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1 Vector spaces and linear dependence

1.1 Vector spaces

Definition. Let F be an arbitrary field. An F-vector space is an abelian group (V/, +) equipped
with a function
FXV -V, (4v)e- v
such that
(1) A(Ul + U2) = /101 + AUZ
(11) (ﬂ'l arF lz)v = /111) arF ﬂ.zU
(iif) A(uv) = (Apv
(iv) lv=v
Such a vector space may also be called a vector space over F.

Example. Let X be a set, and define RX = {f: X — R}. Then RX is an R-vector space, where
(i + L)) = fi(xX) + fo(x).

Example. Define M,, ,,,(F) to be the set of n X m F-valued matrices. This is an F-vector space, where
the sum of matrices is computed elementwise.

Remark. The axioms of scalar multiplication imply that Vv € V,0rv = 0y,.
1.2 Subspaces

Definition. Let V be an F-vector space. The subset U C V is a vector subspace of V, denoted
Uu<v,if
G o, eU
() u,u, €U = u;+u, €U
(iii) Lbuy e FXxU = AueU
Conditions (ii) and (iii) are equivalent to

V/ll,lz (S F,Vul,uz (S U,/llul +/12u2 eU

This means that U is stable by addition and scalar multiplication.

Proposition. If V is an F-vector space, and U < V, then U is an F-vector space.

Example. Let V = R® be the space of functions R — R. The set C(R) of continuous real functions
is a subspace of V. The set P of polynomials is a subspace of C(R).

Example. Consider the subset of R® such that x; + x, + x3 = t for some real ¢. This is a subspace
for t = 0 only, since no other ¢ values yield the origin as a member of the subset.

Proposition. Let V be an F-vector space. Let U, W < V. Then U n W is a subspace of V.



Proof. First, note 0y, € U,0;, € W = 0y, € U N W. Now, consider stability:
/11,12 S F, Ul,Uz S Uﬂ W - Alvl +/‘le2 S U,/11v1/1202 (S W

Hence stability holds. O

1.3 Sum of subspaces

Remark. The union of two subspaces is not, in general, a subspace. For instance, consider R, iR C C.
Their union does not span the space; for example, 1 + i ¢ R U iR.

Definition. Let V be an F-vector space. Let U, W < V. The sum U + W is defined to be the
set
U+W={u+w: uelU,we W}

Proposition. U + W is a subspace of V.

Proof. First, note Oy, = Oy + Oy = Oy.. Then, for 4;,4, € F,andu € U,w € W,
Au+hw=u+w eU+W

sinceu’ € U,w’ € W. We can decompose a vector from U+W intoits U and W components. Adding
these components independently (noting that V' is abelian) yields the requirements of a subspace. [J

Proposition. The sum U + W is the smallest subspace of V' that contains both U and W.

1.4 Quotients

Definition. Let V be an F-vector space. Let U < V. The quotient space V/U is the abelian
group V/U equipped with the scalar multiplication function

FXV/U->V/U;, (Av+U)—w+U

Proposition. V/U is an F-vector space.

Proof. We must check that the multiplication operation is well-defined. Indeed, suppose v, + U =
v, + U. Then,

V-V, EU = A(v1—v)eU = A+ U=,+U€V/U



1.5 Span

Definition. Let V be an F-vector space. Let S C V. We define the span of S, written (S), as
the set of finite linear combinations of elements of S. In particular,

(S) = {Z AsUs . A € F, v € S, only finitely many nonzero AS}

seS

By convention, we specify
(@) = {0}

so that all spans are subspaces.

Remark. (S) is the smallest vector subspace of V' containing S.

Bl
e ff) e

Example. Let V = R3, and

Then we can check that

Example. Let V = R". We define

N
Il

0
where the 1 is in the ith position. Then V = ((e;)1<i<n)-
Example. Let X be a set, and RX = {f : X — R}. Thenlet S, : X — R be defined by

1 y=x
0 otherwise

Sx(y) = {
Then, ((Sx)xex) = { f € RX: f has finite support},where the support of fisdefinedtobe{x : f(x) # 0}.
1.6 Dimensionality

Definition. Let V be an F-vector space. Let S C V. We say that S spans V if (S) = V. If S
spans V, we say that S is a generating family of V.



Definition. Let V be an F-vector space. V is finite-dimensional if it is spanned by a finite
set.

Example. Consider the set V' = P[x] which is the set of polynomials on R. Further, consider
V, = P,[x] which is the subspace with degree less than or equal to n. Then V}, is spanned by
{1, x, X2, ... ,x”}, so V, is finite-dimensional. Conversely, V is infinite-dimensional; there is no finite
set S such that (S) = V.

1.7 Linear independence

Definition. We say that v, ..., v, € V are linearly independent if, for A; € F,

n
D=0 = Vi,4;=0

i=1
Definition. Similarly, vy, ...,v,, € V are linearly dependent if

n
A EF, ) 4v;=0,3i,2; #0

i=1

Equivalently, one of the vectors can be written as a linear combination of the remaining ones.

Remark. If (v;)1<i<p are linearly independent, then

Vie{l,...,n}v; #0

1.8 Bases

Definition. S C V is a basis of V' if
@ )=V
(i) Sis a linearly independent set
So, a basis is a linearly independent (also known as free) generating family.

Example. Let V = R". The canonical basis (e;) is a basis since we can show that they are free and
span V.

Example. Let V = C, considered as a C-vector space. Then {1} is a basis. If V is a R-vector space,
{1,i} is a basis.

Example. Consider again P[x]. Then S = {x" : n € N}is a basis of P.

Lemma. Let V be an F-vector space. Then, (v, ..., U,) is a basis of V if and only if any vector
v € V has a unique decomposition

n
L= Z/‘livi,Vl‘,Ai eEF

i=1



In the above definition, we call (44, ..., 4,,) the coordinates of v in the basis (vy, ..., Uy,).

Proof. Suppose (v, ..., U,,) is a basis of V. Then Vv € V there exists 4, ... , 4,, € F such that

n
V= Z /‘i.iUi
i=1
So there exists a tuple of A values. Suppose two such 4 tuples exist. Then
n n n
v=2 40 =) Aoy = Y (4 —ADu; =0 = 4 =1
i=1 i=1 i=1

The converse is left as an exercise. O

Lemma. If ({vq,...,0,}) = V, then some subset of this set is a basis of V.

Proof. If (vy, ..., U,,) are linearly independent, this is a basis. Otherwise, one of the vectors can be
written as a linear combination of the others. So, up to reordering,

Up € ({1, s Uy =V

So we have removed a vector from this set and preserved the span. By induction, we will eventually
reach a basis. O

1.9 Steinitz exchange lemma

Theorem. Let V be a finite dimensional F-vector space. Let (v, ..., V,,) be linearly inde-
pendent, and (wy, ..., w,) which spans V. Then,

(i) m < n;and

(ii) up to reordering, (vy, ..., Uyy> Wipg15 --- Wy) Spans V.

Proof. Suppose that we have replaced ¢ > 0 of the w;.

(U150 s Vg Wops oo W)y =V

If m = ¢, we are done. Otherwise, ¢ < m. Then, vyy; € V = (Uy,...,Up, Weyq, ... Wy,) Hence
Up41 can be expressed as a linear combination of the generating set. Since the (v;);<;<y, are linearly
independent (free), one of the coefficients on the w; are nonzero. In particular, up to reordering we
can express Wy, as a linear combination of vy, ..., Vg1, Wets, ... , W, Inductively, we may replace
m of the w terms with v terms. Since we have replaced m vectors, necessarily m < n. O

1.10 Consequences of Steinitz exchange lemma

Corollary. Let V be a finite-dimensional F-vector space. Then, any two bases of V have the
same number of vectors. This number is called the dimension of V, dimg V.



Proof. Suppose the two bases are (v, ..., v,) and (wy, ..., W,,). Then, (v, ..., v, ) isfree and (wy, ... , w,,)
is generating, so the Steinitz exchange lemma shows that n < m. Vice versa, m < n. Hence
m=n. O

Corollary. Let V be an F-vector space with finite dimension n. Then,
(i) Any independent set of vectors has at most n elements, with equality if and only if it is
a basis.
(i) Any spanning set of vectors has at least n elements, with equality if and only if it is a
basis.

Proof. Exercise. 0
1.11 Dimensionality of sums

Proposition. Let V be an F-vector space. Let U, W be subspaces of V. If U, W are finite-
dimensional, then so is U + W, with

Proof. Consider a basis (vy, ..., ;) of the intersection. Extend this basis to a basis
(U1 eee s Uy Ugy e s Upy) OF U (U1, +.0 5 Uy Wy oen s W) Of W

Then, we will show that (vq, ..., Uy, Uy, .o, Upy, W1, ..., W) IS @ basis of dimp(U + W), which will
conclude the proof. Indeed, since any component of U + W can be decomposed as a sum of some
element of U and some element of W, we can add their decompositions together. Now we must show



that this new basis is free.

n m k
Z a;v; + Z Biu; + Z yiw; =
i=1 i=1 i=1
n m k
a;u; + Zﬁiui = Z Viw;
i=1 i=1 i=1
U ew

k
Zyiwi eunw
i=1

k n
Z Viw; = Z 8;v;
i=1 i

n m
D@+ 8o + D, Biuy =0
i=1 i=1

Bi=0,a; = =5;
n k
Z a;V; + Z Yyiw; = 0
i=1 i=1
a;=0,y7;=0
O
Proposition. If V is a finite-dimensional F-vector space, and U < V, then U and V/U are
also finite-dimensional. In particular, dimg V = dimp U + dimg(V/U).
Proof. Let (uy, ..., u,) be a basis of U. We extend this basis to a basis of V, giving
(Ugs ee s Upy Wpps ev s Wy)
We claim that (wyyq + U, ..., w, + U) is a basis of the vector space V/U. O

Remark. If V is an F-vector space, and U < V, then we say U is a proper subspace if U # V. Then if
U is proper, then dimp U < dimp V and dimg(V/U) > 0 because (V/U) # @.

1.12 Direct sums

Definition. Let V be an F-vector space and U, W be subspaces of V. Wesay thatV = U@ W,
read as the direct sum of U and W, if Vv € V,3lu € U,3lw € W,u + w = v. We say that W
is a direct complement of U in V; there is no uniqueness of such a complement.

Lemma. Let V be an F-vector space, and U, W < V. Then the following statements are
equivalent.
Hv=Uuew

10



(i) V=U+WandUnW = {0}
(iii) For any basis B; of U and B, of W, B; U B, is a basis of V

Proof. First, we show that (ii) implies (i). If V = U + W, then certainly Vv € V,3u € U,3Jw €
W,v = u + w, so it suffices to show uniqueness. Note, u; + wy; = U, + W, = U; — Uy = Wy — Wy.
The left hand side is an element of U and the right hand side is an element of W, so they must be the
Zero vector; U; = Uy, Wy = W,.

Now, we show (i) implies (iii). Suppose B, is a basis of U and B, is a basis of W. Let B = B; U B,.
First, note that B is a generating family of U + W. Now we must show that B is free.

Z Ayu+ Z Apw =10

UEB; weB,

eU ew

Hence both sums must be zero. Since By, B, are bases, all 4 are zero, so B is free and hence a basis.

Now it remains to show that (iii) implies (ii). We must show that V' = U+ W and U N W = {0}. Now,
suppose v € V. Then, v = Y, uep, Ault + > w € ByA,w. In particular, V = U + W, since the 1,1,
are arbitrary. Now, let v € U n W. Then

v= D Au= D, Ay => A, =2, =0

u€eB; WEB,

Definition. Let V be an F-vector space, with subspaces V;, ..., < V. Then
P
ZVl- = {Ul,...,Ug,Ui (S Vi,l <i< €}
i=1

We say the sum is direct, written
P
D
i=1

if the decomposition is unique. Equivalently,

p n
V=PV = I eV, ..,v, € o=y
i=1

i=1

Lemma. The following are equivalent:
® Ef:l Vi= 691;:1 Vi
(i) VI<i<LV;n (Z#i V) =1{0}
(iii) For any basis B; of V;, B = U?:l B, is a basis of Z:;l V.

Proof. Exercise. O

11



2 Linear maps

2.1 Linear maps

Definition. If V, W are F-vector spaces,amap a: V — W is linear if

VA1, 4, € F,YU1,0, € V,a(A101 + ,0,) = L1a(v7) + ,a(v;)
Example. Let M be a matrix with n rows and m columns. Then the map o : R” — R”" defined by
X — Mx is a linear map.
Example. Leta: C([0,1],R) — €([0,1],R) defined by f — a(f)(x) = fox f(t)dt. This is linear.
Example. Let x € [a,b]. Then a: C([a, b],R) — R defined by f — f(x) is a linear map.
Remark. Let U,V, W be F-vector spaces. Then,
(i) The identity function i;, : V — V defined by x — x is linear.

(i) Ifa: U—> Vand B: V — W are linear, then 8 o a is linear.

Lemma. Let V, W be F-vector spaces. Let B be a basis for V. If oy : B — V is any map (not
necessarily linear), then there exists a unique linear map a: V. — W extending a: Yv €
B, ay(v) = a(v).

Proof. Letv € V. Then, given B = (vy, ..., Uy).

n
L= Z /1iUi
i=1

By linearity,

n

a(v) = OC(Z lﬂ%) =Y aldvy) = Y ap(Aiv;)
i=1 i=1

i=1

O

Remark. Thislemma is also true in infinite-dimensional vector spaces. Often, to define a linear map,
we instead define its action on the basis vectors, and then we ‘extend by linearity’ to construct the
entire map.

Remark. If aj,a, : V — W are linear maps, then if they agree on any basis of V then they are equal.
2.2 Isomorphism

Definition. Let V, W be F-vector spaces. A map o : V — W is an isomorphism if and only
if

(i) aislinear

(ii) o is bijective
If such an « exists, we say that V and W are isomorphic, written V ~ W.

