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1 Uniform convergence
1.1 Definition
Recall that 𝑥𝑛 → 𝑥 as 𝑛 → ∞ (for 𝑥 ∈ ℝ or ℂ) if

∀𝜀 > 0, ∃𝑁 ∈ ℕ, ∀𝑛 ≥ 𝑁, |𝑥𝑛 − 𝑥| < 𝜀

This is essentially considering the 𝜀-neighbourhood of 𝑥. We aim to define the same notion of con-
vergence for functions, by defining an analogous concept of an 𝜀-neighbourhood. In particular, each
value on the domain should converge in its own 𝜀-neighbourhood.

Definition. Let 𝑆 be a set, and 𝑓, 𝑓𝑛 ∶ 𝑆 → ℝ, be functions. We say that (𝑓𝑛) converges to 𝑓
uniformly on 𝑆 if

∀𝜀 > 0, ∃𝑁 ∈ ℕ, ∀𝑛 ≥ 𝑁, ∀𝑥 ∈ 𝑆, |𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜀

Note. 𝑁 depends only on 𝜀, not on any 𝑥. Each 𝑥 converges therefore at a ‘similar speed’, hence the
name ‘uniform convergence’.

Equivalently, we can write

∀𝜀 > 0, ∃𝑁 ∈ ℕ, ∀𝑛 ≥ 𝑁, sup
𝑥∈𝑆

|𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜀

The supremum condition is equivalent overall because the inequality on the right is weakened to
a possible equality, but we can always decrease 𝜀 to retain the inequality. Alternatively, we could
write

lim
𝑛→∞

sup
𝑥∈𝑆

|𝑓𝑛 − 𝑓| = 0

For each 𝑥 ∈ 𝑆, (𝑓𝑛(𝑥))∞𝑛=1 → 𝑓(𝑥). Hence, 𝑓 is unique given (𝑓𝑛), since limits are unique. We call 𝑓
the uniform limit of (𝑓𝑛) on 𝑆.

1.2 Pointwise convergence

Definition. (𝑓𝑛) converges pointwise to 𝑓 on 𝑆 if (𝑓𝑛(𝑥))∞𝑛=1 converges to 𝑓(𝑥) for every 𝑥 ∈ 𝑆.
In other words,

∀𝑥 ∈ 𝑆⏟⎵⏟⎵⏟
order rearranged

, ∀𝜀 > 0, ∃𝑁 ∈ ℕ, ∀𝑛 ≥ 𝑁, |𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜀

Now, 𝑁 depends both on 𝜀 and on 𝑥. Note that the pointwise limit of (𝑓𝑛) on 𝑆 is also unique
since limits are unique.

Remark. Uniform convergence implies pointwise convergence, and the uniform limit is the point-
wise limit.

Example. Let 𝑓𝑛(𝑥) = 𝑥2𝑒−𝑛𝑥 on [0,∞), 𝑛 ∈ ℕ. Does (𝑓𝑛) converge uniformly on the domain? First
let us check pointwise convergence. We have 𝑥2𝑒−𝑛𝑥 → 0 hence pointwise convergence to 𝑓(𝑥) = 0
is satisfied. Now, we need only check uniform convergence to the function 𝑓(𝑥) = 0.

sup
𝑥∈[0,∞)

|𝑓𝑛(𝑥) − 0| = sup
𝑥∈[0,∞)

𝑓𝑛(𝑥)
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We could differentiate 𝑓𝑛 and find the maximum if it exists, but we might not find the maximum if it
is (for example) on the endpoints. A much better method is to find an upper bound on |𝑓𝑛(𝑥) − 𝑓(𝑥)|
(which, in this example, is 𝑓𝑛(𝑥)) that does not depend on 𝑥. In this case, we can expand 𝑒𝑛𝑥 on the
denominator and isolate a single term to get

𝑥2𝑒−𝑛𝑥 = 𝑥2
𝑒𝑛𝑥 ≤ 2

𝑛2 ; ∀𝑥

Hence,
sup

𝑥∈[0,∞)
|𝑓𝑛(𝑥) − 0| → 0

and uniform convergence is satisfied.

Example. Consider 𝑓𝑛(𝑥) = 𝑥𝑛 on [0, 1], 𝑛 ∈ ℕ. A pointwise limit is reached by

𝑓(𝑥) = {1 𝑥 = 1
0 otherwise

Consider sup |𝑓𝑛(𝑥) − 𝑓(𝑥)| excluding 1 (since at 1 the supremum is zero). Note 𝑓𝑛(𝑥) → 1 as 𝑥 → 1
from below, for all 𝑛. Hence the supremum is always 1 by choosing an 𝑥 sufficiently close to 1. So
𝑓𝑛 ↛ 𝑓 uniformly on [0, 1], hence (𝑓𝑛) does not converge at all uniformly on this domain. Or,

sup𝑓𝑛(𝑥) ≥ 𝑓𝑛((
1
2)

1/𝑛
) = 1

2

Remark. If 𝑓𝑛 ↛ 𝑓 uniformly on S,
∃𝜀 > 0, ∀𝑁 ∈ ℕ, ∃𝑛 ≥ 𝑁, ∃𝑥 ∈ 𝑆, |𝑓𝑛(𝑥) − 𝑓(𝑥)| ≥ 𝜀

In the above example, we proved something stronger:

∀𝑛, ∃𝑥 ∈ 𝑆, 𝑓𝑛(𝑥) ≥
1
2

We could have alternatively stated, for example, 𝑓𝑛(𝑥) is continuous so there exists some subset of
[0, 1] greater than 1

2
always.

Theorem. Let 𝑆 ⊆ ℝ,ℂ. Let (𝑓𝑛), 𝑓∶ 𝑆 → ℝ(or ℂ), where 𝑓𝑛 is continuous and (𝑓𝑛) → 𝑓
uniformly on 𝑆. Then 𝑓 is continuous.

Informally, the uniform limit of continuous functions is continuous.

