
Markov Chains

Cambridge University Mathematical Tripos: Part IB

21st May 2024

Contents
1 Introduction 3

1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Sequence definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Point masses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Independence of sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Simple Markov property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6 Powers of the transition matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.7 Calculating powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Elementary properties 7
2.1 Communicating classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Hitting times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Birth and death chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Mean hitting times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Strong Markov property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Transience and recurrence 15
3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Probability of visits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Duality of transience and recurrence . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Recurrent communicating classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Pólya’s recurrence theorem 18
4.1 Statement of theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 One-dimensional proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 Two-dimensional proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4 Three-dimensional proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Invariant distributions 21
5.1 Invariant distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Conditions for unique invariant distribution . . . . . . . . . . . . . . . . . . . . . . 22
5.3 Uniqueness of invariant distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.4 Positive and null recurrence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.5 Time reversibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.6 Aperiodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.7 Positive recurrent limiting behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1



5.8 Null recurrent limiting behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2



1 Introduction
1.1 Definition
Let 𝐼 be a finite or countable set. All of our random variables will be defined on the same probability
space (Ω,ℱ, ℙ).

Definition. A stochastic process (𝑋𝑛)𝑛≥0 is called aMarkov chain if for all 𝑛 ≥ 0 and for all
𝑥1…𝑥𝑛+1 ∈ 𝐼,

ℙ (𝑋𝑛+1 = 𝑥𝑛+1 ∣ 𝑋𝑛 = 𝑥𝑛,… , 𝑋1 = 𝑥1) = ℙ (𝑋𝑛+1 = 𝑥𝑛+1 ∣ 𝑋𝑛 = 𝑥𝑛)

We can think of 𝑛 as a discrete measure of time. Ifℙ (𝑋𝑛+1 = 𝑦 ∣ 𝑋𝑛 = 𝑥) for all 𝑥, 𝑦 is independent of
𝑛, then 𝑋 is called a time-homogeneous Markov chain. Otherwise, 𝑋 is called time-inhomogeneous.
In this course, we only study time-homogeneousMarkov chains. Ifwe consider only time-homogeneous
chains, we may as well take 𝑛 = 0 and we can write

𝑃(𝑥, 𝑦) = ℙ (𝑋1 = 𝑦 ∣ 𝑋0 = 𝑥) ; ∀𝑥, 𝑦 ∈ 𝐼

Definition. A stochastic matrix is a matrix where the sum of each row is equal to 1.

We call 𝑃 the transition matrix. It is a stochastic matrix:

∑
𝑦∈𝐼

𝑃(𝑥, 𝑦) = 1

Remark. The index set does not need to be ℕ; it could alternatively be the set {0, 1,… ,𝑁} for 𝑁 ∈ ℕ.
We say that 𝑋 is Markov (𝜆, 𝑃) if 𝑋0 has distribution 𝜆, and P is the transition matrix. Hence,
(i) ℙ (𝑋0 = 𝑥0) = 𝜆𝑥0
(ii) ℙ (𝑋𝑛+1 = 𝑥𝑛+1 ∣ 𝑋𝑛 = 𝑥𝑛,… , 𝑋0 = 𝑥0) = 𝑃(𝑥𝑛, 𝑥𝑛+1) =∶ 𝑃𝑥𝑛𝑥𝑛+1

We usually draw a diagram of the transition matrix using a graph. Directed edges between nodes are
labelled with their transition probabilities.

1.2 Sequence definition

Theorem. The process 𝑋 is Markov (𝜆, 𝑃) if and only if ∀𝑛 ≥ 0 and all 𝑥0,… , 𝑥𝑛 ∈ 𝐼, we
have

ℙ (𝑋0 = 𝑥0,… , 𝑋𝑛 = 𝑥𝑛) = 𝜆𝑥0𝑃(𝑥0, 𝑥1)𝑃(𝑥1, 𝑥2)…𝑃(𝑥𝑛−1, 𝑥𝑛)

Proof. If 𝑋 is Markov, then we have

ℙ (𝑋0 = 𝑥0,… , 𝑋𝑛 = 𝑥𝑛) = ℙ (𝑋𝑛 = 𝑥𝑛 ∣ 𝑋𝑛−1 = 𝑥𝑛−1,… , 𝑋0 = 𝑥0)
⋅ ℙ (𝑋𝑛−1 = 𝑥𝑛−1,… , 𝑋0 = 𝑥0)
= 𝑃(𝑥𝑛−1, 𝑥𝑛)ℙ (𝑋𝑛−1 = 𝑥𝑛−1,… , 𝑋0 = 𝑥0)
= 𝑃(𝑥𝑛−1, 𝑥𝑛)…𝑃(𝑥0, 𝑥1)𝜆𝑥0
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as required. Conversely, ℙ (𝑋0 = 𝑥0) = 𝜆𝑥0 satisfies (i). The transition matrix is given by

ℙ (𝑋𝑛 = 𝑥𝑛 ∣ 𝑋0 = 𝑥0,… , 𝑋𝑛−1 = 𝑥𝑛−1) =
𝜆𝑥0𝑃(𝑥0, 𝑥1)…𝑃(𝑥𝑛−1, 𝑥𝑛)
𝜆𝑥0𝑃(𝑥0, 𝑥1)…𝑃(𝑥𝑛−2, 𝑥𝑛−1)

= 𝑃(𝑥𝑛−1, 𝑥𝑛)

which is exactly the Markov property as required.

1.3 Point masses

Definition. For 𝑖 ∈ 𝐼, the 𝛿𝑖-mass at 𝑖 is defined by

𝛿𝑖𝑗 = 𝟙(𝑖 = 𝑗)

This is a probability measure that has probability 1 at 𝑖 only.

1.4 Independence of sequences
Recall that discrete random variables (𝑋𝑛) are considered independent if for all 𝑥1,… , 𝑥𝑛 ∈ 𝐼, we
have

ℙ (𝑋1 = 𝑥1,… , 𝑋𝑛 = 𝑥𝑛) = ℙ (𝑋1 = 𝑥1)…ℙ (𝑋𝑛 = 𝑥𝑛)
A sequence (𝑋𝑛) is independent if for all 𝑘, 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑛 and for all 𝑥1,… , 𝑥𝑘, we have

ℙ (𝑋𝑖1 = 𝑥1,… , 𝑋𝑖𝑘 = 𝑥𝑘) =
𝑛
∏
𝑗=1

ℙ (𝑋𝑖𝑗 = 𝑥𝑗)

Let 𝑋 = (𝑋𝑛), 𝑌 = (𝑌𝑛) be sequences of discrete random variables. They are independent if for all
𝑘,𝑚, 𝑖1 < ⋯ < 𝑖𝑘, 𝑗1 < ⋯ < 𝑗𝑚,

𝑝𝑟𝑜𝑏𝑋1 = 𝑥1,… , 𝑋𝑖𝑘 = 𝑥𝑖𝑘 , 𝑌 𝑗1 = 𝑦𝑗1 ,… , 𝑌 𝑗𝑚
= ℙ (𝑋1 = 𝑥1,… , 𝑋𝑖𝑘 = 𝑥𝑖𝑘) ℙ (𝑌 𝑗1 = 𝑦𝑗1 ,… , 𝑌 𝑗𝑚)

1.5 Simple Markov property

Theorem. Suppose 𝑋 is Markov (𝜆, 𝑃). Let 𝑚 ∈ ℕ and 𝑖 ∈ 𝐼. Given that 𝑋𝑚 = 𝑖, we have
that the process after time 𝑚, written (𝑋𝑚+𝑛)𝑛≥0, is Markov (𝛿𝑖, 𝑃), and it is independent of
𝑋0,… , 𝑋𝑚.

Informally, the past and the future are independent given the present.

Proof. We must show that

ℙ (𝑋𝑚 = 𝑥0,… , 𝑋𝑚+𝑛 = 𝑥𝑛 ∣ 𝑋𝑚 = 𝑖) = 𝛿𝑖𝑥0𝑃(𝑥0, 𝑥1)…𝑃(𝑥𝑛−1, 𝑥𝑛)

We have

ℙ (𝑋𝑚+𝑛 = 𝑥𝑚+𝑛,… , 𝑋𝑚 = 𝑥𝑚 ∣ 𝑋𝑚 = 𝑖) =
ℙ (𝑋𝑚+𝑛 = 𝑥𝑚+𝑛,… , 𝑋𝑚 = 𝑥𝑚) 𝛿𝑖𝑥𝑚

ℙ (𝑋𝑚 = 𝑖)
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The numerator is

ℙ (𝑋𝑚+𝑛,… , 𝑋𝑚 = 𝑥𝑚)
= ∑

𝑥0,…,𝑥𝑚−1∈𝐼
ℙ (𝑋𝑚+𝑛 = 𝑥𝑚+𝑛,… , 𝑋𝑚 = 𝑥𝑚, 𝑋𝑚−1 = 𝑥𝑚−1,… , 𝑋0 = 𝑥0)

= ∑
𝑥0,…,𝑥𝑚−1

𝜆𝑥0𝑃(𝑥0, 𝑥1)…𝑃(𝑥𝑚−1, 𝑥𝑚)𝑃(𝑥𝑚, 𝑥𝑚+1)…𝑃(𝑥𝑚+𝑛−1, 𝑥𝑚+𝑛)

= 𝑃(𝑥𝑚, 𝑥𝑚+1)…𝑃(𝑥𝑚+𝑛−1, 𝑥𝑚+𝑛) ∑
𝑥0,…,𝑥𝑚−1

𝜆𝑥0𝑃(𝑥0, 𝑥1)…𝑃(𝑥𝑚−1, 𝑥𝑚)

= 𝑃(𝑥𝑚, 𝑥𝑚+1)…𝑃(𝑥𝑚+𝑛−1, 𝑥𝑚+𝑛)ℙ (𝑋𝑚 = 𝑥𝑚)

Thus we have

ℙ (𝑋𝑚+𝑛 = 𝑥𝑚+𝑛,… , 𝑋𝑚 = 𝑥𝑚 ∣ 𝑋𝑚 = 𝑖) = 𝑃(𝑥𝑚, 𝑥𝑚+1)…𝑃(𝑥𝑚+𝑛−1, 𝑥𝑚+𝑛)𝛿𝑖𝑥𝑚
Hence (𝑋𝑚+𝑛)𝑛≥0 ∼ Markov (𝛿𝑖, 𝑃) conditional on 𝑋𝑚 = 𝑖. Now it suffices to show independence
between the past and future variables. In particular, we need to show 𝑚 ≤ 𝑖1 < ⋯ < 𝑖𝑘 for some
𝑘 ∈ ℕ implies that

ℙ (𝑋𝑖1 = 𝑥𝑚+1,… , 𝑋𝑖𝑘 = 𝑥𝑚+𝑘, 𝑋0 = 𝑥0,… , 𝑋𝑚 = 𝑥𝑚 ∣ 𝑋𝑚 = 𝑖)
= ℙ (𝑋𝑖1 = 𝑥𝑚+1,… , 𝑋𝑖𝑘 = 𝑥𝑚+𝑘 ∣ 𝑋𝑚 = 𝑖) ℙ (𝑋0 = 𝑥0,… , 𝑋𝑚 = 𝑥𝑚 ∣ 𝑋𝑚 = 𝑖)

So let 𝑖 = 𝑥𝑚, and then

=
ℙ (𝑋𝑖1 = 𝑥𝑚+1,… , 𝑋𝑖𝑘 = 𝑥𝑚+𝑘, 𝑋0 = 𝑥0,… , 𝑋𝑚 = 𝑥𝑚)

ℙ (𝑋𝑚 = 𝑖)

=
𝜆𝑥0𝑃(𝑥0, 𝑥1)…𝑃(𝑥𝑚−1, 𝑥𝑚)ℙ (𝑋𝑖1 = 𝑥𝑚+1,… , 𝑋𝑖𝑘 = 𝑥𝑚+𝑘 ∣ 𝑋𝑚 = 𝑥𝑚)

ℙ (𝑥𝑚 = 𝑖)

= ℙ (𝑋0 = 𝑥0,… , 𝑋𝑚 = 𝑥𝑚)
ℙ (𝑋𝑚 = 𝑥𝑚)

ℙ (𝑋𝑖1 = 𝑥𝑚+1,… , 𝑋𝑖𝑘 = 𝑥𝑚+𝑘 ∣ 𝑋𝑚 = 𝑥𝑚)

which gives the result as required.

1.6 Powers of the transition matrix
Suppose 𝑋 ∼ Markov (𝜆, 𝑃) with values in 𝐼. If 𝐼 is finite, then 𝑃 is an |𝐼| × |𝐼| square matrix. In
this case, we can label the states as 1,… , |𝐼|. If 𝐼 is infinite, then we label the states using the natural
numbers ℕ. Let 𝑥 ∈ 𝐼 and 𝑛 ∈ ℕ. Then,

ℙ (𝑋𝑛 = 𝑥) = ∑
𝑥0,…,𝑥𝑛−1∈𝐼

ℙ (𝑋𝑛 = 𝑥, 𝑋𝑛−1 = 𝑥𝑛−1,… , 𝑋0 = 𝑥0)

= ∑
𝑥0,…,𝑥𝑛−1∈𝐼

𝜆𝑥0𝑃(𝑥0, 𝑥1)…𝑃(𝑥𝑛−1, 𝑥)

We can think of 𝜆 as a row vector. So we can write this as

= (𝜆𝑃𝑛)𝑥
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By convention, we take 𝑃0 = 𝐼, the identity matrix. Now, suppose 𝑚, 𝑛 ∈ ℕ. By the simple Markov
property,

ℙ (𝑋𝑚+𝑛 = 𝑦 ∣ 𝑋𝑚 = 𝑥) = ℙ (𝑋𝑛 = 𝑦 ∣ 𝑋0 = 𝑥) = (𝛿𝑥𝑃𝑛)𝑦
We will write ℙ𝑥 (𝐴) ≔ ℙ (𝐴 ∣ 𝑋0 = 𝑥) as an abbreviation. Further, we write 𝑝𝑖𝑗(𝑛) for the (𝑖, 𝑗)
element of 𝑃𝑛. We have therefore proven the following theorem.