12



Remark. If a in the above definition is an isomorphism, then a~l: W — Vislinear. Indeed, if
wy, w, € W with w; = a(v;) and w, = a(v,),

al(wy + wy) = a M (a(vy) + a(vy)) = ata(vy +vy) = vy + v, = aHwy) + aH(wy)
Similarly, for A € F,w € W,
a 1(Aw) = la" Y (w)

Lemma. Isomorphism is an equivalence relation on the class of all vector spaces over F.

Proof. (i) iy : V = V is an isomorphism
(ii) Ifa: V — W is an isomorphism, a~! : W — V is an isomorphism.
(iii) fB: U - V,a: V - W are isomorphisms, then ¢ o §: U — W is an isomorphism.

The proofs of each part are left as an exercise. O
Theorem. If V is an F-vector space of dimension n, then V ~ F".

Proof. Let B = (vy,...,U,) be a basis for V. Then, consider a : V — F" defined by
n A’l
U= Z/livi =

i=1 ln

We claim that this is an isomorphism. This is left as an exercise. O

Remark. Choosing a basis for V is analogous to choosing an isomorphism from V to F".

Theorem. Let V, W be F-vector spaces with finite dimensions n, m. Then,

VW < n=m

Proof. If dimV = dim W = n, then there exist isomorphisms from both V and W to F". By transit-
ivity, therefore, there exists an isomorphism between V and W.

Conversely, if V ~ W then let a: V — W be an isomorphism. Let B be a basis of V, then we claim
that a(B) is a basis of W. Indeed, a(B) spans W from the surjectivity of «, and a(B) is free due to
injectivity. O

2.3 Kernel and image

Definition. Let V, W be F-vector spaces. Let a: V — W be a linear map. We define the
kernel and image as follows.

N(a) =kera={v e V: a(v) =0}
Im(a) ={we W: JveV,w=a()}

13



Lemma. ker o is a subspace of V, and Im « is a subspace of W.

Proof. Let A;,4, € F and vy, v, € kera. Then
a(A07 + A,0,) = La(vy) + Aa(v,) =0
Hence 4,v; + 4,0, € kera.

Now, let 4,4, € F, v;,0, € V,and w; = a(v,), w, = a(v,). Then
/11w1 + Azwz = /1106(01) + /1206(02) = a(llvl + 1202) (S Im(x

O

Remark. a: V — W is injective if and only if ker « = {0}. Further, «: V — W is surjective if and
onlyif Ima = W.

Theorem. Let V,W be F-vector spaces. Let a: V — W be a linear map. Then
a: V/kera — Ima defined by
a(v + kera) = a(v)

is an isomorphism. This is the isomorphism theorem from IA Groups.

Proof. First, note that « is well defined. Suppose v + kera = v" + kera. Then v — v’ € ker a, hence
av—-v)=0 = a)—a@®)=0
so a is indeed well defined.

Now, we show « is injective.
a(v+kera)=0 = a(v)=0 = v € kera

Hence, v + kera = 0 + kera.

Further, « is surjective. This follows from the definition the image. O
2.4 Rank and nullity

Definition. The rank of « is
r(a) = dimIma

The nullity of a is
n(a) = dimker

Theorem (Rank-nullity theorem). Let U, V be F-vector spaces such that the dimension of
U is finite. Let ¢ : U — V be a linear map. Then,

dim U = r(a) + n(a)

14



Proof. We have proven that U/ kera ~ Ima. Hence, the dimensions on the left and right match:
dim(U/kera) = dimIm a.
dim U — dimker ¢ = dim Im o

and the result follows. O

Lemma (Characterisation of isomorphisms). Let V, W be F-vector spaces with equal, finite
dimension. Let : V — W be a linear map. Then, the following are equivalent.
(i) «aisinjective.
(ii) o is surjective.
(iii) ais an isomorphism.

Proof. Clearly, (iii) follows from (i) and (ii) and vice versa. The rest of the proof is left as an exercise,
which follows from the rank-nullity theorem. O

2.5 Space of linear maps

Let V and W be F-vector spaces. Consider the space of linear maps from V to W. Then L(V, W) =
{a: V —» W linear}.

Proposition. L(V, W) is an F-vector space under the operation
(o1 + a3)(V) = a; (V) + A, (v);

(Aa)(v) = Aa(v))
Further, if V and W are finite-dimensional, then so is L(V, W) with

dimy L(V, W) = dimp V dimp W

Proof. Proving that L(V, W) is a vector space is left as an exercise. The dimensionality part is proven
later. -

2.6 Matrices
Definition. An m X n matrix over F is an array of m rows and n columns, with entries in F.
We write M,,,,.,(F) for the set of m X n matrices over F.

Proposition. M,,,(F) is an F-vector space under
((aij) + (b)) = (aij + byj);

A(aij) = (Aaij)

Proposition. dimp M,, ,(F) = mn.

15



Proof. Consider the basis defined by, the ‘elementary matrix’ for all i, j:
epq = Sipdiq

Then (e;;) is a basis of M, (F), since it spans M,y ,(F) and we can show that it is free. O

2.7 Linear maps as matrices

Consider bases B of V and C of W
B = (0y1,...,0,);C = (Wy, ..., Wy)

Then let v € V. We have

n A
U=ZAjUjE[U]B= EF”
j=1

An

where the vector given is the coordinates in basis B. We can equivalently find [w]c, the coordinates
of w in basis C. We can now define a matrix of some linear map « in the B, C basis.

Definition.
[a]p.c = ([av)]cs - » [a(VR)]c) € Myysen(F)

Note that if [a]gc = (a;;), then by definition
n
Cf(l)j) = Z aijwl-
i=1

Lemma. Forallv eV,
[a()]c = [a]lgc - [Vl

Proof. We have
n
L= Z /1]”}
i=1

Hence

n n n m m n
“(Z /ljvj) S LCHEDIWIDITEDY (Z aij/lj)wi
i=1 j=1 j=1 i=1

i=1 \j=1

Lemma. LetS: U » Vanda: V — W belinear maps. Then, if A, B, C are basesof U, V, W
respectively, then

[ao 5]A,c = [“]B,C : [,3]A,B
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Proof. Consider u € A. Then
(a o B)(u) = a(B(w))

giving
“(Z bjpvi) - Z bjpa(vy) = Z bjp Z aijw; = Z(Z a;jbjp)w;
J J J i i

where q;;p;p, is the (i, j) element of AB by the definition of the product of matrices. O

Proposition. If V, W are F-vector spaces, and dim V' = n,dim W = m, then
L(V, W) = My,yn(F)

which implies the dimensionality of L(V, W) in F is m X n.

Proof. Consider two bases B, C of V, W. We claim that
6: L(V,W) = M, n(F)

defined by 6(a) = [a]p,c. is an isomorphism. First, note that 0 is linear. Then, 0 is surjective;
consider any matrix A = (a;;) and consider a: v; Z:il a;jw;. Then this is certainly a linear
map which extends uniquely by linearity to A, giving [a]g c = (a;;) = A. Now, 6 is injective since
[a]pc=0 = a=0. O

Remark. If B, C are bases of V, W respectively, and e : V — F" is defined by v — [v]p, and analog-
ously for ¢¢, then

[Of]B,c °cfp =¢€col
so the operations commute.

Example. Let a: V — W be alinear map and Y < V, where V, W are finite-dimensional. Then
let a(Y) = Z < W. Consider a basis B of V, such that B" = (vy, ..., V) is a basis of Y completed by
B" = (U415 ---»Uy) into B = B"UB”". Then let C be a basis of W, such that C’' = (wy, ..., w,) is a basis
of Z completed by C" = (wyyq, ..., Wy,) into C = C’ U C”. Then

[OC]B,C=(05(01) wea(ur)  a(Vggr) e a(Un))

For1l <i <k, a(v;) € Zsincev; € Y,a(Y) = Z. So the matrix has an upper-left £ X k block A
whichis a: Y — Z on the basis B’, C’. We can show further that o inducesamapa: V/Y - W/Z
byv+Y — a(v)+Z. This is well-defined; v; + Y = v, + Y implies v; —v, € Y hence a(v, —v,) € Z
as required. The bottom-right block is [a]gr cn.

2.8 Change of basis

Suppose we have two bases B = {vy, ..., 0,}, B’ = {v},...,0,,} of V and corresponding C,C’ for W.
If we have a linear map [a]p ¢, We are interested in finding the components of this linear map in
another basis, that is,

[alg,c = [alp

17



Definition. The change of basis matrix P from B’ to B is

P=([vilg - [U/n]B)

which is the identity map in B’, written

P=[Ilpp

Lemma. For a vector v,
[vlg = P[v]p

Proof. We have
[a()]c = [a]p,c - [V]c
Since P = [I]p p,
[I()]p = g5 - [vlgr = [v]p = P[v]p

as required.
Remark. P is an invertible n X n square matrix. In particular,
P =Ilpp

Indeed,
L,=[I-Ilgg =g -l s

where I,, is the n X n identity matrix.

Proposition. If a is a linear map from V to W, and P = [I]g/ 5, Q = [I]¢/ ¢, We have

A =lalpcr = c,crlalpcllp g = QT'AP

where A = [a]B,C’A, = [a]B’,C/'

Proof.

[a(v)]c = Qa(v)]cr
= Q[alp: cr[v]p
[a()]c = [a]p,c[v]s

= AP[U]B/
.. Vu, QA[v]g = AP[v]p
QA = AP

as required.

18



2.9 Equivalent matrices

Definition. Matrices A, A’ are called equivalent if
A =Q71AP
for some invertible m X m, n X n matrices Q, P.
Remark. This defines an equivalence relation on M, ,,(F).
« A=T,Al;
e A=Q71AP = A =QAPY
« A =Q7'AP,A" = (Q)'AP = A" =(QQ")lA(PP).

Proposition. Leta: V — W be a linear map. Then there exists a basis B of V and a basis C

of W such that
s = (7 0
“Bc=\o o

so the components of the matrix are exactly the identity matrix of size r in the top-left corner,
and zeroes everywhere else.

Proof. We first fix r € N such that dim ker &« = n — r. Then we will construct a basis {v,,1, ..., U, } of
the kernel. We extend this to a basis of the entirety of V, that is, {vy, ..., v, }. Then, we want to show
that

{OC(UI), s c‘((Ur)}

is a basis of Im a. Indeed, it is a generating family:
n
L= Z /1ivi
i=1
n
a(v) = Zlia(vi)
i=1

= Z/lia(vi)
i=1
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Then if y € Im a, there exists v such that a(v) = y. Further, it is a free family:
r
Z AiC((Ui) =0
i=1

r
CX(Z Aivi) =0
i=1

,
Z Aiv; € kera

i=1

r n
Zlivi = Z Aivi
i=1

i=r+1

r n
Z/livi — Z /11'Ui =0
i=1

i=r+1

But since {vy, ..., v,} is a basis, 4; = 0 for all i. Hence {a(v;)} is a basis of Ima. Now, we wish to
extend this basis to the whole of W to form
(V1) wee s A0, Wy, e W)

Now,

[a]BC:(a(Ul) cooa(uy) a(Upgq) oo OC(Un))

(I, ©
“\0 o0
Remark. This also proves the rank-nullity theorem:
ranka + nulla = n
Corollary. Any m X n matrix A is equivalent to a matrix of the form

53

where r = rank A.

2.10 Column rank and row rank

Definition. Let A € M,, ,(F). Then, the column rank of A, here denoted r,(A), is the dimen-
sion of the subspace of F" spanned by the column vectors.

1.(A) = dimspan{cy, ..., c,}
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Remark. If  is a linear map, represented in bases B, C by the matrix A, then

rank o = r,(A)

Proposition. Two matrices are equivalent if they have the same column rank:

1(A) = r.(A)

Proof. 1f the matrices are equivalent, then A = [a]pc, A" = [a]ps . Then
1e(A) = (@) = r.(A)

Conversely, ifr.(A) = 1.(A") = r, then A, A’ are equivalent to

(69

By transitivity, A, A’ are equivalent. O
Theorem. Column rank 7,(A) and row rank r,(AT) are equivalent.

Proof. Letr =rc(A). Then,

I, 0
-1 — r
Q AP_(O 0)
mxn

Then, consider

|
P =@tarr=(¢ ) =(5 )
nxm

Note that we can swap the transpose and inverse on Q bec:::e
(AB)T = BTAT
(@™ =Qr(@)r
I=Qr(QY)r
@ =@M
Then r,(A) = rank(A) = rank(AT) = r.(AT). O

So we can drop the concepts of column and row rank, and just talk about rank as a whole.

2.11 Conjugation and similarity

Consider the following special case of changing basis. If a: V' — V is linear, « is called an endo-
morphism. If B= C,B’ = C’ then the special case of the change of basis formula is

[alp g = P~ 'alp P

Then, we say square matrices A, A’ are similar or conjugate if there exists P such that A’ = P~1AP.

2.12 Elementary operations
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Definition. An elementary column operation is
(i) swap columns i, j
(ii) replace column i by A multiplied by the column
(iii) add A multiplied by column i to column j

We define analogously the elementary row operations. Note that these elementary operations are
invertible (for 1 # 0). These operations can be realised through the action of elementary matrices.
For instance, the column swap operation can be realised using

I, 0 0 0 0 1
=10 A O0); A=|0 Iy O
0 0 I, 1 0 1
To multiply a column by 4,
I, 0 0
I’li’/1= 0 A 0
0 0 I,
To add a multiple of a column,
Cij,/1=I+AEij

where E;; is the matrix defined by elements (e;;)pq = §;50 - An elementary column (or row) opera-
tion can be performed by multiplying A by the corresponding elementary matrix from the right (on
the left for row operations). This will essentially provide a constructive proof that any n X n matrix

is equivalent to
I, 0
0 0

We will start with a matrix A. If all entries are zero, we are done. So we will pick a; = A # 0,and
swap rows i, 1 and columns j, 0. This ensures that a;; = 4 # 0. Now we multiply column 1 by %

Finally, we can clear out row 1 and column 1 by subtracting multiples of the first row or column.
Then we can perform similar operations on the (n — 1) X (n — 1) matrix in the bottom right block and
inductively finish this process.

