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1 Vector spaces and linear dependence
1.1 Vector spaces

Definition. Let 𝐹 be an arbitrary field. An 𝐹-vector space is an abelian group (𝑉, +) equipped
with a function

𝐹 × 𝑉 → 𝑉; (𝜆, 𝑣) ↦ 𝜆𝑣
such that
(i) 𝜆(𝑣1 + 𝑣2) = 𝜆𝑣1 + 𝜆𝑣2
(ii) (𝜆1 + 𝜆2)𝑣 = 𝜆1𝑣 + 𝜆2𝑣
(iii) 𝜆(𝜇𝑣) = (𝜆𝜇)𝑣
(iv) 1𝑣 = 𝑣
Such a vector space may also be called a vector space over 𝐹.

Example. Let 𝑋 be a set, and define ℝ𝑋 = {𝑓∶ 𝑋 → ℝ}. Then ℝ𝑋 is an ℝ-vector space, where
(𝑓1 + 𝑓2)(𝑥) = 𝑓1(𝑥) + 𝑓2(𝑥).
Example. Define𝑀𝑛,𝑚(𝐹) to be the set of 𝑛×𝑚 𝐹-valuedmatrices. This is an 𝐹-vector space, where
the sum of matrices is computed elementwise.

Remark. The axioms of scalar multiplication imply that ∀𝑣 ∈ 𝑉, 0𝐹𝑣 = 0𝑉 .

1.2 Subspaces

Definition. Let𝑉 be an 𝐹-vector space. The subset𝑈 ⊆ 𝑉 is a vector subspace of 𝑉 , denoted
𝑈 ≤ 𝑉 , if
(i) 0𝑉 ∈ 𝑈
(ii) 𝑢1, 𝑢2 ∈ 𝑈 ⟹ 𝑢1 + 𝑢2 ∈ 𝑈
(iii) (𝜆, 𝑢) ∈ 𝐹 × 𝑈 ⟹ 𝜆𝑢 ∈ 𝑈
Conditions (ii) and (iii) are equivalent to

∀𝜆1, 𝜆2 ∈ 𝐹, ∀𝑢1, 𝑢2 ∈ 𝑈, 𝜆1𝑢1 + 𝜆2𝑢2 ∈ 𝑈

This means that 𝑈 is stable by addition and scalar multiplication.

Proposition. If 𝑉 is an 𝐹-vector space, and 𝑈 ≤ 𝑉 , then 𝑈 is an 𝐹-vector space.

Example. Let 𝑉 = ℝℝ be the space of functions ℝ → ℝ. The set 𝐶(ℝ) of continuous real functions
is a subspace of 𝑉 . The set ℙ of polynomials is a subspace of 𝐶(ℝ).
Example. Consider the subset of ℝ3 such that 𝑥1 + 𝑥2 + 𝑥3 = 𝑡 for some real 𝑡. This is a subspace
for 𝑡 = 0 only, since no other 𝑡 values yield the origin as a member of the subset.

Proposition. Let 𝑉 be an 𝐹-vector space. Let 𝑈,𝑊 ≤ 𝑉 . Then 𝑈 ∩𝑊 is a subspace of 𝑉 .
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Proof. First, note 0𝑉 ∈ 𝑈, 0𝑉 ∈ 𝑊 ⟹ 0𝑉 ∈ 𝑈 ∩𝑊 . Now, consider stability:

𝜆1, 𝜆2 ∈ 𝐹, 𝑣1, 𝑣2 ∈ 𝑈 ∩𝑊 ⟹ 𝜆1𝑣1 + 𝜆2𝑣2 ∈ 𝑈, 𝜆1𝑣1𝜆2𝑣2 ∈ 𝑊

Hence stability holds.

1.3 Sum of subspaces
Remark. The union of two subspaces is not, in general, a subspace. For instance, considerℝ, 𝑖ℝ ⊂ ℂ.
Their union does not span the space; for example, 1 + 𝑖 ∉ ℝ ∪ 𝑖ℝ.

Definition. Let 𝑉 be an 𝐹-vector space. Let 𝑈,𝑊 ≤ 𝑉 . The sum 𝑈 +𝑊 is defined to be the
set

𝑈 +𝑊 = {𝑢 + 𝑤∶ 𝑢 ∈ 𝑈,𝑤 ∈ 𝑊}

Proposition. 𝑈 +𝑊 is a subspace of 𝑉 .

Proof. First, note 0𝑈+𝑊 = 0𝑈 + 0𝑊 = 0𝑉 . Then, for 𝜆1, 𝜆2 ∈ 𝐹, and 𝑢 ∈ 𝑈,𝑤 ∈ 𝑊 ,

𝜆1𝑢 + 𝜆2𝑤 = 𝑢′ + 𝑤′ ∈ 𝑈 +𝑊

since𝑢′ ∈ 𝑈,𝑤′ ∈ 𝑊 . We can decompose a vector from𝑈+𝑊 into its𝑈 and𝑊 components. Adding
these components independently (noting that𝑉 is abelian) yields the requirements of a subspace.

Proposition. The sum 𝑈 +𝑊 is the smallest subspace of 𝑉 that contains both 𝑈 and𝑊 .

1.4 Quotients

Definition. Let 𝑉 be an 𝐹-vector space. Let 𝑈 ≤ 𝑉 . The quotient space 𝑉/𝑈 is the abelian
group 𝑉/𝑈 equipped with the scalar multiplication function

𝐹 × 𝑉/𝑈 → 𝑉/𝑈; (𝜆, 𝑣 + 𝑈) ↦ 𝜆𝑣 + 𝑈

Proposition. 𝑉/𝑈 is an 𝐹-vector space.

Proof. We must check that the multiplication operation is well-defined. Indeed, suppose 𝑣1 + 𝑈 =
𝑣2 + 𝑈 . Then,

𝑣1 − 𝑣2 ∈ 𝑈 ⟹ 𝜆(𝑣1 − 𝑣2) ∈ 𝑈 ⟹ 𝜆𝑣1 + 𝑈 = 𝜆𝑣2 + 𝑈 ∈ 𝑉/𝑈
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1.5 Span

Definition. Let 𝑉 be an 𝐹-vector space. Let 𝑆 ⊂ 𝑉 . We define the span of 𝑆, written ⟨𝑆⟩, as
the set of finite linear combinations of elements of 𝑆. In particular,

⟨𝑆⟩ = {∑
𝑠∈𝑆

𝜆𝑠𝑣𝑠 ∶ 𝜆𝑠 ∈ 𝐹, 𝑣𝑠 ∈ 𝑆, only finitely many nonzero 𝜆𝑠}

By convention, we specify
⟨∅⟩ = {0}

so that all spans are subspaces.

Remark. ⟨𝑆⟩ is the smallest vector subspace of 𝑉 containing 𝑆.
Example. Let 𝑉 = ℝ3, and

𝑆 = {(
1
0
0
) , (

0
1
2
)}, (

3
−2
−4

)

Then we can check that

⟨𝑆⟩ = {(
𝑎
𝑏
2𝑏
) ∶ (𝑎, 𝑏) ∈ ℝ}

Example. Let 𝑉 = ℝ𝑛. We define

𝑒𝑖 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0
⋮
0
1
0
⋮
0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

where the 1 is in the 𝑖th position. Then 𝑉 = ⟨(𝑒𝑖)1≤𝑖≤𝑛⟩.
Example. Let 𝑋 be a set, and ℝ𝑋 = {𝑓∶ 𝑋 → ℝ}. Then let 𝑆𝑥 ∶ 𝑋 → ℝ be defined by

𝑆𝑥(𝑦) = {1 𝑦 = 𝑥
0 otherwise

Then, ⟨(𝑆𝑥)𝑥∈𝑋 ⟩ = {𝑓 ∈ ℝ𝑋 ∶ 𝑓 has finite support}, where the support of𝑓 is defined to be {𝑥∶ 𝑓(𝑥) ≠ 0}.

1.6 Dimensionality

Definition. Let 𝑉 be an 𝐹-vector space. Let 𝑆 ⊂ 𝑉 . We say that 𝑆 spans 𝑉 if ⟨𝑆⟩ = 𝑉 . If 𝑆
spans 𝑉 , we say that 𝑆 is a generating family of 𝑉 .
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Definition. Let 𝑉 be an 𝐹-vector space. 𝑉 is finite-dimensional if it is spanned by a finite
set.

Example. Consider the set 𝑉 = ℙ[𝑥] which is the set of polynomials on ℝ. Further, consider
𝑉𝑛 = ℙ𝑛[𝑥] which is the subspace with degree less than or equal to 𝑛. Then 𝑉𝑛 is spanned by
{1, 𝑥, 𝑥2,… , 𝑥𝑛}, so 𝑉𝑛 is finite-dimensional. Conversely, 𝑉 is infinite-dimensional; there is no finite
set 𝑆 such that ⟨𝑆⟩ = 𝑉 .

1.7 Linear independence

Definition. We say that 𝑣1,… , 𝑣𝑛 ∈ 𝑉 are linearly independent if, for 𝜆𝑖 ∈ 𝐹,
𝑛
∑
𝑖=1

𝜆𝑖𝑣𝑖 = 0 ⟹ ∀𝑖, 𝜆𝑖 = 0

Definition. Similarly, 𝑣1,… , 𝑣𝑛 ∈ 𝑉 are linearly dependent if

∃𝛌 ∈ 𝐹𝑛,
𝑛
∑
𝑖=1

𝜆𝑖𝑣𝑖 = 0, ∃𝑖, 𝜆𝑖 ≠ 0

Equivalently, one of the vectors can be written as a linear combination of the remaining ones.

Remark. If (𝑣𝑖)1≤𝑖≤𝑛 are linearly independent, then
∀𝑖 ∈ {1,… , 𝑛}, 𝑣𝑖 ≠ 0

1.8 Bases

Definition. 𝑆 ⊂ 𝑉 is a basis of 𝑉 if
(i) ⟨𝑆⟩ = 𝑉
(ii) 𝑆 is a linearly independent set

So, a basis is a linearly independent (also known as free) generating family.

Example. Let 𝑉 = ℝ𝑛. The canonical basis (𝑒𝑖) is a basis since we can show that they are free and
span 𝑉 .
Example. Let 𝑉 = ℂ, considered as a ℂ-vector space. Then {1} is a basis. If 𝑉 is a ℝ-vector space,
{1, 𝑖} is a basis.
Example. Consider again ℙ[𝑥]. Then 𝑆 = {𝑥𝑛 ∶ 𝑛 ∈ ℕ} is a basis of ℙ.

Lemma. Let 𝑉 be an 𝐹-vector space. Then, (𝑣1,… , 𝑣𝑛) is a basis of 𝑉 if and only if any vector
𝑣 ∈ 𝑉 has a unique decomposition

𝑣 =
𝑛
∑
𝑖=1

𝜆𝑖𝑣𝑖, ∀𝑖, 𝜆𝑖 ∈ 𝐹
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In the above definition, we call (𝜆1,… , 𝜆𝑛) the coordinates of 𝑣 in the basis (𝑣1,… , 𝑣𝑛).

Proof. Suppose (𝑣1,… , 𝑣𝑛) is a basis of 𝑉 . Then ∀𝑣 ∈ 𝑉 there exists 𝜆1,… , 𝜆𝑛 ∈ 𝐹 such that

𝑣 =
𝑛
∑
𝑖=1

𝜆𝑖𝑣𝑖

So there exists a tuple of 𝜆 values. Suppose two such 𝜆 tuples exist. Then

𝑣 =
𝑛
∑
𝑖=1

𝜆𝑖𝑣𝑖 =
𝑛
∑
𝑖=1

𝜆′𝑖𝑣𝑖 ⟹
𝑛
∑
𝑖=1
(𝜆𝑖 − 𝜆′𝑖)𝑣𝑖 = 0 ⟹ 𝜆𝑖 = 𝜆′𝑖

The converse is left as an exercise.

Lemma. If ⟨{𝑣1,… , 𝑣𝑛}⟩ = 𝑉 , then some subset of this set is a basis of 𝑉 .

Proof. If (𝑣1,… , 𝑣𝑛) are linearly independent, this is a basis. Otherwise, one of the vectors can be
written as a linear combination of the others. So, up to reordering,

𝑣𝑛 ∈ ⟨{𝑣1,… , 𝑣𝑛−1}⟩ = 𝑉

So we have removed a vector from this set and preserved the span. By induction, we will eventually
reach a basis.

1.9 Steinitz exchange lemma

Theorem. Let 𝑉 be a finite dimensional 𝐹-vector space. Let (𝑣1,… , 𝑣𝑚) be linearly inde-
pendent, and (𝑤1,… ,𝑤𝑛) which spans 𝑉 . Then,
(i) 𝑚 ≤ 𝑛; and
(ii) up to reordering, (𝑣1,… , 𝑣𝑚, 𝑤𝑚+1,…𝑤𝑛) spans 𝑉 .

Proof. Suppose that we have replaced ℓ ≥ 0 of the 𝑤𝑖.

⟨𝑣1,… , 𝑣ℓ, 𝑤ℓ+1,…𝑤𝑛⟩ = 𝑉

If 𝑚 = ℓ, we are done. Otherwise, ℓ < 𝑚. Then, 𝑣ℓ+1 ∈ 𝑉 = ⟨𝑣1,… , 𝑣ℓ, 𝑤ℓ+1,…𝑤𝑛⟩ Hence
𝑣ℓ+1 can be expressed as a linear combination of the generating set. Since the (𝑣𝑖)1≤𝑖≤𝑚 are linearly
independent (free), one of the coefficients on the 𝑤𝑖 are nonzero. In particular, up to reordering we
can express 𝑤ℓ+1 as a linear combination of 𝑣1,… , 𝑣ℓ+1, 𝑤ℓ+2,… ,𝑤𝑛. Inductively, we may replace
𝑚 of the 𝑤 terms with 𝑣 terms. Since we have replaced𝑚 vectors, necessarily𝑚 ≤ 𝑛.

1.10 Consequences of Steinitz exchange lemma

Corollary. Let 𝑉 be a finite-dimensional 𝐹-vector space. Then, any two bases of 𝑉 have the
same number of vectors. This number is called the dimension of 𝑉 , dim𝐹 𝑉 .
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Proof. Suppose the twobases are (𝑣1,… , 𝑣𝑛) and (𝑤1,… ,𝑤𝑚). Then, (𝑣1,… , 𝑣𝑛) is free and (𝑤1,… ,𝑤𝑚)
is generating, so the Steinitz exchange lemma shows that 𝑛 ≤ 𝑚. Vice versa, 𝑚 ≤ 𝑛. Hence
𝑚 = 𝑛.

Corollary. Let 𝑉 be an 𝐹-vector space with finite dimension 𝑛. Then,
(i) Any independent set of vectors has at most 𝑛 elements, with equality if and only if it is

a basis.
(ii) Any spanning set of vectors has at least 𝑛 elements, with equality if and only if it is a

basis.

Proof. Exercise.

1.11 Dimensionality of sums

Proposition. Let 𝑉 be an 𝐹-vector space. Let 𝑈,𝑊 be subspaces of 𝑉 . If 𝑈,𝑊 are finite-
dimensional, then so is 𝑈 +𝑊 , with

dim𝐹(𝑈 +𝑊) = dim𝐹 𝑈 + dim𝐹 𝑊 − dim𝐹(𝑈 ∩𝑊)

Proof. Consider a basis (𝑣1,… , 𝑣𝑛) of the intersection. Extend this basis to a basis

(𝑣1,… , 𝑣𝑛, 𝑢1,… , 𝑢𝑚) of 𝑈; (𝑣1,… , 𝑣𝑛, 𝑤1,… ,𝑤𝑘) of𝑊

Then, we will show that (𝑣1,… , 𝑣𝑛, 𝑢1,… , 𝑢𝑚, 𝑤1,… ,𝑤𝑘) is a basis of dim𝐹(𝑈 + 𝑊), which will
conclude the proof. Indeed, since any component of 𝑈 + 𝑊 can be decomposed as a sum of some
element of𝑈 and some element of𝑊 , we can add their decompositions together. Nowwemust show
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that this new basis is free.
𝑛
∑
𝑖=1

𝛼𝑖𝑣𝑖 +
𝑚
∑
𝑖=1

𝛽𝑖𝑢𝑖 +
𝑘
∑
𝑖=1

𝛾𝑖𝑤𝑖 = 0

𝑛
∑
𝑖=1

𝛼𝑖𝑣𝑖 +
𝑚
∑
𝑖=1

𝛽𝑖𝑢𝑖
⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟

∈𝑈

=
𝑘
∑
𝑖=1

𝛾𝑖𝑤𝑖
⏟⎵⏟⎵⏟

∈𝑊
𝑘
∑
𝑖=1

𝛾𝑖𝑤𝑖 ∈ 𝑈 ∩𝑊

𝑘
∑
𝑖=1

𝛾𝑖𝑤𝑖 =
𝑛
∑
𝑖=1

𝛿𝑖𝑣𝑖

𝑛
∑
𝑖=1
(𝛼𝑖 + 𝛿𝑖)𝑣𝑖 +

𝑚
∑
𝑖=1

𝛽𝑖𝑢𝑖 = 0

𝛽𝑖 = 0, 𝛼𝑖 = −𝛿𝑖
𝑛
∑
𝑖=1

𝛼𝑖𝑣𝑖 +
𝑘
∑
𝑖=1

𝛾𝑖𝑤𝑖 = 0

𝛼𝑖 = 0, 𝛾𝑖 = 0

Proposition. If 𝑉 is a finite-dimensional 𝐹-vector space, and 𝑈 ≤ 𝑉 , then 𝑈 and 𝑉/𝑈 are
also finite-dimensional. In particular, dim𝐹 𝑉 = dim𝐹 𝑈 + dim𝐹(𝑉/𝑈).

Proof. Let (𝑢1,… , 𝑢ℓ) be a basis of 𝑈 . We extend this basis to a basis of 𝑉 , giving

(𝑢1,… , 𝑢ℓ, 𝑤ℓ+1,… ,𝑤𝑛)

We claim that (𝑤ℓ+1 + 𝑈,… ,𝑤𝑛 + 𝑈) is a basis of the vector space 𝑉/𝑈 .

Remark. If 𝑉 is an 𝐹-vector space, and 𝑈 ≤ 𝑉 , then we say 𝑈 is a proper subspace if 𝑈 ≠ 𝑉 . Then if
𝑈 is proper, then dim𝐹 𝑈 < dim𝐹 𝑉 and dim𝐹(𝑉/𝑈) > 0 because (𝑉/𝑈) ≠ ∅.

1.12 Direct sums

Definition. Let𝑉 be an 𝐹-vector space and𝑈,𝑊 be subspaces of𝑉 . We say that𝑉 = 𝑈⊕𝑊 ,
read as the direct sum of 𝑈 and𝑊 , if ∀𝑣 ∈ 𝑉, ∃!𝑢 ∈ 𝑈, ∃!𝑤 ∈ 𝑊, 𝑢 + 𝑤 = 𝑣. We say that𝑊
is a direct complement of 𝑈 in 𝑉 ; there is no uniqueness of such a complement.

Lemma. Let 𝑉 be an 𝐹-vector space, and 𝑈,𝑊 ≤ 𝑉 . Then the following statements are
equivalent.
(i) 𝑉 = 𝑈 ⊕𝑊
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(ii) 𝑉 = 𝑈 +𝑊 and 𝑈 ∩𝑊 = {0}
(iii) For any basis 𝐵1 of 𝑈 and 𝐵2 of𝑊 , 𝐵1 ∪ 𝐵2 is a basis of 𝑉

Proof. First, we show that (ii) implies (i). If 𝑉 = 𝑈 + 𝑊 , then certainly ∀𝑣 ∈ 𝑉, ∃𝑢 ∈ 𝑈, ∃𝑤 ∈
𝑊, 𝑣 = 𝑢 + 𝑤, so it suffices to show uniqueness. Note, 𝑢1 + 𝑤1 = 𝑢2 + 𝑤2 ⟹ 𝑢1 − 𝑢2 = 𝑤2 − 𝑤1.
The left hand side is an element of𝑈 and the right hand side is an element of𝑊 , so they must be the
zero vector; 𝑢1 = 𝑢2, 𝑤1 = 𝑤2.

Now, we show (i) implies (iii). Suppose 𝐵1 is a basis of 𝑈 and 𝐵2 is a basis of 𝑊 . Let 𝐵 = 𝐵1 ∪ 𝐵2.
First, note that 𝐵 is a generating family of 𝑈 +𝑊 . Now we must show that 𝐵 is free.

∑
𝑢∈𝐵1

𝜆𝑢𝑢
⏟⎵⏟⎵⏟

∈𝑈

+ ∑
𝑤∈𝐵2

𝜆𝑤𝑤
⏟⎵⎵⏟⎵⎵⏟

∈𝑊

= 0

Hence both sums must be zero. Since 𝐵1, 𝐵2 are bases, all 𝜆 are zero, so 𝐵 is free and hence a basis.
Now it remains to show that (iii) implies (ii). We must show that 𝑉 = 𝑈 +𝑊 and𝑈 ∩𝑊 = {0}. Now,
suppose 𝑣 ∈ 𝑉 . Then, 𝑣 = ∑𝑢∈𝐵1 𝜆𝑢𝑢 +∑𝑤 ∈ 𝐵2𝜆𝑤𝑤. In particular, 𝑉 = 𝑈 +𝑊 , since the 𝜆𝑢, 𝜆𝑤
are arbitrary. Now, let 𝑣 ∈ 𝑈 ∩𝑊 . Then

𝑣 = ∑
𝑢∈𝐵1

𝜆𝑢𝑢 = ∑
𝑤∈𝐵2

𝜆𝑤𝑤 ⟹ 𝜆𝑢 = 𝜆𝑤 = 0

Definition. Let 𝑉 be an 𝐹-vector space, with subspaces 𝑉1,… , 𝑉𝑝 ≤ 𝑉 . Then

𝑝
∑
𝑖=1

𝑉 𝑖 = {𝑣1,… , 𝑣ℓ, 𝑣𝑖 ∈ 𝑉 𝑖, 1 ≤ 𝑖 ≤ ℓ}

We say the sum is direct, written
𝑝

⨁
𝑖=1

𝑉 𝑖

if the decomposition is unique. Equivalently,

𝑉 =
𝑝

⨁
𝑖=1

𝑉 𝑖 ⟺ ∃!𝑣1 ∈ 𝑉1,… , 𝑣𝑛 ∈ 𝑉𝑛, 𝑣 =
𝑛
∑
𝑖=1

𝑣𝑖

Lemma. The following are equivalent:
(i) ∑𝑝

𝑖=1 𝑉 𝑖 =⨁𝑝
𝑖=1 𝑉 𝑖

(ii) ∀1 ≤ 𝑖 ≤ 𝑙, 𝑉 𝑖 ∩ (∑𝑗≠𝑖 𝑉 𝑗) = {0}
(iii) For any basis 𝐵𝑖 of 𝑉 𝑖, 𝐵 = ⋃𝑛

𝑖=1 𝐵𝑖 is a basis of∑
𝑛
𝑖=1 𝑉 𝑖.

Proof. Exercise.
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2 Linear maps
2.1 Linear maps

Definition. If 𝑉,𝑊 are 𝐹-vector spaces, a map 𝛼∶ 𝑉 → 𝑊 is linear if

∀𝜆1, 𝜆2 ∈ 𝐹, ∀𝑣1, 𝑣2 ∈ 𝑉, 𝛼(𝜆1𝑣1 + 𝜆2𝑣2) = 𝜆1𝛼(𝑣1) + 𝜆2𝛼(𝑣2)

Example. Let𝑀 be a matrix with 𝑛 rows and 𝑚 columns. Then the map 𝛼∶ ℝ𝑚 → ℝ𝑛 defined by
𝑥 ↦ 𝑀𝑥 is a linear map.
Example. Let 𝛼∶ 𝒞([0, 1], ℝ) → 𝒞([0, 1], ℝ) defined by 𝑓 ↦ 𝑎(𝑓)(𝑥) = ∫𝑥

0 𝑓(𝑡) d𝑡. This is linear.
Example. Let 𝑥 ∈ [𝑎, 𝑏]. Then 𝛼∶ 𝒞([𝑎, 𝑏], ℝ) → ℝ defined by 𝑓 ↦ 𝑓(𝑥) is a linear map.
Remark. Let 𝑈,𝑉,𝑊 be 𝐹-vector spaces. Then,
(i) The identity function 𝑖𝑉 ∶ 𝑉 → 𝑉 defined by 𝑥 ↦ 𝑥 is linear.
(ii) If 𝛼∶ 𝑈 → 𝑉 and 𝛽∶ 𝑉 → 𝑊 are linear, then 𝛽 ∘ 𝛼 is linear.

Lemma. Let 𝑉,𝑊 be 𝐹-vector spaces. Let 𝐵 be a basis for 𝑉 . If 𝛼0 ∶ 𝐵 → 𝑉 is anymap (not
necessarily linear), then there exists a unique linear map 𝛼∶ 𝑉 → 𝑊 extending 𝛼0: ∀𝑣 ∈
𝐵, 𝛼0(𝑣) = 𝛼(𝑣).

Proof. Let 𝑣 ∈ 𝑉 . Then, given 𝐵 = (𝑣1,… , 𝑣𝑛).

𝑣 =
𝑛
∑
𝑖=1

𝜆𝑖𝑣𝑖

By linearity,

𝛼(𝑣) = 𝛼(
𝑛
∑
𝑖=1

𝜆𝑖𝑣𝑖) =
𝑛
∑
𝑖=1

𝛼(𝜆𝑖𝑣𝑖) =
𝑛
∑
𝑖=1

𝛼0(𝜆𝑖𝑣𝑖)

Remark. This lemma is also true in infinite-dimensional vector spaces. Often, to define a linear map,
we instead define its action on the basis vectors, and then we ‘extend by linearity’ to construct the
entire map.

Remark. If 𝛼1, 𝛼2 ∶ 𝑉 → 𝑊 are linear maps, then if they agree on any basis of 𝑉 then they are equal.

