𝑚(√𝜆) = 0. These zeroes occur at 𝑗𝑚𝑛 ≈ 𝑛𝜋+ 𝑚𝜋

2
− 𝜋

4
. Hence, the eigenvalues

must be 𝑗2𝑚𝑛. Therefore, the spatial solution is

𝑉𝑚𝑛(𝑟, 𝜃) = Θ𝑚(𝜃)𝑅𝑚𝑛(√𝜆𝑚𝑛𝑟) = (𝐴𝑚𝑛 cos𝑚𝜃 + 𝐵𝑚𝑛 sin𝑚𝜃)𝐽𝑚(𝑗𝑚𝑛𝑟)

The temporal solution is

̈𝑇 = −𝜆𝑐𝑇 ⟹ 𝑇𝑚𝑛(𝑡) = cos(𝑗𝑚𝑛𝑐𝑡), sin(𝑗𝑚𝑛𝑐𝑡)

Combining everything together, the full solution is

𝑢(𝑟, 𝜃, 𝑡) =
∞
∑
𝑛=1

𝐽0(𝑗0𝑛𝑟)(𝐴0𝑛 cos 𝑗0𝑛𝑐𝑡 + 𝐶0𝑛 sin 𝑗0𝑛𝑐𝑡)

+
∞
∑
𝑚=1

∞
∑
𝑛=1

𝐽𝑚(𝑗𝑚𝑛𝑟)(𝐴𝑚𝑛 cos𝑚𝜃 + 𝐵𝑚𝑛 sin𝑚𝜃) cos 𝑗𝑚𝑛𝑐𝑡

+
∞
∑
𝑚=1

∞
∑
𝑛=1

𝐽𝑚(𝑗𝑚𝑛𝑟)(𝐶𝑚𝑛 cos𝑚𝜃 + 𝐷𝑚𝑛 sin𝑚𝜃) sin 𝑗𝑚𝑛𝑐𝑡

Now, we impose the boundary conditions

𝑢(𝑟, 𝜃, 0) = 𝜙(𝑟, 𝜃) =
∞
∑
𝑚=0

∞
∑
𝑛=1

𝐽𝑚(𝑗𝑚𝑛𝑟)(𝐴𝑚𝑛 cos𝑚𝜃 + 𝐵𝑚𝑛 sin𝑚𝜃)

and
𝜕𝑢
𝜕𝑡 (𝑟, 𝜃, 0) = 𝜓(𝑟, 𝜃) =

∞
∑
𝑚=0

∞
∑
𝑛=1

𝑗𝑚𝑛𝑐𝐽𝑚(𝑗𝑚𝑛𝑟)(𝐶𝑚𝑛 cos𝑚𝜃 + 𝐷𝑚𝑛 sin𝑚𝜃)

We need to find the coefficients by multiplying by 𝐽𝑚, cos, sin and using the orthogonality relations,
which are

∫
1

0
𝐽𝑚(𝑗𝑚𝑛𝑟)𝐽𝑚(𝑗𝑚𝑘𝑟)𝑟 d𝑟 =

1
2[𝐽

′
𝑚(𝑗𝑚𝑛)]

2𝛿𝑛𝑘 =
1
2[𝐽𝑚+1(𝑗𝑚𝑛)]

2𝛿𝑛𝑘

by using a recursion relation of the Bessel functions. We can then integrate to obtain the coefficients
𝐴𝑚𝑛.

∫
2𝜋

0
d𝜃 cos𝑝𝜃∫

1

0
𝑟 d𝑟 𝐽𝑝(𝑗𝑝𝑞𝑟)𝜙(𝑟, 𝜃) =

𝜋
2 [𝐽𝑝+1(𝑗𝑝𝑞)]

2𝐴𝑝𝑞

where the 𝜋
2
coefficient is 2𝜋 for 𝑝 = 0. We can find analogous results for the 𝐵𝑚𝑛, 𝐶𝑚𝑛, 𝐷𝑚𝑛.

Example. Consider an initial radial profile 𝑢(𝑟, 𝜃, 0) = 𝜙(𝑟) = 1 − 𝑟2. Then, 𝑚 = 0, 𝐵𝑚𝑛 = 0 for all
𝑚 and 𝐴𝑚𝑛 = 0 for all𝑚 ≠ 0. Then

𝜕𝑢
𝜕𝑡 (𝑟, 0, 0) = 0
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hence 𝐶𝑚𝑛, 𝐷𝑚𝑛 = 0. We just now need to find

𝐴0𝑛 =
2

𝐽0(𝑗0𝑛)2
∫

1

0
𝐽0(𝑗0𝑛𝑟)(1 − 𝑟)2𝑟 d𝑟 = 2

𝐽0(𝑗0𝑛)2
𝐽2(𝑗0𝑛)
𝑗20𝑛

≈ 𝐽2(𝑗0𝑛)
𝑛 as 𝑛 → ∞

Then the approximate solution is

𝑢(𝑟, 𝜃, 𝑡) =
∞
∑
𝑛=1

𝐴0𝑛𝐽0(𝑗0𝑛𝑟) cos 𝑗0𝑛𝑐𝑡

The fundamental frequency is 𝜔𝑑 = 𝑗01𝑐
2
𝑑
≈ 4.8 𝑐

𝑑
where 𝑑 is the diameter of the drum. Comparing

this to a string with length 𝑑, this has a fundamental frequency of 𝜔𝑠 =
𝜋𝑐
𝑑
≈ 0.77𝜔𝑑.

3.12 Diffusion equation derivation with Fourier’s law
In a volume 𝑉 , the overall heat energy 𝑄 is given by

𝑄 = ∫
𝑉
𝑐𝑉𝜌𝜃 d𝑉

where 𝑐𝑉 is the specific heat of the material, 𝜌 is the mass density, and 𝜃 is the temperature. The rate
of change due to heat flow is

d𝑄
d𝑡 = ∫

𝑉
𝑐𝑉𝜌

𝜕𝜃
𝜕𝑡 d𝑉

Fourier’s law for heat flow is
𝑞 = −𝑘∇𝜃

where 𝑞 is the heat flux. We will integrate this over the surface 𝑆 = 𝜕𝑉 , giving

−d𝑄d𝑡 = ∫
𝑆
𝑞 ⋅ ̂𝑛 d𝑆

The negative sign is due to the normals facing outwards. This is exactly

−d𝑄d𝑡 = ∫
𝑆
(−𝑘∇𝜃) ⋅ ̂𝑛 d𝑆 = ∫

𝑉
−𝑘∇2𝜃 d𝑉

Equating these two forms for d𝑄
d𝑡
, we find

∫
𝑉
(𝑐𝑉𝜌

𝜕𝜃
𝜕𝑡 − 𝑘∇2𝜃) d𝑉 = 0

Since 𝑉 was arbitrary, the integrand must be zero. So we have

𝜕𝜃
𝜕𝑡 −

𝑘
𝑐𝑉𝜌

∇2𝜃 = 0

Let 𝐷 = 𝑘
𝑐𝑉𝜌

be the diffusion constant. Then we have the diffusion equation

𝜕𝜃
𝜕𝑡 − 𝐷∇2𝜃 = 0
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3.13 Diffusion equation derivation with statistical dynamics
We can derive this equation in another way, using statistical dynamics. Gas particles diffuse by scat-
tering every fixed time step Δ𝑡 with probability density function 𝑝(𝜉) of moving by a displacement 𝜉.
On average, we have

⟨𝜉⟩ = ∫𝑝(𝜉)𝜉 d𝜉 = 0

since there is no bias the direction in which any given particle is travelling. Suppose that the probab-
ility density function after 𝑁Δ𝑡 time is described by 𝑃𝑁Δ𝑡(𝑥). Then, for the next time step,

𝑃(𝑁+1)Δ𝑡(𝑥) = ∫
∞

−∞
𝑝(𝜉)𝑃𝑁Δ𝑡(𝑥 − 𝜉) d𝜉

Using the Taylor expansion,

𝑃(𝑁+1)Δ𝑡(𝑥) ≈ ∫
∞

−∞
𝑝(𝜉)[𝑃𝑁Δ𝑡(𝑥) + 𝑃′𝑁Δ𝑡(𝑥)(−𝜉) + 𝑃″𝑁Δ𝑡(𝑥)

𝜉2
2 +⋯] d𝜉

≈ 𝑃𝑁Δ𝑡(𝑥) − 𝑃′𝑁Δ𝑡(𝑥) ⟨𝜉⟩ + 𝑃″𝑁Δ𝑡(𝑥)
⟨𝜉2⟩
2 +⋯

≈ 𝑃𝑁Δ𝑡(𝑥) + 𝑃″𝑁Δ𝑡(𝑥)
⟨𝜉2⟩
2 +⋯

since ∫𝑝(𝜉) d𝜉 = 1. Identifying 𝑃𝑁Δ𝑡(𝑥) = 𝑃(𝑥, 𝑁Δ𝑡), we can write

𝑃(𝑥, (𝑁 + 1)Δ𝑡) − 𝑃(𝑥, 𝑁Δ𝑡) = 𝜕2
𝜕𝑥2𝑃(𝑥, 𝑁Δ𝑡)

⟨𝜉2⟩
2

Assuming that the variance ⟨𝜉2⟩
2
is proportional to 𝐷Δ𝑡, then for small Δ𝑡, we find

𝜕𝑃
𝜕𝑡 = 𝐷𝜕

2𝑃
𝜕𝑥2

which is exactly the diffusion equation.

3.14 Similarity solutions
The characteristic relation between the variance and time suggests that we seek solutions with a
dimensionless parameter. If we can a change of variables of the form 𝜃(𝜂) = 𝜃(𝑥, 𝑡), then it will likely
be easier to solve. Consider

𝜂 ≡ 𝑥
2√𝐷𝑡

Then,
𝜕𝜃
𝜕𝑡 =

𝜕𝜂
𝜕𝑡
𝜕𝜃
𝜕𝜂 = −1

2
𝑥

√𝐷𝑡3/2
𝜃′ = −1

2
𝜂
𝑡 𝜃

′

and
𝐷𝜕

2𝜃
𝜕𝑥2 = 𝐷 𝜕

𝜕𝑥(
𝜕𝜂
𝜕𝑥

𝜕𝜃
𝜕𝜂) = 𝐷 𝜕

𝜕𝑥(
1

2√𝐷𝑡
𝜃′) = 𝐷

4𝐷𝑡𝜃
″ = 1

4𝑡𝜃
″

Substituting into the diffusion equation,

𝜃″ = −2𝜂𝜃′
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Let 𝜓 = 𝜃′. Then
𝜓′
𝜓 = −2𝜂 ⟹ ln𝜓 = −𝜂2 + constant

Then, choosing a constant of 𝑐 2
√𝜋
,

𝜓 = 𝑐 2
√𝜋

𝑒−𝜂2 ⟹ 𝜃(𝜂) = 𝑐 2
√𝜋

∫
𝜂

0
𝑒−𝑢2 d𝑢 = 𝑐 erf(𝜂) = 𝑐 erf( 𝑥

2√𝐷𝑡
)

where
erf(𝑧) = 2

√𝜋
∫

𝑧

0
𝑒−𝑢2 d𝑢

This describes discontinuous initial conditions that spread over time.

3.15 Heat conduction in a finite bar
Suppose we have a bar of length 2𝐿 with −𝐿 ≤ 𝑥 ≤ 𝐿 and initial temperature

𝜃(𝑥, 0) = 𝐻(𝑥) = {1 if 0 ≤ 𝑥 ≤ 𝐿
0 if − 𝐿 ≤ 𝑥 < 0

with boundary conditions 𝜃(𝐿, 𝑡) = 1, 𝜃(−𝐿, 𝑡) = 0. Currently the boundary conditions are not homo-
geneous, so Sturm–Liouville theory cannot be used directly. If we can identify a steady-state solution
(time-independent) that reflects the late-time behaviour, then we can turn it into a homogeneous set
of boundary conditions. We will try a solution of the form

𝜃𝑠(𝑥) = 𝐴𝑥 + 𝐵

since this certainly satisfies the diffusion equation. To satisfy the boundary conditions,

𝐴 = 1
2𝐿; 𝐵 = 1

2
Hence we have a solution

𝜃𝑠 =
𝑥 + 𝐿
2𝐿

We will subtract this solution from our original equation for 𝜃, giving

̂𝜃(𝑥, 𝑡) = 𝜃(𝑥, 𝑡) − 𝜃𝑠(𝑥)

with homogeneous boundary conditions

̂𝜃(−𝐿, 𝑡) = ̂𝜃(𝐿, 𝑡) = 0

and initial conditions
𝜃(𝑥, 0) = 𝐻(𝑥) − 𝑥 + 𝐿

2𝐿
We will now separate variables in the usual way. We will consider the ansatz

̂𝜃(𝑥, 𝑡) = 𝑋(𝑥)𝑇(𝑡) ⟹ 𝑋″ = −𝜆𝑋; ̇𝑇 = −𝐷𝜆𝑇
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The boundary conditions imply 𝜆 > 0 and give the Fourier modes 𝑋(𝑥) = 𝐴 cos√𝜆𝑥 + 𝐵 sin√𝜆𝑥.
For cos√𝜆𝐿 = 0, we require √𝜆𝑚 = 𝑚𝜋

2𝐿
for 𝑚 odd. Also, sin√𝜆𝐿 = 0 gives √𝜆𝑛 = 𝑛𝜋

𝐿
for 𝑛 even.

Since ̂𝜃 is odd due to our initial conditions, we can take

𝑋𝑛 = 𝐵𝑛 sin
𝑛𝜋𝑥
𝐿 ; 𝜆𝑛 =

𝑛2𝜋2
𝐿2

Substituting into ̇𝑇 = −𝐷𝜆𝑇, we have

𝑇𝑛(𝑡) = 𝑐𝑛 exp(−
𝐷𝑛2𝜋2
𝐿2 𝑡)

In general, the solution is

̂𝜃(𝑥, 𝑡) =
∞
∑
𝑛=1

𝑏𝑛 sin
𝑛𝜋𝑥
𝐿 exp(−𝐷𝑛

2𝜋2
𝐿2 𝑡)

3.16 Particular solution to diffusion equation
Recall that

̂𝜃(𝑥, 𝑡) =
∞
∑
𝑛=1

𝑏𝑛 sin
𝑛𝜋𝑥
𝐿 exp(−𝐷𝑛

2𝜋2
𝐿2 𝑡)

At 𝑡 = 0, we have a pure Fourier sine series. We can then impose the initial conditions, to give

𝑏𝑛 =
1
𝐿 ∫

𝐿

−𝐿
̂𝜙(𝑥, 0) sin 𝑛𝜋𝑥𝐿 d𝑥

where
̂𝜙(𝑥, 0) = 𝐻(𝑥) − 𝑥 + 𝐿

2𝐿
Hence, we can use the half-range sine series and find

𝑏𝑛 =
2
𝐿 ∫

𝐿

0
(𝐻(𝑥) = 1

2) sin
𝑛𝜋𝑥
𝐿 d𝑥

⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟
square wave/2

− 2
𝐿
𝑥
2𝐿 sin

𝑛𝜋𝑥
𝐿 d𝑥⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟

sawtooth/2𝐿

which gives

𝑏𝑛 =
2

(2𝑚 − 1)𝜋 − (−1)𝑛+1
𝑛𝜋

where 𝑛 = 2𝑚 − 1, and the first term vanishes for 𝑛 even. For 𝑛 odd or even, we find the same
result

𝑏𝑛 =
1
𝑛𝜋

Hence
̂𝜃(𝑥, 𝑡) =

∞
∑
𝑛=1

1
𝑛𝜋 sin 𝑛𝜋𝑥𝐿 𝑒−𝐷

𝑛2𝜋2
𝐿2 𝑡

For the inhomogeneous boundary conditions,

𝜃(𝑥, 𝑡) = 𝑥 + 𝐿
2𝐿 +

∞
∑
𝑛=1

1
𝑛𝜋 sin 𝑛𝜋𝑥𝐿 𝑒−𝐷

𝑛2𝜋2
𝐿2 𝑡

The similarity solution 1
2
(1 + erf( 𝑥

2√𝐷𝑡
)) is a good fit for early 𝑡, but it does not necessarily satisfy the

boundary conditions, so for large 𝑡 it is a bad approximation.
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3.17 Laplace’s equation
Laplace’s equation is

∇2𝜙 = 0
This equation describes (among others) steady-state heat flow, potential theory 𝐹 = −∇𝜙, and in-
compressible fluid flow 𝑣 = ∇𝜙. The equation is solved typically on a domain 𝐷, where boundary
conditions are specified often on the boundary surface. The Dirichlet boundary conditions fix 𝜙 on
the boundary surface 𝜕𝐷. The Neumann boundary conditions fix ̂𝑛 ⋅ ∇𝜙 on 𝜕𝐷.