Theorem.
ℙ (𝑋𝑛 = 𝑥) = (𝜆𝑃𝑛)𝑥;

ℙ (𝑋𝑛+𝑚 = 𝑦 ∣ 𝑋𝑚 = 𝑥) = ℙ𝑥 (𝑋𝑛 = 𝑦) = 𝑝𝑥𝑦(𝑛)

1.7 Calculating powers
Example. Consider

𝑃 = (1 − 𝛼 𝛼
𝛽 1 − 𝛽) ; 𝛼, 𝛽 ∈ [0, 1]

Note that for any stochastic matrix 𝑃, 𝑃𝑛 is a stochastic matrix. First, we have 𝑃𝑛+1 = 𝑃𝑛𝑃. Let us
begin by finding 𝑝11(𝑛 + 1).

𝑝11(𝑛 + 1) = 𝑝11(𝑛)(1 − 𝛼) + 𝑝12(𝑛)𝛽

Note that 𝑝11(𝑛) + 𝑝12(𝑛) = 1 since 𝑃𝑛 is stochastic. Therefore,

𝑝11(𝑛 + 1) = 𝑝11(𝑛)(1 − 𝛼 − 𝛽) + 𝛽

We can solve this recursion relation to find

𝑝11(𝑛) = {
𝛼

𝛼+𝛽
+ 𝛼

𝛼+𝛽
(1 − 𝛼 − 𝛽)𝑛 𝛼 + 𝛽 > 0

1 𝛼 + 𝛽 = 0

The general procedure for finding 𝑃𝑛 is as follows. Suppose that 𝑃 is a 𝑘×𝑘matrix. Then let 𝜆1,… , 𝜆𝑘
be its eigenvalues (which may not be all distinct).

(1) All 𝜆𝑖 distinct. In this case, 𝑃 is diagonalisable, and hence we can write 𝑃 = 𝑈𝐷𝑈−1 where 𝑈
is a diagonal matrix, whose diagonal entries are the 𝜆𝑖. Then, 𝑃𝑛 = 𝑈𝐷𝑛𝑈−1. Calculating 𝐷𝑛

may be done termwise since 𝐷 is diagonal. In this case, we have terms such as

𝑝11(𝑛) = 𝑎1𝜆𝑛1 +⋯+ 𝑎𝑘𝜆𝑛𝑘 ; 𝑎𝑖 ∈ ℝ

First, note 𝑃0 = 𝐼 hence 𝑝11(0) = 1. We can substitute small values of 𝑛 and then solve the sys-
tem of equations. Now, suppose 𝜆𝑘 is complex for some 𝑘. In this case, 𝜆𝑘 is also an eigenvalue.
Then, up to reordering,

𝜆𝑘 = 𝑟𝑒𝑖𝜃 = 𝑟(cos 𝜃 + 𝑖 sin 𝜃); 𝜆𝑘−1 = 𝜆𝑘 = 𝑟𝑒𝑖𝜃 = 𝑟(cos 𝜃 − 𝑖 sin 𝜃)

We can instead write 𝑝11(𝑛) as

𝑝11(𝑛) = 𝑎1𝜆𝑛1 +⋯+ 𝑎𝑘−1𝑟𝑛 cos(𝑛𝜃) + 𝑎𝑘𝑟𝑛 sin(𝑛𝜃)

Since 𝑝11(𝑛) is real, all the imaginary parts disappear, so we can simply ignore them.
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(2) Not all 𝜆𝑖 distinct. In this case, 𝜆 appears with multiplicity 2, then we include also the term
(𝑎𝑛 + 𝑏)𝜆𝑛 as well as 𝑏𝜆𝑛. This can be shown by considering the Jordan normal form of 𝑃.

Example. Let

𝑃 =
⎛
⎜⎜
⎝

0 1 0
0 1

2
1
21

2
0 1

2

⎞
⎟⎟
⎠

The eigenvalues are 1, 1
2
𝑖, − 1

2
𝑖. Then, writing 𝑖

2
= 1

2
(cos 𝜋

2
+ 𝑖 sin 𝜋

2
), we can write

𝑝11(𝑛) = 𝛼 + 𝛽(12)
𝑛
cos 𝑛𝜋2 + 𝛾(12)

𝑛
sin 𝑛𝜋2

For 𝑛 = 0 we have 𝑝11(0) = 1, and for 𝑛 = 1 we have 𝑝11(1) = 0, and for 𝑛 = 2 we can calculate 𝑃2
and find 𝑝11(2) = 0. Solving this system of equations for 𝛼, 𝛽, 𝛾, we can find

𝑝11(𝑛) =
1
5 + (12)

𝑛
(45 cos

𝑛𝜋
2 − 2

5 sin
𝑛𝜋
2 )

2 Elementary properties
2.1 Communicating classes

Definition. Let 𝑋 be a Markov chain with transition matrix 𝑃 and values in 𝐼. For 𝑥, 𝑦 ∈ 𝐼,
we say that 𝑥 leads to 𝑦, written 𝑥 → 𝑦, if

ℙ𝑥 (∃𝑛 ≥ 0, 𝑋𝑛 = 𝑦) > 0

We say that 𝑥 communicates with 𝑦 and write 𝑥 ↔ 𝑦 if 𝑥 → 𝑦 and 𝑦 → 𝑥.

Theorem. The following are equivalent:
(i) 𝑥 → 𝑦
(ii) There exists a sequence of states 𝑥 = 𝑥0, 𝑥1,… , 𝑥𝑘 = 𝑦 such that

𝑃(𝑥0, 𝑥1)𝑃(𝑥1, 𝑥2)…𝑃(𝑥𝑘−1, 𝑥𝑘) > 0

(iii) There exists 𝑛 ≥ 0 such that 𝑝𝑥𝑦(𝑛) > 0.

Proof. First, we show (i) and (iii) are equivalent. If 𝑥 → 𝑦, then ℙ𝑥 (∃𝑛 ≥ 0, 𝑋𝑛 = 𝑦) > 0. Then if
ℙ𝑥 (∃𝑛 ≥ 0, 𝑋𝑛 = 𝑦) > 0 we must have some 𝑛 ≥ 0 such that ℙ𝑥 (𝑋𝑛 = 𝑦) = 𝑝𝑥𝑦(𝑛) > 0. Note that
we can write (i) as ℙ𝑥 (⋃

∞
𝑛=0 𝑋𝑛 = 𝑦) > 0. If there exists 𝑛 ≥ 0 such that 𝑝𝑥𝑦(𝑛) > 0, then certainly

the probability of the union is also positive.

Now we show (ii) and (iii) are equivalent. We can write

𝑝𝑥𝑦(𝑛) = ∑
𝑥1,…,𝑥𝑛−1

𝑃(𝑥, 𝑥1)…𝑃(𝑥𝑛−1, 𝑦)

which leads directly to the equivalence of (ii) with (iii).
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Corollary. Communication is an equivalence relation on 𝐼.

Proof. 𝑥 ↔ 𝑥 since 𝑝𝑥𝑥(0) = 1. If 𝑥 → 𝑦 and 𝑦 → 𝑧 then by (ii) above, 𝑥 → 𝑧.

Definition. The equivalence classes induced on 𝐼 by the communication equivalence rela-
tion are called communicating classes. A communicating class𝐶 is closed if 𝑥 ∈ 𝐶, 𝑥 → 𝑦 ⟹
𝑦 ∈ 𝐶.

Definition. A transition matrix 𝑃 is called irreducible if it has a single communicating class.
In other words, ∀𝑥, 𝑦 ∈ 𝐼, 𝑥 ↔ 𝑦.

Definition. A state 𝑥 is called absorbing if {𝑥} is a closed (communicating) class.

2.2 Hitting times

Definition. For 𝐴 ⊆ 𝐼, we define the hitting time of 𝐴 to be a random variable 𝑇𝐴 ∶ Ω →
{0, 1, 2… } ∪ {∞}, defined by

𝑇𝐴(𝜔) = inf {𝑛 ≥ 0∶ 𝑋𝑛(𝜔) ∈ 𝐴}

with the convention that inf∅ = ∞. The hitting probability of 𝐴 is ℎ𝐴 ∶ 𝐼 → [0, 1], defined by

ℎ𝐴𝑖 = ℙ𝑖 (𝑇𝐴 < ∞)

Themean hitting time of 𝐴 is 𝑘𝐴 ∶ 𝐼 → [0,∞], defined by

𝑘𝐴𝑖 = 𝔼𝑖 [𝑇𝐴] =
∞
∑
𝑛=0

𝑛ℙ𝑖 (𝑇𝐴 = 𝑛) +∞ℙ𝑖 (𝑇𝐴 = ∞)

Example. Consider

𝑃 =
⎛
⎜
⎜
⎝

1 0 0 0
1/2 0 1/2 0
0 1/2 0 1/2
0 0 0 1

⎞
⎟
⎟
⎠

Consider 𝐴 = {4}.
ℎ𝐴1 = 0

ℎ𝐴2 = ℙ2 (𝑇𝐴 < ∞) = 1
2ℎ

𝐴
1 +

1
2ℎ

𝐴
3

ℎ𝐴3 = 1
2 ⋅ 1 +

1
2ℎ

𝐴
2

Hence ℎ𝐴2 = 1
3
. Now, consider 𝐵 = {1, 4}.

𝑘𝐵1 = 𝑘𝐵4 = 0
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𝑘𝐵2 = 1 + 1
2𝑘

𝐵
1 +

1
2𝑘

𝐵
3

𝑘𝐵3 = 1 + 1
2𝑘

𝐵
4 +

1
2𝑘

𝐵
2

Hence 𝑘𝐵2 = 2.

Theorem. Let 𝐴 ⊂ 𝐼. Then the vector (ℎ𝐴𝑖 )𝑖∈𝐴 is the minimal non-negative solution to the
system

ℎ𝐴𝑖 = {1 𝑖 ∈ 𝐴
∑𝑗 𝑃(𝑖, 𝑗)ℎ𝐴𝑗 𝑖 ∉ 𝐴

Minimality here means that if (𝑥𝑖)𝑖∈𝐼 is another non-negative solution, then ∀𝑖, ℎ𝐴𝑖 ≤ 𝑥𝑖.

Note. The vector ℎ𝐴𝑖 = 1 always satisfies the equation, since 𝑃 is stochastic, but is typically not
minimal.

Proof. First, we will show that (ℎ𝑖)𝑖∈𝐴 solves the system of equations. Certainly if 𝑖 ∈ 𝐴 then ℎ𝐴𝑖 = 1.
Suppose 𝑖 ∉ 𝐴. Consider the event {𝑇𝐴 < ∞}. We can write this event as a disjoint union of the
following events:

{𝑇𝐴 < ∞} = {𝑋0 ∈ 𝐴} ∪
∞

⋃
𝑛=1

{𝑋0 ∉ 𝐴,… , 𝑋𝑛−1 ∉ 𝐴, 𝑋𝑛 ∈ 𝐴}

By countable additivity,

ℙ𝑖 (𝑇𝐴 < ∞) = ℙ𝑖 (𝑋0 ∈ 𝐴)⏟⎵⎵⏟⎵⎵⏟
=0

+
∞
∑
𝑛=1

ℙ𝑖 (𝑋0 ∉ 𝐴,… , 𝑋𝑛−1 ∉ 𝐴, 𝑋𝑛 ∈ 𝐴)

=
∞
∑
𝑛=1

∑
𝑗
ℙ (𝑋0 ∉ 𝐴,… , 𝑋𝑛−1 ∉ 𝐴, 𝑋𝑛 ∈ 𝐴, 𝑋1 ∈ 𝑗 ∣ 𝑋0 = 𝑖)

= ∑
𝑗
ℙ (𝑋1 ∈ 𝐴, 𝑋1 = 𝑗 ∣ 𝑋0 = 𝑖)

+
∞
∑
𝑛=2

∑
𝑗
ℙ (𝑋1 ∉ 𝐴,… , 𝑋𝑛−1 ∉ 𝐴, 𝑋𝑛 ∈ 𝐴, 𝑋1 ∈ 𝑗 ∣ 𝑋0 = 𝑖)

= ∑
𝑗
𝑃(𝑖, 𝑗)ℙ (𝑋1 ∈ 𝐴 ∣ 𝑋1 = 𝑗, 𝑋0 = 𝑖)

+∑
𝑗
𝑃(𝑖, 𝑗)

∞
∑
𝑛=2

ℙ (𝑋1 ∉ 𝐴,… , 𝑋𝑛−1 ∉ 𝐴, 𝑋𝑛 ∈ 𝐴 ∣ 𝑋1 ∈ 𝑗, 𝑋0 = 𝑖)
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By the definition of the Markov chain, we can drop the condition on 𝑋0, and subtract one from all
indices.