2.2 Isomorphism

Definition. Let 𝑉,𝑊 be 𝐹-vector spaces. A map 𝛼∶ 𝑉 → 𝑊 is an isomorphism if and only
if
(i) 𝛼 is linear
(ii) 𝛼 is bijective

If such an 𝛼 exists, we say that 𝑉 and𝑊 are isomorphic, written 𝑉 ≃ 𝑊 .
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Remark. If 𝛼 in the above definition is an isomorphism, then 𝛼−1 ∶ 𝑊 → 𝑉 is linear. Indeed, if
𝑤1, 𝑤2 ∈ 𝑊 with 𝑤1 = 𝛼(𝑣1) and 𝑤2 = 𝛼(𝑣2),

𝛼−1(𝑤1 + 𝑤2) = 𝛼−1(𝛼(𝑣1) + 𝛼(𝑣2)) = 𝛼−1𝛼(𝑣1 + 𝑣2) = 𝑣1 + 𝑣2 = 𝛼−1(𝑤1) + 𝛼−1(𝑤2)
Similarly, for 𝜆 ∈ 𝐹,𝑤 ∈ 𝑊 ,

𝛼−1(𝜆𝑤) = 𝜆𝛼−1(𝑤)

Lemma. Isomorphism is an equivalence relation on the class of all vector spaces over 𝐹.

Proof. (i) 𝑖𝑉 ∶ 𝑉 → 𝑉 is an isomorphism

(ii) If 𝛼∶ 𝑉 → 𝑊 is an isomorphism, 𝛼−1 ∶ 𝑊 → 𝑉 is an isomorphism.

(iii) If 𝛽∶ 𝑈 → 𝑉, 𝛼∶ 𝑉 → 𝑊 are isomorphisms, then 𝛼 ∘ 𝛽∶ 𝑈 → 𝑊 is an isomorphism.

The proofs of each part are left as an exercise.

Theorem. If 𝑉 is an 𝐹-vector space of dimension 𝑛, then 𝑉 ≃ 𝐹𝑛.

Proof. Let 𝐵 = (𝑣1,… , 𝑣𝑛) be a basis for 𝑉 . Then, consider 𝛼∶ 𝑉 → 𝐹𝑛 defined by

𝑣 =
𝑛
∑
𝑖=1

𝜆𝑖𝑣𝑖 ↦ (
𝜆1
⋮
𝜆𝑛
)

We claim that this is an isomorphism. This is left as an exercise.

Remark. Choosing a basis for 𝑉 is analogous to choosing an isomorphism from 𝑉 to 𝐹𝑛.

Theorem. Let 𝑉,𝑊 be 𝐹-vector spaces with finite dimensions 𝑛,𝑚. Then,

𝑉 ≃ 𝑊 ⟺ 𝑛 = 𝑚

Proof. If dim𝑉 = dim𝑊 = 𝑛, then there exist isomorphisms from both 𝑉 and𝑊 to 𝐹𝑛. By transit-
ivity, therefore, there exists an isomorphism between 𝑉 and𝑊 .

Conversely, if 𝑉 ≃ 𝑊 then let 𝛼∶ 𝑉 → 𝑊 be an isomorphism. Let 𝐵 be a basis of 𝑉 , then we claim
that 𝛼(𝐵) is a basis of 𝑊 . Indeed, 𝛼(𝐵) spans 𝑊 from the surjectivity of 𝛼, and 𝛼(𝐵) is free due to
injectivity.

2.3 Kernel and image

Definition. Let 𝑉,𝑊 be 𝐹-vector spaces. Let 𝛼∶ 𝑉 → 𝑊 be a linear map. We define the
kernel and image as follows.

𝑁(𝛼) = ker𝛼 = {𝑣 ∈ 𝑉 ∶ 𝛼(𝑣) = 0}
Im(𝛼) = {𝑤 ∈ 𝑊 ∶ ∃𝑣 ∈ 𝑉,𝑤 = 𝛼(𝑣)}
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Lemma. ker𝛼 is a subspace of 𝑉 , and Im𝛼 is a subspace of𝑊 .

Proof. Let 𝜆1, 𝜆2 ∈ 𝐹 and 𝑣1, 𝑣2 ∈ ker𝛼. Then

𝛼(𝜆1𝑣1 + 𝜆2𝑣2) = 𝜆1𝛼(𝑣1) + 𝜆2𝛼(𝑣2) = 0

Hence 𝜆1𝑣1 + 𝜆2𝑣2 ∈ ker𝛼.
Now, let 𝜆1, 𝜆2 ∈ 𝐹, 𝑣1, 𝑣2 ∈ 𝑉 , and 𝑤1 = 𝛼(𝑣1), 𝑤2 = 𝛼(𝑣2). Then

𝜆1𝑤1 + 𝜆2𝑤2 = 𝜆1𝛼(𝑣1) + 𝜆2𝛼(𝑣2) = 𝛼(𝜆1𝑣1 + 𝜆2𝑣2) ∈ Im𝛼

Remark. 𝛼∶ 𝑉 → 𝑊 is injective if and only if ker𝛼 = {0}. Further, 𝛼∶ 𝑉 → 𝑊 is surjective if and
only if Im𝛼 = 𝑊 .

Theorem. Let 𝑉,𝑊 be 𝐹-vector spaces. Let 𝛼∶ 𝑉 → 𝑊 be a linear map. Then
𝛼∶ 𝑉/ ker𝛼 → Im𝛼 defined by

𝛼(𝑣 + ker𝛼) = 𝛼(𝑣)
is an isomorphism. This is the isomorphism theorem from IA Groups.

Proof. First, note that 𝛼 is well defined. Suppose 𝑣 + ker𝛼 = 𝑣′ + ker𝛼. Then 𝑣 − 𝑣′ ∈ ker𝛼, hence

𝛼(𝑣 − 𝑣′) = 0 ⟹ 𝛼(𝑣) − 𝛼(𝑣′) = 0

so 𝛼 is indeed well defined.
Now, we show 𝛼 is injective.

𝛼(𝑣 + ker𝛼) = 0 ⟹ 𝛼(𝑣) = 0 ⟹ 𝑣 ∈ ker𝛼

Hence, 𝑣 + ker𝛼 = 0 + ker𝛼.
Further, 𝛼 is surjective. This follows from the definition the image.

2.4 Rank and nullity

Definition. The rank of 𝛼 is
𝑟(𝛼) = dim Im𝛼

The nullity of 𝛼 is
𝑛(𝛼) = dimker𝛼

Theorem (Rank-nullity theorem). Let 𝑈,𝑉 be 𝐹-vector spaces such that the dimension of
𝑈 is finite. Let 𝛼∶ 𝑈 → 𝑉 be a linear map. Then,

dim𝑈 = 𝑟(𝛼) + 𝑛(𝛼)
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Proof. We have proven that 𝑈/ ker𝛼 ≃ Im𝛼. Hence, the dimensions on the left and right match:
dim(𝑈/ ker𝛼) = dim Im𝛼.

dim𝑈 − dimker𝛼 = dim Im𝛼
and the result follows.

Lemma (Characterisation of isomorphisms). Let 𝑉,𝑊 be 𝐹-vector spaces with equal, finite
dimension. Let 𝛼∶ 𝑉 → 𝑊 be a linear map. Then, the following are equivalent.
(i) 𝛼 is injective.
(ii) 𝛼 is surjective.
(iii) 𝛼 is an isomorphism.

Proof. Clearly, (iii) follows from (i) and (ii) and vice versa. The rest of the proof is left as an exercise,
which follows from the rank-nullity theorem.

2.5 Space of linear maps
Let 𝑉 and𝑊 be 𝐹-vector spaces. Consider the space of linear maps from 𝑉 to𝑊 . Then 𝐿(𝑉,𝑊) =
{𝛼∶ 𝑉 → 𝑊 linear}.

Proposition. 𝐿(𝑉,𝑊) is an 𝐹-vector space under the operation

(𝛼1 + 𝛼2)(𝑣) = 𝛼1(𝑣) + 𝛼2(𝑣);

(𝜆𝛼)(𝑣) = 𝜆(𝛼(𝑣))
Further, if 𝑉 and𝑊 are finite-dimensional, then so is 𝐿(𝑉,𝑊) with

dim𝐹 𝐿(𝑉,𝑊) = dim𝐹 𝑉 dim𝐹 𝑊

Proof. Proving that 𝐿(𝑉,𝑊) is a vector space is left as an exercise. The dimensionality part is proven
later.

2.6 Matrices

Definition. An𝑚× 𝑛matrix over 𝐹 is an array of𝑚 rows and 𝑛 columns, with entries in 𝐹.

We write𝑀𝑚×𝑛(𝐹) for the set of𝑚× 𝑛matrices over 𝐹.

Proposition. 𝑀𝑚×𝑛(𝐹) is an 𝐹-vector space under

((𝑎𝑖𝑗) + (𝑏𝑖𝑗)) = (𝑎𝑖𝑗 + 𝑏𝑖𝑗);

𝜆(𝑎𝑖𝑗) = (𝜆𝑎𝑖𝑗)

Proposition. dim𝐹 𝑀𝑚,𝑛(𝐹) = 𝑚𝑛.
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Proof. Consider the basis defined by, the ‘elementary matrix’ for all 𝑖, 𝑗:

𝑒𝑝𝑞 = 𝛿𝑖𝑝𝛿𝑗𝑞

Then (𝑒𝑖𝑗) is a basis of𝑀𝑚×𝑛(𝐹), since it spans𝑀𝑚×𝑛(𝐹) and we can show that it is free.

2.7 Linear maps as matrices
Consider bases 𝐵 of 𝑉 and 𝐶 of𝑊 :

𝐵 = (𝑣1,… , 𝑣𝑛); 𝐶 = (𝑤1,… ,𝑤𝑛)

Then let 𝑣 ∈ 𝑉 . We have

𝑣 =
𝑛
∑
𝑗=1

𝜆𝑗𝑣𝑗 ≡ [𝑣]𝐵 = (
𝜆1
⋮
𝜆𝑛
) ∈ 𝐹𝑛

where the vector given is the coordinates in basis 𝐵. We can equivalently find [𝑤]𝐶 , the coordinates
of 𝑤 in basis 𝐶. We can now define a matrix of some linear map 𝛼 in the 𝐵, 𝐶 basis.

Definition.
[𝛼]𝐵,𝐶 = ([𝛼(𝑣1)]𝐶 ,… , [𝛼(𝑣𝑛)]𝐶) ∈ 𝑀𝑚×𝑛(𝐹)

Note that if [𝛼]𝐵𝐶 = (𝑎𝑖𝑗), then by definition

𝛼(𝑣𝑗) =
𝑛
∑
𝑖=1

𝑎𝑖𝑗𝑤𝑖

Lemma. For all 𝑣 ∈ 𝑉 ,
[𝛼(𝑣)]𝐶 = [𝛼]𝐵𝐶 ⋅ [𝑣]𝐵

Proof. We have

𝑣 =
𝑛
∑
𝑖=1

𝜆𝑗𝑣𝑗

Hence

𝛼(
𝑛
∑
𝑖=1

𝜆𝑗𝑣𝑗) =
𝑛
∑
𝑗=1

𝜆𝑗𝛼(𝑣𝑗) =
𝑛
∑
𝑗=1

𝜆𝑖
𝑚
∑
𝑖=1

𝑎𝑖𝑗𝑤𝑖 =
𝑚
∑
𝑖=1

(
𝑛
∑
𝑗=1

𝑎𝑖𝑗𝜆𝑗)𝑤𝑖

Lemma. Let 𝛽∶ 𝑈 → 𝑉 and 𝛼∶ 𝑉 → 𝑊 be linearmaps. Then, if𝐴, 𝐵, 𝐶 are bases of𝑈,𝑉,𝑊
respectively, then

[𝛼 ∘ 𝛽]𝐴,𝐶 = [𝛼]𝐵,𝐶 ⋅ [𝛽]𝐴,𝐵
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Proof. Consider 𝑢 ∈ 𝐴. Then
(𝛼 ∘ 𝛽)(𝑢) = 𝛼(𝛽(𝑢))

giving

𝛼(∑
𝑗
𝑏𝑗𝑝𝑣𝑖) = ∑

𝑗
𝑏𝑗𝑝𝛼(𝑣𝑗) = ∑

𝑗
𝑏𝑗𝑝∑

𝑖
𝑎𝑖𝑗𝑤𝑖 = ∑

𝑖
(∑
𝑗
𝑎𝑖𝑗𝑏𝑗𝑝)𝑤𝑖

where 𝑎𝑖𝑗𝑝𝑗𝑝 is the (𝑖, 𝑗) element of 𝐴𝐵 by the definition of the product of matrices.

Proposition. If 𝑉,𝑊 are 𝐹-vector spaces, and dim𝑉 = 𝑛, dim𝑊 = 𝑚, then

𝐿(𝑉,𝑊) ≃ 𝑀𝑚×𝑛(𝐹)

which implies the dimensionality of 𝐿(𝑉,𝑊) in 𝐹 is𝑚× 𝑛.

Proof. Consider two bases 𝐵, 𝐶 of 𝑉,𝑊 . We claim that

𝜃∶ 𝐿(𝑉,𝑊) → 𝑀𝑚×𝑛(𝐹)

defined by 𝜃(𝛼) = [𝛼]𝐵,𝐶 . is an isomorphism. First, note that 𝜃 is linear. Then, 𝜃 is surjective;
consider any matrix 𝐴 = (𝑎𝑖𝑗) and consider 𝛼∶ 𝑣𝑗 ↦ ∑𝑚

𝑖=1 𝑎𝑖𝑗𝑤𝑖. Then this is certainly a linear
map which extends uniquely by linearity to 𝐴, giving [𝛼]𝐵,𝐶 = (𝑎𝑖𝑗) = 𝐴. Now, 𝜃 is injective since
[𝛼]𝐵,𝐶 = 0 ⟹ 𝛼 = 0.

Remark. If 𝐵, 𝐶 are bases of 𝑉,𝑊 respectively, and 𝜀𝐵 ∶ 𝑉 → 𝐹𝑛 is defined by 𝑣 ↦ [𝑣]𝐵, and analog-
ously for 𝜀𝐶 , then

[𝛼]𝐵,𝐶 ∘ 𝜀𝐵 = 𝜀𝐶 ∘ 𝛼
so the operations commute.

Example. Let 𝛼∶ 𝑉 → 𝑊 be a linear map and 𝑌 ≤ 𝑉 , where 𝑉,𝑊 are finite-dimensional. Then
let 𝛼(𝑌) = 𝑍 ≤ 𝑊 . Consider a basis 𝐵 of 𝑉 , such that 𝐵′ = (𝑣1,… , 𝑣𝑘) is a basis of 𝑌 completed by
𝐵″ = (𝑣𝑘+1,… , 𝑣𝑛) into 𝐵 = 𝐵′ ∪𝐵″. Then let 𝐶 be a basis of W, such that 𝐶′ = (𝑤1,… ,𝑤ℓ) is a basis
of 𝑍 completed by 𝐶″ = (𝑤ℓ+1,… ,𝑤𝑚) into 𝐶 = 𝐶′ ∪ 𝐶″. Then

[𝛼]𝐵,𝐶 = (𝛼(𝑣1) … 𝛼(𝑣𝑘) 𝛼(𝑣𝑘+1) … 𝛼(𝑣𝑛))

For 1 ≤ 𝑖 ≤ 𝑘, 𝛼(𝑣𝑖) ∈ 𝑍 since 𝑣𝑖 ∈ 𝑌, 𝛼(𝑌) = 𝑍. So the matrix has an upper-left ℓ × 𝑘 block 𝐴
which is 𝛼∶ 𝑌 → 𝑍 on the basis 𝐵′, 𝐶′. We can show further that 𝛼 induces a map 𝛼∶ 𝑉/𝑌 → 𝑊/𝑍
by 𝑣+𝑌 ↦ 𝛼(𝑣)+𝑍. This is well-defined; 𝑣1+𝑌 = 𝑣2+𝑌 implies 𝑣1−𝑣2 ∈ 𝑌 hence 𝛼(𝑣1−𝑣2) ∈ 𝑍
as required. The bottom-right block is [𝛼]𝐵″,𝐶″ .

2.8 Change of basis
Suppose we have two bases 𝐵 = {𝑣1,… , 𝑣𝑛}, 𝐵′ = {𝑣′1,… , 𝑣′𝑛} of 𝑉 and corresponding 𝐶, 𝐶′ for 𝑊 .
If we have a linear map [𝛼]𝐵,𝐶 , we are interested in finding the components of this linear map in
another basis, that is,

[𝛼]𝐵,𝐶 ↦ [𝛼]𝐵′,𝐶′
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Definition. The change of basismatrix 𝑃 from 𝐵′ to 𝐵 is

𝑃 = ([𝑣′1]𝐵 ⋯ [𝑣′𝑛]𝐵)

which is the identity map in 𝐵′, written

𝑃 = [𝐼]𝐵′,𝐵

Lemma. For a vector 𝑣,
[𝑣]𝐵 = 𝑃[𝑣]𝐵′

Proof. We have
[𝛼(𝑣)]𝐶 = [𝛼]𝐵,𝐶 ⋅ [𝑣]𝐶

Since 𝑃 = [𝐼]𝐵′,𝐵,
[𝐼(𝑣)]𝐵 = [𝐼]𝐵′,𝐵 ⋅ [𝑣]𝐵′ ⟹ [𝑣]𝐵 = 𝑃[𝑣]𝐵′

as required.

Remark. 𝑃 is an invertible 𝑛 × 𝑛 square matrix. In particular,

𝑃−1 = [𝐼]𝐵,𝐵′

Indeed,
𝐼𝑛 = [𝐼 ⋅ 𝐼]𝐵,𝐵 = [𝐼]𝐵′,𝐵 ⋅ [𝐼]𝐵′,𝐵

where 𝐼𝑛 is the 𝑛 × 𝑛 identity matrix.

Proposition. If 𝛼 is a linear map from 𝑉 to𝑊 , and 𝑃 = [𝐼]𝐵′,𝐵, 𝑄 = [𝐼]𝐶′,𝐶 , we have

𝐴′ = [𝛼]𝐵′,𝐶′ = [𝐼]𝐶,𝐶′[𝛼]𝐵,𝐶[𝐼]𝐵,′𝐵 = 𝑄−1𝐴𝑃

where 𝐴 = [𝛼]𝐵,𝐶 , 𝐴′ = [𝛼]𝐵′,𝐶′ .

Proof.

[𝛼(𝑣)]𝐶 = 𝑄[𝛼(𝑣)]𝐶′

= 𝑄[𝛼]𝐵′,𝐶′[𝑣]𝐵′
[𝛼(𝑣)]𝐶 = [𝛼]𝐵,𝐶[𝑣]𝐵

= 𝐴𝑃[𝑣]𝐵′
∴ ∀𝑣, 𝑄𝐴[𝑣]𝐵′ = 𝐴𝑃[𝑣]𝐵′

∴ 𝑄𝐴 = 𝐴𝑃

as required.
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2.9 Equivalent matrices

Definition. Matrices 𝐴,𝐴′ are called equivalent if

𝐴′ = 𝑄−1𝐴𝑃

for some invertible𝑚×𝑚, 𝑛 × 𝑛matrices 𝑄, 𝑃.

Remark. This defines an equivalence relation on𝑀𝑚,𝑛(𝐹).
• 𝐴 = 𝐼−1𝑚 𝐴𝐼𝑛;
• 𝐴′ = 𝑄−1𝐴𝑃 ⟹ 𝐴 = 𝑄𝐴′𝑃−1;
• 𝐴′ = 𝑄−1𝐴𝑃,𝐴″ = (𝑄′)−1𝐴′𝑃′ ⟹ 𝐴″ = (𝑄𝑄′)−1𝐴(𝑃𝑃′).

Proposition. Let 𝛼∶ 𝑉 → 𝑊 be a linear map. Then there exists a basis 𝐵 of 𝑉 and a basis 𝐶
of𝑊 such that

[𝛼]𝐵,𝐶 = (𝐼𝑟 0
0 0)

so the components of the matrix are exactly the identity matrix of size 𝑟 in the top-left corner,
and zeroes everywhere else.

Proof. We first fix 𝑟 ∈ ℕ such that dimker𝛼 = 𝑛 − 𝑟. Then we will construct a basis {𝑣𝑟+1,… , 𝑣𝑛} of
the kernel. We extend this to a basis of the entirety of 𝑉 , that is, {𝑣1,… , 𝑣𝑛}. Then, we want to show
that

{𝛼(𝑣1),… , 𝛼(𝑣𝑟)}
is a basis of Im𝛼. Indeed, it is a generating family:

𝑣 =
𝑛
∑
𝑖=1

𝜆𝑖𝑣𝑖

𝛼(𝑣) =
𝑛
∑
𝑖=1

𝜆𝑖𝛼(𝑣𝑖)

=
𝑟
∑
𝑖=1

𝜆𝑖𝛼(𝑣𝑖)
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Then if 𝑦 ∈ Im𝛼, there exists 𝑣 such that 𝛼(𝑣) = 𝑦. Further, it is a free family:
𝑟
∑
𝑖=1

𝜆𝑖𝛼(𝑣𝑖) = 0

𝛼(
𝑟
∑
𝑖=1

𝜆𝑖𝑣𝑖) = 0

𝑟
∑
𝑖=1

𝜆𝑖𝑣𝑖 ∈ ker𝛼

𝑟
∑
𝑖=1

𝜆𝑖𝑣𝑖 =
𝑛
∑

𝑖=𝑟+1
𝜆𝑖𝑣𝑖

𝑟
∑
𝑖=1

𝜆𝑖𝑣𝑖 −
𝑛
∑

𝑖=𝑟+1
𝜆𝑖𝑣𝑖 = 0

But since {𝑣1,… , 𝑣𝑛} is a basis, 𝜆𝑖 = 0 for all 𝑖. Hence {𝛼(𝑣𝑖)} is a basis of Im𝛼. Now, we wish to
extend this basis to the whole of𝑊 to form

{𝛼(𝑣1),… , 𝛼(𝑣𝑟), 𝑤𝑟+1,… ,𝑤𝑛}

Now,

[𝛼]𝐵𝐶 = (𝛼(𝑣1) ⋯ 𝛼(𝑣𝑟) 𝛼(𝑣𝑟+1) ⋯ 𝛼(𝑣𝑛))

= (𝐼𝑟 0
0 0)

Remark. This also proves the rank-nullity theorem:

rank𝛼 + null𝛼 = 𝑛

Corollary. Any𝑚× 𝑛matrix 𝐴 is equivalent to a matrix of the form

(𝐼𝑟 0
0 0)

where 𝑟 = rank𝐴.

2.10 Column rank and row rank

Definition. Let 𝐴 ∈ 𝑀𝑚,𝑛(𝐹). Then, the column rank of 𝐴, here denoted 𝑟𝑐(𝐴), is the dimen-
sion of the subspace of 𝐹𝑛 spanned by the column vectors.

𝑟𝑐(𝐴) = dim span {𝑐1,… , 𝑐𝑛}
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Remark. If 𝛼 is a linear map, represented in bases 𝐵, 𝐶 by the matrix 𝐴, then
rank𝛼 = 𝑟𝑐(𝐴)

Proposition. Two matrices are equivalent if they have the same column rank:

𝑟𝑐(𝐴) = 𝑟𝑐(𝐴′)

Proof. If the matrices are equivalent, then 𝐴 = [𝛼]𝐵𝐶 , 𝐴′ = [𝛼]𝐵′,𝐶′ . Then

𝑟𝑐(𝐴) = 𝑟𝑐(𝛼) = 𝑟𝑐(𝐴′)
Conversely, if 𝑟𝑐(𝐴) = 𝑟𝑐(𝐴′) = 𝑟, then 𝐴,𝐴′ are equivalent to

(𝐼𝑟 0
0 0)

By transitivity, 𝐴,𝐴′ are equivalent.

Theorem. Column rank 𝑟𝑐(𝐴) and row rank 𝑟𝑐(𝐴⊺) are equivalent.

Proof. Let 𝑟 = 𝑟𝐶(𝐴). Then,
𝑄−1𝐴𝑃 = (𝐼𝑟 0

0 0)𝑚×𝑛
Then, consider

𝑃⊺𝐴⊺(𝑄−1)⊺ = (𝑄−1𝐴𝑃)⊺ = (𝐼𝑟 0
0 0)

⊺

𝑚×𝑛
= (𝐼𝑟 0

0 0)𝑛×𝑚
Note that we can swap the transpose and inverse on 𝑄 because

(𝐴𝐵)⊺ = 𝐵⊺𝐴⊺

(𝑄𝑄−1)⊺ = 𝑄⊺(𝑄−1)⊺
𝐼 = 𝑄⊺(𝑄−1)⊺

(𝑄⊺)−1 = (𝑄−1)⊺
Then 𝑟𝑐(𝐴) = rank(𝐴) = rank(𝐴⊺) = 𝑟𝑐(𝐴⊺).

So we can drop the concepts of column and row rank, and just talk about rank as a whole.

2.11 Conjugation and similarity
Consider the following special case of changing basis. If 𝛼∶ 𝑉 → 𝑉 is linear, 𝛼 is called an endo-
morphism. If 𝐵 = 𝐶, 𝐵′ = 𝐶′ then the special case of the change of basis formula is

[𝛼]𝐵′,𝐵′ = 𝑃−1[𝛼]𝐵,𝐵𝑃
Then,we say squarematrices𝐴,𝐴′ are similar or conjugate if there exists𝑃 such that𝐴′ = 𝑃−1𝐴𝑃.