2.13 Gauss’ pivot algorithm

If only row operations are used, we can reach the ‘row echelon’ form of the matrix, a specific case of
an upper triangular matrix. On each row, there are a number of zeroes until there is a one, called the
pivot. First, we assume that a;; # 0. We swap rows i, 1. Then divide the first row by 4 = a;; to get a
one in the top left. We can use this one to clear the rest of the first column. Then, we can repeat on
the next column, and iterate. This is a technique for solving a linear system of equations.

2.14 Representation of square invertible matrices

Lemma. If A is an n X n square invertible matrix, then we can obtain I,, using only row
elementary operations, or only column elementary operations.
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Proof. We show an algorithm that constructs this I,,. This is exactly going to invert the matrix, since
the resultant operations can be combined to get the inverse matrix. We will show here the proof for
column operations. We argue by induction on the number of rows. Suppose we can make the form

¥

We want to obtain the same structure with k + 1 rows. We claim that there exists j > k such that
ap41,j # 0. Indeed, otherwise we can show that the vector

0
1= 5k+1,i
0
is not in the span of the column vectors of A. This contradicts the invertibility of the matrix. Now,

we will swap columns k + 1, j and divide this column by 4. We can now use this 1 to clear the rest of
the k + 1 row.

Inductively, we have found AE; ... E, = I,, where E, are elementary. Thus, we can find A~ O

Proposition. Any invertible square matrix is a product of elementary matrices.

The proof is exactly the proof of the lemma above.

3 Dual spaces

3.1 Dual spaces

Definition. Let V be an F-vector space. Then V* is the dual of V, defined by
V*=L(V,F)={a: V - F}

where the ot are linear. If « : V' — F is linear, then we say «a is a linear form. So the dual of V'
is the set of linear forms on V.

Example. For instance, the trace tr : M,, ,(F) — F is a linear form on M,, ,(F).

Example. Consider functions [0,1] — R. We can define Ty : €*([0,1],R) — R such that ¢
jg J(x)¢(x)dx. Then T is a linear form on €*([0, 1], R). We can then reconstruct f given T';. This
mathematical formulation is called distribution.

Lemma. Let V be an F-vector space with a finite basis B = {ey, ..., e, }. Then there exists a
basis B* for V* given by

n
B* ={eq,...,ex} EJ-(Z a,-ei> = qj
i=1
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We call B* the dual basis for B.
Proof. We know

n
EJ(Z aiei) =4
i=1

Ej(ei) = 5ij

First, we will show that the set of linear forms as defined is free. For all i,

Z/ls =0

e (Z Ajsj)ei =0
j=1

n
Z }ljgj(el) =0
Jj=1

Equivalently,

/1i=0

Now we show that the set spans V*. Supposea € V*, x € V.

a(x) = oc(Zn: /ljej)
j=1

=2 Aale))
i=1

Conversely, we can write
n

> aleje(j) € V*

i=1
Thus,

(Z oc(ej)sj)(x) = Z oc(ej)sj(z Akek)

i=1

j=1
Z a(ej Z Akgj(ek)

J:

= Z Z Aidjk

= Z (ej)/lj

S



We have then shown that

n

a= Z ale))e;

j=1
as required. O

Corollary. If V is finite-dimensional, V* has the same dimension.

Remark. It is sometimes convenient to think of V* as the spaces of row vectors of length dim V over
F. For instance, consider the basis B = (e, ...,€,), S0 X = Zn X;e;. Then we can pick (g, ...,&,) a

i=1
. n
basisof V*,soa = Y,

;=1 ai€i- Then

n n n n
a(x) = Z a;ei(x) = Z ais(z xjej) = Z a;X;
i=1 i=1 j=1 i=1

(g - an)(xgl)

which essentially defines a scalar product between the two spaces.

This is exactly

3.2 Annihilators

Definition. Let U C V. Then the annihilator of U is

U={aeV*: VueU,au) =0}

Lemma. (i) U° <V*;
(ii) IfU < Vand dim V < oo, then dim V = dim U + dim U°.

Proof. (i) First, note that 0 € U° since a(0) = 0 by linearity. If a,a’ € U°, then for allu € U,
(a+ad)u)=a(w)+a'(w) =0

Further, forall1 € F,
Aa)(u) = Aa(u) =0
Hence U° < V*.

(ii) Let (ey,...,ex) be a basis of U, completed into a basis B = (ey, ..., €k, k41, ---s€5) Of V. Let
(g1, ... »€,) be the dual basis B*. We then will prove that

U = (ess oo 60)

If i > k, then g;(ex) = §; = 0. Hence ¢; € U°. Thus (i1, ...,&,) C U°. Conversely, let
aeU° Thena =Y  a;. Fori <k, a € U° hence a(e;) = 0. Hence,

i=1
n
a = Z ai&;

i=k+1
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Thus
A E (Expls e »En)

as required.

3.3 Dual maps

Lemma. Let V, W be F-vector spaces. Let « € L(V, W). Then there exists a unique o* €
L(W*,V*) such that
EPH o

called the dual map.

Proof. First, note e(a) : V — F is a linear map. Hence, € o ¢ € V*. Now we must show «* is linear.
a*(@l + 62) = (61 + 62)(0{) = 91 ox + 62 o = 0(*(61) + C(*(ez)

Similarly, we can show
a*(16) = Aa* ()

as required. Hence a* € L(W*, V™). O

Proposition. Let V, W be finite-dimensional F-vector spaces with bases B, C respectively.
Then

[a*]c- 5 = [alc

Thus, we can think of the dual map as the adjoint of a.

Proof. This follows from the definition of the dual map. Let B = (b4, ..., b,), C = (¢y, ... ,Cp), B* =
(B1s -5 Bn), C* = (1, -, ¥m)- Let [a]p ¢ = (a;;). Then, we compute

a*(y,)(bs) = 7y o alby)
(B
= Zt] agsyr(cy)
= Z a;sO¢r

= Qg
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We can conversely write [a*]c. g« = (m;;) and
n
a*(y,) = Z m;yB;
i=1

a*(y,)(bs) = Z m;,Bi(bs)

i=1

n
= Z m;pSis
i=1
= Mgy
Thus,
Qps = Mgy

as required. O

3.4 Properties of dual map

Leta € L(V,W),and a* € L(W*,V*). Let B and C be bases of V, W respectively, and B*, C* be their
duals. We have proven that

[Of]B,c = [“*]JT;,C

Lemma. Suppose that E = (ey, ...,e,) and F = (fi, ..., f,,) are bases of V. Let P = [I]g g be
a change of basis matrix from F to E. The bases E* = (ey, ...,€&,), F* = (11, ..., ;) are the
corresponding dual bases. Then, the change of basis matrix from F* to E* is

()’

Proof. Consider
Up g =gr = ([I]F}E)T = (P_I)T

Lemma. Let V, W be F-vector spaces. Let « € L(V, W). Let a* be the corresponding dual
map. Then, denoting N(«) for the kernel of a,
(i) N(a*) = (Ima)°, so a* is injective if and only if « is surjective.
(ii) Ima* < (N(«))°, with equality if V,W are finite-dimensional. In this finite-
dimensional case, a* is surjective if and only if « is injective.

Remark. In many applications, it is often simpler to understand the dual map a* than it is to under-
stand «a.

Proof. First, we prove (i). Lete € W*. Then, ¢ € N(a*) means a*(¢) = 0. Hence, a*(¢) = coa =0
So for any v € V, e(a(v)) = 0. Equivalently, ¢ is an element of the annihilator of Im a.

Now, we will show (ii). Let ¢ € Ima*. Then a*(¢) = ¢ for some ¢ € W*. Then, for all u € N(a),
e(u) = (a*(d))(m) = ¢ o a(u) = ¢(a(u)) = 0. Certainly then € € (N (oc))o. Then, Ima* < (N(a))°.
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In the finite-dimensional case, we can compare the dimension of these two spaces.
dimIma* = r(a*) = r([a*]c. p-) = r([als c) = r([alpc) = (@) = dimIma
Due to the rank-nullity theorem, dim Im a* = dim V — dim N(a) = dim [(N(«))°]. Hence,
Ima* < (N()°; dimIma* = dim(N(«))°

The dimensions are equal, and one is a subspace of the other, hence the spaces are equal. O

3.5 Double duals

Definition. Let V be an F-vector space. Let V* be the dual of V. The double dual or bidual
of Vis
V=LV, F) = (V')

Remark. In general, there is no obvious relation between V and V*. However, the following useful
facts hold about V and V**.
(i) There is a canonical embedding from V to V**. In particular, there exists i in L(V, V**) which
is injective.
(ii) There are examples of infinite-dimensional spaces where V' ~ V**. These are called reflexive
spaces. Such spaces are investigated in the study of Banach spaces.

Theorem. V embeds into V**.

Proof. Choose a vector v € V and define the linear form 0 € L(V*, F) such that
0(e) = &(v)

So clearly 0 is linear. We want to show 0 € V**. If ¢ € V*,e(v) € F. Further, 4;,4, € F and
€1,& € V* give

0161 + A265) = (4161 + 4,62)(V) = 4161(V) + A,6,(V) = A, 0(e1) + A,0(e,)

Theorem. If V is finite-dimensional, theni: V — V** given by i(v) = 0 is an isomorphism.

Proof. We will show i is linear. If v,,v, € V,1;,4, € F, then
(4101 + A,05)(€) = e(A101 + A,02) = 416(V1) + 4,6(V2) = 410,(€) + 2,0,(¢)

Now, we will show that i is injective for finite-dimensional V. Lete € V \ {0}. We will show that
e & keri. We extend e into a basis (e, e,, ... ,e,) of V. Now, let (¢, &, ... , €,) be the dual basis. Then
é(e) = e(e) = 1. In particular, é # 0. Hence keri = {0}, so it is injective.

We now show that i is an isomorphism. We need to simply compute the dimension of the image
under i. Certainly, dim V' = dim V* = dim(V*)* = dim V**. Since i is injective, dim V' = dim V**.
So i is surjective as required. O
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Lemma. Let V be a finite-dimensional F-vector space. Let U < V. Then,
U=u"

After identifying V and V**, we typically say
U=U%

although this is is incorrect notation and not an equality.

Proof. We will show that U < U, Indeed, let u € U, then by definition
Vee U%e(u) =0 = 1i(e) =0
Hence 21 € U% and so U < U®0.

Now, we will compute dimension: dimU% = dimV — dimU° = dimU. Since U ~ U, their
dimensions are the same, so U = U. O

Remark. Due to this identification of V** and V, we can define

T<VS,T°={veV:VvleT,0O0@)=0}

Lemma. Let V be a finite-dimensional F-vector space. Let U;, U, be subspaces of V. Then
O (U + )’ =Y nU3;
(i) (U NnU)° =0 + U3

P}’OOf. Let 6 (S V*. Then 9 S (UI + U2)0 — Vul (S Ul’ u2 S Uz, 9(u1 + uz) = 0. Hence 9(1,{) =0
for all u € U; U U, by linearity. Hence 0 € U N Uy). Now, take the annihilator of (i) and U = U to
complete part (ii). O

4 Bilinear forms

4.1 Introduction

Definition. Let U, V be F-vector spaces. Then ¢ : U X V — F is a bilinear form if it is linear
in both components. For example, ¢ at a fixed u € U is a linear form V' — F and an element
of V™.

Example. Consider the map V X V* — F given by

(v,6) » 6(v)

Example. The scalar product on U = V = R" is given by
n

B(x,y) = Xy,
i=1
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Example. Let U = V = C(]0, 1], R) and consider

1
(/.8 = f gt di
0]

Definition. If B = (eq,...,e,,)isabasisof U and C = (fj, ..., f,) isabasisof V,and ¢ : U X
V — Fis a bilinear form, then the matrix of the bilinear form in this basis is

[¢lg,c = (¢(ei’fj))1gigm,1gjsn

Lemma. We can link ¢ with its matrix in a given basis as follows.

¢(u,v) = [uljl¢lp clvlc

Proof. Letu = Z:y:ll Aiu;and v = Z;.lzl,ujvj. Then
n m n
Zﬂjvj) =2 > Auib(u;,v;) = [ulpl¢lp clvle
“ —

J

—

Jj= i 1

i=

$(u,v) = ¢(Z Aty
i=1

Remark. Note that [¢]p ¢ is the only matrix such that ¢(u,v) = [ulL[4] s.clvlc.

Definition. Let ¢: U X V — F be a bilinear form. Then ¢ induces two linear maps given
by the partial application of a single parameter to the function.

1 U->V* ¢ér(w): V-o>F, ve ¢(u,v)

¢r: V-o>U" ¢r(v): U—->F; uw ¢(u,v)

In particular,

W) = $(u,v) = Pr(V)()
Lemma. Let B = (ey,...,e,,) be a basis of U, and let B* = (¢, ...,&,,) be its dual; and let
C =(fi,..., fu) be abasis of V, and let C* = (7, ..., 7,) be its dual. Let A = [¢]p c. Then
[¢rlcs =A; [Prlpc =AT
Proof.
or(e)(fj) = ¢lei, fj) = Ayj

Since 7); is the dual of f,
¢rle) = ZAijUj
i
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Further,
r(fj)er) = dles, f) = Ajj
and then similarly

or(fj) = ZAijEi

Definition. ker ¢; is called the left kernel of ¢. ker ¢y is the right kernel of ¢.

Definition. We say that ¢ is non-degenerate if ker ¢; = ker ¢ = {0}. Otherwise, ¢ is degen-
erate.