= ∑
𝑗
𝑃(𝑖, 𝑗)ℙ (𝑋0 ∈ 𝐴 ∣ 𝑋0 = 𝑗)

+∑
𝑗
𝑃(𝑖, 𝑗)

∞
∑
𝑛=2

ℙ (𝑋1 ∉ 𝐴,… , 𝑋𝑛−1 ∉ 𝐴, 𝑋𝑛 ∈ 𝐴 ∣ 𝑋1 ∈ 𝑗)

= ∑
𝑗
𝑃(𝑖, 𝑗)ℙ (𝑋0 ∈ 𝐴 ∣ 𝑋0 = 𝑗)

+∑
𝑗
𝑃(𝑖, 𝑗)

∞
∑
𝑛=2

ℙ𝑗 (𝑋0 ∉ 𝐴,… , 𝑋𝑛−2 ∉ 𝐴, 𝑋𝑛−1 ∈ 𝐴)

= ∑
𝑗
𝑃(𝑖, 𝑗)(ℙ𝑗 (𝑋0 ∈ 𝐴) +

∞
∑
2
ℙ𝑗 (𝑋0 ∉ 𝐴,… , 𝑋𝑛−1 ∉ 𝐴, 𝑋𝑛 ∈ 𝐴))

= ∑
𝑗
𝑃(𝑖, 𝑗)(ℙ𝑗 (𝑇𝐴 = 0) +

∞
∑
𝑛=1

ℙ𝑗 (𝑇𝐴 = 𝑛))

= ∑
𝑗
𝑃(𝑖, 𝑗)ℙ𝑗 (𝑇𝐴 < ∞)

= ∑
𝑗
𝑃(𝑖, 𝑗)ℎ𝐴𝑗

Nowwemust showminimality. If (𝑥𝑖) is another non-negative solution, we must show that ℎ𝐴𝑖 ≤ 𝑥𝑖.
We have

𝑥𝑖 = ∑
𝑗
𝑃(𝑖, 𝑗)𝑥𝑗 = ∑

𝑗∈𝐴
𝑃(𝑖, 𝑗) + ∑

𝑗∉𝐴
𝑃(𝑖, 𝑗)𝑥𝑗

Substituting again,

𝑥𝑖 = ∑
𝑗∈𝐴

𝑃(𝑖, 𝑗)𝑥𝑗 + ∑
𝑗∉𝐴

𝑃(𝑖, 𝑗)(∑
𝑘∈𝐴

𝑃(𝑗, 𝑘) +∑𝑘 ∉ 𝐴𝑃(𝑗, 𝑘)𝑥𝑘)

Then

𝑥𝑖 = ∑
𝑗1∈𝐴

𝑃(𝑖, 𝑗1) + ∑
𝑗1∉𝐴

∑
𝑗2∈𝐴

𝑃(𝑖, 𝑗1)𝑃(𝑗1, 𝑗2) +⋯

+ ∑
𝑗1∉𝐴,…,𝑗𝑛−1∉𝐴,𝑗𝑛∈𝐴

𝑃(𝑖, 𝑗1)…𝑃(𝑗𝑛−1, 𝑗𝑛)

+ ∑
𝑗1∉𝐴…,𝑗𝑛∉𝐴

𝑃(𝑖, 𝑗1)…𝑃(𝑗𝑛−1, 𝑗𝑛)𝑥𝑗𝑛

The last term is non-negative since 𝑥 is non-negative. So

𝑥𝑖 ≥ ℙ𝑖 (𝑇𝐴 = 1) + ℙ𝑖 (𝑇𝐴 = 2) +⋯+ ℙ𝑖 (𝑇𝐴 = 𝑛) ≥ ℙ𝑖 (𝑇𝐴 ≤ 𝑛) , ∀𝑛 ∈ ℕ

Now, note {𝑇𝐴 ≤ 𝑛} are a set of increasing functions of 𝑛, so by continuity of the probability measure,
the probability increases to that of the union, {𝑇𝐴 < ∞} = ℎ𝐴𝑖 .
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Example. Consider the Markov chain previously explored:

𝑃 =
⎛
⎜
⎜
⎝

1 0 0 0
1/2 0 1/2 0
0 1/2 0 1/2
0 0 0 1

⎞
⎟
⎟
⎠

Let 𝐴 = {4}. Then ℎ𝐴1 = 0 since there is no route from 1 to 4. From the theorem above, the system of
linear equations is

ℎ2 =
1
2ℎ1 +

1
2ℎ3

ℎ3 =
1
2ℎ4 +

1
2ℎ2

ℎ4 = 1
Hence,

ℎ2 =
2
3ℎ1 +

1
3

ℎ3 =
1
3ℎ1 +

2
3

So the minimal solution arises at ℎ1 = 0.
Example. Consider 𝐼 = ℕ, and

𝑃(𝑖, 𝑖 + 1) = 𝑝 ∈ (0, 1); 𝑃(𝑖, 𝑖 − 1) = 1 − 𝑝 = 𝑞
Then ℎ𝑖 = ℙ𝑖 (𝑇0 < ∞) hence ℎ0 = 1. The linear equations are

𝑝 ≠ 𝑞 ⟹ ℎ𝑖 = 𝑝ℎ𝑖+1 + 𝑞ℎ𝑖−1
𝑝(ℎ𝑖+1 − ℎ𝑖) = 𝑞(ℎ𝑖 − ℎ𝑖−1)

Let 𝑢𝑖 = ℎ𝑖 − ℎ𝑖−1. Then,
𝑞
𝑝𝑢𝑖 = ⋯ = (𝑞𝑝)

𝑖
𝑢1

Hence

ℎ𝑖 =
𝑖
∑
𝑗=1

(ℎ𝑗 − ℎ𝑗−1) + 1 = 1 − (1 − ℎ1)
𝑖
∑
𝑗=1

( 𝑞𝑝)
𝑗

The general solution is therefore

ℎ𝑖 = 𝑎 + 𝑏( 𝑞𝑝)
𝑖

If 𝑞 > 𝑝, then minimality of ℎ𝑖 implies 𝑏 = 0, 𝑎 = 1. Hence,
ℎ𝑖 = 1

Otherwise, if 𝑝 > 𝑞, minimality of ℎ𝑖 implies 𝑎 = 0, 𝑏 = 1. Hence,

ℎ𝑖 = (𝑞𝑝)
𝑖

If 𝑝 = 𝑞 = 1
2
, then

ℎ𝑖 =
1
2ℎ𝑖+1 +

1
2ℎ𝑖−1

Hence, ℎ𝑖 = 𝑎 + 𝑏𝑖. Minimality implies 𝑎 = 1 and 𝑏 = 0.
ℎ𝑖 = 1
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2.3 Birth and death chain
Consider a Markov chain on ℕ with

𝑃(𝑖, 𝑖 + 1) = 𝑝𝑖; 𝑃(𝑖, 𝑖 − 1) = 𝑞𝑖; ∀𝑖, 𝑝𝑖 + 𝑞𝑖 = 1

Now, consider ℎ𝑖 = ℙ𝑖 (𝑇0 < ∞). ℎ0 = 1, and ℎ𝑖 = 𝑝𝑖ℎ𝑖+1 + 𝑞𝑖ℎ𝑖−1.

𝑝𝑖(ℎ𝑖+1 − ℎ𝑖) = 𝑞𝑖(ℎ𝑖 − ℎ𝑖−1)

Let 𝑢𝑖 = ℎ𝑖 − ℎ𝑖−1 to give
𝑢𝑖+1 =

𝑞𝑖
𝑝𝑖
𝑢𝑖 = ∏𝑗 = 1𝑖 𝑞𝑖𝑝𝑖⏟⎵⎵⎵⏟⎵⎵⎵⏟

𝛾𝑖

𝑢𝑖

Then
ℎ𝑖 = 1 − (1 − ℎ1)(𝛾0 + 𝛾1 +⋯+ 𝛾𝑖−1)

where we let 𝛾0 = 1. Since ℎ𝑖 is the minimal non-negative solution,

ℎ𝑖 ≥ 0 ⟹ 1− ℎ1 ≤
1

∑𝑖−1
𝑗=0 𝛾𝑗

≤ 1
∑∞

𝑗=0 𝛾𝑗

By minimality, we must have exactly this bound. If∑∞
𝑗=0 𝛾𝑗 = ∞ then 1− ℎ1 = 0 ⟹ ℎ𝑖 = 1 for all

𝑖. If∑∞
𝑗=0 𝛾𝑗 < ∞ then

ℎ𝑖 =
∑∞

𝑗=𝑖 𝛾𝑗
∑∞

𝑗=0 𝛾𝑗

2.4 Mean hitting times
Recall that

𝑘𝐴𝑖 = 𝔼𝑖 [𝑇𝐴] = ∑
𝑛
𝑛ℙ𝑖 (𝑇𝐴 = 𝑛) +∞ℙ𝑖 (𝑇𝐴 = ∞)

Theorem. The vector (𝑘𝐴𝑖 )𝑖∈𝐼 is theminimal non-negative solution to the systemof equations

𝑘𝐴𝑖 = {0 if 𝑖 ∈ 𝐴
1 +∑𝑗∉𝐴 𝑃(𝑖, 𝑗)𝑘𝐴𝑗 if 𝑖 ∉ 𝐴

Proof. Suppose 𝑖 ∈ 𝐴. Then 𝑘𝑖 = 0. Now suppose 𝑖 ∉ 𝐴. Further, wemay assume thatℙ𝑖 (𝑇𝐴 = ∞) =
0, since if that probability is positive then the claim is trivial. Indeed, if ℙ𝑖 (𝑇𝐴 = ∞) > 0, then there
must exist 𝑗 such that 𝑃(𝑖, 𝑗) > 0 and ℙ𝑗 (𝑇𝐴 = ∞) > 0 since

ℙ𝑖 (𝑇𝐴 < ∞) = ∑
𝑗
𝑃(𝑖, 𝑗)ℎ𝐴𝑗 ⟹ 1−ℙ𝑖 (𝑇𝐴 = ∞) = ∑

𝑗
𝑃(𝑖, 𝑗)(1 − ℙ𝑗 (𝑇𝐴 = ∞))

Because 𝑃 is stochastic,
ℙ𝑖 (𝑇𝐴 = ∞) = ∑

𝑗
𝑃(𝑖, 𝑗)ℙ𝑗 (𝑇𝐴 = ∞)
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so since the left hand side is positive, there must exist 𝑗 with 𝑃(𝑖, 𝑗) > 0 and ℙ𝑗 (𝑇𝐴 = ∞ > 0). For
this 𝑗, we also have 𝑘𝐴𝑗 = ∞. Now we only need to compute∑𝑛 𝑛ℙ𝑖 (𝑇𝐴 = 𝑛).

ℙ𝑖 (𝑇𝐴 = 𝑛) = ℙ𝑖 (𝑋0 ∉ 𝐴,… , 𝑋𝑛−1 ∉ 𝐴, 𝑋𝑛 ∈ 𝐴)

Then, using the same method as the previous theorem,

𝑘𝐴𝑖 = ∑
𝑛
𝑛ℙ𝑖 (𝑇𝐴 = 𝑛) = 1 + ∑

𝑗∉𝐴
𝑃(𝑖, 𝑗)𝑘𝐴𝑗

It now suffices to prove minimality. Suppose (𝑥𝑖) is another solution to this system of equations. We
need to show that 𝑥𝑖 ≥ 𝑘𝐴𝑖 for all 𝑖. Suppose 𝑖 ∉ 𝐴. Then

𝑥𝑖 = 1 + ∑
𝑗∉𝐴

𝑃(𝑖, 𝑗)𝑥𝑗 = 1 + ∑
𝑗∉𝐴

𝑃(𝑖, 𝑗)(1 + ∑
𝑘∉𝐴

𝑃(𝑗, 𝑘)𝑥𝑘)

Expanding inductively,

𝑥𝑖 = 1 + ∑
𝑗1∉𝐴

𝑃(𝑖, 𝑗1) + ∑
𝑗1∉𝐴,𝑗2∉𝐴

𝑃(𝑖, 𝑗1)𝑃(𝑗1, 𝑗2) +⋯

+ ∑
𝑗1∉𝐴,…,𝑗𝑛∉𝐴

𝑃(𝑖, 𝑗1)…𝑃(𝑗𝑛−1, 𝑗𝑛) + ∑
𝑗1∉𝐴,…,𝑗𝑛+1∉𝐴

𝑃(𝑖, 𝑗)…𝑃(𝑗𝑛, 𝑗𝑛+1)𝑥𝑗𝑛+1

Since 𝑥 is non-negative, we can remove the last term and reach an inequality.

𝑥𝑖 ≥ 1 + ∑
𝑗1∉𝐴

𝑃(𝑖, 𝑗1) + ∑
𝑗1∉𝐴,𝑗2∉𝐴

𝑃(𝑖, 𝑗1)𝑃(𝑗1, 𝑗2) +⋯ + ∑
𝑗1∉𝐴,…,𝑗𝑛∉𝐴

𝑃(𝑖, 𝑗1)…𝑃(𝑗𝑛−1, 𝑗𝑛)

Hence

𝑥𝑖 ≥ 1 + ℙ𝑖 (𝑇𝐴 > 1) + ℙ𝑖 (𝑇𝐴 > 2) +⋯+ ℙ𝑖 (𝑇𝐴 > 𝑛)
= ℙ𝑖 (𝑇𝐴 > 0) + ℙ𝑖 (𝑇𝐴 > 1) + ℙ𝑖 (𝑇𝐴 > 2) +⋯+ ℙ𝑖 (𝑇𝐴 > 𝑛)

=
𝑛
∑
𝑘=0

ℙ𝑖 (𝑇𝐴 > 𝑘)

for all 𝑛. Hence, the limit of this sum is

𝑥𝑖 ≥
∞
∑
𝑘=0

ℙ𝑖 (𝑇𝐴 > 𝑘) = 𝔼𝑖 [𝑇𝐴]

which gives minimality as required.