2.12 Elementary operations
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Definition. An elementary column operation is
(i) swap columns 𝑖, 𝑗
(ii) replace column 𝑖 by 𝜆multiplied by the column
(iii) add 𝜆multiplied by column 𝑖 to column 𝑗

We define analogously the elementary row operations. Note that these elementary operations are
invertible (for 𝜆 ≠ 0). These operations can be realised through the action of elementary matrices.
For instance, the column swap operation can be realised using

𝑇𝑖𝑗 = (
𝐼𝑛 0 0
0 𝐴 0
0 0 𝐼𝑚

) ; 𝐴 = (
0 0 1
0 𝐼𝑘 0
1 0 1

)

To multiply a column by 𝜆,

𝑛𝑖,𝜆 = (
𝐼𝑛 0 0
0 𝜆 0
0 0 𝐼𝑚

)

To add a multiple of a column,
𝑐𝑖𝑗,𝜆 = 𝐼 + 𝜆𝐸𝑖𝑗

where 𝐸𝑖𝑗 is the matrix defined by elements (𝑒𝑖𝑗)𝑝𝑞 = 𝛿𝑖𝑝𝛿𝑗𝑞. An elementary column (or row) opera-
tion can be performed by multiplying 𝐴 by the corresponding elementary matrix from the right (on
the left for row operations). This will essentially provide a constructive proof that any 𝑛 × 𝑛matrix
is equivalent to

(𝐼𝑟 0
0 0)

We will start with a matrix 𝐴. If all entries are zero, we are done. So we will pick 𝑎𝑖𝑗 = 𝜆 ≠ 0, and
swap rows 𝑖, 1 and columns 𝑗, 0. This ensures that 𝑎11 = 𝜆 ≠ 0. Now we multiply column 1 by 1

𝜆
.

Finally, we can clear out row 1 and column 1 by subtracting multiples of the first row or column.
Then we can perform similar operations on the (𝑛−1)× (𝑛−1)matrix in the bottom right block and
inductively finish this process.

2.13 Gauss’ pivot algorithm
If only row operations are used, we can reach the ‘row echelon’ form of the matrix, a specific case of
an upper triangular matrix. On each row, there are a number of zeroes until there is a one, called the
pivot. First, we assume that 𝑎𝑖𝑗 ≠ 0. We swap rows 𝑖, 1. Then divide the first row by 𝜆 = 𝑎𝑖1 to get a
one in the top left. We can use this one to clear the rest of the first column. Then, we can repeat on
the next column, and iterate. This is a technique for solving a linear system of equations.

2.14 Representation of square invertible matrices

Lemma. If 𝐴 is an 𝑛 × 𝑛 square invertible matrix, then we can obtain 𝐼𝑛 using only row
elementary operations, or only column elementary operations.
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Proof. We show an algorithm that constructs this 𝐼𝑛. This is exactly going to invert the matrix, since
the resultant operations can be combined to get the inverse matrix. We will show here the proof for
column operations. We argue by induction on the number of rows. Suppose we can make the form

(𝐼𝑘 0
𝐴 𝐵)

We want to obtain the same structure with 𝑘 + 1 rows. We claim that there exists 𝑗 > 𝑘 such that
𝑎𝑘+1,𝑗 ≠ 0. Indeed, otherwise we can show that the vector

⎛
⎜
⎜
⎜
⎝

0
⋮
1
⋮
0

⎞
⎟
⎟
⎟
⎠

= 𝛿𝑘+1,𝑖

is not in the span of the column vectors of 𝐴. This contradicts the invertibility of the matrix. Now,
we will swap columns 𝑘 + 1, 𝑗 and divide this column by 𝜆. We can now use this 1 to clear the rest of
the 𝑘 + 1 row.
Inductively, we have found 𝐴𝐸1…𝐸𝑛 = 𝐼𝑛 where 𝐸𝑛 are elementary. Thus, we can find 𝐴−1.

Proposition. Any invertible square matrix is a product of elementary matrices.

The proof is exactly the proof of the lemma above.

3 Dual spaces
3.1 Dual spaces

Definition. Let 𝑉 be an 𝐹-vector space. Then 𝑉⋆ is the dual of 𝑉 , defined by

𝑉⋆ = 𝐿(𝑉, 𝐹) = {𝛼∶ 𝑉 → 𝐹}

where the 𝛼 are linear. If 𝛼∶ 𝑉 → 𝐹 is linear, then we say 𝛼 is a linear form. So the dual of 𝑉
is the set of linear forms on 𝑉 .

Example. For instance, the trace tr∶ 𝑀𝑛,𝑛(𝐹) → 𝐹 is a linear form on𝑀𝑛,𝑛(𝐹).
Example. Consider functions [0, 1] → ℝ. We can define 𝑇𝑓 ∶ 𝒞∞([0, 1], ℝ) → ℝ such that 𝜙 ↦
∫1
0 𝑓(𝑥)𝜙(𝑥) d𝑥. Then 𝑇𝑓 is a linear form on 𝒞∞([0, 1], ℝ). We can then reconstruct 𝑓 given 𝑇𝑓. This
mathematical formulation is called distribution.

Lemma. Let 𝑉 be an 𝐹-vector space with a finite basis 𝐵 = {𝑒1,… , 𝑒𝑛}. Then there exists a
basis 𝐵⋆ for 𝑉⋆ given by

𝐵⋆ = {𝜀1,… , 𝜀𝑛}; 𝜀𝑗(
𝑛
∑
𝑖=1

𝑎𝑖𝑒𝑖) = 𝑎𝑗

23



We call 𝐵⋆ the dual basis for 𝐵.

Proof. We know

𝜀𝑗(
𝑛
∑
𝑖=1

𝑎𝑖𝑒𝑖) = 𝑎𝑗

Equivalently,
𝜀𝑗(𝑒𝑖) = 𝛿𝑖𝑗

First, we will show that the set of linear forms as defined is free. For all 𝑖,
𝑛
∑
𝑗=1

𝜆𝑗𝜀𝑗 = 0

∴ (
𝑛
∑
𝑗=1

𝜆𝑗𝜀𝑗)𝑒𝑖 = 0

𝑛
∑
𝑗=1

𝜆𝑗𝜀𝑗(𝑒𝑖) = 0

𝜆𝑖 = 0

Now we show that the set spans 𝑉⋆. Suppose 𝛼 ∈ 𝑉⋆, 𝑥 ∈ 𝑉 .

𝛼(𝑥) = 𝛼(
𝑛
∑
𝑗=1

𝜆𝑗𝑒𝑗)

=
𝑛
∑
𝑖=1

𝜆𝑗𝛼(𝑒𝑗)

Conversely, we can write
𝑛
∑
𝑖=1

𝛼(𝑒𝑗)𝜀(𝑗) ∈ 𝑉⋆

Thus,

(
𝑛
∑
𝑖=1

𝛼(𝑒𝑗)𝜀𝑗)(𝑥) =
𝑛
∑
𝑗=1

𝛼(𝑒𝑗)𝜀𝑗(
𝑛
∑
𝑘=1

𝜆𝑘𝑒𝑘)

=
𝑛
∑
𝑗=1

𝛼(𝑒𝑗)
𝑛
∑
𝑘=1

𝜆𝑘𝜀𝑗(𝑒𝑘)

=
𝑛
∑
𝑗=1

𝛼(𝑒𝑗)
𝑛
∑
𝑘=1

𝜆𝑘𝛿𝑗𝑘

=
𝑛
∑
𝑗=1

𝛼(𝑒𝑗)𝜆𝑗

= 𝛼(𝑥)
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We have then shown that

𝛼 =
𝑛
∑
𝑗=1

𝛼(𝑒𝑗)𝜀𝑗

as required.

Corollary. If 𝑉 is finite-dimensional, 𝑉⋆ has the same dimension.

Remark. It is sometimes convenient to think of 𝑉⋆ as the spaces of row vectors of length dim𝑉 over
𝐹. For instance, consider the basis 𝐵 = (𝑒1,… , 𝑒𝑛), so 𝑥 = ∑𝑛

𝑖=1 𝑥𝑖𝑒𝑖. Then we can pick (𝜀1,… , 𝜀𝑛) a
basis of 𝑉⋆, so 𝛼 = ∑𝑛

𝑖=1 𝛼𝑖𝜀𝑖. Then

𝛼(𝑥) =
𝑛
∑
𝑖=1

𝛼𝑖𝜀𝑖(𝑥) =
𝑛
∑
𝑖=1

𝛼𝑖𝜀(
𝑛
∑
𝑗=1

𝑥𝑗𝑒𝑗) =
𝑛
∑
𝑖=1

𝛼𝑖𝑥𝑖

This is exactly

(𝛼1 ⋯ 𝛼𝑛) (
𝑥1
⋮
𝑥𝑛
)

which essentially defines a scalar product between the two spaces.

3.2 Annihilators

Definition. Let 𝑈 ⊆ 𝑉 . Then the annihilator of 𝑈 is

𝑈0 = {𝛼 ∈ 𝑉⋆ ∶ ∀𝑢 ∈ 𝑈, 𝛼(𝑢) = 0}

Lemma. (i) 𝑈0 ≤ 𝑉⋆;
(ii) If 𝑈 ≤ 𝑉 and dim𝑉 < ∞, then dim𝑉 = dim𝑈 + dim𝑈0.

Proof. (i) First, note that 0 ∈ 𝑈0 since 𝛼(0) = 0 by linearity. If 𝛼, 𝛼′ ∈ 𝑈0, then for all 𝑢 ∈ 𝑈 ,
(𝛼 + 𝛼′)(𝑢) = 𝛼(𝑢) + 𝛼′(𝑢) = 0

Further, for all 𝜆 ∈ 𝐹,
(𝜆𝛼)(𝑢) = 𝜆𝛼(𝑢) = 0

Hence 𝑈0 ≤ 𝑉⋆.

(ii) Let (𝑒1,… , 𝑒𝑘) be a basis of 𝑈 , completed into a basis 𝐵 = (𝑒1,… , 𝑒𝑘, 𝑒𝑘+1,… , 𝑒𝑛) of 𝑉 . Let
(𝜀1,… , 𝜀𝑛) be the dual basis 𝐵⋆. We then will prove that

𝑈0 = ⟨𝜀𝑘+1,… , 𝜀𝑛⟩
If 𝑖 > 𝑘, then 𝜀𝑖(𝑒𝑘) = 𝛿𝑖𝑘 = 0. Hence 𝜀𝑖 ∈ 𝑈0. Thus ⟨𝜀𝑘+1,… , 𝜀𝑛⟩ ⊂ 𝑈0. Conversely, let
𝛼 ∈ 𝑈0. Then 𝛼 = ∑𝑛

𝑖=1 𝛼𝑖𝜀𝑖. For 𝑖 ≤ 𝑘, 𝛼 ∈ 𝑈0 hence 𝛼(𝑒𝑖) = 0. Hence,

𝛼 =
𝑛
∑

𝑖=𝑘+1
𝛼𝑖𝜀𝑖
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Thus
𝛼 ∈ ⟨𝜀𝑘+1,… , 𝜀𝑛⟩

as required.

3.3 Dual maps

Lemma. Let 𝑉,𝑊 be 𝐹-vector spaces. Let 𝛼 ∈ 𝐿(𝑉,𝑊). Then there exists a unique 𝛼⋆ ∈
𝐿(𝑊 ⋆, 𝑉⋆) such that

𝜀 ↦ 𝜀 ∘ 𝛼
called the dual map.

Proof. First, note 𝜀(𝛼)∶ 𝑉 → 𝐹 is a linear map. Hence, 𝜀 ∘ 𝛼 ∈ 𝑉⋆. Now we must show 𝛼⋆ is linear.

𝛼⋆(𝜃1 + 𝜃2) = (𝜃1 + 𝜃2)(𝛼) = 𝜃1 ∘ 𝛼 + 𝜃2 ∘ 𝛼 = 𝛼⋆(𝜃1) + 𝛼⋆(𝜃2)

Similarly, we can show
𝛼⋆(𝜆𝜃) = 𝜆𝛼⋆(𝜃)

as required. Hence 𝛼⋆ ∈ 𝐿(𝑊 ⋆, 𝑉⋆).

Proposition. Let 𝑉,𝑊 be finite-dimensional 𝐹-vector spaces with bases 𝐵, 𝐶 respectively.
Then

[𝛼⋆]𝐶⋆,𝐵⋆ = [𝛼]⊺𝐵,𝐶
Thus, we can think of the dual map as the adjoint of 𝛼.

Proof. This follows from the definition of the dual map. Let 𝐵 = (𝑏1,… , 𝑏𝑛), 𝐶 = (𝑐1,… , 𝑐𝑚), 𝐵⋆ =
(𝛽1,… , 𝛽𝑛), 𝐶⋆ = (𝛾1,… , 𝛾𝑚). Let [𝛼]𝐵,𝐶 = (𝑎𝑖𝑗). Then, we compute

𝛼⋆(𝛾𝑟)(𝑏𝑠) = 𝛾𝑟 ∘ 𝛼(𝑏𝑠)

= 𝛾𝑟(∑
𝑡
𝑎𝑡𝑠𝑐𝑡)

= ∑
𝑡
𝑎𝑡𝑠𝛾𝑟(𝑐𝑡)

= ∑
𝑡
𝑎𝑡𝑠𝛿𝑡𝑟

= 𝑎𝑟𝑠

26



We can conversely write [𝛼⋆]𝐶⋆,𝐵⋆ = (𝑚𝑖𝑗) and

𝛼⋆(𝛾𝑟) =
𝑛
∑
𝑖=1

𝑚𝑖𝑟𝛽𝑖

𝛼⋆(𝛾𝑟)(𝑏𝑠) =
𝑛
∑
𝑖=1

𝑚𝑖𝑟𝛽𝑖(𝑏𝑠)

=
𝑛
∑
𝑖=1

𝑚𝑖𝑟𝛿𝑖𝑠

= 𝑚𝑠𝑟

Thus,
𝑎𝑟𝑠 = 𝑚𝑠𝑟

as required.

3.4 Properties of dual map
Let 𝛼 ∈ 𝐿(𝑉,𝑊), and 𝛼⋆ ∈ 𝐿(𝑊 ⋆, 𝑉⋆). Let 𝐵 and 𝐶 be bases of 𝑉,𝑊 respectively, and 𝐵⋆, 𝐶⋆ be their
duals. We have proven that

[𝛼]𝐵,𝐶 = [𝛼⋆]⊺𝐵,𝐶

Lemma. Suppose that 𝐸 = (𝑒1,… , 𝑒𝑛) and 𝐹 = (𝑓1,… , 𝑓𝑛) are bases of 𝑉 . Let 𝑃 = [𝐼]𝐹,𝐸 be
a change of basis matrix from 𝐹 to 𝐸. The bases 𝐸⋆ = (𝜀1,… , 𝜀𝑛), 𝐹⋆ = (𝜂1,… , 𝜂𝑛) are the
corresponding dual bases. Then, the change of basis matrix from 𝐹⋆ to 𝐸⋆ is

(𝑃−1)⊺

Proof. Consider
[𝐼]𝐹⋆,𝐸⋆ = [𝐼]⊺𝐸,𝐹 = ([𝐼]−1𝐹,𝐸)

⊺ = (𝑃−1)⊺

Lemma. Let 𝑉,𝑊 be 𝐹-vector spaces. Let 𝛼 ∈ 𝐿(𝑉,𝑊). Let 𝛼⋆ be the corresponding dual
map. Then, denoting 𝑁(𝛼) for the kernel of 𝛼,
(i) 𝑁(𝛼⋆) = (Im𝛼)0, so 𝛼⋆ is injective if and only if 𝛼 is surjective.
(ii) Im𝛼⋆ ≤ (𝑁(𝛼))0, with equality if 𝑉,𝑊 are finite-dimensional. In this finite-

dimensional case, 𝛼⋆ is surjective if and only if 𝛼 is injective.

Remark. In many applications, it is often simpler to understand the dual map 𝛼⋆ than it is to under-
stand 𝛼.

Proof. First, we prove (i). Let 𝜀 ∈ 𝑊 ⋆. Then, 𝜀 ∈ 𝑁(𝛼⋆)means 𝛼⋆(𝜀) = 0. Hence, 𝛼⋆(𝜀) = 𝜀 ∘ 𝛼 = 0
So for any 𝑣 ∈ 𝑉 , 𝜀(𝛼(𝑣)) = 0. Equivalently, 𝜀 is an element of the annihilator of Im𝛼.
Now, we will show (ii). Let 𝜀 ∈ Im𝛼⋆. Then 𝛼⋆(𝜙) = 𝜀 for some 𝜙 ∈ 𝑊 ⋆. Then, for all 𝑢 ∈ 𝑁(𝛼),
𝜀(𝑢) = (𝛼⋆(𝜙))(𝑢) = 𝜙 ∘ 𝛼(𝑢) = 𝜙(𝛼(𝑢)) = 0. Certainly then 𝜀 ∈ (𝑁(𝛼))0. Then, Im𝛼⋆ ≤ (𝑁(𝛼))0.
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In the finite-dimensional case, we can compare the dimension of these two spaces.

dim Im𝛼⋆ = 𝑟(𝛼⋆) = 𝑟([𝛼⋆]𝐶⋆,𝐵⋆) = 𝑟([𝛼]⊺𝐵,𝐶) = 𝑟([𝛼]𝐵,𝐶) = 𝑟(𝛼) = dim Im𝛼

Due to the rank-nullity theorem, dim Im𝛼⋆ = dim𝑉 − dim𝑁(𝛼) = dim [(𝑁(𝛼))0]. Hence,

Im𝛼⋆ ≤ (𝑁(𝛼))0; dim Im𝛼⋆ = dim(𝑁(𝛼))0

The dimensions are equal, and one is a subspace of the other, hence the spaces are equal.

3.5 Double duals

Definition. Let 𝑉 be an 𝐹-vector space. Let 𝑉⋆ be the dual of 𝑉 . The double dual or bidual
of 𝑉 is

𝑉⋆⋆ = 𝐿(𝑉⋆, 𝐹) = (𝑉⋆)⋆

Remark. In general, there is no obvious relation between 𝑉 and 𝑉⋆. However, the following useful
facts hold about 𝑉 and 𝑉⋆⋆.

(i) There is a canonical embedding from 𝑉 to 𝑉⋆⋆. In particular, there exists 𝑖 in 𝐿(𝑉, 𝑉⋆⋆) which
is injective.

(ii) There are examples of infinite-dimensional spaces where 𝑉 ≃ 𝑉⋆⋆. These are called reflexive
spaces. Such spaces are investigated in the study of Banach spaces.

Theorem. 𝑉 embeds into 𝑉⋆⋆.

Proof. Choose a vector 𝑣 ∈ 𝑉 and define the linear form ̂𝑣 ∈ 𝐿(𝑉⋆, 𝐹) such that

̂𝑣(𝜀) = 𝜀(𝑣)

So clearly ̂𝑣 is linear. We want to show ̂𝑣 ∈ 𝑉⋆⋆. If 𝜀 ∈ 𝑉⋆, 𝜀(𝑣) ∈ 𝐹. Further, 𝜆1, 𝜆2 ∈ 𝐹 and
𝜀1, 𝜀2 ∈ 𝑉⋆ give

̂𝑣(𝜆1𝜀1 + 𝜆2𝜀2) = (𝜆1𝜀1 + 𝜆2𝜀2)(𝑣) = 𝜆1𝜀1(𝑣) + 𝜆2𝜀2(𝑣) = 𝜆1 ̂𝑣(𝜀1) + 𝜆2 ̂𝑣(𝜀2)

Theorem. If 𝑉 is finite-dimensional, then 𝑖 ∶ 𝑉 → 𝑉⋆⋆ given by 𝑖(𝑣) = ̂𝑣 is an isomorphism.

Proof. We will show 𝑖 is linear. If 𝑣1, 𝑣2 ∈ 𝑉, 𝜆1, 𝜆2 ∈ 𝐹, then

𝑖(𝜆1𝑣1 + 𝜆2𝑣2)(𝜀) = 𝜀(𝜆1𝑣1 + 𝜆2𝑣2) = 𝜆1𝜀(𝑣1) + 𝜆2𝜀(𝑣2) = 𝜆1 ̂𝑣1(𝜀) + 𝜆2 ̂𝑣2(𝜀)

Now, we will show that 𝑖 is injective for finite-dimensional 𝑉 . Let 𝑒 ∈ 𝑉 ∖ {0}. We will show that
𝑒 ∉ ker 𝑖. We extend 𝑒 into a basis (𝑒, 𝑒2,… , 𝑒𝑛) of 𝑉 . Now, let (𝜀, 𝜀2,… , 𝜀𝑛) be the dual basis. Then
̂𝑒(𝜀) = 𝜀(𝑒) = 1. In particular, ̂𝑒 ≠ 0. Hence ker 𝑖 = {0}, so it is injective.
We now show that 𝑖 is an isomorphism. We need to simply compute the dimension of the image
under 𝑖. Certainly, dim𝑉 = dim𝑉⋆ = dim(𝑉⋆)⋆ = dim𝑉⋆⋆. Since 𝑖 is injective, dim𝑉 = dim𝑉⋆⋆.
So 𝑖 is surjective as required.
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Lemma. Let 𝑉 be a finite-dimensional 𝐹-vector space. Let 𝑈 ≤ 𝑉 . Then,

�̂� = 𝑈00

After identifying 𝑉 and 𝑉⋆⋆, we typically say

𝑈 = 𝑈00

although this is is incorrect notation and not an equality.

Proof. We will show that �̂� ≤ 𝑈00. Indeed, let 𝑢 ∈ 𝑈 , then by definition

∀𝜀 ∈ 𝑈0, 𝜀(𝑢) = 0 ⟹ �̂�(𝜀) = 0

Hence �̂� ∈ 𝑈00 and so �̂� ≤ 𝑈00.

Now, we will compute dimension: dim𝑈00 = dim𝑉 − dim𝑈0 = dim𝑈 . Since �̂� ≃ 𝑈 , their
dimensions are the same, so 𝑈00 = �̂� .

Remark. Due to this identification of 𝑉⋆⋆ and 𝑉 , we can define

𝑇 ≤ 𝑉⋆, 𝑇0 = {𝑣 ∈ 𝑉 ∶ ∀𝜃 ∈ 𝑇, 𝜃(𝑣) = 0}

Lemma. Let 𝑉 be a finite-dimensional 𝐹-vector space. Let 𝑈1, 𝑈2 be subspaces of 𝑉 . Then
(i) (𝑈1 + 𝑈2)0 = 𝑈0

1 ∩ 𝑈0
2 ;

(ii) (𝑈1 ∩ 𝑈2)0 = 𝑈0
1 + 𝑈0

2

Proof. Let 𝜃 ∈ 𝑉⋆. Then 𝜃 ∈ (𝑈1 + 𝑈2)0 ⟺ ∀𝑢1 ∈ 𝑈1, 𝑢2 ∈ 𝑈2, 𝜃(𝑢1 + 𝑢2) = 0. Hence 𝜃(𝑢) = 0
for all 𝑢 ∈ 𝑈1 ∪𝑈2 by linearity. Hence 𝜃 ∈ 𝑈0

1 ∩𝑈0
2 . Now, take the annihilator of (i) and 𝑈00 = 𝑈 to

complete part (ii).

4 Bilinear forms
4.1 Introduction

Definition. Let𝑈,𝑉 be 𝐹-vector spaces. Then 𝜙∶ 𝑈 ×𝑉 → 𝐹 is a bilinear form if it is linear
in both components. For example, 𝜙 at a fixed 𝑢 ∈ 𝑈 is a linear form 𝑉 → 𝐹 and an element
of 𝑉⋆.

Example. Consider the map 𝑉 × 𝑉⋆ → 𝐹 given by

(𝑣, 𝜃) ↦ 𝜃(𝑣)

Example. The scalar product on 𝑈 = 𝑉 = ℝ𝑛 is given by

𝜓(𝑥, 𝑦) =
𝑛
∑
𝑖=1

𝑥𝑖𝑦𝑖
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Example. Let 𝑈 = 𝑉 = 𝐶([0, 1], ℝ) and consider

𝜙(𝑓, 𝑔) = ∫
1

0
𝑓(𝑡)𝑔(𝑡) d𝑡

Definition. If 𝐵 = (𝑒1,… , 𝑒𝑚) is a basis of𝑈 and 𝐶 = (𝑓1,… , 𝑓𝑛) is a basis of 𝑉 , and 𝜙∶ 𝑈 ×
𝑉 → 𝐹 is a bilinear form, then the matrix of the bilinear form in this basis is

[𝜙]𝐵,𝐶 = (𝜙(𝑒𝑖, 𝑓𝑗))1≤𝑖≤𝑚,1≤𝑗≤𝑛

Lemma. We can link 𝜙 with its matrix in a given basis as follows.

𝜙(𝑢, 𝑣) = [𝑢]⊺𝐵[𝜙]𝐵,𝐶[𝑣]𝐶

Proof. Let 𝑢 = ∑𝑚
𝑖=1 𝜆𝑖𝑢𝑖 and 𝑣 = ∑𝑛

𝑗=1 𝜇𝑗𝑣𝑗 . Then

𝜙(𝑢, 𝑣) = 𝜙(
𝑚
∑
𝑖=1

𝜆𝑖𝑢𝑖,
𝑛
∑
𝑗=1

𝜇𝑗𝑣𝑗) =
𝑚
∑
𝑖=1

𝑛
∑
𝑗=1

𝜆𝑖𝜇𝑗𝜙(𝑢𝑖, 𝑣𝑗) = [𝑢]⊺𝐵[𝜙]𝐵,𝐶[𝑣]𝐶

Remark. Note that [𝜙]𝐵,𝐶 is the only matrix such that 𝜙(𝑢, 𝑣) = [𝑢]⊺𝐵[𝜙]𝐵,𝐶[𝑣]𝐶 .

Definition. Let 𝜙∶ 𝑈 × 𝑉 → 𝐹 be a bilinear form. Then 𝜙 induces two linear maps given
by the partial application of a single parameter to the function.