Theorem. Let B be a basis of U, and let C be a basis of V, where U, V are finite-dimensional.
Let¢: U XV — F beabilinear form. Let A = [¢]p ¢. Then, ¢ is non-degenerate if and only
if A is invertible.

Corollary. If ¢ is non-degenerate, then dim U = dim V.

Proof. Suppose ¢ is non-degenerate. Then ker ¢; = ker ¢g = {0}. This is equivalent to saying that
n(¢r) = n(pg) = 0. We can use the rank-nullity theorem to state that r(AT) = dim V and r(A) =
dim V. This is equivalent to saying that A is invertible. Note that this forces dim U = dim V. O

Remark. The canonical example of a non-degenerate bilinear form is the scalar product R” xR" — R
represented by the identity matrix in the standard basis.

Corollary. If U and V are finite-dimensional with dim U = dim V, then choosing a non-
degenerate bilinear form ¢ : U X V — F is equivalent to choosing an isomorphism ¢; : U ~
V.
Definition. If T C U, then we define

Tt ={veV:VteT,¢v) =0}
Further, if S C V, we define

1S={ueU: VseS, ¢u,s) =0}

These are called the orthogonals of T and S.
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4.2 Change of basis for bilinear forms

Proposition. Let B, B’ be bases of U and P = [I]p/ g, let C,C’ be bases of V and Q = [I]¢/ ¢,
and finally let ¢ : U X V — F be a bilinear form. Then

[¢lpr,cr = PT[$]p,cQ

Proof. We have ¢(u, v) = [u]L[¢] B.clv]lc. Changing coordinates, we have

¢(u,v) = (P[ulp)'[¢]p,c(Qlvlcr) = [ulp (PT[¢]p,cQlv]cr

Lemma. The rank of a bilinear form ¢, denoted r(¢) is the rank of any matrix representing
¢. This quantity is well-defined.

Remark. r(¢) = r(¢g) = r(¢r), since r(A) = r(AT).

Proof. For any invertible matrices P, Q, r(PTAQ) = r(A).

5 Trace and determinant

5.1 Trace

Definition. The trace of a square matrix A € M,, ,(F) = M, (F) is defined by
n
trA = Z Qaii
i=1
The trace is a linear form.
Lemma. tr(AB) = tr(BA) for any matrices A, B € M,,(F).
Proof. We have

n n n n
tr(AB) = 3 > aybji = ) Y bjiai; = tr(BA)

i=1j=1 j=1li=1
Corollary. Similar matrices have the same trace.
Proof.

tr(P~'AP) = tr(AP~'P) = tr A
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Definition. If « : V — V is linear, we can define the trace of & as
tra = trlalg

for any basis B. This is well-defined by the corollary above.

Lemma. If¢: V = Vislinear, a* : V* — V* satisfies

troa =tra*

Proof.
tra = trfa]y = trfa]y = trfa*]z. = tra*

5.2 Permutations and transpositions

Recall the following facts about permutations and transpositions. S,, is the group of permutations
of the set {1, ..., n}; the group of bijections o : {1, ...,n} = {1,...,n}. A transposition 7, = (k,€) is
defined by k — ¢,¢ — k,x — x for x # k,¢. Any permutation o can be decomposed as a product
of transpositions. This decomposition is not necessarily unique, but the parity of the number of
transpositions is well-defined. We say that the signature of a permutation, denoted ¢ : S,, — {—1,1},
is 1 if the decomposition has even parity and —1 if it has odd parity. We can then show that ¢ is a
homomorphism.

5.3 Determinant

Definition. Let A € M,,(F). We define

detA = Z E(O’)Ao—(l)l '"AO'(n)n

oeSy,
Example. Let n = 2. Then,

a a
A = ( 1 12) = detA = a11a22 - a12a21
az1 0

Lemma. If A = (a;;) is an upper (or lower) triangular matrix (with zeroes on the diagonal),
then detA = 0.
Proof. Let(a;;) =0fori> j. Then

detA = Z €(0)as)1 «+ Ao(n

ogEeSy
For the summand to be nonzero, o(j) < j for all j. Thus,

detA = an ann =0
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Lemma. Let A € M,(F). Then, detA = detAT.

Proof.

detA = Z €(0)as)1 «+ As(nn

oeSy

Z E(G)aa(l)l - Ag(n)n

o-les,

z E(O'_l)alcr(l) -+ Qno(n)

o€eSy

Z E(O')alcr(l) -+ Ang(n)

oEeSy

= det AT

5.4 Volume forms

Definition. A volume form d on F" isa functiond : F” X --- X F* — F satisfying
n times
(i) d is multilinear: for alli € {1, ...,n} and for all vy, ..., Vj_1, Vj41, --- , U, € F™, the map

from F" to F defined by
U (U1, a5 Vi1, 0, Uiy 15 -0 Up)

is linear. In other words, this map is an element of (F")*.
(ii) d is alternating: for v; = v; for some i # j,d = 0.
So an alternating multilinear form is a volume form. We want to show that, up to multiplica-
tion by a scalar, the determinant is the only volume form.

Lemma. The map (F")" — F defined by (A, ..., AM) - det A is a volume form. This map
is the determinant of A, but thought of as acting on the column vectors of A.

Proof. We first show that this map is multilinear. Fix o € S,,, and consider H?zl as(i)i- This product
contains exactly one term in each column of A. Thus, the map (A%, ...,A™) H?zl Ao (i)i is mul-
tilinear. This then clearly implies that the determinant, a sum of such multilinear maps, is itself
multilinear.

Now, we show that the determinant is alternating. Let k # ¢, and AR = A) Letr = (ké) be
the transposition exchanging k and €. Then, for all i, j € {1, ...,n}, a;; = a;r(j)- We can decompose
permutations into two disjoint sets: S,, = A,,UtA,,, where A,, is the alternating group of order n. Now,
note that H?:l Ag(i)i + H?:l Q(zoo)(i)i = 0. So the sum over all o € A,, gives zero. So the determinant
is alternating, and hence a volume form. O
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Lemma. Let d be a volume form. Then, swapping two entries changes the sign.

Proof. Take the sum of these two results:

AUy e 5 Vs w3 Ujy e s V) + A(U1, 005 Uy ey Uy onn s Upg)
= d(vl,...,v,-,...,vj,...,vn)
+d(v1,...,vj,...,vi,...,vn)
+ d(Uys e, Uy oee s Ujy e s Uy)
+d(v1,...,vj,...,vj,vn)
=2d(Uy, e, U + Ujy oo, U + Uy e, Uy)
=0

as required. O

Corollary. If o € S,, and d is a volume form, d(vg(y), -+ » Ug(n)) = €(0)d(Vy, ..., Uy).
Proof. We can decompose o as a product of transpositions H::’l e;. O

Theorem. Let d be a volume form on F". Let A be a matrix whose columns are A®. Then
d AW, ..., AM) = detA - d(ey, ... e,,)

So there is a unique volume form up to a constant multiple. We can then see that det A is the
only volume form such that d(e, ... ,e,) = 1.

Proof.
n

1

da®, ..., AM) = d(
1

ailei,A(z), ,A(n)>

Since d is multilinear,

n
dAW, ..., AM) =" a;d(e;, AP, ..., AM)

i=1
Inductively on all columns,
n n n
d(A(l), ,A(n)) = Z Z ailajzd(el-, ej,A(3), ,A(n)) == 2 aié,kd(eil, ein)
i=1j=1 1<i;,<---<n k=1
Since d is alternating, we know that for d(el-l, s ein) to be nonzero, the i must be different, so this

corresponds to a permutation o € S,,.

n
d(AD, .., Am) = 2 Hag(k)kg(a)d(el,...,en)

oeSy k=1

which is exactly the determinant up to a constant multiple. O
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5.5 Multiplicative property of determinant

Lemma. Let A,B € M,,(F). Then det(AB) = det(A) det(B).

Proof. Given A, we define the volume form d, : (F")" — F by
da(vy, ..., U,) — det(Avy, ... ,Avy,)

v; = Av; is linear, and the determinant is multilinear, so d4 is multilinear. If i # j and v; = v, then
det(... AU, ... ,Avj, ) = 050 d4 is alternating. Hence d4 is a volume form. Hence there exists a
constant C4 such that dy(vy, ..., v,) = C4 det(vy, ..., 0,). We can compute C4 by considering the
basis vectors; Ae; = A; where A; is the ith column vector of A. Then,

Cy =dyleq, ..., e,) = det(Aey, ..., Ae,) = detA

Hence,
det(AB) = d4(B) = detAdetB

O
5.6 Singular and non-singular matrices
Definition. Let A € M,,(F). We say that
(i) AissingularifdetA = 0;
(i) A is non-singular if detA # 0.
Lemma. If A is invertible, it is non-singular.
Proof. If A is invertible, there exists AL, Then, since the determinant is a homomorphism,
det(AA™') =detI =1
Thus det A det A~! = 1 and hence neither of these determinants can be zero. O

Theorem. Let A € M, (F). The following are equivalent.
(i) A isinvertible;
(ii) A is non-singular;
(iii) r(A) =n.

Proof. We have already shown that (i) implies (ii). We have also shown that (i) and (iii) are equivalent
by the rank-nullity theorem. So it suffices to show that (ii) implies (iii).

Suppose r(A) < n. Then we will show A is singular. We have dimspan(A4,, ...,4,) < n. There-
fore, since there are n vectors, (4, ... ,A,,) is not free. So there exist scalars A; not all zero such that
2. 4iA; = 0. Choose j such that 4; # 0. Then,

1
T i#j
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So we can compute the determinant of A by
1
detA = det(Al, Sy ;liAi, ,An)

Since the determinant is alternating and linear in the jth entry, its value is zero. So A is singular as
required. O

Remark. The above theorem gives necessary and sufficient conditions for invertibility of a set of n
linear equations with n unknowns.

5.7 Determinants of linear maps

Lemma. Similar matrices have the same determinant.

Proof.
det(P~*AP) = det(P~')det A det P = det A det(P~'P) = det A

Definition. If « is an endomorphism, then we define
deta = det[a]p p
where B is any basis of the vector space. This is well-defined, since this value does not depend

on the choice of basis.

Theorem. det: L(V,V) — F satisfies the following properties.
(i) detI =1;
(ii) det(ap) = detadetf;
(iii) deta # 0 if and only if « is invertible, and in this case, det(a™!) deta = 1.
This is simply a reformulation of the previous theorem for matrices. The proof is simple, and
relies on the invariance of the determinant under a change of basis.

5.8 Determinant of block-triangular matrices

Lemma. Let A € M (F), B € My(F), C € M ,(F). Consider the matrix
A C
M=( &)

Then det M = det A det B.
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Proof. Letn =k + ¢,s0 M € M,(F). Let M = (m;;). We must compute

n
detM = Z E(U)Hma(i)i

ogeSy, i=1

Observe that mg(;y; = 0if i < k and o(i) > k. Then, we need only sum over ¢ € S,, such that for all
j < k,we have o(j) < k. Thus, for all j € {k +1,...,n}, we have o(j) € {k+1,...,n}. We can then
uniquely decompose ¢ into two permutations ¢ = 0,0,, where g is restricted to {1, ..., k} and o, is
restricted to {k + 1, ..., n}. Hence,

detM= Y > &) ][] Moy

01ESK 02€S,k i=1

n

k
Z Z 5(01)5(02)Hma(i)i H Mg (i)i
i=1 i

01ESK 02ES,k i=k+1

n

k
= Z E(O'I)Hma(i)i Z E(UZ) H mU(i)i
i=1 i

01ESk 02ESy_k i=k+1

= detAdetB

Corollary. We need not restrict ourselves to just two blocks, since we can apply the above
lemma inductively. In particular, this implies that an upper-triangular matrix with diagonal
elements 4; has determinant Hl. A;.

6 Adjugate matrices
6.1 Column and row expansions
Let A € M,,(F) with column vectors A®). We know that
det(AD, ..., AV, ., AW AM) = —det(AD), ..., AW, ., AD, . A1)

Using the fact that det A = det AT we can similarly see that swapping two rows will invert the sign of
the determinant.

Remark. We could have proven all of the properties of the determinant above by using the decom-
position of A into elementary matrices.

Definition. Let A € M, (F). Leti, j € {1,...,n}. We define the minor A;j € M,,_,(F) to be
the matrix obtained by removing the ith row and the jth column.

Lemma. Let A € M, (F).
(i) Let j € {1,...,n}. The determinant of A is given by the column expansion with respect
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to the jth column:
n
detA = Y (-Di*a; detAp
i=1

(ii) Leti €{1,...,n}. The same determinant is also given by the row expansion with respect
to the ith row:

n
detA = ) (-D)*ay detAy
=i

This is a process of reducing the computation of n X n determinants to (n — 1) X (n — 1)
determinants.