Proof. Fix somepoint𝑎 ∈ 𝑆, 𝜀 > 0. We seek 𝛿 > 0 such that∀𝑥 ∈ 𝑆, |𝑥 − 𝑎| < 𝛿 ⟹ |𝑓(𝑥) − 𝑓(𝑎)| <
𝜀. We fix an 𝑛 ∈ ℕ such that ∀𝑥 ∈ 𝑆, |𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜀. Since 𝑓𝑛 is continuous, there exists 𝛿 > 0
such that ∀𝑥 ∈ 𝑆, |𝑥 − 𝑎| < 𝛿 ⟹ |𝑓𝑛(𝑥) − 𝑓𝑛(𝑎)| < 𝜀. So, ∀𝑥 ∈ 𝑆,

|𝑥 − 𝑎| < 𝛿 ⟹ |𝑓(𝑥) − 𝑓(𝑎)| ≤ |𝑓(𝑥) − 𝑓𝑛(𝑥)| + |𝑓𝑛(𝑥) − 𝑓𝑛(𝑎)| + |𝑓𝑛(𝑎) − 𝑓(𝑎)| < 3𝜀

Remark. The above proof is often called a 3𝜀-proof. Note, the proof is not true for pointwise conver-
gence; if 𝑓𝑛 → 𝑓 pointwise and 𝑓𝑛 continuous, 𝑓 is not necessarily continuous. Further, it is not true
for differentiability; 𝑓𝑛 differentiable does not imply 𝑓 differentiable (see example sheet). Another
way to interpret the result of the above theorem is to swap limits:

lim
𝑥→𝑎

lim
𝑛→∞

𝑓𝑛(𝑥) = lim
𝑥→𝑎

𝑓(𝑥) = 𝑓(𝑎) = lim
𝑛→∞

𝑓𝑛(𝑎) = lim
𝑛→∞

lim
𝑥→𝑎

𝑓𝑛(𝑥)
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1.3 Uniform limit of bounded functions

Lemma. Let 𝑓𝑛 → 𝑓 uniformly on 𝑆. If 𝑓𝑛 is bounded for every 𝑛, then so is 𝑓.

In other words, the uniform limit of bounded functions is bounded.

Proof. Fix some 𝑛 ∈ ℕ such that ∀𝑥 ∈ 𝑆, |𝑓𝑛(𝑥) − 𝑓(𝑥)| < 1. Since 𝑓𝑛 is bounded, ∃𝑀 ∈ ℝ such that
∀𝑥 ∈ 𝑆, |𝑓𝑛(𝑥)| < 𝑀. Hence, ∀𝑥 ∈ 𝑆, |𝑓(𝑥)| ≤ |𝑓(𝑥) − 𝑓𝑛(𝑥)| + |𝑓𝑛(𝑥)| ≤ 1 +𝑀. So 𝑓 is bounded.

1.4 Integrability
Let 𝑓∶ [𝑎, 𝑏] → ℝ be a bounded function. Recall that for a dissection𝒟 of [𝑎, 𝑏], we define the upper
and lower sums of 𝑓 with respect to𝒟 by

𝑈𝒟(𝑓) =
𝑛
∑
𝑘=1

(𝑥𝑘 − 𝑥𝑘−1) sup
[𝑥𝑘−1,𝑥𝑘]

𝑓(𝑥)

𝐿𝒟(𝑓) =
𝑛
∑
𝑘=1

(𝑥𝑘 − 𝑥𝑘−1) inf
[𝑥𝑘−1,𝑥𝑘]

𝑓(𝑥)

Riemann’s integrability criterion states that 𝑓 is integrable if and only if

∀𝜀, ∃𝒟,𝑈𝒟(𝑓) − 𝐿𝒟(𝑓) < 𝜀

Equivalently, for any 𝐼 ⊂ [𝑎, 𝑏], we have

sup
𝐼
𝑓 − inf

𝐼
𝑓 = sup

𝑥,𝑦∈𝐼
(𝑓(𝑥) − 𝑓(𝑦)) = sup

𝑥,𝑦∈𝐼
|𝑓(𝑥) − 𝑓(𝑦)|

This is called the oscillation of 𝑓 on 𝐼. So an integrable function ‘doesn’t oscillate too much’.

Theorem. Let 𝑓𝑛 ∶ [𝑎, 𝑏] → ℝ be integrable for all 𝑛. If 𝑓𝑛 → 𝑓 uniformly on [𝑎, 𝑏], then 𝑓 is
integrable and

∫
𝑏

𝑎
𝑓𝑛 →∫

𝑏

𝑎
𝑓

Proof. First, we prove 𝑓 to be bounded, then we will check Riemann’s criterion. We know 𝑓 is
bounded because each 𝑓𝑛 is bounded, hence by the lemma above 𝑓 is bounded. Now fix 𝜀 > 0,
and choose 𝑛 ∈ ℕ such that ∀𝑥 ∈ [𝑎, 𝑏], |𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜀. Since 𝑓𝑛 is integrable, ∃𝒟∶ 𝑎 = 𝑥0 <
𝑥1 < ⋯ < 𝑥𝑁 = 𝑏 of [𝑎, 𝑏] such that 𝑈𝒟 − 𝐿𝒟 < 𝜀. Now, we fix 𝑘 ∈ {1,… ,𝑁} and then for any
𝑥, 𝑦 ∈ [𝑥𝑘−1, 𝑥𝑘] we have

|𝑓(𝑥) − 𝑓(𝑦)| ≤ |𝑓(𝑥) − 𝑓𝑛(𝑥)| + |𝑓𝑛(𝑥) − 𝑓𝑛(𝑦)| + |𝑓𝑛(𝑦) − 𝑓(𝑦)| < 2𝜀 + |𝑓𝑛(𝑥) − 𝑓𝑛(𝑦)|

Taking the supremum,

sup
𝑥,𝑦∈[𝑥𝑘−1,𝑥𝑘]

(𝑓(𝑥) − 𝑓(𝑦)) ≤ sup
𝑥,𝑦∈[𝑥𝑘−1,𝑥𝑘]

|𝑓𝑛(𝑥) − 𝑓𝑛(𝑦)| + 2𝜀
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Multiplying by (𝑥𝑘 − 𝑥𝑘−1) and taking the sum over all 𝑘,

𝑈(𝑓) − 𝐿(𝑓) ≤ 𝑈(𝑓𝑛) − 𝐿(𝑓𝑛) + 2𝜀(𝑏 − 𝑎) ≤ 𝜀(2(𝑏 − 𝑎) + 1)

Hence 𝑓 is integrable. We can now show that

||||
∫

𝑏

𝑎
𝑓𝑛 −∫

𝑏

𝑎
𝑓
||||
≤ ∫

𝑏

𝑎
|𝑓𝑛 − 𝑓| ≤ (𝑏 − 𝑎) sup

[𝑎,𝑏]
|𝑓𝑛 − 𝑓| → 0

Remark. We can interpret this as

∫
𝑏

𝑎
lim
𝑛→∞

𝑓𝑛(𝑥) d𝑥 = lim
𝑛→∞

∫
𝑏

𝑎
𝑓𝑛(𝑥) d𝑥

This is another ‘allowed’ way to swap limits.