𝜙𝐿 ∶ 𝑈 → 𝑉⋆; 𝜙𝐿(𝑢)∶ 𝑉 → 𝐹; 𝑣 ↦ 𝜙(𝑢, 𝑣)

𝜙𝑅 ∶ 𝑉 → 𝑈⋆; 𝜙𝑅(𝑣)∶ 𝑈 → 𝐹; 𝑢 ↦ 𝜙(𝑢, 𝑣)
In particular,

𝜙𝐿(𝑢)(𝑣) = 𝜙(𝑢, 𝑣) = 𝜙𝑅(𝑣)(𝑢)

Lemma. Let 𝐵 = (𝑒1,… , 𝑒𝑚) be a basis of 𝑈 , and let 𝐵⋆ = (𝜀1,… , 𝜀𝑚) be its dual; and let
𝐶 = (𝑓1,… , 𝑓𝑛) be a basis of 𝑉 , and let 𝐶⋆ = (𝜂1,… , 𝜂𝑛) be its dual. Let 𝐴 = [𝜙]𝐵,𝐶 . Then

[𝜙𝑅]𝐶,𝐵⋆ = 𝐴; [𝜙𝐿]𝐵,𝐶⋆ = 𝐴⊺

Proof.
𝜙𝐿(𝑒𝑖)(𝑓𝑗) = 𝜙(𝑒𝑖, 𝑓𝑗) = 𝐴𝑖𝑗

Since 𝜂𝑗 is the dual of 𝑓𝑗 ,
𝜙𝐿(𝑒𝑖) = ∑

𝑖
𝐴𝑖𝑗𝜂𝑗
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Further,
𝜙𝑅(𝑓𝑗)(𝑒𝑖) = 𝜙(𝑒𝑖, 𝑓𝑗) = 𝐴𝑖𝑗

and then similarly
𝜙𝑅(𝑓𝑗) = ∑

𝑖
𝐴𝑖𝑗𝜀𝑖

Definition. ker𝜙𝐿 is called the left kernel of 𝜙. ker𝜙𝑅 is the right kernel of 𝜙.

Definition. We say that 𝜙 is non-degenerate if ker𝜙𝐿 = ker𝜙𝑅 = {0}. Otherwise, 𝜙 is degen-
erate.

Theorem. Let 𝐵 be a basis of𝑈 , and let 𝐶 be a basis of 𝑉 , where𝑈,𝑉 are finite-dimensional.
Let 𝜙∶ 𝑈 × 𝑉 → 𝐹 be a bilinear form. Let 𝐴 = [𝜙]𝐵,𝐶 . Then, 𝜙 is non-degenerate if and only
if 𝐴 is invertible.

Corollary. If 𝜙 is non-degenerate, then dim𝑈 = dim𝑉 .

Proof. Suppose 𝜙 is non-degenerate. Then ker𝜙𝐿 = ker𝜙𝑅 = {0}. This is equivalent to saying that
𝑛(𝜙𝐿) = 𝑛(𝜙𝑅) = 0. We can use the rank-nullity theorem to state that 𝑟(𝐴⊺) = dim𝑉 and 𝑟(𝐴) =
dim𝑉 . This is equivalent to saying that 𝐴 is invertible. Note that this forces dim𝑈 = dim𝑉 .

Remark. The canonical example of a non-degenerate bilinear form is the scalar productℝ𝑛×ℝ𝑛 → ℝ
represented by the identity matrix in the standard basis.

Corollary. If 𝑈 and 𝑉 are finite-dimensional with dim𝑈 = dim𝑉 , then choosing a non-
degenerate bilinear form 𝜙∶ 𝑈 ×𝑉 → 𝐹 is equivalent to choosing an isomorphism 𝜙𝐿 ∶ 𝑈 ≃
𝑉⋆.

Definition. If 𝑇 ⊂ 𝑈 , then we define

𝑇⟂ = {𝑣 ∈ 𝑉 ∶ ∀𝑡 ∈ 𝑇, 𝜙(𝑡, 𝑣) = 0}

Further, if 𝑆 ⊂ 𝑉 , we define
⟂𝑆 = {𝑢 ∈ 𝑈 ∶ ∀𝑠 ∈ 𝑆, 𝜙(𝑢, 𝑠) = 0}

These are called the orthogonals of 𝑇 and 𝑆.
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4.2 Change of basis for bilinear forms

Proposition. Let 𝐵, 𝐵′ be bases of 𝑈 and 𝑃 = [𝐼]𝐵′,𝐵, let 𝐶, 𝐶′ be bases of 𝑉 and 𝑄 = [𝐼]𝐶′,𝐶 ,
and finally let 𝜙∶ 𝑈 × 𝑉 → 𝐹 be a bilinear form. Then

[𝜙]𝐵′,𝐶′ = 𝑃⊺[𝜙]𝐵,𝐶𝑄

Proof. We have 𝜙(𝑢, 𝑣) = [𝑢]⊺𝐵[𝜙]𝐵,𝐶[𝑣]𝐶 . Changing coordinates, we have

𝜙(𝑢, 𝑣) = (𝑃[𝑢]𝐵′)⊺[𝜙]𝐵,𝐶(𝑄[𝑣]𝐶′) = [𝑢]⊺𝐵′(𝑃⊺[𝜙]𝐵,𝐶𝑄)[𝑣]𝐶′

Lemma. The rank of a bilinear form 𝜙, denoted 𝑟(𝜙) is the rank of any matrix representing
𝜙. This quantity is well-defined.

Remark. 𝑟(𝜙) = 𝑟(𝜙𝑅) = 𝑟(𝜙𝐿), since 𝑟(𝐴) = 𝑟(𝐴⊺).

Proof. For any invertible matrices 𝑃,𝑄, 𝑟(𝑃⊺𝐴𝑄) = 𝑟(𝐴).

5 Trace and determinant
5.1 Trace

Definition. The trace of a square matrix 𝐴 ∈ 𝑀𝑛,𝑛(𝐹) ≡ 𝑀𝑛(𝐹) is defined by

tr𝐴 =
𝑛
∑
𝑖=1

𝑎𝑖𝑖

The trace is a linear form.

Lemma. tr(𝐴𝐵) = tr(𝐵𝐴) for any matrices 𝐴, 𝐵 ∈ 𝑀𝑛(𝐹).

Proof. We have

tr(𝐴𝐵) =
𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

𝑎𝑖𝑗𝑏𝑗𝑖 =
𝑛
∑
𝑗=1

𝑛
∑
𝑖=1

𝑏𝑗𝑖𝑎𝑖𝑗 = tr(𝐵𝐴)

Corollary. Similar matrices have the same trace.

Proof.
tr(𝑃−1𝐴𝑃) = tr(𝐴𝑃−1𝑃) = tr𝐴
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Definition. If 𝛼∶ 𝑉 → 𝑉 is linear, we can define the trace of 𝛼 as

tr𝛼 = tr[𝛼]𝐵
for any basis 𝐵. This is well-defined by the corollary above.

Lemma. If 𝛼∶ 𝑉 → 𝑉 is linear, 𝛼⋆ ∶ 𝑉⋆ → 𝑉⋆ satisfies

tr𝛼 = tr𝛼⋆

Proof.
tr𝛼 = tr[𝛼]𝐵 = tr[𝛼]⊺𝐵 = tr[𝛼⋆]𝐵⋆ = tr𝛼⋆

5.2 Permutations and transpositions
Recall the following facts about permutations and transpositions. 𝑆𝑛 is the group of permutations
of the set {1,… , 𝑛}; the group of bijections 𝜎∶ {1,… , 𝑛} → {1,… , 𝑛}. A transposition 𝜏𝑘ℓ = (𝑘, ℓ) is
defined by 𝑘 ↦ ℓ, ℓ ↦ 𝑘, 𝑥 ↦ 𝑥 for 𝑥 ≠ 𝑘, ℓ. Any permutation 𝜎 can be decomposed as a product
of transpositions. This decomposition is not necessarily unique, but the parity of the number of
transpositions is well-defined. We say that the signature of a permutation, denoted 𝜀∶ 𝑆𝑛 → {−1, 1},
is 1 if the decomposition has even parity and −1 if it has odd parity. We can then show that 𝜀 is a
homomorphism.

5.3 Determinant

Definition. Let 𝐴 ∈ 𝑀𝑛(𝐹). We define

det𝐴 = ∑
𝜎∈𝑆𝑛

𝜀(𝜎)𝐴𝜎(1)1…𝐴𝜎(𝑛)𝑛

Example. Let 𝑛 = 2. Then,

𝐴 = (𝑎11 𝑎12
𝑎21 𝑎22

) ⟹ det𝐴 = 𝑎11𝑎22 − 𝑎12𝑎21

Lemma. If 𝐴 = (𝑎𝑖𝑗) is an upper (or lower) triangular matrix (with zeroes on the diagonal),
then det𝐴 = 0.

Proof. Let (𝑎𝑖𝑗) = 0 for 𝑖 > 𝑗. Then

det𝐴 = ∑
𝜎∈𝑆𝑛

𝜀(𝜎)𝑎𝜎(1)1…𝑎𝜎(𝑛)𝑛

For the summand to be nonzero, 𝜎(𝑗) ≤ 𝑗 for all 𝑗. Thus,

det𝐴 = 𝑎11…𝑎𝑛𝑛 = 0
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Lemma. Let 𝐴 ∈ 𝑀𝑛(𝐹). Then, det𝐴 = det𝐴⊺.

Proof.

det𝐴 = ∑
𝜎∈𝑆𝑛

𝜀(𝜎)𝑎𝜎(1)1…𝑎𝜎(𝑛)𝑛

= ∑
𝜎−1∈𝑆𝑛

𝜀(𝜎)𝑎𝜎(1)1…𝑎𝜎(𝑛)𝑛

= ∑
𝜎∈𝑆𝑛

𝜀(𝜎−1)𝑎1𝜎(1)…𝑎𝑛𝜎(𝑛)

= ∑
𝜎∈𝑆𝑛

𝜀(𝜎)𝑎1𝜎(1)…𝑎𝑛𝜎(𝑛)

= det𝐴⊺

5.4 Volume forms

Definition. A volume form 𝑑 on 𝐹𝑛 is a function 𝑑∶ 𝐹𝑛 ×⋯× 𝐹𝑛⏟⎵⎵⎵⏟⎵⎵⎵⏟
𝑛 times

→ 𝐹 satisfying

(i) 𝑑 is multilinear: for all 𝑖 ∈ {1,… , 𝑛} and for all 𝑣1,… , 𝑣𝑖−1, 𝑣𝑖+1,… , 𝑣𝑛 ∈ 𝐹𝑛, the map
from 𝐹𝑛 to 𝐹 defined by

𝑣 ↦ (𝑣1,… , 𝑣𝑖−1, 𝑣, 𝑣𝑖+1,… , 𝑣𝑛)

is linear. In other words, this map is an element of (𝐹𝑛)⋆.
(ii) 𝑑 is alternating: for 𝑣𝑖 = 𝑣𝑗 for some 𝑖 ≠ 𝑗, 𝑑 = 0.

So an alternating multilinear form is a volume form. We want to show that, up to multiplica-
tion by a scalar, the determinant is the only volume form.

Lemma. Themap (𝐹𝑛)𝑛 → 𝐹 defined by (𝐴(1),… , 𝐴(𝑛)) ↦ det𝐴 is a volume form. This map
is the determinant of 𝐴, but thought of as acting on the column vectors of 𝐴.

Proof. We first show that this map is multilinear. Fix 𝜎 ∈ 𝑆𝑛, and consider∏
𝑛
𝑖=1 𝑎𝜎(𝑖)𝑖. This product

contains exactly one term in each column of 𝐴. Thus, the map (𝐴(1),… , 𝐴(𝑛)) ↦ ∏𝑛
𝑖=1 𝑎𝜎(𝑖)𝑖 is mul-

tilinear. This then clearly implies that the determinant, a sum of such multilinear maps, is itself
multilinear.

Now, we show that the determinant is alternating. Let 𝑘 ≠ ℓ, and 𝐴(𝑘) = 𝐴(ℓ). Let 𝜏 = (𝑘ℓ) be
the transposition exchanging 𝑘 and ℓ. Then, for all 𝑖, 𝑗 ∈ {1,… , 𝑛}, 𝑎𝑖𝑗 = 𝑎𝑖𝜏(𝑗). We can decompose
permutations into two disjoint sets: 𝑆𝑛 = 𝐴𝑛∪𝜏𝐴𝑛, where𝐴𝑛 is the alternating group of order 𝑛. Now,
note that∏𝑛

𝑖=1 𝑎𝜎(𝑖)𝑖+∏
𝑛
𝑖=1 𝑎(𝜏∘𝜎)(𝑖)𝑖 = 0. So the sum over all 𝜎 ∈ 𝐴𝑛 gives zero. So the determinant

is alternating, and hence a volume form.
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Lemma. Let 𝑑 be a volume form. Then, swapping two entries changes the sign.

Proof. Take the sum of these two results:

𝑑(𝑣1,… , 𝑣𝑖,… , 𝑣𝑗 ,… , 𝑣𝑛) + 𝑑(𝑣1,… , 𝑣𝑗 ,… , 𝑣𝑖,… , 𝑣𝑛)
= 𝑑(𝑣1,… , 𝑣𝑖,… , 𝑣𝑗 ,… , 𝑣𝑛)
+ 𝑑(𝑣1,… , 𝑣𝑗 ,… , 𝑣𝑖,… , 𝑣𝑛)
+ 𝑑(𝑣1,… , 𝑣𝑖,… , 𝑣𝑖,… , 𝑣𝑛)
+ 𝑑(𝑣1,… , 𝑣𝑗 ,… , 𝑣𝑗 , 𝑣𝑛)
= 2𝑑(𝑣1,… , 𝑣𝑖 + 𝑣𝑗 ,… , 𝑣𝑖 + 𝑣𝑗 ,… , 𝑣𝑛)
= 0

as required.

Corollary. If 𝜎 ∈ 𝑆𝑛 and 𝑑 is a volume form, 𝑑(𝑣𝜎(1),… , 𝑣𝜎(𝑛)) = 𝜀(𝜎)𝑑(𝑣1,… , 𝑣𝑛).

Proof. We can decompose 𝜎 as a product of transpositions∏𝑛𝜎
𝑖=1 𝑒𝑖.

Theorem. Let 𝑑 be a volume form on 𝐹𝑛. Let 𝐴 be a matrix whose columns are 𝐴(𝑖). Then

𝑑(𝐴(1),… , 𝐴(𝑛)) = det𝐴 ⋅ 𝑑(𝑒1,… , 𝑒𝑛)

So there is a unique volume form up to a constant multiple. We can then see that det𝐴 is the
only volume form such that 𝑑(𝑒1,… , 𝑒𝑛) = 1.

Proof.

𝑑(𝐴(1),… , 𝐴(𝑛)) = 𝑑(
𝑛
∑
𝑖=1

𝑎𝑖1𝑒𝑖, 𝐴(2),… , 𝐴(𝑛))

Since 𝑑 is multilinear,

𝑑(𝐴(1),… , 𝐴(𝑛)) =
𝑛
∑
𝑖=1

𝑎𝑖1𝑑(𝑒𝑖, 𝐴(2),… , 𝐴(𝑛))

Inductively on all columns,

𝑑(𝐴(1),… , 𝐴(𝑛)) =
𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

𝑎𝑖1𝑎𝑗2𝑑(𝑒𝑖, 𝑒𝑗 , 𝐴(3),… , 𝐴(𝑛)) = ⋯ = ∑
1≤𝑖1,≤⋯≤𝑛

𝑛
∏
𝑘=1

𝑎𝑖ℓ𝑘𝑑(𝑒𝑖1 ,… 𝑒𝑖𝑛)

Since 𝑑 is alternating, we know that for 𝑑(𝑒𝑖1 ,… , 𝑒𝑖𝑛) to be nonzero, the 𝑖𝑘 must be different, so this
corresponds to a permutation 𝜎 ∈ 𝑆𝑛.

𝑑(𝐴(1),… , 𝐴(𝑛)) = ∑
𝜎∈𝑆𝑛

𝑛
∏
𝑘=1

𝑎𝜎(𝑘)𝑘𝜀(𝜎)𝑑(𝑒1,… , 𝑒𝑛)

which is exactly the determinant up to a constant multiple.
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5.5 Multiplicative property of determinant

Lemma. Let 𝐴, 𝐵 ∈ 𝑀𝑛(𝐹). Then det(𝐴𝐵) = det(𝐴) det(𝐵).

Proof. Given 𝐴, we define the volume form 𝑑𝐴 ∶ (𝐹𝑛)𝑛 → 𝐹 by

𝑑𝐴(𝑣1,… , 𝑣𝑛) ↦ det(𝐴𝑣1,… , 𝐴𝑣𝑛)

𝑣𝑖 ↦ 𝐴𝑣𝑖 is linear, and the determinant is multilinear, so 𝑑𝐴 is multilinear. If 𝑖 ≠ 𝑗 and 𝑣𝑖 = 𝑣𝑗 , then
det(… ,𝐴𝑣𝑖,… , 𝐴𝑣𝑗 ,…) = 0 so 𝑑𝐴 is alternating. Hence 𝑑𝐴 is a volume form. Hence there exists a
constant 𝐶𝐴 such that 𝑑𝐴(𝑣1,… , 𝑣𝑛) = 𝐶𝐴 det(𝑣1,… , 𝑣𝑛). We can compute 𝐶𝐴 by considering the
basis vectors; 𝐴𝑒𝑖 = 𝐴𝑖 where 𝐴𝑖 is the 𝑖th column vector of 𝐴. Then,

𝐶𝐴 = 𝑑𝐴(𝑒1,… , 𝑒𝑛) = det(𝐴𝑒1,… , 𝐴𝑒𝑛) = det𝐴

Hence,
det(𝐴𝐵) = 𝑑𝐴(𝐵) = det𝐴 det𝐵

5.6 Singular and non-singular matrices

Definition. Let 𝐴 ∈ 𝑀𝑛(𝐹). We say that
(i) 𝐴 is singular if det𝐴 = 0;
(ii) 𝐴 is non-singular if det𝐴 ≠ 0.

Lemma. If 𝐴 is invertible, it is non-singular.

Proof. If 𝐴 is invertible, there exists 𝐴−1. Then, since the determinant is a homomorphism,

det(𝐴𝐴−1) = det 𝐼 = 1

Thus det𝐴 det𝐴−1 = 1 and hence neither of these determinants can be zero.

Theorem. Let 𝐴 ∈ 𝑀𝑛(𝐹). The following are equivalent.
(i) 𝐴 is invertible;
(ii) 𝐴 is non-singular;
(iii) 𝑟(𝐴) = 𝑛.

Proof. Wehave already shown that (i) implies (ii). We have also shown that (i) and (iii) are equivalent
by the rank-nullity theorem. So it suffices to show that (ii) implies (iii).

Suppose 𝑟(𝐴) < 𝑛. Then we will show 𝐴 is singular. We have dim span(𝐴1,… , 𝐴𝑛) < 𝑛. There-
fore, since there are 𝑛 vectors, (𝐴1,… , 𝐴𝑛) is not free. So there exist scalars 𝜆𝑖 not all zero such that
∑𝑖 𝜆𝑖𝐴𝑖 = 0. Choose 𝑗 such that 𝜆𝑗 ≠ 0. Then,

𝐴𝑗 = − 1
𝜆𝑗
∑
𝑖≠𝑗

𝜆𝑖𝐴𝑖
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So we can compute the determinant of 𝐴 by

det𝐴 = det(𝐴1,… ,− 1
𝜆𝑗
∑
𝑖≠𝑗

𝜆𝑖𝐴𝑖,… , 𝐴𝑛)

Since the determinant is alternating and linear in the 𝑗th entry, its value is zero. So 𝐴 is singular as
required.

Remark. The above theorem gives necessary and sufficient conditions for invertibility of a set of 𝑛
linear equations with 𝑛 unknowns.

5.7 Determinants of linear maps

Lemma. Similar matrices have the same determinant.

Proof.
det(𝑃−1𝐴𝑃) = det(𝑃−1) det𝐴 det𝑃 = det𝐴 det(𝑃−1𝑃) = det𝐴

Definition. If 𝛼 is an endomorphism, then we define

det𝛼 = det[𝛼]𝐵,𝐵
where 𝐵 is any basis of the vector space. This is well-defined, since this value does not depend
on the choice of basis.

Theorem. det∶ 𝐿(𝑉, 𝑉) → 𝐹 satisfies the following properties.
(i) det 𝐼 = 1;
(ii) det(𝛼𝛽) = det𝛼 det 𝛽;
(iii) det𝛼 ≠ 0 if and only if 𝛼 is invertible, and in this case, det(𝛼−1) det𝛼 = 1.
This is simply a reformulation of the previous theorem for matrices. The proof is simple, and
relies on the invariance of the determinant under a change of basis.

5.8 Determinant of block-triangular matrices

Lemma. Let 𝐴 ∈ 𝑀𝑘(𝐹), 𝐵 ∈ 𝑀ℓ(𝐹), 𝐶 ∈ 𝑀𝑘,ℓ(𝐹). Consider the matrix

𝑀 = (𝐴 𝐶
0 𝐵)

Then det𝑀 = det𝐴 det𝐵.
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Proof. Let 𝑛 = 𝑘 + ℓ, so𝑀 ∈ 𝑀𝑛(𝐹). Let𝑀 = (𝑚𝑖𝑗). We must compute

det𝑀 = ∑
𝜎∈𝑆𝑛

𝜀(𝜎)
𝑛
∏
𝑖=1

𝑚𝜎(𝑖)𝑖

Observe that𝑚𝜎(𝑖)𝑖 = 0 if 𝑖 ≤ 𝑘 and 𝜎(𝑖) > 𝑘. Then, we need only sum over 𝜎 ∈ 𝑆𝑛 such that for all
𝑗 ≤ 𝑘, we have 𝜎(𝑗) ≤ 𝑘. Thus, for all 𝑗 ∈ {𝑘 + 1,… , 𝑛}, we have 𝜎(𝑗) ∈ {𝑘 + 1,… , 𝑛}. We can then
uniquely decompose 𝜎 into two permutations 𝜎 = 𝜎1𝜎2, where 𝜎1 is restricted to {1,… , 𝑘} and 𝜎2 is
restricted to {𝑘 + 1,… , 𝑛}. Hence,

det𝑀 = ∑
𝜎1∈𝑆𝑘

∑
𝜎2∈𝑆𝑛−𝑘

𝜀(𝜎)
𝑛
∏
𝑖=1

𝑚𝜎(𝑖)𝑖

= ∑
𝜎1∈𝑆𝑘

∑
𝜎2∈𝑆𝑛−𝑘

𝜀(𝜎1)𝜀(𝜎2)
𝑘
∏
𝑖=1

𝑚𝜎(𝑖)𝑖

𝑛
∏
𝑖=𝑘+1

𝑚𝜎(𝑖)𝑖

= ∑
𝜎1∈𝑆𝑘

𝜀(𝜎1)
𝑘
∏
𝑖=1

𝑚𝜎(𝑖)𝑖 ∑
𝜎2∈𝑆𝑛−𝑘

𝜀(𝜎2)
𝑛
∏
𝑖=𝑘+1

𝑚𝜎(𝑖)𝑖

= det𝐴 det𝐵

Corollary. We need not restrict ourselves to just two blocks, since we can apply the above
lemma inductively. In particular, this implies that an upper-triangular matrix with diagonal
elements 𝜆𝑖 has determinant∏𝑖 𝜆𝑖.

6 Adjugate matrices
6.1 Column and row expansions
Let 𝐴 ∈ 𝑀𝑛(𝐹) with column vectors 𝐴(𝑖). We know that

det(𝐴(1),… , 𝐴(𝑗),… , 𝐴(𝑘),… , 𝐴(𝑛)) = − det(𝐴(1),… , 𝐴(𝑘),… , 𝐴(𝑗),… , 𝐴(𝑛))

Using the fact that det𝐴 = det𝐴⊺ we can similarly see that swapping two rows will invert the sign of
the determinant.

Remark. We could have proven all of the properties of the determinant above by using the decom-
position of 𝐴 into elementary matrices.

Definition. Let 𝐴 ∈ 𝑀𝑛(𝐹). Let 𝑖, 𝑗 ∈ {1,… , 𝑛}. We define the minor 𝐴𝑖𝑗 ∈ 𝑀𝑛−1(𝐹) to be
the matrix obtained by removing the 𝑖th row and the 𝑗th column.

Lemma. Let 𝐴 ∈ 𝑀𝑛(𝐹).
(i) Let 𝑗 ∈ {1,… , 𝑛}. The determinant of 𝐴 is given by the column expansion with respect
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to the 𝑗th column:

det𝐴 =
𝑛
∑
𝑖=1
(−1)𝑖+𝑗𝑎𝑖𝑗 det𝐴𝑖𝑗

(ii) Let 𝑖 ∈ {1,… , 𝑛}. The same determinant is also given by the row expansion with respect
to the 𝑖th row:

det𝐴 =
𝑛
∑
𝑗=1

(−1)𝑖+𝑗𝑎𝑖𝑗 det𝐴𝑖𝑗

This is a process of reducing the computation of 𝑛 × 𝑛 determinants to (𝑛 − 1) × (𝑛 − 1)
determinants.

Proof. We will prove case (i), the column expansion with respect to the 𝑗th column. Then (ii) will
follow from the transpose of the matrix. Let 𝑗 ∈ {1,… , 𝑛}. We can write 𝐴(𝑗) = ∑𝑛

𝑖=1 𝑎𝑖𝑗𝑒𝑖 where the
𝑒𝑖 are the canonical basis. Then, by swapping rows and columns,

det𝐴 = det (𝐴(1),… ,
𝑛
∑
𝑖=1

𝑎𝑖𝑗𝑒𝑖,… , 𝐴(𝑛))

=
𝑛
∑
𝑖=1

𝑎𝑖𝑗 det (𝐴(1),… , 𝑒𝑖,… , 𝐴(𝑛))

=
𝑛
∑
𝑖=1

𝑎𝑖𝑗(−1)𝑗−1 det (𝑒𝑖, 𝐴(1),… , 𝐴(𝑛))

=
𝑛
∑
𝑖=1

𝑎𝑖𝑗(−1)𝑗−1(−1)𝑖−1 det (𝑒1, 𝐴
(1)
,… , 𝐴

(𝑛)
)

This has brought the matrix into block form, where there is an element of value 1 in the top left, and
the matrix 𝐴𝑖𝑗 in the bottom right. The bottom left block is entirely zeroes. Hence,

det𝐴 =
𝑛
∑
𝑖=1
(−1)𝑖+𝑗𝑎𝑖𝑗 det𝐴𝑖𝑗

as required.

