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1 Uniform convergence

1.1 Definition

Recall that x,, - x asn — oo (for x € R or C) if
Ve>0,AN eN,Vn > N, |x, — x| <¢

This is essentially considering the e-neighbourhood of x. We aim to define the same notion of con-
vergence for functions, by defining an analogous concept of an e-neighbourhood. In particular, each
value on the domain should converge in its own e-neighbourhood.

Definition. Let S be aset, and f, f,, : S — R, be functions. We say that (f,,) converges to f
uniformly on S if

Ve > 0,3IN € N,Vn > N,Vx € S, |f,(x) — f(x)| < ¢

Note. N depends only on ¢, not on any x. Each x converges therefore at a ‘similar speed’, hence the
name ‘uniform convergence’.

Equivalently, we can write

Ve > 0,3IN € N,Vn > N, sup|f,(x) — f(x)| <¢
XxX€eS

The supremum condition is equivalent overall because the inequality on the right is weakened to
a possible equality, but we can always decrease ¢ to retain the inequality. Alternatively, we could
write

lim sup|f, — f| =0
n=00 xyes

For each x € S, (f,,(x))se; — f(x). Hence, f is unique given (f,), since limits are unique. We call f
the uniform limit of (f,,) on S.

1.2 Pointwise convergence

Definition. (f,) converges pointwise to f on S if (f,,(x))5=; converges to f(x) for every x € S.
In other words,
Vx € S,Ve > 0,AN € N,Vn > N, |f,,(x) — f(x)| < ¢

order rearranged

Now, N depends both on € and on x. Note that the pointwise limit of (f,,) on S is also unique
since limits are unique.

Remark. Uniform convergence implies pointwise convergence, and the uniform limit is the point-
wise limit.

Example. Let f,(x) = x2¢™"* on [0, o), n € N. Does (f;,) converge uniformly on the domain? First
let us check pointwise convergence. We have x2¢~"™* — 0 hence pointwise convergence to f(x) = 0

is satisfied. Now, we need only check uniform convergence to the function f(x) = 0.

sup |fn(x)_0|= sup fn(x)

x€[0,00) x€[0,00)



We could differentiate f,, and find the maximum if it exists, but we might not find the maximum if it
is (for example) on the endpoints. A much better method is to find an upper bound on | f,,(x) — f(x)|
(Which, in this example, is f,,(x)) that does not depend on x. In this case, we can expand e™* on the
denominator and isolate a single term to get

2
2 ,—nx i

X
x%e =_enxsn2’ Vx

Hence,

sup |[fu(x)—0| =0
x€[0,00)

and uniform convergence is satisfied.
Example. Consider f,,(x) = x" on [0,1],n € N. A pointwise limit is reached by

1 x=1
0 otherwise

f(X)={

Consider sup |f,,(x) — f(x)| excluding 1 (since at 1 the supremum is zero). Note f,(x) - lasx — 1
from below, for all n. Hence the supremum is always 1 by choosing an x sufficiently close to 1. So
fn » f uniformly on [0, 1], hence (f,,) does not converge at all uniformly on this domain. Or,

s> 5((2)) = 3

Remark. 1If f,, » f uniformly on S,
de>0,YN e N,In > N,Ix € S, |f,(x) — f(x)| > ¢

In the above example, we proved something stronger:
1
Vn,3Ix € S, f,(x) > 5

We could have alternatively stated, for example, f,,(x) is continuous so there exists some subset of
[0, 1] greater than % always.

Theorem. Let S C R,C. Let (f,,),f: S —» R(or C), where f, is continuous and (f,) — f
uniformly on S. Then f is continuous.

Informally, the uniform limit of continuous functions is continuous.

Proof. Fixsomepointa € S,e > 0. Weseekd > OsuchthatVx € S,|x —a|] < § = |[f(x) — f(a)| <
€. We fix an n € N such that Vx € S, |f,(x) — f(x)| < €. Since f, is continuous, there exists § > 0
such thatVx € S, |x —a| < d = |f,(x) — fu(a)| <e. So,Vx € S,

Ix—al <é = |f(x) = fl@)] < 1f(x) = fulOl + [ fu() = (D] + |ful@) — f(@)] < 3¢
O

Remark. The above proof is often called a 3e-proof. Note, the proof is not true for pointwise conver-
gence; if f,, — f pointwise and f;, continuous, f is not necessarily continuous. Further, it is not true
for differentiability; f,, differentiable does not imply f differentiable (see example sheet). Another
way to interpret the result of the above theorem is to swap limits:

lim lim f,(x) = lim f(x) = f(a) = lim f,(a) = lim lim f,(x)



1.3 Uniform limit of bounded functions
Lemma. Let f,, — f uniformly on S. If f, is bounded for every n, then so is f.

In other words, the uniform limit of bounded functions is bounded.

Proof. Fix some n € N such that Vx € S, |f,,(x) — f(x)| < 1. Since f,, is bounded, 3M € R such that
Vx € S,|fu(x)] < M. Hence, Vx € S, |f(x)| < |f(x) = fu(X)] + |fu(x)] £ 1+ M. So f is bounded. [

1.4 Integrability

Let f : [a,b] — R be a bounded function. Recall that for a dissection D of [a, b], we define the upper
and lower sums of f with respect to D by

n

Up(f) = Y, (X —Xk1) sup  f(x)

k=1 [eg—15xi]
n
Lp(f) = D, (X — X_1),_inf  f(x)
k=1 Drie—1.%k]

Riemann’s integrability criterion states that f is integrable if and only if
Ve, 3D, Up(f) — Lo(f) <e

Equivalently, for any I C [a, b], we have

Sl;Pf—irIlff = sup (f(x) = f(¥) = sup [f(x) - f)

x,y€l x,y€el

This is called the oscillation of f on I. So an integrable function ‘doesn’t oscillate too much’.

Theorem. Let f,, : [a,b] — R be integrable for all n. If f,, - f uniformly on [a, b], then f is

integrable and
b b
[ =]
a a

Proof. First, we prove f to be bounded, then we will check Riemann’s criterion. We know f is
bounded because each f, is bounded, hence by the lemma above f is bounded. Now fix ¢ > 0,
and choose n € N such that Vx € [a, b], |f,.(x) — f(x)| < €. Since f, is integrable, 3D : a = x; <
X; < -+ < xy = bof[a,b]such that Up — Ly < e. Now, we fix k € {1,...,N} and then for any
X,y € [Xr_1, X ] we have

1f ) = fFOD < 1 (X) = fuCOl + 1o () = e + 1Y) = FOII < 26 + [ fu(x) = fo )]

Taking the supremum,

sup  (f)-fON < sup [0 - fu(I + 2¢

x’ye[xk—l:xk] x!ye[xk—l’xk]



Multiplying by (xj — xj_;) and taking the sum over all k,

U(f) = L) < U(f) — L(fu) +2e(b— a) < e(2(b—a) + 1)

Hence f is integrable. We can now show that
b b
[ a1

a a

Remark. We can interpret this as

I

This is another ‘allowed’ way to swap limits.

b
s/ i~ 1< (=@ suplfy 1 =0

b b
lim f,(x)dx = lim / fu(x)dx
n—oo n—>oo a

Corollary. Let f, : [a,b] — R be integrable for all n. If 2:;1 Jn(x) converges uniformly on
[a, b], then

F(x) =) fulx)
n=1
is integrable, and

b 00 b
D hdx= Y | fulx)dx
a n=1 n=1va

Proof. Let F,(x) = 2221 fr(x). By assumption, F, — F uniformly on [a, b]. F, is integrable where
the integral of F, is the sum of the integrals:

b n b
_an=kZ=:1/a. fk

Then the result follows from the theorem above. O

1.5 Differentiability

Theorem. Let f, : [a,b] — R be continuously differentiable for all n. Suppose Z;‘;l fe(x)

converges uniformly on [a, b], and that Vc € [a, b], Z;o_l fn(c) converges. Then, Z:;l fr(x)
converges uniformly on [a, b] to a continuously differentiable function f, and

d [ - d
a(g::lfk) = ;;afk(x)



Proof. Letg(x) = Zzo:l fr(x), for x € [a, b]. The general idea is that we want to solve the differential
equation f’ = g subject to the initial condition f(c) = Z:;l fu(0). Let A = Z:;l fn(c) and define
f:[a,b] = Rby

f(x) =1+ f g(t)dt

Note that gisintegrable; Zzozl fr(x) = guniformly implies that g is continuous and hence integrable.
By the fundamental theorem of calculus, f* = g and f(c) = 1. So we have found such an f that
satisfies the conditions set out. All that remains is to prove uniform convergence of Z:’:l fe—f.

Also by the fundamental theorem, f;(x) = fr(c) + fcx fr(®)dt. Let e > 0. There exists N € N such
that |/1 - Zi’:l fk(c)‘ < gand ‘g(t) - 21;:1 f,é(t)| < &. Now, for n > N we have

fG) = fi
k=1

A+ f g(r)dt—2<fk(c)+ f f;é(t)dt)

k=1

f (g(t) Y f;é(t)) at
c k—1

< +

A= fi(©
k=1

<e+|x—cle
<eb-a+1)

1.6 Conditions for uniform convergence
Recall that a scalar sequence x,, is Cauchy if
Ve > 0,IN € N,Vm,n > N, |x,, — x,| < ¢

and that the general principle of convergence shows that any Cauchy sequence converges.
1.7 General principle of uniform convergence

Definition. A sequence (f;,) of scalar functions on a set S is called uniformly Cauchy if

Ve > 0,3IN € N,Vm,n > N,Vx € S, |f,(x) — fu(x)| <€

Theorem. A uniformly Cauchy sequence of functions is uniformly convergent.

Proof. Let x € S and we will show that (f,(x))5%, converges. Given ¢ > 0,AN € N,Vm,n > N,Vt €
S, | fn(®) — fu(®)| < €. In particular, Vm,n > N, |f,,,(x) — f,,(x)| < €. So certainly (f,(x))sx; is Cauchy
and hence convergent by the general principle of convergence. Therefore f,, converges pointwise.
Now, let f(x) be the limit f(x) = lim,_ f,(x). Then f, — f pointwise on S. Now we must
extend this to show f,, — f uniformly on S. Given € > 0, we know that 3N € N,Vm,n > N,Vx €
S, |fimn(x) — f(x)| < e. Now, we must show Vn > N,Vx € S, |f,,(x) — f(x)| < 2¢, then we are done.
We will fix x € S,n > N. Since f,,(x) — f(x), we can choose m € N such that |f,,(x) — f(x)| < &,



and m > N. Note however that m depends on x in this statement, but this doesn’t matter—we have
shown that

1fa(X) = FOOI < 1fa(0) = fin O] + 1 fin () = fF(X)| S € + € = 2¢

which is a result that, in itself, does not depend on x. O

Note. Alternatively, we could end the proof as the following. Fix x € S,n > N. Then
Vm 2 N, |fo(X) — fn(x)| <€

Then let m — o0, and

|fn() = f(0) <€
1.8 Weierstrass M-test

Theorem. Let (f,,) be a sequence of scalar functions on S. Assume that Vn € N,3M,, €
Rt,Vx € S,|f,(x)| < M,. In other words, (f},) is a sequence of bounded scalar functions.
Then,

Z M, <0 = Z Jn(x) is uniformly convergent on S

n=1 n=1

Proof. Let F,(x) = ZZ:1 fr(x)forx € S,n € N. Then

n

Fi(0) = Fn(0)l < D) i< D) My

k=m+1 k=m+1

Hence, given € > 0, we can choose N € N such that ZZ=N+1 M < €. Thus,Vx € S,Vn > m > N,
we have

|Fn(x)_Fm(x)|S i My <e

k=m+1
We have shown (F;,) is uniformly Cauchy on S and hence uniformly convergent on S. O
1.9 Power series
Consider the power series
(o]
Z cp(z—a)?
n=0

where ¢, € C,a € C are constants, and z € C. Let R € [0, o] be the radius of convergence. Recall
that

[So]
|z—al| <R = Z ¢n(z — a)"" converges absolutely;

n=0

[se]
|z—a| >R = Z cn(z — a)* diverges

n=0



Let D(a,R) :={z € C | |z — a| < R} be the open disc centred on a with radius R. Then we can create
f: D(a,R) — C to be defined by the power series, which is well-defined. f is the pointwise limit
of the power series on D. In general, the convergence of the power series is not uniformly conver-
gent.

n n
Example. Z:;l Z_Z has R = 1. Let f,,: D(0,1) — C be defined by f,,(z) = z—z Then for every
2
z € D(0,1),|z| < % Since Z:;l # = % < 00, by the Weierstrass M-test, the power series converges
uniformly on the disc.
Example. Consider Y z" = % with R = 1. Now,
- -z

o]

22"

n=0

Vz € D(0,1), <N+1

Therefore, the series does not converge uniformly on the disc since % is unbounded on the disc.

Alternatively, consider

sup
|z|<1

1
1—Z_sz -

In some sense, the problem with uniform convergence here is that we are allowed to go too close too
the boundary.

1—2z

Theorem. Suppose the power series Z:;o ¢,(z — a)"* has radius of convergence R. Then for
all 0 < 7 < R, the power series converges uniformly on D(a, 7).

Proof. Letw € Csuch thatr < |w — a| < R, for instance w = a + %. Now, let p = \_rl € (0,1).
w—-a

Since Z:;o c,(w — a)" converges, we have that c,(w — a)® — 0 as n —» oo. Therefore, IM € R+
such that |c,(w — a)"| < M for all n € N, since convergence implies boundedness. Now, for z €
D(a,r),n € N we have

ea(z =l = lentw =l ZZ) < L) = e

|lw— q| |lw—q|

Since the sum Zf:o Mp" converges, the Weierstrass M-test shows us that Z:;O ¢y(z—a)" converges
uniformly on D(a, ). O

Remark. f: D(a,R) — C defined by f(z) = Z:;O c,(z — @) is the uniform limit on D(a,r) of
polynomials for any r such that 0 < r < R. Hence f is continuous on D(a,r). Since D(a,R) =

Uo <r<g P(a,r), it follows that f is continuous everywhere inside the radius of convergence.

Recall that the termwise derivative ZZOZI cpn(z — a)" ! has the same radius of convergence. This se-
quence therefore also converges uniformly on D(a,r) if 0 < r < R. Analogously to the previous result
about interchanging derivatives and sums, we can show that Y’ ¢,,(z — a)" is complex differentiable
on D(a, R) with derivative 2211 c,n(z — a)*~!. This is seen in the IB Complex Analysis course.

Now, fix w € D(a, R). Then fixr such that |w — a| < r < R, and fix § > Osuch that jw —a|+J8 < r. If
|z—w| < §,then|z—a| < |z—w|+ |[w—a| <§ + |w— a| <r. Therefore, geometrically, D(w, §) C
D(a,r). Hence, Z:):O c,(z — @) converges uniformly on D(w, §). This is known as local uniform
convergence.

10



Definition. U C C is called open if Vw € U, 38 > 0,D(w, ) C U.

Definition. Let U be an open subset of C, and f,, be a sequence of scalar functions on U.
Then f,, converges locally uniformly on U if

Yw € U, 38 > 0, f,, converges uniformly on D(w, §) Cc U

Remark. Above, we showed that power series always converge locally uniformly inside the radius of
convergence, or equivalently inside the disc D(a, R). We will return to this point about local uniform
convergence when discussing compactness.

2 Uniform continuity

2.1 Definition
Let U C R, C. Let f be a scalar function on U. Then for x € U, we say f is continuous at x if
Ve>0,36>0,VyeU,ly—x|<d = |f(y)—f(x)| <¢
We say f is continuous on U if f is continuous at x for all x € U:
VxeU,Ve>0,36 >0,VyeU,|ly—x| <6 = |f(y)—f(x)| <¢

Note here that § depends on € and x.

Definition. Let U, f be as in the previous definition. We say f is uniformly continuous if
Ve>0,36 >0,Vx,y e U,[ly—x|<d = |f(y)— f(x)| <¢
Now, 6 works for all x € U simultaneously; § depends on ¢ only. Certainly, uniform continu-
ity implies continuity.
Example. Let f: R — R such that f(x) = 2x + 17. Then f is uniformly continuous; given ¢ > 0,
we can find § = %a. ThenVx,y eR,|ly—x|<d = |[f())—f(X)| =2y —2x| =2y —x <26 =¢.

Example. Let f : R — R, defined by f(x) = x2. This is not uniformly continuous, since no § works
for all x given some ‘bad’ . Let us take € = 1, and we wish to show that no ¢ exists. Suppose some &

does exist. Then, letx > 0andy = x + g. We should have |f(y) — f(x)| < 1.

(x+ g)z—xz =5x+6:2
So for x = %, this condition | f(y) — f(x)| < 1 is not satisfied. Hence f is not uniformly continuous.
Note. For U, f as in the above definition, f is not uniformly continuous on U if
de>0,¥6 > 0,Ix,y e U,|y—x| <6, |f(y)— f(x)| > ¢

So there are points arbitrarily close together whose difference of function values exceed some fixed
€.

11



2.2 Properties of continuous functions

Theorem. Let f be a scalar function on a closed bounded interval [a, b]. If f is continuous
on [a, b], then f is uniformly continuous on [a, b].

Proof. Suppose there exists ¢ > 0 such that V§ > 0,3x,y € [a,b],|y — x| < &,|f(y) — f(x)] = €. In

; 1
particular, we can construct a sequence (6,,) defined by §,, = —, and we can construct sequences
n

Xn Vn € [a,b] such that |y, — x,| < % but [f(y,) — f(x,,)| = €. By the Bolzano-Weierstrass the-

orem, there exists a subsequence (x;, ) that converges. Now, let x be the limit of the subsequence,
lim,,_, , Xx, . Then x € [a, b] since the interval is closed. Then, |y, — x| < [y, — Xk, |+ |xk, — x| <

i + |xkn —x| - 0. Hence Yk, — Xx. Now, since f is continuous f(xy, ), f(yr,) — f(x). Now,
£ <|f(xx,) — fk,)| = |f(x) — f(x)| = 0, which is a contradiction. O

Corollary. A continuous function f : [a,b] — R is Riemann integrable.