Corollary. Let 𝑓𝑛 ∶ [𝑎, 𝑏] → ℝ be integrable for all 𝑛. If∑∞
𝑛=1 𝑓𝑛(𝑥) converges uniformly on

[𝑎, 𝑏], then

𝐹(𝑥) =
∞
∑
𝑛=1

𝑓𝑛(𝑥)

is integrable, and

∫
𝑏

𝑎

∞
∑
𝑛=1

𝑓𝑛(𝑥) d𝑥 =
∞
∑
𝑛=1

∫
𝑏

𝑎
𝑓𝑛(𝑥) d𝑥

Proof. Let 𝐹𝑛(𝑥) = ∑𝑛
𝑘=1 𝑓𝑘(𝑥). By assumption, 𝐹𝑛 → 𝐹 uniformly on [𝑎, 𝑏]. 𝐹𝑛 is integrable where

the integral of 𝐹𝑛 is the sum of the integrals:

∫
𝑏

𝑎
𝐹𝑛 =

𝑛
∑
𝑘=1

∫
𝑏

𝑎
𝑓𝑘

Then the result follows from the theorem above.

1.5 Differentiability

Theorem. Let 𝑓𝑛 ∶ [𝑎, 𝑏] → ℝ be continuously differentiable for all 𝑛. Suppose∑∞
𝑘=1 𝑓′𝑘(𝑥)

converges uniformly on [𝑎, 𝑏], and that ∀𝑐 ∈ [𝑎, 𝑏],∑∞
𝑛−1 𝑓𝑛(𝑐) converges. Then,∑

∞
𝑘=1 𝑓𝑘(𝑥)

converges uniformly on [𝑎, 𝑏] to a continuously differentiable function 𝑓, and

d
d𝑥(

∞
∑
𝑘=1

𝑓𝑘) =
∞
∑
𝑘=1

d
d𝑥𝑓𝑘(𝑥)
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Proof. Let 𝑔(𝑥) = ∑∞
𝑘=1 𝑓′𝑘(𝑥), for 𝑥 ∈ [𝑎, 𝑏]. The general idea is that we want to solve the differential

equation 𝑓′ = 𝑔 subject to the initial condition 𝑓(𝑐) = ∑∞
𝑛=1 𝑓𝑛(𝑐). Let 𝜆 = ∑∞

𝑛=1 𝑓𝑛(𝑐) and define
𝑓∶ [𝑎, 𝑏] → ℝ by

𝑓(𝑥) = 𝜆 +∫
𝑥

𝑐
𝑔(𝑡) d𝑡

Note that 𝑔 is integrable;∑∞
𝑘=1 𝑓′𝑘(𝑥) → 𝑔uniformly implies that 𝑔 is continuous and hence integrable.

By the fundamental theorem of calculus, 𝑓′ = 𝑔 and 𝑓(𝑐) = 𝜆. So we have found such an 𝑓 that
satisfies the conditions set out. All that remains is to prove uniform convergence of ∑∞

𝑘=1 𝑓𝑘 → 𝑓.
Also by the fundamental theorem, 𝑓𝑘(𝑥) = 𝑓𝑘(𝑐) + ∫𝑥

𝑐 𝑓′𝑘(𝑡) d𝑡. Let 𝜀 > 0. There exists 𝑁 ∈ ℕ such
that ||𝜆 −∑𝑁

𝑘=1 𝑓𝑘(𝑐)|| < 𝜀 and ||𝑔(𝑡) − ∑𝑁
𝑘=1 𝑓′𝑘(𝑡)|| < 𝜀. Now, for 𝑛 ≥ 𝑁 we have

||||
𝑓(𝑥) −

𝑛
∑
𝑘=1

𝑓𝑘(𝑥)
||||
=
||||
𝜆 +∫

𝑥

𝑐
𝑔(𝑡) d𝑡 −

𝑛
∑
𝑘=1

(𝑓𝑘(𝑐) +∫
𝑥

𝑐
𝑓′𝑘(𝑡) d𝑡)

||||

≤
||||
𝜆 −

𝑛
∑
𝑘=1

𝑓𝑘(𝑐)
||||
+
||||
∫

𝑥

𝑐
(𝑔(𝑡) −

𝑛
∑
𝑘−1

𝑓′𝑘(𝑡)) d𝑡
||||

≤ 𝜀 + |𝑥 − 𝑐|𝜀
≤ 𝜀(𝑏 − 𝑎 + 1)

1.6 Conditions for uniform convergence
Recall that a scalar sequence 𝑥𝑛 is Cauchy if

∀𝜀 > 0, ∃𝑁 ∈ ℕ, ∀𝑚, 𝑛 ≥ 𝑁, |𝑥𝑚 − 𝑥𝑛| < 𝜀

and that the general principle of convergence shows that any Cauchy sequence converges.

1.7 General principle of uniform convergence

Definition. A sequence (𝑓𝑛) of scalar functions on a set 𝑆 is called uniformly Cauchy if

∀𝜀 > 0, ∃𝑁 ∈ ℕ, ∀𝑚, 𝑛 ≥ 𝑁, ∀𝑥 ∈ 𝑆, |𝑓𝑚(𝑥) − 𝑓𝑛(𝑥)| < 𝜀

Theorem. A uniformly Cauchy sequence of functions is uniformly convergent.

Proof. Let 𝑥 ∈ 𝑆 and we will show that (𝑓𝑛(𝑥))∞𝑛=1 converges. Given 𝜀 > 0, ∃𝑁 ∈ ℕ, ∀𝑚, 𝑛 ≥ 𝑁, ∀𝑡 ∈
𝑆, |𝑓𝑚(𝑡) − 𝑓𝑛(𝑡)| < 𝜀. In particular, ∀𝑚, 𝑛 ≥ 𝑁, |𝑓𝑚(𝑥) − 𝑓𝑛(𝑥)| < 𝜀. So certainly (𝑓𝑛(𝑥))∞𝑛=1 is Cauchy
and hence convergent by the general principle of convergence. Therefore 𝑓𝑛 converges pointwise.
Now, let 𝑓(𝑥) be the limit 𝑓(𝑥) = lim𝑛→∞ 𝑓𝑛(𝑥). Then 𝑓𝑛 → 𝑓 pointwise on 𝑆. Now we must
extend this to show 𝑓𝑛 → 𝑓 uniformly on 𝑆. Given 𝜀 > 0, we know that ∃𝑁 ∈ ℕ, ∀𝑚, 𝑛 ≥ 𝑁, ∀𝑥 ∈
𝑆, |𝑓𝑚(𝑥) − 𝑓𝑛(𝑥)| < 𝜀. Now, we must show ∀𝑛 ≥ 𝑁, ∀𝑥 ∈ 𝑆, |𝑓𝑛(𝑥) − 𝑓(𝑥)| < 2𝜀, then we are done.
We will fix 𝑥 ∈ 𝑆, 𝑛 ≥ 𝑁. Since 𝑓𝑛(𝑥) → 𝑓(𝑥), we can choose 𝑚 ∈ ℕ such that |𝑓𝑚(𝑥) − 𝑓(𝑥)| < 𝜀,
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and𝑚 ≥ 𝑁. Note however that𝑚 depends on 𝑥 in this statement, but this doesn’t matter—we have
shown that

|𝑓𝑛(𝑥) − 𝑓(𝑥)| ≤ |𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)| + |𝑓𝑚(𝑥) − 𝑓(𝑥)| ≤ 𝜀 + 𝜀 = 2𝜀
which is a result that, in itself, does not depend on 𝑥.