Remark. We have proven that

det(𝐴(1),… , 𝑒𝑖,… , 𝐴(𝑛)) = (−1)𝑖+𝑗 det𝐴𝑖𝑗

6.2 Adjugates

Definition. Let 𝐴 ∈ 𝑀𝑛(𝐹). The adjugate matrix of 𝐴, denoted adj𝐴, is the 𝑛 × 𝑛 matrix
given by

(adj𝐴)𝑖𝑗 = (−1)𝑖+𝑗 det𝐴𝑗𝑖

Hence,
det(𝐴(1),… , 𝑒𝑖,… , 𝐴(𝑛)) = (adj𝐴)𝑗𝑖
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Theorem. Let 𝐴 ∈ 𝑀𝑛(𝐹). Then

(adj𝐴)𝐴 = (det𝐴)𝐼

In particular, when 𝐴 is invertible,
𝐴−1 = adj𝐴

det𝐴

Proof. We have

det𝐴 =
𝑛
∑
𝑖=1
(−1)𝑖+𝑗𝑎𝑖𝑗 det𝐴𝑖𝑗

Hence,

det𝐴 =
𝑛
∑
𝑖=1
(adj𝐴)𝑗𝑖𝑎𝑖𝑗 = ((adj𝐴)𝐴)𝑗𝑗

So the diagonal terms match. Off the diagonal,

0 = det(𝐴(1),… , 𝐴(𝑘)⏟
𝑗th position

,… , 𝐴(𝑘),… , 𝐴(𝑛))

By linearity,

0 = det
⎛
⎜
⎜
⎜
⎝

𝐴(1),… ,
𝑛
∑
𝑖=1

𝑎𝑖𝑘𝑒𝑖
⏟⎵⏟⎵⏟
𝑗th position

,… , 𝐴(𝑘),… , 𝐴(𝑛)
⎞
⎟
⎟
⎟
⎠

=
𝑛
∑
𝑖=1

𝑎𝑖𝑘 det(𝐴(1),… , 𝑒𝑖⏟
𝑗th position

,… , 𝐴(𝑘),… , 𝐴(𝑛))

=
𝑛
∑
𝑖=1

𝑎𝑖𝑘(adj𝐴)𝑗𝑖

= ((adj𝐴)𝐴)𝑗𝑘

6.3 Cramer’s rule

Proposition. Let 𝐴 be an invertible square matrix of dimension 𝑛. Let 𝑏 ∈ 𝐹𝑛. Then the
unique solution to 𝐴𝑥 = 𝑏 is given by

𝑥𝑖 =
1

det𝐴 det(𝐴𝑖𝑏)

where 𝐴𝑖𝑏 is obtained by replacing the 𝑖th column of 𝐴 by 𝑏. This is an algorithm to compute
𝑥, avoiding the computation of 𝐴−1.
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Proof. Let 𝐴 be invertible. Then there exists a unique 𝑥 ∈ 𝐹𝑛 such that 𝐴𝑥 = 𝑏. Then, since the
determinant is alternating,

det(𝐴𝑖𝑏) = det(𝐴(1),… , 𝐴(𝑖−1), 𝑏, 𝐴(𝑖+1),… , 𝐴(𝑛))

= det(𝐴(1),… , 𝐴(𝑖−1),
𝑛
∑
𝑗=1

𝑥𝑗𝐴(𝑗), 𝐴(𝑖+1),… , 𝐴(𝑛))

= det (𝐴(1),… , 𝐴(𝑖−1), 𝑥𝑖𝐴(𝑖), 𝐴(𝑖+1),… , 𝐴(𝑛))
= 𝑥𝑖 det𝐴

So the formula works.

7 Eigenvectors and eigenvalues
7.1 Eigenvalues
Let 𝑉 be an 𝐹-vector space. Let dim𝑉 = 𝑛 < ∞, and let 𝛼 be an endomorphism of 𝑉 . We wish
to find a basis 𝐵 of 𝑉 such that, in this basis, [𝛼]𝐵 ≡ [𝛼]𝐵,𝐵 has a simple (e.g. diagonal, triangular)
form. Recall that if 𝐵′ is another basis and 𝑃 is the change of basis matrix, [𝛼]𝐵′ = 𝑃−1[𝛼]𝐵𝑃. Equi-
valently, given a square matrix 𝐴 ∈ 𝑀𝑛(𝐹) we want to conjugate it by a matrix 𝑃 such that the result
is ‘simpler’.

Definition. Let𝛼 ∈ 𝐿(𝑉) be an endomorphism. We say that𝛼 is diagonalisable if there exists
a basis 𝐵 of𝑉 such that thematrix [𝛼]𝐵 is diagonal. We say that 𝛼 is triangulable if there exists
a basis 𝐵 of 𝑉 such that [𝛼]𝐵 is triangular.

Remark. We can express this equivalently in terms of conjugation of matrices.

Definition. A scalar 𝜆 ∈ 𝐹 is an eigenvalue of an endomorphism 𝛼 if and only if there exists
a vector 𝑣 ∈ 𝑉 ∖ {0} such that 𝛼(𝑣) = 𝜆𝑣. Such a vector is an eigenvector with eigenvalue 𝜆.
𝑉 𝜆 = {𝑣 ∈ 𝑉 ∶ 𝛼(𝑣) = 𝜆𝑣} ≤ 𝑉 is the eigenspace associated to 𝜆.

Lemma. 𝜆 is an eigenvalue if and only if det(𝛼 − 𝜆𝐼) = 0.

Proof. If 𝜆 is an eigenvalue, there exists a nonzero vector 𝑣 such that 𝛼(𝑣) = 𝜆𝑣, so (𝛼−𝜆)(𝑣) = 0. So
the kernel is non-trivial. So 𝛼 − 𝜆𝐼 is not injective, so it is not surjective by the rank-nullity theorem.
Hence this matrix is not invertible, so it has zero determinant.

Remark. If 𝛼(𝑣𝑗) = 𝜆𝑣𝑗 for 𝑗 ∈ {1,… ,𝑚}, we can complete the family 𝑣𝑗 into a basis (𝑣1,… , 𝑣𝑛) of 𝑉 .
Then in this basis, the first𝑚 columns of the matrix 𝛼 has diagonal entries 𝜆𝑗 .

7.2 Polynomials
Recall the following facts about polynomials on a field, for instance

𝑓(𝑡) = 𝑎𝑛𝑡𝑛 +⋯+ 𝑎1𝑡 + 𝑎0
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We say that the degree of 𝑓, written deg𝑓 is 𝑛. The degree of 𝑓 + 𝑔 is at most the maximum degree
of 𝑓 and 𝑔. deg(𝑓𝑔) = deg𝑓 + deg 𝑔. Let 𝐹[𝑡] be the vector space of polynomials with coefficients in
𝐹. If 𝜆 is a root of 𝑓, then (𝑡 − 𝜆) divides 𝐹.

Proof.
𝑓(𝑡) = 𝑎𝑛𝑡𝑛 +⋯+ 𝑎1𝑡 + 𝑎0

Hence,
𝑓(𝜆) = 𝑎𝑛𝜆𝑛 +⋯+ 𝑎1𝜆 + 𝑎0 = 0

which implies that
𝑓(𝑡) = 𝑓(𝑡) − 𝑓(𝜆) = 𝑎𝑛(𝑡𝑛 − 𝜆𝑛) +⋯ + 𝑎1(𝑡 − 𝜆)

But note that, for all 𝑛,

𝑡𝑛 − 𝜆𝑛 = (1 − 𝜆)(𝑡𝑛−1 + 𝜆𝑡𝑛−2 +⋯+ 𝜆𝑛−2𝑡 + 𝜆𝑛−1)

Remark. We say that 𝜆 is a root ofmultiplicity 𝑘 if (𝑡 − 𝜆)𝑘 divides 𝑓 but (𝑡 − 𝜆)𝑘+1 does not.

Corollary. A nonzero polynomial of degree 𝑛 has at most 𝑛 roots, counted with multiplicity.

Corollary. If 𝑓1, 𝑓2 are two polynomials of degree less than 𝑛 such that 𝑓1(𝑡𝑖) = 𝑓2(𝑡𝑖) for
𝑖 ∈ {1,… , 𝑛} and 𝑡𝑖 distinct, then 𝑓1 ≡ 𝑓2.

Proof. 𝑓1 − 𝑓2 has degree less than 𝑛, but has 𝑛 roots. Hence it is zero.

Theorem. Any polynomial 𝑓 ∈ ℂ[𝑡] of positive degree has a complex root. When counted
with multiplicity, 𝑓 has a number of roots equal to its degree.

Corollary. Any polynomial 𝑓 ∈ ℂ[𝑡] can be factorised into an amount of linear factors equal
to its degree.

7.3 Characteristic polynomials

Definition. Let 𝛼 be an endomorphism. The characteristic polynomial of 𝛼 is

𝜒𝛼(𝜆) = det(𝛼 − 𝜆𝐼)

Remark. 𝜒𝛼 is a polynomial because the determinant is defined as a polynomial in the terms of the
matrix. Note further that conjugate matrices have the same characteristic polynomial, so the above
definition is well defined in any basis. Indeed, det(𝑃−1𝛼𝑃 − 𝜆𝐼) = det(𝑃−1(𝛼 − 𝜆𝐼)𝑃) = det(𝛼 − 𝜆𝐼).

42



Theorem. Let 𝛼 ∈ 𝐿(𝑉). 𝛼 is triangulable if and only if 𝜒𝛼 can be written as a product of
linear factors over 𝐹. In particular, all complex matrices are triangulable.

Proof. Suppose 𝛼 is triangulable. Then for a basis 𝐵, [𝛼]𝐵 is triangulable with diagonal entries 𝑎𝑖.
Then

𝜒𝛼(𝑡) = (𝑎1 − 𝑡)(𝑎2 − 𝑡)⋯ (𝑎𝑛 − 𝑡)
Conversely, let 𝜒𝛼(𝑡) be the characteristic polynomial of 𝛼with a root 𝜆. Then, 𝜒𝛼(𝜆) = 0 implies 𝜆 is
an eigenvalue. Let𝑉 𝜆 be the corresponding eigenspace. Let (𝑣1,… , 𝑣𝑘) be the basis of this eigenspace,
completed to a basis (𝑣1,… , 𝑣𝑛) of 𝑉 . Let𝑊 = span {𝑣𝑘+1,… , 𝑣𝑛}, and then 𝑉 = 𝑉 𝜆 ⊕𝑊 . Then

[𝛼]𝐵 = (𝜆𝐼 ⋆
0 𝐶)

where ⋆ is arbitrary, and 𝐶 is a block of size (𝑛 − 𝑘) × (𝑛 − 𝑘). Then 𝛼 induces an endomorph-
ism 𝛼∶ 𝑉/𝑈 → 𝑉/𝑈 with respect to the basis (𝑣𝑘+1,… , 𝑣𝑛), where 𝑈 = 𝑉 𝜆. By induction on the
dimension, we can find a basis (𝑤𝑘+1,… ,𝑤𝑛) for which 𝐶 has a triangular form. Then the basis
(𝑣1,… , 𝑣𝑘, 𝑤𝑘+1,… ,𝑤𝑛) is a basis for which 𝛼 is triangular.

Lemma. Let 𝑛 = dim𝑉 , and 𝑉 be a vector space overℝ or ℂ. Let 𝛼 be an endomorphism on
𝑉 . Then

𝜒𝛼(𝑡) = (−1)𝑛𝑡𝑛 + 𝑐𝑛−1𝑡𝑛−1 +⋯+ 𝑐0
with

𝑐0 = det𝐴; 𝑐𝑛−1 = (−1)𝑛−1 tr𝐴

Proof.
𝜒𝛼(𝑡) = det(𝛼 − 𝑡𝐼) ⟹ 𝜒𝛼(0) = det(𝛼)

Further, forℝ,ℂweknow that𝛼 is triangulable overℂ. Hence𝜒𝛼(𝑡) is the determinant of a triangular
matrix;

𝜒𝛼(𝑡) =
𝑛
∏
𝑖=1

(𝑎𝑖 − 𝑡)

Hence
𝑐𝑛−1 = (−1)𝑛−1𝑎𝑖

Since the trace is invariant under a change of basis, this is exactly the trace as required.

7.4 Polynomials for matrices and endomorphisms
Let 𝑝(𝑡) be a polynomial over 𝐹. We will write

𝑝(𝑡) = 𝑎𝑛𝑡𝑛 +⋯+ 𝑎0
For a matrix 𝐴 ∈ 𝑀𝑛(𝐹), we write

𝑝(𝐴) = 𝑎𝑛𝐴𝑛 +⋯+ 𝑎0 ∈ 𝑀𝑛(𝐹)
For an endomorphism 𝛼 ∈ 𝐿(𝑉),

𝑝(𝛼) = 𝑎𝑛𝛼𝑛 +⋯+ 𝑎0𝐼 ∈ 𝐿(𝑉); 𝛼𝑘 ≡ 𝛼 ∘⋯ ∘ 𝛼⏟⎵⏟⎵⏟
𝑘 times
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7.5 Sharp criterion of diagonalisability

Theorem. Let 𝑉 be a vector space over 𝐹 of finite dimension 𝑛. Let 𝛼 be an endomorphism
of 𝑉 . Then 𝛼 is diagonalisable if and only if there exists a polynomial 𝑝 which is a product of
distinct linear factors, such that 𝑝(𝛼) = 0. In other words, there exist distinct 𝜆1,… , 𝜆𝑘 such
that

𝑝(𝑡) =
𝑛
∏
𝑖=1

(𝑡 − 𝜆𝑖) ⟹ 𝑝(𝛼) = 0

Proof. Suppose 𝛼 is diagonalisable in a basis 𝐵. Let 𝜆1,… , 𝜆𝑘 be the 𝑘 ≤ 𝑛 distinct eigenvalues. Let

𝑝(𝑡) =
𝑘
∏
𝑖=1

(𝑡 − 𝜆𝑖)

Let 𝑣 ∈ 𝐵. Then 𝛼(𝑣) = 𝜆𝑖𝑣 for some 𝑖. Then, since the terms in the following product commute,

(𝛼 − 𝜆𝑖𝐼)(𝑣) = 0 ⟹ 𝑝(𝛼)(𝑣) = [
𝑘
∏
𝑖=1

(𝛼 − 𝜆𝑖𝐼)] (𝑣) = 0

So for all basis vectors, 𝑝(𝛼)(𝑣). By linearity, 𝑝(𝛼) = 0.

Conversely, suppose that 𝑝(𝛼) = 0 for some polynomial 𝑝(𝑡) = ∏𝑘
𝑖=1(𝑡 − 𝜆𝑖) with distinct 𝜆𝑖. Let

𝑉 𝜆𝑖 = ker(𝛼 − 𝜆𝑖𝐼). We claim that

𝑉 =
𝑘

⨁
𝑖=1

𝑉 𝜆𝑖

Consider the polynomials

𝑞𝑗(𝑡) =
𝑘
∏

𝑖=1,𝑖≠𝑗

𝑡 − 𝜆𝑖
𝜆𝑗 − 𝜆𝑖

These polynomials evaluate to one at 𝜆𝑗 and zero at 𝜆𝑖 for 𝑖 ≠ 𝑗. Hence 𝑞𝑗(𝜆𝑖) = 𝛿𝑖𝑗 . We now define
the polynomial

𝑞 = 𝑞1 +⋯+ 𝑞𝑘
The degree of 𝑞 is at most (𝑘 − 1). Note, 𝑞(𝜆𝑖) = 1 for all 𝑖 ∈ {1,… , 𝑘}. The only polynomial that
evaluates to one at 𝑘 points with degree at most (𝑘 − 1) is exactly given by 𝑞(𝑡) = 1. Consider the
endomorphism

𝜋𝑗 = 𝑞𝑗(𝛼) ∈ 𝐿(𝑉)
These are called the ‘projection operators’. By construction,

𝑘
∑
𝑗=1

𝜋𝑗 =
𝑘
∑
𝑗=1

𝑞𝑗(𝛼) = 𝐼

So the sum of the 𝜋𝑗 is the identity. Hence, for all 𝑣 ∈ 𝑉 ,

𝐼(𝑣) = 𝑣 =
𝑘
∑
𝑗=1

𝜋𝑗(𝑣) =
𝑘
∑
𝑗=1

𝑞𝑗(𝛼)(𝑣)

44



So we can decompose any vector as a sum of its projections 𝜋𝑗(𝑣). Now, by definition of 𝑞𝑗 and 𝑝,

(𝛼 − 𝜆𝑗𝐼)𝑞𝑗(𝛼)(𝑣) =
1

∏𝑖≠𝑗(𝜆𝑗 − 𝜆𝑖)
(𝛼 − 𝜆𝑗𝐼)[∏

𝑖≠𝑗
(𝑡 − 𝜆𝑖)] (𝛼)

= 1
∏𝑖≠𝑗(𝜆𝑗 − 𝜆𝑖)

𝑘
∏
𝑖=1

(𝛼 − 𝜆𝑖𝐼)(𝑣)

= 1
∏𝑖≠𝑗(𝜆𝑗 − 𝜆𝑖)

𝑝(𝛼)(𝑣)

By assumption, this is zero. For all 𝑣, we have (𝛼 − 𝜆𝑗𝐼)𝑞𝑗(𝛼)(𝑣). Hence,

(𝛼 − 𝜆𝑗𝐼)𝜋𝑗(𝑣) = 0 ⟹ 𝜋𝑗(𝑣) ∈ ker(𝛼 − 𝜆𝑗𝐼) = 𝑣𝑗
We have then proven that, for all 𝑣 ∈ 𝑉 ,

𝑣 =
𝑘
∑
𝑗=1

𝜋𝑗(𝑣)⏟
∈𝑉𝑗

Hence,

𝑉 =
𝑘
∑
𝑗=1

𝑉 𝑗

It remains to show that the sum is direct. Indeed, let

𝑣 ∈ 𝑉 𝜆𝑗 ∩ (∑
𝑖≠𝑗

𝑉 𝜆𝑖)

We must show 𝑣 = 0. Applying 𝜋𝑗 ,

𝜋𝑗(𝑣) = 𝑞𝑗(𝛼)(𝑣) =∏
𝑖≠𝑗

(𝛼 − 𝜆𝑖𝐼)(𝑣)
𝜆𝑗 − 𝜆𝑖

Since 𝛼(𝑣) = 𝜆𝑗𝑣,

𝜋𝑗(𝑣) =∏
𝑖≠𝑗

(𝜆𝑗 − 𝜆𝑖)𝑣
𝜆𝑗 − 𝜆𝑖

= 𝑣

Hence 𝜋𝑗 really projects onto 𝑉 𝜆𝑗 . However, we also know 𝑣 ∈ ∑𝑖≠𝑗 𝑉 𝜆𝑖 . So we can write 𝑣 =
∑𝑖≠𝑗 𝑤𝑖 for 𝑤 ∈ 𝑉 𝜆𝑖 . Thus,

𝜋𝑗(𝑤𝑖) = ∏
𝑚≠𝑗

(𝛼 − 𝜆𝑚𝐼)(𝑣)
𝜆𝑚 − 𝜆𝑗

Since 𝛼(𝑤𝑖) = 𝜆𝑖𝑤𝑖, one of the factors will vanish, hence

𝜋𝑗(𝑤𝑖) = 0

So
𝑣 = ∑

𝑖≠𝑗
𝑤𝑖 ⟹ 𝜋𝑗(𝑣) = ∑

𝑖≠𝑗
𝜋𝑗(𝑤𝑖) = 0

But 𝑣 = 𝜋𝑗(𝑣) hence 𝑣 = 0. So the sum is direct. Hence, 𝐵 = (𝐵1,… , 𝐵𝑘) is a basis of 𝑉 , where the 𝐵𝑖
are bases of 𝑉 𝜆𝑖 . Then [𝛼]𝐵 is diagonal.
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Remark. We have shown further that if 𝜆1,… , 𝜆𝑘 are distinct eigenvalues of 𝛼, then

𝑘
∑
𝑖=1

𝑉 𝜆𝑖 =
𝑘

⨁
𝑖=1

𝑉 𝜆𝑖

Therefore, the only way that diagonalisation fails is when this sum is not direct, so

𝑘
∑
𝑖=1

𝑉 𝜆𝑖 < 𝑉

Example. Let 𝐹 = ℂ. Let 𝐴 ∈ 𝑀𝑛(𝐹) such that 𝐴 has finite order; there exists 𝑚 ∈ ℕ such that
𝐴𝑚 = 𝐼. Then 𝐴 is diagonalisable. This is because

𝑡𝑚 − 1 = 𝑝(𝑡) =
𝑚
∏
𝑗=1

(𝑡 − 𝜉𝑗𝑚); 𝜉𝑚 = 𝑒2𝜋𝑖/𝑚

and 𝑝(𝐴) = 0.

7.6 Simultaneous diagonalisation

Theorem. Let 𝛼, 𝛽 be endomorphisms of 𝑉 which are diagonalisable. Then 𝛼, 𝛽 are simul-
taneously diagonalisable (there exists a basis 𝐵 of 𝑉 such that [𝛼]𝐵, [𝛽]𝐵 are diagonal) if and
only if 𝛼 and 𝛽 commute.

Proof. Two diagonal matrices commute. If such a basis exists, 𝛼𝛽 = 𝛽𝛼 in this basis. So this holds in
any basis. Conversely, suppose 𝛼𝛽 = 𝛽𝛼. We have

𝑉 =
𝑘

⨁
𝑖=1

𝑉 𝜆𝑖

where 𝜆𝑖,… , 𝜆𝑘 are the 𝑘 distinct eigenvalues of 𝛼. We claim that 𝛽(𝑉 𝜆𝑗 ) ≤ 𝑉 𝜆𝑗 . Indeed, for 𝑣 ∈ 𝑉 𝜆𝑗 ,

𝛼𝛽(𝑣) = 𝛽𝛼(𝑣) = 𝛽(𝜆𝑗𝑣) = 𝜆𝑗𝛽(𝑣) ⟹ 𝛼(𝛽(𝑣)) = 𝜆𝑗𝛽(𝑣)

Hence, 𝛽(𝑣) ∈ 𝑉 𝜆𝑗 . By assumption, 𝛽 is diagonalisable. Hence, there exists a polynomial 𝑝 with
distinct linear factors such that 𝑝(𝛽) = 0. Now, 𝛽(𝑉 𝜆𝑗 ) ≤ 𝑉 𝜆𝑗 so we can consider 𝛽|𝑉𝜆𝑗 . This is an
endomorphism of 𝑉 𝜆𝑗 . We can compute

𝑝(𝛽|||𝑉𝜆𝑗
) = 0

Hence, 𝛽|𝑉𝜆𝑗 is diagonalisable. Let 𝐵𝑖 be the basis of 𝑉 𝜆𝑖 in which 𝛽|𝑉𝜆𝑗 is diagonal. Since 𝑉 =
⨁𝑉 𝜆𝑖 , 𝐵 = (𝐵1,… , 𝐵𝑘) is a basis of 𝑉 . Then the matrices of 𝛼 and 𝛽 in 𝑉 are diagonal.
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7.7 Minimal polynomials
Recall from IB Groups, Rings andModules the Euclidean algorithm for dividing polynomials. Given
𝑎, 𝑏 polynomials over 𝐹 with 𝑏 nonzero, there exist polynomials 𝑞, 𝑟 over 𝐹 with deg 𝑟 < deg 𝑏 and
𝑎 = 𝑞𝑏 + 𝑟.

Definition. Let 𝑉 be a finite dimensional 𝐹-vector space. Let 𝛼 be an endomorphism on 𝑉 .
The minimal polynomial 𝑚𝛼 of 𝛼 is the nonzero polynomial with smallest degree such that
𝑚𝛼(𝛼) = 0.

Remark. If dim𝑉 = 𝑛 < ∞, then dim𝐿(𝑉) = 𝑛2. In particular, the family {𝐼, 𝛼,… , 𝛼𝑛2} cannot be
free since it has 𝑛2 + 1 entries. This generates a polynomial in 𝛼 which evaluates to zero. Hence, a
minimal polynomial always exists.

Lemma. Let 𝛼 ∈ 𝐿(𝑉) and 𝑝 ∈ 𝐹[𝑡] be a polynomial. Then 𝑝(𝛼) = 0 if and only if 𝑚𝛼 is a
factor of 𝑝. In particular,𝑚𝛼 is well-defined and unique up to a constant multiple.

Proof. Let 𝑝 ∈ 𝐹[𝑡] such that 𝑝(𝛼) = 0. If 𝑚𝛼(𝛼) = 0 and deg𝑚𝛼 < deg𝑝, we can perform the
division 𝑝 = 𝑚𝛼𝑞 + 𝑟 for deg 𝑟 < deg𝑚𝛼. Then 𝑝(𝛼) = 𝑚𝛼(𝛼)𝑞(𝛼) + 𝑟(𝛼). But 𝑚𝛼(𝛼) = 0. But
deg 𝑟 < deg𝑚𝛼 and 𝑚𝛼 is the smallest degree polynomial which evaluates to zero for 𝛼, so 𝑟 ≡ 0 so
𝑝 = 𝑚𝛼𝑞. In particular, if𝑚1, 𝑚2 are both minimal polynomials that evaluate to zero for 𝛼, we have
𝑚1 divides𝑚2 and𝑚2 divides𝑚1. Hence they are equivalent up to a constant.

Example. Let 𝑉 = 𝐹2 and
𝐴 = (1 0

0 1) ; 𝐵 = (1 1
0 1)

We can check 𝑝(𝑡) = (𝑡 − 1)2 gives 𝑝(𝐴) = 𝑝(𝐵) = 0. So the minimal polynomial of 𝐴 or 𝐵 must be
either (𝑡 − 1) or (𝑡 − 1)2. For 𝐴, we can find the minimal polynomial is (𝑡 − 1), and for 𝐵 we require
(𝑡 − 1)2. So 𝐵 is not diagonalisable, since its minimal polynomial is not a product of distinct linear
factors.

7.8 Cayley–Hamilton theorem

Theorem. Let 𝑉 be a finite dimensional 𝐹-vector space. Let 𝛼 ∈ 𝐿(𝑉) with characteristic
polynomial 𝜒𝛼(𝑡) = det(𝛼 − 𝑡𝐼). Then 𝜒𝛼(𝛼) = 0.

Two proofs will provided; one more physical and based on 𝐹 = ℂ and one more algebraic.