3.18 Laplace’s equation in three-dimensional Cartesian coordinates
In ℝ3 with Cartesian coordinates, Laplace’s equation becomes

𝜕2𝜙
𝜕𝑥2 +

𝜕2𝜙
𝜕𝑦2 +

𝜕2𝜙
𝜕𝑧2 = 0

We seek separable solutions in the usual way:

𝜙(𝑥, 𝑦, 𝑧) = 𝑋(𝑥)𝑌(𝑦)𝑍(𝑧)

Substituting,
𝑋″𝑌𝑍 + 𝑋𝑌″𝑍 + 𝑋𝑌𝑍″ = 0

Dividing by 𝑋𝑌𝑍 as usual,

𝑋″

𝑋 = −𝑌″

𝑌 − 𝑍″
𝑍 = −𝜆ℓ

𝑌″

𝑌 = −𝑍″
𝑍 − 𝑋″

𝑋 = −𝜆𝑚
𝑍″
𝑍 = −𝑋″

𝑋 − 𝑌″

𝑌 = −𝜆𝑛 = 𝜆ℓ + 𝜆𝑚

From the eigenmodes, our general solution will be of the form

𝜙(𝑥, 𝑦, 𝑧) = ∑
ℓ,𝑚,𝑛

𝑎ℓ𝑚𝑛𝑋ℓ(𝑥)𝑌𝑚(𝑦)𝑍𝑛(𝑧)

Consider steady (𝜕𝜙
𝜕𝑡

= 0) heat flow in a semi-infinite rectangular bar, with boundary conditions
𝜙 = 0 at 𝑥 = 0, 𝑥 = 𝑎, 𝑦 = 0 and 𝑦 = 𝑏; and 𝜙 = 1 at 𝑧 = 0 and 𝜙 → 0 as 𝑧 → ∞. We will solve for
each eigenmode successively. First, consider 𝑋″ = −𝜆ℓ𝑋 with 𝑋(0) = 𝑋(𝑎) = 0. This gives

𝜆ℓ =
𝑙2𝜋2
𝑎2 ; 𝑋ℓ = sin ℓ𝜋𝑥𝑎

where ℓ > 0, ℓ ∈ ℕ. By symmetry,

𝜆𝑚 = 𝑚2𝜋2
𝑏2 ; 𝑌𝑚 = sin 𝑚𝜋𝑦𝑏

For the 𝑧mode,
𝑍″ = −𝜆𝑛𝑍 = (𝜆ℓ + 𝜆𝑚)𝑍 = 𝜋2(ℓ

2

𝑎2 +
𝑚2

𝑏2 )𝑍
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Since 𝜙 → 0 as 𝑧 → ∞, the growing exponentials must vanish. Therefore,

𝑍ℓ𝑚 = exp[−(ℓ
2

𝑎2 +
𝑚2

𝑏2 )
1/2
𝜋𝑧]

Thus the general solution is

𝜙(𝑥, 𝑦, 𝑧) = ∑
ℓ,𝑚

𝑎ℓ𝑚 sin ℓ𝜋𝑥𝑎 sin 𝑚𝜋𝑦𝑏 exp[−(ℓ
2

𝑎2 +
𝑚2

𝑏2 )
1/2
𝜋𝑧]

Now, we will fix 𝑎ℓ𝑚 using 𝜙(𝑥, 𝑦, 0) = 1 using the Fourier sine series.

𝑎ℓ𝑚 = 2
𝑏 ∫

𝑏

0

2
𝑎 ∫

𝑎

0
1 sin ℓ𝜋𝑥𝑎⏟⎵⎵⏟⎵⎵⏟
square wave

sin 𝑚𝜋𝑦𝑏⏟⎵⏟⎵⏟
square wave

d𝑥 d𝑦

So only the odd terms remain, giving

𝑎ℓ𝑚 = 4𝑎
𝑎(2𝑘 − 1)𝜋 ⋅ 4𝑏

𝑏(2𝑝 − 1)𝜋

where ℓ = 2𝑘 − 1 is odd and𝑚 = 2𝑝 − 1 is odd. Simplifying,

𝑎ℓ𝑚 = 16
𝜋2ℓ𝑚 for ℓ,𝑚 odd

So the heat flow solution is

𝜙(𝑥, 𝑦, 𝑧) = ∑
ℓ,𝑚 odd

16
𝜋2ℓ𝑚 sin ℓ𝜋𝑥𝑎 sin ℓ𝜋𝑦𝑏 exp[−(ℓ

2

𝑎2 +
𝑚2

𝑏2 )
1/2
𝜋𝑧]

As 𝑧 increases, every contribution but the lowest mode will be very small. So low ℓ,𝑚 dominate the
solution.

3.19 Laplace’s equation in plane polar coordinates
In plane polar coordinates, Laplace’s equation becomes

1
𝑟
𝜕
𝜕𝑟(𝑟

𝜕𝜙
𝜕𝑟 ) +

1
𝑟2
𝜕2𝜙
𝜕𝜃2 = 0

Consider a separable form of the answer, given by

𝜙(𝑟, 𝜃) = 𝑅(𝑟)Θ(𝜃)

We then have
Θ″ + 𝜇Θ = 0; 𝑟(𝑟𝑅′)′ − 𝜇𝑅 = 0

The polar equation can be solved easily by considering periodic boundary conditions. This gives
𝜇 = 𝑚2 and the eigenmodes

Θ𝑚(𝜃) = cos𝑚𝜃, sin𝑚𝜃
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The radial equation is not Bessel’s equation, since there is no second separation constant. We simply
have

𝑟(𝑟𝑅′)′ −𝑚2𝑅 = 0
We will try a power law solution, 𝑟 = 𝛼𝑟𝛽. We find

𝛽2 −𝑚2 = 0 ⟹ 𝛽 = ±𝑚

So the eigenfunctions are
𝑅𝑚(𝑟) = 𝑟𝑚, 𝑟−𝑚

which is one regular solution at the origin and one singular solution. In the case𝑚 = 0, wehave

(𝑟𝑅′) = 0 ⟹ 𝑟𝑅′ = constant ⟹ 𝑅 = log 𝑟

So
𝑅0(𝑟) = constant, log 𝑟

The general solution is therefore

𝜙(𝑟, 𝜃) = 𝑎0
2 + 𝑐0 log 𝑟 +

∞
∑
𝑚=1

(𝑎𝑚 cos𝑚𝜃 + 𝑏𝑚 sin𝑚𝜃)𝑟𝑚 +
∞
∑
𝑚=1

(𝑐𝑚 cos𝑚𝜃 + 𝑑𝑚 sin𝑚𝜃)𝑟−𝑚

Example. Consider a soap film on a unit disc. We wish to solve Laplace’s equation with a vertically
distorted circular wire of radius 𝑟 = 1 with boundary conditions 𝜙(1, 𝜃) = 𝑓(𝜃). The 𝑧 displacement
of the wire produces the 𝑓(𝜃) term. We wish to find 𝜙(𝑟, 𝜃) for 𝑟 < 1, assuming regularity at 𝑟 = 0.
Then, 𝑐𝑚 = 𝑑𝑚 = 0 and the solution is of the form

𝜙(𝑟, 𝜃) = 𝑎0
2 +

∞
∑
𝑚=1

(𝑎𝑚 cos𝑚𝜃 + 𝑏𝑚 sin𝑚𝜃)𝑟𝑚

At 𝑟 = 1,

𝜙(1, 𝜃) = 𝑓(𝜃) = 𝑎0
2 +

∞
∑
𝑚=1

(𝑎𝑚 cos𝑚𝜃 + 𝑏𝑚 sin𝑚𝜃)

which is exactly the Fourier series. Thus,

𝑎𝑚 = 1
𝜋 ∫

2𝜋

0
𝑓(𝜃) cos𝑚𝜃 d𝜃 ; 𝑏𝑚 = 1

𝜋 ∫
2𝜋

0
𝑓(𝜃) sin𝑚𝜃 d𝜃

We can see from the equation that high harmonics are confined to have effects only near 𝑟 = 1.

3.20 Laplace’s equation in cylindrical polar coordinates
In cylindrical coordinates,

1
𝑟
𝜕
𝜕𝑟(𝑟

𝜕𝜙
𝜕𝑟 ) +

1
42
𝜕2𝜙
𝜕𝜃2 +

𝜕2𝜙
𝜕𝑧2 = 0

With 𝜙 = 𝑅(𝑟)Θ(𝜃)𝑍(𝑧), we find

Θ″ = −𝜇Θ; 𝑍″ = 𝜆𝑍; 𝑟(𝑟𝑅′)′ + (𝜆𝑟2 − 𝜇)𝑅 = 0
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The polar equation can be easily solved by

𝜇𝑚 = 𝑚2; Θ𝑚(𝜃) = cos𝑚𝜃, sin𝑚𝜃

The radial equation is Bessel’s equation, giving solutions

𝑅 = 𝐽𝑚(𝑘𝑟), 𝑌𝑚(𝑘𝑟)

Setting boundary conditions in the usual way, defining 𝑅 = 0 at 𝑟 = 𝑎means that

𝐽𝑚(𝑘𝑎) = 0 ⟹ 𝑘 = 𝑗𝑚𝑛
𝑎

The radial solution is
𝑅𝑚𝑛(𝑟) = 𝐽𝑚(

𝑗𝑚𝑛
𝑎 𝑟)

We have eliminated the 𝑌𝑛 term since we require 𝑟 = 0 to give a finite 𝜙. Finally, the 𝑧 equation
gives

𝑍″ = 𝑘2𝑍 ⟹ 𝑍 = 𝑒−𝑘𝑧, 𝑒𝑘𝑧

We typically eliminate the 𝑒𝑘𝑧 mode due to boundary conditions, such as 𝑍 → 0 as 𝑧 → ∞. The
general solution is therefore

𝜙(𝑟, 𝜃, 𝑧) =
∞
∑
𝑚=0

∞
∑
𝑛=1

(𝑎𝑚𝑛 cos𝑚𝜃 + 𝑏𝑚𝑛 sin𝑚𝜃)𝐽𝑚(
𝑗𝑚𝑛
𝑎 𝑟)𝑒−𝑓𝑟𝑎𝑐𝑗𝑚𝑛𝑟𝑎

3.21 Laplace’s equation in spherical polar coordinates
In spherical polar coordinates,

1
𝑟2

𝜕
𝜕𝑟(𝑟

2 𝜕Φ
𝜕𝑟 ) +

1
𝑟2 sin 𝜃

𝜕
𝜕𝜃(sin 𝜃

𝜕Φ
𝜕𝜃 ) +

1
𝑟2 sin2 𝜃

𝜕2Φ
𝜕𝜙2 = 0

Wewill consider the axisymmetric case; supposing that there is no 𝜙 dependence. We seek a separable
solution of the form

Φ(𝑟, 𝜃) = 𝑅(𝑟)Θ(𝜃)
which gives

(sin 𝜃Θ′)′ + 𝜆 sin 𝜃Θ = 0; (𝑟2𝑅′)′ − 𝜆𝑅 = 0
Consider the substitution 𝑥 = cos 𝜃, d𝑥

d𝜃
= − sin 𝜃 in the polar equation. This gives dΘ

d𝜃
= − sin 𝜃 dΘ

d𝑥
and hence

− sin 𝜃 d
d𝑥[− sin

2 𝜃dΘd𝑥 ] + 𝜆 sin 𝜃Θ = 0 ⟹ d
d𝑥[(1 − 𝑥2)dΘd𝑥 ] + 𝜆Θ = 0

This gives Legendre’s equation, so it has solutions of eigenvalues 𝜆ℓ = ℓ(ℓ + 1) and eigenfunc-
tions

Θℓ(𝜃) = 𝑃ℓ(𝑥) = 𝑃ℓ(cos 𝜃)
The radial equation then gives

(𝑟2𝑅′)′ − ℓ(ℓ + 1)𝑅 = 0
We will seek power law solutions: 𝑅 = 𝛼𝑟𝛽. This gives

𝛽(𝛽 + 1) − ℓ(ℓ + 1) = 0 ⟹ 𝛽 = ℓ, 𝛽 = −ℓ − 1
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Thus the radial eigenmodes are
𝑅ℓ = 𝑟ℓ, 𝑟−ℓ−1

Therefore the general axisymmetric solution for spherical polar coordinates is

Φ(𝑟, 𝜃) =
∞
∑
ℓ=0

(𝑎ℓ𝑟ℓ + 𝑏ℓ𝑟−ℓ−1)𝑃ℓ(cos 𝜃)

The 𝑎ℓ, 𝑏ℓ are determined by the boundary conditions. Orthogonality conditions for the 𝑃ℓ can be
used to determine coefficients. Consider a solution to Laplace’s equation on the unit sphere with
axisymmetric boundary conditions given by

Φ(1, 𝜃) = 𝑓(𝜃)

Given that we wish to find the interior solution, 𝑏𝑛 = 0 by regularity. Then,

𝑓(𝜃) =
∞
∑
ℓ=0

𝑎ℓ𝑃ℓ(cos 𝜃)

By defining 𝑓(𝜃) = 𝐹(cos 𝜃),

𝐹(𝑥) =
∞
∑
ℓ=0

𝑎ℓ𝑃ℓ(𝑥)

We can then find the coefficients in the usual way, giving

𝑎ℓ =
2ℓ + 1
2 ∫

1

−1
𝐹(𝑥)𝑃ℓ(𝑥) d𝑥

3.22 Generating function for Legendre polynomials
Consider a charge at 𝑟0 = (𝑥, 𝑦, 𝑧) = (0, 0, 1). Then, the potential at a point 𝑃 becomes

Φ(𝑟) = 1
|𝑟 − 𝑟0|

= 1
(𝑥2 + 𝑦2 + (𝑥 − 1)2)1/2

= 1
(𝑟2(sin2 𝜙 + cos2 𝜙) sin2 𝜃 + 𝑟2 cos2 𝜃 − 2𝑟 cos 𝜃 + 1)1/2

= 1
(𝑟2 sin2 𝜃 + 𝑟2 cos2 𝜃 − 2𝑟 cos 𝜃 + 1)1/2

= 1
(𝑟2 − 2𝑟 cos 𝜃 + 1)1/2

= 1
(𝑟2 − 2𝑟𝑥 + 1)1/2

where 𝑥 ≡ cos 𝜃. This function Φ is a solution to Laplace’s equation where 𝑟 ≠ 𝑟0. Note that we can
represent any axisymmetric solution as a sum of Legendre polynomials. Now,

1
√𝑟2 − 2𝑟𝑥 + 1

=
∞
∑
ℓ=0

𝑎ℓ𝑃ℓ(𝑥)𝑟ℓ
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With the normalisation condition for the Legendre polynomials 𝑃ℓ(1) = 1, we find

1
1 − 𝑟 =

∞
∑
ℓ=0

𝑎ℓ𝑟ℓ

Using the geometric series expansion, we arrive at 𝑎ℓ = 1. This gives

1
√𝑟2 − 2𝑟𝑥 + 1

=
∞
∑
ℓ=0

𝑃ℓ(𝑥)𝑟ℓ

which is the generating function for the Legendre polynomials.

4 Green’s functions
4.1 Dirac 𝛿 function

Definition. We define a generalised function 𝛿(𝑥 − 𝜉) such that
(i) 𝛿(𝑥 − 𝜉) = 0 for all 𝑥 ≠ 𝜉;
(ii) ∫∞

−∞ 𝛿(𝑥 − 𝜉) d𝑥 = 1.
This acts as a linear operator ∫ d𝑥 𝛿(𝑥 − 𝜉) on some function 𝑓(𝑥) to produce a number 𝑓(𝜉).

∫
∞

−∞
d𝑥 𝛿(𝑥 − 𝜉)𝑓(𝑥) = 𝑓(𝜉)

This relationship holds provided that 𝑓(𝑥) is sufficiently ‘well-behaved’ at 𝑥 = 𝜉 and 𝑥 → ±∞.

Remark. Strictly, the 𝛿 ‘function’ is classified as a distribution, not as a function. For this reason,
we will never use 𝛿 outside an integral, although such an integral may be implied. The 𝛿 function
represents a unit point source or impulse.

We can approximate the 𝛿 function using a Gaussian approximation.

𝛿𝜀(𝑥) =
1

𝜀√𝜋
exp[−𝑥

2

𝜀2 ]

Therefore,

∫
∞

−∞
𝑓(𝑥)𝛿(𝑥) d𝑥 = lim

𝜀→0
∫

∞

−∞

1
𝜀√𝜋

exp[−𝑥
2

𝜀2 ]𝑓(𝑥) d𝑥

= lim
𝜀→0

∫
∞

−∞

1
𝜀√𝜋

exp[−𝑦2]𝑓(𝜀𝑦) d𝑦

= lim
𝜀→0

∫
∞

−∞

1
𝜀√𝜋

exp[−𝑦2][𝑓(0) + 𝜀𝑦𝑓′(0) +⋯] d𝑦

= 𝑓(0)

for all well-behaved functions 𝑓 at 0, ±∞. We could alternatively use the Dirichlet kernel

𝛿𝑛(𝑥) =
sin𝑛𝑥
𝜋𝑥 = 1

2𝜋 ∫
𝑛

−𝑛
𝑒𝑖𝑘𝑥 d𝑘
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or even
𝛿𝑛(𝑥) =

𝑛
2 sech

2 𝑛𝑥

4.2 Integral and derivative of 𝛿 function
We define the Heaviside step function by

𝐻(𝑥) = {1 𝑥 ≥ 0
0 𝑥 < 0

For 𝑥 ≠ 0, we have
𝐻(𝑥) = ∫

𝑥

−∞
𝛿(𝑡) d𝑡

Thus,
d
d𝑥𝐻(𝑥) = 𝛿(𝑥)

where this identification takes place under an implied integral. We define 𝛿′(𝑥) using integration by
parts.