Note. Alternatively, we could end the proof as the following. Fix 𝑥 ∈ 𝑆, 𝑛 ≥ 𝑁. Then

∀𝑚 ≥ 𝑁, |𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)| < 𝜀

Then let𝑚 → ∞, and
|𝑓𝑛(𝑥) − 𝑓(𝑥)| ≤ 𝜀

1.8 Weierstrass M-test

Theorem. Let (𝑓𝑛) be a sequence of scalar functions on 𝑆. Assume that ∀𝑛 ∈ ℕ, ∃𝑀𝑛 ∈
ℝ+, ∀𝑥 ∈ 𝑆, |𝑓𝑛(𝑥)| ≤ 𝑀𝑛. In other words, (𝑓𝑛) is a sequence of bounded scalar functions.
Then,

∞
∑
𝑛=1

𝑀𝑛 < ∞ ⟹
∞
∑
𝑛=1

𝑓𝑛(𝑥) is uniformly convergent on 𝑆

Proof. Let 𝐹𝑛(𝑥) = ∑𝑛
𝑘=1 𝑓𝑘(𝑥) for 𝑥 ∈ 𝑆, 𝑛 ∈ ℕ. Then

|𝐹𝑛(𝑥) − 𝐹𝑚(𝑥)| ≤
𝑛
∑

𝑘=𝑚+1
|𝑓𝑘(𝑥)| ≤

𝑛
∑

𝑘=𝑚+1
𝑀𝑘

Hence, given 𝜀 > 0, we can choose 𝑁 ∈ ℕ such that∑𝑛
𝑘=𝑁+1𝑀𝑘 < 𝜀. Thus, ∀𝑥 ∈ 𝑆, ∀𝑛 ≥ 𝑚 ≥ 𝑁,

we have

|𝐹𝑛(𝑥) − 𝐹𝑚(𝑥)| ≤
𝑛
∑

𝑘=𝑚+1
𝑀𝑘 < 𝜀

We have shown (𝐹𝑛) is uniformly Cauchy on 𝑆 and hence uniformly convergent on 𝑆.

1.9 Power series
Consider the power series

∞
∑
𝑛=0

𝑐𝑛(𝑧 − 𝑎)𝑛

where 𝑐𝑛 ∈ ℂ, 𝑎 ∈ ℂ are constants, and 𝑧 ∈ ℂ. Let 𝑅 ∈ [0,∞] be the radius of convergence. Recall
that

|𝑧 − 𝑎| < 𝑅 ⟹
∞
∑
𝑛=0

𝑐𝑛(𝑧 − 𝑎)𝑛 converges absolutely;

|𝑧 − 𝑎| > 𝑅 ⟹
∞
∑
𝑛=0

𝑐𝑛(𝑧 − 𝑎)𝑛 diverges
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Let 𝐷(𝑎, 𝑅) ≔ {𝑧 ∈ ℂ ∣ |𝑧 − 𝑎| < 𝑅} be the open disc centred on 𝑎 with radius 𝑅. Then we can create
𝑓∶ 𝐷(𝑎, ℝ) → ℂ to be defined by the power series, which is well-defined. 𝑓 is the pointwise limit
of the power series on 𝐷. In general, the convergence of the power series is not uniformly conver-
gent.

Example. ∑∞
𝑛=1

𝑧𝑛

𝑛2
has 𝑅 = 1. Let 𝑓𝑛 ∶ 𝐷(0, 1) → 𝒞 be defined by 𝑓𝑛(𝑧) =

𝑧𝑛

𝑛2
. Then for every

𝑧 ∈ 𝐷(0, 1), |𝑧| ≤ 1
𝑛2
. Since∑∞

𝑛=1
1
𝑛2

= 𝜋2

6
< ∞, by theWeierstrassM-test, the power series converges

uniformly on the disc.

Example. Consider∑∞
𝑛=0 𝑧𝑛 =

1
1−𝑧

with 𝑅 = 1. Now,

∀𝑧 ∈ 𝐷(0, 1),
||||

∞
∑
𝑛=0

𝑧𝑛
||||
≤ 𝑁 + 1

Therefore, the series does not converge uniformly on the disc since 1
1−𝑧

is unbounded on the disc.
Alternatively, consider

sup
|𝑧|<1

||||
1

1 − 𝑧 −
𝑛
∑
𝑘=0

𝑧𝑘
||||
= sup

|𝑧|<1

|||
𝑧𝑛+1
1 − 𝑧

||| = ∞

In some sense, the problem with uniform convergence here is that we are allowed to go too close too
the boundary.

Theorem. Suppose the power series∑∞
𝑛=0 𝑐𝑛(𝑧 − 𝑎)𝑛 has radius of convergence 𝑅. Then for

all 0 < 𝑟 < 𝑅, the power series converges uniformly on 𝐷(𝑎, 𝑟).

Proof. Let 𝑤 ∈ ℂ such that 𝑟 < |𝑤 − 𝑎| < 𝑅, for instance 𝑤 = 𝑎 + 𝑟+𝑅
2
. Now, let 𝜌 = 𝑟

|𝑤−𝑎|
∈ (0, 1).

Since ∑∞
𝑛=0 𝑐𝑛(𝑤 − 𝑎)𝑛 converges, we have that 𝑐𝑛(𝑤 − 𝑎)𝑛 → 0 as 𝑛 → ∞. Therefore, ∃𝑀 ∈ ℝ+

such that |𝑐𝑛(𝑤 − 𝑎)𝑛| ≤ 𝑀 for all 𝑛 ∈ ℕ, since convergence implies boundedness. Now, for 𝑧 ∈
𝐷(𝑎, 𝑟), 𝑛 ∈ ℕ we have

|𝑐𝑛(𝑧 − 𝑎)𝑛| = |𝑐𝑛(𝑤 − 𝑎)𝑛|( |𝑧 − 𝑎|
|𝑤 − 𝑎|)

𝑛
≤ 𝑀( 𝑟

|𝑤 − 𝑎|)
𝑛
= 𝑀𝜌𝑛

Since the sum∑∞
𝑛=0𝑀𝜌𝑛 converges, theWeierstrass M-test shows us that∑∞

𝑛=0 𝑐𝑛(𝑧−𝑎)𝑛 converges
uniformly on 𝐷(𝑎, 𝑟).