Proof. Let 𝐵 = {𝑣1,… , 𝑣𝑛} be a basis of 𝑉 such that [𝛼]𝐵 is triangular. This can be done when 𝐹 = ℂ.
Note, if the diagonal entries in this basis are 𝑎𝑖,

𝜒𝛼(𝑡) =
𝑛
∏
𝑖=1

(𝑎𝑖 − 𝑡) ⟹ 𝜒𝛼(𝛼) = (𝛼 − 𝑎1𝐼)… (𝛼 − 𝑎𝑛𝐼)
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We want to show that this expansion evaluates to zero. Let 𝑈𝑗 = span {𝑣1,… , 𝑣𝑗}. Let 𝑣 ∈ 𝑉 = 𝑈𝑛.
We want to compute 𝜒𝛼(𝛼)(𝑣). Note, by construction of the triangular matrix.

𝜒𝛼(𝛼)(𝑣) = (𝛼 − 𝑎1𝐼)… (𝛼 − 𝑎𝑛𝐼)(𝑣)⏟⎵⎵⏟⎵⎵⏟
∈𝑈𝑛−1

= (𝛼 − 𝑎1𝐼)… (𝛼 − 𝑎𝑛−1𝐼)(𝛼 − 𝑎𝑛𝐼)(𝑣)⏟⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏟
∈𝑈𝑛−2

= …
∈ 𝑈0

Hence this evaluates to zero.

The following proof works for any field where we can equate coefficients, but is much less intuit-
ive.

Proof. We will write

det(𝑡𝐼 − 𝛼) = (−1)𝑛𝜒𝛼(𝑡) = 𝑡𝑛 + 𝑎𝑛−1𝑡𝑛−1 +⋯+ 𝑎0

For any matrix 𝐵, we have proven 𝐵 adj𝐵 = (det𝐵)𝐼. We apply this relation to the matrix 𝐵 = 𝑡𝐼 − 𝐴.
We can check that

adj𝐵 = adj(𝑡𝐼 − 𝐴) = 𝐵𝑛−1𝑡𝑛−1 +⋯+ 𝐵1𝑡 + 𝐵0
since adjugate matrices are degree (𝑛−1) polynomials for each element. Then, by applying 𝐵 adj𝐵 =
(det𝐵)𝐼,

(𝑡𝐼 − 𝐴)[𝐵𝑛−1𝑡𝑛−1 +⋯+ 𝐵1𝑡 + 𝐵0] = (det𝐵)𝐼 = (𝑡𝑛 +⋯+ 𝑎0)𝐼
Since this is true for all 𝑡, we can equate coefficients. This gives

𝑡𝑛 ∶ 𝐼 = 𝐵𝑛−1
𝑡𝑛−1 ∶ 𝑎𝑛−1𝐼 = 𝐵𝑛−2 − 𝐴𝐵𝑛−1

⋮ ⋮
𝑡0 ∶ 𝑎0𝐼 = −𝐴𝐵1

Then, substituting 𝐴 for 𝑡 in each relation will give, for example, 𝐴𝑛𝐼 = 𝐴𝑛𝐵𝑛−1. Computing the sum
of all of these identities, we recover the original polynomial in terms of 𝐴 instead of in terms of 𝑡.
Many terms will cancel since the sum telescopes, yielding

𝐴𝑛 + 𝑎𝑛−1𝐴𝑛−1 +⋯+ 𝑎0𝐼 = 0

7.9 Algebraic and geometric multiplicity

Definition. Let 𝑉 be a finite dimensional 𝐹-vector space. Let 𝛼 ∈ 𝐿(𝑉) and let 𝜆 be an
eigenvalue of 𝛼. Then

𝜒𝛼(𝑡) = (𝑡 − 𝜆)𝑎𝜆𝑞(𝑡)
where 𝑞(𝑡) is a polynomial over 𝐹 such that (𝑡 − 𝜆) does not divide 𝑞. 𝑎𝜆 is known as the
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algebraic multiplicity of the eigenvalue 𝜆. We define the geometric multiplicity 𝑔𝜆 of 𝜆 to be the
dimension of the eigenspace associated with 𝜆, so 𝑔𝜆 = dimker(𝛼 − 𝜆𝐼).

Lemma. If 𝜆 is an eigenvalue of 𝛼 ∈ 𝐿(𝑉), then 1 ≤ 𝑔𝜆 ≤ 𝑎𝜆.

Proof. We have 𝑔𝜆 = dimker(𝛼−𝜆𝐼). There exists a nontrivial vector 𝑣 ∈ 𝑉 such that 𝑣 ∈ ker(𝛼−𝜆𝐼)
since 𝜆 is an eigenvalue. Hence 𝑔𝜆 ≥ 1. We will show that 𝑔𝜆 ≤ 𝑎𝜆. Indeed, let 𝑣1,… , 𝑣𝑔𝜆 be a basis
of 𝑉 𝜆 ≡ ker(𝛼 − 𝜆𝐼). We complete this into a basis 𝐵 ≡ (𝑣1,… , 𝑣𝑔𝜆 , 𝑣𝑔𝜆+1,… , 𝑣𝑛) of 𝑉 . Then note
that

[𝛼]𝐵 = (𝜆𝐼𝑔𝜆 ⋆
0 𝐴1

)

for some matrix 𝐴1. Now,

det(𝛼 − 𝑡𝐼) = det ((𝜆 − 𝑡)𝐼𝑔𝜆 ⋆
0 𝐴1 − 𝑡𝐼)

By the formula for determinants of block matrices with a zero block on the off diagonal,

det(𝛼 − 𝑡𝐼) = (𝜆 − 𝑡)𝑔𝜆 det(𝐴1 − 𝑡𝐼)

Hence 𝑔𝜆 ≤ 𝑎𝜆 since the determinant is a polynomial that could have more factors of the same
form.

Lemma. Let 𝑉 be a finite dimensional 𝐹-vector space. Let 𝛼 ∈ 𝐿(𝑉) and let 𝜆 be an eigen-
value of 𝛼. Let 𝑐𝜆 be the multiplicity of 𝜆 as a root of the minimal polynomial of 𝛼. Then
1 ≤ 𝑐𝜆 ≤ 𝑎𝜆.

Proof. By the Cayley–Hamilton theorem, 𝜒𝛼(𝛼) = 0. Since𝑚𝛼 is linear,𝑚𝛼 divides 𝜒𝛼. Hence 𝑐𝜆 ≤
𝑎𝜆. Now we show 𝑐𝜆 ≥ 1. Indeed, 𝜆 is an eigenvalue hence there exists a nonzero 𝑣 ∈ 𝑉 such that
𝛼(𝑣) = 𝜆𝑣. For such an eigenvector, 𝛼𝑃(𝑣) = 𝜆𝑃𝑣 for 𝑃 ∈ ℕ. Hence for 𝑝 ∈ 𝐹[𝑡], 𝑝(𝛼)(𝑣) = [𝑝(𝜆)](𝑣).
Hence𝑚𝛼(𝛼)(𝑣) = [𝑚𝛼(𝜆)](𝑣). Since the left hand side is zero,𝑚𝛼(𝜆) = 0. So 𝑐𝜆 ≥ 1.

Example. Let

𝐴 = (
1 0 −2
0 1 1
0 0 2

)

The minimal polynomial can be computed by considering the characteristic polynomial

𝜒𝐴(𝑡) = (𝑡 − 1)2(𝑡 − 2)

So theminimal polynomial is either (𝑡−1)2(𝑡−2) or (𝑡−1)(𝑡−2)We check (𝑡−1)(𝑡−2). (𝐴−𝐼)(𝐴−2𝐼)
can be found to be zero. So𝑚𝐴(𝑡) = (𝑡 − 1)(𝑡 − 2). Since this is a product of distinct linear factors, 𝐴
is diagonalisable.

Example. Let 𝐴 be a Jordan block of size 𝑛 ≥ 2. Then 𝑔𝜆 = 1, 𝑎𝜆 = 𝑛, and 𝑐𝜆 = 𝑛.

49



7.10 Characterisation of diagonalisable complex endomorphisms

Lemma. Let 𝐹 = ℂ. Let 𝑉 be a finite-dimensional ℂ-vector space. Let 𝛼 be an endomorph-
ism of 𝑉 . Then the following are equivalent.
(i) 𝛼 is diagonalisable;
(ii) for all 𝜆 eigenvalues of 𝛼, we have 𝑎𝜆 = 𝑔𝜆;
(iii) for all 𝜆 eigenvalues of 𝛼, 𝑐𝜆 = 1.

Proof. First, the fact that (i) is true if and only if (iii) is true has already been proven. Now let us show
that (i) is equivalent to (ii). Let 𝜆1,… , 𝜆𝑘 be the distinct eigenvalues of 𝛼. We have already found that
𝛼 is diagonalisable if and only if 𝑉 = ⨁𝑉 𝜆𝑖 . The sum was found to be always direct, regardless of
diagonalisability. We will compute the dimension of 𝑉 in two ways;

𝑛 = dim𝑉 = deg𝜒𝛼; 𝑛 = dim𝑉 =
𝑘
∑
𝑖=1

𝑎𝜆𝑖

since 𝜒𝛼 is a product of (𝑡 − 𝜆𝑖) factors as 𝐹 = ℂ. Since the sum is direct,

dim(
𝑘

⨁
𝑖=1

𝑉 𝜆𝑖) =
𝑘
∑
𝑖=1

𝑔𝜆𝑖

𝛼 is diagonalisable if and only if the dimensions are equal, so

𝑘
∑
𝑖=1

𝑔𝜆𝑖 =
𝑘
∑
𝑖=1

𝑎𝜆𝑖

Conversely, we have proven that for all eigenvalues 𝜆𝑖, we have 𝑔𝜆𝑖 ≤ 𝑎𝜆𝑖 . Hence,∑
𝑘
𝑖=1 𝑔𝜆𝑖 = ∑𝑘

𝑖=1 𝑎𝜆𝑖
holds if and only if 𝑔𝜆𝑖 = 𝑎𝜆𝑖 for all 𝑖.

8 Jordan normal form
For this section, let 𝐹 = ℂ.

8.1 Definition

Definition. Let 𝐴 ∈ 𝑀𝑛(ℂ). We say that 𝐴 is in Jordan normal form if it is a block diagonal
matrix, where each block is of the form

𝐽𝑛𝑖 (𝜆) =
⎛
⎜
⎜
⎜
⎝

𝜆 1 0 ⋯ 0
0 𝜆 1 ⋯ 0
0 0 𝜆 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝜆

⎞
⎟
⎟
⎟
⎠

We say that 𝐽𝑛𝑖 (𝜆) ∈ 𝑀𝑛𝑖 (ℂ) are Jordan blocks. The 𝜆𝑖 ∈ ℂ need not be distinct.
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Remark. In three dimensions,

𝐴 = (
𝜆 0 0
0 𝜆 0
0 0 𝜆

)

is in Jordan normal form, with three one-dimensional Jordan blocks with the same 𝜆 value.

8.2 Similarity to Jordan normal form

Theorem. Any complex matrix 𝐴 ∈ 𝑀𝑛(ℂ) is similar to a matrix in Jordan normal form,
which is unique up to reordering the Jordan blocks.

The proof is non-examinable. This follows from IB Groups, Rings and Modules.

Example. Let dim𝑉 = 2. Then any matrix is similar to one of

(𝜆1 0
0 𝜆2

) ; (𝜆 0
0 𝜆) ; (𝜆 1

0 𝜆)

The minimal polynomials are

(𝑡 − 𝜆1)(𝑡 − 𝜆2); (𝑡 − 𝜆); (𝑡 − 𝜆)2

8.3 Direct sum of eigenspaces

Theorem. Let 𝑉 be a ℂ-vector space. Let dim𝑉 = 𝑛 < ∞. Then, the minimal polynomial
𝑚𝛼(𝑡) of an endomorphism 𝛼 ∈ 𝐿(𝑉) satisfies

𝑉 =
𝑘

⨁
𝑗=1

𝑉 𝑗

where 𝑉 𝑗 = ker[(𝛼 − 𝜆𝑗𝐼)𝑐𝑗 ], and where

𝑚𝛼(𝑡) =
𝑘
∏
𝑖=1

(𝑡 − 𝜆𝑖)𝑐𝑖

𝑉 𝑗 is called a generalised eigenspace associated with 𝜆𝑗 .

Remark. Note that 𝑉 𝑗 is stable by 𝛼, that is, 𝛼(𝑉 𝑗) = 𝑉 𝑗 . Note further that (𝛼 − 𝜆𝑗𝐼)||𝑉𝑗 = 𝜇𝑗 gives

that 𝜇𝑗 is a nilpotent endomorphism; 𝜇
𝑐𝑗
𝑗 = 0. So the Jordan normal form theorem is a statement

about nilpotent matrices.

Note, when 𝛼 is diagonalisable, 𝑐𝑗 = 1 and hence we recover 𝑉 𝑗 = ker(𝛼 − 𝜆𝑗𝐼) and 𝑉 = ⨁𝑉 𝑗 .

Proof. The key to this proof is that the projectors onto 𝑉 𝑗 are ‘explicit’. First, recall

𝑚𝛼(𝑡) =
𝑘
∏
𝑗=1

(𝑡 − 𝜆𝑗)𝑐𝑗
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Then, let
𝑝𝑗(𝑡) =∏

𝑖≠𝑗
(𝑡 − 𝜆𝑖)𝑐𝑖

Then 𝑝𝑗 have by definition no common factor. So by Euclid’s algorithm, we can find polynomials 𝑞𝑖
such that

𝑘
∑
𝑖=1

𝑞𝑖𝑝𝑖 = 1

We define the projector 𝜋𝑗 = 𝑞𝑗𝑝𝑗(𝛼), which is an endomorphism. By construction, for all 𝑣 ∈ 𝑉 , we
have

𝑘
∑
𝑗=1

𝜋𝑗(𝑣) =
𝑘
∑
𝑗=1

𝑎𝑗𝑝𝑗(𝛼(𝑣)) = 𝐼(𝑣) = 𝑣

Hence,

𝑣 =
𝑘
∑
𝑖=1

𝜋𝑖(𝑣)

Observe further that 𝜋𝑗(𝑣) ∈ 𝑉 𝑗 . Indeed,

(𝛼 − 𝜆𝑗𝐼)𝑐𝑗𝜋𝑗(𝑣) = (𝛼 − 𝜆𝑗𝐼)𝑐𝑗𝑞𝑗𝑝𝑗(𝛼(𝑣)) = 𝑞𝑗𝑚𝛼(𝛼(𝑣)) = 0

Hence 𝜋𝑗(𝑣) ∈ 𝑉 𝑗 . In particular, 𝑉 = ∑𝑘
𝑗=1 𝑉 𝑗 . We need to show that this sum is direct. Note, for

𝑖 ≠ 𝑗, 𝜋𝑖𝜋𝑗 = 0 from the definition of 𝜋. Hence, observe that

𝜋𝑖 = 𝜋𝑖(
𝑘
∑
𝑗=1

𝜋𝑗) ⟹ 𝜋𝑖 = 𝜋𝑖𝜋𝑖

Thus, 𝜋 is a projector. In particular, this implies that 𝜋𝑖|𝑉𝑗 is the identity if 𝑖 = 𝑗 and zero if 𝑖 ≠ 𝑗.
This immediately implies that th sum is direct;

𝑉 =
𝑘

⨁
𝑗=1

𝑉 𝑗

Indeed, suppose
𝑘
∑
𝑗=1

𝛼𝑗𝑣𝑗 = 0; 𝑣𝑗 ∈ 𝑉 𝑗 ; 𝛼1 = 0

Then

𝑣1 = − 1
𝛼1

𝑘
∑
𝑗=2

𝛼𝑗𝑣𝑗

Applying 𝜋1,

𝑣1 = − 1
𝛼1

𝑘
∑
𝑗=2

𝛼𝑗𝜋1(𝑣𝑗) = 0

Iterating, we find 𝑣 = 0.
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Remark. We can compute the quantities 𝑎𝜆, 𝑔𝜆, 𝑐𝜆 on the Jordan normal form of a matrix. Indeed,
let 𝑚 ≥ 2 and consider a Jordan block 𝐽𝑚(𝜆). Then 𝐽𝑚(𝜆) − 𝜆𝐼 is the zero matrix with ones on the
off-diagonal. (𝐽𝑚(𝜆) − 𝜆𝐼)𝑘 pushes the ones onto the next line iteratively, so

(𝐽𝑚(𝜆) − 𝜆𝐼)𝑘 = (0 𝐼𝑚−𝑘
0 0 )

Hence 𝐽 is nilpotent of order exactly𝑚. In Jordan normal form,
(i) 𝑎𝜆 is the sum of sizes of blocks with eigenvalue 𝜆. This is the amount of times 𝜆 is seen on the

diagonal.

(ii) 𝑔𝜆 is the amount of blocks with eigenvalue 𝜆, since each block represents one eigenvector.
(iii) 𝑐𝜆 is the size of the largest block with eigenvalue 𝜆.
Example. Let

𝐴 = (0 −1
1 2 )

We wish to convert this matrix into Jordan normal form; so we seek a basis for which this matrix
becomes Jordan normal form.

𝜒𝐴(𝑡) = (𝑡 − 1)2
Hence there exists only one eigenvalue, 𝜆 = 1. 𝐴 − 𝐼 ≠ 0 hence 𝑚𝛼(𝑡) = (𝑡 − 1)2. Thus, the Jordan
normal form of 𝐴 is of the form

𝐵 = (1 1
0 1)

Now,
ker(𝐴 − 𝐼) = ⟨𝑣1⟩ ; 𝑣1 = ( 1−1)

Further, we seek a 𝑣2 such that

(𝐴 − 𝐼)𝑣2 = 𝑣1 ⟹ 𝑣2 = (−10 )

Such a 𝑣2 is not unique. Now,

𝐴 = ( 1 −1
−1 0 ) (

1 1
0 1) (

1 −1
−1 0 )

−1

9 Properties of bilinear forms
9.1 Changing basis
Let 𝜙∶ 𝑉 × 𝑉 → 𝔽 be a bilinear form. Let 𝑉 be a finite-dimensional 𝐹-vector space. Let 𝐵 be a basis
of 𝑉 and let [𝜙]𝐵 = [𝜙]𝐵𝐵 be the matrix with entries 𝜙(𝑒𝑖, 𝑒𝑗).

Lemma. Let 𝜙 be a bilinear form 𝑉 × 𝑉 → 𝐹. Then if 𝐵, 𝐵′ are bases for 𝑉 , and 𝑃 = [𝐼]𝐵′,𝐵
we have

[𝜙]𝐵′ = 𝑃⊺[𝜙]𝐵𝑃

Proof. This is a special case of the general change of basis formula.
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Definition. Let 𝐴, 𝐵 ∈ 𝑀𝑛(𝐹) be square matrices. We say that 𝐴, 𝐵 are congruent if there
exists 𝑃 ∈ 𝑀𝑛(𝐹) such that 𝐴 = 𝑃⊺𝐵𝑃.

Remark. Congruence is an equivalence relation.

Definition. A bilinear form 𝜙 on 𝑉 is symmetric if, for all 𝑢, 𝑣 ∈ 𝑉 , we have

𝜙(𝑢, 𝑣) = 𝜙(𝑣, 𝑢)

Remark. If 𝐴 is a square matrix, we say 𝐴 is symmetric if 𝐴 = 𝐴⊺. Equivalently, 𝐴𝑖𝑗 = 𝐴𝑗𝑖 for all 𝑖, 𝑗.
So 𝜙 is symmetric if and only if [𝜙]𝐵 is symmetric for any basis 𝐵. Note further that to represent 𝜙 by
a diagonal matrix in some basis 𝐵, it must necessarily be symmetric, since

𝑃⊺𝐴𝑃 = 𝐷 ⟹ 𝐷 = 𝐷⊺ = (𝑃⊺𝐴𝑃)⊺ = 𝑃⊺𝐴⊺𝑃 ⟹ 𝐴 = 𝐴⊺

9.2 Quadratic forms

Definition. Amap𝑄∶ 𝑉 → 𝐹 is a quadratic form if there exists a bilinear form 𝜙∶ 𝑉 ×𝑉 →
𝐹 such that, for all 𝑢 ∈ 𝑉 ,

𝑄(𝑢) = 𝜙(𝑢, 𝑢)
So a quadratic form is the restriction of a bilinear form to the diagonal.

Remark. Let 𝐵 = (𝑒𝑖) be a basis of 𝑉 . Let 𝐴 = [𝜙]𝐵 = (𝜙(𝑒𝑖, 𝑒𝑗)) = (𝑎𝑖𝑗). Then, for 𝑢 = ∑𝑖 𝑥𝑖𝑒𝑖 ∈ 𝑉 ,

𝑄(𝑢) = 𝜙(𝑢, 𝑢) = 𝜙(∑
𝑖
𝑥𝑖𝑒𝑖,∑

𝑗
𝑥𝑗𝑒𝑗) = ∑

𝑖
∑
𝑗
𝑥𝑖𝑥𝑗𝜙(𝑒𝑖, 𝑒𝑗) = ∑

𝑖
∑
𝑗
𝑥𝑖𝑥𝑗𝑎𝑖𝑗

We can check that this is equal to
𝑄(𝑢) = 𝑥⊺𝐴𝑥

where [𝑢]𝐵 = 𝑥. Note further that

𝑥⊺𝐴𝑥 = ∑
𝑖
∑
𝑗
𝑎𝑖𝑗𝑥𝑖𝑥𝑗 = ∑

𝑖
∑
𝑗
𝑎𝑗𝑖𝑥𝑖𝑥𝑗 = ∑

𝑖
∑
𝑗

𝑎𝑖𝑗 + 𝑎𝑗𝑖
2 𝑥𝑖𝑥𝑗 = 𝑥⊺

⎛
⎜⎜
⎝

𝐴 + 𝐴⊺

2⏟⎵⏟⎵⏟
symmetric

⎞
⎟⎟
⎠
𝑥

So we can always express the quadratic form as a symmetric matrix in any basis.

Proposition. If𝑄∶ 𝑉 → 𝐹 is a quadratic form, then there exists a unique symmetric bilinear
form 𝜙∶ 𝑉 × 𝑉 → 𝐹 such that 𝑄(𝑢) = 𝜙(𝑢, 𝑢).

Proof. Let 𝜓 be a bilinear form on 𝑉 such that for all 𝑢 ∈ 𝑉 , we have 𝑄(𝑢) = 𝜓(𝑢, 𝑢). Then, let

𝜙(𝑢, 𝑣) = 1
2[𝜓(𝑢, 𝑣) + 𝜓(𝑣, 𝑢)]
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Certainly 𝜙 is a bilinear form and symmetric. Further, 𝜙(𝑢, 𝑢) = 𝜓(𝑢, 𝑢) = 𝑄(𝑢). So there exists a
symmetric bilinear form 𝜙 such that 𝑄(𝑢) = 𝜙(𝑢, 𝑢), so it suffices to prove uniqueness. Let 𝜙 be a
symmetric bilinear form such that for all 𝑢 ∈ 𝑉 we have 𝑄(𝑢) = 𝜙(𝑢, 𝑢). Then, we can find

𝑄(𝑢 + 𝑣) = 𝜙(𝑢 + 𝑣, 𝑢 + 𝑣) = 𝜙(𝑢, 𝑢) + 𝜙(𝑣, 𝑣) + 2𝜙(𝑢, 𝑣)

Thus 𝜙(𝑢, 𝑣) is defined uniquely by 𝑄, since

2𝜙(𝑢, 𝑣) = 𝑄(𝑢 + 𝑣) − 𝑄(𝑢) − 𝑄(𝑣)

So 𝜙 is unique (when 2 is invertible in 𝐹). This identity for 𝜙(𝑢, 𝑣) is known as the polarisation
identity.

9.3 Diagonalisation of symmetric bilinear forms

Theorem. Let 𝜙∶ 𝑉 × 𝑉 → 𝐹 be a symmetric bilinear form, where 𝑉 is finite-dimensional.
Then there exists a basis 𝐵 of 𝑉 such that [𝜙]𝐵 is diagonal.

Proof. By induction on the dimension, suppose the theorem holds for all dimensions less than 𝑛 for
𝑛 ≥ 2. If 𝜙(𝑢, 𝑢) = 0 for all 𝑢 ∈ 𝑉 , then 𝜙 = 0 by the polarisation identity, which is diagonal.
Otherwise 𝜙(𝑒1, 𝑒1) ≠ 0 for some 𝑒1 ∈ 𝑉 . Let

𝑈 = (⟨𝑒1⟩)
⟂ = {𝑣 ∈ 𝑉 ∶ 𝜙(𝑒1, 𝑣) = 0}

This is a vector subspace of 𝑉 , which is in particular

ker {𝜙(𝑒1, ⋅ )∶ 𝑉 → 𝐹}

By the rank-nullity theorem, dim𝑈 = 𝑛− 1. We now claim that 𝑈 + ⟨𝑒1⟩ is a direct sum. Indeed, for
𝑣 = ⟨𝑒1⟩ ∩ 𝑈 , we have 𝑣 = 𝜆𝑒1 and 𝜙(𝑒1, 𝑣) = 0. Hence 𝜆 = 0, since by assumption 𝜙(𝑒1, 𝑒1) ≠ 0. So
we find a basis 𝐵′ = (𝑒2,… , 𝑒𝑛) of𝑈 , which we extend by 𝑒1 to 𝐵 = (𝑒1, 𝑒2,… , 𝑒𝑛). Since𝑈⊕⟨𝑒1⟩ has
dimension 𝑛, this is a basis of 𝑉 . Under this basis, we find

[𝜙]𝐵 = (𝜙(𝑒1, 𝑒1) 0
0 [𝜙|𝑈]𝐵′

)

because
𝜙(𝑒1, 𝑒𝑗) = 𝜙(𝑒𝑗 , 𝑒1) = 0

for all 𝑗 ≥ 2. By the inductive hypothesis we can take a basis 𝐵′ such that the restricted 𝜙 to be
diagonal, so [𝜙]𝐵 is diagonal in this basis.