∫
∞

−∞
𝛿′(𝑥 − 𝜉)𝑓(𝑥) d𝑥 = [𝛿(𝑥 − 𝜉)𝑓(𝑥)]∞−∞ −∫

∞

−∞
𝛿(𝑥 − 𝜉)𝑓′(𝑥) d𝑥

= −∫
∞

−∞
𝛿(𝑥 − 𝜉)𝑓′(𝑥) d𝑥

= −𝑓′(𝜉)
This is valid for all 𝑓 that are smooth at 𝑥 = 𝜉.
Example. Consider the Gaussian approximation:

𝛿𝜀(𝑥) =
1

𝜀√𝜋
exp[−𝑥

2

𝜀2 ]

Then,
𝛿′𝜀(𝑥) =

−2𝑥
𝜀3√𝜋

exp[−𝑥
2

𝜀2 ]

4.3 Properties of 𝛿 function
Note that

∫
𝑏

𝑎
𝑓(𝑥)𝛿(𝑥 − 𝜉) d𝑥 = {𝑓(𝜉) 𝑎 < 𝜉 < 𝑏

0 otherwise
So the 𝛿 function only ‘samples’ values within the integral range. This is known as the sampling
property. Let 𝑢 = −(𝑥 − 𝜉), and consider

∫
∞

−∞
𝑓(𝑥)𝛿(−(𝑥 − 𝜉)) d𝑥 = ∫

−∞

∞
𝑓(𝜉 − 𝑢)𝛿(𝑢)(− d𝑢)

= ∫
∞

−∞
𝑓(𝜉 − 𝑢)𝛿(𝑢) d𝑢

= 𝑓(𝜉)
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Hence,

∫
∞

−∞
𝑓(𝑥)𝛿(−(𝑥 − 𝜉)) d𝑥 = ∫

∞

−∞
𝑓(𝑥)𝛿(𝑥 − 𝜉) d𝑥

This is called the even property. Now, consider

∫
∞

−∞
𝑓(𝑥)𝛿(𝑎(𝑥 − 𝜉)) d𝑥 = 1

|𝑎|𝑓(𝜉)

This is the scaling property. Let 𝑔(𝑥) be a function with 𝑛 isolated roots at 𝑥1,… , 𝑥𝑛. Then, assuming
𝑔′(𝑥) does not vanish at the 𝑥𝑖,

𝛿(𝑔(𝑥)) =
𝑛
∑
𝑖=1

𝛿(𝑥 − 𝑥𝑖)
|𝑔′(𝑥𝑖)|

This is a generalisation of the above, known as the advanced scaling property. Now, if 𝑔(𝑥) is continu-
ous at 𝑥 = 0, then 𝑔(𝑥)𝛿(𝑥) equivalent to 𝑔(0)𝛿(𝑥) inside an integral. This is known as the isolation
property.

4.4 Fourier series expansion of 𝛿 function
Consider a complex Fourier series expansion,

𝛿(𝑥) =
∞
∑

𝑛=−∞
𝑐𝑛𝑒𝑖𝑛𝜋𝑥/𝐿; 𝑐𝑛 =

1
2𝐿 ∫

𝐿

−𝐿
𝛿(𝑥)𝑒−𝑖𝑛𝜋𝑥/𝐿 d𝑥 = 1

2𝐿

Hence,

𝛿(𝑥) = 1
2𝐿

∞
∑

𝑛=−∞
𝑒𝑖𝑛𝜋𝑥/𝐿

Let 𝑓(𝑥) be a function, so 𝑓(𝑥) = ∑∞
𝑛=−∞ 𝑑𝑛𝑒𝑖𝑛𝜋𝑥/𝐿. Then, their inner product is given by

∫
𝐿

−𝐿
𝑓⋆(𝑥)𝛿(𝑥) d𝑥 = 1

2𝐿
∞
∑

𝑛=−∞
𝑑𝑛∫

𝐿

−𝐿
𝑒𝑖𝑛𝜋𝑥/𝐿𝑒𝑖𝑛𝜋𝑥/𝐿 d𝑥 =

∞
∑

𝑛=−∞
𝑑𝑛 = 𝑓(0)

The Fourier expansion of the 𝛿 function can be extended periodically to the whole real line. This
infinite set of 𝛿 functions is known as the Dirac comb, given by

∞
∑

𝑚=−∞
𝛿(𝑥 − 2𝑚𝐿) =

∞
∑

𝑛=−∞
𝑒𝑖𝑛𝜋𝑥/𝐿

4.5 Arbitrary eigenfunction expansion of 𝛿 function
In general, suppose

𝛿(𝑥 − 𝜉) =
∞
∑
𝑛=1

𝑎𝑛𝑦𝑛(𝑥)

with coefficients

𝑎𝑛 =
∫𝑏
𝑎 𝑤(𝑥)𝑦𝑛(𝑥)𝛿(𝑥 − 𝜉) d𝑥
∫𝑏
𝑎 𝑤(𝑥)𝑦𝑛(𝑥)2 d𝑥

= 𝑤(𝜉)𝑦𝑛(𝜉)
∫𝑏
𝑎 𝑤(𝑥)𝑦𝑛(𝑥)2 d𝑥

= 𝑤𝑛(𝜉)𝑌𝑛(𝜉)
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Then,

𝛿(𝑥 − 𝜉) = 𝑤(𝜉)
∞
∑
𝑛=1

𝑌𝑛(𝜉)𝑌𝑛(𝑥) = 𝑤(𝑥)
∞
∑
𝑛=1

𝑌𝑛(𝜉)𝑌𝑛(𝑥)

since 𝑤(𝑥)
𝑤(𝜉)

𝛿(𝑥 − 𝜉) = 𝛿(𝑥 − 𝜉). Hence,

𝛿(𝑥 − 𝜉) = 𝑤(𝑥)
∞
∑
𝑛=1

𝑦𝑛(𝜉)𝑦𝑛(𝑥)
𝑁𝑛

where 𝑁𝑛 = ∫𝑏
𝑎 𝑤𝑦2𝑛 d𝑥 is a normalisation factor.

Example. Consider a Fourier series for 𝑦(0) = 𝑦(1) = 0, with 𝑦𝑛(𝑥) = sin𝑛𝜋𝑥. From the sine series
coefficient expression,

𝛿(𝑥 − 𝜉) = 2
∞
∑
𝑛=1

sin𝑛𝜋𝜉 sin𝑛𝜋𝑥

where 0 < 𝜉 < 1.

4.6 Motivation for Green’s functions
Consider a massive static string with tension 𝑇 and linear mass density 𝜇, suspended between fixed
ends 𝑦(0) = 𝑦(1) = 0. By resolving forces, we have the time independent form

𝑇 d
2𝑦
d𝑥2 − 𝜇𝑔 = 0

We will solve the inhomogeneous ODE − d2𝑦
d𝑥2

= 𝑓(𝑥) with 𝑓(𝑥) = −𝜇𝑔
𝑇
. This has been placed in

Sturm–Liouville form. We can integrate directly and find

−𝑦 = −𝜇𝑔2𝑇 𝑥
2 + 𝑘1𝑥 + 𝑘2

Imposing boundary conditions,
𝑦(𝑥) = (−𝜇𝑔𝑇 ) ⋅ 12𝑥(1 − 𝑥)

Consider alternatively a solution obtained by solving the equation for a single point mass 𝛿𝑚 =
𝜇𝛿𝑥 suspended at 𝑥 = 𝜉 on an very light string. We can then superimpose the solutions for each
point mass to find the overall solution. For a single point mass, the solution is given by two straight
lines from (0, 0) and (1, 0) to the point mass (𝜉𝑖, 𝑦𝑖(𝜉𝑖)). The angles of these straight lines from the
horizontal are given by 𝜃1, 𝜃2. Resolving in the 𝑦 direction,

0 = 𝑇(sin 𝜃1 + sin 𝜃2) − 𝛿𝑚𝑔

= 𝑇(−𝑦𝑖𝜉𝑖
+ −𝑦𝑖
1 − 𝜉𝑖

) − 𝛿𝑚𝑔

∴ − 𝑇(𝑦𝑖(1 − 𝜉𝑖) + 𝑦𝑖𝜉𝑖) = 𝛿𝑚𝑔𝜉𝑖(1 − 𝜉𝑖)

∴ 𝑦𝑖(𝜉𝑖) =
−𝛿𝑚𝑔
𝑇 𝜉𝑖(1 − 𝜉𝑖)

So the solution is

𝑦𝑖(𝑥) =
−𝛿𝑚𝑔
𝑇 {𝑥(1 − 𝜉𝑖) 𝑥 < 𝜉𝑖

𝜉𝑖(1 − 𝑥) 𝑥 > 𝜉𝑖
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which is the generalised sawtooth. This can alternatively be written

𝑓𝑖(𝜉)𝐺(𝑥, 𝜉)

where 𝑓𝑖 is a source term, and 𝐺(𝑥, 𝜉) is the Green’s function, the solution for a unit point source.
Since the differential equation is linear, we can sum the solutions, giving

𝑦(𝑥) =
𝑁
∑
𝑖=1

𝑓𝑖(𝜉)𝐺(𝑥, 𝜉𝑖)

Taking a continuum limit,

𝑓𝑖(𝜉) =
−𝛿𝑚𝑔
𝑇 = −𝜇𝛿𝑥𝑔

𝑇 ≡ 𝑓(𝑥) d𝑥 ⟹ 𝑓(𝑥) = −𝜇𝑔
𝑇

which gives

𝑦(𝑥) = ∫
1

0
𝑓(𝜉)𝐺(𝑥, 𝜉) d𝜉

Substituting the Green’s function,

𝑦(𝑥) = (−𝜇𝑔𝑇 )[∫
𝑥

0
𝜉(1 − 𝑥) d𝜉 +∫

1

𝑥
𝑥(1 − 𝜉) d𝜉]

= (−𝜇𝑔𝑇 ){[𝜉
2

2 (1 − 𝑥)]
𝑥

0
+ [𝑥(𝜉 − 𝜉2

2 )]
1

𝑥
}

= (−𝜇𝑔𝑇 )(𝑥
2

2 (1 − 𝑥) − 0 + 𝑥
2 − 𝑥(𝑥 − 𝑥2

2 ))

= (−𝜇𝑔𝑇 ) ⋅ 12𝑥(1 − 𝑥)

So we have found the correct solution in two ways; once by direct integration, and once by superim-
posing point solutions. In general, direct integration is not trivial, and Green’s functions are useful
in this case.

4.7 Definition of Green’s function
We wish to solve the inhomogeneous ODE

ℒ𝑦 ≡ 𝛼(𝑥)𝑦″ + 𝛽(𝑥)𝑦′ + 𝛾(𝑥)𝑦 = 𝑓(𝑥)

on 𝑎 ≤ 𝑥 ≤ 𝑏, where 𝛼 ≠ 0 and 𝛼, 𝛽, 𝛾 are continuous and bounded, taking homogeneous boundary
conditions 𝑦(𝑎) = 𝑦(𝑏) = 0. The Green’s function for ℒ in this case is defined to be the solution for
a unit point source at 𝑥 = 𝜉. That is, 𝐺(𝑥, 𝜉) is the function that satisfies the boundary conditions
and

ℒ𝐺(𝑥, 𝜉) = 𝛿(𝑥 − 𝜉)
so 𝐺(𝑎, 𝜉) = 𝐺(𝑏, 𝜉) = 0. Then, by linearity, the general solution is given by

𝑦(𝑥) = ∫
𝑏

𝑎
𝑓(𝜉)𝐺(𝑥, 𝜉) d𝜉
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where 𝑦(𝑥) satisfies the homogeneous boundary conditions. We can verify this by checking

ℒ𝑦 = ∫
𝑏

𝑎
ℒ𝐺(𝑥, 𝜉)𝑓(𝜉) d𝜉 = ∫

𝑏

𝑎
𝛿(𝑥 − 𝜉)𝑓(𝜉) d𝜉 = 𝑓(𝑥)

So the solution is given by the inverse operator

𝑦 = ℒ−1𝑓; ℒ−1 = ∫
𝑏

𝑎
d𝜉 𝐺(𝑥, 𝜉)

The Green’s function spits into two parts;

𝐺(𝑥, 𝜉) = {𝐺1(𝑥, 𝜉) 𝑎 ≤ 𝑥 < 𝜉
𝐺2(𝑥, 𝜉) 𝜉 < 𝑥 < 𝑏

For all 𝑥 ≠ 𝜉, we have ℒ𝐺1 = ℒ𝐺2 = 0, so the parts are homogeneous solutions. 𝐺 satisfies the
homogeneous boundary conditions, so 𝐺1(𝑎, 𝜉) = 0 and 𝐺2(𝑏, 𝜉) = 0. 𝐺 must be continuous at
𝑥 = 𝜉, hence 𝐺1(𝜉, 𝜉) = 𝐺2(𝜉, 𝜉). There is a jump condition; the derivative of 𝐺 is discontinuous at
𝑥 = 𝜉. This satisfies

[𝐺′]𝜉+𝜉− =
d𝐺2
d𝑥

|||𝑥=𝜉+
− d𝐺1

d𝑥
|||𝑥=𝜉−

= 1
𝛼(𝜉)

4.8 Explicit form for Green’s functions
We want to solve

ℒ𝐺(𝑥, 𝜉) = 𝛿(𝑥 − 𝜉)
on 𝑎 ≤ 𝑥 ≤ 𝑏, subject to homogeneous boundary conditions 𝐺(𝑎, 𝜉) = 𝐺(𝑏, 𝜉) = 0. The functions
𝐺1, 𝐺2 satisfy the homogeneous equation, so ℒ𝐺𝑖(𝑥, 𝜉) = 0. Suppose there exist two independent
homogeneous solutions 𝑦1(𝑥), 𝑦2(𝑥) toℒ𝑦 = 0. Then,𝐺1 = 𝐴𝑦1+𝐵𝑦2, such that𝐴𝑦1(𝑎)+𝐵𝑦2(𝑎) = 0,
which gives a constraint between 𝐴 and 𝐵. This defines a complementary function 𝑦−(𝑥) such that
𝑦−(𝑎) = 0. The general homogeneous solution with 𝐺1(𝑎) = 0 is

𝐺1 = 𝐶𝑦−

𝐶 will be found later. Similarly we can define 𝑦+ as a linear combination of 𝑦1, 𝑦2 such that 𝑦+(𝑏) =
0.

𝐺2 = 𝐷𝑦+
We require 𝐺1(𝜉, 𝜉) = 𝐺2(𝜉, 𝜉) for continuity, hence

𝐶𝑦−(𝜉) = 𝐷𝑦+(𝜉)

Since [𝐺′]𝜉
+

𝜉− =
1

𝛼(𝜉)
, we have

𝐷𝑦′+(𝜉) − 𝐶𝑌 ′
−(𝜉) =

1
𝛼(𝜉)

We can solve these equations for 𝐶,𝐷 simultaneously to find

𝐶(𝜉) = 𝑦+(𝜉)
𝛼(𝜉)𝑊(𝜉) ; 𝐷(𝜉) = 𝑦−(𝜉)

𝛼(𝜉)𝑊(𝜉)
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where𝑊(𝜉) is the Wrońskian

𝑊(𝜉) = 𝑦−(𝜉)𝑦′+(𝜉) − 𝑦+(𝜉)𝑦′−(𝜉)

which is nonzero if 𝑦−, 𝑦+ are linearly independent. Hence,

𝐺(𝑥, 𝜉) = {
𝑦−(𝑥)𝑦+(𝜉)
𝛼(𝜉)𝑊(𝜉)

𝑎 ≤ 𝑥 ≤ 𝜉
𝑦−(𝜉)𝑦+(𝑥)
𝛼(𝜉)𝑊(𝜉)

𝜉 ≤ 𝑥 ≤ 𝑏

4.9 Solving boundary value problems
We know that the solution of ℒ𝑦 = 𝑓 is

𝑦(𝑥) = ∫
𝑏

𝑎
𝐺(𝑥, 𝜉)𝑓(𝜉) d𝜉

We can split this into two intervals given that 𝐺 = 𝐺1 for 𝜉 > 𝑥 and 𝐺 = 𝐺2 for 𝜉 < 𝑥.