Proof. Since a continuous function on a closed bounded interval is bounded, we have that f is bounded.
Now, fix € > 0, and we want to find a dissection 2 such that the difference between upper and lower
sums is less than €. By the above theorem, f is uniformly continuous. Hence,

35 > 0,Vx,y € [a,b], |y — x| <8 = |f(y)—f(x)| <¢

So we must simply choose a dissection such that all intervals have size smaller than §. For instance,
choose some n € N such that b;j—a < &, and then divide the interval equally into n subintervals. If I is
an interval in this dissection, then Vx,y € I we have |y — x| < § and hence |f(y) — f(x)| < €. Hence,

sup |f(y) —f(x)| <e

x,yel
Multiplying by the length of I and summing over all subintervals I,
Up(f) —Lo(f) < (b—a)

Hence f is Riemann integrable. O

3 Metric spaces

3.1 Definition

Definition. Let M be a set. Then a metric on M is a functiond : M X M — R such that
(i) (positivity) Vx,y € M, d(x,y) > 0, and in particular, x =y < d(x,y) =0
(ii) (symmetric) Vx,y € M,d(x,y) = d(y,x)
(iii) (triangle inequality) Vx,y,z € M,d(x,z) < d(x,y) + d(y, z).
A metric space is a set M together with a metric d on M, written as the pair (M, d).

Example. Let M = R, C and d(x,y) = |x — y|. This is known as the ‘standard metric’ on M. If a
metric is not specified, the standard metric is taken as implied.

12



Example. Let M = R",C", and we define the Euclidean norm (or Euclidean length) to be

1

n 5 2

lxll = llx]l, = (Z x| )
k=1

This satisfies
llx + yll < [lx]l + [yl

and it then follows that we can define the metric as
dy(x,y) = [|x = yl,

called the Euclidean metric. We can check that this is indeed a metric easily. This is the standard
metric on R"?,C". The metric space (M, d) in this case is called n-dimensional real (or complex)
Euclidean space, sometimes denoted ¢%. The Euclidean norm is sometimes called the ¢, norm, and
the Euclidean metric is the £, metric.

Example. Let M = R",C", and we define the ¢; norm to be

n
Ixly = 25 1]
k=1
which defines the ¢; metric given by

dy(x,y) =[x =yl
(M, d,) is denoted ¢7'. We can generalise and form the metric space ¢ for all p € [1, oo].

Example. Again, let M = R", C". We can define the £, norm by

X = max |X
” ”oo 1<k<n | k|
This defines the €oo metric:

do (6, ) = lx =yl = max |xk = yil

We denote (M, d) by ¢%%.

In this course, we will only work with p = 1,2, co, although the calculations can be made to work for
other p.

Example. Let S be a set. Let £,(S) be the set of all bounded scalar functions on S. We then define
the ¢, norm of f € €,,(S) by

IfIF =1l = sup LfFl

The supremum exists since the function is always bounded. This is also known as the ‘sup norm’ or
the “‘uniform norm’. Note that, for f,g € €,(S), and x € S,

If +gll < Sléglf(X) +8(X)| < [f(x) + g < [f Gl + 1gGl < If1 + gl

Hence d(f,g) = ||f — g|| defines a metric on £€,,(S). This is the standard metric on this space €,(S),
also called the ‘uniform metric’. For example, €,({1,...,n}) = R" with the metric . Also, for
£+ (N), we typically omit the N and instead write €, for the space of scalar sequences with the uni-
form metric.
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Example. Consider C[a, b], the set of all continuous functions on [a, b]. For p = 1, 2, we define the
L, norm of f € Cl[a,b] by

1

b p
wm=(f|ﬂmfw)

which induces the L, metric on C[a, b].

Example. Let M be a set. Then

0 ifx=
dmw={ Y

1 otherwise

is a metric, called the discrete metric on M. In particular, (M, d) is called a discrete metric space.

Example. Let G be a group generated by S C G. We assumee € Sandx € S = x~! € S. Then
d(x,y) =min{n > 0: 3s,...,85,, Y = XS1 ... S, }

defines a metric called the word metric.

Example. Let p be prime. Then

0 ifx =
dmw={ Y

p~" otherwise, wherex—y = p"m,n>0,me Z,ptm

defines a metric on Z. This is known as the p-adic metric.

3.2 Subspaces

Let (M, d) be a metric space, and N C M. Then naturally we can restrict d to N X N, giving a metric
on N. (N, d) is called a subspace of M.

Example. Consider Q with the metric d(x,y) = |x — y|. This is clearly a subspace of R (implicitly
with the standard metric on R).

Example. Since every continuous function on a closed bounded interval is bounded, C[a, b] is a
subset of £, [a, b]. Hence C[a, b] with the uniform metric is a subspace of € [a, b].

3.3 Product spaces

Let (M, d),(M’,d") be metric spaces. Then any of the following defines a metric on the Cartesian
product M x M'.

D dy((x,x'), (@, y")) = d(x,y) + d(x', y")
1
(i) dy((x,x"), (1,¥") = (d(x, y)* + d(x', y')?)?
(iii) deo((x,x),(y,¥")) = max{d(x,y),d(x',y")}
We commonly write (M X M', p) as M &, M ". Note that we always have
do <d, <d; £2d

We can generalise for n € N and metric spaces (M, dy) for k € {1, ..., n}, by defining

n
(@Mk> =M, @, @ M, = (M; X - X My, d,)
k=1 »
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Example. R @, R = ¢2. Further, R @, R @, R = ¢3, and other analogous results hold.

Remark. R @; R @, R does not make sense since we have not defined the associativity of the &
operator. The two choices yield different metric spaces.

3.4 Convergence
Let M be a metric space, and (x,,) a sequence in M. Given x € M, we say that (x,) converges to x in
M if

Ve > 0,3IN € N,Vn > N,d(x,,x) <¢

We say that (x,,) is convergent in M if 3x € M such that x, — x. Otherwise, we say that (x,,) is
divergent. Note that x,, — x in M if and only if d(x,,x) — 0in R.

Lemma. Suppose we have a sequence x,, — x and x,, — y in a metric space M. Then x = y.

Proof. Suppose x # y. Then lete = @ > 0. So, by the definition of convergence,

AN, € N,Vn > N, d(x,,x) <&

AN, e N,Vn > N,,d(x,,y) <¢
Now, fix N € N such that n > N;,n > N,, for instance N = max {N;, N,}. Then

dCx,y) < d(x, %) + d(x,y) < 26 = 2d(x,)

which is a contradiction. ]

Definition. Given a convergent sequence (x,) in a metric space M, we say the limit of (x,,)
is the unique x € M such that x,, » x as n — oo. This is denoted

lim x,

n—-oo

Example. This definition has the usual meaning when M = R, C.

Example. The constant sequence defined by x,, = x converges to x. In particular, ‘eventually con-
stant’ sequences converge; let (x,) be a sequence in M such that 3x € M,3IN € N,Vn > N, x,, = x,
then x,, — x. It is not necessarily true that sequences only converge if they are eventually constant.
However, in a discrete metric space, the converse is true, since we can choose ¢ smaller than all
distances.

Example. Consider the 3-adic metric. Then, 3" — 0 as n — oo since d(3",0) = 37" — 0.
Example. Let S be a set. Then, f,, — f in €,(S) in the uniform metric if and only if d(f,, f) =
Ifn = fllo = supg |fn — f| = 0, which is precisely the condition that f, — f uniformly on S. Note,

however, that f,(x) = x + % for x € R,n € Nand f(x) = x, then certainly f,, — x uniformly on

R. However, f,,, f & €+(R), so the uniform metric is not defined on these functions. So the notion
of uniform convergence visited before is slightly more general than the idea of convergence in this
metric space.
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Example. Consider Euclidean space M = R", C"* with the ¢, metric. Then, consider
x5 = (xgk), ,xﬁlk)) eM

fork € N, and x = (x;, ..., X,;) € M. Then,
n
‘xgk) —xi| < Hx(k) _ x“ <y Mk) _ xi|
2 i=1

So x® — x if and only if all i satisfy x> — x;. This can be thought of as convergence being

equivalent to coordinate-wise (or pointwise) convergence.

Example. Consider f,,(x) = x" for x € [0,1], and n € N. Then (f,,) is a sequence in C[0, 1], which
converges pointwise but not uniformly. So (f,,) is not convergent in the uniform metric. However,
using the L; metric, we have

1
0 = Uil = [ o= g =0
0

So, f, = 0in (C[0,1],L,).

Example. Let N be a subspace of a metric space M, and (x,) be a convergent sequence in N. Then
(x,,) converges in M. The converse is not necessarily true; consider M = R and N = (0, o0) with

(x,) = L Thisis divergent in N but convergent in M.
n

Example. Let (M,d),(M’,d’) be metric spaces. Let N = M &, M'. Let a,, = (x,,,y,) € N for all
n €N, and a = (x,y) € N. Then

a, > ainN < x, - xinM,y, »>yinM’
Indeed,

max {d(X,, x),d' (Y, )} = do(an, @) < dp(ap, @) < 2di(ap, a) = 2d(xp, x) + 2d'(Yy, y)
3.5 Continuity

Definition. Let f: M — M’ be a function between metric spaces (M, d),(M’,d’). Then for
a € M, we say f is continuous at a if

Ve > 0,36 > 0,Vx € M,d(x,a) < § = d'(f(x), f(a)) <¢
We say f is continuous if f is continuous at a for all a € M. In other words,
Ya € M,Ve > 0,38 > 0,Vx € M,d(x,a) <6 = d'(f(x),f(a)) <e

Note that § depends both on € and a.

Proposition. Let f: M — M’ be as above. Let a € M. Then the following are equivalent:
(i) f is continuous at a;
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(i) x, — ain M implies f(x,) - f(a)in M

Proof. First we show (i) implies (ii). Suppose x,, — ain M. Then fixe > 0, and seek N € N such that
Vn > N,d'(f(xy), f(a)) < e. By continuity, there exists § > 0 such that Vx € M,d(x,a) < § =
d'(f(x,), f(a)) < € as required. So we want N such that Vn > N, d(x, a) < §, which must exist since
X, — a.

Now, we show (ii) implies (i). Suppose that f is not continuous at a. Then,
de > 0,Y6 > 0,3x € M, d(x,a) < 6,d'(f(x), f(a)) > ¢

So fix such an ¢ for which no suitable § exists. Choose the sequence §,, = l, S0
n

A0 @) < 73 d'(fCo), f(@) 2 ¢

Then x,, - ain M but f(x,) » f(a)in M, which is a contradiction. O

Proposition. Let f, g be scalar functions on a metric space M. Let a € M. Then if f, g are
continuous at a, so are f+gand f-g. Moreover, letting N = {x € M : g(x) # 0}and assuming

a €N, L is continuous at a. Hence if f, g are continuous, thenso are f + g, f - g, . Where
g g
they are defined.

Proof. Suppose x,, — a. Then by the above proposition, (f - g)(x,) = f(x,) - g(x,) = f(a)-gla) =
(f - g)(a), and similar results hold for the other operators. O

Remark. If f: M — M’ is continuous everywhere,
lim f(x,) = f( lim xn)
n—oo n—oo

by the second proposition.

Proposition. Let f: M - M',g: M’ — M" be functions between metric spaces. If f is
continuous at a and g is continuous at f(a), then go f is continuous at a. If f, g are continuous,
g o f is continuous.

Proof. Lete > 0. We want to find § > 0 such that Vx € M,

d(x,a) <6 = d"(g(f(x)),g(f(a)) <e

Since g is continuous at f(a), there exists 7 > 0 such that Vy € M’,

dy f(@) <n = d"(gQ).e(f(®) <e

Now, since f is continuous at a, for this # there exists d such that for all x € M,

d(x,a) <§ = d'(f(x) - f(@) <7
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Then
d(x,a) <6 = d"(g(f(x)),g(f(a)) <¢

as required. O
Example. Constant functions are continuous. For instance, let b € M and let f(x) = b. Then this
is continuous since d'(f(x) — f(a)) = d'(b,b) = 0 so any 6§ > 0 will satisfy the condition.

Example. The identity function f : M — M defined by x — x is continuous. Consider d(f(x) —
f(a)) = d(x — a). So § = ¢ will suffice.

Example. All real and complex polynomials and rational functions are continuous wherever they
are defined by the propositions and examples above. In fact, using uniform convergence, the uniform
limits of such functions are also continuous. For example, exponential and trigonometric functions
are continuous.

Example. Let (M, d) be a metric space. Thend : M ©p M - R, which can be viewed as a function
between metric spaces M @, M and R. Then, given v = o x),w=wy)eM ®p M,
|d(v) — d(w)| = [d(x,x") —d(y,y")| < d(x,y) +d(x',y") = d;(v, w) < 2d, (v, W)

Hence § = E will suffice.

3.6 Isometric, Lipschitz, and uniformly continuous functions

Definition. Let f : M — M’ be a function between metric spaces. Then, f is
(i) isometric, if
Vx,y € M, d'(f(x), f(») = d(x,y)

(ii) Lipschitz, or c-Lipschitz, if
dc € R¥,Vx,y € M, d'(f(x), f(»)) < c-d(x,y)
(iii) uniformly continuous, if

Ve > 0,36 > 0,Vx,y € M,d(x,y) <8 = d'(f(x), f(y)) <€

Remark. Anyisometric function is 1-Lipschitz. Any Lipschitz function is uniformly continuous. Any
uniformly continuous function is continuous.

Remark. If a function is isometric, it is injective, since f(x) = f(y) = x = y. For example,
if N ¢ M, the inclusion map i: N — M defined by i(x) = x is isometric but not surjective. An
isometric and surjective map is called an isometry. If there exists an isometry M — M’, we say that
M and M’ are isometric metric spaces, or M’ is an isometric copy of M.

Example. Suppose (M,d),(M’,d’) be metric spaces. Lety € M'. We define f: M — M &, M’
by x = (x,y). Then d,(f(x), f(2)) = dp((x,¥),(z,y)) = d(x,z). So the function f is isometric.
Therefore, M X {y} is an isometric copy of M in M @, M'.

Example. Consider the projectionsq: M@®,M' — M definedby q(x,y) = xandq' : M@®,M' - M’
defined by q’(x, y) = y. These projections are both 1-Lipschitz. Indeed,

d(q(x, ), q(x",y") = d(x, x") < dp((x,y), (', y"))
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In particular, polynomials in any finite number of variables are continuous since we can multiply
continuous functions together.

3.7 Generalised triangle inequality
Suppose u, x,y,z € M. Then, |d(u, x) — d(y, z)| < d(u,y) + d(x, z). First,
d(u,x) <d(u,y) +d(y,x) <du,y)+d(y,z) +d(z,x)

Rearranging,
d(u, x) — d(y,z) < d(u,y) + d(x, 2)

To achieve the negative, satisfying both conditions in the absolute value term,
d(y,z) < d(y,u) + d(u, x) + d(x, z)

which gives
d(y,z)—d(u,x) < d(u,y) +d(x,z)
as required.

4 Topology of metric spaces

4.1 Open balls

Definition. Let M be a metric space, x € M, r > 0. Then the open ball in M of centre x and
radius r is the set
D.(x)={yeM: d(y,x) <r}

The open ball notation is a convenient syntax for denoting closeness in some metric space. Note that,
for example, x,, — nin M is equivalent to saying

Ve > 0,AN € N,Vn > N, x,, € D.(x)
We can also say that f : M — M’ is continuous at x if
Ve > 0,36 > 0, f(Ds(x)) C D(f(x))

Definition. The closed ball of centre x and radius » > 0 is the set

B,(x)={yeM: d(y,x) <r}

Example. In R, D,(x) = (x — r, x + r). Further, B,(x) = [x — r, x + r]. In the plane (R?, dp),

B,(0) = {x e R?: |x||, < 1}

Note. D,(x) C B,(x) C Dy(x)forallr < s.
Example. Let M be a discrete metric space. Then for x € M,

Di(x)={x} Bi(x)=M

4.2 Neighbourhoods and openness

19



Definition. Let M be a metric space, and U C M. Then for x € M, we say that U is a
neighbourhood of x (in M) if

Ir>0,D,.(x)cU < Ir>0,8,(x)cU

Definition. We say U C M is open in M, or that U is an open subset of M, if
Vx e U,3r>0,D,.(x)cU
So U is a neighbourhood of all points in U.

Example. D,(x), B,(x) are neighbourhoods of x.

Example. Let H ={ze€ C: Imz>0}. Letw € Hand § = Imw. If § > 0, then Ds(w) C H. If
8 = 0, then for any r, Ds(w) ¢ H. So H is not open.

Lemma. Open balls are open.

Proof. Let D,(x) be an open ball in a metric space M. We need to show that
Vy € D,(x),38 > 0,Ds(y) C D,(x)
Solety € D,(x) and set § = r — d(x,y). Note that d(x,y) > 0, and by the triangle inequality,
d(z,x) <d(z,y)+d(y,x) <6+ (r—=98)=r
as required. O

Corollary. Let M be a metric space, U C M, x € M. Then U is a neighbourhood of x if and
only if there exists an open subset V of M such that x € V. C U.

Proof. In the forward direction, there exists r > 0 such that D,(x) C U,solet V = D,(x). Conversely,
if V is open we can construct r > 0 such that D,(x) C V C U. So U is a neighbourhood of x. O

4.3 Continuity and convergence using topology

Proposition. In a metric space M, the following are equivalent.
@ x, = x;
(ii) for all neighbourhoods U of x in M, AN € N,Vn > N, x,, € U;
(iii) for all open neighbourhoods U of x in M, AN € N,Vn > N, x,, € U.

Proof. First, (i) implies (ii). Let U be a neighbourhood of x. Then by definition 3¢ > 0, D.(x) c U.
Since x,, = X,
AN e N,Vn > N, x,, € D.(x)

henceVn > N, x, € U.
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Now we show (ii) implies (iii). This is clear since any open set U with x € U is a neighbourhood of
X.