Proof. We will prove case (i), the column expansion with respect to the jth column. Then (ii) will
follow from the transpose of the matrix. Let j € {1, ..., n}. We can write AU) = Z?:l a;je; where the
e; are the canonical basis. Then, by swapping rows and columns,

n
detA = det (A(l), Z ajje, ... ,A(”))
i=1

aij det (A(l), eee 3 €y enn ,A(n))

I
.M=

1l
—

I
M=

aij(—l)j_l det (ei,A(l), ,A(n))

s 0
n

. 1 (1) —(n)
a;j(-1)71 (=) det(e;, A ,...,A
1

This has brought the matrix into block form, where there is an element of value 1 in the top left, and
the matrix A; in the bottom right. The bottom left block is entirely zeroes. Hence,

n
detA = Y (-D)*a; detAy
i=1
as required. O

Remark. We have proven that

det(A(l), s @y ,A(")) = (=1)* detAg
6.2 Adjugates

Definition. Let A € M, (F). The adjugate matrix of A, denoted adj A, is the n X n matrix
given by o
(adjA);; = (=D detAy;
Hence,
det(AD, ... ,e;, ..., AM) = (adj A);;
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Theorem. Let A € M,,(F). Then
(adjA)A = (detA)I
In particular, when A is invertible,

1 adjA
~ detA

Proof. We have

n
detA = Z(—l)”jaij detAlT]

i=1

Hence,

n
detA = »’(adjA)j;a;; = ((adj DA);;

i=1

So the diagonal terms match. Off the diagonal,

0= det<A<1), L AR AR ,A("))

jth position

By linearity,

n
0 =det|aD, ..., Z ajce;, ..., AR . AM
i=1

———
jth position

Il
M=

a;, det (A(l), - COJ ,A(”))

Jjth position

...
1
—-

Il
M=

a;(adjA)j;

= ((adjA)A) i

.~
1l
-

6.3 Cramer’s rule
Proposition. Let A be an invertible square matrix of dimension n. Let b € F". Then the
unique solution to Ax = b is given by

1
detA

X; = det(Az)

where A, is obtained by replacing the ith column of A by b. This is an algorithm to compute
x, avoiding the computation of A=L.
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Proof. Let A be invertible. Then there exists a unique x € F” such that Ax = b. Then, since the
determinant is alternating,

det(Ay) = det(AW, ..., AU~V b, A+D | A(W)

n
= det (A(l), o AUTD S AU, AGHD ,A(”))
J=1

= det (AW, ..., AU~V x40, AG+D | A(W)
= x;detA

So the formula works. O

7 Eigenvectors and eigenvalues

7.1 Eigenvalues

Let V be an F-vector space. Let dimV = n < oo, and let a be an endomorphism of V. We wish
to find a basis B of V such that, in this basis, [a]g = [a]p g has a simple (e.g. diagonal, triangular)
form. Recall that if B’ is another basis and P is the change of basis matrix, [a]g = P~![a]gP. Equi-
valently, given a square matrix A € M, (F) we want to conjugate it by a matrix P such that the result
is ‘simpler”.

Definition. Leta € L(V) be an endomorphism. We say that « is diagonalisable if there exists

a basis B of V such that the matrix [cr] 5 is diagonal. We say that a is triangulable if there exists
a basis B of V such that [«]p is triangular.

Remark. We can express this equivalently in terms of conjugation of matrices.

Definition. A scalar A € F is an eigenvalue of an endomorphism « if and only if there exists
avector v € V \ {0} such that a(v) = Av. Such a vector is an eigenvector with eigenvalue A.
V,={veV: a(v) = Av} < V is the eigenspace associated to A.

Lemma. A is an eigenvalue if and only if det(a — AI) = 0.

Proof. If 1is an eigenvalue, there exists a nonzero vector v such that a(v) = Av, so (a —1)(v) = 0. So
the kernel is non-trivial. So a — AI is not injective, so it is not surjective by the rank-nullity theorem.
Hence this matrix is not invertible, so it has zero determinant. O

Remark. If oc(vj) = Av; for j € {1, ..., m}, we can complete the family v; into a basis (V1,...,0,) Of V.
Then in this basis, the first m columns of the matrix a has diagonal entries 1 -

7.2 Polynomials

Recall the following facts about polynomials on a field, for instance

f®) =aut"+ -+ a1t +ag
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We say that the degree of f, written deg f is n. The degree of f + g is at most the maximum degree
of fand g. deg(fg) = deg f + degg. Let F[t] be the vector space of polynomials with coefficients in
F. If Aisaroot of f, then (t — 1) divides F.

Proof.
fO) =apt"+ - +at+ag

Hence,
fD=a "+ - +a1A+a9=0

which implies that
FO=fO—-f)=a,(t" =2) + -+ a(t - 2)

But note that, for all n,

= =1 =D AU T2 )

Remark. We say that A is a root of multiplicity k if (t — A)* divides f but (t — 1)¥*! does not.

Corollary. A nonzero polynomial of degree n has at most n roots, counted with multiplicity.

Corollary. If fi, f, are two polynomials of degree less than n such that f(¢t;) = f5(t;) for
i €{1,...,n}and ¢; distinct, then f; = f,.

Proof. fi — f, has degree less than n, but has n roots. Hence it is zero. O

Theorem. Any polynomial f € C[t] of positive degree has a complex root. When counted
with multiplicity, f has a number of roots equal to its degree.

Corollary. Any polynomial f € C[t] can be factorised into an amount of linear factors equal
to its degree.

7.3 Characteristic polynomials

Definition. Let @ be an endomorphism. The characteristic polynomial of a is

Xa(A) = det(a — AI)

Remark. x, is a polynomial because the determinant is defined as a polynomial in the terms of the
matrix. Note further that conjugate matrices have the same characteristic polynomial, so the above
definition is well defined in any basis. Indeed, det(P~*aP — AI) = det(P~!(a — AI)P) = det(ax — AI).
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Theorem. Let a € L(V). a is triangulable if and only if y, can be written as a product of
linear factors over F. In particular, all complex matrices are triangulable.

Proof. Suppose « is triangulable. Then for a basis B, [a]p is triangulable with diagonal entries q;.
Then

Xo(t) = (a1 —)(az — 1) -~ (ap — 1)
Conversely, let y,(t) be the characteristic polynomial of « with a root A. Then, y,(4) = 0 implies 4 is

an eigenvalue. Let V ; be the corresponding eigenspace. Let (v, ... , Uy) be the basis of this eigenspace,
completed to a basis (v, ..., v,) of V. Let W = span {vy,y, ..., Uy}, and then V =V ; @ W. Then

Al o«
s = (5 ¢
where * is arbitrary, and C is a block of size (n — k) X (n — k). Then « induces an endomorph-
ismoa: V/U — V/U with respect to the basis (Vg 1, ..., U,), Where U = V ;. By induction on the

dimension, we can find a basis (wy41, ..., w,,) for which C has a triangular form. Then the basis
(U1, +vv s Uy Wiy 15 --- » Wy) i @ basis for which « is triangular. O

Lemma. Letn = dim V, and V be a vector space over R or C. Let o be an endomorphism on
V. Then

Xa(®) = (1) + cp_y " + -+ + ¢
with
co=detAd; ¢, =(-1)"'trA

Proof.
Xo(t) =det(a—tI) = x,(0) = det(a)

Further, for R, C we know that a is triangulable over C. Hence y,(¢) is the determinant of a triangular
matrix;

xa® =@ -0
i=1

Hence
cpog = ()" g

Since the trace is invariant under a change of basis, this is exactly the trace as required. O

7.4 Polynomials for matrices and endomorphisms
Let p(t) be a polynomial over F. We will write
p(t) = a,t" + - +q
For a matrix A € M,,(F), we write
p(A) = a,A" + -+ + a9 € M, (F)
For an endomorphism « € L(V),
p(@) =a,a”+ - +agl e L(V);, ak=go-oq

k times
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7.5 Sharp criterion of diagonalisability

Theorem. Let V be a vector space over F of finite dimension n. Let o be an endomorphism
of V. Then « is diagonalisable if and only if there exists a polynomial p which is a product of
distinct linear factors, such that p(c) = 0. In other words, there exist distinct 4,, ..., 4; such
that

p(t) = [t —4) = p(@)=0

i=1
Proof. Suppose « is diagonalisable in a basis B. Let 1,, ..., 4; be the k < n distinct eigenvalues. Let

k
p(t)=TJ¢t-2)
i=1

Let v € B. Then a(v) = A;v for some i. Then, since the terms in the following product commute,

i=1

k
(@a=4D©) =0 = p(@)(v) = [1_[(0C - /111)] (L)=0

So for all basis vectors, p(a)(v). By linearity, p(a) = 0.

Conversely, suppose that p(a) = 0 for some polynomial p(t) = Hi;l(t — A;) with distinct 4;. Let
V 3, = ker(a — 4;I). We claim that
k

v=Ev,
i=1

Consider the polynomials
k

t—A;
q;(t) = H 7 /{i

i=Lizj "

These polynomials evaluate to one at 1; and zero at 4; for i # j. Hence q;(41;) = &;;. We now define
the polynomial

q=q + - +q

The degree of q is at most (k — 1). Note, q(4;) = 1 for alli € {1,...,k}. The only polynomial that
evaluates to one at k points with degree at most (k — 1) is exactly given by q(¢) = 1. Consider the
endomorphism

7j = qj(a) € L(V)

These are called the ‘projection operators’. By construction,

k k
DEEMTICES
j=1 j=1

So the sum of the 7 is the identity. Hence, forallv € V,
k k
1) =v=>,7;) =), q;(@)()
Jj=1 j=1
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So we can decompose any vector as a sum of its projections 7;(v). Now, by definition of g; and p,

(a = A;D)q;(a)(v) = m(a A I)[H(t A )l ()

i#]j
i#j
= mp(a)(v)
i#j

By assumption, this is zero. For all v, we have (@ — 1;I)g;(a)(v). Hence,
(a=4;D7j(v) =0 = 7;(v) € ker(a — 4;I) = v;

We have then proven that, for allv € V,

Hence,

It remains to show that the sum is direct. Indeed, let
L E V/lj N <ZVAL)
i#j
We must show v = 0. Applying 7;,

7(0) = gy(@)(w) = [T 200
i#] A=A
Since a(v) = 4;v
A — A
7iw) =] % =
i TN

Hence 7; really projects onto V' a;- However, we also know v € ), . So we can write v =

Zi# w; forw € V.. Thus,

iz V

(oc Al (U

) = T 2
m#j

Since a(w;) = A;w;, one of the factors will vanish, hence

7j(w;) =0
So
v= Y w = () =), m(w;) =0
i#j i#j
Butv = 7rj(v) hence v = 0. So the sum is direct. Hence, B = (By, ..., By) is a basis of V, where the B;
are bases of V ;.. Then [a]p is diagonal. O
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Remark. We have shown further that if 4,, ... , 4 are distinct eigenvalues of «, then
k k
Z V= @ Va
i=1 i=1
Therefore, the only way that diagonalisation fails is when this sum is not direct, so
k

DV <V
i=1

Example. Let F = C. Let A € M,,(F) such that A has finite order; there exists m € N such that
A™ = I. Then A is diagonalisable. This is because

=1 =p) = [T~ &n)  &n=e/m
j=1
and p(A) = 0.
7.6 Simultaneous diagonalisation

Theorem. Let o, § be endomorphisms of V which are diagonalisable. Then «, § are simul-
taneously diagonalisable (there exists a basis B of V such that [a]g, [B]p are diagonal) if and
only if ¢ and 8 commute.

Proof. Two diagonal matrices commute. If such a basis exists, af = Sa in this basis. So this holds in
any basis. Conversely, suppose a8 = Sa. We have

k
V=PV,
i=1
where 4, ..., Ay are the k distinct eigenvalues of a. We claim that 3 (V /1,-) <V Indeed, forv e V A

aB(v) = fa(v) = f(4;v) = 4;8(v) = a(B(v)) = 4;8(v)

Hence, f(v) € V a;- By assumption, f is diagonalisable. Hence, there exists a polynomial p with

distinct linear factors such that p(8) = 0. Now, B(V /1].) <V, sowe can consider 3 |V/1 . This is an
j

{4,)-
Vi

Hence, 8 |V/1 is diagonalisable. Let B; be the basis of V'3, in which g |V/1 is diagonal. Since V' =
J J
D V 3,» B = (By, ..., By) is a basis of V. Then the matrices of « and § in V' are diagonal. O

endomorphism of V' A We can compute
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7.7 Minimal polynomials

Recall from IB Groups, Rings and Modules the Euclidean algorithm for dividing polynomials. Given
a, b polynomials over F with b nonzero, there exist polynomials g, r over F with degr < degb and
a=qb+r.

Definition. Let V be a finite dimensional F-vector space. Let o be an endomorphism on V.
The minimal polynomial m,, of a is the nonzero polynomial with smallest degree such that
mq(a) = 0.

Remark. IfdimV = n < oo, then dim L(V) = rn?. In particular, the family {I SOy e s oc"z} cannot be

free since it has n? + 1 entries. This generates a polynomial in « which evaluates to zero. Hence, a
minimal polynomial always exists.

Lemma. Let o € L(V) and p € F[t] be a polynomial. Then p(cr) = 0 if and only if m, is a
factor of p. In particular, m, is well-defined and unique up to a constant multiple.

Proof. Let p € F[t] such that p(e) = 0. If my(a) = 0 and degm, < deg p, we can perform the
division p = myq + r for degr < degm,. Then p(a) = my(a)q(x) + r(a). But my(a) = 0. But
degr < degm, and m, is the smallest degree polynomial which evaluates to zero for «, so r = 0 so
p = mgq. In particular, if m;, m, are both minimal polynomials that evaluate to zero for «, we have
m; divides m, and m, divides m,. Hence they are equivalent up to a constant. O

a9 o0 )

We can check p(t) = (¢t — 1)? gives p(A) = p(B) = 0. So the minimal polynomial of A or B must be
either (t — 1) or (¢t — 1)2. For A, we can find the minimal polynomial is (t — 1), and for B we require
(t — 1)2. So B is not diagonalisable, since its minimal polynomial is not a product of distinct linear
factors.

Example. Let V = F? and

7.8 Cayley-Hamilton theorem

Theorem. Let V be a finite dimensional F-vector space. Let a € L(V) with characteristic
polynomial y,(t) = det(a — tI). Then y,(a) = 0.

Two proofs will provided; one more physical and based on F = C and one more algebraic.

Proof. Let B ={vy,...,0,}be abasis of V such that [«]p is triangular. This can be done when F = C.
Note, if the diagonal entries in this basis are q;,

Xa®) = [J(ai =) = xo(@) = (@—arD) ... (@ = anl)

i=1
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We want to show that this expansion evaluates to zero. Let U j = span {vl, U j}. Letv eV =1U,.
We want to compute y,(c)(v). Note, by construction of the triangular matrix.