𝑦(𝑥) = ∫
𝑥

𝑎
𝐺2(𝑥, 𝜉)𝑓(𝜉) d𝜉 +∫

𝑏

𝑥
𝐺1(𝑥, 𝜉)𝑓(𝜉) d𝜉

= 𝑦+(𝑥)∫
𝑥

𝑎

𝑦−(𝜉)𝑓(𝜉)
𝛼(𝜉)𝑊(𝜉) d𝜉 + 𝑦−(𝑥)∫

𝑥

𝑎

𝑦+(𝜉)𝑓(𝜉)
𝛼(𝜉)𝑊(𝜉) d𝜉

Note that if ℒ is in Sturm–Liouville form, so 𝛽 = 𝛼′, then the denominator 𝛼(𝜉)𝑊(𝜉) is a constant.
Further, 𝐺 is symmetric; 𝐺(𝑥, 𝜉) = 𝐺(𝜉, 𝑥). Often, by convention, we take 𝛼 = 1 (however Sturm–
Liouville form typically takes 𝛼 < 0).
Example. Consider 𝑦″ − 𝑦 = 𝑓(𝑥) with 𝑦(0) = 𝑦(1) = 0. Homogeneous solutions are 𝑦1 = 𝑒𝑥,
𝑦2 = 𝑒−𝑥. Imposing boundary conditions,

𝐺 = {𝐶 sinh𝑥 0 ≤ 𝑥 < 𝜉
𝐷 sinh(1 − 𝑥) 𝜉 < 𝑥 ≤ 𝑏

Continuity at 𝑥 = 𝜉 implies

𝐶 sinh 𝜉 = 𝐷 sinh(1 − 𝜉) ⟹ 𝐶 = 𝐷 sinh(1 − 𝜉)
sinh 𝜉

The jump condition is
−𝐷 cosh(1 − 𝜉) − 𝐶 cosh 𝜉 = 1

Hence,

−𝐷[cosh(1 − 𝜉) sinh 𝜉 + sinh(1 − 𝜉) cosh 𝜉] = sinh 𝜉
−𝐷[sinh((1 − 𝜉) + 𝜉)] = sinh 𝜉

−𝐷 sinh 1 = sinh 𝜉

𝐷 = sinh 𝜉
sinh 1

∴ 𝐶 = − sinh(1 − 𝜉)
sinh 1
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Therefore,

𝑦(𝑥) = − sinh(1 − 𝑥)
sinh 1 ∫

𝑥

0
sinh 𝜉𝑓(𝜉) d𝜉 − sinh𝑥

sinh 1 ∫
1

𝑥
sinh(1 − 𝜉)𝑓(𝜉) d𝜉

Suppose we have inhomogeneous boundary conditions. In this case, we want to find a homogeneous
solution 𝑦𝑝 that solves the inhomogeneous boundary conditions. That is, ℒ𝑦𝑝 = 0 but 𝑦𝑝(𝑎), 𝑦𝑝(𝑏)
are as required for the boundary conditions. Then, by subtracting this solution from the original
equation, we can solve using a homogeneous set of boundary conditions. For instance, in the above
example, suppose 𝑦(0) = 0, 𝑦(1) = 1. We can find a solution 𝑦𝑝 =

sinh𝑥
sinh 1

which has the inhomogen-
eous boundary conditions but solves the homogeneous problem.

4.10 Higher-order ODEs
Supposeℒ𝑦 = 𝑓(𝑥)whereℒ is an 𝑛th order linear differential operator, and 𝛼(𝑥) is the coefficient for
the highest degree derivative. Suppose that homogeneous boundary conditions are satisfied. Then
we can define the Green’s function in this case to be the function that solves

ℒ𝐺(𝑥, 𝜉) = 𝛿(𝑥 − 𝜉)

which has the properties:

(i) 𝐺1, 𝐺2 are homogeneous solutions satisfying the homogeneous boundary conditions;

(ii) 𝐺(𝑘)
1 (𝜉) = 𝐺(𝑘)

2 (𝜉) for 𝑘 ∈ {0,… , 𝑛 − 2};

(iii) 𝐺(𝑛−1)
2 (𝜉+) − 𝐺(𝑛−1)

1 (𝜉−) = 1
𝛼(𝜉)

.

4.11 Eigenfunction expansions of Green’s functions
Supposeℒ is in Sturm–Liouville formwith eigenfunctions 𝑦𝑛(𝑥) and eigenvalues𝜆𝑛. We seek𝐺(𝑥, 𝜉) =
∑∞

𝑛=1 𝐴𝑛𝑦𝑛(𝑥) satisfying ℒ𝐺 = 𝛿(𝑥 − 𝜉).

ℒ𝐺 = ∑
𝑛
𝐴𝑛ℒ𝑦𝑛

= ∑
𝑛
𝐴𝑛𝜆𝑛𝑤(𝑥)𝑦𝑛(𝑥)

The 𝛿 function has expansion

𝛿(𝑥 − 𝜉) = 𝑤(𝑥)∑
𝑛

𝑦𝑛(𝜉)𝑦𝑛(𝑥)
𝑁𝑛

; 𝑁𝑛 = ∫𝑤𝑦2𝑛 d𝑥

Hence,
𝐴𝑛(𝜉) =

𝑦𝑛(𝜉)
𝜆𝑛𝑁𝑛

Thus,

𝐺(𝑥, 𝜉) =
∞
∑
𝑛=1

𝑦𝑛(𝜉)𝑦𝑛(𝑥)
𝜆𝑛 ∫𝑤𝑦2𝑛 d𝑥

=
∞
∑
𝑛=1

𝑌𝑛(𝜉)𝑌 𝑁(𝑥)
𝜆𝑛

which was already obtained earlier in the course when studying Sturm–Liouville theory.
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4.12 Constructing Green’s function for an initial value problem
Suppose we want to solve ℒ𝑦 = 𝑓(𝑡) for 𝑡 ≥ 𝑎 with 𝑦(𝑎) = 𝑦′(𝑎) = 0, using 𝐺(𝑡, 𝜏) satisfying
ℒ𝑔 = 𝛿(𝑡 − 𝜏). For 𝑡 < 𝜏, we have

𝐺1 = 𝐴𝑦1(𝑡) + 𝐵𝑦2(𝑡); 𝐴𝑦1(𝑎) + 𝐵𝑦2(𝑎) = 0; 𝐴𝑦′1(𝑎) + 𝐵𝑦′2(𝑎) = 0

If 𝐴 ≠ 𝐵 ≠ 0, then we can solve this by dividing out 𝐴, 𝐵 and find 𝑦1𝑦′2 − 𝑦2𝑦′1 = 0. Since the
Wrońskian at 𝑎 cannot be zero, 𝐴 = 𝐵 = 0. So 𝐺1(𝑡, 𝜏) ≡ 0 for 𝑎 ≤ 𝑡 < 𝜏, so there is no change until
the ‘impulse’ at 𝑡 = 𝜏.
For 𝑡 > 𝜏, by continuity we must have 𝐺2(𝜏, 𝜏) = 0. So we choose a complementary function 𝐺2 =
𝐷𝑦+(𝑡) with 𝑦+(𝑡) = 𝐴𝑦1(𝑡) + 𝐵𝑦2(𝑡), and 𝑦+(𝜏) = 0. The discontinuity in the derivative implies
that

𝐺′
2(𝜏, 𝜏) = 𝐷𝑦′+(𝜏) =

1
𝛼(𝜏)

Hence,
𝐴𝑦′1(𝜏) + 𝐵𝑦′2(𝜏) =

1
𝛼(𝜏) ⟹ 𝐷(𝜏) = 1

𝛼(𝜏)𝑦′+(𝜏)
Hence we have a non-trivial solution

𝐺(𝑡, 𝜏) = {
0 𝑡 < 𝜏

𝑦+(𝑡)
𝛼(𝜏)𝑦′+(𝜏)

𝑡 > 𝜏

The initial value problem has solution

𝑦(𝑡) = ∫
𝑡

𝑎
𝐺2(𝑡, 𝜏)𝑓(𝜏) d𝜏 = ∫

𝑡

𝑎

𝑦+(𝑡)𝑓(𝜏)
𝑦′+(𝜏)

d𝜏

Causality is ‘built in’ to this solution. Only forces which occur before 𝑡 may have an impact on
𝑦(𝑡).
Example. Let us solve 𝑦″ − 𝑦 = 𝑓(𝑡) with 𝑦(0) = 𝑦′(0) = 0. The homogeneous solution and initial
conditions are

𝑡 < 𝜏 ⟹ 𝐺1 ≡ 0
and

𝑡 > 𝜏 ⟹ 𝐺2 = 𝐴𝑒𝑡 + 𝐵𝑒−𝑡 = 𝐷 sinh(𝑡 − 𝜏)
Now,

[𝐺′]𝜏+𝜏− =
1

𝛼(𝜏) = 1 ⟹ 𝐺′(𝜏, 𝜏) = 𝐷 cosh 0 = 𝐷 = 1

Hence, the solution is

𝑦(𝑡) = ∫
𝑡

0
𝑓(𝜏) sinh(𝑡 − 𝜏) d𝜏

5 Fourier transforms
5.1 Definitions
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Definition. The Fourier transform of a function 𝑓(𝑥) is

𝑓(𝑘) = ℱ(𝑓)(𝑘) = ∫
∞

−∞
𝑓(𝑥)𝑒−𝑖𝑘𝑥 d𝑥

The inverse Fourier transform is

𝑓(𝑥) = ℱ−1(𝑓)(𝑥) = 1
2𝜋 ∫

∞

−∞
𝑓(𝑘)𝑒𝑖𝑘𝑥 d𝑘

Different internally-consistent definitions exist, which distribute themultiplicative constants
in different ways.

Theorem (Fourier inversion theorem). For a function 𝑓(𝑥),

ℱ−1(ℱ(𝑓))(𝑥) = 𝑓(𝑥)

with a sufficient condition that 𝑓 and 𝑓 are absolutely integrable, so

∫
∞

−∞
|𝑓(𝑥)| d𝑥 = 𝑀 < ∞

In particular, 𝑓 → 0 as 𝑥 → ±∞.

Example. Consider the Gaussian,

𝑓(𝑥) = 1
𝜎√𝜋

exp[−𝑥
2

𝜎2 ]

We wish to compute its Fourier transform. Since 𝑖 sin 𝑘𝑥 is an odd function,

𝑓(𝑘) = 1
𝜎√𝜋

∫
∞

−∞
exp[−𝑥

2

𝜎2 ] exp[−𝑖𝑘𝑥] d𝑥 =
1

𝜎√𝜋
∫

∞

−∞
exp[−𝑥

2

𝜎2 ] cos(𝑘𝑥) d𝑥

Consider, using Leibniz’ rule,

d𝑓
d𝑘 = −1

𝜎√𝜋
∫

∞

−∞
𝑥 exp[−𝑥

2

𝜎2 ] sin 𝑘𝑥 d𝑥

Integrating by parts,

d𝑓
d𝑘 = 1

𝜎√𝜋
[𝜎

2

2 exp[−𝑥
2

𝜎2 ] sin 𝑘𝑥]
∞

−∞
− 1
𝜎√𝜋

∫
∞

−∞

𝑘𝜎2
2 exp[−𝑥

2

𝜎2 ] cos 𝑘𝑥 d𝑥

= 1
𝜎√𝜋

∫
∞

−∞

𝑘𝜎2
2 exp[−𝑥

2

𝜎2 ] cos 𝑘𝑥 d𝑥

= −𝑘𝜎
2

2 𝑓(𝑘)
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This is a differential equation for 𝑓, which gives

𝑓(𝑘) = 𝐶 exp[−𝑘
2𝜎2
4 ]

Suppose 𝑘 = 0. Then, in the original expression for the Fourier transform, we can directly find
𝑓(0) = 1. Hence 𝐶 exp[−02𝜎2

4
] = 1 ⟹ 𝐶 = 1. Hence,

𝑓(𝑘) = exp[−𝑘
2𝜎2
4 ]

which is another Gaussian with the width parameter inverted.

5.2 Converting Fourier series into Fourier transforms
Recall that the complex form of the Fourier series is

𝑓(𝑥) =
∞
∑

𝑛=−∞
𝑐𝑛𝑒𝑖𝑘𝑛𝑥

where 𝑘𝑛 =
𝑛𝜋
𝐿
. We can write in particular 𝑘𝑛 = 𝑛Δ𝑘 where Δ𝑘 = 𝜋

𝐿
. Then,

𝑐𝑛 =
1
2𝐿 ∫

𝐿

−𝐿
𝑓(𝑥)𝑒−𝑖𝑘𝑛𝑥 d𝑥 = Δ𝑘

2𝜋 ∫
𝐿

−𝐿
𝑓(𝑥)𝑒−𝑖𝑘𝑛𝑥 d𝑥

Now, re-substituting into the Fourier series,

𝑓(𝑥) =
∞
∑

𝑛=−∞

Δ𝑘
2𝜋 𝑒

𝑖𝑘𝑛𝑥∫
𝐿

−𝐿
𝑓(𝑥′)𝑒−𝑖𝑘𝑛𝑥′ d𝑥′

Interpreting the sum multiplied by Δ𝑘 as a Riemann integral,

𝑓(𝑥) → ∫
∞

−∞

1
2𝜋𝑒

𝑖𝑘𝑛𝑥∫
𝐿

−𝐿
𝑓(𝑥′)𝑒−𝑖𝑘𝑥′ d𝑥′ d𝑘

Taking the limit 𝐿 → ∞,

𝑓(𝑥) = 1
2𝜋 ∫

∞

−∞
d𝑘 𝑒𝑖𝑘𝑥∫

∞

−∞
d𝑥′ 𝑓(𝑥′)𝑒−𝑖𝑘𝑛𝑥′

which is the inverse Fourier transformof theFourier transformof𝑓, which gives theFourier inversion
theorem. Note that when 𝑓(𝑥) is discontinuous at 𝑥, the Fourier transform gives

ℱ−1(ℱ(𝑓))(𝑥) = 1
2(𝑓(𝑥−) + 𝑓(𝑥+))

which is analogous to the result for Fourier series.
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5.3 Properties of Fourier series
Recall the definition of the Fourier transform.

𝑓(𝑘) = ∫
∞

−∞
𝑓(𝑥)𝑒−𝑖𝑘𝑥 d𝑥

The (inverse) Fourier transform is linear.

ℎ(𝑥) = 𝜆𝑓(𝑥) + 𝜇𝑔(𝑥) ⟺ ℎ̃(𝑘) = 𝜆𝑓(𝑘) + 𝜇 ̃𝑔(𝑘)

Translated functions transform to multiplicative factors.

ℎ(𝑥) = 𝑓(𝑥 − 𝜆) ⟺ ℎ̃(𝑘) = 𝑒−𝑖𝜆𝑘𝑓(𝑘)

This is because

ℎ̃(𝑘) = ∫𝑓(𝑥 − 𝜆)𝑒−𝑖𝑘𝑥 d𝑥 = ∫𝑓(𝑦)𝑒−𝑖𝑘(𝑦+𝜆) d𝑦 = 𝑒−𝑖𝜆𝑘𝑓(𝑘)

Frequency shifts transform to translations in frequency space.

ℎ(𝑥) = 𝑒𝑖𝜆𝑥𝑓(𝑥) ⟹ ℎ̃(𝑘) = 𝑓(𝑘 − 𝜆)

A scalar multiple applied to the argument transforms into an inverse scalar multiple.

ℎ(𝑥) = 𝑓(𝜆𝑥) ⟺ ℎ̃(𝑘) = 1
|𝜆|𝑓(

𝑘
𝜆)

Multiplication by 𝑥 transforms into an imaginary derivative.

ℎ(𝑥) = 𝑥𝑓(𝑥) ⟺ ℎ̃(𝑘) = 𝑖𝑓′(𝑘)

This is because
∫

∞

−∞
𝑓(𝑥)𝑒−𝑖𝑘𝑥 d𝑥 = −1

𝑖
d
d𝑘 ∫

∞

−∞
𝑓(𝑥)𝑒−𝑖𝑘𝑥 d𝑥

Derivatives transform into a muliplication by 𝑖𝑘.

ℎ(𝑥) = 𝑓′(𝑥) ⟺ ℎ̃(𝑘) = 𝑖𝑘𝑓(𝑘)

This is because we can integrate by parts and find

ℎ̃(𝑘) = ∫
∞

−∞
𝑓′(𝑥)𝑒−𝑖𝑘𝑥 d𝑥 = [𝑓(𝑥)𝑒−𝑖𝑘𝑥]∞−∞⏟⎵⎵⎵⏟⎵⎵⎵⏟

=0

+𝑖𝑘∫
∞

−∞
𝑓(𝑥)𝑒−𝑖𝑘𝑥 d𝑥

The general duality property states that by mapping 𝑥 ↦ −𝑥, we have

𝑓(−𝑥) = 1
2𝜋 ∫

∞

−∞
𝑓(𝑘)𝑒−𝑖𝑘𝑥 d𝑘

hence mapping 𝑘 ↔ 𝑥, treating 𝑓 now as a function in position space, we have

𝑓(−𝑘) = 1
2𝜋 ∫

∞

−∞
𝑓(𝑥)𝑒−𝑖𝑘𝑥 d𝑥
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Thus
𝑔(𝑥) = 𝑓(𝑥) ⟺ ̃𝑔(𝑘) = 2𝜋𝑓(−𝑘)

We can then write the corollary that

𝑓(−𝑥) = 1
2𝜋ℱ(ℱ(𝑓))(𝑥)

Finally,
ℱ4(𝑓)(𝑥) = 4𝜋2𝑓(𝑥)

Example. Consider a function defined by

𝑓(𝑥) = {1 |𝑥| ≤ 𝑎
0 otherwise

for some 𝑎 > 0. By the definition of the Fourier transform,

𝑓(𝑘) = ∫
∞

−∞
𝑓(𝑥)𝑒−𝑖𝑘𝑥 d𝑥 = ∫

𝑎

−𝑎
𝑒−𝑖𝑘𝑥 d𝑥 = ∫

𝑎

−𝑎
cos 𝑘𝑥 d𝑥 = 2

𝑘 sin 𝑘𝑎

By the Fourier inversion theorem,

1
𝜋 ∫

∞

−∞
𝑒𝑖𝑘𝑥 1𝑘 sin 𝑘𝑎 d𝑘 = 𝑓(𝑥)

for 𝑥 ≠ 𝑎. Now, in this expression, let 𝑥 = 0 and let 𝑘 ↦ 𝑥. We arrive at the Dirichlet discontinuous
formula.