Finally, (iii) implies (i). Fix ¢ > 0. By the above lemma, U = D(x) is open, and x € U. Then by (iii),
AINeN,Vn>n,x, €U

hence d(x,,x) < ¢. O

Proposition. Let f: M — M’ be a function between metric spaces.
(a) The following are equivalent for all x € M.
(i) f is continuous at x;
(ii) for all neighbourhoods V of f(x) in M’, there exists a neighbourhood U of x in M
such that f(U) C V;
(iii) for all neighbourhoods V of f(x) in M’, f~1(V) is a neighbourhood of x in M.
(b) The following are equivalent.
(i) f is continuous;
(ii) f~(V)is open in M for all open subsets V of M.

Proof. First, we show (a)(i) implies (a)(ii). Let V be a neighbourhood of f(x) in M’. By definition,
Je > 0 such that D.(f(x)) C V. Since f is continuous at x, there exists § > 0 such that f(Ds(x)) C
D (f(x)). Then, U = Ds(x) is a neighbourhood of x in M, and f(U) C V.

Now, (a)(ii) implies (a)(iii). Let V be a neighbourhood of f(x) in M’. By (ii), there exists a neighbour-
hood of x in M such that f(U) c V. Then U C f~1(V) and since U is a neighbourhood of x in M,
ther exists r > 0 such that D,(x) c U C f~1(V) Thus, f~1(V) is a neighbourhood of x in M.

Finally, (a)(iii) implies (a)(i). Given € > 0, V = D.(f(x)) is a neighbourhood of f(x) in V. By (iii),
f~X(V) is a neighbourhood of x in M. So 38 > 0 such that Ds(x) C f~1(V). Thus, f(Ds(x)) CV =
D(f(x)).

Now, (b)(i) implies (b)(ii). Let VV be open in M’. So pick x € f~}(V). Then, f(x) € V. Since V
is open, 3¢ > 0,D.(f(x)) C V. Since f is continuous at x, 38 > 0, f(Ds(x)) C D(f(x)). Then,
Ds(x) C fTHDLfx)) € fHV).

Finally, (b)(ii) implies (b)(i). Consider x € M. We must show f is continuous at x. Lete > 0.
Consider the ball V' = D.(f(x)). This is open in M’ by the above lemma. By (ii), f~1(V) is open
in M. Further, x € f~(V). So by definition, 3§ > 0,Ds(x) C V, which is exactly continuity as
required. O

Definition. The topology of a metric space M is the family of all open subsets of M.

Proposition. The topology of a metric space satisfies
(i) @ and M are open;
(if) if U; are open in M for i € I (I may be countable or uncountable), then | J iy Ui is open
in M;
(iii) if U,V are open then U N V is open.
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Proof. (ii): Let x € | J,_, U;, then 3i, € I, x € U;,. Then since U;_ is open, 36 > 0,D,(x) C U;, C

iel
Uie] Ui
(iii) Given x € U n V, since U is open then 3r > 0, D,(x) C U and 3s > 0, Dy(x) C V. Then let
t = min(r, s), and D;(x) = D, (x)NDy(x) cUNV. O

4.4 Properties of topology of metric space

Definition. A subspace A of a metric space M is closed in M if for every sequence (x,) € A
that is convergent in M,
lim x, € A

n—->oo

Lemma. Closed balls are closed.

Proof. Consider B,(x) in M. Consider further (x,) € B,(x) such that x,, — z in M.
d(z,x) <d(z,x,) +d(x,,x) <d(z,x,)+r—>r

Hence d(z,x) < r,so z € B,(x). O

Example. [0,1] = B,/,(1/2) is closed in R. This is not open, for instance consider D,(0) ¢ [0, 1].

Example. (0,1) = D,/,(1/2) is open in R. This is not closed, for instance the sequence —il tends to
n
zero in R.

Example. R and @ are open and closed in R.

Example. (0,1]in R is neither open nor closed. Consider D,(1) ¢ (0,1] and % -0 ¢ (0,1].

Lemma. Let A C M. Then A is closed in M if and only if M \ A is open in M.

Proof. Let A be closed. Suppose M \ A is not open. Then 3x € M\ A,Vr > 0,D,(x) ¢ M \ A, so

D, (x)NA # @. In particular, for every n we can choose a point in D, /,,(x)nA. Then, d(x,, x) < LN
n

and x,, € A which contradicts the fact that A is closed.

Conversely, let us assume M \ A is open, but suppose A is not closed. Then there exists a sequence

(x,) € Asuchthatx, - xin M butx ¢ A. Since x € M \ A and M \ A is open, there exists

€ > 0,D.,(x) Cc M\ A. Since x,, — x, we must have 3N € N,Vn > N,x, € D.(x) and hence
X, € M \ A, which is a contradiction. O

Example. Let M be a discrete metric space. Let A C M. Then forall x € A, D,(x) = {x} C A. Hence
A is open. So in a discrete metric space, all subsets are open. Hence every subset is closed.
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4.5 Homeomorphisms

Definition. A map f: M — M’ between metric spaces is called a homeomorphism if f is a
bijection and f, f~! are continuous. Equivalently, f is a bijection, and for all open sets V in
M’', f~1(V) is open in M, and for all open sets U in M, f(U) is open in M'. If there exists a
homeomorphism between M, M’, we say that M, M’ are homeomorphic.

Example. Consider (0, c0) and (0,1). Consider the map x — i with inverse x — ~ — 1. These
X P
are continuous, so the metric spaces are homeomorphic.

Remark. Every isometry is a homeomorphism, since it is bijective by definition. It is not true that
every homeomorphism is an isometry.

Consider the identity on R with the discrete metric to R with the Euclidean metric. This is a continu-
ous bijection whose inverse is not continuous. So it is not true that a continuous bijection always has
a continuous inverse.

4.6 Equivalence of metrics

Definition. Let d,d’ be metrics on a set M. We say that d,d’ are equivalent, written d ~ d’,
if they define the same topology. In particular, U C M is open in (M, d) if and only if U is
open in (M,d"). Sod ~ d’ ifand only ifid : (M,d) — (M, d’) is a homeomorphism.

Remark. If d ~ d’, then (M, d) and (M, d") have the same convergent sequences and continuous
maps.

Definition. Let d,d’ be metrics on M. Then we say d,d’ are uniformly equivalent, written
d ~, d"if

id: (M,d) > (M,d"); id: (M,d") » (M,d)
are uniformly continuous. We say d,d’ are Lipschiiz equivalent, written d ~;, d’, if the
identity maps above are Lipschitz. Equivalently, d ~;, d’" if 3a > 0,b > 0,ad(x,y) <
d'(x,y) < bd(x,y). Note,d ~;, d" = d~,d = d~d'.

Example. Given a metric space (M, d), we define d’(x,y) = min(1, d(x, y)). This defines a metric
onM,and d’' ~, d.

Example. On M x M’, d,,d,, d, are pairwise Lipschitz equivalent.

Example. Consider C[0,1]. The L; metric and the uniform metric are not equivalent. Consider
Jfn(x) = x™. This is convergent to zero in the L; metric but is not convergent in the uniform metric.

Example. The discrete metric and Euclidean metric on R are not equivalent. This is because in the
discrete metric all sets are open, but in the Euclidean metric there are some non-open sets.
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5 Completeness

5.1 Cauchy sequences

In R, C, every Cauchy sequence is convergent. We wish to generalise this notion to an arbitrary
metric space. Recall that a sequence (x,) in R or C is bounded if there exists c € R* such that
vneN,|x,| <c.

Definition. A sequence (x,,) in a metric space M is said to be Cauchy if
Ve > 0,IN € N,Vm,n > N,d(x,,,x,) < €
The sequence is bounded if
dz e M,3r > 0,Yn € N, x,, € B,(2)

This is equivalent to
Vz € M,3r > 0,Vn € N, x,, € B,(2)

by considering the triangle inequality around the given z point. In particular, if the metric
arises from a norm, (x,,) is bounded if and only if || x,, || is bounded.

Lemma. If a sequence is convergent, it is Cauchy. If a sequence is Cauchy; it is bounded.

Proof. Let (x,) be a sequence in M. First, we assume that (x,,) is convergent in M, so let x be the
limit. Given € > 0, there exists N € N such that Vn > N, d(x,,x) < €. Then, for all m,n > N, we
have d(x,, x,,) < d(x,,, x) + d(x,x,) < 2¢ as required. So (x,,) is Cauchy.

Now conversely, we assume (x,,) is Cauchy. There exists n € N such that Vm,n > N, we have

d(X, X,,) < 1. In particular, d(x,,xy) < 1for n > N. In other words, x,, € B;(xy). Now, let
r = max{d(x;,Xyn), ..., d(XnN_1,Xn), 1}. This r is a bound for all elements of the sequence; for all
neN,x, € B,(xy). O

Remark. Boundedness does not imply the sequence is Cauchy. For instance, consider the sequence
0,1,0,1, ... in R. If a sequence is Cauchy, it is not necessarily convergent in an arbitrary metric space

(not R, C). For instance, consider x,, = % in (0, o0). This is certainly not convergent, since the limit
cannot be zero.

5.2 Definition of completeness

Definition. A metric space M is called complete if every Cauchy sequence in M converges
in M.

Example. R, C are complete.
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5.3 Completeness of product spaces

Proposition. Product spaces of complete spaces are complete. More precisely, if M, M’ are
complete, then so is M &, M !

Proof. Let (a,) be a Cauchy sequence in the product space M &, M'. We will write a,, = (x,, x;,) for
all n. Then, since (a,,) is Cauchy,

Ve>0,IN e \,Vm,n € N,dp(am,an) <eg
Then, for all m,n > N,
d(Xp, X,) < max{d (X, Xp), (X}, Xp)} < dp(apm, a,) <€

Hence (x,,) is Cauchy in M, and similarly (xj,) is Cauchy in M’. Since M, M’ are complete, (x,,), (x},)
are convergent in M, M’ to x, x’. Now, let a = (x, x"). Then,

dp(an, a) < di(ay, a) = d(x,, x) + d(xp, x") = 0

So the product space is complete. O

Remark. (a,)is Cauchy in M @, M' if and only if (x,) is Cauchy in M and (x;,) is Cauchy in M.

Corollary. R",C" are complete in the £, metric. In particular, n-dimensional real or complex
Euclidean space is complete.

5.4 Completeness of subspaces and function spaces

Theorem. Let S be any set. Then, €,,(S), the set of bounded scalar functions on S, is com-
plete in the uniform metric D.

Proof. Let (f,,) be a Cauchy sequence in €, (S). Then,
Ve > 0,3IN € N,Vm,n > N, D(X,,, X,) = sup | f,(x) — f(x)| < ¢
X€S
In other words, Vm,n > N,Vx € S,|fn(x) — fu(x)| < €. So (f,) is uniformly Cauchy as defined
previously. As shown previously, (f;,) is uniformly convergent. Hence, there is a scalar function f
on S such that f, — f uniformly on S. We have also shown previously that the uniform limit f of

bounded functions (f,) is bounded. In other words, f € ¢,,(S). Now it remains to show that f, — f
in the uniform metric.

Ve>0,IN e N,Vn > M,Vx € S, |f,(x) — f(x)| < ¢

Hence,
Vn > N, su[S) [fn(x) = fF(X)] = D(fu, f) < €

which is convergence in the metric as required. O
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Proposition. Let N be a subspace of a metric space M. Then,
(i) If N is complete, N is closed in M.
(ii) If M is complete and N is closed in M, then N is complete.
In other words, in a complete metric space, a subspace is complete if and only if it is closed.

Proof. To prove (i), we let (x,) be a sequence in N and assume that x,, - x in M. We want to show
that x € N. We know (x,,) is convergent in M, so it is Cauchy in M. So (x,,) is Cauchy in N. Since N
is complete, x,, — y in N. So x,, = y in M. By uniqueness of limits, x = y as required.

Now we want to prove (ii) is complete. Let (x,) be a Cauchy sequence in N. Then (x,,) is Cauchy in
M. Since M is complete, x,, — x in M for some x € M. Since N is closed in M, x € N. So x,, —» x in
N. O

Theorem. Let (M,d) be a metric space, and define C,(M) to be the set of functions f in
€+ (M) such that f is continuous. This is a subspace of £, (M) in the uniform metric D. C,(M)
is complete in the uniform metric.

Proof. By the above proposition, it is sufficient to show that C,(M) is closed in €,,(M). Let (f,) be
a sequence in Cp(M) and we assume that f, — f in €, (M). We want to show that f,, € C,(M). It
is now sufficient to show that f is continuous, or equivalently, continuous at every point in M. Let
a € M, and lete > 0. Since f,, — f in €,,(M), we can fix n € N such that F(f,,, f) < €. Since f,, is
continuous (at a),

35 > 0,Vx € M,d(x,a) < § = |f,(x)— fu(a)| <e¢

Hence, Vx € M, if d(x, a) < § we have
1fC) = f(@)] < 1f(X) = (O] + [ fu(X) = fu(D)] + | fu(@) — f(a)]
< 2D(fu, ) + 1 fa (%) — fu(@)]

< 3¢

Corollary. Consider C[a, b], the space of continuous functions on [a, b]. This space is com-
plete in the uniform metric, since C[a, b] = Cy[a, b].

Definition. Let S be a set, and (N, e) be a metric space. Then we generalise ¢, (S) to the
following definition.
€ (S,N)={f: S— N: fisbounded}

where f is bounded if there exists y € N,r > 0 such that Vx € S, f(x) € B,(y). Ifg: S > N
is a bounded function, Vx € S, g(x) € B4(z), then

Vx € S, e(f(x), g(x)) < e(f(x),y) + ey, 2) + e(2,8(x)) <7 +e(y,2) + 5

This is a uniform bound for all x, so we may take the supremum. So sup, ¢ e(f(x),g(x))
exists and we denote this by

D(f,8) = sup e(f(x), g(x))
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This can be shown to be a metric, called the uniform metric on €,,(S,N). Now, let S = M,
where (M, d) is a metric space. We define

C,(M,N)={f: M - N: f continuous and bounded}

Note that Cp,(M, N) is a subspace of ., (M, N) with the uniform metric.

Theorem. Let S be a set, let (M, d) be a metric space, and let (N, e) be a complete metric
space. Then

(i) €.(S,N) is complete in the uniform metric D;

(i) Cp(M,N) is complete in the uniform metric D.

Proof. We first prove part (i). Let (f,,) be a Cauchy sequence in €,,(S, N). We first show that (f,,) is
pointwise Cauchy. Let x € S.

Ve>0,3K € N,Vi, j > K,D(f;, fj) <€

In particular, e(f(x), fj(x)) < D(f;, fj) < efori,j > K. So the sequence (f(x)), is Cauchy in N.
Since N is complete, (f (X)), converges. This holds for all x € S, hence we can define f: S - N by
FOo) = Tlimy, o0 fi(x).

Now, we must show that f is bounded, such that f € £,(S,N). Since f} is Cauchy in the uniform
metric D, there exists K € Nsuch that Vi, j > K, D(f}, f;) < 1. In particular, foralli > K, D(f, fx) <
1. Since fx is bounded, there exists y € N,r > 0 such that Vx € S, fx(x) € B,(y). Then, by the
triangle inequality, for a fixed x € S, Vi > K, e(f;(x), fx(x)) < D(f;(x), fx(x)) < 1. Leti — oo, then
e(fi(x), fx(x)) < 1. Hence e(f(x),y) < e(f(x), fr(x)) + e(fx(x),y) < 1+ r. Butsince this is true for
all x, 1 + r is a uniform bound; Vx € S, f(x) € B,,.1(y).

Now we will show that f; — f uniformly in D. Again, we use
Ve > 0, K e N,Vl,] Z K,D(fl,f]) <g

So choose i > K, and x € S. Then for all j > K, e(f;(x), fj(x)) < D(f,f;) <& Asj = oo,
e(f(x), fi(x)) < e, because metrics are continuous. But since x was arbitrary, we have a uniform
distance D(f, f;) < €. This holds for all i > K, so we have uniform convergence.

Now we prove part (ii). By part (i) and an above proposition, it is enough to show that C,(M, N)
is closed in €,,(M,N). Let (f) be a sequence in C,(M,N) and f; — f in €,,(M,N). We require
f € Cp(M, N), so it is enough to show that f is continuous. This is exactly the proof that the uniform
limit of continuous functions is continuous. Let a € M, ¢ > 0. Then, since f; — f in €(M,N),
we can fix k € N such that D(f}, f) < €. Since f} is continuous, 36 > 0,Vx € M,d(x,a) < § =

e(fr(x), fr(@) <e.
Vx €M, f(x,a) <8 => e(f(x), f(a)) < e(f(X), frr(X)) + e(fr(x), fr(@)) + e(fr(a), f(a))

< 3¢
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6 Contraction mapping theorem

6.1 Contraction mappings

Definition. A function f: M — M’ is called a contraction mapping if 34,0 < A < 1 such
that

Vx,y € M,d'(f(x), f(y)) < Ad(x,y)
so f is A-Lipschitz.

6.2 Contraction mapping theorem

This theorem is also called Banach’s fixed point theorem.

Theorem. Let M be a non-empty complete metric space. Let f : M — M be a contraction
mapping. Then f has a unique fixed point:

AzeM,f(z)=z

Proof. LetAsuchthat0 <A1 < 1landVx,y € M,d'(f(x), f(y)) < Ad(x,y). First we show uniqueness.
Suppose there were two fixed points f(z) = z, f(w) = w. Then d(z, w) = d(f(z), f(w)) < Ad(z,w) <
d(z,w). Hence d(z,w) = 0soz = w.