Remark. 𝑓∶ 𝐷(𝑎, 𝑅) → ℂ defined by 𝑓(𝑧) = ∑∞
𝑛=0 𝑐𝑛(𝑧 − 𝑎)𝑛 is the uniform limit on 𝐷(𝑎, 𝑟) of

polynomials for any 𝑟 such that 0 < 𝑟 < 𝑅. Hence 𝑓 is continuous on 𝐷(𝑎, 𝑟). Since 𝐷(𝑎, 𝑅) =
⋃0<𝑟<𝑅 𝐷(𝑎, 𝑟), it follows that 𝑓 is continuous everywhere inside the radius of convergence.

Recall that the termwise derivative∑∞
𝑛=1 𝑐𝑛𝑛(𝑧 − 𝑎)𝑛−1 has the same radius of convergence. This se-

quence therefore also converges uniformly on𝐷(𝑎, 𝑟) if 0 < 𝑟 < 𝑅. Analogously to the previous result
about interchanging derivatives and sums, we can show that∑𝑐𝑛(𝑧 − 𝑎)𝑛 is complex differentiable
on 𝐷(𝑎, 𝑅) with derivative∑∞

𝑛=1 𝑐𝑛𝑛(𝑧 − 𝑎)𝑛−1. This is seen in the IB Complex Analysis course.
Now, fix𝑤 ∈ 𝐷(𝑎, 𝑅). Then fix 𝑟 such that |𝑤 − 𝑎| < 𝑟 < 𝑅, and fix 𝛿 > 0 such that |𝑤 − 𝑎|+𝛿 < 𝑟. If
|𝑧 − 𝑤| < 𝛿, then |𝑧 − 𝑎| ≤ |𝑧 − 𝑤| + |𝑤 − 𝑎| < 𝛿 + |𝑤 − 𝑎| < 𝑟. Therefore, geometrically, 𝐷(𝑤, 𝛿) ⊂
𝐷(𝑎, 𝑟). Hence, ∑∞

𝑛=0 𝑐𝑛(𝑧 − 𝑎)𝑛 converges uniformly on 𝐷(𝑤, 𝛿). This is known as local uniform
convergence.

10



Definition. 𝑈 ⊂ ℂ is called open if ∀𝑤 ∈ 𝑈, ∃𝛿 > 0, 𝐷(𝑤, 𝛿) ⊂ 𝑈 .

Definition. Let 𝑈 be an open subset of ℂ, and 𝑓𝑛 be a sequence of scalar functions on 𝑈 .
Then 𝑓𝑛 converges locally uniformly on 𝑈 if

∀𝑤 ∈ 𝑈, ∃𝛿 > 0, 𝑓𝑛 converges uniformly on 𝐷(𝑤, 𝛿) ⊂ 𝑈

Remark. Above, we showed that power series always converge locally uniformly inside the radius of
convergence, or equivalently inside the disc 𝐷(𝑎, 𝑅). We will return to this point about local uniform
convergence when discussing compactness.

2 Uniform continuity
2.1 Definition
Let 𝑈 ⊂ ℝ,ℂ. Let 𝑓 be a scalar function on 𝑈 . Then for 𝑥 ∈ 𝑈 , we say 𝑓 is continuous at 𝑥 if

∀𝜀 > 0, ∃𝛿 > 0, ∀𝑦 ∈ 𝑈, |𝑦 − 𝑥| < 𝛿 ⟹ |𝑓(𝑦) − 𝑓(𝑥)| < 𝜀

We say 𝑓 is continuous on 𝑈 if 𝑓 is continuous at 𝑥 for all 𝑥 ∈ 𝑈 :

∀𝑥 ∈ 𝑈, ∀𝜀 > 0, ∃𝛿 > 0, ∀𝑦 ∈ 𝑈, |𝑦 − 𝑥| < 𝛿 ⟹ |𝑓(𝑦) − 𝑓(𝑥)| < 𝜀

Note here that 𝛿 depends on 𝜀 and 𝑥.

Definition. Let 𝑈, 𝑓 be as in the previous definition. We say 𝑓 is uniformly continuous if

∀𝜀 > 0, ∃𝛿 > 0, ∀𝑥, 𝑦 ∈ 𝑈, |𝑦 − 𝑥| < 𝛿 ⟹ |𝑓(𝑦) − 𝑓(𝑥)| < 𝜀

Now, 𝛿 works for all 𝑥 ∈ 𝑈 simultaneously; 𝛿 depends on 𝜀 only. Certainly, uniform continu-
ity implies continuity.

Example. Let 𝑓∶ ℝ → ℝ such that 𝑓(𝑥) = 2𝑥 + 17. Then 𝑓 is uniformly continuous; given 𝜀 > 0,
we can find 𝛿 = 1

2
𝜀. Then ∀𝑥, 𝑦 ∈ ℝ, |𝑦 − 𝑥| < 𝛿 ⟹ |𝑓(𝑦) − 𝑓(𝑥)| = |2𝑦 − 2𝑥| = 2𝑦 − 𝑥 < 2𝛿 = 𝜀.

Example. Let 𝑓∶ ℝ → ℝ, defined by 𝑓(𝑥) = 𝑥2. This is not uniformly continuous, since no 𝛿works
for all 𝑥 given some ‘bad’ 𝜀. Let us take 𝜀 = 1, and we wish to show that no 𝛿 exists. Suppose some 𝛿
does exist. Then, let 𝑥 > 0 and 𝑦 = 𝑥 + 𝛿

2
. We should have |𝑓(𝑦) − 𝑓(𝑥)| < 1.

(𝑥 + 𝛿
2)

2
− 𝑥2 = 𝛿𝑥 + 𝛿2

4

So for 𝑥 = 1
𝛿
, this condition |𝑓(𝑦) − 𝑓(𝑥)| < 1 is not satisfied. Hence 𝑓 is not uniformly continuous.

Note. For 𝑈, 𝑓 as in the above definition, 𝑓 is not uniformly continuous on 𝑈 if

∃𝜀 > 0, ∀𝛿 > 0, ∃𝑥, 𝑦 ∈ 𝑈, |𝑦 − 𝑥| < 𝛿, |𝑓(𝑦) − 𝑓(𝑥)| ≥ 𝜀

So there are points arbitrarily close together whose difference of function values exceed some fixed
𝜀.
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2.2 Properties of continuous functions

Theorem. Let 𝑓 be a scalar function on a closed bounded interval [𝑎, 𝑏]. If 𝑓 is continuous
on [𝑎, 𝑏], then 𝑓 is uniformly continuous on [𝑎, 𝑏].