Xa(@)(V) = (@ —a]) ... (@ — a,I)(v)
€Un

=(a—aql)...(a — a,_1D(ax — a,I)(V)

€Up—

e U,

Hence this evaluates to zero. O

The following proof works for any field where we can equate coefficients, but is much less intuit-
ive.

Proof. We will write
det(tl — a) = (—1)"y,(t) = t" + an—ltn_l + -+ ag

For any matrix B, we have proven B adj B = (det B)I. We apply this relation to the matrix B = ¢I — A.
We can check that
adjB = adj(tI — A) = B,_;t" ' + .- + Bjt + B,

since adjugate matrices are degree (n — 1) polynomials for each element. Then, by applying BadjB =
(detB)I,
(tI — A)[B,_1t" ' + -+« + Byt + By] = (detB)I = (t" + -+ + ap)I

Since this is true for all ¢, we can equate coefficients. This gives

tn N I = Bl’l—l
(A a,_1I = B,_, —AB,_,;
tO N a0I = _ABl

Then, substituting A for ¢ in each relation will give, for example, A"I = A"B,,_;. Computing the sum
of all of these identities, we recover the original polynomial in terms of A instead of in terms of ¢.
Many terms will cancel since the sum telescopes, yielding

A"+ a, AV 44 qgl =0

7.9 Algebraic and geometric multiplicity

Definition. Let V be a finite dimensional F-vector space. Let « € L(V) and let 4 be an
eigenvalue of a. Then
Xa(t) = (£ = )" q(t)

where q(t) is a polynomial over F such that (¢t — 1) does not divide q. a; is known as the
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algebraic multiplicity of the eigenvalue 1. We define the geometric multiplicity g; of A to be the
dimension of the eigenspace associated with 4, so g; = dim ker(a — AI).

Lemma. If Ais an eigenvalue of « € L(V), then 1 < g; < a;.

Proof. We have g; = dim ker(a— AI). There exists a nontrivial vector v € V such that v € ker(a—AI)
since 4 is an eigenvalue. Hence g; > 1. We will show that g; < a;. Indeed, let vy, ..., v, be a basis

of V; = ker(a — AI). We complete this into a basis B = (vl, vy Ug s Vg glsee s vn) of V. Then note

that
_ (Mg, *
[a]B - ( 0 A1>

—tD = (- t)IgA *
det(ax — tI) = det( 0 A=t

for some matrix A;. Now,

By the formula for determinants of block matrices with a zero block on the off diagonal,
det(a —tI) = (A —t)82 det(A; — tI)

Hence g; < a, since the determinant is a polynomial that could have more factors of the same

form. O

Lemma. Let V be a finite dimensional F-vector space. Let « € L(V) and let 1 be an eigen-
value of . Let c; be the multiplicity of 4 as a root of the minimal polynomial of . Then
1<cy<La.

Proof. By the Cayley-Hamilton theorem, y,(a) = 0. Since m,, is linear, m,, divides y,. Hence ¢; <
a,. Now we show c; > 1. Indeed, A is an eigenvalue hence there exists a nonzero v € V such that
a(v) = Av. For such an eigenvector, af (v) = AFv for P € N. Hence for p € F[t], p(a)(v) = [p(D)](v).
Hence mg(a)(v) = [mg(1)](v). Since the left hand side is zero, m,(4) = 0. Soc; > 1. O

1 0 -2
A=(0 1 1
0 0 2

The minimal polynomial can be computed by considering the characteristic polynomial

Example. Let

xa®) =@ -1t -2)

So the minimal polynomial is either (t —1)?(t—2) or (t —1)(¢t —2) We check (¢t —1)(t—2). (A—I)(A—2I)
can be found to be zero. So m4(t) = (t — 1)(¢t — 2). Since this is a product of distinct linear factors, A
is diagonalisable.

Example. Let A be a Jordan block of sizen > 2. Theng; =1,a; =n,andc; = n.

49



7.10 Characterisation of diagonalisable complex endomorphisms

Lemma. Let F = C. Let V be a finite-dimensional C-vector space. Let a be an endomorph-
ism of V. Then the following are equivalent.
(i) aisdiagonalisable;
(ii) for all A eigenvalues of @, we have a; = g;;
(iii) for all A eigenvalues of @, c; = 1.

Proof. First, the fact that (i) is true if and only if (iii) is true has already been proven. Now let us show
that (i) is equivalent to (ii). Let Ay, ..., 4) be the distinct eigenvalues of . We have already found that
a is diagonalisable if and only if V' = @V 3,. The sum was found to be always direct, regardless of
diagonalisability. We will compute the dimension of V' in two ways;

k
n=dimV = deg y,; n=dimV=2a,11.

i=1

since y, is a product of (¢ — ;) factors as F = C. Since the sum is direct,

k k
dim (@ Vﬂi) = Z 82
i=1 i=1

a is diagonalisable if and only if the dimensions are equal, so

k k
Z &y = Z ay
i=1 i=1

. k k
Conversely, we have proven that for all eigenvalues 1;, we have g3, < a,,. Hence, }},_, 81, = 2J;_; ax,

holds if and only if g3, = a,, for all i.
8 Jordan normal form
For this section, let F = C.

8.1 Definition

Definition. Let A € M,,(C). We say that A is in Jordan normal form if it is a block diagonal
matrix, where each block is of the form

A 10 - 0
04 1 -« 0
J)=10 0 2 - 0
000 ~ 24

We say that J,, (1) € M, (C) are Jordan blocks. The 1; € C need not be distinct.
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Remark. In three dimensions,

is in Jordan normal form, with three one-dimensional Jordan blocks with the same A value.
8.2 Similarity to Jordan normal form

Theorem. Any complex matrix A € M, (C) is similar to a matrix in Jordan normal form,
which is unique up to reordering the Jordan blocks.

The proof is non-examinable. This follows from IB Groups, Rings and Modules.

Example. Let dim V' = 2. Then any matrix is similar to one of
Ay 0)., (A 0y, (4 1
0 47 \0 47 \0 4

(t—=2)(t—=2A); (t—=2A); (t—21)?

The minimal polynomials are

8.3 Direct sum of eigenspaces

Theorem. Let V be a C-vector space. Let dimV = n < oo. Then, the minimal polynomial
mg(t) of an endomorphism a € L(V) satisfies

k
Vz@vj
j=1

J

where V; = ker[(a« — 4;I)/ ], and where

K
mg(t) = T (¢ =2,

i=1

V j is called a generalised eigenspace associated with ;.

Remark. Note that V; is stable by a, that is, a(V ;) = V';. Note further that (a — ;1 )lvj = u; gives

that u; is a nilpotent endomorphism; #;j = 0. So the Jordan normal form theorem is a statement
about nilpotent matrices.

Note, when « is diagonalisable, ¢ =1 and hence we recover V' ji= ker(a — AJ-I) andV=@V i

Proof. The key to this proof is that the projectors onto V' ; are ‘explicit’. First, recall
k

mg(t) = [ (e = 2;)°

j=T
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Then, let
pjt) = H(f —Ap)

i#j
Then p; have by definition no common factor. So by Euclid’s algorithm, we can find polynomials g;
such that
k
Z qpi =1
i=1

We define the projector 77; = g;pj(a), which is an endomorphism. By construction, for allv € V, we
have

k k
D7) = Y a;pj(a)) = I(v) = v
j=1 j=1
Hence,
k
U= Z m;(v)
i=1
Observe further that 7;(v) € V ;. Indeed,
(o = AiD)I7j(v) = (@ — A1) qjpj(a(v)) = gjmg(a(v)) = 0

. k . -
Hence 7;(v) € V. In particular, V = ijl V ;. We need to show that this sum is direct. Note, for
i# j,mmi=0 from the definition of 7. Hence, observe that

k
7Ti = ﬂi(z ﬂj) = 7Ti = 7Ti7fi
J=1

Thus, 7 is a projector. In particular, this implies that 7Tl-|Vj is the identity if i = j and zero if i # j.
This immediately implies that th sum is direct;

k
j=1
Indeed, suppose

k
ZocjvJ-:O; Vj er; ;=0
Jj=1

Then
k
1
v = —— Z a;jv;
a =
Applying 7y,
1 &
Uy =—— Z ajm(vj) =0
a =
Iterating, we find v = 0. O
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Remark. We can compute the quantities a;, g;,c; on the Jordan normal form of a matrix. Indeed,
let m > 2 and consider a Jordan block J,,(4). Then J,,(1) — AI is the zero matrix with ones on the
off-diagonal. (J,,,(1) — AI)¥ pushes the ones onto the next line iteratively, so

0 I

_ k _ m—k
U= a1y = (g 1)
Hence J is nilpotent of order exactly m. In Jordan normal form,

(i) a; is the sum of sizes of blocks with eigenvalue 1. This is the amount of times A is seen on the
diagonal.

(ii) g, is the amount of blocks with eigenvalue 4, since each block represents one eigenvector.

(iii) c, is the size of the largest block with eigenvalue A.

0 -1
We wish to convert this matrix into Jordan normal form; so we seek a basis for which this matrix
becomes Jordan normal form.

Example. Let

xa(t) = (t = 1)?
Hence there exists only one eigenvalue, 1 = 1. A — I # 0 hence m(t) = (t — 1)>. Thus, the Jordan
normal form of A is of the form
B (1 1)
0 1

ker(A—1I)=(vy); v, = (_11)

Now,

Further, we seek a v, such that

A-Dvy=1v; = v, = <_1)

A= 6 )G )

9 Properties of bilinear forms

Such a v, is not unique. Now,

9.1 Changing basis

Let¢$: V XV — [ be a bilinear form. Let V be a finite-dimensional F-vector space. Let B be a basis
of V and let [¢]p = [¢]pp be the matrix with entries ¢(e;, e;).

Lemma. Let ¢ be a bilinear form V X V' — F. Then if B, B’ are bases for V, and P = [I]ps g
we have

[¢]p: = PT[¢]gP

Proof. This is a special case of the general change of basis formula. O
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Definition. Let A,B € M, (F) be square matrices. We say that A, B are congruent if there
exists P € M,,(F) such that A = PTBP.

Remark. Congruence is an equivalence relation.

Definition. A bilinear form ¢ on V is symmetric if, for all u, v € V, we have
¢(u,v) = (v, u)

Remark. If A is a square matrix, we say A is symmetric if A = AT. Equivalently, A;; = Aj; for all i, j.
So ¢ is symmetric if and only if [¢]p is symmetric for any basis B. Note further that to represent ¢ by
a diagonal matrix in some basis B, it must necessarily be symmetric, since

PTAP=D = D=DT=(PTAP)' = PTATP = A= AT
9.2 Quadratic forms

Definition. Amap Q: V — F is a quadratic form if there exists a bilinear form ¢ : VXV —
F such that, forallu € V,

Q(w) = ¢(u, u)

So a quadratic form is the restriction of a bilinear form to the diagonal.

Remark. Let B = (e;) be a basis of V. Let A = [¢]5 = (¢(e;, ¢j)) = (a;j). Then, foru = 3}, x;e; € V,

Q) = p(u,u) = 4’(2 xiei’ijej> =Y > xixiple ) = Y, ¥ xiXja;;
i 7 T T

We can check that this is equal to
Q(u) = xTAx

where [u]z = x. Note further that

xTAx = Zzaijxixj = ZZaﬁxixj = ZZ aij ;ajixixj = xT A‘;AT X
i) i b

N’
symmetric

So we can always express the quadratic form as a symmetric matrix in any basis.

Proposition. If Q : V — Fisa quadratic form, then there exists a unique symmetric bilinear
form ¢ : V X V — F such that Q(u) = ¢(u, u).

Proof. Let 1 be a bilinear form on V such that for all u € V, we have Q(u) = ¥(u, u). Then, let

$at,0) =3[9 0) + $(0, 0]
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Certainly ¢ is a bilinear form and symmetric. Further, ¢(u, u) = p(u,u) = Q(u). So there exists a
symmetric bilinear form ¢ such that Q(u) = ¢(u, u), so it suffices to prove uniqueness. Let ¢ be a
symmetric bilinear form such that for all u € V we have Q(u) = ¢(u, u). Then, we can find

Qu+v) =¢(u+v,u+v)=¢u,u)+ $@,v) + 2¢(u,v)
Thus ¢(u, v) is defined uniquely by Q, since
26(u,v) = Qu + 1) ~ Q@) — Q(v)
So ¢ is unique (when 2 is invertible in F). This identity for ¢(u,v) is known as the polarisation
identity. O

9.3 Diagonalisation of symmetric bilinear forms

Theorem. Let¢: V X V — F be a symmetric bilinear form, where V is finite-dimensional.
Then there exists a basis B of V such that [¢]p is diagonal.

Proof. By induction on the dimension, suppose the theorem holds for all dimensions less than n for
n > 2 If¢(u,u) = 0forallu € V, then ¢ = 0 by the polarisation identity, which is diagonal.
Otherwise ¢(ey,e;) # 0 for some e; € V. Let

L
U=(e1) ={veV: ¢(e,v) =0}
This is a vector subspace of V, which is in particular
ker{¢(e,, -): V - F}

By the rank-nullity theorem, dim U = n — 1. We now claim that U + (e,) is a direct sum. Indeed, for
v = (e;) N U, we have v = de; and ¢(e;,v) = 0. Hence A = 0, since by assumption ¢(e;,e;) # 0. So
we find a basis B’ = (e, ... ,e,) of U, which we extend by e; to B = (ey, €5, ..., ;). Since U @ (e;) has
dimension n, this is a basis of V. Under this basis, we find

_ [$(eq,eq) 0
“”B—( 0 [¢|U]B,)

because
p(er,ej) = ¢(ej,e) =0

for all j > 2. By the inductive hypothesis we can take a basis B’ such that the restricted ¢ to be
diagonal, so [¢]p is diagonal in this basis. O

Example. Let V = R3 and choose the canonical basis (e;). Let
Q(x1, X5, X3) = X3 + X3 + 2X3 4+ 2X1 X, + 2X1X3 — 2X,X3

Then, if Q(x1, x5, x3) = xTAx, we have



Note that the off-diagonal terms are halved from their coefficients since in the expansion of xTAx
they are included twice. Then, we can find a basis in which A is diagonal. We could use the above
algorithm to find a basis, or complete the square in each component. We can write

Q(x1, X3, X3) = (X1 + X5 + X3)? + X% — 43,%3 = (X1 + X5 + X3)% + (x5 — 2x,) — (2x,)?