Now we show existence. Fix a starting point x, € M. Let x,, = f(x,_;) foralln € N, so x,, = f"(xg).
First, observe that for all n € N,

d(Xp, Xpt1) = d(f(xp_1), f(xp)) < Ad(Xp_1, Xp) < -+ < A"d(X0, %)
For m > n, we have

m—1 m—1 n
d(xp, Xp) < Z d(xp, Xg41) < Z Ad(x,x1) < md(xmxl)
k=n k=n
. an
Since Ed(xo,xl) -0,

n

Ve > 0,IN € N,Vn > N, %d(xo,xl) <e¢

Hence, Vm > n > N, d(x,,x,) < €. So the sequence (x,) is Cauchy. Since M is complete, (x;,) is
convergent to some point z € M. f is continuous since it is a contraction, so f(x,) — z so f(z) = z.
So the fixed point exists. O

n
Remark. Letting m — oo in the inequality for d(x,, x,;,), d(x,,,z) < f_—ld(xo,xl). So x,, — z expo-

nentially fast. Consider f: R\ {0} - R\ {0}, and x — g This is a contraction, but there is no fixed

point. This is because R \ {0} is not complete. Consider instead f : R — R, x — x + 1. This has no
fixed point, since f is an isometry (1 = 1) and not a contraction. Consider further f : [1, 00) — [1, o)

mapping x — x + i Certainly |f(x) — f(¥)] < |x = |- [1, 00) is closed in R so it is complete. How-

ever this is not a contraction; even though |f(x) — f(¥)| < |x — y|, there is no upper bound A. There
are no fixed points.
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6.3 Application of contraction mapping theorem

Let y, € R. Then the initial value problem f’(t) = f(t*) and f(0) = y, has a unique solution on
[0, %] In other words, there exists a unique differentiable function f : [0, %] - [0, %] such that
f(0) = yo and f'(t) = f(¢?) for all ¢ in the domain.

First, observe that if f is a solution then certainly it is continuous, so f € C [O, %] Further, by the
fundamental theorem of calculus, it satisfies

t
£ = o + f F(?)ds
0

Note that f’(s) = f(s?) is continuous. Conversely, if f € C[O, %] and f(t) = yo + fot f(s?)ds then f
is a solution to the initial value problem.

LetM = C[O, %] with the uniform metric. This is non-empty and complete. Then we define the map
T: M — Mby

t
(Te)(®) = yo + f o(s?) ds
0

Note that Tg is well-defined since g(s®) is continuous. Moreover, by the fundamental theorem of
calculus, Tg is differentiable and (Tg)'(t) = g(t?). Thus, f is a solution to the initial value problem if
andonlyif feMand Tf = f.

Now, if T is a contraction, we can use the contraction mapping theorem to assert that there is exactly
one fixed point. Forg,h € M, t € [0, %], consider

t
(TE)(E) = (Th)(O)| = f [4(s?) — h(s?)] ds
0

<t sup [g(s?) ~ ()| < 2D(g,h)
sefo
Taking the supremum over ¢t gives D(Tg, Th) < éD(g, h), and so there is exactly one fixed point.

Remark. The above shows thatforanyd € (0, 1) there is a unique solution to the initial value problem
on [0, 6], called fs, since § < 1 is required for the map to be a contraction. For 0 < § < u < 1,
ful[ 03] = fs by uniqueness. So we can combine the solutions together to yield a unique solution on

[0,1).
6.4 Lindelof-Picard theorem

Theorem. Letn € N, y, € R", and a,b,R € R, such thata < band R > 0. Let
¢: [a,b] X Br(yy) — R”" be a continuous function. Given that there exists K > 0 such
that Vt € [a, b],Vx,y € Br(yy), such that

lg(z, x) — ¢t YIl < Kllx = yl|
Then, 3¢ > 0 such that Vt, t, € [a, b], the initial value problem

f1(@) = ¢, f(©);  f(to) = Yo

has a unique solution on [c,d] = [t, — &, to + €] N [a, b].
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Remark. 1If f is a solution of the initial value problem, implicitly this includes the assumption that
f(t) € B.(yg) for all t € [c,d]. Note thatif f: [c,d] - R", welet f: [c,d] — R be the kth com-
ponent of f, and f} = qi o f where g, is the kth coordinate projection. Then, f(t) = (fi(t), ..., f.(£))
and we define f to be differentiable if and only if all of the components are differentiable, with
'@ = (fi@®), ..., f(t)). Note further, if f is continuous, then so are f}, hence f} are integrable.

So we define 4 4 4
/ fHdt=v= (f fl(t)dt,...,f fn(t)dt>

Note that we can use the Cauchy-Schwarz inequality to give
) n
lol” = 3 vi
k=1
n d
=2 ka fr(t)dt
k=1 c
d n
=/ D vief i) dt
¢ k=1
d

=./ v- f(t)dt

d
< f ol - 1F] dt

d
= Il f 1Ol de
C
Hence,

d
< / FOlde < (d=0) sup [F Q)

telc,d]

fc ‘ f@dt

Proof. Recall that closed balls are closed, hence B(y,) is a closed subset of R”. So ¢ is a continuous
function on the closed and bounded set [a,b] X Bg(y,). It follows that ¢ is bounded. Now, let
¢ = sup{||l¢(t,x)|: t € [a,b],x € Br(yy)}. Lete = min(é, i). Let t, € [a,b] and let [c,d] =
[to—¢, to+e]lNn[a, b]. We need to show that there exists a unique differentiable function f : [c,d] —» R"
such that f(ty) = yg and f'(t) = ¢(¢, f(¢t)) forallt € [c,d]. Since Br(y,) is closed in R”, and since R"”
is complete, Br(y,) is complete. Then, M = C([c, d], Br(y,)) is complete in the uniform metric D.
This is certainly non-empty; consider the constant function yielding y,. f is a solution to the initial
value problem if f € M and f'(t) = yo + ft:) #(s, f(s)) ds, from the fundamental theorem of calculus
applied coordinatewise. We define T : M — M mapping g — Tg where Tg is given by

t
(o)) = yo + f #(s,5(s)) ds

We must show T is well defined. First, note that the integral is well defined; s — ¢(s, g(s)) is continu-
ous so integrable. By the fundamental theorem of calculus, Tg is differentiable and the derivative is
(Tg)'(t) = ¢(t, g(t)). In particular, Tg : [c,d] — R" is continuous. Finally, for ¢ € [c,d],

<[t —to| sup [I¢(s,g(s)) <ec <R

s€le,d]

I(Tg)(®) — yol =

f #(5,5(5)) ds
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So Tg € M. Recall that f is a solution of the initial value problem if and only if f € M and Tf = f.
Now we must show that T has a unique fixed point, so we will show that T is a contraction. Let
t €[c,dland g, h € M.

t
I(Tg)(®) — (Th)(DI = f [#(s, 8(s)) — ¢(s, h(s))] ds

0

Note that [|¢(s, g(s)) — ¢(s, h(s))| < Kl|g(s) — h(s)]| < K - D(g, h).
I(Tg)(®) — (Tl = |t — to] - K - K(g, h) < eKD(g, h)

Taking the supremum over ¢ € (c, d),
D(Tg, Th) < eKD(g, h) < %D(g, h)

So T is a contraction. By the contraction mapping theorem, T has a unique fixed point in M. O

Remark. For any § € (0,1), taking ¢ = min(lf, %) works. But by the uniqueness of the solution,
the choice does not matter for constructing the solution. So we can construct the solution for ¢ =
min(g, %), on (ty — &, ty + €) N [a, b]. In general, there is no solution on [a, b]. Finally, note that the
abovectheorem can handle any nth order ODE for any n € N.

7 Topology

7.1 Definitions

Definition. Let X be a set. A topology on X is a family 7 of subsets of X (so 7 C P(X)) such
that
() @.Xer;
(ii) if U; € T for all i € I where I is some index set, then | J
(iii) if U,V etthenUNYV € 7.
A topological space is a pair (X, ) where X is a set and 7 is a topology on X. Members of T are
called open sets in the topology. So we say that U C X is open in X, or U is t-open, if U € t.

iel U; € t;and

Remark. If U; € tfori =1,...,n, then ﬂ?zl U;er.

Example. Let (M, d) be a metric space. Recall that U C M is open in the metric sense if Vx € U, 3r >
0, B,(x) C U. We may say that U is d-open. We have already proven that the family of d-open sets is
a topology on M. This is a metric topology.

Definition. Let (X, 7) be a topological space. Then we say that X is metrisable (or sometimes
we say 7 is metrisable) if there exists a metric d on X such that 7 is the metric topology on X
induced by d. In other words, U C X is t-open if and only if U is d-open. Ifd’ ~ d, then d’
also induces the same topology 7 on X.

Example. The indiscrete topology on a set X is a topology 7 = {@, X}. If |X| > 2, then this is not
metrisable. Let d be a metric on X. Then let x # y € X, letr = d(x,y), and finally let U = D,(x).
We know that U is d-open. Butsincex € U,y € U, U & 7.
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Definition. If 7, 7, are topologies on X, we say that 7; is coarser than 7,, or that 7, is finer
than 7y, if 7; C 7,. For example, the indiscrete topology on X is the coarsest topology on X.

Example. The discrete topology on a set X is 7 = P(X). This is the finest topology on X. This is
metrisable by the discrete metric.

Definition. A topological space X is Hausdorff if Vx # y in X, there exist open sets U, V in
Xsuchthatx € U,y € V,U NV = @. Informally, x, y are ‘separated by open sets’.

Proposition. Metric spaces are Hausdorff.

Proof. Let x # y be points in a metric space (M,d). Let r > 0 such that 2r < d(x,y). Then let
U = D,(x), let V = D,(y). Certainly U,V are open since they are open balls, and they have no
intersection by the triangle inequality, so the metric space is Hausdorff as required. O

Example. The cofinite topology on a set X is

t={@g}u{U € X : U is cofinite in X}
where U is cofinite in X if X \ U is finite. When X is finite, this topology 7 is simply P(X). When X
is infinite, 7 is not metrisable. Let x # y in X, and let x € U,y € V where U, V are open in X. Then

U and V are cofinite, and hence U N V # @. So this topology on an infinite set is not Hausdorff and
hence not metrisable.

7.2 Closed subsets

Definition. A subset A of a topological space (X, 7) is said to be closed in X if X \ A is open
in X.

Remark. In a metric space, this agrees with the earlier definition of a closed subset, as proven before.

Proposition. The collection of closed sets in a topological space X satisfy
(i) @,X are closed;
(ii) If A; are closed in X for i in some non-empty index set I, then ﬂi < Ai is closed;
(iii) IfA;, A, are closed in X then A; U A, is closed.

Example. In a discrete topological space, every set is closed.

Example. In the cofinite topology, a subset is closed if and only if it is finite or the full set.
7.3 Neighbourhoods
Definition. Let X be a topological space, and let U C X and x € X. We say that U is a

neighbourhood of x in X if there exists an open set V in X such that X € V. c U.
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Remark. In a metric space, we defined this in terms of open balls not open sets. However, we have
already proven that the definitions agree.

Proposition. Let U be a subset of a topological space X. Then U is open if and only if U is a
neighbourhood of x for every x € U.

Proof. If U is open, and x € U, then by letting V' = U, V isopen and x € V C U. Conversely, if
x € U, there exists V4 in X such that x € ¥, c U. Then, U = | I U veu Y is open, since each
V. is open. O

7.4 Convergence

Definition. Let (x,) be a sequence in a topological space X. Let x € X. We say that (x,,)
converges to x if for all neighbourhoods U of x in X, there exists N € N such that Vn >
N,x, € U. Equivalently, for all open sets U which contain x, there exists N € N such that
Vn>N,x, € U.

Remark. Again, the definition in a metric space agrees with this definition.

Example. Eventually constant sequences converge. If 3z € X,AN € N,Vn > N,x, = z, then
Xy = Z.

Example. In an indiscrete topological space, every sequence converges to every point.

Example. In the cofinite topology on a set X, let x,, — X. Suppose that x,, —» x in X. Then if y # x,
X\ {y}is a neighbourhood of x. Then N, = {n € N : x,, = y}is finite.

Conversely, suppose (x,,) is a sequence such that for some x € X and for all y # x, N, is finite. Then
X, = X.

In particular, if N, is finite for all y € X, the sequence converges to every point.

Proposition. If x,, —» x and x,, — y in a Hausdorff space, then x = y.

Proof. Suppose x # y, then we can choose open sets U, V such that x € U,y € V,UNV = @. Since
X, — X, there exists N; € N such that Vn > Nj,x, € U. Similarly there exists an analogous N,.
Hence Vn > max(Ny, N,), x,, € U, x,, € V which is a contradiction since UNnV = @. O

Remark. If x,, — x in a Hausdorff space, we write x = lim,,_, ., x,, since the limit is unique.

Remark. In a metric space, for a subset A, we say that A is closed if and only if x,, - x in A implies
x € A. In a general topological space, any closed set is closed under limits, but not every subset that
is closed under limits is closed.
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7.5 Interiors and closures

Definition. Let X be a topological space, and A C X. We define the interior of A in X,
denoted A° or int(A), by

A = U{UCX: Uisopenin X,U C A}
Similarly we define the closure of A in X, denoted A or cl(A), by

A= ﬂ{FcX: Fisclosedin X,F D A}

Remark. Note that A° is open in X, and A° C A. In particular, if U is open in X and U C A, then
U C A°. Hence, A° is the largest open subset of A.

Similarly, Ais closed in X , and A D A. The intersection is not empty since X is closed and X D A, so
it is well-defined. We have that A is the smallest closed superset of A.

Proposition. Let X be a topological space and let A C X. Then the interior is exactly those
x € X for which A is a neighbourhood of x. Similarly, the closure is those x € X such that
for all neighbourhoods U of x, UNA # @.

Proof. If Aisaneighbourhood of X, then by definition there exists an open set U such thatx € U C A,
which is true if and only if x € A°.

For the other part, suppose x & A. Then there exists a closed set F D A such that x ¢ F. Let
U =X\F. Then Uisopenand x € U. So U is a neighbourhood of x,and Un A = @.

Conversely, suppose there exists a neighbourhood U of x such that U N A = @. Then there exists an
openset Vsuchthatx € V c U. SinceV C U,VNA = @. Let F = X\ V. Then F is closed, and

ACF.HenceZCF.SoxgEZ. O

Example. In R, let A = [0,1) U {2}. Then A° = (0,1), and A = [0,1] U {2}. Further, @° = @ and
Q =R. Finally,z° = @and Z = Z.

Remark. In a metric space, for a subset A we have that x € A if and only if there exists a sequence
(x,) in A such that x,, — x. In a general topological space, the existence of a sequence implies x € A
but the converse is not true.

7.6 Dense subsets

Definition. A subsetA ofa topological space X is said to be dense in X ifA =X. Xis separable
if there exists a countable subset A C X such that A is dense in X.

Example. R is separable as Q is dense in R. R" is separable in the same way as Q" is dense in R".

Example. An uncountable discrete topological space is not separable, since the closure of any set is
itself.
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7.7 Subspaces

Definition. Let (X, 7) be a topological space. Let Y C X. Then the subspace topology, or
relative topology on Y induced by 7 is the topology

{(Vny: Ver

on Y. This is the intersection of Y with all open sets in X. We can denote this 7|,. So, for
U CY, UisopeninY if and only if there exists an open set Vin X with U =V nY.

Example. Let X = R,Y = [0,2], and U = (1, 2]. Then certainly U C Y C X. U is open in Y, since
V =(1,3)isopenin X and U = V nY. However, U is not open in X, since no neighbourhood (or
ball) around 2 can be constructed in X that is contained within U.

Remark. On a subset of a topological space, this is considered the standard topology. Suppose that
(X, ) is a topological space, and Z C Y C X. There are two natural topologies on Z: 7|, and 7|y
One can easily check that these two topologies are equal.

|-

Let (M, d) be a metric space, and N C M. Again, there are two natural topologies on N: 7(d)|, and
1'( d| N), where 7(e) is the metric topology induced by the metric e. These two constructions coincide;
indeed, for any x € N,r > 0,

{[yeN:dy,x)<r}={yeM: dy,x)<r}nN

Proposition. Let X be a topological space, and let A C Y C X. A is closed in Y if and only if
there exists a closed subset B C X such that A = BN Y. Further,

Cly(A) = Clx(A) ny

This is not true for the interior of a subset in general. For instance, consider X = R,A =Y =
{0}. In this case, inty(A) = A, intx(A) = &.

Proof. The first part is true by taking complements: Y \ A is open in Y. By definition, Y\ A=V NnY
for some open VinX. SoB=X\VisclosedinXand A =BnY.IfA =BnY,Bisclosed in X, then
X\ BisopeninX,and henceY\A=(X\B)NnYisopeninY.

For the second part, we know clx(A) is closed in X, so by the first part, cly(A)NY is closed in Y. Then
A C clx(A)NY. So by definition, cly(A) C clx(A) NY. Similarly, since cly(A) is closed in Y, we can
write cly(A) = BNY for some closed set Bin X. But A C B, and B is closed in X, so clx(A) C B and
hence cly(A) =BNY Dclx(A)NnY. O

Remark. fU Cc Y C X, and Y is open in X, then U is open in Y if and only if U is open in X.
7.8 Continuity

Definition. A function f: X — Y between topological spaces is said to be continuous if for
all open sets V in Y, the preimage f~1(V) is open in X.
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Remark. We have already proven that this agrees with the definition of continuity of functions between
metric spaces.

Example. Constant functions are always continuous. Consider f : X — Y defined by f(x) = y, for
afixedy, € Y. ForanyV C Y, f~Y(V) = @ify, € V,and f~1(V) = X ify, € V. So f is continuous.

Example. The identity map is always continuous. If f : X — X is definedby x —~ x, f~1(V) =V
so if V is open, f~1(V) is trivially open.

Example. LetY C X. Leti: Y — X be the inclusion map. Then for an open set V in X, i~}(V) =
V' NnY which by definition is open in Y. Hence, if g : X — Z is continuous, then g|;, = goi: X - Y
is continuous, as we will see below.

Proposition. Let f : X — Y be a function between topological spaces. Then,
(i) f is continuous if and only if for all closed sets Bin Y, f~!(B) is closed in X;
(ii) if f is continuous and g: Y — Z is continuous, then g o f is continuous.

Proof. To prove (i), note that for any subset D C Y, f~1(Y \ D) = X \ f~1(D). We can now use the
fact that A C X is open in X if and only if X \ A is closed in X, and vice versa for Y.