2.5 Strong Markov property
The simple Markov property shows that, if 𝑋𝑚 = 𝑖,

𝑋𝑚+𝑛 ∼ Markov (𝛿𝑖, 𝑃)

and this is independent of 𝑋0,… , 𝑋𝑚. The strong Markov property will show that the same property
holds when we replace 𝑚 with a finite random ‘time’ variable. It is not the case that any random
variable will work; indeed, an 𝑚 very dependent on the Markov chain itself might not satisfy this
property.

13



Definition. A random time 𝑇 ∶ Ω → {0, 1,… }∪ {∞} is called a stopping time if, for all 𝑛 ∈ ℕ,
{𝑇 = 𝑛} depends only on 𝑋0,… , 𝑋𝑛.

Example. The hitting time 𝑇𝐴 = inf {𝑛 ≥ 0∶ 𝑋𝑛 ∈ 𝐴} is a stopping time. This is because we can
write

{𝑇𝐴 = 𝑛} = {𝑋0 ∉ 𝐴,… , 𝑋𝑛−1 ∉ 𝐴, 𝑋𝑛 ∈ 𝐴}

Example. The time 𝐿𝐴 = sup {𝑛 ≥ 0∶ 𝑋𝑛 ∈ 𝐴} is not a stopping time. This is because we need to
know information about the future behaviour of𝑋𝑛 in order to guarantee thatwe are at the supremum
of such events.

Theorem (Strong Markov Property). Let 𝑋 ∼ Markov (𝜆, 𝑃) and 𝑇 be a stopping time. Con-
ditional on 𝑇 < ∞ and 𝑋𝑇 = 𝑖,

(𝑋𝑛+𝑇)𝑛≥0 ∼ Markov (𝛿𝑖, 𝑃)

and this distribution is independent of 𝑋0,… , 𝑋𝑇 .

Proof. We need to show that, for all 𝑥0,… , 𝑥𝑛 and for all vectors 𝑤 of any length,

ℙ (𝑋𝑇 = 𝑥0,… , 𝑋𝑇+𝑛 = 𝑥𝑛, (𝑋0,… , 𝑋𝑇) = 𝑤 ∣ 𝑇 < ∞,𝑋𝑇 = 𝑖)
= 𝛿𝑖𝑥0𝑃(𝑥0, 𝑥1)…𝑃(𝑥𝑛−1, 𝑥𝑛)ℙ ((𝑋0,… , 𝑋𝑇) = 𝑤∶ 𝑇 < ∞,𝑋𝑇 = 𝑖)

Suppose that 𝑤 is of the form 𝑤 = (𝑤0,… ,𝑤𝑘). Then,

ℙ (𝑋𝑇 = 𝑋0,… , 𝑋𝑇+𝑛 = 𝑥𝑛, (𝑋0,… , 𝑋𝑇) = 𝑤 ∣ 𝑇 < ∞,𝑋𝑇 = 𝑖)

= ℙ (𝑋𝑘 = 𝑥0,… , 𝑋𝑘+𝑛 = 𝑥𝑛, (𝑋0,… , 𝑋𝑘) = 𝑤, 𝑇 = 𝑘, 𝑋𝑘 = 𝑖)
ℙ (𝑇 < ∞,𝑋𝑇 = 𝑖)

Now, since {𝑇 = 𝑘} depends only on 𝑋0,… , 𝑋𝑘, by the simple Markov property we have

ℙ (𝑋𝑘 = 𝑥0,… , 𝑋𝑘+𝑛 = 𝑥𝑛 ∣ (𝑋0,… , 𝑋𝑘) = 𝑤, 𝑇 = 𝑘, 𝑋𝑘 = 𝑖)
= ℙ (𝑋𝑘 = 𝑥0,… , 𝑋𝑘+𝑛 = 𝑥𝑛 ∣ 𝑋𝑘 = 𝑖) = 𝛿𝑖𝑥0𝑃(𝑥0, 𝑥1)…𝑃(𝑥𝑛−1, 𝑥𝑛)

Now,

ℙ (𝑋𝑇 = 𝑥0,… , 𝑋𝑇+𝑛 = 𝑥𝑛, (𝑋0,… , 𝑋𝑇) = 𝑤 ∣ 𝑇 < ∞,𝑋𝑇 = 𝑖)

=
𝛿𝑖𝑥0𝑃(𝑥0, 𝑥1)…𝑃(𝑥𝑛−1, 𝑥𝑛)ℙ ((𝑋0,… , 𝑋𝑘) = 𝑤∶ 𝑇 = 𝑘, 𝑋𝑘 = 𝑖)

ℙ (𝑇 < ∞,𝑋𝑇 = 𝑖)
= 𝛿𝑖𝑥0𝑃(𝑥0, 𝑥1)…𝑃(𝑥𝑛−1, 𝑥𝑛)ℙ ((𝑋0,… , 𝑋𝑇) = 𝑤∶ 𝑇 < ∞,𝑋𝑇 = 𝑖)

as required.

Example. Consider a simple randomwalk on 𝐼 = ℕ, where 𝑃(𝑥, 𝑥±1) = 1
2
for 𝑥 ≠ 0, and 𝑃(0, 1) = 1.

Now, let ℎ𝑖 = ℙ𝑖 (𝑇0 < ∞). We want to calculate ℎ1. We can write

ℎ1 =
1
2 +

1
2ℎ2
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but the system of recursion relations this generates is difficult to solve. Instead, we will write

ℎ2 = ℙ2 (𝑇0 < ∞)

Note that in order to hit 0, wemust first hit 1. So conditioning on the first hitting time of 1 being finite,
after this time the process starts again from 1. We can write 𝑇0 = 𝑇1 + 𝑇0, where 𝑇0 is independent
of 𝑇1, with the same distribution as 𝑇0 under ℙ1. Now,

ℎ2 = ℙ2 (𝑇0 < ∞,𝑇1 < ∞) = ℙ2 (𝑇0 < ∞ ∣ 𝑇1 < ∞)ℙ2 (𝑇2 < ∞)

Note that

ℙ2 (𝑇0 < ∞ ∣ 𝑇1 < ∞) = ℙ2 (𝑇1 + 𝑇0 < ∞ ∣ 𝑇1 < ∞)
= ℙ2 (𝑇0 < ∞ ∣ 𝑇1 < ∞)
= ℙ1 (𝑇0 < ∞)

But ℙ2 (𝑇1 < ∞) = ℙ1 (𝑇0 < ∞), so

ℎ2 = ℙ2 (𝑇1 < ∞)ℙ1 (𝑇0 < ∞)

By translation invariance,
ℎ2 = ℎ21

In general, therefore, for any 𝑛 ∈ ℕ,
ℎ𝑛 = ℎ𝑛1

3 Transience and recurrence
3.1 Definitions

Definition. Let 𝑋 be a Markov chain, and let 𝑖 ∈ 𝐼. 𝑖 is called recurrent if

ℙ𝑖 (𝑋𝑛 = 𝑖 for infinitely many 𝑛) = 1

𝑖 is called transient if
ℙ𝑖 (𝑋𝑛 = 𝑖 for infinitely many 𝑛) = 0

We will prove that any 𝑖 is either recurrent or transient.

3.2 Probability of visits

Definition. Let 𝑇(0)𝑖 = 0 and inductively define

𝑇(𝑟+1)𝑖 = inf {𝑛 ≥ 𝑇(𝑟)𝑖 + 1∶ 𝑋𝑛 = 𝑖}

We write 𝑇(1)𝑖 = 𝑇𝑖, called the first return time (or first passage time) to 𝑖. Further, let

𝑓𝑖 = ℙ𝑖 (𝑇𝑖 < ∞)
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and let the number of visits to 𝑖 be defined by

𝑉 𝑖 =
∞
∑
𝑛=0

1(𝑋𝑛 = 𝑖)

Lemma. For all 𝑟 ∈ ℕ, 𝑖 ∈ 𝐼, ℙ𝑖 (𝑉 𝑖 > 𝑟) = 𝑓𝑟𝑖 .

Proof. For 𝑟 = 0, this is trivially true. Now, suppose that the statement is true for 𝑟, and we will show
that it is true for 𝑟 + 1.

ℙ𝑖 (𝑉 𝑖 > 𝑟 + 1) = ℙ𝑖 (𝑇(𝑟+1)𝑖 < ∞)

= ℙ𝑖 (𝑇(𝑟+1)𝑖 < ∞,𝑇(𝑟)𝑖 < ∞)

= ℙ𝑖 (𝑇(𝑟+1)𝑖 < ∞ ∣ 𝑇(𝑟)𝑖 < ∞)ℙ𝑖 (𝑇(𝑟)𝑖 < ∞)

= ℙ𝑖 (𝑇(𝑟+1)𝑖 < ∞ ∣ 𝑇(𝑟)𝑖 < ∞)ℙ𝑖 (𝑉 𝑖 > 𝑟)

= ℙ𝑖 (𝑇(𝑟+1)𝑖 < ∞ ∣ 𝑇(𝑟)𝑖 < ∞)𝑓𝑟𝑖

By the strong Markov property applied to the stopping time 𝑇(𝑟)𝑖 ,

= ℙ𝑖 (𝑇𝑖 < ∞)𝑓𝑟𝑖
= 𝑓𝑖𝑓𝑟𝑖
= 𝑓𝑟+1𝑖

3.3 Duality of transience and recurrence

Theorem. Let 𝑋 be a Markov chain with transition matrix 𝑃, and let 𝑖 ∈ 𝐼. Then, exactly
one of the following is true.
(i) If ℙ𝑖 (𝑇𝑖 < ∞) = 1, then 𝑖 is recurrent, and

∞
∑
𝑛=0

𝑝𝑖𝑖(𝑛) = ∞

(ii) If ℙ𝑖 (𝑇𝑖 < ∞) < 1, then 𝑖 is transient, and
∞
∑
𝑛=0

𝑝𝑖𝑖(𝑛) < ∞
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Proof.

𝔼𝑖 [𝑉 𝑖] = 𝔼𝑖 [
∞
∑
𝑛=0

1(𝑋𝑛 = 𝑖)]

=
∞
∑
𝑛=0

𝔼𝑖 [1(𝑋𝑛 = 𝑖)]

=
∞
∑
𝑛=0

ℙ𝑖 (𝑋𝑛 = 𝑖)

=
∞
∑
𝑛=0

𝑝𝑖𝑖(𝑛)

First, suppose ℙ𝑖 (𝑇𝑖 < ∞) = 1. Then, for all 𝑟, ℙ𝑖 (𝑉 𝑖 > 𝑟) = 1, so ℙ𝑖 (𝑉 𝑖 = ∞) = 1. Hence, 𝑖 is
recurrent. Further, 𝔼𝑖 [𝑉 𝑖] = ∞ so∑∞

𝑛=0 𝑝𝑖𝑖(𝑛) = ∞.

Now, if 𝑓𝑖 < 1, by the previous lemmawe see that 𝔼𝑖 [𝑉 𝑖] =
1

1−𝑓𝑖
< ∞ hence ℙ𝑖 (𝑉 𝑖 < ∞) = 1. Thus,

𝑖 is transient. Further, 𝔼𝑖 [𝑉 𝑖] < ∞ so∑∞
𝑛=0 𝑝𝑖𝑖(𝑛) < ∞.

Theorem. Let 𝑥, 𝑦 be states that communicate. Then, either 𝑥 and 𝑦 are both recurrent, or
they are both transient.

Proof. Suppose 𝑥 is recurrent. Then, since 𝑥 and 𝑦 communicate, ∃𝑚, ℓ ∈ ℕ such that

𝑝𝑥𝑦(𝑚) > 0; 𝑝𝑦𝑥(ℓ) > 0

Note,∑𝑛 𝑝𝑥𝑥(𝑛) = ∞. Then,

𝑝𝑦𝑦(𝑛) ≥ ∑
𝑛
𝑝𝑦𝑦(𝑛 + 𝑚 + ℓ) ≥ ∑

𝑛
𝑝𝑦𝑥(ℓ)𝑝𝑥𝑥(𝑛)𝑝𝑥𝑦(𝑚) ≥ 𝑝𝑦𝑥(ℓ)𝑝𝑥𝑦(𝑚)𝑝𝑥𝑥(𝑛) = ∞

Corollary. Either all states in a communicating class are recurrent or they are all transient.

3.4 Recurrent communicating classes

Theorem. Any recurrent communicating class is closed.

Proof. Suppose a communicating class 𝐶 is not closed. Then there exists 𝑥 ∈ 𝐶 and 𝑦 ∉ 𝐶 such
that 𝑥 → 𝑦. Let 𝑚 be such that 𝑝𝑥𝑦(𝑚) > 0. If, starting from 𝑥, we hit 𝑦 which is outside the
communicating class, then we can never return to the communicating class (including 𝑥) again. In
particular,

ℙ𝑥 (𝑉𝑥 < ∞) ≥ ℙ𝑥 (𝑋𝑚 = 𝑦) = 𝑝𝑥𝑦(𝑚) > 0
Hence 𝑥 is not recurrent, which is a contradiction.
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Theorem. Any finite closed communicating class is recurrent.