This yields a new coordinate basis x}, x}, x;. Then P~'AP is diagonal. P is given by

X} 1 1 1\ /x

x)=10 -2 1 (x2

x5 0 -2 0/ \x;
T

9.4 Sylvester’s law
Corollary. If F = C, for any symmetric bilinear form ¢ there exists a basis of V such that
[¢]5 is
I, 0
0 0

Proof. Since any symmetric bilinear form ¢ in a finite-dimensional F-vector space V can be diagon-
alised, let E = (ey, ..., €,) such that [¢]f is diagonal with diagonal entries @;. Order the q; such that
a; isnonzero for 1 < i < r, and the remaining values (if any) are zero. Fori < r, let1/qa; be a choice of

a complex root for a;. Then v; = \/e—’_ fori <randv; =e; fori > r gives the basis B as required. [
aj

Corollary. Every symmetric matrix of M,,(C) is congruent to a unique matrix of the form
I, 0
0 O

where r is the rank of the matrix.

Corollary. Let F = R, and let V be a finite-dimensional R-vector space. Let ¢ be a symmetric
bilinear form on V. Then there exists a basis B = (vy, ..., U,) of V such that

Ip 0O 0
[¢]B =10 _Iq 0
0 0O O

for some integers p, q.

Proof. Since square roots do not necessarily exist in R, we cannot use the form above. We first diag-
onalise the bilinear form in some basis E. Then, reorder and group the q; into a positive group of size
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p, a negative group of size g, and a zero group. Then,

Loiefl,..,p

Vai
vi={—— ie{p+1,...p+q}
1 \/_—al ’ ’
e; ie{p+q+1,..,n}
This gives a new basis as required. O

Definition. Let F = R. The signature of a bilinear form ¢ is

s(9)=p—q

where p and q are defined as in the corollary above.

Theorem. Let F = R. Let V be a finite-dimensional R-vector space. If a real symmetric
bilinear form is represented by some matrix

I, 0 0
0 —I, 0
0 0 0

in some basis B, and some other matrix

Iy 0 0
0 Iy 0
0 0 0

in another basis B’, then p = p’ and q = q’'. Thus, the signature of the matrix is well defined.

Definition. Let ¢ be a symmetric bilinear form on a real vector space V. We say that
(i) ¢ is positive definite if ¢(u, u) > 0 for all nonzerou € V;
(ii) ¢ is positive semidefinite if $(u,u) > 0 forallu € V;
(iii) ¢ is negative definite or negative semidefinite if (u, u) < 0 or $(u, u) < 0 respectively for
all nonzerou € V.
I, 0
(6 o)

is positive definite for r = n, and positive semidefinite for r < n.

Example. The matrix

We now prove Sylvester’s law.

Proof. Inorder to prove uniqueness of p, we will characterise the matrix in a way that does not depend
on the basis. In particular, we will show that p is the largest dimension of a vector subspace of V such
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that the restriction of ¢ on this subspace is positive definite. Suppose we have B = (v, ..., v,) and

We consider
X =(v1,...,0p)

Then we can easily compute that ¢| is positive definite. Let

Y = (Upy1s s Un)

Then, as above, ¢|, is negative semidefinite. Suppose that ¢ is positive definite on another subspace
X'. In this case, Y N X’ = {0}, since if y € Y N X’ we must have Q(y) < 0, but since y € X’ we have
y=0.Thus, Y +X =Y ® X', son=dimV >dimY + dimX'. ButdimY = n— p,sodimX’ < p.
The same argument can be executed for g, hence both p and q are independent of basis. O

9.5 Kernels of bilinear forms
Definition. LetK = {v € V: Yu € V,¢(u,v) = 0}. This is the kernel of the bilinear form.

Remark. By the rank-nullity theorem,
dimK +rank¢ =n

Using the above notation, we can show that there exists a subspace T of dimension n — (p + q) +
min{p, q} such that ¢|, = 0. Indeed, let B = (v, ..., v,) such that

The quadratic form has a zero subspace of dimension n — (p + q) in the bottom right. But by setting

T = {1 + Upy1s s Vg + Upigs Uptgads - » Un}

we can combine the positive and negative blocks (assuming here that p > q) to produce more lin-
early independent elements of the kernel. In particular, dim T is the largest possible dimension of a
subspace T’ of V such that ¢|,, = 0.

9.6 Sesquilinear forms

Let F = C. The standard inner product on C" is defined to be

(-2

This is not a bilinear form on C due to the complex conjugate, it is linear in the first entry.

58



Definition. Let V, W be C-vector spaces. A form ¢: V X W — C is called sesquilinear if it
is linear in the first entry, and

¢V, Lhw + Lw,) = I1915(1’, wy) + I24”(0’ w,)

so it is antilinear with respect to the second entry.

Lemma. Let B = (vy,...,V,,) be a basis of V and C = (w;,...,w,) be a basis of W. Let
[¢]5,c = (¢(v;, w;)). Then,
¢(v, w) = [v][¢]p clwlc

Proof. Let B, B’ be bases of V and C, C’ be bases of W. Let P = [I]g/ g and Q = [I]¢r ¢. Then

(¢l cr = PT[¢lp.cQ

9.7 Hermitian forms

Definition. Let V be a finite-dimensional C-vector space. Let ¢ be a sesquilinear form on V.
Then ¢ is Hermitian if, for all u,v € V,

$(u, v) = $(v, u)

Remark. If ¢ is Hermitian, then ¢(u, u) = ¢(u, u) € R. Further, p(Au, lu) = |/1|2¢(u, u). This allows
us to define positive and negative definite Hermitian forms.

Lemma. A sesquilinear form ¢: V X V — C is Hermitian if and only if, for any basis B of
V7

[¢]5 = [$]%

- __ —
PVOOf: LetA = [¢]B = (au) Then ajj = ¢(ei,ej), and aji = ¢(€j,€i) = ¢(€i,6j) = ajj. S0A =A.
Conversely suppose that [¢]p = A = ZT. Now let

n n
u= Z/liei; v= Zmei
i=1 i=1

Then,
n n
o000 = o S D) = 3 3
=1 i=1j=1
Further,
n n n n
$(v,u) = ¢<Z Miei’zfliei) =2 > uik
i=1 i=1 i=1j=1
which is equivalent. Hence ¢ is Hermitian. O
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9.8 Polarisation identity

A Hermitian form ¢ on a complex vector space V is entirely determined by a quadraticform Q: V —
R such that v —» ¢(v, v) by the formula

$(at,0) = 310G + ) = Qu = v) +iQu + iv) — IQu — V)]
9.9 Hermitian formulation of Sylvester’s law

Theorem. Let V be a finite-dimensional C-vector space. Let ¢ : V X V — C be a Hermitian
form on V. Then there exists a basis B = (vy, ..., U,) of V such that

I, 0 0
(¢l = (0 —Iy 0)
0 0 0

where p, g depend only on ¢ and not B.

Proof. The following is a sketch proof; it is nearly identical to the case of real symmetric bilinear
forms. If ¢ = 0, existence is trivial. Otherwise, using the polarisation identity there exists e; # 0
such that ¢(e;,e;) # 0. Let

e
V= — A — $(vy,0y) = £1

Vigler, er)l

Consider the orthogonal space W = {w € V' : ¢(v;, w) = 0}. We can check, arguing analogously to
the real case, that V' = (v;) @ W. Hence, we can inductively diagonalise ¢.

D, q are unique. Indeed, we can prove that p is the maximal dimension of a subspace on which ¢
is positive definite (which is well-defined since ¢(u,u) € R). The geometric interpretation of q is
similar. O

9.10 Skew-symmetric forms

Definition. Let V be a finite-dimensional R-vector space. Let ¢ be a bilinear form on V.
Then ¢ is skew-symmetric if, for all u,v € V,

¢(u’ U) = _¢(U’ u)

Remark. ¢(u,u) = —p(u,u) = 0. Also, in any basis B of V, we have [¢p]z = —[¢]§. Any real matrix
can be decomposed as the sum

A= %(A +AT)+ %(A —AT)

where the first summand is symmetric and the second is skew-symmetric.
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9.11 Skew-symmetric formulation of Sylvester’s law

Theorem. Let V be a finite-dimensional R-vector space. Let ¢: V X V — R be a skew-
symmetric form on V. Then there exists a basis

B = (01, Wy, U2, Wy, o s Vs Wins Vamg 15 Vameg 25 -+ Un)

of V such that

Corollary. Skew-symmetric matrices have an even rank.

Proof. This is again very similar to the previous case. We will perform an inductive step on the
dimension of V. If ¢ # 0, there exist v, w; such that ¢,(v;,w;) # 0. After scaling one of the
vectors, we can assume ¢(v;, w;) = 1. Since ¢ is skew-symmetric, ¢(w;,v;) = —1. Then v;, w; are
linearly independent; if they were linearly dependent we would have ¢(v,, w;) = ¢(v;,dv;) = 0. Let
U= (v, w)andlet W = {v e V: ¢(v;,v) = $(w,,v) = 0} and we can show V = U @ W. Then
induction gives the required result. O

10 Inner product spaces

10.1 Definition

Definition. Let V be a vector space over R or C. A scalar product or inner product is a
positive-definite symmetric (respectively Hermitian) bilinear form ¢ on V. We write

$(u, v) = (u, )

V,when equipped with this inner product, is called a real (respectively complex) inner product
space.

Example. In C", we define

n
(y) =2 Xy,
i=1
Example. Let V = C°([0,1], C). Then we can define

1
m9=ffmmMr
0

This is the I? scalar product.
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Example. Letw: [0,1]: R where R} = R, \ {0} and define
1
F9= [ FOROu
0

Remark. Typically it suffices to check (u,u) = 0 = u = 0 since linearity and positivity are usually
trivial.

Definition. Let V be an inner product space. Then for v € V, the norm of v induced by the

inner product is defined by
1/2

l[oll = (v, v))

This is real, and positive if v # 0.

10.2 Cauchy-Schwarz inequality

Lemma. For an inner product space,

|(w, V) < flafl - |b

Proof. Lett € F. Then,
0 < [ltu— vl = (tu — v, tu — v) = £ (u, u) — uu, vy — £ (v, u) + o]
Since the inner product is Hermitian,

2 2 2
0 < [t flull” + [lvl” — 2 Re(t (u, v))

By choosing

_ o)

= 2

[
we have 5 5
0< K1 42— oge (—|<“’ o) )
el [l

Since the term under the real part operator is real, the result holds. O

Note that equality implies collinearity in the Cauchy-Schwarz inequality.
Corollary (triangle inequality). In an inner product space,

llu + vl < lufl + (vl

Proof. We have
2 2 2
Ju+ ol = e+ v,u+ vy = 2] + 2Re(Gut, 0) + 0l < 2| + ol + 20l - ol = Claal + ol)?

O

62



Remark. Any inner product induces a norm, but not all norms derive from scalar products.

10.3 Orthogonal and orthonormal sets

Definition. A set (ey,...,ey) of vectors of V is said to be orthogonal if (el-,ej> = 0 for all
i # j. The set is said to be orthonormal if it is orthogonal and |le;|| = 1 for all i. In this case,

(eirej) = ij.

Lemma. If (e, ..., e,) are orthogonal and nonzero, then they are linearly independent. Fur-
ther, let v € ({e;}). Then,
(v.e))

%
o]

k
j=1

Proof. Suppose

k
Z /1iei =0
i=1
Then,

0= <Zk:/1i,ej> = 0= Zk:/h (ei.e;)

i=1 i=1

Thus /1j = 0 for all j. Further, for v in the span of these vectors,

k 2
(v,ej) = Zl/li (eiej) = /IJ'Hej”
i=

10.4 Parseval’s identity

Corollary. Let V be a finite-dimensional inner product space. Let (ey, ... , €,,) be an orthonor-
mal basis. Then, for any vectors u,v € V, we have

o)=Y (e v.e)
i=1

Hence,

n
2 2
luall” = 3 Ku e0)]
i=1

Proof. By orthonormality,
n n
u= Z (u,e;ye;; v= Z (v, e;)e;
i=1 i=1
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Hence, by sesquilinearity,

(wv) = Y (ue;) (vney)

i=1

By taking u = v we find
n
2 2
ll” = (w,uy = 7 K ep)]
i=1

10.5 Gram-Schmidt orthogonalisation process

Theorem. Let V be an inner product space. Let (v;);cr be a linearly independent family of
vectors such that I is countable. Then there exists a family (e; );c; of orthonormal vectors such
that forall k > 1,

(U1 eee, V) = (€15 -0 s €)

Proof. This proof is an explicit algorithm to compute the family (e;), which will be computed by

induction on k. For k = 1, take e; = ”0_1” Inductively, suppose (e, ... , €) satisfy the conditions as
U1

above. Then we will find a valid ej.;. We define
k
e/k+1 =Uky1 — Z (Uk+1-€0) €
i=1

This ensures that the inner product between ¢}, ; and any basis vector e; is zero, while maintaining
the same span. Suppose e}, = 0. Then, vy € (e, ...,ex) = (U1, ..., V) Which contradicts the fact
that the family is free. Thus,

’
_ €k+1
€k+1 = ” ,

ek+1”

satisfies the requirements. O

Corollary. In finite-dimensional inner product spaces, there always exists an orthonormal
basis. In particular, any orthonormal set of vectors can be extended into an orthonormal basis.