To prove (ii), note that if W is an open subset of Z, then g~!(W) is open in Y since g is continuous.

Hence f~1g=}(W) is open in X since f is continuous. But then f~lg=! = (go f)7}, s0 go [ is
continuous. O

Remark. There exists a notion of ‘continuity at a point’ for topological spaces, but it is not as useful
in this course as the global continuity definition.

7.9 Homeomorphisms and topological invariance

Definition. A function f: X — Y between topological spaces is a homeomorphism if f
is a bijection, and both f, f~! are continuous. If such an f exists, we say that X and Y are
homeomorphic. This is exactly the definition from metric spaces.

Definition. A property P of topological spaces is said to be a topological property or topo-
logical invariant if, for all pairs X, Y of homeomorphic spaces, X satisfies 2 if and only if Y
satisfies .

Example. Metrisability is a topological invariant. Being Hausdorff is a topological invariant. Being
completely metrisable (metrisable into a complete metric space) is not a topological invariant. For
example, consider metrics d,d’ on R such that d ~ d’ but d is complete and d’ is not.

Remark. If f : X — Y is a homeomorphism, for an open set U in X, f(U) = (f~1)~!(U) is open in
Y since f~!: Y — X is continuous.

Definition. A function f: X — Y between topological spaces is an open map if for all open
sets U in X, f(U) is open in Y.

Remark. f: X — Y is a homeomorphism if and only if f is a continuous and open bijection.
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7.10 Products

Let X, Y be topological spaces. We want to define the topology on X x Y. If U is open in X and V is
open in Y, then we would like U X V to be open in X X Y. Certainly @ = @ X @ and X X Y should
be open. Further (UX V)N (U’ x V') = (UnU") x (V NV'), so intersections work. Uie[ U; xV;
must be open for open sets U;, V;, but this is not obvious from what we have shown so far, so we
must include this in our definition.

Definition. The product topology on X X Y is the topology such that a subset U of X X Y is
open if there exists a set I and open sets U;, V; in X, Y for all i € I such that

u=|Juixv,

iel

Remark. For W C X x Y, we know that W is open if and only if for all z € W, there exist open sets
UcCX,V cY,suchthatz € U x V C W. So, thinking of the product as a product of real lines, we
might say that W is open if for every point z € W, we can construct a ‘box set’ (the Cartesian product
of open intervals) contained in W that has z as an element. More formally, W is a neighbourhood of
z if and only if there exist neighbourhoods U of x in X and Vof yin Y such that U x V .C W.

7.11 Continuity in product topology
Example. Let (M, d),(M’,d") be metric spaces. Then, the metric d,, on M X M’ is

doo((x, '), (v, ¥")) = max(d(x, y), d'(x",y"))

This metric is chosen since all dp metrics induce the same metric topology, but this is easier to work
with. Also, M, M’ are topological spaces with their metric topologies, which induce the product
topology on the product space M X M'. These two constructions create the same topology. For a
point z = (x,x') € M X M' and r > 0, the open ball D,(z) is exactly

Dp(2) ={,y) EM XM : doo((y,¥"), (x, X)) <1}
={(y,y)EMxM : d(x,y) <r,dx',y") <r}
= Dy(x) X Dp(X)

Now, let W € M x M'. Then W is open in the product topology if and only if for all z = (x, x") € W,
there exist open sets U in M and U’ in M’ such that (x,x") € U x U’ ¢ W. Equivalently, for all
z = (x,x") € W, there exists r > 0 such that D,(x) X D,(x") C W. But D,(x) X D,.(x") = D,(2), so
W is d,-open, as required. For instance, the product topology on R X R is the Euclidean topology
on R2.

Proposition. Let X, Y be topological spaces. Let X X Y be given the product topology. Then,
the coordinate projections qy : X XY — X and qy : X XY — Y satisfy
(i) gqx,qy are continuous;
(ii) if Z is any topological space, and g: Z — X X Y is a function, then g is continuous if
and only if gx © g, gy o g are continuous.

Proof. If U is open in X, then gx'(U) = U x Y, which is the product of an open set in X and an open
setin Y, so is open in X X Y. Hence qx is continuous. Similarly, gy is continuous.
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If g is continuous then certainly gy o g, gy o g are continuous since the composition of continuous
functions are continuous. Conversely, leth: Z — X and k: Z — Y be continuous functions with
h = qx o gand k = qy o g. Then g(x) = (h(x), k(x)) for x € Z. Now, for open sets U in X and V in
Y, we have

z€g W UXV) < g2)eUXV < h(z)€EU,k(z) €V < ze€ h W (U)nk™I(V)

So g~ (Ux V) = h~{(U)nk~(V) which is open in Z as h, k are continuous. Given an arbitrary open
set Win X XY, we can write W = Uie] U; XV ;,where U; are open in X and V; are open in Y. Thus,
g '(W) = U, &' (U; x V;) which is open. O

Remark. The product topology may be extended to a finite product X; X --- X X,,, consisting of all
unions of sets of the form U; X --- X U,, where U ; is open in X;. Properties of the product topology hold
in this more general case. For example, if X; is metrisable with metric e; for all j, then the product
topology is metrisable with, for instance, the d, metric.

7.12 Quotients

Let X be a set and R an equivalence relation on X. So R C X X X, but we will write x ~ y to mean
(x,y) € R. For x € X, we define q(x) = {y € X : y ~ x} to be the equivalence class of x, the set of
which partition X. Let X/R denote the set of all equivalence classes. The map q : X — X/R is called
the quotient map.

Definition. Let X be a topological space, and R an equivalence relation on X. The quotient
topology on X/R is given by

t={V cX/R: q'(V)open in X}

This is a topology:
(i) g~(@) = @ which is open, and q~(X/R) = X which is open.
(ii) If V; are open, then q‘l(UiGI Vi) = U, @'(V;) which is a union of open sets which
is open.
(iii) If U, V are open, then q=3(U N V) = g~(U) n ¢~*(V) which is open.

Remark. The quotient map q : X — X/R is continuous. In particular, it is the largest possible topo-
logy on X such that q is continuous.

Let x € X,t € X/R. Then x € t ifand only if t = q(x). For V C X/R,
') ={xeX: qlx) eV}
={xeX: IteV,t=qx)}
={xeX:JteV,xet}

=Ut

tev

Example. Consider R, an abelian group under addition, and the subgroup Z. We can form the
quotient group R/Z, which is the set of equivalence classes where x ~y < x —y € Z. For all
X € R, there exists y € [0,1] such that x ~ y, and for all x,y € [0,1] we have x ~ y if and only if
x = yor{x,y} ={0,1}. So we can think of the quotient topology of R/Z as a circle. We can say that
R/Z is homeomorphic to S* = {(x,y) € R?: ||(x, y)|| = 1}, which we will prove later.
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Example. Consider the subgroup Q of R. Let V' C R/Q, such that V' # @ and V is open. Then
q (V) is open and not empty. Therefore, there exist a < b € R such that (a,b) C q~!(V). Given
x € R, we can choose a rational r in the interval (a — x,b — x). Thenr + x € (a,b) c g Y(V),
so q(x) = q(r + x) € V. So V = R/Q. This is the indiscrete topology, which is not metrisable or
Hausdorff. So we cannot (in general) take quotients of metric spaces.

Example. Let Q = [0,1] x [0,1] C R2. We define the equivalence relation R given by

(x1,%2) = (1, ¥2) or
X1 =y, {x2,¥2} ={0,1} or
Xy =y {x1, 31} =1{0,1} or
X1, X2,Y1,¥2 € {0,1}

(X1, X3) ~ (V1,¥2) <=

The space Q/R is homeomorphic to R?/Z2. This is a square where the top and bottom edges are identi-
fied as the same, and the left and right edges are also identified as the same. This is homeomorphic to
the surface of a torus with the Euclidean topology embedded in Euclidean three-dimensional space.

Proposition. Let X be a set, and let R be an equivalence relation on X. Letq: X — X/R be
the quotient map. Let Y be a set, and f : X — Y be a function. Suppose that f ‘respects’ R;
thatis, x ~y = f(x) = f(y). Then there exists a unique map f : X/R — Y such that
f = f oq. For z € X/R, we write z = q(x) for some x € X, and then define f(z) = f(x).

Remark. Note thatIm f = Im f since q is surjective. f isinjective ifforall x,y € X, f(q(x)) = f(q(y))
implies q(x) = q(y). In other words, for all x,y € X, f(x) = f(y) = x ~ y. We say that f fully
respects R if, for all x,y € X,

x~y <= fl)=f»)

In this case, f is injective.
7.13 Continuity of functions in quotient spaces

Proposition. Let X be a topological space and let R be an equivalence relation on X. Let
q: X — X/R be a quotient map, where X/R has the quotient topology. Let Y be another
topological space and f: X — Y be a function that respects R. Let f: X/R — Y be the
unique map such that f = f o q. Then

@) if f is continuous then f is continuous; and

(ii) if f is an open map (the image of an open set is open) then f is an open map.
In particular, if f is a continuous surjective map that fully respects R, then f is a continuous
bijection. If in addition f is an open map, then f is a continuous bijective open map, so is a
homeomorphism.

Proof. We prove part (i). Let V be an open setin Y.
' (f7'M) = (Fe@) ™' (V) = f71(V) is open
So by definition, f~1(V) is open in X/R. Hence f is continuous. Now, we prove part (ii). Let V be an

open set in X/R. Let U = g~ (V). Then U is open in X by definition of the quotient topology. Since
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q is surjective, q(U) = q(q~'(V)) = V. Hence,

fv) = fa) = (F o q)(U) = f(U) is open
since f is an open map. O
Example. R/Z is homeomorphic to a circle S* = {x € R?: ||x| = 1}. We define
f(t) = (cos 27t sin 27t)

Then, s — t € Z if and only if f(s) = f(¢) so f fully respects the relation, and f is surjective. f is
also continuous since each component is continuous. Hence, there exists f : R/Z — S! such that
f = f q and f is a continuous bijection. Now we must show f is an open map, and then f will
be a homeomorphism. Suppose f is not an open map, so there exists an open set U in R such that
f(U)is not open in S. So St \ f(U) is not closed, so there exists a sequence (z,,) in this complement
and z € f(U) such that z, — z. f is surjective so for all n € N we can choose x,, € [0,1] such
that f(x,) = z,. This is a bounded sequence, so by the Bolzano-Weierstrass theorem, without loss
of generality we can let x,, - x € [0, 1]. Since f is continuous, f(x,) — f(x), so z, — z. But since
z, & f(U), we have x,, € R\ U. Since the complement is closed and x,, — x, we have x € R\ U
sox ¢ U. Since z € f(U), there exists y € U such that z = f(y). Hence k = y — x € Z. Now,
f(x,+k) = f(x,) =z, - z,butalsox,, +k > x+k =y € U. Since z, ¢ f(U), wehave x,+k & U.
Since R \ U is closed and x,, + k — y, we have y € R \ U which is a contradiction.

Proposition. Let X be a topological space, and R an equivalence relation on X. Then,
(a) If X/R is Hausdorff, then R is closed in X X X.
(b) IfRisclosed in X X X and the quotient map q : X — X/R is an open map, then X/R is
Hausdorff.

Proof. Let W = X x X \ R. For part (a), we want to show W is open, so is a neighbourhood of all of
its points. Given (x,y) € W, we have x »~ y, so q(x) # q(y). Since the quotient is Hausdorff, there
exist open sets S, T in X/R such that SN T = @ and q(x) € S,q(y) € T. Let U = ¢~1(S),V = q"X(T)
which are open in X, and x € U,y € V. For all (a,b) € U X V, we have g(a) € S,q(b) € T hence
a~b.So(x,y) € UxXxV C W. Hence R is closed.

For part (b), let z # w be elements of X/R, and we want to separate these points by open sets. Let
X,y € X such that q(x) = z,q(y) = w. Then (x,y) € W since x ~ w. Since R is closed, W is open, so
there exist open sets U, V in X such that (x,y) € U X V C W. Since q is an open map, q(U) and q(V)
are open in X/R, and z = q(x) € q(U),w = q(y) € q(V). Now it suffices to show q(U) n q(V) =

For (a,b) e U XV C W, (a,b) & Rhence q(a) # q(b) soqU)nq(V) = @. O

8 Connectedness

8.1 Definition

Recall the intermediate value theorem from IA Analysis. If f: I — R is continuous, where I is
an interval, and x < yin I and ¢ € (f(x), f(y)), then there exists z € (x,y) such that f(z) = c.
An interval in this context is a set I such thatforallx < y < z e R, x,z e I = y € L
So the intermediate value theorem essentially states that the continuous image of an interval is an
interval.
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Example. Consider [0,1) U (1,2]. Let f be a function from this space to R, defined by

0 xel0,1)

f(x)={1 xe@,2]

This is continuous, but the image of f is not an interval.

Definition. A topological space X is disconnected if there exist open subsets U, V of X such
that UNnV = @, UUV = X and U,V # @. We say that U and V disconnect X. We say X is
connected if X is not disconnected.

Theorem. Let X be a topological space. Then the following are equivalent.
(i) X is connected;
(i) if f : X - R is continuous, then f(X) is an interval;
(iii) if f : X — Zis continuous, f is constant.

Proof. First we show (i) implies (ii). Suppose X is connected, and f: X — R is continuous, but
f(X) is not an interval. Then there exista < b < ¢ € Rsuch thata,c € f(X)and b ¢ f(X). Let
X,y € X such that f(x) = a, f(y) = c. Let U = f~!(—o00,b),V = f~1(b, o). U, V are open since f is
continuous. U, V are non-empty since x € U,y € V. Their intersection is empty since we are taking
the preimage of disjoint sets. Finally, U UV = f~}(R \ b) = X since b is not in the image. So U,V
disconnect X, which is a contradiction.

Now (ii) implies (iii). This is immediate since an interval containing an integer must only contain
one integer.

Finally, (iii) implies (i). Suppose U, V disconnect X. Let f : X — Z by

0 xeU
1 xeV

f(X)={

Forany Y C R,

0,1¢€Y
0EY,1¢Y
0€Y,1€Y
0,1eyY

[l =

SEEESES

which is open. But f is not constant, so this is a contradiction. O

Corollary. Let X C R. Then X is connected if and only if X is an interval.

Proof. Suppose X is connected. Then the inclusion map i : X — R is continuous. By the theorem
above, i(X) = X is an interval. Conversely, suppose X is an interval. Then, for all continuous f : X —
R, f(X) is an interval by the intermediate value theorem. Then X is connected. O

Proof. This is an alternative, direct proof that intervals are connected. Suppose U, V disconnect X.
Thenletx € U,y € Vsuch thatx < y. Let z = sup UN[x,y]. This set is non-empty since it contains
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x and is bounded above by y. So z = [x,y] C X. We will show z € U n V, which is a contradiction.
For alln € N, we have z — L < nso there exists X, € U N [x,y] which satisfies z — 1< X, < z.
Hence x,, — z. Also, U = Xn\ Vis closed, so z € U. In particular, z < y. Now, chooser}\l € N such
that z + % < y.Thenforalln > Nwehavez < z + % <y. Hencez+i € V. However, z + % - z,
and V is closed, so z € V, which is a contradiction. O

8.2 Consequences of definition

Example. Any indiscrete topological space is connected. Any cofinite topological space on an infin-
ite set is connected. The discrete topological space on a set of size at least two is disconnected.

Lemma. Let Y be a subspace of a topological space X. Then, Y is disconnected if and only
if there exist open subsets U,V of X suchthat UnVNY =@andUUV D Y,andUNY #
a,VnY £ @.

Proof. Suppose Y is disconnected. Then there exist open subsets U’, V' of Y that disconnect Y. Then
there exist open sets U,V in X such that U = UnNnY and V' = V NnY. Then U,V satisfy the
requirements from the lemma.

Conversely, suppose U, V are as given. Then,let U' = UNY,V’' =V NY. Theyare open in Y by the
definition of the subspace topology, and they disconnect Y. O

Remark. In the above lemma, we say subsets U, V of X disconnect Y.

Proposition. Let Y be a subspace of a topological space X. If Y is connected, then so is Y.

Proof. Suppose Y is disconnected. Then there exist open sets U, V in X which disconnect Y. Then
UnvVnYcUnvVnyY = @ by definition. Hence UNnV NY = @. Also, UUV D YO Y. So
U,V disconnect Y unlessUNY = @or VNY = @. ButY is connected, so without loss of generality
letVNY =@. ThenY Cc X\ Vand X \ V is closed, s0Y C X \ V. Hence VNY = @. Thisisa
contradiction since U, V disconnect Y. O

Remark. More generally, if Y ¢ Z C 1_/, and Y is connected, then Z is connected. This is since

Theorem. Let f: X — Y be a continuous function between topological spaces. If X is
connected, then so is f(X).

Proof. Let U,V be open subsets of Y which disconnect f(X). For x € X, f(x) € f(X) cUUV.
Hence, f~1(U)U f~1(V) = X. Also, if x € f~{(U)n f~1(V) then f(x) e UnV N f(X) = @. Thisisa
contradiction, so f~}(U) n f~1(V) = @. Since f is continuous, f~1(U), f~}(V') are open in X. Since
UnfX)#@and VN f(X)# @, f~I(U) # @and f~1(V) # @ So f~1(U), f~1(V) disconnect X. [

Remark. This shows that connectedness is a topological property. If X, Y are homeomorphic spaces,
then X is connected if and only if Y is connected. Further, note that if f : X — Y is continuous and
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A C X and A is connected, then f(A) is connected. This can be shown by restricting f to the domain
A.

Corollary. Any quotient of a connected topological space is connected.