∫
∞

0

sin 𝑎𝑥
𝑥 d𝑥 = 𝜋

2 sgn 𝑎 =
⎧
⎨
⎩

𝜋
2

𝑎 > 0
0 𝑎 = 0
−𝜋

2
𝑎 < 0

5.4 Convolution theorem
Wewant to multiply Fourier transforms in the frequency domain (transformed space). This is useful
for filtering or processing signals.

ℎ̃(𝑘) = 𝑓(𝑘) ̃𝑔(𝑘)
Consider the inverse.

ℎ(𝑥) = 1
2𝜋 ∫

∞

−∞
𝑓(𝑘) ̃𝑔(𝑘)𝑒𝑖𝑘𝑥 d𝑘

= 1
2𝜋 ∫

∞

−∞
(∫

∞

−∞
𝑓(𝑦)𝑒−𝑖𝑘𝑦 d𝑦) ̃𝑔(𝑘)𝑒𝑖𝑘𝑥 d𝑘

= ∫
∞

−∞
𝑓(𝑦)( 1

2𝜋 ∫
∞

−∞
𝑒−𝑖𝑘𝑦 ̃𝑔(𝑘)𝑒𝑖𝑘𝑥 d𝑘) d𝑦

= ∫
∞

−∞
𝑓(𝑦)( 1

2𝜋 ∫
∞

−∞
̃𝑔(𝑘)𝑒𝑖𝑘(𝑥−𝑦) d𝑘) d𝑦

= ∫
∞

−∞
𝑓(𝑦)𝑔(𝑥 − 𝑦) d𝑦

= (𝑓 ∗ 𝑔)(𝑥)
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where 𝑓 ∗ 𝑔 is called the convolution of 𝑓 and 𝑔. By duality, we also have

ℎ(𝑥) = 𝑓(𝑥)𝑔(𝑥) ⟹ ℎ̃(𝑘) = 1
2𝜋 ∫

∞

−∞
𝑓(𝑝) ̃𝑔(𝑘 − 𝑝) d𝑝 = 1

2𝜋(𝑓 ∗ ̃𝑔)(𝑘)

5.5 Parseval’s theorem
Consider ℎ(𝑥) = 𝑔⋆(−𝑥). Then, by letting 𝑥 = −𝑦,

ℎ̃(𝑘) = ∫
∞

−∞
𝑔⋆(−𝑥)𝑒−𝑖𝑘𝑥 d𝑥

= [∫
∞

−∞
𝑔(−𝑥)𝑒𝑖𝑘𝑥 d𝑥]

⋆

= [∫
∞

−∞
𝑔(𝑦)𝑒−𝑖𝑘𝑦 d𝑦]

⋆

= ̃𝑔⋆(𝑘)

Substituting this into the convolution theorem, with 𝑔(𝑥) ↦ 𝑔⋆(−𝑥), we have

∫
∞

−∞
𝑓(𝑦)𝑔⋆(𝑦 − 𝑥) d𝑦 = 1

2𝜋 ∫
∞

−∞
𝑓(𝑘) ̃𝑔⋆(𝑘)𝑒𝑖𝑘𝑥 d𝑥

Taking 𝑥 = 0 in this expression and mapping 𝑦 ↦ 𝑥, we find

∫
∞

−∞
𝑓(𝑥)𝑔⋆(𝑥) d𝑥 = 1

2𝜋 ∫
∞

−∞
𝑓(𝑘) ̃𝑔⋆(𝑘) d𝑥

Equivalently,
⟨𝑔, 𝑓⟩ = 1

2𝜋 ⟨ ̃𝑔, 𝑓⟩

So the inner product is conserved under the Fourier transform (up to a factor of 2𝜋). Now, by setting
𝑔⋆ = 𝑓⋆, we have

∫
∞

−∞
|𝑓(𝑥)|2 d𝑥 = 1

2𝜋 ∫
∞

−∞
||𝑓(𝑘)||

2
d𝑘

This is Parseval’s theorem.

5.6 Fourier transforms of generalised functions
We can apply Fourier transforms to generalised functions by considering limiting distributions. Con-
sider the inversion

𝑓(𝑥) = ℱ−1(ℱ(𝑓))(𝑥)

= 1
2𝜋 ∫

∞

−∞
[∫

∞

−∞
𝑓(𝑢)𝑒−𝑖𝑘𝑢 d𝑢]𝑒𝑖𝑘𝑥 d𝑘

= 1
2𝜋 ∫

∞

−∞
𝑓(𝑢) [ 1

2𝜋 ∫
∞

−∞
𝑒−𝑖𝑘(𝑥−𝑢) d𝑘]

⏟⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏟
𝛿(𝑥−𝑢)

d𝑢
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In order to reconstruct𝑓(𝑥) on the right hand side for any function𝑓, wemust have that the bracketed
term is 𝛿(𝑥 − 𝑢). So we identify

𝛿(𝑥 − 𝑢) = 1
2𝜋 ∫

∞

−∞
𝑒𝑖𝑘(𝑥−𝑢) d𝑘

If 𝑓(𝑥) = 𝛿(𝑥),

𝑓(𝑘) = ∫
∞

−∞
𝛿(𝑥)𝑒𝑖𝑘𝑥 d𝑥 = 1

This can be thought of as the Fourier transform of an infinitely thin Gaussian, which becomes an
infinitely wide Gaussian (a constant). If 𝑓(𝑥) = 1, then

𝑓(𝑘) = ∫
∞

−∞
𝑒−𝑖𝑘𝑥 d𝑥 = 2𝜋𝛿(𝑘)

This can also be found by the duality formula. If 𝑓(𝑥) = 𝛿(𝑥 − 𝑎), we have

𝑓(𝑘) = 𝑒−𝑖𝑘𝑎

This is a translation of the original Fourier transform for the 𝛿 function above.

5.7 Trigonometric functions
Let 𝑓(𝑥) = cos𝜔𝑥 = 1

2
(𝑒𝑖𝑥 + 𝑒−𝑖𝑥). Then,

𝑓(𝑘) = 𝜋(𝛿(𝑘 + 𝜔) + 𝛿(𝑘 − 𝜔))

For 𝑓(𝑥) = sin𝜔𝑥, we have
𝑓(𝑘) = 𝑖𝜋(𝛿(𝑘 + 𝜔) − 𝛿(𝑘 − 𝜔))

Using duality,

𝑓(𝑥) = 1
2(𝛿(𝑥 + 𝑎) + 𝛿(𝑥 − 𝑎)) ⟹ 𝑓(𝑘) = cos 𝑘𝑎

𝑓(𝑥) = 1
2𝑖 (𝛿(𝑥 + 𝑎) − 𝛿(𝑥 − 𝑎)) ⟹ 𝑓(𝑘) = sin 𝑘𝑎

5.8 Heaviside functions
Let 𝐻(𝑥) be the Heaviside function, such that 𝐻(0) = 1

2
. Then, 𝐻(𝑥) + 𝐻(−𝑥) = 1 for all 𝑥. We can

take the Fourier transform of this and find

𝐻(𝑘) + 𝐻(−𝑘) = 2𝜋𝛿(𝑘)

Recall that 𝐻′(𝑥) = 𝛿(𝑥). Thus,
𝑖𝑘𝐻(𝑥) = ̃𝛿(𝑘) = 1

Since 𝑘𝛿(𝑘) = 0, the two equations for 𝐻 can be consistent if we take

𝐻(𝑘) = 𝜋𝛿(𝑘) + 1
𝑖𝑘
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5.9 Dirichlet discontinuous formula
Recall the Dirichlet discontinuous formula:

∫
∞

0

sin 𝑎𝑥
𝑥 d𝑥 = 𝜋

2 sgn 𝑎 =
⎧
⎨
⎩

𝜋
2

𝑎 > 0
0 𝑎 = 0
−𝜋

2
𝑎 < 0

We can rewrite this as
1
2 sgn𝑥 =

1
2𝜋 ∫

∞

−∞

𝑒𝑖𝑘𝑥
𝑖𝑘 d𝑘

since the cosine term divided by 𝑖𝑘 is odd. Hence,

𝑓(𝑥) = 1
2 sgn𝑥 ⟺ 𝑓(𝑘) = 1

𝑖𝑘
This is the preferred form for a Heaviside-type function when used in Fourier transforms.

5.10 Solving ODEs for boundary value problems
Consider 𝑦″ − 𝑦 = 𝑓(𝑥) with homogeneous boundary conditions 𝑦 → 0 as 𝑥 → ±∞. Taking the
Fourier transform of this expression, we find

(−𝑘2 − 1) ̃𝑦 = 𝑓

Thus, the solution is

̃𝑦(𝑘) = −𝑓(𝑘)
1 + 𝑘2 ≡ 𝑓(𝑘) ̃𝑔(𝑘)

where ̃𝑔(𝑘) = −1
1+𝑘2

. Note that ̃𝑔(𝑘) is the Fourier transform of 𝑔(𝑥) = − 1
2
𝑒−|𝑥|. Applying the convolu-

tion theorem,

𝑦(𝑥) = ∫
∞

−∞
𝑓(𝑢)𝑔(𝑥 − 𝑢) d𝑢

= −12 ∫
∞

−∞
𝑓(𝑢)𝑒−|𝑥−𝑢| d𝑢

= −12[∫
𝑥

−∞
𝑓(𝑢)𝑒𝑢−𝑥 d𝑢 +∫

∞

𝑥
𝑓(𝑢)𝑒𝑥−𝑢 d𝑢]

This is in the form of a boundary value problem Green’s function. We can construct the same results
by constructing the Green’s function directly.

5.11 Signal processing
Supposewe have an input signal ℐ(𝑡), which is acted on by some linear operatorℒin to yield an output
𝒪(𝑡). The Fourier transform of the input ̃ℐ(𝜔) is called the resolution.

̃ℐ(𝜔) = ∫
∞

−∞
ℐ(𝑡)𝑒−𝑖𝜔𝑡 d𝑡
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In the frequency domain, the action ofℒin on ℐ(𝑡)means that ̃ℐ(𝜔) ismultiplied by a transfer function
ℛ̃(𝜔). Thus,

𝒪(𝑡) = 1
2𝜋 ∫

∞

−∞
ℛ̃(𝜔) ̃ℐ(𝜔)𝑒𝑖𝜔𝑡 d𝜔

The inverse Fourier transform of the transfer function, ℛ, is called the response function, which is
given by

ℛ(𝑡) = 1
2𝜋 ∫

∞

−∞
ℛ̃(𝜔)𝑒𝑖𝜔𝑡 d𝜔

By the convolution theorem,

𝒪(𝑡) = ∫
∞

−∞
ℐ(𝑢)ℛ(𝑡 − 𝑢) d𝑢

Suppose there is no input (ℐ(𝑡) = 0) for 𝑡 < 0. By causality, there should be zero output for the
response function (ℛ(𝑡) = 0) for 𝑡 < 0. Therefore, we require 0 < 𝑢 < 𝑡 and hence

𝒪(𝑡) = ∫
𝑡

0
ℐ(𝑢)ℛ(𝑡 − 𝑢) d𝑢

which resembles an initial value problem Green’s function.

5.12 General transfer functions for ODEs
Suppose an input-output relationship is given by a linear ODE.

ℒ𝒪(𝑡) ≡ (
𝑛
∑
𝑖=0

𝑎𝑖
d𝑖
d𝑥𝑖 )𝒪(𝑡) ≡ ℐ(𝑡)

Here, ℒin = 1. We want to solve this ODE using a Fourier transform.

(𝑎0 + 𝑎1𝑖𝜔 − 𝑎2𝜔2 − 𝑎3𝑖𝜔3 +⋯+ 𝑎𝑛(𝑖𝜔)𝑛)𝒪(𝜔) = ̃ℐ(𝜔)

We can solve this algebraically in Fourier transform space. The transfer function is

ℛ̃(𝜔) = 1
𝑎0 +⋯+ 𝑎𝑛(𝑖𝜔)𝑛

We factorise the denominator to find partial fractions. Suppose there are 𝐽 distinct roots (𝑖𝜔 − 𝑐𝑗)𝑘𝑗 ,
where 𝑘𝑗 is the algebraic multiplicity of the 𝑗th root, so∑

𝐽
𝑗=1 𝑘𝑗 = 𝑛. So we can write

ℛ̃(𝜔) = 1
(𝑖𝜔 − 𝑐1)𝑘1 …(𝑖𝜔 − 𝑐𝐽)𝑘𝐽

Expressing this as partial fractions,

ℛ̃(𝜔) =
𝐽
∑
𝑗=1

𝑘𝑖
∑
𝑚=1

Γ𝑗𝑚
(𝑖𝜔 − 𝑐𝑗)𝑚

The Γ𝑗𝑚 terms are constant. To solve this, we must find the inverse Fourier transform of (𝑖𝜔 − 𝑎)−𝑚.
Recall that

ℱ−1( 1
𝑖𝜔 − 𝑎) = {𝑒

𝑎𝑡 𝑡 > 0
0 𝑡 < 0

54



for Re 𝑎 < 0. So we will require Re 𝑐𝑗 < 0 for all 𝑗 to eliminate exponentially growing solutions. Note
that for 𝑛 = 2,

𝑖 dd𝜔(
1

(𝑖𝜔 − 𝑎)2 )

and recall that
ℱ(𝑡𝑓(𝑡)) = 𝑖ℱ′(𝜔)

Hence,

ℱ−1( 1
(𝑖𝜔 − 𝑎)2 ) = {𝑡𝑒

𝑎𝑡 𝑡 > 0
0 𝑡 < 0

Inductively, we arrive at

ℱ−1( 1
(𝑖𝜔 − 𝑎)𝑚 ) = {

𝑡𝑚−1

(𝑚−1)!
𝑒𝑎𝑡 𝑡 > 0

0 𝑡 < 0
We can therefore invert any transfer function to obtain the response function. Thus the response
function takes the form

ℛ(𝑡) =
𝐽
∑
𝑗=1

𝑘𝑖
∑
𝑚=1

Γ𝑗𝑚
𝑡𝑚−1

(𝑚 − 1)! 𝑒
𝑐𝑗𝑡; 𝑡 > 0

and zero for 𝑡 < 0. We can now solve such differential equations in Green’s function form, or directly
invert ℛ̃(𝜔) ̃ℐ(𝜔) for a polynomial ̃ℐ(𝜔).

5.13 Damped oscillator
We can use the Fourier transform method to solve the differential equation

ℒ𝑦 ≡ 𝑦″ + 2𝑝𝑦′ + (𝑝2 + 𝑞2)𝑦 = 𝑓(𝑡)

where 𝑝 > 0. Consider homogeneous boundary conditions 𝑦(0) = 𝑦′(0) = 0. The Fourier transform
is

(𝑖𝜔)2 ̃𝑦 + 2𝑖𝑝𝜔 ̃𝑦 + (𝑝2 + 𝑞2) ̃𝑦 = 𝑓
Hence,

̃𝑦 = 𝑓
−𝜔2 + 2𝑖𝑝𝜔 + 𝑝2 + 𝑞2 ≡ 𝑅𝑓

We can invert this using the convolution theorem by inverting 𝑅.

𝑦(𝑡) = ∫
𝑡

0
ℛ(𝑡 − 𝜏)𝑓(𝜏) d𝜏

where the response function is

ℛ(𝑡 − 𝜏) = 1
2𝜋 ∫

∞

−∞

𝑒𝑖𝜔(𝑡−𝜏)
𝑝2 + 𝑞2 + 2𝑖𝑝𝜔 − 𝜔2 d𝜔

We can show that ℒℛ(𝑡 − 𝜏) = 𝛿(𝑡 − 𝜏); in other words,ℛ is the Green’s function.
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5.14 Discrete sampling and the Nyquist frequency
Suppose a signal ℎ(𝑡) is sampled at equal times 𝑡𝑛 = 𝑛Δ with a time step Δ and values ℎ𝑛 = ℎ(𝑡𝑛) =
ℎ(𝑛Δ), for all 𝑛 ∈ ℤ. The sampling frequency is therefore Δ−1, so the sampling angular velocity is
𝜔𝑠 = 2𝜋𝑓𝑠 =

2𝜋
Δ
. The Nyquist frequency is 𝑓𝑐 =

1
2Δ
, which is the highest frequency actually sampled

at Δ. Suppose we have a signal 𝑔𝑓 with a given frequency 𝑓. We will write

𝑔𝑓(𝑡) = 𝐴 cos(2𝜋𝑓𝑡 + 𝜑) = Re (𝐴𝑒2𝜋𝑖𝑓𝑡+𝜑) = 1
2(𝐴𝑒

2𝜋𝑖𝑓𝑡+𝜑) + 1
2(𝐴𝑒

−2𝜋𝑖𝑓𝑡+𝜑)

where 𝐴 ∈ ℝ. Note that this signal has two ‘frequencies’; a positive and a negative frequency. The
combination of these frequencies gives the full wave. Suppose we sample 𝑔𝑓(𝑡) at the Nyquist fre-
quency, so 𝑓 = 𝑓𝑐. Then,

𝑔𝑓𝑐(𝑡𝑛) = 𝐴 cos(2𝜋 1
2Δ𝑛Δ + 𝜑)

= 𝐴 cos(𝜋𝑛 + 𝜑)
= 𝐴 cos𝜋𝑛 cos𝜙 + 𝐴 sin𝜋𝑛 sin𝜙
= 𝐴′ cos(2𝜋𝑓𝑐𝑓𝑛)

where 𝐴′ = 𝐴 cos𝜙. This has removed half of the information about the wave; the amplitude and
the phase have become degenerate. We can identify 𝑓𝑐 with −𝑓𝑐 when considering the remaining
information; we say that the two frequencies are aliased together. Now, suppose we sample at greater
than the Nyquist frequency, in particular 𝑓 = 𝑓𝑐 + 𝛿𝑓 > 𝑓𝑐, where for simplicity we let 𝛿𝑓 < 𝑓𝑐. We
have

𝑔𝑓(𝑡𝑛) = 𝐴 cos(2𝜋(𝑓𝑐 + 𝛿𝑓)𝑡𝑛 + 𝜑)
= 𝐴 cos(2𝜋(𝑓𝑐 − 𝛿𝑓)𝑡𝑛 − 𝜑)

So frequencies above the Nyquist frequency are reinterpreted after the sampling as a frequency lower
than the Nyquist frequency. This aliases 𝑓𝑐 + 𝛿𝑓 with 𝑓𝑐 − 𝛿𝑓.