Example. Let 𝑉 = ℝ3 and choose the canonical basis (𝑒𝑖). Let

𝑄(𝑥1, 𝑥2, 𝑥3) = 𝑥21 + 𝑥22 + 2𝑥23 + 2𝑥1𝑥2 + 2𝑥1𝑥3 − 2𝑥2𝑥3

Then, if 𝑄(𝑥1, 𝑥2, 𝑥3) = 𝑥⊺𝐴𝑥, we have

𝐴 = (
1 1 1
1 1 −1
1 −1 2

)
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Note that the off-diagonal terms are halved from their coefficients since in the expansion of 𝑥⊺𝐴𝑥
they are included twice. Then, we can find a basis in which 𝐴 is diagonal. We could use the above
algorithm to find a basis, or complete the square in each component. We can write

𝑄(𝑥1, 𝑥2, 𝑥3) = (𝑥1 + 𝑥2 + 𝑥3)2 + 𝑥23 − 4𝑥2𝑥3 = (𝑥1 + 𝑥2 + 𝑥3)2 + (𝑥3 − 2𝑥2)2 − (2𝑥2)2

This yields a new coordinate basis 𝑥′1, 𝑥′2, 𝑥′3. Then 𝑃−1𝐴𝑃 is diagonal. 𝑃 is given by

(
𝑥′1
𝑥′2
𝑥′3
) = (

1 1 1
0 −2 1
0 −2 0

)
⏟⎵⎵⎵⏟⎵⎵⎵⏟

𝑃−1

(
𝑥1
𝑥2
𝑥3
)

9.4 Sylvester’s law

Corollary. If 𝐹 = ℂ, for any symmetric bilinear form 𝜙 there exists a basis of 𝑉 such that
[𝜙]𝐵 is

(𝐼𝑟 0
0 0)

Proof. Since any symmetric bilinear form 𝜙 in a finite-dimensional 𝐹-vector space 𝑉 can be diagon-
alised, let 𝐸 = (𝑒1,… , 𝑒𝑛) such that [𝜙]𝐸 is diagonal with diagonal entries 𝑎𝑖. Order the 𝑎𝑖 such that
𝑎𝑖 is nonzero for 1 ≤ 𝑖 ≤ 𝑟, and the remaining values (if any) are zero. For 𝑖 ≤ 𝑟, let√𝑎𝑖 be a choice of
a complex root for 𝑎𝑖. Then 𝑣𝑖 =

𝑒𝑖
√𝑎𝑖

for 𝑖 ≤ 𝑟 and 𝑣𝑖 = 𝑒𝑖 for 𝑖 > 𝑟 gives the basis 𝐵 as required.

Corollary. Every symmetric matrix of𝑀𝑛(ℂ) is congruent to a unique matrix of the form

(𝐼𝑟 0
0 0)

where 𝑟 is the rank of the matrix.

Corollary. Let 𝐹 = ℝ, and let𝑉 be a finite-dimensionalℝ-vector space. Let 𝜙 be a symmetric
bilinear form on 𝑉 . Then there exists a basis 𝐵 = (𝑣1,… , 𝑣𝑛) of 𝑉 such that

[𝜙]𝐵 = (
𝐼𝑝 0 0
0 −𝐼𝑞 0
0 0 0

)

for some integers 𝑝, 𝑞.

Proof. Since square roots do not necessarily exist in ℝ, we cannot use the form above. We first diag-
onalise the bilinear form in some basis 𝐸. Then, reorder and group the 𝑎𝑖 into a positive group of size
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𝑝, a negative group of size 𝑞, and a zero group. Then,

𝑣𝑖 =
⎧⎪
⎨⎪
⎩

𝑒𝑖
√𝑎𝑖

𝑖 ∈ {1,… , 𝑝}
𝑒𝑖

√−𝑎𝑖
𝑖 ∈ {𝑝 + 1,… , 𝑝 + 𝑞}

𝑒𝑖 𝑖 ∈ {𝑝 + 𝑞 + 1,… , 𝑛}

This gives a new basis as required.

Definition. Let 𝐹 = ℝ. The signature of a bilinear form 𝜙 is

𝑠(𝜙) = 𝑝 − 𝑞

where 𝑝 and 𝑞 are defined as in the corollary above.

Theorem. Let 𝐹 = ℝ. Let 𝑉 be a finite-dimensional ℝ-vector space. If a real symmetric
bilinear form is represented by some matrix

(
𝐼𝑝 0 0
0 −𝐼𝑞 0
0 0 0

)

in some basis 𝐵, and some other matrix

(
𝐼𝑝′ 0 0
0 −𝐼𝑞′ 0
0 0 0

)

in another basis 𝐵′, then 𝑝 = 𝑝′ and 𝑞 = 𝑞′. Thus, the signature of the matrix is well defined.

Definition. Let 𝜙 be a symmetric bilinear form on a real vector space 𝑉 . We say that
(i) 𝜙 is positive definite if 𝜙(𝑢, 𝑢) > 0 for all nonzero 𝑢 ∈ 𝑉 ;
(ii) 𝜙 is positive semidefinite if 𝜙(𝑢, 𝑢) ≥ 0 for all 𝑢 ∈ 𝑉 ;
(iii) 𝜙 is negative definite or negative semidefinite if 𝜙(𝑢, 𝑢) < 0 or 𝜙(𝑢, 𝑢) ≤ 0 respectively for

all nonzero 𝑢 ∈ 𝑉 .

Example. The matrix
(𝐼𝑟 0
0 0)

is positive definite for 𝑟 = 𝑛, and positive semidefinite for 𝑟 < 𝑛.
We now prove Sylvester’s law.

Proof. In order to proveuniqueness of𝑝, wewill characterise thematrix in away that does not depend
on the basis. In particular, wewill show that 𝑝 is the largest dimension of a vector subspace of𝑉 such
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that the restriction of 𝜙 on this subspace is positive definite. Suppose we have 𝐵 = (𝑣1,… , 𝑣𝑛) and

[𝜙]𝐵 = (
𝐼𝑝 0 0
0 −𝐼𝑞 0
0 0 0

)

We consider
𝑋 = ⟨𝑣1,… , 𝑣𝑝⟩

Then we can easily compute that 𝜙|𝑋 is positive definite. Let

𝑌 = ⟨𝑣𝑝+1,… , 𝑣𝑛⟩

Then, as above, 𝜙|𝑌 is negative semidefinite. Suppose that 𝜙 is positive definite on another subspace
𝑋 ′. In this case, 𝑌 ∩ 𝑋 ′ = {0}, since if 𝑦 ∈ 𝑌 ∩ 𝑋 ′ we must have 𝑄(𝑦) ≤ 0, but since 𝑦 ∈ 𝑋 ′ we have
𝑦 = 0. Thus, 𝑌 + 𝑋 ′ = 𝑌 ⊕ 𝑋 ′, so 𝑛 = dim𝑉 ≥ dim𝑌 + dim𝑋 ′. But dim𝑌 = 𝑛 − 𝑝, so dim𝑋 ′ ≤ 𝑝.
The same argument can be executed for 𝑞, hence both 𝑝 and 𝑞 are independent of basis.

9.5 Kernels of bilinear forms

Definition. Let 𝐾 = {𝑣 ∈ 𝑉 ∶ ∀𝑢 ∈ 𝑉, 𝜙(𝑢, 𝑣) = 0}. This is the kernel of the bilinear form.

Remark. By the rank-nullity theorem,

dim𝐾 + rank𝜙 = 𝑛

Using the above notation, we can show that there exists a subspace 𝑇 of dimension 𝑛 − (𝑝 + 𝑞) +
min {𝑝, 𝑞} such that 𝜙|𝑇 = 0. Indeed, let 𝐵 = (𝑣1,… , 𝑣𝑛) such that

[𝜙]𝐵 = (
𝐼𝑝 0 0
0 −𝐼𝑞 0
0 0 0

)

The quadratic form has a zero subspace of dimension 𝑛 − (𝑝 + 𝑞) in the bottom right. But by setting

𝑇 = {𝑣1 + 𝑣𝑝+1,… , 𝑣𝑞 + 𝑣𝑝+𝑞, 𝑣𝑝+𝑞+1,… , 𝑣𝑛}

we can combine the positive and negative blocks (assuming here that 𝑝 ≥ 𝑞) to produce more lin-
early independent elements of the kernel. In particular, dim𝑇 is the largest possible dimension of a
subspace 𝑇 ′ of 𝑉 such that 𝜙|𝑇′ = 0.

9.6 Sesquilinear forms
Let 𝐹 = ℂ. The standard inner product on ℂ𝑛 is defined to be

⟨(
𝑥1
⋮
𝑣𝑛
) , (

𝑦1
⋮
𝑦𝑛
)⟩ =

𝑛
∑
𝑖=1

𝑥𝑖𝑦𝑖

This is not a bilinear form on ℂ due to the complex conjugate, it is linear in the first entry.
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Definition. Let 𝑉,𝑊 be ℂ-vector spaces. A form 𝜙∶ 𝑉 × 𝑊 → ℂ is called sesquilinear if it
is linear in the first entry, and

𝜙(𝑣, 𝜆1𝑤1 + 𝜆2𝑤2) = 𝜆1𝜙(𝑣, 𝑤1) + 𝜆2𝜙(𝑣, 𝑤2)

so it is antilinear with respect to the second entry.

Lemma. Let 𝐵 = (𝑣1,… , 𝑣𝑚) be a basis of 𝑉 and 𝐶 = (𝑤1,… ,𝑤𝑛) be a basis of 𝑊 . Let
[𝜙]𝐵,𝐶 = (𝜙(𝑣𝑖, 𝑤𝑗)). Then,

𝜙(𝑣, 𝑤) = [𝑣]⊺𝐵[𝜙]𝐵,𝐶[𝑤]𝐶

Proof. Let 𝐵, 𝐵′ be bases of 𝑉 and 𝐶, 𝐶′ be bases of𝑊 . Let 𝑃 = [𝐼]𝐵′,𝐵 and 𝑄 = [𝐼]𝐶′,𝐶 . Then

[𝜙]𝐵′,𝐶′ = 𝑃⊺[𝜙]𝐵,𝐶𝑄

9.7 Hermitian forms

Definition. Let 𝑉 be a finite-dimensional ℂ-vector space. Let 𝜙 be a sesquilinear form on 𝑉 .
Then 𝜙 is Hermitian if, for all 𝑢, 𝑣 ∈ 𝑉 ,

𝜙(𝑢, 𝑣) = 𝜙(𝑣, 𝑢)

Remark. If 𝜙 is Hermitian, then 𝜙(𝑢, 𝑢) = 𝜙(𝑢, 𝑢) ∈ ℝ. Further, 𝜙(𝜆𝑢, 𝜆𝑢) = |𝜆|2𝜙(𝑢, 𝑢). This allows
us to define positive and negative definite Hermitian forms.

Lemma. A sesquilinear form 𝜙∶ 𝑉 × 𝑉 → ℂ is Hermitian if and only if, for any basis 𝐵 of
𝑉 ,

[𝜙]𝐵 = [𝜙]†𝐵

Proof. Let 𝐴 = [𝜙]𝐵 = (𝑎𝑖𝑗). Then 𝑎𝑖𝑗 = 𝜙(𝑒𝑖, 𝑒𝑗), and 𝑎𝑗𝑖 = 𝜙(𝑒𝑗 , 𝑒𝑖) = 𝜙(𝑒𝑖, 𝑒𝑗) = 𝑎𝑖𝑗 . So 𝐴
⊺
= 𝐴.

Conversely suppose that [𝜙]𝐵 = 𝐴 = 𝐴
⊺
. Now let

𝑢 =
𝑛
∑
𝑖=1

𝜆𝑖𝑒𝑖; 𝑣 =
𝑛
∑
𝑖=1

𝜇𝑖𝑒𝑖

Then,

𝜙(𝑢, 𝑣) = 𝜙(
𝑛
∑
𝑖=1

𝜆𝑖𝑒𝑖,
𝑛
∑
𝑖=1

𝜇𝑖𝑒𝑖) =
𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

𝜆𝑖𝜇𝑗𝑎𝑖𝑗

Further,

𝜙(𝑣, 𝑢) = 𝜙(
𝑛
∑
𝑖=1

𝜇𝑖𝑒𝑖,
𝑛
∑
𝑖=1

𝜆𝑖𝑒𝑖) =
𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

𝜇𝑗𝜆𝑖𝑎𝑖𝑗

which is equivalent. Hence 𝜙 is Hermitian.
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9.8 Polarisation identity
AHermitian form 𝜙 on a complex vector space 𝑉 is entirely determined by a quadratic form𝑄∶ 𝑉 →
ℝ such that 𝑣 ↦ 𝜙(𝑣, 𝑣) by the formula

𝜙(𝑢, 𝑣) = 1
4[𝑄(𝑢 + 𝑣) − 𝑄(𝑢 − 𝑣) + 𝑖𝑄(𝑢 + 𝑖𝑣) − 𝑖𝑄(𝑢 − 𝑖𝑣)]

9.9 Hermitian formulation of Sylvester’s law

Theorem. Let 𝑉 be a finite-dimensional ℂ-vector space. Let 𝜙∶ 𝑉 ×𝑉 → ℂ be a Hermitian
form on 𝑉 . Then there exists a basis 𝐵 = (𝑣1,… , 𝑣𝑛) of 𝑉 such that

[𝜙]𝐵 = (
𝐼𝑝 0 0
0 −𝐼𝑞 0
0 0 0

)

where 𝑝, 𝑞 depend only on 𝜙 and not 𝐵.

Proof. The following is a sketch proof; it is nearly identical to the case of real symmetric bilinear
forms. If 𝜙 = 0, existence is trivial. Otherwise, using the polarisation identity there exists 𝑒1 ≠ 0
such that 𝜙(𝑒1, 𝑒1) ≠ 0. Let

𝑣1 =
𝑒1

√|𝜙(𝑒1, 𝑒1)|
⟹ 𝜙(𝑣1, 𝑣1) = ±1

Consider the orthogonal space𝑊 = {𝑤 ∈ 𝑉 ∶ 𝜙(𝑣1, 𝑤) = 0}. We can check, arguing analogously to
the real case, that 𝑉 = ⟨𝑣1⟩ ⊕𝑊 . Hence, we can inductively diagonalise 𝜙.
𝑝, 𝑞 are unique. Indeed, we can prove that 𝑝 is the maximal dimension of a subspace on which 𝜙
is positive definite (which is well-defined since 𝜙(𝑢, 𝑢) ∈ ℝ). The geometric interpretation of 𝑞 is
similar.

9.10 Skew-symmetric forms

Definition. Let 𝑉 be a finite-dimensional ℝ-vector space. Let 𝜙 be a bilinear form on 𝑉 .
Then 𝜙 is skew-symmetric if, for all 𝑢, 𝑣 ∈ 𝑉 ,

𝜙(𝑢, 𝑣) = −𝜙(𝑣, 𝑢)

Remark. 𝜙(𝑢, 𝑢) = −𝜙(𝑢, 𝑢) = 0. Also, in any basis 𝐵 of 𝑉 , we have [𝜙]𝐵 = −[𝜙]⊺𝐵. Any real matrix
can be decomposed as the sum

𝐴 = 1
2(𝐴 + 𝐴⊺) + 1

2(𝐴 − 𝐴⊺)

where the first summand is symmetric and the second is skew-symmetric.
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9.11 Skew-symmetric formulation of Sylvester’s law

Theorem. Let 𝑉 be a finite-dimensional ℝ-vector space. Let 𝜙∶ 𝑉 × 𝑉 → ℝ be a skew-
symmetric form on 𝑉 . Then there exists a basis

𝐵 = (𝑣1, 𝑤1, 𝑣2, 𝑤2,… , 𝑣𝑚, 𝑤𝑚, 𝑣2𝑚+1, 𝑣2𝑚+2,… , 𝑣𝑛)

of 𝑉 such that

[𝜙]𝐵 =

⎛
⎜
⎜
⎜
⎜
⎝

0 1
−1 0

0 1
−1 0

⋱
0

⎞
⎟
⎟
⎟
⎟
⎠

Corollary. Skew-symmetric matrices have an even rank.

Proof. This is again very similar to the previous case. We will perform an inductive step on the
dimension of 𝑉 . If 𝜙 ≠ 0, there exist 𝑣1, 𝑤1 such that 𝜙1(𝑣1, 𝑤1) ≠ 0. After scaling one of the
vectors, we can assume 𝜙(𝑣1, 𝑤1) = 1. Since 𝜙 is skew-symmetric, 𝜙(𝑤1, 𝑣1) = −1. Then 𝑣1, 𝑤1 are
linearly independent; if they were linearly dependent we would have 𝜙(𝑣1, 𝑤1) = 𝜙(𝑣1, 𝜆𝑣1) = 0. Let
𝑈 = ⟨𝑣1, 𝑤1⟩ and let 𝑊 = {𝑣 ∈ 𝑉 ∶ 𝜙(𝑣1, 𝑣) = 𝜙(𝑤1, 𝑣) = 0} and we can show 𝑉 = 𝑈 ⊕ 𝑊 . Then
induction gives the required result.

10 Inner product spaces
10.1 Definition

Definition. Let 𝑉 be a vector space over ℝ or ℂ. A scalar product or inner product is a
positive-definite symmetric (respectively Hermitian) bilinear form 𝜙 on 𝑉 . We write

𝜙(𝑢, 𝑣) = ⟨𝑢, 𝑣⟩

𝑉 , when equippedwith this inner product, is called a real (respectively complex) inner product
space.

Example. In ℂ𝑛, we define

⟨𝑥, 𝑦⟩ =
𝑛
∑
𝑖=1

𝑥𝑖𝑦𝑖

Example. Let 𝑉 = 𝐶0([0, 1], ℂ). Then we can define

⟨𝑓, 𝑔⟩ = ∫
1

0
𝑓(𝑡)𝑔(𝑡) d𝑡

This is the 𝐿2 scalar product.

61



Example. Let 𝜔∶ [0, 1]∶ ℝ⋆
+ where ℝ⋆

+ = ℝ+ ∖ {0} and define

⟨𝑓, 𝑔⟩ = ∫
1

0
𝑓(𝑡)𝑔(𝑡)𝑤(𝑡) d𝑡

Remark. Typically it suffices to check ⟨𝑢, 𝑢⟩ = 0 ⟹ 𝑢 = 0 since linearity and positivity are usually
trivial.

Definition. Let 𝑉 be an inner product space. Then for 𝑣 ∈ 𝑉 , the norm of 𝑣 induced by the
inner product is defined by

‖𝑣‖ = (⟨𝑣, 𝑣⟩)1/2

This is real, and positive if 𝑣 ≠ 0.

10.2 Cauchy–Schwarz inequality

Lemma. For an inner product space,

|⟨𝑢, 𝑣⟩| ≤ ‖𝑎‖ ⋅ ‖𝑏‖

Proof. Let 𝑡 ∈ 𝐹. Then,

0 ≤ ‖𝑡𝑢 − 𝑣‖ = ⟨𝑡𝑢 − 𝑣, 𝑡𝑢 − 𝑣⟩ = 𝑡𝑡 ⟨𝑢, 𝑢⟩ − 𝑢 ⟨𝑢, 𝑣⟩ − 𝑡 ⟨𝑣, 𝑢⟩ + ‖𝑣‖2

Since the inner product is Hermitian,

0 ≤ |𝑡|2‖𝑢‖2 + ‖𝑣‖2 − 2Re(𝑡 ⟨𝑢, 𝑣⟩)

By choosing

𝑡 = ⟨𝑢, 𝑣⟩
‖𝑢‖2

we have

0 ≤ |⟨𝑢, 𝑣⟩|2

‖𝑢‖2
+ ‖𝑣‖2 − 2Re ( |⟨𝑢, 𝑣⟩|

2

‖𝑢‖2
)

Since the term under the real part operator is real, the result holds.

Note that equality implies collinearity in the Cauchy–Schwarz inequality.

Corollary (triangle inequality). In an inner product space,

‖𝑢 + 𝑣‖ ≤ ‖𝑢‖ + ‖𝑣‖

Proof. We have

‖𝑢 + 𝑣‖2 = ⟨𝑢 + 𝑣, 𝑢 + 𝑣⟩ = ‖
‖𝑢2

‖
‖ + 2Re(⟨𝑢, 𝑣⟩) + ‖𝑣‖2 ≤ ‖

‖𝑢2
‖
‖ + ‖𝑣‖2 + 2‖𝑢‖ ⋅ ‖𝑣‖ = (‖𝑢‖ + ‖𝑣‖)2
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Remark. Any inner product induces a norm, but not all norms derive from scalar products.

10.3 Orthogonal and orthonormal sets

Definition. A set (𝑒1,… , 𝑒𝑘) of vectors of 𝑉 is said to be orthogonal if ⟨𝑒𝑖, 𝑒𝑗⟩ = 0 for all
𝑖 ≠ 𝑗. The set is said to be orthonormal if it is orthogonal and ‖𝑒𝑖‖ = 1 for all 𝑖. In this case,
⟨𝑒𝑖, 𝑒𝑗⟩ = 𝛿𝑖𝑗 .

Lemma. If (𝑒1,… , 𝑒𝑘) are orthogonal and nonzero, then they are linearly independent. Fur-
ther, let 𝑣 ∈ ⟨{𝑒𝑖}⟩. Then,

𝑣 =
𝑘
∑
𝑗=1

𝜆𝑗𝑒𝑗 ⟹ 𝜆𝑗 =
⟨𝑣, 𝑒𝑗⟩
‖
‖𝑒𝑗

‖
‖
2

Proof. Suppose
𝑘
∑
𝑖=1

𝜆𝑖𝑒𝑖 = 0

Then,

0 = ⟨
𝑘
∑
𝑖=1

𝜆𝑖, 𝑒𝑗⟩ ⟹ 0 =
𝑘
∑
𝑖=1

𝜆𝑖 ⟨𝑒𝑖, 𝑒𝑗⟩

Thus 𝜆𝑗 = 0 for all 𝑗. Further, for 𝑣 in the span of these vectors,

⟨𝑣, 𝑒𝑗⟩ =
𝑘
∑
𝑖=1

𝜆𝑖 ⟨𝑒𝑖, 𝑒𝑗⟩ = 𝜆𝑗‖‖𝑒𝑗
‖
‖
2

10.4 Parseval’s identity

Corollary. Let𝑉 be a finite-dimensional inner product space. Let (𝑒1,… , 𝑒𝑛) be an orthonor-
mal basis. Then, for any vectors 𝑢, 𝑣 ∈ 𝑉 , we have

⟨𝑢, 𝑣⟩ =
𝑛
∑
𝑖=1

⟨𝑢, 𝑒𝑖⟩ ⟨𝑣, 𝑒𝑖⟩

Hence,

‖𝑢‖2 =
𝑛
∑
𝑖=1

|⟨𝑢, 𝑒𝑖⟩|
2

Proof. By orthonormality,

𝑢 =
𝑛
∑
𝑖=1

⟨𝑢, 𝑒𝑖⟩ 𝑒𝑖; 𝑣 =
𝑛
∑
𝑖=1

⟨𝑣, 𝑒𝑖⟩ 𝑒𝑖
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Hence, by sesquilinearity,

⟨𝑢, 𝑣⟩ =
𝑛
∑
𝑖=1

⟨𝑢, 𝑒𝑖⟩ ⟨𝑣, 𝑒𝑖⟩

By taking 𝑢 = 𝑣 we find

‖𝑢‖2 = ⟨𝑢, 𝑢⟩ =
𝑛
∑
𝑖=1

|⟨𝑢, 𝑒𝑖⟩|
2

10.5 Gram–Schmidt orthogonalisation process

Theorem. Let 𝑉 be an inner product space. Let (𝑣𝑖)𝑖∈𝐼 be a linearly independent family of
vectors such that 𝐼 is countable. Then there exists a family (𝑒𝑖)𝑖∈𝐼 of orthonormal vectors such
that for all 𝑘 ≥ 1,

⟨𝑣1,… , 𝑣𝑘⟩ = ⟨𝑒1,… , 𝑒𝑘⟩

Proof. This proof is an explicit algorithm to compute the family (𝑒𝑖), which will be computed by
induction on 𝑘. For 𝑘 = 1, take 𝑒1 =

𝑣1
‖𝑣1‖

. Inductively, suppose (𝑒1,… , 𝑒𝑘) satisfy the conditions as
above. Then we will find a valid 𝑒𝑘+1. We define

𝑒′𝑘+1 = 𝑣𝑘+1 −
𝑘
∑
𝑖=1

⟨𝑣𝑘+1, 𝑒𝑖⟩ 𝑒𝑖

This ensures that the inner product between 𝑒′𝑘+1 and any basis vector 𝑒𝑗 is zero, while maintaining
the same span. Suppose 𝑒′𝑘+1 = 0. Then, 𝑣𝑘+1 ∈ ⟨𝑒1,… , 𝑒𝑘⟩ = ⟨𝑣1,… , 𝑣𝑘⟩ which contradicts the fact
that the family is free. Thus,

𝑒𝑘+1 =
𝑒′𝑘+1
‖
‖𝑒

′
𝑘+1

‖
‖

satisfies the requirements.

Corollary. In finite-dimensional inner product spaces, there always exists an orthonormal
basis. In particular, any orthonormal set of vectors can be extended into an orthonormal basis.

Remark. Let 𝐴 ∈ 𝑀𝑛(ℝ) be a real-valued (or complex-valued) matrix. Then, the column vectors of
𝐴 are orthogonal if 𝐴⊺𝐴 = 𝐼 (or 𝐴⊺𝐴 = 𝐼 in the complex-valued case).

10.6 Orthogonality of matrices

Definition. A matrix 𝐴 ∈ 𝑀𝑛(ℝ) is orthogonal if 𝐴⊺𝐴 = 𝐼, hence 𝐴⊺ = 𝐴−1. A matrix
𝐴 ∈ 𝑀𝑛(ℂ) is unitary if 𝐴⊺𝐴 = 𝐼, hence 𝐴† = 𝐴−1.
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Proposition. Let 𝐴 be a square, non-singular, real-valued (or complex-valued) matrix. Then
𝐴 can be written as 𝐴 = 𝑅𝑇 where 𝑇 is upper triangular and 𝑅 is orthogonal (or respectively
unitary).

Proof. We apply the Gram–Schmidt process to the column vectors of the matrix. This gives us an
orthonormal set of vectors, which gives an upper triangular matrix in this new basis.