Example. Let
1
Y = {(x,sin;) x> 0} c R2

This space is connected; the function f : (0, 0) — R? defined by f(x) = (x, sin i) is continuous. So

we have that Y = Im f is connected. Hence, Y is connected. We claim that
Z=YUu{0y):ye[-L1}=Y

Indeed, given y € [—1, 1], for all n € N we have that (0, l) is mapped to (n, ) by x — l, so by the
n X

intermediate value theorem there exists x,, € (0, l) such that sin — = y. Hence,

n X,

n

<xn,sin i) =(xpy) = (0,y) €Y
xn

SoY € Z C Y. If we can show Z is closed, Z = Y since Y is the smallest closed superset of Y. Suppose

(Xp>yn) € Z forall n € N, and (x,,y,) — (x,y) in R2. Since y,, € [-1,1] and y, — y, we have

y € [-1,1]. If x = 0, we have (x,y) € Z. If x # 0, then x,, — x implies x,, # 0 for all sufficiently

large n. Hence y,, = sin xi for all sufficiently large n. Thus

n

(X ¥n) — <x, sin %) eZ

Lemma. Let X be a topological space and A be a family of connected subsets of X. Suppose
that AN B # @ forall A,B € A. Then | J,_ , A is connected.

Proof. LetY = |J,_,A, and let f: Y — Z be a continuous function. We must show that f is
constant. Forall A € A, f| 4 ¢ A = Zis continuous and hence constant, since A is connected. For
allA,B € A,ANB # @ hence f|, and f|, are both constant and have the same value. So f must
be constant, and hence Y is connected. O

Theorem. Let X, Y be connected topological spaces. Then X XY is connected (in the product
topology).

Proof. Withoutloss of generality,letX # @,Y # @. Letx, € X. Consider the function f : ¥ - XXY
defined by f(y) = (xq,y). The components of f are the functions y — xy which is continuous as
it is constant, and y — y which is continuous as it is the identity. So f is continuous. Then, the
image of f, which is {xy} X Y, is connected. Similarly, for ally € Y, X X {y} is connected. Fory € Y,
{xo} X Y N X x {y} = {(x0, )} # @. Hence, A, = {xo} X Y UX X {y}is connected. Forall y,z € Y,
Ay, NA,; D{xo} XY hence A,NA, # @. Hence, UerAy = X X Y is connected. O

Example. R" is connected for alln € N.
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8.3 Partitioning into connected components

Definition. Let X be a topological space. We define a relation ~ on X by x ~ y if and only
if there exists a connected subset A of X such that x,y € A. For all x € X, x ~ x since {x}
is connected. Symmetry is clear from the definition. If x ~ y and y ~ z then by definition
there exist connected subsets A, B in X such that x,y € A and y,z € B. In particular, A n B
is not empty since y € A N B. Hence A U B is connected. Since A U B contains X, z, we have
X ~ z as required for transitivity. Hence ~ is an equivalence relation. For x € X, we write Cy
for the equivalence class containing x, called the connected component of x. The equivalence
classes are called connected components of X.

Proposition. The connected components of a topological space X are non-empty, maximal
connected subsets of X, they are closed, and they partition X.

Proof. Let C be a connected component of X. So C = C, for some x € X. Then x € C hence C # @.
Suppose C C A C X and A is connected. Then for all y € A, since x,y € A we must have x ~ y.
Soy € C. Hence A C C, giving A = C. Forall y € C, we have y ~ x, so there exists a connected
subset A, C X such that x,y € A,. LetA = Uy ccAy- A s connected since the union of pairwise
intersecting connected sets are connected. Further A D C so A = C and C is connected. Since the
closure of a connected set is connected, C is connected. But C D C,soC = C is closed. O

8.4 Path-connectedness

Definition. Let X be a topological space. For points x,y € X, a path from x to y in X is
a continuous function y: [0,1] — X such that y(0) = x,y(1) = y. We say that X is path-
connected if for all x,y € X, there exists a path from x to y in X.

Example. In R", D,(x) is path-connected by a straight line segment between any two points in the
ball. In particular, let y(¢t) = (1 — t)y + tz. This is continuous and lies entirely inside D,(x), since

Iy(®) = x| = (1 = Ot + tz = x]|
= (1 = Dy + t2) = (1 = Ox + )|
<=0y x| +tlz —x]
<r

In a similar way, any convex subset of R" is path-connected.

Theorem. If X is path-connected, X is connected.

Proof. Suppose X isnot connected. Let U, V disconnect X. Letx € U,y € V,and supposey : [0,1] —
X is continuous with y(0) = x and y(1) = y. Then y~!}(U) and y~!(V) disconnect [0, 1], which con-
tradicts the connectedness of [0, 1]. O
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Example. The converse is false in general. Recall that the space

X={<x,sin%): x>0}u{(0,y): —1<y<1}

is connected. We will show X is not path-connected. Suppose y: [0,1] — X is continuous, and
y(0) = (0,0) and y(1) = (1,sin1). Let y = (1, 72), SO 1, ¥, are continuous functions. Suppose t €
[0, 1] such that y;(t) > 0. Then y;((0, £)) D (0, y1(¢)) by the intermediate value theorem. In particular,

there exists n € N such that ZL € (0,y,(t)). Hence, there exists s < t such that y;(s) = zL SO
n n

hence

y1(s) = 0. Similarly, ﬁ € (0, y,(t)) so there exists a different s < ¢ such that y;(s) =
2

¥,(s) = 1. In both cases, y;(s) > 0. We can inductively find a sequence 1 > t; > t, > --- > 0 such
that y,(t,) alternates between zero and one. But then t,, — ¢ since it is a decreasing bounded-below
sequence, and y, is continuous, so y,(t,) — ¥,(t) which is a contradiction.

Tz

8.5 Gluinglemma

Lemma. Let X be a topological space. Suppose X = A U B where A, B are closed in X. Let
g: A—>Yand h: B — Y be continuous where Y is a topological space, such that for A N B,
we have g = h. Then f : X — Y defined by

_Jex) xeA
fx) = {h(x) X €B

is well defined and continuous.

Proof. First, observe that if F C A and F is closed in A, then there exists a closed set G in X such that
F = AN G. Since A is closed in X, we must have F is closed in X. The same holds for F C B. Now,
let V' be a closed set in Y. Then the inverse image of V under f is

W=t M)nA U (V)nB) = g i(V) U hi(V)

closedinA closedin B

So f~1(V) is closed in X. To prove continuity it suffices to show that the preimage of a closed set is
closed, since that implies that the preimage of an open set is open. O

Definition. Let X be a topological space. For x,y € X, we write x ~ y if there exists a path
from x to y in X. This is an equivalence relation:
(i) The constant function shows that x ~ x for all x.
(ii) Ify: [0,1] —» X is continuous and y(0) = x, y(1) = y, we define t = y(1 — ¢t), which is
a path from y to x.
(iii) Finally,ifx ~ yandy ~ z, we have continuous functions y, § such that y(0) = x,y(1) =
y = 8(0),8(1) = z. Then let

S y(2t) te
() = §(2t—1) te

These intervals are closed on [0, 1] and their union is [0, 1]. On the intersection, they
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are equal. By the gluing lemma, 7 is continuous, and now since 7(0) = x,7(1) = z we
have x ~ z.
We call the equivalence classes path-connected components of X.

Theorem. Let U be an open subset of R". Then U is connected if and only if U is path-
connected.

Proof. The converse is trivial. Suppose U is connected. Without loss of generality, suppose U # &.
Letxy € U. Let P = {x € U: x ~ x,} be the equivalence class of x,. We want to show P = U. To do
this, we will show that P is open and closed in U. Then, P, U \ P will disconnect U unless P = @ or
P = U. But we know x, € P, hence P = U will be the only possibility.

To show P is open, let x € U. Since U is open, there exists r > 0 such that D,(x) C U. Recall that
forall y € D,(x), we have y ~ x. Now, if x € P, then we have y ~ xand x ~ x5 S0y ~ X,. SO
D,(x) C P. So P is open.

Now, if x € U\ Pand y € D,(x) has y ~ x,, then by transitivity x ~ x,. But this is a contradiction
since x ¢ P. Hence U \ P is open. So P is open and closed, so P = U. O

Theorem. For n > 2, R and R" are not homeomorphic.

The generalisation R™ % R" is true, but significantly harder to prove and outside the scope of this
course.

Proof. Suppose f: R — R" is a homeomorphism. Let g = f~!. Then g is continuous. Then, f |[R{\{0}
is a homeomorphism from R \ {0} to R \ {f(0)}, with inverse g|Rn\{ FOF But R \ {0} is disconnected,
but R" \ {f(0)} is connected since it is path-connected. This is a contradiction. O

9 Compactness

9.1 Motivation and definition

Recall from IA Analysis that a continuous function on a closed bounded interval is bounded and
attains its bounds. We wish to generalise this result to more general topological spaces.

Example. (i) IfX is finite, any function X — R is finite.

(ii) If, for all continuous functions f : X — R there exists n € N and subsets A4, ... ,A,, of X such
that X = U;lzl Ajand f is bounded on A; for all j, then the property holds.

(iii) Note that continuous functions are ‘locally bounded’; if f : X — R is continuous, then for all
x € X we have U, = f~1((f(x)—1, f(x)+1)) is an open set containing X, and f is bounded on
U,. So each point has an open neighbourhood on which f is bounded. Further, X = Ux ex Uk
If there exists a finite subset F C X such that Ux <r Ux = X, then f is bounded on X. This is
exactly the definition we will use for compactness.
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Definition. Let X be a topological space. An open cover for X is a family U of open subsets
of X that cover X; that is, UU cu U = X. A subcover of U is a subset V C U that covers U.
This is called a finite subcover if V is finite. We say that X is compact if every open cover has
a finite subcover.

Remark. Compactness can be thought of as the next best thing to finiteness.

Theorem. Let X be a compact topological space and f : X — R be continuous. Then f is
bounded, and if X is not empty f attains its bounds.

Proof. Forn € N, let U, = {x € X: |f(x)| < n}. U, is open since x — |f(x)| is continuous and
(—n, n) is open. It is clear that X = Un < Un- This is an open cover of X. Hence there exists a finite
subcover F C N such that X = Un cF U, = Uy where N = max F. Hence, for all x € X, we have
|f(x)] < N so f is bounded.

Let o = infy f; this exists since f is bounded. Suppose there exists no x € X such that f(x) = a.
Then, for all x € X, f(x) > a. Then there exists n € N such that f(x) > o + % So let

Vnz{xeX: f(x)>oc+%}=f‘1<<oc+%,oo>)

We can see that V}, is open. Now, since Un on Vi = X, there exists a finite subcover F C N such that

U,er Vo = X = Vy where N is the maximal F. Then for all x € X, we have f(x) > a + % Hence

. 1 c - .
infy f >a+ N’ which is a contradiction. The same argument applies for the supremum. O

Lemma. Let Y be a subspace of a topological space X. Then Y is compact if and only if
whenever U is a family of open sets in X such that [ J,;.,, D Y, there is a finite subfamily
V c Uwith |, UDY.

Theorem. [0, 1] is compact.

Proof. Let U be a family of open sets in R that cover [0,1]. For a subset A C [0, 1], we say that U
finitely covers A if there exists a finite subcover V C U of A. Note thatif A = BUC and A,B,C C [0,1]
and U finitely covers B and C, we can take the union of the finite subcovers to find a finite subcover of

A, so U finitely covers A. Suppose that U does not finitely cover [0, 1]. Then one of the intervals [O, %]

and [%, 1] is not finitely coverable by U. Let this interval be [a;, b;]. Letc = %(al + by). Then one of
the intervals [a;, ], [¢, b;] is not finitely coverable by U. Inductively, we obtain a nested sequence of
intervals [a;,b;] D -+ D [ay, by ] D --- which are not finitely covered by U and b,, — a,, = 27". Now,
a,, — x for some x € [0,1] and b,, = a" + 27" — x. But since U covers [0, 1], there exists U € U
such that x € U. U is open in R, so for all € > 0, we have (x — ¢, x + ¢) C U. Since a,,b,, - X, we
can choose n such that a,, b, € (x — €, x + ¢). This is covered by one open set U in U, so this is a
finite subcover. This is a contradiction. O

Example. Other examples of compact spaces include the following.
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(i) Any finite set is compact.

(i) On any set X, the cofinite topology is compact. Suppose without loss of generality that X is not
empty, and let U be an open cover for X. Let U € U such that U # @. Then F = X \ U is finite.

For all x € F, let U, € U such that x € Uy. Then Ux or Ux U U is a finite subcover.

(iii) Let x,, — x in a topological space X. Let Y = {x,, : n € N} U {x}. Then Y is compact. Indeed,
let U be a family of open sets in X such that | J,,,, U D Y. In particular, let U € U such that
x € U. Since U is open and x,, — x, there exists N € N such that for all n > N we have
X, € U. So we can cover the remaining finitely many elements analogously to the previous
example, and this yields a finite subcover.

(iv) The indiscrete topology on any set is compact, since there are only two open sets.
Counterexamples include the following.

(i) An infinite set X in the discrete topology is not compact. Let
U={{x}: xeX}

This has no finite subcover.

(i) R is not compact. Consider the intervals (—n, n) for all n € N. This is an open cover with no
finite subcover.

9.2 Subspaces

Theorem. Let Y be a subspace of a topological space X. Then,
(i) Let X be compact and Y be closed in X. Then Y is compact.
(i) Let X be Hausdorff and Y be compact. Then Y is closed in X.

Proof. Let U be a family of open sets in X such that their union covers Y. Then W U (X \ Y) is an open
cover for X since Y is closed. This has a finite subcover V C U such that UUev UuX\Y) =X
Then ;o UD Y.

For part (ii), let x € X \ Y. Fory € Y, since x # y there exist open sets Uy, V}, in X such that
x € U,y € 5, U,NnY, = &. Now, {Vy Py € Y} is an open cover of Y. Hence there exists F C Y finite
such that Uy cF V, D Y. Now, U = ﬂy cF U, is open, further x € U and

UnYc(ﬂ Uy)n(U Vy)=®
yeF yEF
Hence X \ Y is a neighbourhood of all of its points, so it is open and Y is closed. O

9.3 Continuous images of compact spaces

Theorem. Let f: X — Y be a continuous function between topological spaces such that X
is compact. Then f(X) is compact.
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Proof. Let U be a family of open sets in Y such that (J;.,, U D f(X). Then ., f7'(U) = X

and f~}(U) is open in X for all U € U since f is continuous. Since X is compact, we have a finite
subcover V C U such that X = J,,, f7'(V). Hence f(X) C Uy U- O

Remark. Compactness is a topological property. If f : X — Y is continuous and A C X is compact,
then f(A) is compact.

Corollary. Any quotient of a compact space is compact.

Example. Leta < b € R. Then [a, b] ~ [0, 1] so is compact.
9.4 Topological inverse function theorem

Theorem. Let f: X — Y be a continuous bijection from a compact space X to a Hausdorff
space Y. Then f~! is continuous, so f is an open map. Hence f is a homeomorphism.

Proof. Let U be an open subset of X. Then K = X \ U is closed. Since X is compact, K is compact.
Further, f(K) is compact. Hence f(K) isclosedin Y. So f(U) =Y \ f(K)isopeninY. O

Example. R/Z is homeomorphic to S = {x € R?: |x|| = 1}. Indeed, let f: R — S' by f(¢) =
(cos(27t), sin(27t)). For all s,t, we have f(s) = f(¢) if and only if s ~ ¢ so f fully respects ~. f is
continuous and surjective. Let f: R/Z — S! be the unique map such that foq = f. So fisa
continuous bijection. S 1 is Hausdorff, and R/Z is the image of [0, 1] under a continuous map, hence
is compact. Hence f is a homeomorphism.

9.5 Tychonov’s theorem

Theorem. Let X,Y be compact topological spaces. Then X X Y is compact in the product
topology.

Proof. Let U be an open cover for X X Y. We want to show that there exists a finite subcover. Without
loss of generality, every member of U can be of the form U XV where U isopenin X and VisopeninY.
Indeed, for z € X X Y we can choose W, € U such that z € W,. By definition of the product topology,
there exist open sets U, in X and V, in Y such thatz € U, X V; C W,. So{U, X V;: z€ X X Y}isan
open cover for X X Y. If there exists a finite subset F C X X Y such that Uz er Uz XV covers X X Y,
then {W, : z € F}is a finite subcover of U.

Let x € X. Recall that {x} X Y is the continuous image of Y under the map y — (x,y). Hence,
{x} X Y is compact, since the continuous image of a compact space is compact. Since {x} X Y is
covered by [J;,c, W, U finitely covers {x} X Y. So there exists n, € N such that we can find open

sets Uy 1, ..., Uy inXand ¥, 3, ..., %, _inY suchthat Uy j XV, ; € Uand {x}xY C U;lil Up,j XV j-

Without loss of generality, let x € U, ; for all j, since any other U, ; is not needed in the cover. Now
let U, = ﬂyil Uy,j- We know x € Uy and Uy is open since it is a finite intersection of open sets. In
particular, U, X Y C U;l; Uyj XV j-
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Now, {Uy : x € X}isanopen cover for X. So there exists a finite subset F C X such thatX = [ ver Ux-
Then, X X Y = Uep Ue X Y € Uyep U3S; U j X Y j- Hence,

{Upj X% x€F,1<j<n}
is a finite subcover of U. O

Remark. More generally, if X7, ..., X, are compact spaces, then so is X; X --+ X X,,.

9.6 Heine-Borel theorem

Theorem. A subset K of R" is compact if and only if K is closed and bounded.

Proof. Suppose K is compact. R" is a metric space and hence Hausdorff. Hence, K is closed in R".
The function x +— | x|| is continuous. Therefore, it is bounded on K. So K is bounded.

Conversely, if K is bounded, there exists M > 0 such that for all x € K we have ||x|| < M. Hence,
K c [-M,M]". Note that [-M, M] is compact since it is homeomorphic to [0,1]. By Tychonov’s
theorem, [—M, M]" is compact in the product topology. Since a closed subset of a compact space is
compact, K is compact. O

Example. Closed balls B,(x) in R" are compact. The start of the proof for the Lindel6f-Picard
theorem now makes more sense.