5.15 Nyquist–Shannon sampling theorem

Definition. A signal 𝑔(𝑡) is bandwidth-limited if it contains no frequencies above 𝜔max =
2𝜋𝑓max. In other words, ̃𝑔(𝜔) = 0 for all |𝜔| > 𝜔max. In this case,

𝑔(𝑡) = 1
2𝜋 ∫

∞

−∞
̃𝑔(𝜔)𝑒𝑖𝜔𝑡 d𝜔 = 1

2𝜋 ∫
𝜔max

−𝜔max

̃𝑔(𝜔)𝑒𝑖𝜔𝑡 d𝜔

Suppose we set the sampling rate to the Nyquist frequency, so Δ = 1
2𝑓max

. Then,

𝑔𝑛 ≡ 𝑔(𝑡𝑛) =
1
2𝜋 ∫

𝜔max

−𝜔max

̃𝑔(𝜔)𝑒𝑖𝜋𝑛𝜔/𝜔max d𝜔

This is a complex Fourier series coefficient 𝑐𝑛, multiplied by
𝜔max

𝜋
. The Fourier series is periodic in 𝜔

with period 2𝜔max, not in space or time.

̃𝑔per(𝜔) =
𝜋

𝜔max

∞
∑

𝑛=−∞
𝑔𝑛𝑒−𝑖𝜋𝑛𝜔/𝜔max
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The actual Fourier transform ̃𝑔 is found by multiplying by a top hat window function

ℎ̃(𝜔) = {1 |𝜔| ≤ 𝜔max
0 otherwise

Hence,
̃𝑔(𝜔) = ̃𝑔per(𝜔)ℎ̃(𝜔)

Note that this relation is exact. Inverting this expression,

𝑔(𝑡) = 1
2𝜋 ∫

∞

−∞
̃𝑔per(𝜔)ℎ̃(𝜔)𝑒𝑖𝜔𝑡 d𝜔

= 1
2𝜔max

∞
∑

𝑛=−∞
𝑔𝑛∫

𝜔max

−𝜔max

exp(𝑖𝜔(𝑡 − 𝑛𝜋
𝜔max

)) d𝜔

Only the cosine term is even, hence

𝑔(𝑡) = 1
2𝜔max

∞
∑

𝑛=−∞
𝑔𝑛
sin(𝜔max𝑡 − 𝜋𝑛)
𝜔max𝑡 − 𝜋𝑛

Hence, 𝑔(𝑡) can be written exactly as a combination of countably many discrete sample points.

5.16 Discrete Fourier transform
Suppose we have a finite number of samples ℎ𝑚 = ℎ(𝑡𝑚) for 𝑡𝑚 = 𝑚Δ, where 𝑚 = 0,… ,𝑁 − 1.
We will approximate the Fourier transform for 𝑁 frequencies within the Nyquist frequency 𝑓𝑐 =

1
2Δ
,

using equally-spaced frequencies, given by Δ𝑓 = 1
𝑁Δ

in the range −𝑓𝑐 ≤ 𝑓 ≤ 𝑓𝑐. We could take the
convention 𝑓𝑛 = 𝑛Δ𝑓 = 𝑛

𝑁Δ
for 𝑛 = −𝑁

2
,… ,−𝑁

2
. However, this overcounts the Nyquist frequency

(which is aliased), giving 𝑁 + 1 frequencies instead of the desired 𝑁. Since frequencies above the
Nyquist frequency are aliased to below it:

(𝑁2 + 𝑚)Δ𝑓 = 𝑓𝑐 + 𝛿𝑓 ↦ (𝑁2 − 𝑚)Δ𝑓 = −(𝑓𝑐 − 𝛿𝑓)

we can instead use the convention 𝑓𝑛 = 𝑛Δ𝑓 = 𝑛
𝑁Δ

for 𝑛 = 0,… ,𝑁 − 1. This counts the Nyquist
frequency only once. The Fourier transform at a frequency 𝑓𝑛 becomes

ℎ̃(𝑓𝑛) = ∫
∞

−∞
ℎ(𝑡)𝑒−2𝜋𝑖𝑓𝑛𝑡 d𝑡

≈ Δ
𝑁−1
∑
𝑚=0

ℎ𝑚𝑒−2𝜋𝑖𝑓𝑛𝑡𝑚

= Δ
𝑁−1
∑
𝑚=0

ℎ𝑚𝑒−2𝜋𝑖𝑚𝑛/𝑁

= Δℎ̃𝑑(𝑓𝑛)

where the function ℎ̃𝑑(𝑓𝑛) is the discrete Fourier transform. Thematrix [DFT]𝑚𝑛 = 𝑒−2𝜋𝑖𝑚𝑛/𝑁 defines
the discrete Fourier transform for the vector ℎ = {ℎ𝑚}. The discrete Fourier transform is then

ℎ̃𝑑 = [DFT]ℎ
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By inverting the discrete Fourier transform matrix, we find

ℎ = [DFT]−1ℎ̃𝑑 =
1
𝑁 [DFT]

†ℎ̃𝑑

since the inverse of the discrete Fourier transformmatrix is its adjoint. The matrix is built from roots
of unity 𝜔 = 𝑒−2𝜋𝑖/𝑁 . So, for instance, 𝑛 = 4 gives 𝜔 = 𝑒−2𝜋𝑖/4 = −𝑖 giving

[DFT] =
⎛
⎜
⎜
⎝

1 1 1 1
1 −𝑖 −1 𝑖
1 −1 1 −1
1 𝑖 −1 −𝑖

⎞
⎟
⎟
⎠

The inverse discrete Fourier transform is

ℎ𝑚 = ℎ(𝑡𝑚)

= 1
2𝜋 ∫

∞

−∞
ℎ̃(𝜔)𝑒𝑖𝜔𝑡𝑚 d𝜔

= ∫
∞

−∞
ℎ̃(𝑓)𝑒2𝜋𝑖𝑓𝑡𝑚 d𝑓

≈ 1
Δ𝑁

𝑁−1
∑
𝑛=0

Δℎ̃𝑑(𝑓𝑛)𝑒2𝜋𝑖𝑚𝑛/𝑁

= 1
𝑁

𝑁−1
∑
𝑛=0

ℎ̃𝑛𝑒2𝜋𝑖𝑚𝑛/𝑁

Hence, we can interpolate the initial function from its samples.

ℎ(𝑡) = 1
𝑁

𝑁−1
∑
𝑛=0

ℎ̃𝑛𝑒2𝜋𝑖𝑛𝑡/𝑁

Parseval’s theorem becomes
𝑁−1
∑
𝑚=0

|ℎ𝑚|
2 = 1

𝑁
𝑁−1
∑
𝑛=0

||ℎ̃𝑛||
2

and the convolution theorem is

𝑐𝑘 =
𝑁−1
∑
𝑚=0

𝑔𝑚ℎ𝑘−𝑚 ⟺ ̃𝑐𝑘 = ̃𝑔𝑘ℎ̃𝑘

5.17 Fast Fourier transform (non-examinable)
While the discrete Fourier transform is an order 𝑂(𝑁2) operation, we can reduce this into an order
𝑂(𝑛 log𝑁) operation. Such a simplification is called the fast Fourier transform. We can split the dis-
crete Fourier transform into even and odd parts, noting that𝜔𝑁 = 𝑒−2𝜋𝑖/𝑁 implies𝜔2𝑁 = 𝑒−2𝜋𝑖/(𝑁/2) =

58



𝜔𝑁/2

ℎ̃𝑘 =
𝑁−1
∑
𝑛=0

ℎ𝑛𝜔𝑛𝑘𝑁

=
𝑁/2−1
∑
𝑚=0

ℎ2𝑚𝜔2𝑚𝑘
𝑁 +

𝑁/2−1
∑
𝑚=0

ℎ2𝑚+1𝜔(2𝑚+1)𝑘
𝑁

=
𝑁/2−1
∑
𝑚=0

ℎ2𝑚(𝜔2𝑁)𝑚𝑘 + 𝜔𝑘𝑁
𝑁/2−1
∑
𝑚=0

ℎ2𝑚+1(𝜔2𝑁)𝑚𝑘

=
𝑁/2−1
∑
𝑚=0

ℎ2𝑚(𝜔𝑁/2)𝑚𝑘 + 𝜔𝑘𝑁
𝑁/2−1
∑
𝑚=0

ℎ2𝑚+1(𝜔𝑁/2)𝑚𝑘

This algorithm iteratively reduces the Fourier transform’s complexity by a factor of two, until the
trivial case of finding the discrete Fourier transform of two data points.

6 Method of characteristics
6.1 Well-posed Cauchy problems
Solving partial differential equations depends on the nature of the equations in combination with
the boundary or initial data. A Cauchy problem is the partial differential equation for some func-
tion 𝜙 together with the auxiliary data (in 𝜙 and its derivatives) specified on a surface (or a curve in
two dimensions), which is called Cauchy data. For a Cauchy problem to be well-posed, we require
that

(i) a solution exists (we do not have excessive auxiliary data);

(ii) the solution is unique (we do not have insufficient auxiliary data); and

(iii) the solution depends continuously on the auxiliary data.

6.2 Method of characteristics
Consider a parametrised curve 𝐶 given by Cartesian coordinates (𝑥(𝑠), 𝑦(𝑠)). The tangent vector
is

𝑣 = (d𝑥(𝑠)d𝑠 , d𝑦(𝑠)d𝑠 )

We then define the directional derivative of a function 𝜙(𝑥, 𝑦) by

d𝜙
d𝑠
|||𝐶
= d𝑥(𝑠)

d𝑠
𝜕𝜙
𝜕𝑥 + d𝑦(𝑠)

d𝑠
𝜕𝜙
𝜕𝑦 = 𝑣 ⋅ ∇𝜙

Suppose 𝑣 ⋅ ∇𝜙 = 0 then d𝜙
d𝑠

= 0 and hence 𝜙 is constant along the curve. Suppose there exists a
vector field

𝑢 = (𝛼(𝑥, 𝑦), 𝛽(𝑥, 𝑦))
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with a family of non-intersecting integral curves 𝐶 which fill the plane (or domain of the function
more generally), such that at a point (𝑥, 𝑦) the integral curve has tangent vector 𝑢(𝑥, 𝑦). Now, define
a curve 𝐵 by (𝑥(𝑡), 𝑦(𝑡)) such that 𝐵 is transverse to 𝑢; its tangent is nowhere parallel to 𝑢.

𝑤 = (d𝑥(𝑡)d𝑡 , d𝑦(𝑡)d𝑡 ) ∦ (𝛼(𝑥, 𝑦), 𝛽(𝑥, 𝑦)) = 𝑢

This can be used to parametrise the family of curves by labelling each curve 𝐶 with the value of 𝑡 at
the intersection point between it and 𝐵. Along the curve, we use 𝑠 such that 𝑠 = 0 at the intersection.
The integral curves (𝑥(𝑠, 𝑡), 𝑦(𝑠, 𝑡)) satisfy

d𝑥
d𝑠 = 𝛼(𝑥, 𝑦); d𝑦

d𝑠 = 𝛽(𝑥, 𝑦)

We can solve these equations to find a family of characteristic curves, along which 𝑡 remains con-
stant. This yields a new coordinate system (𝑠, 𝑡) associated with a differential equation we wish to
solve.

6.3 Characteristics of a first order PDE
Consider

𝛼(𝑥, 𝑦)𝜕𝜙𝜕𝑥 + 𝛽(𝑥, 𝑦)𝜕𝜙𝜕𝑦 = 0

with Cauchy data on an initial curve 𝐵, defined by (𝑥(𝑡), 𝑦(𝑡)):

𝜙(𝑥(𝑡), 𝑦(𝑡)) = 𝑓(𝑡)

Note,
𝛼𝜙𝑥 + 𝛽𝜙𝑦 = 𝑢 ⋅ ∇𝜙 = d𝜙

d𝑠
|||𝐶

This is exactly the directional derivative along the integral curve 𝐶, defined by 𝑢 = (𝛼, 𝛽). Since
d𝜙
d𝑠

= 𝛼𝜙𝑥 + 𝛽𝜙𝑦 = 0 from the original PDE, the function 𝜙(𝑥, 𝑦) is constant along this curve 𝐶. In
other words, the Cauchy data 𝑓(𝑡) defined on 𝐵 at 𝑠 = 0 is propagated constantly along the integral
curves. This gives the solution

𝜙(𝑠, 𝑡) = 𝜙(𝑥(𝑠, 𝑡), 𝑦(𝑠, 𝑡)) = 𝑓(𝑡)

To obtain 𝜙 in the original coordinates, we need to transform from 𝑠, 𝑡-space into 𝑥, 𝑦-space. Provided
that the Jacobian 𝐽 = 𝑥𝑡𝑦𝑠−𝑥𝑠𝑦𝑡 is nonzero, we can invert the transformation and find 𝑠, 𝑡 as functions
of 𝑥, 𝑦. This gives

𝜙(𝑥, 𝑦) = 𝑓(𝑡(𝑥, 𝑦))
To solve such a PDE, we will typically use the following steps.

(i) Find the characteristic equations d𝑥
d𝑠
= 𝛼, d𝑦

d𝑠
= 𝛽.

(ii) Parametrise the initial conditions on 𝐵 by (𝑥(𝑡), 𝑦(𝑡)).
(iii) Solve the characteristic equations to find 𝑥 = 𝑥(𝑠, 𝑡) and 𝑦 = 𝑦(𝑠, 𝑡) subject to the initial condi-

tions at 𝑠 = 0.
(iv) Solve the equation for 𝜙 given by d𝜙

d𝑠
= 𝛼𝜙𝑥+𝛽𝜙𝑦 = 0, so 𝜙 is constant along the integral curves,

giving 𝜙(𝑠, 𝑡) = 𝑓(𝑡).
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(v) Invert the relations 𝑠 = 𝑠(𝑥, 𝑦) and 𝑡 = 𝑡(𝑥, 𝑦), then find 𝜙 in terms of 𝑥, 𝑦.
Example. Consider the equation

d𝜙(𝑥, 𝑦)
d𝑥 = 0

such that
𝜙(0, 𝑦) = ℎ(𝑦)

The characteristic equations are given by

d𝑥
d𝑠 = 𝛼 = 1; d𝑦

d𝑠 = 𝛽 = 0

The initial curve 𝐵 is given by
(𝑥(𝑡), 𝑦(𝑡)) = (0, 𝑡)

Solving the characteristic equations,

𝑥 = 𝑠 + 𝑐(𝑡); 𝑦 = 𝑑(𝑡)

At 𝑥 = 0, we must have 𝑠 = 0, so 𝑐 = 0. Further, 𝑦 = 𝑡 hence 𝑑 = 𝑡. Thus,

𝑥 = 𝑠; 𝑦 = 𝑡

Thus,
d𝜙
d𝑥 = 0 ⟹ 𝜙(𝑠, 𝑡) = ℎ(𝑡) ⟹ 𝜙(𝑥, 𝑦) = ℎ(𝑦)

Example. Consider
𝑒𝑥𝜙𝑥 + 𝜙𝑦 = 0; 𝜙(𝑥, 0) = cosh𝑥

The characteristic equations are
d𝑥
d𝑠 = 𝑒𝑥; d𝑦

d𝑠 = 1

The initial conditions are
𝑥(𝑡) = 𝑡; 𝑦(𝑡) = 0

We solve the characteristic equation subject to these initial conditions, giving

−𝑒−𝑥 = 𝑠 + 𝑐(𝑡); 𝑦 = 𝑠 + 𝑑(𝑡)

𝑠 = 0 implies −𝑒−𝑡 = 𝑐(𝑡) and 𝑦 = 0 = 𝑑(𝑡). Hence

𝑒−𝑥 = 𝑒−𝑡 − 𝑠; 𝑦 = 𝑠

Now,
d𝜙
d𝑠 = 0 ⟹ 𝜙(𝑠, 𝑡) = cosh 𝑡

Since 𝑠 = 𝑦, 𝑒−𝑡 = 𝑦 + 𝑒−𝑥, we have 𝑡 = − log(𝑦 + 𝑒−𝑥). Thus,

𝜙(𝑥, 𝑦) = cosh [− log(𝑦 + 𝑒−𝑥)]
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6.4 Inhomogeneous first order PDEs
Suppose we now wish to solve