10.7 Orthogonal complement and projection

Definition. Let 𝑉 be an inner product space. Let 𝑉1, 𝑉2 ≤ 𝑉 . Then we say that 𝑉 is the
orthogonal direct sum of 𝑉1 and 𝑉2 if 𝑉 = 𝑉1⊕𝑉2 and for all vectors 𝑣1 ∈ 𝑉1, 𝑣2 ∈ 𝑉2 we have
⟨𝑣1, 𝑣2⟩ = 0. When this holds, we write 𝑉 = 𝑉1

⟂
⊕𝑉2.

Remark. If for all vectors 𝑣1, 𝑣2 we have ⟨𝑣1, 𝑣2⟩ = 0, then 𝑣 ∈ 𝑉1 ∩ 𝑉2 ⟹ ‖𝑣‖2 = 0 ⟹ 𝑣 = 0.
Hence the sum is always direct if the subspaces are orthogonal.

Definition. Let 𝑉 be an inner product space and let𝑊 ≤ 𝑉 . We define the orthogonal of𝑊
to be

𝑊 ⟂ = {𝑣 ∈ 𝑉 ∶ ∀𝑤 ∈ 𝑊, ⟨𝑣, 𝑤⟩ = 0}

Lemma. For any inner product space 𝑉 and any subspace𝑊 ≤ 𝑉 , we have 𝑉 = 𝑊
⟂
⊕𝑊 ⟂.

Proof. First note that𝑊 ⟂ ≤ 𝑉 . Then, if 𝑤 ∈ 𝑊 , 𝑤 ∈ 𝑊 ⟂, we have

‖𝑤‖2 = ⟨𝑤,𝑤⟩ = 0
since they are orthogonal, so the vector subspaces intersect only in the zero vector. Now, we need to
show𝑉 = 𝑊+𝑊 ⟂. Let (𝑒1,… , 𝑒𝑘) be an orthonormal basis of𝑊 and extend it into (𝑒1,… , 𝑒𝑘, 𝑒𝑘+1,… , 𝑒𝑛)
which can be made orthonormal. Then, (𝑒𝑘+1,… , 𝑒𝑛) are elements of𝑊 ⟂ and form a basis.

10.8 Projection maps

Definition. Suppose𝑉 = 𝑈⊕𝑊 , so𝑈 is a complement of𝑊 in𝑉 . Then, we define𝜋∶ 𝑉 →
𝑊 which maps 𝑣 = 𝑢 + 𝑤 to 𝑤. This is well defined, since the sum is direct. 𝜋 is linear, and
𝜋2 = 𝜋. We say that 𝜋 is the projection operator onto𝑊 .

Remark. The map 𝜄 − 𝜋 is the projection onto 𝑈 , where 𝜄 is the identity map.

Lemma. Let 𝑉 be an inner product space. Let𝑊 ≤ 𝑉 be a finite-dimensional subspace. Let
(𝑒1,… , 𝑒𝑘) be an orthonormal basis for𝑊 . Then,
(i) 𝜋(𝑣) = ∑𝑘

𝑖=1 ⟨𝑣, 𝑒𝑖⟩ 𝑒𝑖; and
(ii) for all 𝑣 ∈ 𝑉,𝑤 ∈ 𝑊 , ‖𝑣 − 𝜋(𝑣)‖ ≤ ‖𝑣 − 𝑤‖with equality if and only if𝑤 = 𝜋(𝑣), hence

65



𝜋(𝑣) is the point in𝑊 closest to 𝑣.

Proof. We define 𝜋(𝑣) = ∑𝑘
𝑖=1 ⟨𝑣, 𝑒𝑖⟩ 𝑒𝑖. Since𝑊 = ⟨{𝑒𝑘}⟩, 𝜋(𝑣) ∈ 𝑊 for all 𝑣 ∈ 𝑉 . Then, 𝑣 = (𝑣 −

𝜋(𝑣))+𝜋(𝑣) has a term in𝑊 . We claim that the remaining term is in the orthogonal; 𝑣−𝜋(𝑣) ∈ 𝑊 ⟂.
Indeed, we must show ⟨𝑣 − 𝜋(𝑣), 𝑤⟩ = 0 for all 𝑤 ∈ 𝑊 . Equivalently, ⟨𝑣 − 𝜋(𝑣), 𝑒𝑖⟩ = 0 for all basis
vectors 𝑒𝑖 of𝑊 . We can explicitly compute

⟨𝑣 − 𝜋(𝑣), 𝑒𝑗⟩ = ⟨𝑣, 𝑒𝑗⟩ − ⟨
𝑘
∑
𝑖=1

⟨𝑣, 𝑒𝑖⟩ 𝑒𝑖, 𝑒𝑗⟩ = ⟨𝑣, 𝑒𝑗⟩ −
𝑘
∑
𝑖=1

⟨𝑣, 𝑒𝑖⟩ ⟨𝑒𝑖, 𝑒𝑗⟩ = ⟨𝑣, 𝑒𝑗⟩ − ⟨𝑣, 𝑒𝑗⟩ = 0

Hence, 𝑣 = (𝑣 − 𝜋(𝑣)) + 𝜋(𝑣) is a decomposition into 𝑊 and 𝑊 ⟂. Since 𝑊 ∩ 𝑊 ⟂ = {0}, we have
𝑉 = 𝑊

⟂
⊕𝑊 ⟂. For the second part, let 𝑣 ∈ 𝑉 , 𝑤 ∈ 𝑊 , and we compute

‖𝑣 − 𝑤‖2 =
‖
‖‖‖
𝑣 − 𝜋(𝑣)⏟⎵⏟⎵⏟

∈𝑊⟂

+𝜋(𝑣) − 𝑤⏟⎵⏟⎵⏟
∈𝑊

‖
‖‖‖

2

= ‖𝑣 − 𝜋(𝑣)‖2 + ‖𝜋(𝑣) − 𝑤‖2 ≥ ‖𝑣 − 𝜋(𝑣)‖2

with equality if and only if 𝑤 = 𝜋(𝑣).

10.9 Adjoint maps

Definition. Let 𝑉,𝑊 be finite-dimensional inner product spaces. Let 𝛼 ∈ 𝐿(𝑉,𝑊). Then
there exists a unique linear map 𝛼⋆ ∶ 𝑊 → 𝑉 such that for all 𝑣, 𝑤 ∈ 𝑉,𝑊 ,

⟨𝛼(𝑣), 𝑤⟩ = ⟨𝑣, 𝛼⋆(𝑤)⟩

Moreover, if 𝐵 is an orthonormal basis of 𝑉 , and 𝐶 is an orthonormal basis of𝑊 , then

[𝛼⋆]𝐶,𝐵 = ([𝛼]𝐵,𝐶)
⊺

Proof. Let 𝐵 = (𝑣1,… , 𝑣𝑛) and 𝐶 = (𝑤1,… ,𝑤𝑚) and 𝐴 = [𝛼]𝐵,𝐶 = (𝑎𝑖𝑗). To check existence, we
define [𝛼⋆]𝐶,𝐵 = 𝐴

⊺
= (𝑐𝑖𝑗) and explicitly check the definition. By orthogonality,

⟨𝛼(∑𝜆𝑖𝑣𝑖),∑𝜇𝑗𝑤𝑗⟩ = ⟨∑
𝑖,𝑘
𝜆𝑖𝑎𝑘𝑖𝑤𝑘,∑

𝑗
𝜇𝑗𝑤𝑗⟩ = ∑

𝑖,𝑗
𝜆𝑖𝑎𝑗𝑖𝜇𝑗

Then,

⟨∑𝜆𝑖𝑣𝑖, 𝛼⋆(∑𝜇𝑗𝑤𝑗)⟩ = ⟨∑
𝑖
𝜆𝑖𝑣𝑖,∑

𝑗,𝑘
𝜇𝑗𝑐𝑘𝑗𝑣𝑘⟩ = ∑

𝑖,𝑗
𝜆𝑖𝑐𝑖𝑗𝜇𝑗

So equality requires 𝑐𝑖𝑗 = 𝑎𝑗𝑖. Uniqueness follows from the above; the expansions are equivalent for
any vector if and only if 𝑐𝑖𝑗 = 𝑎𝑗𝑖.

Remark. The same notation, 𝛼⋆, is used for the adjoint as just defined, and the dual map as defined
before. If 𝑉,𝑊 are real product inner spaces and 𝛼 ∈ 𝐿(𝑉,𝑊), we define 𝜓∶ 𝑉 → 𝑉⋆ such that
𝜓(𝑣)(𝑥) = ⟨𝑥, 𝑣⟩ and similarly for𝑊 . Then we can check that the adjoint for 𝛼 is given by the com-
position of 𝜓 from 𝑉 → 𝑉⋆, then applying the dual, then applying the inverse of 𝜓 for𝑊 .
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10.10 Self-adjoint and isometric maps

Definition. Let 𝑉 be a finite-dimensional inner product space, and 𝛼 be an endomorphism
of 𝑉 . Let 𝛼⋆ ∈ 𝐿(𝑉) be the adjoint map. Then,
(i) the condition ⟨𝛼𝑣, 𝑤⟩ = ⟨𝑣, 𝛼𝑤⟩ is equivalent to the condition 𝛼 = 𝛼⋆, and such an 𝛼

is called self-adjoint (for ℝ we call such endomorphisms symmetric, and for ℂ we call
such endomorphisms Hermitian);

(ii) the condition ⟨𝛼𝑣, 𝛼𝑤⟩ = ⟨𝑣, 𝑤⟩ is equivalent to the condition 𝛼⋆ = 𝛼−1, and such an 𝛼
is called an isometry (for ℝ it is called orthogonal, and for ℂ it is called unitary).

Proposition. The conditions for isometries defined as above are equivalent.

Proof. Suppose ⟨𝛼𝑣, 𝛼𝑤⟩ = ⟨𝑣, 𝑤⟩. Then for 𝑣 = 𝑤, we find ‖𝛼𝑣‖2 = ‖𝑣‖2, so 𝛼 preserves the norm.
In particular, this implies ker𝛼 = {0}. Since 𝛼 is an endomorphism and 𝑉 is finite-dimensional, 𝛼 is
bijective. Then for all 𝑣, 𝑤 ∈ 𝑉 ,

⟨𝑣, 𝛼⋆(𝑤)⟩ = ⟨𝛼𝑣, 𝑤⟩ = ⟨𝛼𝑣, 𝛼(𝛼−1(𝑤))⟩ = ⟨𝑣, 𝛼−1(𝑤)⟩

Hence 𝛼⋆ = 𝛼−1. Conversely, if 𝛼⋆ = 𝛼−1 we have

⟨𝛼𝑣, 𝛼𝑤⟩ = ⟨𝑣, 𝛼⋆(𝛼𝑤)⟩ = ⟨𝑣, 𝑤⟩

as required.

Remark. Using the polarisation identity, we can show that 𝛼 is isometric if and only if for all 𝑣 ∈ 𝑉 ,
‖𝛼(𝑣)‖ = ‖𝑣‖.

Lemma. Let 𝑉 be a finite-dimensional real (or complex) inner product space. Then for 𝛼 ∈
𝐿(𝑉),
(i) 𝛼 is self-adjoint if and only if for all orthonormal bases𝐵 of𝑉 , we have [𝛼]𝐵 is symmetric

(or Hermitian);
(ii) 𝛼 is an isometry if and only if for all orthonormal bases 𝐵 of 𝑉 , we have [𝛼]𝐵 is ortho-

gonal (or unitary).

Proof. Let 𝐵 be an orthonormal basis for 𝑉 . Then we know [𝛼⋆]𝐵 = [𝛼]†𝐵. We can then check that
[𝛼]†𝐵 = [𝛼]𝐵 and [𝛼]†𝐵 = [𝛼]−1𝐵 respectively.

Definition. For 𝐹 = ℝ, we define the orthogonal group of 𝑉 by

𝑂(𝑉) = {𝛼 ∈ 𝐿(𝑉)∶ 𝛼 is an isometry}

Note that 𝑂(𝑉) is bijective with the set of orthogonal bases of 𝑉 . For 𝐹 = ℂ, we define the
unitary group of 𝑉 by

𝑈(𝑉) = {𝛼 ∈ 𝐿(𝑉)∶ 𝛼 is an isometry}
Again, note that 𝑈(𝑉) is bijective with the set of orthogonal bases of 𝑉 .
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10.11 Spectral theory for self-adjoint maps
Spectral theory is the study of the spectrum of operators. Recall that in finite-dimensional inner
product spaces 𝑉,𝑊 , 𝛼 ∈ 𝐿(𝑉,𝑊) yields the adjoint 𝛼⋆ ∈ 𝐿(𝑊,𝑉) such that for all 𝑣 ∈ 𝑉,𝑤 ∈ 𝑊 ,
we have ⟨𝛼(𝑣), 𝑤⟩ = ⟨𝑣, 𝛼⋆(𝑤)⟩.

Lemma. Let 𝑉 be a finite-dimensional inner product space. Let 𝛼 ∈ 𝐿(𝑉) be a self-adjoint
endomorphism. Then 𝛼 has real eigenvalues, and eigenvectors of 𝛼 with respect to different
eigenvalues are orthogonal.

Proof. Suppose 𝜆 ∈ ℂ, 𝑣 ∈ 𝑉 nonzero such that 𝛼(𝑣) = 𝜆𝑣. Then, ⟨𝜆𝑣, 𝑣⟩ = 𝜆‖𝑣‖2 and also

⟨𝛼𝑣, 𝑣⟩ = ⟨𝑣, 𝛼𝑣⟩ = ⟨𝑣, 𝜆𝑣⟩ = 𝜆‖𝑣‖2

Hence 𝜆 = 𝜆 since 𝑣 ≠ 0. Now, suppose 𝜇 ≠ 𝜆 and 𝑤 ∈ 𝑉 nonzero such that 𝛼(𝑤) = 𝜇𝑤. Then,

𝜆 ⟨𝑣, 𝑤⟩ = ⟨𝛼𝑣, 𝑤⟩ = ⟨𝑣, 𝛼𝑤⟩ = 𝜇 ⟨𝑣, 𝑤⟩ = 𝜇 ⟨𝑣, 𝑤⟩

So if 𝜆 ≠ 𝜇 we must have ⟨𝑣, 𝑤⟩ = 0.

Theorem (spectral theorem for self-adjoint maps). Let 𝑉 be a finite-dimensional inner
product space. Let 𝛼 ∈ 𝐿(𝑉) be self-adjoint. Then𝑉 has an orthonormal basis of eigenvectors
of 𝛼. Hence 𝛼 is diagonalisable in an orthonormal basis.

Proof. We will consider induction on the dimension of 𝑉 . Suppose 𝐴 = [𝛼]𝐵 with respect to the
fundamental basis 𝐵. By the fundamental theorem of algebra, we know that 𝜒𝐴(𝜆) has a (complex)
root. But since 𝜆 is an eigenvalue of 𝛼 and 𝛼 is self-adjoint, 𝜆 ∈ ℝ. Now, we choose an eigenvector
𝑣1 = 𝑉 ∖ {0} such that 𝛼(𝑣1) = 𝜆𝑣1. We can set ‖𝑣1‖ = 1 by linearity. Let 𝑈 = ⟨𝑣1⟩

⟂ ≤ 𝑉 . We
then observe that 𝑈 is stable by 𝛼; 𝛼(𝑈) ≤ 𝑈 . Indeed, let 𝑢 ∈ 𝑈 . Then ⟨𝛼(𝑢), 𝑣1⟩ = ⟨𝑢, 𝛼(𝑣1)⟩ =
𝜆 ⟨𝑢, 𝑣1⟩ = 0 by orthogonality. Hence 𝛼(𝑢) ∈ 𝑈 . We can then restrict 𝛼 to the domain 𝑈 , and by
induction we can then choose an orthonormal basis of eigenvectors for 𝑈 . Since 𝑉 = ⟨𝑣1⟩

⟂
⊕ 𝑈 we

have an orthonormal basis of eigenvectors for 𝑉 when including 𝑣1.

Corollary. Let 𝑉 be a finite-dimensional inner product space. Let 𝛼 ∈ 𝐿(𝑉) be self-adjoint.
Then 𝑉 is the orthogonal direct sum of the eigenspaces of 𝛼.

10.12 Spectral theory for unitary maps

Lemma. Let 𝑉 be a complex inner product space. Let 𝛼 be unitary, so 𝛼⋆ = 𝛼−1. Then
all eigenvalues of 𝛼 have unit norm. Eigenvectors corresponding to different eigenvalues are
orthogonal.
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Proof. Let 𝜆 ∈ ℂ, 𝑣 ∈ 𝑉 ∖ {0} such that 𝛼(𝑣) = 𝜆𝑣. First, 𝜆 ≠ 0 since 𝛼 is invertible, and in particular
ker𝛼 = {0}. Since 𝑣 = 𝜆𝛼−1(𝑣), we can compute

𝜆 ⟨𝑣, 𝑣⟩ = ⟨𝜆𝑣, 𝑣⟩ = ⟨𝛼𝑣, 𝑣⟩ = ⟨𝑣, 𝛼−1𝑣⟩ = ⟨𝑣, 1𝜆𝑣⟩ =
1
𝜆
⟨𝑣, 𝑣⟩

Hence (𝜆𝜆 − 1)‖𝑣‖2 = 0 giving |𝜆| = 1. Further, suppose 𝜇 ∈ ℂ and 𝑤 ∈ 𝑉 ∖ {0} such that 𝛼(𝑤) =
𝜇𝑤, 𝜆 ≠ 𝜇. Then

𝜆 ⟨𝑣, 𝑤⟩ = ⟨𝜆𝑣, 𝑤⟩ = ⟨𝛼𝑣, 𝑤⟩ = ⟨𝑣, 𝛼−1𝑤⟩ = ⟨𝑣, 1𝜇𝑤⟩ =
1
𝜇 ⟨𝑣, 𝑤⟩ = 𝜇 ⟨𝑣, 𝑤⟩

since 𝜇𝜇 = 1.

Theorem (spectral theorem for unitary maps). Let 𝑉 be a finite-dimensional complex inner
product space. Let 𝛼 ∈ 𝐿(𝑉) be unitary. Then 𝑉 has an orthonormal basis of eigenvectors of
𝛼. Hence 𝛼 is diagonalisable in an orthonormal basis.

Proof. Let 𝐴 = [𝛼]𝐵 where 𝐵 is an orthonormal basis. Then 𝜒𝐴(𝜆) has a complex root 𝜆. As before,
let 𝑣1 ≠ 0 such that 𝛼(𝑣1) = 𝜆𝑣1 and ‖𝑣1‖ = 1. Let 𝑈 = ⟨𝑣1⟩

⟂, and we claim that 𝛼(𝑈) = 𝑈 . Indeed,
let 𝑢 ∈ 𝑈 , and we find

⟨𝛼(𝑢), 𝑣1⟩ = ⟨𝑢, 𝛼−1(𝑣1)⟩ = ⟨𝑢, 1𝜆𝑣1⟩ =
1
𝜆
⟨𝑢, 𝑣1⟩

Since ⟨𝑢, 𝑣1⟩ = 0, we have 𝛼(𝑢) ∈ 𝑈 . Hence, 𝛼 restricted to 𝑈 is a unitary endomorphism of 𝑈 . By
induction we have an orthonormal basis of eigenvectors of 𝛼 for 𝑈 and hence for 𝑉 .

Remark. We used the fact that the field is complex to find an eigenvalue. In general, a real-valued
orthonormal matrix 𝐴 giving 𝐴𝐴⊺ = 𝐼 cannot be diagonalised over ℝ. For example, consider

𝐴 = (cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 )

This is orthogonal and normalised. However, 𝜒𝐴(𝜆) = 1 + 2𝜆 cos 𝜃 + 𝜆2 hence 𝜆 = 𝑒±𝑖𝜃 which are
complex in the general case.

10.13 Application to bilinear forms
Wewish to extend the previous statements about spectral theory into statements about bilinear forms.

Corollary. Let 𝐴 ∈ 𝑀𝑛(ℝ) (or 𝑀𝑛(ℂ)) be a symmetric (or respectively Hermitian) matrix.
Then there exists an orthonormal (respectively unitary) matrix 𝑃 such that 𝑃⊺𝐴𝑃 (or 𝑃†𝐴𝑃)
is diagonal with real-valued entries.

Proof. Using the standard inner product, 𝐴 ∈ 𝐿(𝐹𝑛) is self-adjoint and hence there exists an or-
thonormal basis 𝐵 of 𝐹𝑛 such that 𝐴 is diagonal in this basis. Let 𝑃 = (𝑣1,… , 𝑣𝑛) be the matrix of
this basis. Since 𝐵 is orthonormal, 𝑃 is orthogonal (or unitary). The result follows from the fact that
𝑃−1𝐴𝑃 is diagonal. The eigenvalues are real, hence the diagonal matrix is real.
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Corollary. Let 𝑉 be a finite-dimensional real (or complex) inner product space. Let 𝜙∶ 𝑉 ×
𝑉 → 𝐹 be a symmetric (or Hermitian) bilinear form. Then, there exists an orthonormal basis
𝐵 of 𝑉 such that [𝜙]𝐵 is diagonal.

Proof. 𝐴⊺ = 𝐴 (or respectively 𝐴† = 𝐴), hence there exists an orthogonal (respectively unitary)
matrix 𝑃 such that 𝑃−1𝐴𝑃 is diagonal. Let (𝑣𝑖) be the 𝑖th row of 𝑃−1 = 𝑃⊺ (or 𝑃†). Then (𝑣1,… , 𝑣𝑛) is
an orthonormal basis 𝐵 of 𝑉 such that [𝜙]𝑉 is this diagonal matrix.

Remark. The diagonal entries of 𝑃−1𝐴𝑃 are the eigenvalues of 𝐴. Moreover, we can define the sig-
nature 𝑠(𝜙) to be the difference between the number of positive eigenvalues of 𝐴 and the number of
negative eigenvalues of 𝐴.

10.14 Simultaneous diagonalisation

Corollary. Let 𝑉 be a finite-dimensional real (or complex) vector space. Let 𝜙, 𝜓 be symmet-
ric (or Hermitian) bilinear forms on 𝑉 . Let 𝜙 be positive definite. Then there exists a basis
(𝑣1,… , 𝑣𝑛) of 𝑉 with respect to which 𝜙 and 𝜓 are represented with a diagonal matrix.

Proof. Since 𝜙 is positive definite, 𝑉 equipped with 𝜙 is a finite-dimensional inner product space
where ⟨𝑢, 𝑣⟩ = 𝜙(𝑢, 𝑣). Hence, there exists a basis of 𝑉 in which 𝜓 is represented by a diagonal
matrix, which is orthonormal with respect to the inner product defined by 𝜙. Then, 𝜙 in this basis is
represented by the identity matrix given by 𝜙(𝑣𝑖, 𝑣𝑗) = ⟨𝑣𝑖, 𝑣𝑗⟩ = 𝛿𝑖𝑗 , which is diagonal.

Corollary. Let 𝐴, 𝐵 ∈ 𝑀𝑛(ℝ) (or ℂ) which are symmetric (or Hermitian). Suppose for all
𝑥 ≠ 0 we have 𝑥†𝐴𝑥 > 0, so 𝐴 is positive definite. Then there exists an invertible matrix
𝑄 ∈ 𝑀𝑛(ℝ) (or ℂ) such that 𝑄⊺𝐴𝑄 (or 𝑄⊺𝐴𝑄) and 𝑄⊺𝐵𝑄 (or 𝑄⊺𝐵𝑄) are diagonal.

Proof. 𝐴 induces a quadratic form 𝑄(𝑥) = 𝑥†𝐴𝑥 which is positive definite by assumption. Similarly,
𝑄(𝑥) = 𝑥†𝐵𝑥 is induced by 𝐵. Then we can apply the previous corollary and change basis.

70


	Vector spaces and linear dependence
	Vector spaces
	Subspaces
	Sum of subspaces
	Quotients
	Span
	Dimensionality
	Linear independence
	Bases
	Steinitz exchange lemma
	Consequences of Steinitz exchange lemma
	Dimensionality of sums
	Direct sums

	Linear maps
	Linear maps
	Isomorphism
	Kernel and image
	Rank and nullity
	Space of linear maps
	Matrices
	Linear maps as matrices
	Change of basis
	Equivalent matrices
	Column rank and row rank
	Conjugation and similarity
	Elementary operations
	Gauss' pivot algorithm
	Representation of square invertible matrices

	Dual spaces
	Dual spaces
	Annihilators
	Dual maps
	Properties of dual map
	Double duals

	Bilinear forms
	Introduction
	Change of basis for bilinear forms

	Trace and determinant
	Trace
	Permutations and transpositions
	Determinant
	Volume forms
	Multiplicative property of determinant
	Singular and non-singular matrices
	Determinants of linear maps
	Determinant of block-triangular matrices

	Adjugate matrices
	Column and row expansions
	Adjugates
	Cramer's rule

	Eigenvectors and eigenvalues
	Eigenvalues
	Polynomials
	Characteristic polynomials
	Polynomials for matrices and endomorphisms
	Sharp criterion of diagonalisability
	Simultaneous diagonalisation
	Minimal polynomials
	Cayley–Hamilton theorem
	Algebraic and geometric multiplicity
	Characterisation of diagonalisable complex endomorphisms

	Jordan normal form
	Definition
	Similarity to Jordan normal form
	Direct sum of eigenspaces

	Properties of bilinear forms
	Changing basis
	Quadratic forms
	Diagonalisation of symmetric bilinear forms
	Sylvester's law
	Kernels of bilinear forms
	Sesquilinear forms
	Hermitian forms
	Polarisation identity
	Hermitian formulation of Sylvester's law
	Skew-symmetric forms
	Skew-symmetric formulation of Sylvester's law

	Inner product spaces
	Definition
	Cauchy–Schwarz inequality
	Orthogonal and orthonormal sets
	Parseval's identity
	Gram–Schmidt orthogonalisation process
	Orthogonality of matrices
	Orthogonal complement and projection
	Projection maps
	Adjoint maps
	Self-adjoint and isometric maps
	Spectral theory for self-adjoint maps
	Spectral theory for unitary maps
	Application to bilinear forms
	Simultaneous diagonalisation