Remark. Let A € M,(R) be a real-valued (or complex-valued) matrix. Then, the column vectors of
A are orthogonal if ATA = I (or ATA = I in the complex-valued case).

10.6 Orthogonality of matrices

Definition. A matrix A € M,(R) is orthogonal if ATA = I, hence AT = A~!. A matrix
A € M,(C) is unitary if ATA = I, hence A" = A1,
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Proposition. Let A be a square, non-singular, real-valued (or complex-valued) matrix. Then
A can be written as A = RT where T is upper triangular and R is orthogonal (or respectively
unitary).

Proof. We apply the Gram-Schmidt process to the column vectors of the matrix. This gives us an
orthonormal set of vectors, which gives an upper triangular matrix in this new basis. O

10.7 Orthogonal complement and projection

Definition. Let V be an inner product space. Let V;,V, < V. Then we say that V is the
orthogonal direct sum of V; and V, if V =V} @ V, and for all vectors v, € V;,v, € V, we have

L
(U1,V,) = 0. When this holds, we write V = V; @ V.

Remark. If for all vectors v;, v, we have (v,,0,) = 0,thenv e VNV, = ||v||2 =0 = v=0.
Hence the sum is always direct if the subspaces are orthogonal.

Definition. Let V be an inner product space and let W < V. We define the orthogonal of W
to be
Wi={veV:VVweW, (v,w)=0}

L
Lemma. For any inner product space V and any subspace W < V,wehave V =W @ wi.

Proof. First note that W+ < V. Then, ifw € W, w € W+, we have
2
[w]|” = (w,w) =0

since they are orthogonal, so the vector subspaces intersect only in the zero vector. Now, we need to
showV = W+W+. Let(ey, ... , e;) be an orthonormal basis of W and extend it into (e, ... , €, €x 415 -+ » €1)
which can be made orthonormal. Then, (ey1, ..., €,) are elements of W+ and form a basis. O

10.8 Projection maps

Definition. Suppose V = U@ W, so U is a complement of W in V. Then, we definez: V —
W which maps v = u + w to w. This is well defined, since the sum is direct. 7 is linear, and
7% = 7. We say that 7 is the projection operator onto W.

Remark. The map ¢ — 7 is the projection onto U, where t is the identity map.
Lemma. Let V be an inner product space. Let W < V be a finite-dimensional subspace. Let

(e;, --- »ex) be an orthonormal basis for W. Then,

() 7(v) = Tp_, (v,e;)e;3 and
(i) forallv e V,w € W, |lv — m(v)|| < |lv — w| with equality if and only if w = 7(v), hence
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7(v) is the point in W closest to v.

Proof. We define 7(v) = Z;;l (v,e;)e;. Since W = ({ex}), m(v) € W forallv € V. Then,v = (v —
7(v)) + 7(v) has a term in W. We claim that the remaining term is in the orthogonal; v — 7(v) € W+.
Indeed, we must show (v — 7(v), w) = 0 for all w € W. Equivalently, (v — 7(v), e;) = 0 for all basis
vectors e; of W. We can explicitly compute

k k
(v—7(v),ej) = (v,ej) — <Z (U,ei>ei,ej> ve;) Z(U e;)(eiej) = (v.ej) —(v,ej) =0

i=1

Hence, v = (v — 7(v)) + 7(v) is a decomposition into W and W+. Since W n W+ = {0}, we have

1
V =W @ W+. For the second part,letv € V, w € W, and we compute
2

lo = w]® = v —72@) +7@) —w| = lv -7 + |7(V) — w|* = lv - ZW)|*
ewl ew
with equality if and only if w = 7(v). O

10.9 Adjoint maps

Definition. Let V, W be finite-dimensional inner product spaces. Let « € L(V, W). Then
there exists a unique linear map o* : W — V such that for allv,w € V, W,

(a(v), w) = (v, a”(w))

Moreover, if B is an orthonormal basis of V, and C is an orthonormal basis of W, then

[a*]cp = (m)T

Proof. Let B = (vy,...,0,) and C = (wy,...,Wp,) and A = [a]p ¢ = (a;;). To check existence, we

define [a*]c g = A = (cij) and explicitly check the definition. By orthogonality,

(a2 Awi). 2 mwy) = <Z“kzwk’zﬂjwj>=%;/1iaﬁl7j

Then,

<E /Iivi,oc*<2 ,ujwj» = E Aiv;, E HjCkjVk _Z/licij/xj
_ — —
i Js L,j

So equality requires ¢;; = aj;. Uniqueness follows from the above; the expansions are equivalent for
any vector if and only if ¢;; = aj;. O

Remark. The same notation, a*, is used for the adjoint as just defined, and the dual map as defined
before. If V, W are real product inner spaces and a € L(V,W), we define ¢ : V — V* such that
P(v)(x) = (x,v) and similarly for W. Then we can check that the adjoint for « is given by the com-
position of ¢ from V' — V*, then applying the dual, then applying the inverse of ¢ for W.
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10.10 Self-adjoint and isometric maps

Definition. Let V be a finite-dimensional inner product space, and « be an endomorphism
of V. Let a* € L(V) be the adjoint map. Then,

(i) the condition (av, w) = (v, aw) is equivalent to the condition « = a*, and such an «
is called self-adjoint (for R we call such endomorphisms symmetric, and for C we call
such endomorphisms Hermitian);

(ii) the condition (av, aw) = (v, w) is equivalent to the condition a* = a~", and such an «
is called an isometry (for R it is called orthogonal, and for C it is called unitary).

1

Proposition. The conditions for isometries defined as above are equivalent.

Proof. Suppose {(av, aw) = (v, w). Then for v = w, we find ||ocv||2 = ||v||2, so o preserves the norm.
In particular, this implies ker & = {0}. Since « is an endomorphism and V is finite-dimensional, « is
bijective. Then forallv,w € V,

(v, a*(w)) = (av, w) = (av, a(a " (w))) = (v,a™ (w))
Hence a* = a~!. Conversely, if «* = a~! we have
(av, aw) = (v, a* (aw)) = (v, w)

as required. O

Remark. Using the polarisation identity, we can show that « is isometric if and only if for allv € V,

el = flo]l-

Lemma. Let V be a finite-dimensional real (or complex) inner product space. Then for a €
L(V),
(i) aisself-adjointif and only if for all orthonormal bases B of V, we have [¢] g is symmetric
(or Hermitian);
(ii) ais an isometry if and only if for all orthonormal bases B of V, we have [a]p is ortho-
gonal (or unitary).

Proof. Let B be an orthonormal basis for V. Then we know [a*]g = [oc];;. We can then check that
[a]} = [a]g and [a]}; = [a]5" respectively. O
Definition. For F = R, we define the orthogonal group of V by
O(V) ={a € L(V): aisan isometry}

Note that O(V) is bijective with the set of orthogonal bases of V. For F = C, we define the
unitary group of V by
UWV)={a € L(V): aisan isometry}

Again, note that U(V) is bijective with the set of orthogonal bases of V.
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10.11 Spectral theory for self-adjoint maps

Spectral theory is the study of the spectrum of operators. Recall that in finite-dimensional inner
product spaces V, W, a € L(V, W) yields the adjoint a* € L(W, V) such thatforallv € V,w € W,
we have (a(v), w) = (v, a*(w)).

Lemma. Let V be a finite-dimensional inner product space. Let a € L(V) be a self-adjoint
endomorphism. Then « has real eigenvalues, and eigenvectors of a with respect to different
eigenvalues are orthogonal.

Proof. Suppose 1 € C, v € V nonzero such that a(v) = Av. Then, (1v,v) = /1||v||2 and also
(aw, v) = (v, av) = (v, ) = A|v||?
Hence A = A since v # 0. Now, suppose u # A and w € V nonzero such that a(w) = yw. Then,
A0, w) = {av,w) = (v, aw) = u{v, w) = u{v,w)

So if A # u we must have (v, w) = 0. O

Theorem (spectral theorem for self-adjoint maps). Let V be a finite-dimensional inner
product space. Let a € L(V) be self-adjoint. Then V has an orthonormal basis of eigenvectors
of a. Hence « is diagonalisable in an orthonormal basis.

Proof. We will consider induction on the dimension of V. Suppose A = [a]g with respect to the
fundamental basis B. By the fundamental theorem of algebra, we know that y, (1) has a (complex)
root. But since 4 is an eigenvalue of a and « is self-adjoint, A € R. Now, we choose an eigenvector
v; = V \ {0} such that a(v;) = Av;. We can set ||v;]| = 1 by linearity. Let U = (vl)l < V. We
then observe that U is stable by a; a(U) < U. Indeed, let u € U. Then {(a(u),v;) = {(u,a(v,)) =
A{u,v;) = 0 by orthogonality. Hence a(u) € U. We can then restrict « to the domain U, and by

L
induction we can then choose an orthonormal basis of eigenvectors for U. Since V = (v;) @ U we
have an orthonormal basis of eigenvectors for V when including v;. O

Corollary. Let V be a finite-dimensional inner product space. Let « € L(V) be self-adjoint.
Then V is the orthogonal direct sum of the eigenspaces of .

10.12 Spectral theory for unitary maps

Lemma. Let V be a complex inner product space. Let a be unitary, so a* = a~!. Then
all eigenvalues of a have unit norm. Eigenvectors corresponding to different eigenvalues are
orthogonal.
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Proof. Let A € C,v € V '\ {0} such that a(v) = Av. First, 1 # 0 since « is invertible, and in particular
ker o = {0}. Since v = Aa~1(v), we can compute

A{v,v) = (Av,v) = (av,v) = (v,a™'v) = <v, %v> = %(v, v)

Hence (/1/_1 — 1)||v||2 = 0 giving |4| = 1. Further, suppose u € C and w € V' \ {0} such that a(w) =
pw, A # u. Then

(v, wy = (Av,w) = (av,w) = (v,a"'w) = <v, iw> = % (v,w) = u (v, w)

since uu = 1. O

Theorem (spectral theorem for unitary maps). Let V be a finite-dimensional complex inner
product space. Let « € L(V) be unitary. Then V has an orthonormal basis of eigenvectors of
a. Hence «a is diagonalisable in an orthonormal basis.

Proof. Let A = [a]g where B is an orthonormal basis. Then y,4 (1) has a complex root A. As before,

let v; # O such that a(v;) = Av; and ||Jv,]| = 1. Let U = (vl)l, and we claim that a(U) = U. Indeed,
let u € U, and we find

(), v1) = (u, " (vy)) = <u, %vl> - %@, vy)

Since (u,v;) = 0, we have a(u) € U. Hence, « restricted to U is a unitary endomorphism of U. By
induction we have an orthonormal basis of eigenvectors of « for U and hence for V. O

Remark. We used the fact that the field is complex to find an eigenvalue. In general, a real-valued
orthonormal matrix A giving AAT = I cannot be diagonalised over R. For example, consider

A = [©0s 6 —sinb
“\sin@ cos6
This is orthogonal and normalised. However, y4(1) = 1 + 2Acos8 + A2 hence 1 = e* which are
complex in the general case.
10.13 Application to bilinear forms
We wish to extend the previous statements about spectral theory into statements about bilinear forms.
Corollary. Let A € M, (R) (or M,,(C)) be a symmetric (or respectively Hermitian) matrix.

Then there exists an orthonormal (respectively unitary) matrix P such that PTAP (or PTAP)
is diagonal with real-valued entries.

Proof. Using the standard inner product, A € L(F") is self-adjoint and hence there exists an or-
thonormal basis B of F" such that A is diagonal in this basis. Let P = (vy, ..., ;) be the matrix of
this basis. Since B is orthonormal, P is orthogonal (or unitary). The result follows from the fact that
P~'AP is diagonal. The eigenvalues are real, hence the diagonal matrix is real. O
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Corollary. Let V be a finite-dimensional real (or complex) inner product space. Let ¢ : V X
V — F be a symmetric (or Hermitian) bilinear form. Then, there exists an orthonormal basis
B of V such that [¢]p is diagonal.

Proof. AT = A (or respectively AT = A), hence there exists an orthogonal (respectively unitary)
matrix P such that P~1AP is diagonal. Let (v;) be the ith row of P! = PT (or P"). Then (vy, ..., v,) is
an orthonormal basis B of V such that [¢]; is this diagonal matrix. O

Remark. The diagonal entries of P~'AP are the eigenvalues of A. Moreover, we can define the sig-
nature s(¢) to be the difference between the number of positive eigenvalues of A and the number of
negative eigenvalues of A.

10.14 Simultaneous diagonalisation

Corollary. Let V be a finite-dimensional real (or complex) vector space. Let ¢, 3 be symmet-
ric (or Hermitian) bilinear forms on V. Let ¢ be positive definite. Then there exists a basis
(vy, ..., Uy) of V with respect to which ¢ and i are represented with a diagonal matrix.

Proof. Since ¢ is positive definite, V' equipped with ¢ is a finite-dimensional inner product space
where (u,v) = ¢(u,v). Hence, there exists a basis of V in which ¢ is represented by a diagonal
matrix, which is orthonormal with respect to the inner product defined by ¢. Then, ¢ in this basis is

represented by the identity matrix given by ¢(v;, v;) = <vi, v j> = §;j, which is diagonal. O

Corollary. Let A,B € M,(R) (or C) which are symmetric (or Hermitian). Suppose for all
x # 0 we have xTAx > 0, so A is positive definite. Then there exists an invertible matrix
Q € M, (R) (or C) such that QTAQ (or QTAQ) and QTBQ (or Q"BQ) are diagonal.

Proof. A induces a quadratic form Q(x) = x"Ax which is positive definite by assumption. Similarly,
Q(x) = x"Bx is induced by B. Then we can apply the previous corollary and change basis. O
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