9.7 Sequential compactness

Definition. A topological space X is sequentially compact if every sequence in X has a conver-
gent subsequence. Given a sequence (x,) and an infinite set M C N, we will write (X,;;)mem
for the subsequence (x,,, )y, where m; < m, < ... are the elements of M. Note that if
L c M C N, then (x,),¢r, is a subsequence of (x,),enm-

Example. Any closed and bounded subset of R is sequentially compact by the Bolzano-Weierstrass
theorem. Similarly, any closed and bounded subset K of R" is sequentially compact. Indeed, let
(x,,,) be a sequence in K. Then, writing x,,, = (Xp, 1, ..., X ), since K is bounded we have that
(Xpm,j) is bounded for all j. Applying the Bolzano-Weierstrass theorem to the first coordinate, we
find M; C N such that (X, 1)mem, converges in R. Now, (X, 2)mem, is bounded in R, so again
applying the Bolzano-Weierstrass theorem, we can find M, C N such that (x,; ;) mem, converges.
Note that (X,,,1)mem, converges. So inductively we can find M; D --- D M,, such that (X, j)mewm,,
converges for all j. Hence (x,,)mem, converges in R". The limit is contained in K since K is closed.

Remark. In R", any compact space is sequentially compact. The converse is also true; any sequen-
tially compact subspace must be closed and bounded. We aim to show that compactness and sequen-
tial compactness are identical in metric spaces.

9.8 Compactness and sequential compactness in metric spaces

Let (M, d) be a metric space.
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Definition. For ¢ > 0and F C M, we say that F is an e-net for M if for all x € M, there exists
y € F such that d(y, x) < e. Equivalently, M = UyeM B.(y). This is called a finite e-net if F

is finite. We say that M is totally bounded if for all € > 0, there exists a finite e-net for M.

Example. For ¢ > 0, let n such that ! < ¢ Then {l, 3, s n—_l} is an e-net for (0,1).
n n n n

Definition. For a non-empty A C M, the diameter of A is diam A = sup{d(x,y): x,y € A}.
This is finite if and only if A is a bounded set.

Example. diam B,(x) < 2r.

Lemma. Suppose M is totally bounded. Let A be a non-empty closed subset of M. Let e > 0.

Then there exists K € N and non-empty closed sets By, ..., B such that A = Ulkil By and
diam By, < ¢ for all k.

Proof. Let F be a finite g—net for M. So M = J,_ Be/2(x) and hence A = J, _.(A N Byp(x)). Let

G ={x € F: AN B,(x) # 0}. Then for x € G let B, = AN B,/;(x). So for x € G, we have B, # @,
B, C B,/;(x) and so diam B, < ¢, and B, is closed. Then A = Ux e B O

Theorem. For a metric space (M, d), the following are equivalent.
(i) M is compact;
(i) M is sequentially compact;
(iii) M is complete and totally bounded.

Proof. We firstshow (i) implies (ii). Let (x,) be asequencein M. Thenforn € N,letT,, = {x). : k > n}
be the tail of the sequence. Note that the limit of any convergent subsequence (if it exists) is in the
intersection of ﬂn en I'n- So first, we prove that this intersection is non-empty. Suppose that it is

empty. Then, UneN (M \ Tn) = M. But the M \ T, are open, and M is compact, there is a finite
subcover. So M \ Ty = M for some N, since the T, are a decreasing sequence of sets. This is

a contradiction since Ty # @. Now, let x € ﬂneN T,, and we want to show the existence of a
subsequence converging to x. First, x € Tl, s0 D,(x) N T; # @. Hence there exists k; > 1 such that
d(xy,,x) < 1. Now since x € Ty, Dy/2(x) N Ty, # @. There exists k, > k; such that d(xy,, x) < %

Inductively, we can find a strictly increasing sequence k; < k; < ... such that d(xy, , x) < L forall n,
n
SO xkn - X.

Now, we show (ii) implies (iii). To show M is complete, let (x,) be a Cauchy sequence in M. Let
ki < k; < ...such that x;, convergesin M, and let x be the limit. We show x,, — x. Indeed, fore > 0,
there exists N € N such that Vm,n > N, we have d(x,,, x,,) < . ThenVm > N, we have k,, > m > N,
so for a fixed n > N and Vm > N, we have d(x,, x) < d(xy, X, ) + d(xy,,,x) < €+ d(xy,,,X). Let
m — o0, so d(x,,x) < e Sox, — x. Toshow M is totally bounded, suppose it is not. There
exists € > 0 such that M has no finite e-net. Let x; € M, and suppose we can find x,, ..., x,,_; in M.

Then U;:ll B(xj) # M. So we can pick x, € M'\ Uj__ll B.(x;). Inductively we obtain (x,,) such that

51



d(Xy,, Xx,,) > eforall n,m € N. So (x,) has no Cauchy subsequence. There is therefore no convergent
subsequence, which is a contradiction.

Finally, we show (iii) implies (i). Let U be an open cover for M. We must show there exists a finite
subcover. Suppose that is not true, so U does not finitely cover M. We construct non-empty closed
subsets Ay D A; D ... of M such that for all n > 0, U does not finitely cover A,, and for all n > 1 we

have diam A, < % Let Ay = M. Suppose that for some n > 1 we have already found A,,_;. Since

M is totally bounded, we can write A,,_; = Ulk(:1 By where K € N and the By, are non-empty, closed,
and diam By < L. Since U does not finitely cover A,,_,, there exists k < K such that U does not
finitely cover Bk.n Let A,, be this Bi. Now, for all n, pick some x,, € A,,. For all N, Vm,n > N we
have x,,,x, € Ay hence d(x,,,x,) < diamAy < % so the sequence is Cauchy. M is complete, so
X, — x for some x € M. Let U € U such that x € U. U is open, so there exists r > 0 such that
D,(x) C U. But x,, » x hence there exists n such that d(x,, x) < g and diamA4,, < g For every

Yy €A, dy,x) <dy,x,)+d(x,,x) < diamA, + g < r. Hence every point in A,, is contained within

D,(x) C U. But this contradicts the fact that U does not finitely cover A,, but we have constructed
a cover using just one open set. 0

Remark. We can now deduce the one direction of the Heine-Borel theorem from the Bolzano-
Weierstrass theorem; closed and bounded subsets of R" are compact. Similarly, we can check that the
product of sequentially compact topological spaces is sequentially compact in the product topology.
This yields a new proof for Tychonov’s theorem for metric spaces. In general, there exist topological
spaces that are compact but not sequentially compact, and conversely there exist topological spaces
which are sequentially compact but not compact.

10 Differentiation

10.1 Linear maps

Let m,n € N. Recall that L(R™,R") is the vector space of linear maps from R™ to R". This is
isomorphic to M,, ,,, the space of n X m real matrices. There is also an isomorphism to R™". Let
e1, ... , ey, be the standard basis of R™, and similarly let e}, ..., €}, be the standard basis of R". Then
T € L(R™,R") is identified with the n X m matrix (Tj;) where 1 < j < nand 1 < i < m, such that
T = <Tel-, e}>. We can therefore view L(R™, R") as the mn-dimensional vector space R™" with the
Euclidean norm. So the norm of a linear map T is given by

m n m )
Tl = T = ITe|
= 1

i=1j=1 i=

—

where Te; is the ith column of T. Thus, L(R™, R") becomes a metric space together with the Euc-
lidean distance d(S, T) = ||S — T

Lemma. For T € L(R™,R") and x € R™,
1Tl < Tl - [Ix]

So T is a Lipschitz map and hence continuous. Further, if S € L(R", RP) then
ISTI < ISl - T
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Proof. We can write
m
X = Z Xie€;j
i=1
Hence,
m
Tx = Z x;Te;

i=1

Thus,
1/2 1/2

m m m
2
ITx| < 3 xilll Tesl| < (Z xi2> (Z I Te;l ) =T - fIx|
i=1

i=1 i=1

Further, for x, y € R™ we have
d(Tx,Ty) = |Tx = Tyl = |T(x = I < IT| - |x =yl = [Tlld(x, )

So T is Lipschitz, and any Lipschitz function is continuous. Now,

1/2 1/2 1/2

m m m
2 2 2
IST| = (Z STl ) < (Z ISIHITe;l ) = ||S||<Z [ Te;ll ) = [ISII- Il
i=1 i=1 i=1

10.2 Differentiation

Recall from IA Analysis that a function f : R — R is differentiable at a point a € R if

lim L@+~ fla)

h—-0 h

exists. The value of this limit is called the derivative of f at a, and denoted f'(a). Note that f is
differentiable at a if and only if there exists A € R and ¢: R — R such that €(0) = 0 and ¢ is
continuous at 0, and

fla+ h) = f(a) + Ah + he(h)

This is because we can define

0 h=0
&(h) =1 fa+n)—f(a) _a h+0

h

Informally, this ¢ definition states that f is approximated very well (the error he(h) shrinks rapidly
since € — 0) by a linear function in a small neighbourhood of a. Recall that if f is n times differenti-
able at a, then

)
fla+h) = fa)+ k; f l;d(“) K + o(h™)

Definition. Let m,n € N. Then f: R™ — R" and a € R™. We say that f is differentiable at
a if there exists a linear map T € L(R™,R") and a function ¢ : R™ — R" such that £(0) = 0
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and ¢ is continuous at 0, and
fla+h) = f(a) + T(h) + [|h|e(h)

Note that

h=0

0
&(h) = 3 fa+h)-f(@)-T(R) h0

]
So f is differentiable at a if and only if there exists T € L(R"™, R") such that

fla+h) = f@=T _

0
1
as h — 0. Such a T is unique. Indeed, suppose S, T satisfy the above limit. Then, by subtract-
ing,
S(h) — T(h)
= S Z _ 0
Al

Foraﬁxedxe[R’",x;éO,wehave% — 0ask — o0 SO

s(2)-76)

X

k

S(x)—=T(x) _

-0 = =0
[l

So Sx = Tx. It follows that S = T. We say that if a function f is differentiable at a point a,
T is the unique derivative of f at a. This is denoted f'(a) = Df(a) = Df]|,. If f: R™ — R"
is differentiable at a € R™ for every a, we say that f is differentiable on R™. The function
f'=D: R™ - L(R™,R™) mapping a — f'(a) is the derivative of f.

Example. Constant functions are differentiable. Let f : R™ — R”" such that f(x) = b for b € R".
Then for all a € R™, we have
fla+h)=f(a)+0h+0

so f is differentiable at a and the derivative is zero.

Example. Linear maps are differentiable. Let f: R™ — R”" be defined by f(x) = Tx for a linear
map T € L(R™,R"). Then
fla+h) = f(a)+ f(h) +0

so f is differentiable at a with derivative T = f. So f’ is a constant function.

Example. Consider
FG0) = |Ix|?

For a € R™, we can find
fla+h)=lla+h|* =lal’ +2(ah) + I = f(@) +2(a. k) + |hle(h)
Hence, f is differentiable with derivative
f'(@)(h) = 2(a. h)

Note that f' : R™ —» L(R™ — R) is linear.
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Example. Note M,, ~ R"*. The function f: M, - M, given by f(A) = A%. Forafixed A € M,,
f(A+H) =(A+H)* =A%+ AH + HA + H?
It suffices to show H? is o(||H||). We have HHZH < |H|*, hence
||
TS IH] =0

So f is differentiable at A and the derivative is given by

f'(A)NH) = AH + HA

Example. Suppose f: R™ x R" — RP is bilinear. Let (a,b) € R™ x R". Then,

f((a,b) + (h, k) = f((a+ h,b+k)) = f(a,b) + f(a, k) + f(h,b) + f(h, k)

The map R™ x R" — RP given by (h,k) — f(a,k) + f(h,b) is linear as the sum of two linear maps.
So it suffices to show f(h, k) is o(||(h, k)||)-

h= Z hie;; k= Z kje]
i=1 j=1
Hence,
m n m n 2
fd) =Y, Y hkifene)) = If(IOI< Y, D il - Jig| - | fCew )] < Clit ol
i=1j=1 i=1j=1

for some constant C, since |;| < ||(h, k)|° and similarly for |k;|. So

If Ch, B

i < IRl =0

Hence f is differentiable with

f'(a,b)(h, k) = f(a,k) + f(h,b)

10.3 Derivatives on open subsets

We may define the derivative on a subset of R”. We will use the notion of open subsets since we are
typically interested in neigbourhoods of points.

Definition. Let U be an open subset of R™. Let f: U — R" be a function, and a € U. Then
we say f is differentiable at a if there exists a linear map T € L(R™, R") such that

fla+h) = f(a) + T(h) + ||hlle(h)

where €(0) = 0 and ¢ is continuous at zero. Note that ¢ need only be defined on the set of &
such that a + h € U, or more precisely the open set U — a. Hence there exists 7 > 0 such that
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D,(0) C U,. Then
, 0 h=0
e(h) =1 fla+h)—f(@)-T(h) ht0,a+heU

Il
So f is differentiable at a if and only if there exists a linear map T € L(R™, R") such that

fla+h) - fa-T(h)

-0
[l

Remark. Thelinear map T is unique, and is called the derivative of f at a, denoted f’(a). In particular,

fla+h) = f(a)+ f'(@)(h) + o(l|n])

Remark. If m = 1, the space L(R, R") is isomorphic to R". The linear map is defined uniquely by a
vector in R” which multiplies by the scalar h. Hence, if U C Risopen and f: U — R be a function
and a € U, then f is differentiable at a if there exists a vector v € R" such that

fla+h)— f(a)— hv

-0
]

Equivalently, there exists v € R" such that

flath-f@
h

10.4 Properties of derivative

Proposition. Let U C R™ be open, f: U — R" be a function, and a € U. If f is differenti-
able at a, f is continuous at a.

Proof. We have
fla+h) = f(a)+ f'(@)(h) + ||hle(h)
Hence,
fx) = f(@) + f(@)(x — a) + |x — alle(x — a)

The functions x — f(a), x — f'(a)(x — a) and x — ||x — alle(x — a) are all continuous at a. Hence
their sum is continuous. O

Proposition (chain rule). Let U ¢ R™andV C R"beopen, f: U —» R"andg: V — RP be
functions, and a € U,b = f(a) € V. Suppose f is differentiable at a, and g is differentiable
at b. Then g o f is differentiable at a and

(ge f)(a)=g'(b)e f'(a)

Proof. LetS = f'(a) and T = g’'(b). Then by assumption

fla+h) = f(a)+ S(h) + ||hlle(h);  g(b + k) + g(b) + T(k) + [Ik[IS(k)
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for suitable ¢, {. Then,

(go f)a+h)=g(f(a)+ S(h) + [|h]e(h))

= g(b +S(h) + IIhIIE(h)>

k
= g(b) + T(S(h) + ||hlle(h)) + IS(h) + ||Alle(RIIS(S(h) + [|hlle(h))
= (go f)a) + (T o S)(h) + [|hI T(e(h)) + ||klI{ (k)
It suffices to show that
n(h) = [|h|T(e(h)) + (kIS (k)

satisfies ”7)7" — 0. Then the result follows. First,

IR T(e(h))

T =T((h)) -0

as [|T(e(h)| < [IT] - lle(h)ll - 0. Then,
Nkl _ [SCOI + liAll - lleCR)|

- < |IS|| + |leCh
7]l 7l ISI+ el
Hence, k = S(h) + ||h| - e(h) — 0 as h — 0. Thus ¢{(k) —» 0 as k — 0. So
) Il
——= =T(e(h)) + —C(k) = 0
pap — TEh + ek
as required. .

Proposition. Let U C R™ be open, f: U — R" be a function, and a € U. Let f; be the
Jjth component of f, so f; = 7; o f. Then f is differentiable at a if and only if each f; is
differentiable at a. If this holds,

f@m =3 fiame,
j=1

Equivalently,
7;[f' (@] = fj(a)(h)

Proof. 1f f is differentiable at a, by the chain rule the composite 7; o f is differentiable at a. Since
the derivative of a linear map is itself, the derivative is given by

fil@) = mi(f(@) e f'(a) = 7j o f'(a)

Hence
n

f@h) =Y, m| f@me;] = 3 f@(h)e)
j=1

j=1
Conversely suppose each f is differentiable. Then

fita+h) = f;(@+ fj(@)(h) + ||hlle;(h)
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for suitable &(j). Now,

fla+h) =3 fila+h)e,

[£5(@) + £ @) + Ihlle; () ]e]

j=1
)
j=1
D fi@e; + Y fi@(h)e + [kl Y (e
j=1 j=1 j=1

Since each £ tends to zero as h — 0, so does their sum. O

Remark. This proposition shows that we can prove things for an image R" = R without loss of
generality.

10.5 Linearity and product rule

Proposition. Let U C R™ be open and functions f,g: U - R",¢: U — R which are dif-
ferentiable at a. Then the functions f +gand ¢ f are also differentiable and their derivatives
are

(f+8'@=f(@+g@; @f)(@h)=¢alf(@m)]+I[¢'@m]f(a)

For m = n = 1 this is the usual product rule.

Proof. We have

fla+h) = f(a)+ f'(a)(h) + ||h]e(h)
gla+h) = g(a) + g'(a)(h) + [|h[¢(h)
$la+h) = ¢(a) + ¢'(a)(h) + [|hlln(h)

for suitable g, ¢, . The sum gives

(f+8)a+h)=(f+)(a+h)+(f(a)+g (@)h) + [hl(e(h) + {(h)

It follows that f + g is differentiable at a and its derivative is the sum of the derivatives of its com-
ponents.

(¢-Nla+h)=¢la+h)f(a+h)
= (¢ NH@) + [pa)f'(@)(h) + ¢'(@)(R) f(a)] + f'(@)(h)¢'(a)(h)
+ [[R] (f"(@)(MW)n(h) + ¢'(a)(h)e(h) + n(h)f(a) + ¢(a)e(h) + [|hn(h)e(h))

8(h)
Now,
I¢' (@R - fla®l _ [¢"@®] - I @WI _ I¢'@ll - Ikl - L @l - Ikl
ltd il - Il
Clearly § — 0 since the same is true for all of its components. O

58



11 Partial derivatives

11.1 Directional and partial derivatives

Definition. Let U, f, a as before. Fix a direction u € R where u # 0. If the limit

lim £@t 1w = f(a)

t—>0 t

exists, then the value of this limit is the directional derivative of f at a in direction u, denoted

Dy f(a).