Proof. Let 𝐶 be a finite closed communicating class. Let 𝑥 ∈ 𝐶. Then, by the pigeonhole principle,
there must exist 𝑦 ∈ 𝐶 such that

ℙ𝑥 (𝑋𝑛 = 𝑦 for infinitely many 𝑛) > 0
Since 𝑥 and 𝑦 communicate, there exists𝑚 ∈ ℕ such that 𝑝𝑦𝑥(𝑚) > 0. Now,

ℙ𝑦 (𝑋𝑚 = 𝑦 for infinitely many 𝑛) ≥ ℙ𝑥 (𝑋𝑚 = 𝑥, 𝑋𝑛 = 𝑦 for infinitely many 𝑛 ≥ 𝑚)
= ℙ𝑥 (𝑋𝑛 = 𝑦 for infinitely many 𝑛 ≥ 𝑚 ∣ 𝑋𝑚 = 𝑥)ℙ𝑦 (𝑋𝑚 = 𝑥)
= ℙ𝑥 (𝑋𝑛 = 𝑦 for infinitely many 𝑛)ℙ𝑦 (𝑋𝑚 = 𝑥) > 0

Thus 𝑦 is recurrent. Since recurrence is a class property, 𝐶 is recurrent.

Theorem. Let 𝑃 be irreducible and recurrent. Then, for all 𝑥, 𝑦,

ℙ𝑥 (𝑇𝑦 < ∞) = 1

Proof. Since 𝑦 is recurrent,
1 = ℙ𝑦 (𝑋𝑛 = 𝑦 for infinitely many 𝑛)

Let𝑚 such that 𝑝𝑦𝑥(𝑚) > 0. Now,

1 = ℙ𝑦 (𝑋𝑛 = 𝑦 infinitely often)
= ∑

𝑧
ℙ𝑦 (𝑋𝑚 = 𝑧, 𝑋𝑛 = 𝑦 for infinitely many 𝑛 ≥ 𝑚)

= ∑
𝑧
ℙ𝑦 (𝑋𝑛 = 𝑦 for infinitely many 𝑛 ≥ 𝑚 ∣ 𝑋𝑚 = 𝑧)ℙ𝑦 (𝑋𝑚 = 𝑧)

= ∑
𝑧
ℙ𝑧 (𝑋𝑛 = 𝑦 for infinitely many 𝑛)ℙ𝑦 (𝑋𝑚 = 𝑧)

By the strong Markov property,

= ∑
𝑧
ℙ𝑧 (𝑇𝑦 < ∞)ℙ𝑦 (𝑋𝑛 = 𝑦 for infinitely many 𝑛)ℙ𝑦 (𝑋𝑚 = 𝑧)

Since 𝑦 is recurrent,
= ∑

𝑧
ℙ𝑧 (𝑇𝑦 < ∞)ℙ𝑦 (𝑋𝑚 = 𝑧)

= ∑
𝑧
ℙ𝑧 (𝑇𝑦 < ∞)𝑝𝑦𝑧(𝑚)

Since 𝑝𝑦𝑧(𝑚) > 0 and∑𝑧 𝑝𝑦𝑧(𝑚) = 1, ℙ𝑥 (𝑇𝑦 < ∞) = 1.

4 Pólya’s recurrence theorem
4.1 Statement of theorem
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Definition. The simple random walk in ℤ𝑑 is the Markov chain defined by

𝑃(𝑥, 𝑥 + 𝑒𝑖) = 𝑃(𝑥, 𝑥 − 𝑒𝑖) =
1
2𝑑

where 𝑒𝑖 is the standard basis.

Theorem. The simple random walk in ℤ𝑑 is recurrent for 𝑑 = 1, 𝑑 = 2 and transient for
𝑑 ≥ 3.

4.2 One-dimensional proof
Consider 𝑑 = 1. In this case, 𝑃(𝑥, 𝑥 + 1) = 𝑃(𝑥, 𝑥 − 1) = 1

2
. We will show that ∑𝑛 𝑝00(𝑛) =

∞, then recurrence will hold. We have 𝑝00(𝑛) = ℙ0 (𝑋𝑛 = 0). Note that if 𝑛 is odd, 𝑋𝑛 is odd, so
ℙ0 (𝑋2𝑘+1 = 0) = 0. So we will consider only even numbers. In order to be back at zero after 2𝑛
steps, we must make 𝑛 steps ‘up’ away from the origin and make 𝑛 steps ‘down’. There are (2𝑛

𝑛
) ways

of choosing which steps are ‘up’ steps. The probability of a specific choice of 𝑛 ‘up’ and 𝑛 ‘down’ is
( 1
2
)
2𝑛
. Hence,

𝑝00(2𝑛) = (2𝑛𝑛 )(
1
2)

2𝑛
= (2𝑛)!
(𝑛!)2 ⋅

1
22𝑛

Recall Stirling’s formula:
𝑛! ∼ 𝑛𝑛𝑒−𝑛√2𝜋𝑛

Substituting in,
(2𝑛)!
(𝑛!)2 ⋅

1
22𝑛 ∼ 1

√𝜋𝑛
= 𝐴
√𝑛

for 𝐴 > 0; the precise value of 𝐴 is unnecessary. Hence, for some large 𝑛0, ∀𝑛 ≥ 𝑛0, 𝑝00(2𝑛) ≥
𝐴
2√𝑛

.
So

∑
𝑛
𝑝00(2𝑛) ≥ ∑

𝑛≥𝑛0

𝐴
2√𝑛

= ∞

Now, let us consider the asymmetric random walk for 𝑑 = 1, defined by 𝑃(𝑥, 𝑥 + 1) = 𝑝 and 𝑃(𝑥, 𝑥 −
1) = 𝑞. We can compute 𝑝00(2𝑛) = (2𝑛

𝑛
)(𝑝𝑞)𝑛 ∼ 𝐴 (4𝑝𝑞)𝑛

√𝑛
. If 𝑝 ≠ 𝑞, then 4𝑝𝑞 < 1 so by the geometric

series we have
∑
𝑛≥𝑛0

𝑝00(2𝑛) ≤ ∑
𝑛≥𝑛0

2𝐴(4𝑝𝑞)𝑛 < ∞

So the asymmetric random walk is transient.

4.3 Two-dimensional proof
Now, let us consider the simple random walk on ℤ2. For each point (𝑥, 𝑦) ∈ ℤ2, we will project this
coordinate onto the lines 𝑦 = 𝑥 and 𝑦 = −𝑥. In particular, we define

𝑓(𝑥, 𝑦) = (𝑥 + 𝑦
√2

, 𝑥 − 𝑦
√2

)
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If 𝑋𝑛 is the simple random walk on ℤ2, we consider 𝑓(𝑋𝑛) = (𝑋+
𝑛 , 𝑋−

𝑛 ).

Lemma. (𝑋+
𝑛 ), (𝑋−

𝑛 ) are independent simple random walks on 1
√2
ℤ.

Proof. We can write 𝑋𝑛 as

𝑋𝑛 =
𝑛
∑
𝑖=1

𝜉𝑖

where 𝜉𝑖 are independent and identically distributed by

ℙ (𝜉1 = (1, 0)) = ℙ (𝜉1 = (−1, 0)) = ℙ (𝜉1 = (0, 1)) = ℙ (𝜉1 = (0, −1)) = 1
4

and we write 𝜉𝑖 = (𝜉1𝑖 , 𝜉2𝑖 ). We can then see that

𝑋+
𝑛 =

𝑛
∑
𝑖=1

𝜉1𝑖 + 𝜉2𝑖
√2

; 𝑋−
𝑛 =

𝑛
∑
𝑖=1

𝜉1𝑖 − 𝜉2𝑖
√2

We can check that (𝑋+
𝑛 ), (𝑋−

𝑛 ) are simple random walks on 1
√2
ℤ. It now suffices to prove the inde-

pendence property. Note that it suffices to show that 𝜉1𝑖 + 𝜉21 and 𝜉1𝑖 − 𝜉2𝑖 are independent, since the
𝑋+
𝑛 , 𝑋−

𝑛 are sums of independent and identically distributed copies of these random variables. We
can simply enumerate all possible values of 𝜉1𝑖 , 𝜉2𝑖 and the result follows.

We know that 𝑝00(𝑛) = 0 if 𝑛 is odd. We want to find 𝑝00(2𝑛) = ℙ0 (𝑋2𝑛 = 0). Note, 𝑋𝑛 = 0 ⟺
𝑋+
𝑛 = 𝑋−

𝑛 = 0. Using the lemma above,

ℙ0 (𝑋2𝑛 = 0) = ℙ0 (𝑋+
𝑛 = 0, 𝑋−

𝑛 = 0) = ℙ0 (𝑋+
𝑛 = 0)ℙ0 (𝑋−

𝑛 = 0) ∼ 𝐴
√𝑛

𝐴
√𝑛

= 𝐴2
𝑛

Hence,
∑
𝑛≥𝑛0

ℙ0 (𝑋2𝑛 = 0) ≥ ∑
𝑛≥𝑛0

= 𝐴2
2𝑛 = ∞

which gives recurrence as required.

4.4 Three-dimensional proof
Consider 𝑑 = 3. Again, 𝑝00(𝑛) = 0 if 𝑛 odd. In order to return to zero after 2𝑛 steps, we must make
𝑖 steps both up and down, 𝑗 steps north and south, and 𝑘 steps east and west, with 𝑖 + 𝑗 + 𝑘 = 𝑛.
There are ( 2𝑛

𝑖,𝑖,𝑗,𝑗,𝑘,𝑘
) ways of choosing which steps in each direction we take. Each combination has

probability ( 1
6
)
2𝑛
of happening. Hence,

𝑝00(2𝑛) = ∑
𝑖,𝑗,𝑘≥0,𝑖+𝑗+𝑘=𝑛

( 2𝑛
𝑖, 𝑖, 𝑗, 𝑗, 𝑘, 𝑘)(

1
6)

2𝑛
= (2𝑛𝑛 )(

1
2)

2𝑛
∑

𝑖,𝑗,𝑘≥0,𝑖+𝑗+𝑘=𝑛
( 𝑛
𝑖, 𝑗, 𝑘)

2

(13)
2𝑛
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The sum on the right hand side is the total probability of the number of ways of placing 𝑛 balls in
three boxes uniformly at random, so equals one. Suppose 𝑛 = 3𝑚. Then we can show that ( 𝑛

𝑖,𝑗,𝑘
) ≤

( 𝑛
𝑚,𝑚,𝑚

).

𝑝00(6𝑚) ≥ (2𝑛𝑛 )(
1
2)

2𝑛
( 𝑛
𝑚,𝑚,𝑚)(

1
3)

𝑛

Applying Stirling’s formula again, we have

𝑝00(6𝑚) ∼
𝐴
𝑛3/2

It is sufficient to consider 𝑛 = 3𝑚:

𝑝00(6𝑚) ≥
1
62𝑝00(6𝑚 − 2); 𝑝00(6𝑚) ≥

1
64𝑝00(6𝑚 − 4)

Hence
∑
𝑛
𝑝00(𝑛) < ∞

So the Markov chain is transient.

5 Invariant distributions
5.1 Invariant distributions
Let 𝐼 be a countable set. (𝜆𝑖) is a probability distribution if 𝜆𝑖 ≥ 0 and∑𝑖 𝜆𝑖 = 1.

Example. Consider aMarkov chainwith two elements, and𝑃(1, 1) = 𝑃(1, 2) = 𝑃(2, 1) = 𝑃(2, 2) = 1
2
.

As 𝑛 → ∞, it is easy to see here that both states should be equally likely to occur. In fact, 𝑝11(𝑛) =
𝑝12(𝑛) = 𝑝21(𝑛) = 𝑝22(𝑛) =

1
2
. In this case, the row vector ( 1

2
, 1
2
) is an equilibrium probability

distribution.

In general, we want to find a distribution 𝜋 such that if 𝑋0 ∼ 𝜋, we have 𝑋𝑛 ∼ 𝜋 for all 𝑛. Suppose
𝑋0 ∼ 𝜋. Then,

ℙ (𝑋1 = 𝑗) = ∑
𝑖∈𝐼

ℙ (𝑋0 = 𝑖, 𝑋1 = 𝑗)

= ∑
𝑖∈𝐼

ℙ (𝑋1 = 𝑗 ∣ 𝑋0 = 𝑖) ℙ (𝑋0 = 𝑖)

= ∑
𝑖∈𝐼

𝜋(𝑖)𝑃(𝑖, 𝑗)

Since we want 𝑋1 ∼ 𝜋, we must have 𝜋(𝑗) = ∑𝑖∈𝐼 𝜋(𝑖)𝑃(𝑖, 𝑗) for all 𝑗. In matrix form, 𝜋 = 𝜋𝑃.

Definition. An invariant (or equilibrium, or stationary) distribution for 𝑃 is a probability
distribution 𝜋 such that 𝜋 = 𝜋𝑃.

Theorem. Let 𝜋 be invariant. Then, if 𝑋0 ∼ 𝜋, for all 𝑛 we have 𝑋𝑛 ∼ 𝜋.