𝛼(𝑥, 𝑦)𝜙𝑥 + 𝛽(𝑥, 𝑦)𝜙𝑦 = 𝛾(𝑥, 𝑦)

with Cauchy data 𝜙(𝑥(𝑡), 𝑦(𝑡)) = 𝑓(𝑡) along a curve 𝐵. The characteristic curves are the same as the
homogeneous case. However, the directional derivative no longer vanishes:

d𝜙
d𝑠
|||𝐶
= 𝑢 ⋅ ∇𝜙 = 𝛾(𝑥, 𝑦)

where 𝜙 = 𝑓(𝑡) at 𝑠 = 0 on 𝐵. So 𝑓(𝑡) is no longer propagated constantly across characteristic
polynomials, but is instead propagated according to the ODE in 𝑠 above. We must therefore solve
this ODE along 𝐶 before reverting to 𝑥, 𝑦 coordinates.
Example. Consider

𝜙𝑥 + 2𝜙𝑦 = 𝑦𝑒𝑥; 𝜙(𝑥, 𝑥) = sin𝑥
The characteristic equation is given by

d𝑥
d𝑠 = 1; d𝑦

d𝑠 = 2

The initial conditions are
𝑥(𝑡) = 𝑦(𝑡) = 𝑡

From the characteristic equations,

𝑥 = 𝑠 + 𝑐(𝑡); 𝑦 = 2𝑠 + 𝑑(𝑡)

Thus,
𝑥 = 𝑡 = 𝑐(𝑡); 𝑦 = 𝑡 = 𝑑(𝑡)

So the solutions to the characteristics are

𝑥 = 𝑠 + 𝑡; 𝑦 = 2𝑠 + 𝑡

Now we solve
d𝜙
d𝑠 = 𝛾 = 𝑦𝑒𝑥 = (2𝑠 + 𝑡)𝑒𝑠+𝑡

Note that d
d𝑠
(2𝑠𝑒𝑠) = 2𝑒𝑠 + 2𝑠𝑒𝑠, so the solution is

𝜙(𝑠, 𝑡) = (2𝑠 − 2 + 𝑡)𝑒𝑠+𝑡 + 𝑐(𝑠)

for some constant term 𝑐(𝑠). But 𝜙(0, 𝑡) = sin 𝑡, hence

sin 𝑡 = (𝑡 − 2)𝑒𝑡 + 𝑐(𝑠) ⟹ 𝜙(𝑠, 𝑡) = (2𝑠 − 2 + 𝑡)𝑒𝑠+𝑡 + sin 𝑡 − (2 − 𝑡)𝑒𝑡

Inverting into 𝑥, 𝑦 space,

𝜙(𝑥, 𝑦) = (𝑦 − 2)𝑒𝑥 + (𝑦 − 2𝑥 + 2)𝑒2𝑥−𝑦 + sin(2𝑥 − 𝑦)
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6.5 Classification of second order PDEs
In two dimensions, the general second order PDE is

ℒ𝜙 ≡ 𝑎(𝑥, 𝑦)𝜕
2𝜙
𝜕𝑥2 + 2𝑏(𝑥, 𝑦) 𝜕

2𝜙
𝜕𝑥𝜕𝑦 + 𝑐(𝑥, 𝑦)𝜕

2𝜙
𝜕𝑦2

+ 𝑑(𝑥, 𝑦)𝜕𝜙𝜕𝑥 + 𝑒(𝑥, 𝑦)𝜕𝜙𝜕𝑦 + 𝑓(𝑥, 𝑦)𝜙(𝑥, 𝑦)

The principal part is given by

𝜎𝑃(𝑥, 𝑦, 𝑘𝑥, 𝑘𝑦) ≡ 𝑘⊺𝐴𝑘 = (𝑘𝑥 𝑘𝑦) (
𝑎(𝑥, 𝑦) 𝑏(𝑥, 𝑦)
𝑏(𝑥, 𝑦) 𝑐(𝑥, 𝑦)) (

𝑘𝑥
𝑘𝑦
)

The PDE is classified by the properties of the eigenvalues of 𝐴.
(i) If 𝑏2 − 𝑎𝑐 < 0, the equation is elliptic. The eigenvalues have the same sign. An example is the

Laplace equation.

(ii) If 𝑏2 − 𝑎𝑐 > 0, the equation is hyperbolic. The eigenvalues have opposite signs. An example is
the wave equation.

(iii) If 𝑏2 − 𝑎𝑐 = 0, the equation is parabolic, where at least one eigenvalue is zero. An example is
the heat equation.

Note that a differential equationmayhave different classifications at different points (𝑥, 𝑦) in space.

6.6 Characteristic curves of second order PDEs
A curve defined by 𝑓(𝑥, 𝑦) constant is a characteristic if

(𝑓𝑥 𝑓𝑦) (
𝑎 𝑏
𝑏 𝑐) (

𝑓𝑥
𝑓𝑦
) = 0

This is a generalisation of the first order case 𝑢 ⋅ ∇𝑓 = 0 where 𝑢 = (𝛼, 𝛽). The curve can be written
as 𝑦 = 𝑦(𝑥) by the chain rule.

𝜕𝑓
𝜕𝑥 + 𝜕𝑓

𝜕𝑦
d𝑦
d𝑥 = 0 ⟹ 𝑓𝑥

𝑓𝑦
= −d𝑦d𝑥

Substituting into the quadratic form,

𝑎(d𝑦d𝑥)
2
− 2𝑏d𝑦d𝑥 + 𝑐 = 0

for which we have a quadratic solution given by

d𝑦
d𝑥 = 𝑏 ± √𝑏2 − 𝑎𝑐

𝑎
(i) Hyperbolic equations have two such solutions, since 𝑏2 − 𝑎𝑐 > 0.
(ii) Parabolic equations have one solution.

(iii) Elliptic equations have no real characteristics.
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6.7 Characteristic coordinates
Transforming to characteristic coordinates 𝑢, 𝑣 will set 𝑎 = 0 and 𝑐 = 0. Hence, the PDE will take
the canonical form

𝜕2𝜙
𝜕𝑢𝜕𝑣 +⋯+ = 0

where the omitted terms are lower order.

Example. Consider
−𝑦𝜙𝑥𝑥 + 𝜙𝑦𝑦 = 0

Here, 𝑎 = −𝑦, 𝑏 = 0, 𝑐 = 1 hence 𝑏2 − 𝑎𝑐 = 𝑦. For 𝑦 > 0, the equation is hyperbolic, for 𝑦 < 0 it is
elliptic, and for 𝑦 = 0 it is parabolic. Consider the characteristics for 𝑦 > 0.

d𝑦
d𝑥 = 𝑏 ± √𝑏2 − 𝑎𝑐

𝑎 = ± 1
√𝑦

Hence,
∫√𝑦 d𝑦 = ±∫ d𝑥 ⟹ 2

3𝑦
3
2 ± 𝑥 = 𝐶±

Therefore, the characteristic curves are

𝑢 = 2
3𝑦

3
2 + 𝑥; 𝑣 = 2

3𝑦
3
2 − 𝑥

Taking derivatives,
𝑢𝑥 = 1; 𝑢𝑦 = √𝑦; 𝑣𝑥 = −1; 𝑣𝑦 = √𝑦

Hence,

𝜙𝑥 = 𝜙𝑢𝑢𝑥 + 𝜙𝑣𝑣𝑥 = 𝜙𝑢 − 𝜙𝑣
𝜙𝑦 = √𝑦(𝜙𝑢 + 𝜙𝑣)
𝜙𝑥𝑥 = 𝜙𝑢𝑢 − 2𝜙𝑢𝑣 + 𝜙𝑣𝑣
𝜙𝑦𝑦 = 𝑦(𝜙𝑢𝑢 + 2𝜙𝑢𝑣 + 𝜙𝑣𝑣) +

1
2√𝑦

(𝜙𝑢 + 𝜙𝑣)

Substituting into the original PDE,

−𝑦𝜙𝑥𝑥 + 𝜙𝑦𝑦 = 𝑦(4𝜙𝑢𝑣 +
1
2𝑦

3
2

(𝜙𝑢 + 𝜙𝑣))

Note, 𝑢 + 𝑣 = 4
3
𝑦
3
2 , hence we have the canonical form

4𝜙𝑢𝑣 +
1

6(𝑢 + 𝑣)(𝜙𝑢 + 𝜙𝑣) = 0
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6.8 General solution to wave equation
The wave equation is

1
𝑐2
𝜕2𝜙
𝜕𝑡2 − 𝜕2𝜙

𝜕𝑥2 = 0

We wish to solve this with initial conditions 𝜙(𝑥, 0) = 𝑓(𝑥), and 𝜙𝑡(𝑥, 0) = 𝑔(𝑥). Here, 𝑎 = 1
𝑐2
, 𝑏 =

0, 𝑐 = −1 hence 𝑏2 − 𝑎𝑐 > 0. The characteristic equation is

d𝑥
d𝑡 =

0 ±√0 + 1
𝑐2

1
𝑐2

= ±𝑐

Hence the characteristic coordinates are

𝑢 = 𝑥 − 𝑐𝑡; 𝑣 = 𝑥 + 𝑐𝑡

This yields the canonical form
𝜕2𝜙
𝜕𝑢𝜕𝑣 = 0

This may be integrated directly to find

𝜕𝜙
𝜕𝑣 = 𝐹(𝑣) ⟹ 𝜙 = 𝐺(𝑢) +∫

𝑣
𝐹(𝑦) d𝑦 = 𝐺(𝑢) + 𝐻(𝑣)

Imposing the initial conditions at 𝑡 = 0, we find

𝐺(𝑥) + 𝐻(𝑥) = 𝑓(𝑥); −𝑐𝐺′(𝑥) + 𝑐𝐻′(𝑥) = 𝑔(𝑥)

Differentiating the first equation, we find

𝐺′(𝑥) + 𝐻′(𝑥) = 𝑓′(𝑥)

We can combine this with the second equation to give

𝐻′(𝑥) = 1
2(𝑓

′(𝑥) + 1
𝑐 𝑔(𝑥)) ⟹ 𝐻(𝑥) = 1

2(𝑓(𝑥) − 𝑓(0)) + 1
2𝑐 ∫

𝑥

0
𝑔(𝑦) d𝑦

Similarly,

𝐺′(𝑥) = 1
2(𝑓

′(𝑥) − 1
𝑐 𝑔(𝑥)) ⟹ 𝐺(𝑥) = 1

2(𝑓(𝑥) − 𝑓(0)) − 1
2𝑐 ∫

𝑥

0
𝑔(𝑦) d𝑦

The final solution is therefore

𝜙(𝑥, 𝑡) = 𝐺(𝑥 − 𝑐𝑡) + 𝐻(𝑥 + 𝑐𝑡) = 1
2(𝑓(𝑥 − 𝑐𝑡) + 𝑓(𝑥 + 𝑐𝑡)) + 1

2𝑐 ∫
𝑥+𝑐𝑡

𝑥−𝑐𝑡
𝑔(𝑦) d𝑦

Waves propagate at a velocity 𝑐, hence 𝜙(𝑥, 𝑡) is fully determined by values of 𝑓, 𝑔 in the interval
[𝑥 − 𝑐𝑡, 𝑥 + 𝑐𝑡].
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7 Solvingpartial differential equationswithGreen’s functions
7.1 Diffusion equation and Fourier transform
Recall the heat equation for a conducting wire given by

𝜕Θ
𝜕𝑡 (𝑥, 𝑡) − 𝐷𝜕

2Θ
𝜕𝑥2 (𝑥, 𝑡) = 0

with initial conditions Θ(𝑥, 0) = ℎ(𝑥) and boundary conditions Θ → 0 as 𝑥 → ±∞. Taking the
Fourier transform with respect to 𝑥,

𝜕
𝜕𝑡 Θ̃(𝑘, 𝑡) = −𝐷𝑘2Θ̃(𝑘, 𝑡)

Integrating, we find
Θ̃(𝑘, 𝑡) = 𝐶𝑒−𝐷𝑘2𝑡

The initial conditions give Θ̃(𝑘, 0) = ℎ̃(𝑘) and therefore

Θ̃(𝑘, 𝑡) = ℎ̃(𝑘)𝑒−𝐷𝑘2𝑡

We take the inverse Fourier transform to find

Θ(𝑥, 𝑡) = 1
2𝜋 ∫

∞

−∞
ℎ̃(𝑘) 𝑒−𝐷𝑘2𝑡⏟⎵⏟⎵⏟

FT of Gaussian
𝑒𝑖𝑘𝑥 d𝑘

Hence, by the convolution theorem,

Θ(𝑥, 𝑡) = 1
√4𝜋𝐷𝑡

∫
∞

−∞
ℎ(𝑢) exp(−(𝑥 − 𝑢)2

4𝐷𝑡 ) d𝑢

≡ ∫
∞

−∞
ℎ(𝑢)𝑆𝑑(𝑥 − 𝑢, 𝑡) d𝑢

where the fundamental solution is

𝑆𝑑(𝑥, 𝑡) =
1

√4𝜋𝐷𝑡
exp(− 𝑥2

4𝐷𝑡)

which is the Fourier transform of exp(−𝐷𝑘2𝑡). Note, with localised initial conditions Θ(𝑥, 0) =
Θ0𝛿(𝑥), the solution is exactly the fundamental solution:

Θ(𝑥, 𝑡) = Θ0𝑆𝑑(𝑥, 𝑡) =
Θ0

√4𝜋𝐷𝑡
exp(−𝜂2); 𝜂 = 𝑥

2√𝐷𝑡

where 𝜂 is the similarity parameter.

7.2 Gaussian pulse for heat equation
Suppose that the initial conditions for the head equation are given by

𝑓(𝑥) = √
𝑎
𝜋Θ0𝑒−𝑎𝑥

2
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Then, our previous solution gives

Θ(𝑥, 𝑡) = Θ0√𝑎
√4𝜋2𝐷𝑡

∫
∞

−∞
exp[−𝑎𝑢2 − (𝑥 − 𝑢)2

4𝐷𝑡 ] d𝑢

= Θ0√𝑎
√4𝜋2𝐷𝑡

∫
∞

−∞
exp[−(1 + 4𝑎𝐷𝑡)𝑢2 − 2𝑥𝑢 + 𝑥2

4𝐷𝑡 ] d𝑢

= Θ0√𝑎
√4𝜋2𝐷𝑡

∫
∞

−∞
exp[−1 + 4𝑎𝐷𝑡

4𝐷𝑡 (𝑢 − 𝑥
1 + 4𝑎𝐷𝑡)] exp[

−𝑎𝑥2
1 + 4𝑎𝐷𝑡] d𝑢

Recall that
∫

∞

−∞
exp[−(𝑢 − 𝜇)2

𝜎2 ] d𝑢 = 𝜎√𝜋

The integral above is a Gaussian, so its solution can be read off directly as

Θ(𝑥, 𝑡) = Θ0√𝑎
√𝜋(1 + 4𝜋2𝐷𝑡)

exp[ −𝑎𝑥2
1 + 4𝑎𝐷𝑡]

So thewidth of theGaussian pulsewill getwider over time, according to𝜎2 ∼ 𝑡, as it evolves according
to the heat equation. The area is constant, so heat energy is conserved in the system.

7.3 Forced diffusion equation
Consider the equation

𝜕
𝜕𝑡Θ(𝑥, 𝑡) − 𝐷𝜕

2Θ
𝜕𝑥2 = 𝑓(𝑥, 𝑡)

subject to homogeneous initial conditions Θ(𝑥, 0) = 0. We construct a two-dimensional Green’s
function 𝐺(𝑥, 𝑡; 𝜉, 𝜏) such that

𝜕
𝜕𝑡𝐺(𝑥, 𝑡) − 𝐷𝜕

2𝐺
𝜕𝑥2 = 𝛿(𝑥 − 𝜉)𝛿(𝑡 − 𝜏)

subject to the same homogeneous boundary conditions 𝐺(𝑥, 0; 𝜉, 𝜏) = 0. Consider the Fourier trans-
form with respect to 𝑥.

𝜕𝐺
𝜕𝑡 + 𝐷𝑘2𝐺 = 𝑒−𝑖𝑘𝜉𝛿(𝑡 − 𝜏)

We can solve this using an integrating factor 𝑒𝐷𝑘2𝑡 and integrating with respect to time. Since 𝐺 = 0
at 𝑡 = 0,

𝜕
𝜕𝑡 [𝑒

𝐷𝑘2𝑡𝐺] = 𝑒−𝑖𝑘𝜉+𝐷𝑘2𝑡𝛿(𝑡 − 𝜏)

∫
𝑡

0

𝜕
𝜕𝑡′ [𝑒

𝐷𝑘2𝑡′𝐺] d𝑡′ = ∫
𝑡

0
𝑒−𝑖𝑘𝜉+𝐷𝑘2𝑡′𝛿(𝑡′ − 𝜏) d𝑡′

𝑒𝐷𝑘2𝑡𝐺 = 𝑒−𝑖𝑘𝜉∫
𝑡

0
𝑒𝐷𝑘2𝑡′𝛿(𝑡′ − 𝜏) d𝑡′

𝑒𝐷𝑘2𝑡𝐺 = 𝑒−𝑖𝑘𝜉𝑒𝐷𝑘2𝜏𝐻(𝑡 − 𝜏)
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where 𝐻 is the Heaviside step function. Thus,

𝐺(𝑘, 𝑡; 𝜉, 𝜏) = 𝑒−𝑖𝑘𝜉𝑒−𝐷𝑘2(𝑡−𝜏)𝐻(𝑡 − 𝜏)

The inverse Fourier transform gives the Green’s function.