Proof. Suppose there exists 𝜀 > 0 such that ∀𝛿 > 0, ∃𝑥, 𝑦 ∈ [𝑎, 𝑏], |𝑦 − 𝑥| < 𝛿, |𝑓(𝑦) − 𝑓(𝑥)| ≥ 𝜀. In
particular, we can construct a sequence (𝛿𝑛) defined by 𝛿𝑛 = 1

𝑛
, and we can construct sequences

𝑥𝑛, 𝑦𝑛 ∈ [𝑎, 𝑏] such that |𝑦𝑛 − 𝑥𝑛| <
1
𝑛
but |𝑓(𝑦𝑛) − 𝑓(𝑥𝑛)| ≥ 𝜀. By the Bolzano–Weierstrass the-

orem, there exists a subsequence (𝑥𝑘𝑛) that converges. Now, let 𝑥 be the limit of the subsequence,
lim𝑛→∞ 𝑥𝑘𝑛 . Then 𝑥 ∈ [𝑎, 𝑏] since the interval is closed. Then, ||𝑦𝑘𝑛 − 𝑥|| ≤ ||𝑦𝑘𝑛 − 𝑥𝑘𝑛 || + ||𝑥𝑘𝑛 − 𝑥|| <
1
𝑛
+ ||𝑥𝑘𝑛 − 𝑥|| → 0. Hence 𝑦𝑘𝑛 → 𝑥. Now, since 𝑓 is continuous 𝑓(𝑥𝑘𝑛), 𝑓(𝑦𝑘𝑛) → 𝑓(𝑥). Now,

𝜀 ≤ ||𝑓(𝑥𝑘𝑛) − 𝑓(𝑦𝑘𝑛)|| → |𝑓(𝑥) − 𝑓(𝑥)| = 0, which is a contradiction.

Corollary. A continuous function 𝑓∶ [𝑎, 𝑏] → ℝ is Riemann integrable.

Proof. Since a continuous function on a closed bounded interval is bounded, wehave that𝑓 is bounded.
Now, fix 𝜀 > 0, and we want to find a dissection𝒟 such that the difference between upper and lower
sums is less than 𝜀. By the above theorem, 𝑓 is uniformly continuous. Hence,

∃𝛿 > 0, ∀𝑥, 𝑦 ∈ [𝑎, 𝑏], |𝑦 − 𝑥| < 𝛿 ⟹ |𝑓(𝑦) − 𝑓(𝑥)| < 𝜀

So we must simply choose a dissection such that all intervals have size smaller than 𝛿. For instance,
choose some 𝑛 ∈ ℕ such that 𝑏−𝑎

𝑁
< 𝛿, and then divide the interval equally into 𝑛 subintervals. If 𝐼 is

an interval in this dissection, then ∀𝑥, 𝑦 ∈ 𝐼 we have |𝑦 − 𝑥| < 𝛿 and hence |𝑓(𝑦) − 𝑓(𝑥)| < 𝜀. Hence,

sup
𝑥,𝑦∈𝐼

|𝑓(𝑦) − 𝑓(𝑥)| ≤ 𝜀

Multiplying by the length of 𝐼 and summing over all subintervals 𝐼,

𝑈𝒟(𝑓) − 𝐿𝒟(𝑓) ≤ (𝑏 − 𝑎)𝜀

Hence 𝑓 is Riemann integrable.

3 Metric spaces
3.1 Definition

Definition. Let𝑀 be a set. Then ametric on𝑀 is a function 𝑑∶ 𝑀 ×𝑀 → ℝ such that
(i) (positivity) ∀𝑥, 𝑦 ∈ 𝑀, 𝑑(𝑥, 𝑦) ≥ 0, and in particular, 𝑥 = 𝑦 ⟺ 𝑑(𝑥, 𝑦) = 0
(ii) (symmetric) ∀𝑥, 𝑦 ∈ 𝑀, 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥)
(iii) (triangle inequality) ∀𝑥, 𝑦, 𝑧 ∈ 𝑀, 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧).
A metric space is a set𝑀 together with a metric 𝑑 on𝑀, written as the pair (𝑀, 𝑑).

Example. Let 𝑀 = ℝ,ℂ and 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|. This is known as the ‘standard metric’ on 𝑀. If a
metric is not specified, the standard metric is taken as implied.
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Example. Let𝑀 = ℝ𝑛, ℂ𝑛, and we define the Euclidean norm (or Euclidean length) to be

‖𝑥‖ = ‖𝑥‖2 = (
𝑛
∑
𝑘=1

|𝑥𝑘|
2)

1
2

This satisfies
‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖

and it then follows that we can define the metric as

𝑑2(𝑥, 𝑦) = ‖𝑥 − 𝑦‖2
called the Euclidean metric. We can check that this is indeed a metric easily. This is the standard
metric on ℝ𝑛, ℂ𝑛. The metric space (𝑀, 𝑑) in this case is called 𝑛-dimensional real (or complex)
Euclidean space, sometimes denoted ℓ𝑛2 . The Euclidean norm is sometimes called the ℓ2 norm, and
the Euclidean metric is the ℓ2 metric.
Example. Let𝑀 = ℝ𝑛, ℂ𝑛, and we define the ℓ1 norm to be

|𝑥|1 =
𝑛
∑
𝑘=1

|𝑥𝑘|

which defines the ℓ1 metric given by

𝑑1(𝑥, 𝑦) = ‖𝑥 − 𝑦‖1
(𝑀, 𝑑1) is denoted ℓ𝑛1 . We can generalise and form the metric space ℓ𝑛𝑝 for all 𝑝 ∈ [1,∞].
Example. Again, let𝑀 = ℝ𝑛, ℂ𝑛. We can define the ℓ∞ norm by

‖𝑥‖∞ = max
1≤𝑘≤𝑛

|𝑥𝑘|

This defines the ℓ∞ metric:

𝑑∞(𝑥, 𝑦) = ‖𝑥 − 𝑦‖∞ = max
1≤𝑘≤𝑛

|𝑥𝑘 − 𝑦𝑘|

We denote (𝑀, 𝑑) by ℓ𝑛∞.
In this course, we will only work with 𝑝 = 1, 2,∞, although the calculations can be made to work for
other 𝑝.
Example. Let 𝑆 be a set. Let ℓ∞(𝑆) be the set of all bounded scalar functions on 𝑆. We then define
the ℓ∞ norm of 𝑓 ∈ ℓ∞(𝑆) by

‖𝑓‖ = ‖𝑓‖∞ = sup
𝑥∈𝑆

|𝑓(𝑥)|

The supremum exists since the function is always bounded. This is also known as the ‘sup norm’ or
the ‘uniform norm’. Note that, for 𝑓, 𝑔 ∈ ℓ∞(𝑆), and 𝑥 ∈ 𝑆,