Proof. If 𝑋0 ∼ 𝜋, then 𝑋𝑛 ∼ 𝜋𝑃𝑛 = 𝜋.
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Theorem. Suppose 𝐼 is finite, and there exists 𝑖 ∈ 𝐼 such that 𝑝𝑖𝑗(𝑛) → 𝜋𝑗 as 𝑛 → ∞ for all
𝑗. Then 𝜋 = (𝜋𝑗) is an invariant distribution.

Proof. First, we check that the sum of 𝜋𝑗 is one. Since 𝐼 is finite, we can interchange the sum and
limit.

∑
𝑗∈𝐼

𝜋𝑗 = ∑
𝑗∈𝐼

lim
𝑛→∞

𝑝𝑖𝑗(𝑛) = lim
𝑛→∞

∑
𝑗∈𝐼

𝑝𝑖𝑗(𝑛) = lim
𝑛→∞

1 = 1

So 𝜋𝑗 is a probability distribution. We now must show 𝜋 = 𝜋𝑃.

𝜋𝑗 = lim
𝑛→∞

𝑝𝑖𝑗(𝑛) = lim
𝑛→∞

∑
𝑘∈𝐼

𝑝𝑖𝑘(𝑛 − 1)𝑃(𝑘, 𝑗) = ∑
𝑘∈𝐼

lim
𝑛→∞

𝑝𝑖𝑘(𝑛 − 1)𝑃(𝑘, 𝑗) = ∑
𝑘∈𝐼

𝜋𝑘𝑃(𝑘, 𝑗)

as required.

Remark. If 𝐼 is infinite, the theorem does not necessarily hold. For example, let 𝐼 = ℤ, 𝑋 be a simple
symmetric random walk. We know that 𝑝00(𝑛) ∼

𝑐
√𝑛
, and 𝑝0𝑥(𝑛) → 0 as 𝑛 → ∞ for all 𝑥 ∈ ℤ. So

zero is given by the limit but this is not a distribution.

5.2 Conditions for unique invariant distribution
In this section, we restrict our analysis to irreducible chains. If 𝑃 is finite and irreducible, then 1 is
an eigenvalue, since 𝑃 is stochastic. The corresponding right eigenvector is (1,… , 1)⊺. We know that
1 is an eigenvalue of 𝑃⊺, so 𝑃⊺ has a right eigenvector corresponding to the eigenvalue of 1, which
can be transposed to find a left eigenvector for 𝑃. It is possible to show using the Perron–Frobenius
theorem that the eigenvector has non-negative components since 𝑃 is irreducible. Since 𝐼 is finite,
we can normalise the left eigenvector such that its components sum to 1, giving an invariant distri-
bution.

Definition. Let 𝑘 ∈ 𝐼. Recall that 𝑇𝑘 is the first return time to 𝑘. For every 𝑖 ∈ 𝐼, we define

𝜈𝑘(𝑖) = 𝔼𝑘 [
𝑇𝑘−1
∑
𝑛=0

1(𝑋𝑛 = 𝑖)]

which is the expected number of times that we hit 𝑖 while on an excursion from 𝑘 (returning
back to 𝑘).

Theorem. If 𝑃 is irreducible and recurrent, then 𝜈𝑘 is an invariant measure: 𝜈𝑘 = 𝜈𝑘𝑃.
Further, 𝜈𝑘 satisfies 𝜈𝑘(𝑘) = 1 and in general 𝜈𝑘(𝑖) ∈ (0,∞) for all 𝑖.

Proof. It is clear from the definition that 𝜈𝑘(𝑘) = 1, since we must hit 𝑘 exactly once on the outset,
and we do not count the return. We will now prove that 𝜈𝑘 = 𝜈𝑘𝑃. 𝑇𝑘 < ∞ with probability 1 by
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recurrence, and 𝑋𝑇𝑘 = 𝑘. Then,

𝜈𝑘(𝑖) = 𝔼𝑘 [
𝑇𝑘−1
∑
𝑛=0

1(𝑋𝑛 = 𝑖)]

= 𝔼𝑘 [
𝑇𝑘
∑
𝑛=1

1(𝑋𝑛 = 𝑖)]

= 𝔼𝑘 [
∞
∑
𝑛=1

1(𝑋𝑛 = 𝑖, 𝑇𝑘 ≥ 𝑛)]

=
∞
∑
𝑛=1

𝔼𝑘 [1(𝑋𝑛 = 𝑖, 𝑇𝑘 ≥ 𝑛)]

=
∞
∑
𝑛=1

ℙ𝑘 (𝑋𝑛 = 𝑖, 𝑇𝑘 ≥ 𝑛)

=
∞
∑
𝑛=1

∑
𝑗∈𝐼

ℙ𝑘 (𝑋𝑛 = 𝑖, 𝑋𝑛−1 = 𝑗, 𝑇𝑘 ≥ 𝑛)

=
∞
∑
𝑛=1

∑
𝑗∈𝐼

ℙ𝑘 (𝑋𝑛 = 𝑖 ∣ 𝑋𝑛−1 = 𝑗, 𝑇𝑘 ≥ 𝑛)ℙ𝑘 (𝑋𝑛−1 = 𝑗, 𝑇𝑘 ≥ 𝑛)

𝑇𝑘 is a stopping time, so the event {𝑇𝑘 ≥ 𝑛} = {𝑇𝑘 ≤ 𝑛 − 1}𝑐 depends only on values we already know
or don’t care about. Hence, we can remove it.

=
∞
∑
𝑛=1

∑
𝑗∈𝐼

ℙ𝑘 (𝑋𝑛 = 𝑖 ∣ 𝑋𝑛−1 = 𝑗)ℙ𝑘 (𝑋𝑛−1 = 𝑗, 𝑇𝑘 ≥ 𝑛)

=
∞
∑
𝑛=1

∑
𝑗∈𝐼

𝑃(𝑗, 𝑖)ℙ𝑘 (𝑋𝑛−1 = 𝑗, 𝑇𝑘 ≥ 𝑛)

= ∑
𝑗∈𝐼

∞
∑
𝑛=1

𝑃(𝑗, 𝑖)ℙ𝑘 (𝑋𝑛−1 = 𝑗, 𝑇𝑘 ≥ 𝑛)

= ∑
𝑗∈𝐼

∞
∑
𝑛=0

𝑃(𝑗, 𝑖)ℙ𝑘 (𝑋𝑛 = 𝑗, 𝑇𝑘 ≥ 𝑛 + 1)

= ∑
𝑗∈𝐼

𝑃(𝑗, 𝑖)𝔼𝑘 [
𝑇𝑘−1
∑
𝑛=0

1(𝑋𝑛 = 𝑗)]

= ∑
𝑗∈𝐼

𝑃(𝑗, 𝑖)𝜈𝑘(𝑗)

Hence 𝜈𝑘 = 𝜈𝑘𝑃. We must show 𝜈𝑘 > 0. 𝑃 is irreducible, hence there exists 𝑛 such that 𝑝𝑘𝑖(𝑛) > 0.
Then

𝜈𝑘(𝑖) = ∑
𝑗∈𝐼

𝜈𝑘(𝑗)𝑃𝑛(𝑗, 𝑖) ≥ 𝜈𝑘(𝑘)𝑝𝑘𝑖(𝑛) > 0

To show 𝜈𝑘 < ∞, let𝑚 such that 𝑝𝑖𝑘(𝑚) > 0.

1 = 𝜈𝑘(𝑘) = ∑
𝑗∈𝐼

𝜈𝑘(𝑗)𝑃𝑚(𝑗, 𝑘) ≥ 𝜈𝑘(𝑖)𝑃𝑚(𝑖, 𝑘) ⟹ 𝜈𝑘(𝑖) ≤
1

𝑃𝑚(𝑖, 𝑘) < ∞
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5.3 Uniqueness of invariant distributions

Theorem. Let 𝑃 be irreducible. Let 𝜆 be an invariant measure (𝜆 = 𝜆𝑃) with 𝜆𝑘 = 1. Then
𝜆 ≥ 𝜈𝑘. If 𝑃 is recurrent, then 𝜆 = 𝜈𝑘.

Proof. Let 𝜆 be an invariant measure with 𝜆𝑘 = 1. Then,

𝜆𝑖 = ∑
𝑗1
𝜆𝑗1𝑃(𝑗1, 𝑖)

= 𝑃(𝑘, 𝑖) + ∑
𝑗1≠𝑘

𝜆𝑗1𝑃(𝑗1, 𝑖)

= 𝑃(𝑘, 𝑖) + ∑
𝑗1≠𝑘

𝑃(𝑘, 𝑗1)𝑃(𝑗1, 𝑖) + ∑
𝑗1,𝑗2≠𝑘

𝑃(𝑗2, 𝑗1)𝑃(𝑗1, 𝑖)𝜆𝑗2

= 𝑃(𝑘, 𝑖) + ∑
𝑗1≠𝑘

𝑃(𝑘, 𝑗1)𝑃(𝑗1, 𝑖) + …

+ ∑
𝑗1,…𝑗𝑛−1≠𝑘

𝑃(𝑘, 𝑗𝑛−1)𝑃(𝑗𝑛−1, 𝑗𝑛−2)…𝑃(𝑗2, 𝑗1)𝑃(𝑗1𝑖) + ∑
𝑗1,…,𝑗𝑛≠𝑘

𝑃(𝑗𝑛, 𝑗𝑛−1)…𝑃(𝑗𝑛, 𝑖)𝜆𝑗𝑛
⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟

≥0

≥ ℙ𝑘 (𝑋1 = 𝑖, 𝑇𝑘 ≥ 1) + ℙ𝑘 (𝑋2 = 𝑖, 𝑇𝑘 ≥ 2) +⋯+ ℙ𝑘 (𝑋𝑛 = 𝑖, 𝑇𝑘 ≥ 𝑛)

≥
𝑛
∑
𝑖=1

ℙ𝑘 (𝑋𝑛 = 𝑖, 𝑇𝑘 ≥ 𝑛)

→ 𝜈𝑘(𝑖)

as 𝑛 → ∞. Now, suppose 𝑃 is recurrent, so 𝜈𝑘 is invariant. We define 𝜇 = 𝜆 − 𝜈𝑘. Then 𝜇 ≥ 0 is an
invariant measure satisfying 𝜇𝑘 = 0. We need to show 𝜇𝑖 = 0 for all 𝑖. By invariance, for all 𝑛,

𝜇𝑘 = ∑
𝑗
𝜇𝑗𝑃𝑛(𝑗, 𝑘)

By irreducibility, we can choose 𝑛 such that 𝑃𝑛(𝑖, 𝑘) > 0.

𝜇𝑘 ≥ 𝑃𝑛(𝑖, 𝑘)𝜇𝑖 ⟹ 𝜇𝑖 = 0

Remark. In the irreducible and recurrent case, all invariant measures are equal up to a scaling factor.

Let 𝑘 be fixed. Then, 𝜈𝑘 is invariant, and unique in the above sense. If ∑𝑖 𝜈𝑘(𝑖) is finite, we can
take

𝜋𝑖 =
𝜈𝑘(𝑖)

∑𝑗 𝜈𝑘(𝑗)
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which is an invariant distribution. The sum as required is

∑
𝑖∈𝐼

𝜈𝑘(𝑖) = ∑
𝑖∈𝐼

𝔼𝑘 [
𝑇𝑘−1
∑
𝑛=0

1(𝑋𝑛 = 𝑖)]

= 𝔼𝑘 [
𝑇𝑘−1
∑
𝑛=0

∑
𝑖∈𝐼

1(𝑋𝑛 = 𝑖)]

= 𝔼𝑘 [
𝑇𝑘−1
∑
𝑛=0

1]

= 𝔼𝑘 [𝑇𝑘]

Sowe require that the expectation of the first return time is finite. If𝔼𝑘 [𝑇𝑘] is finite, we can normalise
𝜈𝑘 into a (unique) invariant distribution.

5.4 Positive and null recurrence

Definition. Let 𝑘 ∈ 𝐼 be a recurrent state (so ℙ𝑘 (𝑇𝑘 < ∞) = 1). 𝑘 is positive recurrent if
𝔼𝑘 [𝑇𝑘] < ∞. 𝑘 is called null recurrent otherwise; so if 𝔼𝑘 [𝑇𝑘] = ∞.

Theorem. Let 𝑃 be irreducible. Then the following are equivalent.
(i) every state is positive recurrent;
(ii) some state is positive recurrent;
(iii) 𝑃 has an invariant distribution 𝜋.
If any of these conditions hold, we have

𝜋𝑖 =
1

𝔼𝑖 [𝑇𝑖]

for all 𝑖.