𝐺(𝑥, 𝑡; 𝜉, 𝜏) = 𝐻(𝑡 − 𝜏)
2𝜋 ∫

∞

−∞
𝑒−𝑖𝑘𝜉𝑒−𝐷𝑘2(𝑡−𝜏)𝑒𝑖𝑘𝑥 d𝑘

This is a Gaussian; by changing variables into 𝑥′ = 𝑥 − 𝜉 and 𝑡′ = 𝑡 − 𝜏 we find

𝐺(𝑥, 𝑡; 𝜉, 𝜏) = 𝐻(𝑡′)
2𝜋 ∫

∞

−∞
𝑒𝑖𝑘𝑥′𝑒−𝐷𝑘2𝑡′ d𝑘 = 𝐻(𝑡′)

√4𝜋𝐷𝑡′
exp[−(𝑥

′)2
4𝐷𝑡′ ]

Converting back,

𝐺(𝑥, 𝑡; 𝜉, 𝜏) = 𝐻(𝑡 − 𝜏)
√4𝜋𝐷(𝑡 − 𝜏)

exp[− (𝑥 − 𝜉)2
4𝐷(𝑡 − 𝜏)] = 𝐻(𝑡 − 𝜏)𝑆𝑑(𝑥 − 𝜉, 𝑡 − 𝜏)

where 𝑆𝑑 is the fundamental solution as above. Thus, the general solution is

Θ(𝑥, 𝑡) = ∫
∞

0
d𝜏∫

∞

−∞
d𝜉 𝐺(𝑥, 𝑡; 𝜉, 𝜏)𝑓(𝜉, 𝜏)

Let 𝜉 = 𝑢, then

Θ(𝑥, 𝑡) = ∫
𝑡

0
d𝜏∫

∞

−∞
d𝑢𝑓(𝑢, 𝜏)𝑆𝑑(𝑥 − 𝑢, 𝑡 − 𝜏)

7.4 Duhamel’s principle
In the above equation, omitting the integral over time, this is exactly the solution as found earlier
with initial conditions at 𝑡 = 𝜏, which was

Θ(𝑥, 𝑡) = ∫
∞

−∞
d𝑢𝑓(𝑢)𝑆𝑑(𝑥 − 𝑢, 𝑡 − 𝜏)

The forced PDEwith homogeneous boundary conditions can be related to solutions of the homogen-
eous PDE with inhomogeneous boundary conditions. The forcing term 𝑓(𝑥, 𝑡) at 𝑡 = 𝜏 acts as an
initial condition for subsequent evolution. Thus, the solution is a superposition of the effects of the
initial conditions integrated over 0 < 𝜏 < 𝑡. This relation between the homogeneous and inhomo-
geneous problems is known as Duhamel’s principle.

7.5 Forced wave equation
Consider the forced wave equation, given by

𝜕2𝜙
𝜕𝑡2 − 𝑐2 𝜕

2𝜙
𝜕𝑥2 = 𝑓(𝑥, 𝑡)

with 𝜙(𝑥, 0) = 𝜙𝑡(𝑥, 0) = 0. We construct the Green’s function using

𝜕2𝐺
𝜕𝑡2 − 𝑐2 𝜕

2𝐺
𝜕𝑥2 = 𝛿(𝑥 − 𝜉)𝛿(𝑡 − 𝜏)

68



with 𝐺(𝑥, 0) = 𝜙𝑡(𝑥, 0) = 0. We take the Fourier transform with respect to 𝑥, and find

𝜕2𝐺
𝜕𝑡2 + 𝑐2𝑘2𝐺 = 𝑒−𝑖𝑘𝜉𝛿(𝑡 − 𝜏)

We can solve this by inspection by comparing with the corresponding initial value problem Green’s
function, and find

𝐺 = {
0 𝑡 < 𝜏
𝑒−𝑖𝑘𝜉 sin𝑘𝑐(𝑡−𝜏)

𝑘𝑐
𝑡 > 𝜏

Using the Heaviside function.

𝐺 = 𝑒−𝑖𝑘𝜉 sin 𝑘𝑐(𝑡 − 𝜏)
𝑘𝑐 𝐻(𝑡 − 𝜏)

We invert the Fourier transform.

𝐺(𝑥, 𝑡; 𝜉, 𝜏) = 𝐻(𝑡 − 𝜏)
2𝜋𝑐 ∫

∞

−∞
𝑒𝑖𝑘(𝑥−𝜉) sin 𝑘𝑐(𝑡 − 𝜏)

𝑘 d𝑘

Let 𝐴 = 𝑥 − 𝜉, and 𝐵 = 𝑐𝑡 − 𝜏. By oddness of sine, only the cosine term of the complex exponential
remains. Noting the similarity to the Dirichlet discontinuous function,

𝐺(𝑥, 𝑡; 𝜉, 𝜏) = 𝐻(𝑡 − 𝜏)
𝜋𝑐 ∫

∞

0

cos(𝑘𝐴) sin(𝑘𝐵)
𝑘 d𝑘

= 𝐻(𝑡 − 𝜏)
2𝜋𝑐 ∫

∞

0

sin 𝑘(𝐴 + 𝐵) − sin 𝑘(𝐴 − 𝐵)
𝑘 d𝑘

= 𝐻(𝑡 − 𝜏)
4𝑐 [sgn(𝐴 + 𝐵) − sgn(𝐴 − 𝐵)]

Since the 𝐻(𝑡 − 𝜏) term is nonzero only for 𝑡 > 𝜏, we must have 𝐵 = 𝑐(𝑡 − 𝜏) > 0. The only way
that the bracketed term can be nonzero is when |𝐴| < 𝐵; so |𝑥 − 𝜉| < 𝑐(𝑡 − 𝜏). This is the domain of
dependence as found before, demonstrating the causality of the relation. Hence,

𝐺(𝑥, 𝑡; 𝜉, 𝜏) = 1
2𝑐𝐻(𝑐(𝑡 − 𝜏) − |𝑥 − 𝜉|)

Thus, the solution is

𝜙(𝑥, 𝑡) = ∫
∞

0
d𝜏∫

∞

−∞
d𝜉 𝑓(𝜉, 𝑡)𝐺(𝑥, 𝑡; 𝜉, 𝜏)

= 1
2𝑐 ∫

𝑡

0
d𝜏∫

𝑥+𝑐(𝑡−𝜏)

𝑥−𝑐(𝑡−𝜏)
d𝜉 𝑓(𝜉, 𝜏)

7.6 Poisson’s equation
Consider

∇2𝜙 = −𝜌(𝑟)
defined on a three-dimensional domain 𝐷, with Dirichlet boundary conditions 𝜙 = 0 on a boundary
𝜕𝐷. The Dirac 𝛿 function, when defined in ℝ3, has the following properties.
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(i) 𝛿(𝑟 − 𝑟′) = 0 for all 𝑟 ≠ 𝑟′;
(ii) ∫𝐷 𝛿(𝑟 − 𝑟′) d3𝑟 = 1 if 𝑟′ ∈ 𝐷, and zero otherwise;
(iii) ∫𝐷 𝑓(𝑟)𝛿(𝑟 − 𝑟′) d3𝑟 = 𝑓(𝑟′).
First, we consider 𝐷 = ℝ3 with the homogeneous boundary conditions that 𝐺 → 0 as ‖𝑟‖ → ∞. This
is known as the free-spaceGreen’s function, denoted𝐺FS. The potential here is spherically symmetric,
so the Green’s function is a function only of the distance between the point and the source. WIthout
loss of generality, let 𝑟′ = 0, so 𝐺 is a function only of the radius, now denoted 𝑟. Integrating the left
hand side of Poisson’s equation over a ball 𝐵 with radius 𝑟 around zero, we find

∫
𝐵
∇2𝐺FS d3𝑟 = ∫

𝜕𝐵
∇𝐺FS ⋅ ̂𝑛 d𝑆 = ∫

𝜕𝐵

𝜕𝐺
𝜕𝑟 𝑟

2 dΩ

where dΩ is the angle element. This gives

∫
𝐵
∇2𝐺FS d3𝑟 = 4𝜋𝑟2 𝜕𝐺FS

𝜕𝑟

The right hand side of Poisson’s equation gives unity, since zero is contained in the ball. There-
fore,

𝜕𝐺FS
𝜕𝑟 = 1

4𝜋𝑟2 ⟹ 𝐺FS =
−1
4𝜋𝑟 + 𝑐

Since 𝐺 → 0 as 𝑟 → ∞, we must have 𝑐 = 0. The fundamental solution is therefore the free-space
Green’s function given by

𝐺(𝑟; 𝑟′) = −1
4𝜋‖𝑟 − 𝑟′‖

Thus, Poisson’s equation is solved by

Φ(𝑟) = 1
4𝜋 ∫

ℝ3

𝜌(𝑟′)
‖𝑟 − 𝑟′‖ d

3𝑟′

7.7 Green’s identities
Consider scalar functions 𝜙, 𝜓 which are twice differentiable on a domain 𝐷. By the divergence
theorem, Green’s first identity is

∫
𝐷
∇ ⋅ (𝜙∇𝜓) d3𝑟 = ∫

𝐷
(𝜙∇2𝜓 + ∇𝜙 ⋅ ∇𝜓) d3𝑟 = ∫

𝜕𝐷
𝜙∇𝜓 ⋅ ̂𝑛 d𝑆

Switching 𝜓 and 𝜙 and subtracting from the above, we arrive at Green’s second identity:

∫
𝜕𝐷

(𝜙𝜕𝜓𝜕 ̂𝑛 − 𝜓𝜕𝜙𝜕 ̂𝑛) d𝑆 = ∫
𝐷
(𝜙∇2𝜓 − 𝜓∇2𝜙) d3𝑟

Suppose we remove a ball ℬ𝜀(𝑟′) from the domain. Without loss of generality let 𝑟′ = 0. Let 𝜙 be a
solution to Poisson’s equation, so ∇2𝜙 = −𝜌 and let 𝜓 be the free-space Green’s function. Thus, the
right hand side of the second identity becomes

∫
𝐷∖ℬ𝜀

(𝜙∇2𝐺FS − 𝐺FS∇2𝜙) d3𝑟 = ∫
𝐷∖ℬ𝜀

𝐺FS𝜌 d3𝑟
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The left hand side is

∫
𝜕𝐷

(𝜙𝜕𝐺FS
𝜕 ̂𝑛 − 𝐺FS

𝜕𝜙
𝜕 ̂𝑛) d𝑆 +∫

𝜕ℬ𝜀

(𝜙𝜕𝐺FS
𝜕 ̂𝑛 − 𝐺FS

𝜕𝜙
𝜕 ̂𝑛) d𝑆

For the second integral, we take the limit as 𝜀 → 0. Let 𝜙 be regular, and let 𝜙 be the average value
and 𝜕𝜙

𝜕𝑛̂
be the average derivative. This integral then becomes

(𝜙 −1
4𝜋𝜀2 −

1
4𝜋𝜀

𝜕𝜙
𝜕 ̂𝑛)4𝜋𝜀

2 → −𝜙(0)

Combining the above, we find Green’s third identity, which is

𝜙(𝑟′) = ∫
𝐷
𝐺FS(𝑟; 𝑟′)(−𝜌(𝑟)) d3𝑟 +∫

𝜕𝐷
(𝜙(𝑟)𝜕𝐺FS

𝜕 ̂𝑛 (𝑟; 𝑟′) − 𝐺FS(𝑟; 𝑟′)
𝜕𝜙
𝜕 ̂𝑛 (𝑟)) d𝑆

The second integral provides the ability to use inhomogeneous boundary conditions

7.8 Dirichlet Green’s function
We will solve Poisson’s equation ∇2𝜙 = −𝜌 on 𝐷 with inhomogeneous boundary conditions 𝜙(𝑟) =
ℎ(𝑟) on 𝜕𝐷. The Dirichlet Green’s function satisfies
(i) ∇2𝐺(𝑟; 𝑟′) = 0 for all 𝑟 ≠ 𝑟′;
(ii) 𝐺(𝑟; 𝑟′) = 0 on 𝜕𝐷;
(iii) 𝐺(𝑟; 𝑟′) = 𝐺FS(𝑟; 𝑟′) + 𝐻(𝑟; 𝑟′) where 𝐻 satisfies Laplace’s equation, the homogeneous version

of Poisson’s equation, for all 𝑟 ∈ 𝐷.
Green’s second identity with ∇2𝜙 = −𝜌,∇2𝐻 = 0 gives

∫
𝜕𝐷

(𝜙𝜕𝐻𝜕 ̂𝑛 − 𝐻𝜕𝜙
𝜕 ̂𝑛) d𝑆 = ∫

𝐷
𝐻𝜌 d3𝑟

Now, we set 𝐺FS = 𝐺 − 𝐻 into Green’s third identity to find

𝜙(𝑟′) = ∫
𝐷
(𝐺 − 𝐻)(−𝜌) d3𝑟 +∫

𝜕𝐷
(𝜙𝜕(𝐺 − 𝐻)

𝜕 ̂𝑛 − (𝐺 − 𝐻)𝜕𝜙𝜕𝑛) d𝑆

All of the𝐻 terms can be cancelled by substituting the form of the second identity the derived above.
Now, given 𝐺 = 0, 𝜙 = ℎ on 𝜕𝐷, we have

𝜙(𝑟′) = ∫
𝐷
𝐺(𝑟; 𝑟′)(−𝜌(𝑟)) d3𝑟 +∫

𝜕𝐷
ℎ(𝑟)𝜕𝐺(𝑟; 𝑟

′)
𝜕 ̂𝑛 d𝑆

This is the general solution. The first integral is theGreen’s function solution, and the second integral
yields the inhomogeneous boundary conditions.
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7.9 Method of images for Laplace’s equation
For symmetric domains 𝐷, we can construct Green’s functions with 𝐺 = 0 on 𝜕𝐷 by cancelling
the boundary potential out by using an opposite ‘mirror image’ Green’s function placed outside the
domain. Consider Laplace’s equation ∇2𝜙 = 0 on half of ℝ3, in particular, the subset of ℝ3 such
that 𝑧 > 0. Let 𝜙(𝑥, 𝑦, 0) = ℎ(𝑥, 𝑦) and 𝜙 → 0 as 𝑟 → ∞. The free space Green’s function satisfies
𝐺FS → 0 as 𝑟 → ∞, but does not satisfy the boundary condition that 𝐺FS = 0 at 𝑧 = 0. For 𝐺FS at
𝑟′ = (𝑥′, 𝑦′, 𝑧′), we will subtract a copy of 𝐺FS located at 𝑟″ = (𝑥′, 𝑦′, −𝑧′). This gives

𝐺(𝑟, 𝑟′) = −1
4𝜋|𝑟 − 𝑟′| −

−1
4𝜋|𝑟 − 𝑟″|

= −1
4𝜋√(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 + (𝑧 − 𝑧′)2

+ 1
4𝜋√(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 + (𝑧 + 𝑧′)2

Hence 𝐺((𝑥, 𝑦, 0), 𝑟′) = 0, so this function satisfies the Dirichlet boundary conditions on all of the
boundary 𝜕𝐷. We have

𝜕𝐺
𝜕 ̂𝑛

|||𝑧=0
= 𝜕𝐺

𝜕𝑧
|||𝑧=0

= −1
4𝜋(

𝑧 − 𝑧′

|𝑟 − 𝑟′|3
− 𝑧 + 𝑧′

|𝑟 − 𝑟′|3
) = 𝑧′

2𝜋((𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 + (𝑧′)2)−3/2

The solution is then given by

Φ(𝑥′, 𝑦′, 𝑧′) = 𝑧′
2𝜋 ∫

∞

−∞
∫

∞

−∞
[(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 + (𝑧′)2]−3/2ℎ(𝑥, 𝑦) d𝑥 d𝑦

7.10 Method of images for wave equation
Consider the one-dimensional wave equation

̈𝜙 − 𝑐2𝜙″ = 𝑓(𝑥, 𝑡)

with Dirichlet boundary conditions 𝜙(0, 𝑡) = 0. We create matching Green’s functions with an op-
posite sign centred at −𝜉.

𝐺(𝑥, 𝑡; 𝜉, 𝜏) = 1
2𝑐𝐻(𝑐(𝑡 − 𝜏) − |𝑥 − 𝜉|) − 1

2𝑐𝐻(𝑐, (𝑡 − 𝜏) − |𝑥 + 𝜉|)

We can replace the addition of the two terms with a subtraction to instead use Neumann boundary
conditions. Suppose we wish to solve the homogeneous problem with 𝑓 = 0 for initial conditions of
a Gaussian pulse. Here, for 𝑥 > 0 we have

𝜙(𝑥, 𝑡) = exp[−(𝑥 − 𝜉 + 𝑐𝑡)2] − exp[−(−𝑥 − 𝜉 + 𝑐𝑡)2]

The solution travels to the left, cancelling with the image at 𝑡 = 𝜉
𝑐
, which emerges and travels right

as the reflected wave.
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