‖𝑓 + 𝑔‖ ≤ sup
𝑥∈𝑆

|𝑓(𝑥) + 𝑔(𝑥)| ≤ |𝑓(𝑥) + 𝑔(𝑥)| ≤ |𝑓(𝑥)| + |𝑔(𝑥)| ≤ ‖𝑓‖ + ‖𝑔‖

Hence 𝑑(𝑓, 𝑔) = ‖𝑓 − 𝑔‖ defines a metric on ℓ∞(𝑆). This is the standard metric on this space ℓ∞(𝑆),
also called the ‘uniform metric’. For example, ℓ∞({1,… , 𝑛}) = ℝ𝑛 with the metric ℓ∞. Also, for
ℓ∞(ℕ), we typically omit the ℕ and instead write ℓ∞ for the space of scalar sequences with the uni-
form metric.
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Example. Consider 𝐶[𝑎, 𝑏], the set of all continuous functions on [𝑎, 𝑏]. For 𝑝 = 1, 2, we define the
𝐿𝑝 norm of 𝑓 ∈ 𝐶[𝑎, 𝑏] by

‖𝑓‖𝑝 = (∫
𝑏

𝑎
|𝑓(𝑥)|𝑝 d𝑥)

1
𝑝

which induces the 𝐿𝑝 metric on 𝐶[𝑎, 𝑏].
Example. Let𝑀 be a set. Then

𝑑(𝑥, 𝑦) = {0 if 𝑥 = 𝑦
1 otherwise

is a metric, called the discrete metric on𝑀. In particular, (𝑀, 𝑑) is called a discrete metric space.
Example. Let 𝐺 be a group generated by 𝑆 ⊂ 𝐺. We assume 𝑒 ∉ 𝑆 and 𝑥 ∈ 𝑆 ⟹ 𝑥−1 ∈ 𝑆. Then

𝑑(𝑥, 𝑦) = min {𝑛 ≥ 0∶ ∃𝑠1,… , 𝑠𝑛, 𝑦 = 𝑥𝑠1…𝑠𝑛}
defines a metric called the word metric.

Example. Let 𝑝 be prime. Then

𝑑(𝑥, 𝑦) = {0 if 𝑥 = 𝑦
𝑝−𝑛 otherwise, where 𝑥 − 𝑦 = 𝑝𝑛𝑚, 𝑛 ≥ 0,𝑚 ∈ 𝑍, 𝑝 ∤ 𝑚

defines a metric on ℤ. This is known as the 𝑝-adic metric.

3.2 Subspaces
Let (𝑀, 𝑑) be a metric space, and 𝑁 ⊂ 𝑀. Then naturally we can restrict 𝑑 to 𝑁 × 𝑁, giving a metric
on 𝑁. (𝑁, 𝑑) is called a subspace of𝑀.

Example. Consider ℚ with the metric 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|. This is clearly a subspace of ℝ (implicitly
with the standard metric on ℝ).
Example. Since every continuous function on a closed bounded interval is bounded, 𝐶[𝑎, 𝑏] is a
subset of ℓ∞[𝑎, 𝑏]. Hence 𝐶[𝑎, 𝑏] with the uniform metric is a subspace of ℓ∞[𝑎, 𝑏].

3.3 Product spaces
Let (𝑀, 𝑑), (𝑀′, 𝑑′) be metric spaces. Then any of the following defines a metric on the Cartesian
product𝑀 ×𝑀′.

(i) 𝑑1((𝑥, 𝑥′), (𝑦, 𝑦′)) = 𝑑(𝑥, 𝑦) + 𝑑(𝑥′, 𝑦′)

(ii) 𝑑2((𝑥, 𝑥′), (𝑦, 𝑦′)) = (𝑑(𝑥, 𝑦)2 + 𝑑(𝑥′, 𝑦′)2)
1
2

(iii) 𝑑∞((𝑥, 𝑥′), (𝑦, 𝑦′)) = max {𝑑(𝑥, 𝑦), 𝑑(𝑥′, 𝑦′)}
We commonly write (𝑀 ×𝑀′, 𝑝) as𝑀 ⊕𝑝 𝑀′. Note that we always have

𝑑∞ ≤ 𝑑2 ≤ 𝑑1 ≤ 2𝑑∞
We can generalise for 𝑛 ∈ ℕ and metric spaces (𝑀𝑘, 𝑑𝑘) for 𝑘 ∈ {1,… , 𝑛}, by defining

(
𝑛

⨁
𝑘=1

𝑀𝑘)
𝑝

= 𝑀1 ⊕𝑝 ⋯⊕𝑝 𝑀𝑛 = (𝑀1 ×⋯×𝑀𝑛, 𝑑𝑝)
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Example. ℝ⊕1 ℝ = ℓ21 . Further, ℝ⊕2 ℝ⊕2 𝑅 = ℓ32 , and other analogous results hold.
Remark. ℝ ⊕1 ℝ ⊕2 ℝ does not make sense since we have not defined the associativity of the ⊕
operator. The two choices yield different metric spaces.

3.4 Convergence
Let𝑀 be a metric space, and (𝑥𝑛) a sequence in𝑀. Given 𝑥 ∈ 𝑀, we say that (𝑥𝑛) converges to 𝑥 in
𝑀 if

∀𝜀 > 0, ∃𝑁 ∈ ℕ, ∀𝑛 ≥ 𝑁, 𝑑(𝑥𝑛, 𝑥) < 𝜀
We say that (𝑥𝑛) is convergent in 𝑀 if ∃𝑥 ∈ 𝑀 such that 𝑥𝑛 → 𝑥. Otherwise, we say that (𝑥𝑛) is
divergent. Note that 𝑥𝑛 → 𝑥 in𝑀 if and only if 𝑑(𝑥𝑛, 𝑥) → 0 in ℝ.

Lemma. Suppose we have a sequence 𝑥𝑛 → 𝑥 and 𝑥𝑛 → 𝑦 in a metric space𝑀. Then 𝑥 = 𝑦.

Proof. Suppose 𝑥 ≠ 𝑦. Then let 𝜀 = 𝑑(𝑥,𝑦)
3

> 0. So, by the definition of convergence,

∃𝑁1 ∈ ℕ, ∀𝑛 ≥ 𝑁1, 𝑑(𝑥𝑛, 𝑥) < 𝜀;

∃𝑁2 ∈ ℕ, ∀𝑛 ≥ 𝑁2, 𝑑(𝑥𝑛, 𝑦) < 𝜀
Now, fix 𝑁 ∈ ℕ such that 𝑛 ≥ 𝑁1, 𝑛 ≥ 𝑁2, for instance 𝑁 = max {𝑁1, 𝑁2}. Then

𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑥𝑛) + 𝑑(𝑥𝑛, 𝑦) < 2𝜀 = 2
3𝑑(𝑥, 𝑦)

which is a contradiction.