Proof. First, (i) clearly implies (ii). We now show (ii) implies (iii). Let 𝑘 be the a positive recurrent
state, and consider 𝜈𝑘. Since 𝑘 is recurrent, we know that 𝜈𝑘 is an invariant measure. Then,

∑
𝑖∈𝐼

𝜈𝑘(𝑖) = 𝔼𝑘 [𝑇𝑘] < ∞

since 𝑘 is positive recurrent. If we define

𝜋𝑖 =
𝜈𝑘(𝑖)
𝔼𝑘 [𝑇𝑘]

we have that 𝜋 is an invariant distribution.
Now we show that (iii) implies (i). Let 𝑘 be a state, which we will prove is positive recurrent. First,
we show that 𝜋𝑘 > 0. There exists 𝑖 such that 𝜋𝑖 > 0, and we will choose 𝑛 such that 𝑃𝑛(𝑖, 𝑘) > 0 by
irreducibility. Then,

𝜋𝑘 = ∑
𝑗
𝜋𝑗𝑃𝑛(𝑗, 𝑘) ≥ 𝜋𝑖𝑃𝑛(𝑖, 𝑘) > 0
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Now, we define 𝜆𝑖 =
𝜋𝑖
𝜋𝑘
. This is an invariant measure with 𝜆𝑘 = 1. So from the above theorem,

𝜆 ≥ 𝜈𝑘. Now, since 𝜋 is a distribution,

𝔼𝑘 [𝑇𝑘] = ∑
𝑖
𝜈𝑘(𝑖) ≤ ∑

𝑖
𝜆𝑖 = ∑

𝑖

𝜋𝑖
𝜋𝑘

= 1
𝜋𝑘

∑
𝑖
𝜋𝑖 =

1
𝜋𝑘

Hence 𝔼𝑘 [𝑇𝑘] < ∞, so 𝑘 is positive recurrent.
For the last part, we know that 𝑃 is recurrent and 𝜆𝑖 =

𝜋𝑖
𝜋𝑘

is an invariant measure with 𝜆𝑘 = 1. From
the previous theorem, 𝜆𝑖 = 𝜈𝑘(𝑖). Hence,

𝜋𝑖
𝜋𝑘

= 𝜈𝑘(𝑖). Taking the sum over all 𝑖,

1
𝜋𝑘

= 𝔼𝑘 [𝑇𝑘]

which proves the last part.

Corollary. If 𝑃 is irreducible and 𝜋 is an invariant distribution, then for all 𝑥, 𝑦, the expected
number of visits to 𝑦 starting from 𝑥 is given by

𝜈𝑥(𝑦) =
𝜋(𝑦)
𝜋(𝑥)

Example. Consider the simple symmetric randomwalk on ℤ. We have proven that this is recurrent.
Suppose 𝜋 is an invariant measure. So 𝜋 = 𝜋𝑃, giving

𝜋𝑖 =
1
2𝜋𝑖−1 +

1
2𝜋𝑖+1

So 𝜋𝑖 = 1 is an invariant measure. So all invariant measures are multiples of this. But since this is
not normalisable, there exists no invariant distribution. So this walk is null recurrent.

Remark. If 𝐼 is finite, we can always normalise the distribution, since we have only a finite sum.
Remark. Consider a simple random walk on ℤ3. This is transient. However, 𝜆𝑖 = 1 for all 𝑖 ∈ ℤ3,
this is clearly an invariant measure, so existence of an invariant measure does not imply recurrence.

Example. Consider a random walk on ℤ with transition probabilities 𝑃(𝑖, 𝑖 + 1) = 𝑝, 𝑃(𝑖, 𝑖 − 1) = 𝑞
such that 1 > 𝑝 > 𝑞 > 0 and 𝑝+𝑞 = 1. This random walk is transient. Suppose there is an invariant
distribution 𝜋, so 𝜋 = 𝜋𝑃. Then

𝜋𝑖 = 𝜋𝑖−1𝑞 + 𝜋𝑖+1𝑝
Solving the recursion gives

𝜋𝑖 = 𝑎 + 𝑏(𝑝𝑞 )
𝑖

This is not unique up to a multiplicative constant, due to the constant 𝑎.
Example. Consider a random walk on ℤ+ with transition probabilities 𝑃(𝑖, 𝑖 + 1) = 𝑝, 𝑃(𝑖, 𝑖 − 1) =
𝑞, 𝑃(0, 0) = 𝑞, and 𝑝 < 𝑞 so there is a drift towards zero. We can check that this is recurrent. We will
look for a solution to 𝜋 = 𝜋𝑃.

𝜋0 = 𝑞𝜋0 + 𝑞𝜋1; 𝜋𝑖 = 𝑝𝜋𝑖−1 + 𝑞𝜋𝑖+1
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Solving this system yields

𝜋1 =
𝑝
𝑞𝜋0; 𝜋𝑖 = (𝑝𝑞 )

𝑖
𝜋0

This is unique up to a multiplicative constant. Since 𝑝 < 𝑞, we can normalise this to reach an
invariant distribution. Let 𝜋0 = 1 − 𝑝

𝑞
. Then,

𝜋𝑖 = (𝑝𝑞 )
𝑖
(1 − 𝑝

𝑞 )

Hence the walk is positive recurrent.

5.5 Time reversibility

Theorem. Let 𝑃 be irreducible, and 𝜋 be an invariant distribution. Let 𝑁 ∈ ℕ and let 𝑌𝑛 =
𝑋𝑁−𝑛 for 0 ≤ 𝑛 ≤ 𝑁. If 𝑋0 ∼ 𝜋, then (𝑌𝑛)0≤𝑛≤𝑁 is a Markov chain with transition matrix

̂𝑃(𝑥, 𝑦) = 𝜋(𝑦)
𝜋(𝑥)𝑃(𝑦, 𝑥)

and has invariant distribution 𝜋, so 𝜋 ̂𝑃 = 𝜋. Further, ̂𝑃 is also irreducible.

Proof. First, note that ̂𝑃 is stochastic. Since 𝜋 = 𝜋𝑃,

∑
𝑦

̂𝑃(𝑥, 𝑦) = ∑
𝑦

𝜋(𝑦)𝑃(𝑦, 𝑥)
𝜋(𝑥) = 𝜋(𝑥)

𝜋(𝑥) = 1

Now we show 𝑌 is a Markov chain.

ℙ (𝑌0 = 𝑦0,… , 𝑌 𝑁 = 𝑦𝑁) = ℙ (𝑋𝑁 = 𝑦0,… , 𝑋0 = 𝑦𝑛)
= 𝜋(𝑦𝑁)𝑃(𝑦𝑁 , 𝑦𝑁−1)…𝑃(𝑦1, 𝑦0)
= ̂𝑃(𝑦𝑁−1, 𝑦𝑁)𝜋(𝑦𝑁−1)𝑃(𝑦𝑁−1, 𝑦𝑁−2)…𝑃(𝑦1, 𝑦0)
= …
= 𝜋(𝑦0) ̂𝑃(𝑦0, 𝑦1)…𝑃(𝑦𝑁−1, 𝑦𝑁)

Hence 𝑌 ∼ Markov (𝜋, ̂𝑃). Now, we must show 𝜋 = 𝜋 ̂𝑃.

∑
𝑥
𝜋(𝑥) ̂𝑃(𝑥, 𝑦) = ∑

𝑥
𝜋(𝑥)𝑃(𝑦, 𝑥)𝜋(𝑦)𝜋(𝑥) = 𝜋(𝑦)∑

𝑥
𝑃(𝑦, 𝑥) = 𝜋(𝑦)

Hence 𝜋 is invariant for ̂𝑃. Now we show ̂𝑃 is irreducible. Let 𝑥, 𝑦 ∈ 𝐼. Then there exists 𝑥 =
𝑥0, 𝑥1,… , 𝑥𝑘 = 𝑦 such that

𝑃(𝑥0, 𝑥1)…𝑃(𝑥𝑘−1, 𝑥𝑘) > 0
Hence

̂𝑃(𝑥𝑘, 𝑥𝑘−1)… ̂𝑃(𝑥1, 𝑥0) = 𝜋(𝑥0)𝑃(𝑥0, 𝑥1)…
𝑃(𝑥𝑘−1, 𝑥𝑘)
𝜋(𝑥𝑘)

> 0

So ̂𝑃 is irreducible.
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Definition. AMarkov chain𝑋 with transitionmatrix 𝑃 and invariant distribution𝜋 is called
reversible or time reversible if ̂𝑃 = 𝑃. Equivalently, for all 𝑥, 𝑦,

𝜋(𝑥)𝑃(𝑥, 𝑦) = 𝜋(𝑦)𝑃(𝑦, 𝑥)

These equations are called the detailed balance equations. Equivalently, 𝑋 is reversible if, for
any fixed 𝑁 ∈ ℕ, 𝑋0 ∼ 𝜋 implies

(𝑋0,… , 𝑋𝑁)
𝑑= (𝑋𝑁 ,… , 𝑋0)

which means that they are equal in distribution.

Remark. Intuitively, 𝑋 is reversible if, starting from 𝜋, we cannot tell if we are watching 𝑋 evolve
forwards in time or backwards in time.

Lemma. Let 𝑃 be a transition matrix, and 𝜇 a distribution satisfying the detailed balance
equations.

𝜇(𝑥)𝑃(𝑥, 𝑦) = 𝜇(𝑦)𝑃(𝑦, 𝑥)
Then 𝜇 is invariant for 𝑃.

Proof.
∑
𝑥
𝜇(𝑥)𝑃(𝑥, 𝑦) = ∑

𝑥
𝜇(𝑦)𝑃(𝑦, 𝑥) = 𝜇(𝑦)

Remark. If we can find a solution to the detailed balance equations which is a distribution, it must
be an invariant distribution. It is simpler to solve this set of equations than to solve 𝜋 = 𝜋𝑃. If there
is no solution to the detailed balance equations, then even if there exists an invariant distribution,
the Markov chain is not reversible.

Example. Consider a randomwalk on the integers modulo 𝑛, with 𝑃(𝑖, 𝑖 +1) = 2
3
and 𝑃(𝑖, 𝑖 −1) = 1

3
.

We can check𝜋𝑖 =
1
𝑛
is an invariant distribution. This does not satisfy the detailed balance equations.

Hence the Markov chain is not reversible.

Example. Consider a randomwalk on {0,… , 𝑛 − 1}with 𝑃(𝑖, 𝑖 + 1) = 2
3
, 𝑃(𝑖, 𝑖 − 1) = 1

3
and 𝑃(0, 0) =

1
3
, 𝑃(𝑛 − 1, 𝑛 − 1) = 2

3
. This is an ‘opened up’ version of the previous example; the circle is ‘cut’ open

into a line at zero. The detailed balance equations give

𝜋𝑖𝑃(𝑖, 𝑖 + 1) = 𝜋𝑖+1𝑃(𝑖 + 1, 𝑖) ⟹ 𝜋𝑖 = 𝑘2𝑖

We can normalise this by setting 𝑘 such that 𝜋 is a distribution. Hence the chain is reversible.
Example. Consider a random walk on a graph. Let 𝐺 = (𝑉, 𝐸) be a finite connected graph, where
𝑉 is a set of vertices and 𝐸 is a set of edges. The simple random walk on 𝐺 has the transition matrix

𝑃(𝑥, 𝑦) = {
1

𝑑(𝑥)
(𝑥, 𝑦) ∈ 𝐸

0 (𝑥, 𝑦) ∉ 𝐸
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where 𝑑(𝑥) = ∑𝑦 1((𝑥, 𝑦) ∈ 𝐸) is the degree of 𝑥. The detailed balance equations give, for (𝑥, 𝑦) ∈ 𝐸,

𝜋(𝑥)𝑃(𝑥, 𝑦) = 𝜋(𝑦)𝑃(𝑦, 𝑥) ⟹ 𝜋(𝑥)
𝑑(𝑥) =

𝜋(𝑦)
𝑑(𝑦)

Let 𝜋(𝑥) ∝ 𝑑(𝑥). Then this is an invariant distribution with normalising constant 1
∑𝑦 𝑑(𝑦)

= 1
2|𝐸|

. So

the simple random walk on a finite connected graph is always reversible.

5.6 Aperiodicity

Definition. Let 𝑃 be a transition matrix. For all 𝑖, we write

𝑑𝑖 = gcd {𝑛 ≥ 1∶ 𝑃𝑛(𝑖, 𝑖) > 0}

This is called the period of 𝑖. If 𝑑𝑖 = 1, we say that 𝑖 is aperiodic.

Lemma. 𝑑𝑖 = 1 if and only if 𝑃𝑛(𝑖, 𝑖) > 0 for all 𝑛 sufficiently large. More rigorously, there
exists 𝑛0 ∈ ℕ such that for all 𝑛 > 𝑛0, 𝑃𝑛(𝑖, 𝑖) > 0.

Proof. First, if 𝑃𝑛(𝑖, 𝑖) > 0 for all 𝑛 sufficiently large, the greatest common divisor of all sufficiently
large numbers is one so this direction is trivial. Conversely, let

𝐷(𝑖) = {𝑛 ≥ 1∶ 𝑃𝑛(𝑖, 𝑖) > 0}

Observe that if 𝑎, 𝑏 ∈ 𝐷(𝑖) then 𝑎 + 𝑏 ∈ 𝐷(𝑖).
We claim that 𝐷(𝑖) contains two consecutive integers. Suppose that it does not, so for all 𝑎, 𝑏 ∈ 𝐷(𝑖)
we must have |𝑎 − 𝑏| > 1. Let 𝑟 be the minimal distance between two integers in 𝐷(𝑖), so 𝑟 ≥ 2. Let
𝑛,𝑚 be numbers in 𝐷(𝑖) separated by 𝑟, so 𝑛 = 𝑚+ 𝑟. Then we can show there exists 𝑘 ∈ 𝐷(𝑖)which
can bewritten as ℓ𝑟+𝑠with 0 < 𝑠 < 𝑟. Indeed, if there were not such a 𝑘, wewould have 𝑑𝑖 = 1, since
all elements would be multiples of 𝑟. Now, let 𝑎 = (ℓ + 1)𝑛 and 𝑏 = (ℓ + 1)𝑚 + 𝑘. Then 𝑎, 𝑏 ∈ 𝐷(𝑖),
and 𝑎−𝑏 = 𝑟− 𝑠 < 𝑟. This is a contradiction, since we have found two points in 𝐷(𝑖)with a distance
smaller than the minimal distance.