Remark. Note that D, f(a) € R". Further, f(a + tu) = f(a) + tD,f(a) + o(t). Definey: R - R™
by y(t) = a + tu. Then f oy is defined on y~1(U) which is open as y is continuous, and 0 € y~}(U).

Then,
fla+tw) = fla) _ (feoy)®) = (foy)0)
t t
Hence D, f(a) exists if and only if f o y is differentiable at zero, and its value is the derivative of f o y.

When u = e; for a standard basis vector e;, if D,, f(a) exists we call it the ith partial derivative of f at
a, denoted D; f(a).

Proposition. Let U, f, a as before. If f is differentiable at a, then all directional derivatives
D, f(a) exist. Further,

Dy f(a) = f'(a)(w)
Further,

f'(@)(h) = 2, hiDif(a)

i=1

forallh =" he;.

Proof. Since f is differentiable,

fla+h) = f(a) + f'(a)(h) + ||h]e(h)

Let h = tu. Then,
fla+tw) = f(a) +tf' (@) + [t] - |Julle(tw)
Hence,

= faw + 1

The error term converges to zero, hence the limit becomes f’(a)(u). Moreover, for all h defined as
above,

w llulle(tw)

f/(@(h) =3 hif'(a)e) = ) iDif(a)
i=1 i=1
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alternative proof. Let y(t) = a + tu. Then f o y is defined on the open set y~}(U). Note that y is
differentiable and y’(t) = u for all t. By the chain rule, f o y is differentiable at zero, and

Dyf(a) = (f ep)'(0) = f'(r(0)('(0)) = f'(a)(w)
O

Remark. 1f D, f(a) exists, then so does D, f j(a) where f; = 7;o f. Indeed, by linearity and continuity
of 7,

t t
The converse of the proposition is false in general.

fita+ )= fi(@) _ ﬂj(f(a + tu) — f(t)) — (D, f(a))

11.2 Jacobian matrix

Definition. Suppose f is differentiable at a. Then the Jacobian matrix of f at a, denoted
Jr(a), is the matrix of f’(a) with respect to the standard bases. For 1 < i < m, the ith column
is

f'(a)e;) = D;f(a)

In particular, for the j, i entry,

of.
(@), = (Pif(@.6]) = m(D1f (@) = Dify (@ = 2

11.3 Constructing total derivative from partial derivatives

Theorem. Suppose there exists an open neighbourhood V of a with V' C U such that D; f(x)
exists forall x € Vandforall1 <i < m, and the map x — D; f(x) from V to R" is continuous
at a for all i. Then f is differentiable at a.

Proof. By considering components, without loss of generality let n = 1. Let m = 2 for convenience
of notation; this does not change the proof. Let a = (p, q). Let

P(h, k) = f(p+h,q+ k) = f(p,q) — hD: f(p, q) — kD,f(p, @)
We need to show ¢(h, k) = o(||(h, k)|)), then the derivative of f can be read off from the definition of
1. Note,
Yk =[f(p+hq+k)—f(p+hq —kDf(p, @)l +[f(p+h q) — f(p,q) — hDy(p. 9]

We will show separately that each part is small enough to be an error term. The second term is o(h)
and hence o(J|(h, k)||) by the definition of D, f(p, q). For the first term, let ¢(t) = f(p+h,q+tk) for a
given fixed h, k. Then ¢ is differentiable and by the chain rule we have ¢'(t) = D, f(p + h,q + tk) - k.
By the mean value theorem, there exists a point t(h, k) € (0, 1) such that ¢(1) — $(0) = ¢'(t). Hence,
the first term becomes

¢(1) — $(0) — kD, f(p, q) = k[D,f(p + h,q + tk) — D, f(p, Q)]

As (h,k) — (0,0), we have (p + h,q + tk) — (p,q). By continuity of D, f at a, the term is o(k) and
hence o(||(h, k)|]). O
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11.4 Mean value inequality

The mean value theorem cannot be extended verbatim to higher dimensional spaces, since there can
be multiple paths between points.

Theorem. Let U C R™ be open, and f: U — R”" be differentiable at every z € U. Let
a,b € U such that the line segment connecting a, b given by

[a,b]={1—ta+th: 0<t<1}

is contained inside U. Suppose there exists M > 0 such that for all z € [a,b], we have
If'(@)| £ M. Then

I£(b) = f(@)ll < Mllb — a

Proof. Letu = b —aandv = f(b) — f(a). Without loss of generality, let u # 0. Let y(t) = a + tu, so
f oy is defined on the open set y~1(U), and is differentiable with derivative

(foy) (@) = f'yO)Y' () = f'(a+ tu)(u)
Now, 5
[£(b) = f(a)l” = (f(b) = fa),v) = {(f e ¥)(1) — (f 2 ¥)(0),v)

Let ¢(t) = ((f o y)(¢t), v). Note that ¢ is differentiable since the inner product is linear. The derivative
is

¢' () =((f o)’ (O),v) = (f'(a + tu)(u),v)

By the mean value theorem, there exists 6 € (0,1) such that ¢(1) — ¢(0) = ¢'(6). Then, by the
Cauchy-Schwarz inequality,

If(B) - F(@I* = ¢'(6)
= (f'(a+ 6u)w), v)
< |f'(a+ew@| - vl
< |f'(a+ 6wl - ull - ol
<Mlb—all - |lv]

Hence,
I£(B) = f(a)ll < M|[b - a

as required. O

11.5 Zero derivatives

Corollary. Let U be an open, connected subset of R™, and f: U — R" be differentiable at
every U. If f'(a) = 0 for all a € U, then f is constant.

Proof. If a,b € U satisty [a, b] C U, then by the mean value inequality we have
If(B) = f(@Il < [b—all sup [f'(2)] =0

z€[a,b]
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Hence f(a) = f(b). For an arbitrary x € U, there exists r > 0 such that D,(x) C U. This open ball
is convex, so for all y € D,(x) we have f(y) = f(x). Hence f is locally constant; every point has a
neighbourhood on which f is constant. Since U is connected, f is constant (refer to the derivation
from the example sheet). O

11.6 Inverse function theorem

Remark. Let V. C R™ and W C R” be open sets. Let f: V — W be a bijection. Leta € V,
and let f be differentiable at a, and the inverse f~': W — V is differentiable at f(a). Denoting

S=f"(a),T= (f—l)'(f(a)), we can use the chain rule to find

TS = (f'o f) (@) ST =(fof) (f(@)

The identity function is linear so its derivative is the identity. Hence TS is the identity on R™ and
ST is the identity on R". Hence, m = tr(TS) = tr(ST) = n. So in order for f to be a bijection, the
dimensions of the spaces must match. Hence f’(a) is an invertible matrix. This proves that R, R"
are not homeomorphic in such a way that the maps between them are differentiable. We aim now
to prove an inverse; if f is differentiable and f' is invertible, then f is locally a bijection between
neighbourhoods.

Definition. Let U C R™ be open, and f : U — R" be a function. We say that f is differenti-
able on U if f is differentiable at a for all a € U. Then, the derivative of f on U is the function
f': U — L(R™,R") mapping points to their derivatives. We say that f is a C!-function on U
if f is continuously differentiable on U; f is differentiable on U and f' : U — L(R™,R")isa
continuous function.

Theorem. Let U C R" be open. Let f: U — R" be a C!-function. Let a € U, and let
f'(a) be an invertible linear map f'(a): L(R"). Then there exist open sets V, W such that
a€V,f(a) e W,V CcUand f|, : V- Wisa bijection with inverse functiong: W — V.
Further, gisa Cl-function, and

go) =[N

Proof. We first show that without loss of generality we can let a = f(a) = 0 and f'(a) = I. To see
this, let T = f’(a) and define h(x) = T~1(f(x + a) — f(a)). Then, h is defined on U — a, which is
open. In particular, U — a is an open neighbourhood of zero. By the chain rule, h is differentiable
with h'(x) = T~! o f'(x + a). For x,y € U — a, we then have

I G = K@ = |77 e ('@t 2 = fFila+ | <[] If @+ - @+ i

It then follows that A is a C!-function, and that h(0) = 0, h’(0) = T~! o T = I. We have transformed
into a coordinate system where a = f(a) = 0 and f'(a) = I. If we can prove the result for this
coordinate system, we can translate back using f(x) = T(h(x — a)) + f(a).

Now, let f(0) = 0 and f'(0) = I. Since f’ is continuous, there exists r > 0 such that 38,(0) C U and
for all x € U, we have

IF°Ge) = £ Ol = 1" Ceo) = Il < %
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We intend to show that for all x,y € 3,(0), we have || f(x)— f)| > %||x —y|. Indeed, define

p: U - R"by p(x) = f(x) —x. Then p'(x) = f'(x) —I. Then, ||p’(x)| < % for all x € B,(0). By the
mean value inequality, ||p(x) — p(y)|| < §||x —y| for all x,y € B,(0). Hence,

£ () = fFOIl = lI(p(x) + x) = (p) + Y| = [Ix = yll = |p(x) — pW)]| = 1||x =l

So we have proven the bound as claimed. Now, let s = g We will show that f(2,(0)) C D(0). More
precisely, we will show that for allw € D,(0) there exists a unique x € D,.(0) such that f(x) = w. Let
w € Dy(0) be fixed. We now define, for all x € B,(0), the function q(x) = w — f(x) + x = w — p(x).
Note that f(x) = w if and only if g(x) = x. We will show that q is a contraction mapping, and that
there exists a fixed point. Since p(0) = f(0) — 0 = 0, we have for all x € B,(0) that

1 1 1
llqCOll < llwll + PGl = llwll + [lp(x) = pO)] < flw] + Sllx = Ol = Slix]| < s+ 57
Hence, q(3B,(0)) ¢ D,(0) C B,(0). We now show q is a contraction mapping. For x,y € B,(0), we
have

909 = a)ll = 1pC) = pOII < 5l = ¥l

Hence q : B,(0) — B,(0) really is a contraction mapping on the non-empty, complete metric space
3B,(0). By the contraction mapping theorem, there exists a unique x € 3B,(0) such that g(x) = x. But
since q(3,(0)) C D,(0), we must have x € D,(0). In particular, there exists a unique x € D,(0) such
that f(x) = w.

Now, let W = D,(0),V = D,(0)n f~1(W). Then, we will now show that fly + V- Wisabijection
with inverse g: W — V which is continuous. First, W is open and f(0) = 0 € W. Since f is
continuous, f~!(W) is open. Hence V is open, as the intersection of two open sets. We have 0 € V.
By the previous paragraph, f|,, : V' — W is a bijection since for every point in W there exists a
unique point in V mapping to it. Finally, let u,v € W. Let x = g(u),y = g(v). Then,

lg@) — gl = llx = yll < 2[f(x) = fFWIl = 2|lu = v]|

Hence g is 2-Lipschitz and hence continuous. Now it suffices to show g is C!, and for all y € W we
have g'(y) = [f ’(g(y))]_l. This part of the proof is non-examinable. O

12 Second derivatives

12.1 Definition

Definition. Let U C R™ be an open set, and f: U — R". Leta € U. Suppose that
there exists an open neighbourhood V of a contained within U, and f is differentiable on
V. We say that f is twice differentiable at a if f': V — L(R™ — R") is differentiable at a.
We write f”(a) for the derivative of f' at a, called the second derivative of f at a. Note that
f"(a) € L(R™, L(R™, R™)).

Remark. We can visualise the second derivative as a bilinear map instead of a nested sequence of
linear maps. Note,
L(R™, L(R™,R™)) ~ Bil(R™ x R™, R")
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where Bil(X X Y, Z) is the vector space of biligear maps fI‘OlIl X XY toZ. For h,k € R™, and T is
the second derivative, we can say T(h)(k) = Tgh, k) where T is a bilinear map. From now on, this
bilinear map notation will be used, and T and T will be identified as the same.

Proposition. Let U C R™ be open, f: U — R” be a function, and a € U. Let f be
differentiable on an open neighbourhood V' of A contained in U. Then f is twice differentiable
at a ifand only if there exists a bilinear map T' € Bil(R™xR™, R") such that for every k € R™,
we have

fla+ h)(k) = f'(a)(k) + T(h, k) + o(||ll)
Then T = f"(a).

Proof. Suppose f is twice differentiable at a. Then f” is differentiable at a. So,
fla+h)=f'(a)+ f"(a)h) + |[h]l - €(h)

All terms are linear maps L(R"™,R"). In particular, ¢ is defined on V — a — L(R™,R") such that
€(0) = 0 and ¢ is continuous at zero. If we evaluate this equation at a fixed k € R™,

f'a+ k) = f(@)k) + f"(a)(h, k) + ||k - e(h)(k)
Here, f”(a) is a bilinear map. Further,
leCR)UON < lle(r)]l - [IKIl — ©
Hence, | h| - e(h)(k) = o(||h])). Conversely, suppose T is a bilinear map and
f'la+ k) — f(@)(k) - T(h,k)

0
td
for any fixed k, as h — 0. We need to show that
= L@ - r@-1h
i
in the space L(R™, R™). We know that for a fixed k € R™, e(h)(k) — 0in R" as h — 0. It then follows
that
< 2
le)ll = | D] le(r)(en]” — 0
i=1
since we are in a finite-dimensional vector space. O

Example. Let f: R™ — R" be linear. Then f is differentiable on R™ with f'(a) = f for all a.
Hence f': R™ — L(R™,R") sends a to f for all a. So this is a constant function, so has derivative

f"(@)=0.
Example. Let f: R™ X R" — RP be bilinear. Then f is differentiable on R™ x R" and for all
(a,b) € R™ x R", we have

f'(a,b)(h,k) = f(a,k)+ f(h,b)
Note that this is linear in (a, b) for a fixed (h, k). Hence, f': R™ x R" —» L(R™,R",RP) is linear.
Hence this is differentiable, and its derivative is

f"(a,b) = f' € L(R™,R", L(R™ x R", RP)) ~ Bil((R™ x R") x (R™ x R"), RP)
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Example. Let f : M, —» M,, be defined by f(4) = A3. Let A be fixed. Then,

f(A+H)=(A+H)? =A%+ A’H + AHA + HA?> + AH? + HAH + H?A + H3
= f(A) + (A’H + AHA + HA?) + o(|H|))

Hence f is differentiable at A and
f/(A)(H) = A°H + AHA + HA?

Thus, if n = 1, we have commutativity and hence f'(A) = 3A4%. So f is differentiable on M,,. For a
fixed A and fixed K, the second derivative is given by

f'A+H)K)=(A+H)?*K +(A+ HK(A+ H)+K(A+ H)?
= (A2K + AKA + KA?)
F1AXK)
+ (AHK + HAK + AKH + HKA + KAH + KHA) + (H?K + HKH + KH?)

The term T(H,K) = (AHK + HAK + AKH + HKA + KAH + KHA) is bilinear in H and K as required.
So the second derivative is T. In one dimension, this is equivalent to saying f”(A) = 6A.

12.2 Second derivatives and partial derivatives

Let U be open in R”, let f: U — R", and let a € U. Let f be twice differentiable at a, so f is
differentiable on some open neighbourhood V of a contained within U, and f': V — L(R™,R") s
differentiable at a. Recall that

f'la+h) = f"(a)+ f"(a)(h) + o(||hl)
Evaluating at a fixed k,
f'la+h)(k) = f'(a)k) + f"(a)(h, k) + o(||A])
Letu,v € R™ \ {0} be directions. Let k = v. Then,
f'(a+h)(v) =Dyf(a+h)=Dyf(a)+ f"(a)(h,v) + o(||ll)

Hence, the map D, f : V — R" maps x — D, f(x) = f'(x)(v). Then this map is differentiable at a
and

Dy f) (@)(h) = f"(a)(h,v)
Hence there exist directional derivatives.

D,D,f(a) E Dy(Dyf)@) = (D, f) (@) = f"(a)u,v)

In particular, we have
D;D;f(a) = f"(a)(e;, €;)

forl1 <i,j<m.

12.3 Symmetry of mixed directional derivatives

65



Theorem. Let U be openin R"% let f: U - R", andleta € U. Let f be twice differentiable
onanopenset Vwitha e V .c U. Let f”: V — Bil(R™ x R™, R") be continuous at a. Then,
for all directions u,v € R™ \ {0}, we have

DuDuf(a) = DUDuf(a)
Equivalently,
[ (@), v) = f"(a)(v,u)

In other words, f” is a symmetric bilinear map.

Proof. Without loss of generality we can let n = 1. Indeed, we have
Duf)j(x) = [Dy f()]; = [f')W)]; = fj(x)(w) = Dy, f(x)
Hence, (D, f); = D, fj. For v:
(DyDyf)j = Dy(Dyf)j = DyDyf
So it is sufficient to show that D, D, f;(a) = D,D, f;j(a). Now, consider
#(s,t) = fla+ su+tv) — f(a+tv) — f(a+ su)+ f(a)

fors,t € R. Let s, t be fixed, and consider

() = fla+yu+tv) - fla+yuw)
Note that ¢(s, t) can be written as

$(s, 1) = P(s) — $(0)
The term 1(s) — 1(0) can be interpreted as (f(a + su + tv) — f(a + tv)) — (f(a + su) — f(a)), which is
the second difference given by the function when traversing the parallelogram with sides su, tv. By
the mean value theorem, there exists a(s, t) € (0, 1) such that

(s, t) = P(s) — P(0) = sy’ (as) = s[D,, f(a + asu + tv) — D, f(a + asu)]
Now, applying the mean value theorem to the function y — D, f(a + asu + yv), we have
#(s,t) = stD,D, f(a + asu + Stv)
for B(s, t) € (0,1). Now,

¢(; 2 DyDy f(a+ asu + ftv) = f"(a + asu + Bto)(u, v)
Since f” is continuous at a, we can let s,t — 0 and find
S, t "
P80 @)

Now, we can repeat the above using

P(y) = f(a+su+yv) — f(a+ yv)
This calculates the second difference from above, but using the other path. We can find

HD  pr@ew

st
as required. O
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