Now, let 𝑛1, 𝑛1 + 1 be elements of 𝐷(𝑖). Then

{𝑥𝑛1 + 𝑦(𝑛1 + 1)∶ 𝑥, 𝑦 ∈ ℕ} ⊆ 𝐷(𝑖)

It is then easy to check that 𝐷(𝑖) ⊇ {𝑛∶ 𝑛 ≥ 𝑛21}.

Lemma. Suppose 𝑃 is irreducible and 𝑖 is aperiodic. Then for all 𝑗 ∈ 𝐼, 𝑗 is aperiodic. Hence,
aperiodicity is a class property.

Proof. There exist 𝑛,𝑚 such that 𝑃𝑛(𝑖, 𝑗) > 0, 𝑃𝑚(𝑖, 𝑗) > 0. Hence,

𝑃𝑛+𝑚+𝑟(𝑗, 𝑗) ≥ 𝑃𝑛(𝑗, 𝑖)𝑃𝑟(𝑖, 𝑖)𝑃𝑛(𝑖, 𝑗)

The first and last terms are positive, and the middle term is positive for sufficiently large 𝑟.
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5.7 Positive recurrent limiting behaviour

Theorem. Let 𝑃 be irreducible and aperiodic with invariant distribution 𝜋, and further let
𝑋 ∼ Markov (𝜆, 𝑃). Then for all 𝑦 ∈ 𝐼, ℙ (𝑋𝑛 = 𝑦) → 𝜋𝑦 as 𝑛 → ∞. Taking 𝜆 = 𝛿𝑥, we get
𝑝𝑥𝑦(𝑛) → 𝜋(𝑦) as 𝑛 → ∞.

Proof. This proof will use the idea of ‘coupling’ of Markov chains. Let 𝑌 ∼ Markov (𝜋, 𝑃) be inde-
pendent of𝑋 . Consider the pair ((𝑋𝑛, 𝑌𝑛))𝑛≥0. This is aMarkov chain on the state space 𝐼×𝐼, because
𝑋 and 𝑌 are independent. The initial distribution is 𝜆 × 𝜋. We have ℙ ((𝑋0, 𝑌0) = (𝑥, 𝑦)) = 𝜆(𝑥)𝜋(𝑦)
and transition matrix 𝑃 given by

𝑃((𝑥, 𝑦), (𝑥′, 𝑦′)) = 𝑃(𝑥, 𝑥′)𝑃(𝑦, 𝑦′)

This product chain has invariant distribution 𝜋 given by

𝜋(𝑥, 𝑦) = 𝜋(𝑥)𝜋(𝑦)

Let 𝑎 ∈ 𝐼, and let 𝑇 = inf𝑛 ≥ 1∶ (𝑋𝑛, 𝑌𝑛) = (𝑎, 𝑎) be the hitting time of (𝑎, 𝑎).
First, we want to show that ℙ (𝑇 < ∞) = 1. We show that 𝑃 is irreducible. Let (𝑥, 𝑦), (𝑥′, 𝑦′) ∈ 𝐼 × 𝐼.
By irreducibility of 𝑃, there exist ℓ,𝑚 such that 𝑃ℓ(𝑥, 𝑥′) > 0 and 𝑃𝑚(𝑦, 𝑦′) > 0. Now,

𝑃ℓ+𝑚+𝑛((𝑥, 𝑦), (𝑥′, 𝑦′)) = 𝑃ℓ+𝑚+𝑛(𝑥, 𝑥′)𝑃ℓ+𝑚+𝑛(𝑦, 𝑦′)

Note that
𝑃ℓ+𝑚+𝑛(𝑥, 𝑥′) ≥ 𝑃ℓ(𝑥, 𝑥′)𝑃𝑚+𝑛(𝑥′, 𝑥′)

By taking𝑛 large, by aperiodicity the product is positive. Therefore, for sufficiently large𝑛, 𝑃𝑛(𝑥, 𝑥′) >
0. So 𝑃 is irreducible, and there exists an invariant distribution 𝜋. Hence 𝑃 is positive recurrent. So
ℙ (𝑇 < ∞) = 1.
Now, we define

𝑍𝑛 = {𝑋𝑛 𝑛 < 𝑇
𝑌𝑛 𝑛 ≥ 𝑇

We wish to show 𝑍 = (𝑍𝑛)𝑛 ≥ 0 has the same distribution as 𝑋 , that is, 𝑍 ∼ Markov (𝜆, 𝑃). Now,

ℙ (𝑍0 = 𝑥) = ℙ (𝑋0 = 𝑥) = 𝜆(𝑥)

so the initial distribution is the same. Now, we will check that 𝑍 evolves with transitionmatrix 𝑃. Let
𝐴 = {𝑍𝑛−1 = 𝑧𝑛−1,… , 𝑍0 = 𝑧0}. We need to show ℙ (𝑍𝑛+1 = 𝑦 ∣ 𝑍𝑛 = 𝑥,𝐴) = 𝑃(𝑥, 𝑦).

ℙ (𝑍𝑛+1 = 𝑦 ∣ 𝑍𝑛 = 𝑥,𝐴) = ℙ (𝑍𝑛+1 = 𝑦, 𝑇 > 𝑛 ∣ 𝑍𝑛 = 𝑥,𝐴)
+ ℙ (𝑍𝑛+1 = 𝑦, 𝑇 ≤ 𝑛 ∣ 𝑍𝑛 = 𝑥,𝐴)
= ℙ (𝑋𝑛+1 = 𝑦 ∣ 𝑇 > 𝑛, 𝑍𝑛 = 𝑥,𝐴)ℙ (𝑇 > 𝑛 ∣ 𝑍𝑛 = 𝑥,𝐴)
+ ℙ (𝑌𝑛 + 1 = 𝑦 ∣ 𝑇 ≤ 𝑛, 𝑍𝑛 = 𝑥,𝐴)ℙ (𝑇 ≤ 𝑛 ∣ 𝑍𝑛 = 𝑥,𝐴)

Now,

ℙ (𝑋𝑛+1 = 𝑦 ∣ 𝑇 > 𝑛, 𝑍𝑛 = 𝑥,𝐴)
= ∑

𝑧
ℙ (𝑋𝑛+1 = 𝑦 ∣ 𝑇 > 𝑛, 𝑍𝑛 = 𝑥, 𝑌𝑛 = 𝑧, 𝐴)ℙ (𝑌𝑛 = 𝑧 ∣ 𝑇 > 𝑛, 𝑍 − 𝑛 = 𝑥, 𝐴)
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Note, {𝑇 > 𝑛} depends only on (𝑋0, 𝑌0),… , (𝑋𝑛, 𝑌𝑛) since it is the complement of {𝑇 ≤ 𝑛}, so it is a
stopping time. Hence,

ℙ (𝑋𝑛+1 = 𝑦 ∣ 𝑇 > 𝑛, 𝑍𝑛 = 𝑥,𝐴) = ∑
𝑧
𝑃(𝑥, 𝑦)ℙ (𝑌𝑛 = 𝑧 ∣ 𝑇 > 𝑛, 𝑍 − 𝑛 = 𝑥, 𝐴) = 𝑃(𝑥, 𝑦)

Similarly,
ℙ (𝑌𝑛+1 = 𝑦 ∣ 𝑇 > 𝑛, 𝑍𝑛 = 𝑥,𝐴) = 𝑃(𝑥, 𝑦)

Hence,

ℙ (𝑍𝑛+1 = 𝑦 ∣ 𝑍𝑛 = 𝑥,𝐴) = 𝑃(𝑥, 𝑦)ℙ (𝑇 > 𝑛 ∣ 𝑍𝑛 = 𝑥,𝐴) + 𝑃(𝑥, 𝑦)ℙ (𝑇 ≤ 𝑛 ∣ 𝑍𝑛 = 𝑥,𝐴)
= 𝑃(𝑥, 𝑦)[ℙ (𝑇 > 𝑛 ∣ 𝑍𝑛 = 𝑥,𝐴) + ℙ (𝑇 ≤ 𝑛 ∣ 𝑍𝑛 = 𝑥,𝐴)]
= 𝑃(𝑥, 𝑦)

as required. Hence 𝑍 ∼ Markov (𝜆, 𝑃). Thus,

|ℙ (𝑋𝑛 = 𝑦) − 𝜋(𝑦)| = |ℙ (𝑍𝑛 = 𝑦) − ℙ (𝑌𝑛 = 𝑦)|
= |ℙ (𝑋𝑛 = 𝑦, 𝑛 < 𝑇) + ℙ (𝑌𝑛 = 𝑦, 𝑛 ≥ 𝑇)
− 𝑌𝑛 = 𝑦, 𝑛 < 𝑇 − ℙ (𝑌𝑛 = 𝑦, 𝑛 ≥ 𝑇)|
= |ℙ (𝑋𝑛 = 𝑦, 𝑛 < 𝑇) − ℙ (𝑌𝑛 = 𝑦, 𝑛 < 𝑇)|
≤ ℙ (𝑛 < 𝑇)

As 𝑛 → ∞, this upper bound becomes zero, since ℙ (𝑇 < ∞) = 1.

5.8 Null recurrent limiting behaviour

Theorem. Let 𝑃 be irreducible, aperiodic, and null recurrent. Then, for all 𝑥, 𝑦,

lim
𝑛→∞

𝑃𝑛(𝑥, 𝑦) = 0

Proof. Let 𝑃((𝑥, 𝑦), (𝑥′, 𝑦′)) = 𝑃(𝑥, 𝑥′)𝑃(𝑦, 𝑦′) as before. We have shown previously that 𝑃 is also
irreducible. Suppose first that 𝑃 is transient. Then,

∑
𝑛
𝑃𝑛((𝑥, 𝑦), (𝑥, 𝑦)) < ∞

This sum is equal to
∑
𝑛
(𝑃𝑛(𝑥, 𝑦))2 < ∞

Hence,
𝑃𝑛(𝑥, 𝑦) → 0

Now, conversely suppose that 𝑃 is recurrent. Let 𝑦 ∈ 𝐼. Define as before

𝜈𝑦(𝑥) = 𝔼𝑦 [
𝑇𝑦−1
∑
𝑖=0

1(𝑋𝑖 = 𝑥)]
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This measure is invariant for 𝑃 since 𝑃 is recurrent. Since 𝑃 is null recurrent in particular, 𝔼𝑦 [𝑇𝑦] =
∞. Hence,

𝜈𝑦(𝐼) = ∑
𝑥∈𝐼

𝜈𝑦(𝑥) = 𝔼𝑦 [
𝑇𝑦−1
∑
𝑖=0

1] = 𝔼𝑦 [𝑇𝑦] = ∞

Because 𝜈𝑦(𝐼) is infinite, for all𝑀 > 0 there exists a finite set 𝐴 ⊂ 𝐼 with 𝜈𝑦(𝐴) > 𝑀. Now, we define
a probability measure

𝜇(𝑧) =
𝜈𝑦(𝑧)
𝜈𝑦(𝐴)

1(𝑧 ∈ 𝐴)

Now, for all 𝑧 ∈ 𝐼,

𝜇𝑃𝑛(𝑧) = ∑
𝑥
𝜇(𝑥)𝑃𝑛(𝑥, 𝑧) = ∑

𝑥

𝜈𝑦(𝑥)
𝜈𝑦(𝐴)

1(𝑧 ∈ 𝐴)𝑃𝑛(𝑥, 𝑧) ≤ 1
𝜈𝑦(𝐴)

∑
𝑥
𝜈𝑦(𝑥)𝑃𝑛(𝑥, 𝑧)

Since 𝜈𝑦 is invariant,

𝜇𝑃𝑛(𝑧) ≤ 1
𝜈𝑦(𝐴)

𝜈𝑦(𝑧) =
𝜈𝑦(𝑧)
𝜈𝑦(𝐴)

Let (𝑋, 𝑌) be a Markov chain with matrix 𝑃, started according to 𝜇 × 𝛿𝑥, so

ℙ (𝑋0 = 𝑧, 𝑌0 = 𝑤) = 𝜇(𝑧)𝛿𝑥(𝑤)

Now, let
𝑇 = inf {𝑛 ≥ 1∶ (𝑋𝑛, 𝑌𝑛) = (𝑥, 𝑥)}

Since 𝑃 is recurrent, 𝑇 is finite with probability 1. Let

𝑍𝑛 = {𝑋𝑛 𝑛 < 𝑇
𝑌𝑛 𝑛 ≥ 𝑇

We have already proven that 𝑍 is a Markov chain with transition matrix 𝑃, started according to 𝜇; it
has the same distribution as 𝑋 . Hence,

ℙ (𝑍𝑛 = 𝑦) = 𝜇𝑃𝑛(𝑦) ≤
𝜈𝑦(𝑦)
𝜈𝑦(𝐴)

= 1
𝜈𝑦(𝐴)

Note,
ℙ𝑥 (𝑌𝑛 = 𝑦) ≤ ℙ𝑥 (𝑌𝑛 = 𝑦, 𝑛 ≥ 𝑇) + ℙ𝑥 (𝑇 > 𝑛) = ℙ𝑥 (𝑍𝑛 = 𝑦) + ℙ𝑥 (𝑇 > 𝑛)

Hence,
lim sup
𝑛→∞

ℙ𝑥 (𝑌𝑛 = 𝑦) ≤ 1
𝑀 + 0 = 1

𝑀
Since this is true for all𝑀, 𝑃𝑛(𝑥, 𝑦) → 0 as 𝑛 → ∞.
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