Definition. Given a convergent sequence (𝑥𝑛) in a metric space𝑀, we say the limit of (𝑥𝑛)
is the unique 𝑥 ∈ 𝑀 such that 𝑥𝑛 → 𝑥 as 𝑛 → ∞. This is denoted

lim
𝑛→∞

𝑥𝑛

Example. This definition has the usual meaning when𝑀 = ℝ,ℂ.
Example. The constant sequence defined by 𝑥𝑛 = 𝑥 converges to 𝑥. In particular, ‘eventually con-
stant’ sequences converge; let (𝑥𝑛) be a sequence in𝑀 such that ∃𝑥 ∈ 𝑀, ∃𝑁 ∈ ℕ, ∀𝑛 ≥ 𝑁, 𝑥𝑛 = 𝑥,
then 𝑥𝑛 → 𝑥. It is not necessarily true that sequences only converge if they are eventually constant.
However, in a discrete metric space, the converse is true, since we can choose 𝜀 smaller than all
distances.

Example. Consider the 3-adic metric. Then, 3𝑛 → 0 as 𝑛 → ∞ since 𝑑(3𝑛, 0) = 3−𝑛 → 0.
Example. Let 𝑆 be a set. Then, 𝑓𝑛 → 𝑓 in ℓ∞(𝑆) in the uniform metric if and only if 𝑑(𝑓𝑛, 𝑓) =
‖𝑓𝑛 − 𝑓‖∞ = sup𝑆 |𝑓𝑛 − 𝑓| → 0, which is precisely the condition that 𝑓𝑛 → 𝑓 uniformly on 𝑆. Note,
however, that 𝑓𝑛(𝑥) = 𝑥 + 1

𝑛
for 𝑥 ∈ ℝ, 𝑛 ∈ ℕ and 𝑓(𝑥) = 𝑥, then certainly 𝑓𝑛 → 𝑥 uniformly on

ℝ. However, 𝑓𝑛, 𝑓 ∉ ℓ∞(ℝ), so the uniform metric is not defined on these functions. So the notion
of uniform convergence visited before is slightly more general than the idea of convergence in this
metric space.
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Example. Consider Euclidean space𝑀 = ℝ𝑛, ℂ𝑛 with the ℓ2 metric. Then, consider

𝑥(𝑘) = (𝑥(𝑘)1 ,… , 𝑥(𝑘)𝑛 ) ∈ 𝑀

for 𝑘 ∈ ℕ, and 𝑥 = (𝑥1,… , 𝑥𝑛) ∈ 𝑀. Then,

||𝑥
(𝑘)
𝑖 − 𝑥𝑖|| ≤ ‖

‖𝑥(𝑘) − 𝑥‖‖2 ≤
𝑛
∑
𝑖=1

||𝑥
(𝑘)
𝑖 − 𝑥𝑖||

So 𝑥(𝑘) → 𝑥 if and only if all 𝑖 satisfy 𝑥(𝑘)𝑖 → 𝑥𝑖. This can be thought of as convergence being
equivalent to coordinate-wise (or pointwise) convergence.

Example. Consider 𝑓𝑛(𝑥) = 𝑥𝑛 for 𝑥 ∈ [0, 1], and 𝑛 ∈ ℕ. Then (𝑓𝑛) is a sequence in 𝐶[0, 1], which
converges pointwise but not uniformly. So (𝑓𝑛) is not convergent in the uniform metric. However,
using the 𝐿1 metric, we have

𝑑1(𝑓𝑛, 0) = ‖𝑓𝑛‖1 = ∫
1

0
𝑓𝑛 =

1
𝑛 + 1 → 0

So, 𝑓𝑛 → 0 in (𝐶[0, 1], 𝐿1).
Example. Let 𝑁 be a subspace of a metric space𝑀, and (𝑥𝑛) be a convergent sequence in 𝑁. Then
(𝑥𝑛) converges in 𝑀. The converse is not necessarily true; consider 𝑀 = ℝ and 𝑁 = (0,∞) with
(𝑥𝑛) =

1
𝑛
. This is divergent in 𝑁 but convergent in𝑀.

Example. Let (𝑀, 𝑑), (𝑀′, 𝑑′) be metric spaces. Let 𝑁 = 𝑀 ⊕𝑝 𝑀′. Let 𝑎𝑛 = (𝑥𝑛, 𝑦𝑛) ∈ 𝑁 for all
𝑛 ∈ ℕ, and 𝑎 = (𝑥, 𝑦) ∈ 𝑁. Then

𝑎𝑛 → 𝑎 in 𝑁 ⟺ 𝑥𝑛 → 𝑥 in𝑀, 𝑦𝑛 → 𝑦 in𝑀′

Indeed,

max {𝑑(𝑥𝑛, 𝑥), 𝑑′(𝑦𝑛, 𝑦)} = 𝑑∞(𝑎𝑛, 𝑎) ≤ 𝑑𝑝(𝑎𝑛, 𝑎) ≤ 2𝑑1(𝑎𝑛, 𝑎) = 2𝑑(𝑥𝑛, 𝑥) + 2𝑑′(𝑦𝑛, 𝑦)

3.5 Continuity

Definition. Let 𝑓∶ 𝑀 → 𝑀′ be a function between metric spaces (𝑀, 𝑑), (𝑀′, 𝑑′). Then for
𝑎 ∈ 𝑀, we say 𝑓 is continuous at 𝑎 if

∀𝜀 > 0, ∃𝛿 > 0, ∀𝑥 ∈ 𝑀, 𝑑(𝑥, 𝑎) < 𝛿 ⟹ 𝑑′(𝑓(𝑥), 𝑓(𝑎)) < 𝜀

We say 𝑓 is continuous if 𝑓 is continuous at 𝑎 for all 𝑎 ∈ 𝑀. In other words,

∀𝑎 ∈ 𝑀, ∀𝜀 > 0, ∃𝛿 > 0, ∀𝑥 ∈ 𝑀, 𝑑(𝑥, 𝑎) < 𝛿 ⟹ 𝑑′(𝑓(𝑥), 𝑓(𝑎)) < 𝜀

Note that 𝛿 depends both on 𝜀 and 𝑎.

Proposition. Let 𝑓∶ 𝑀 → 𝑀′ be as above. Let 𝑎 ∈ 𝑀. Then the following are equivalent:
(i) 𝑓 is continuous at 𝑎;
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(ii) 𝑥𝑛 → 𝑎 in𝑀 implies 𝑓(𝑥𝑛) → 𝑓(𝑎) in𝑀

Proof. First we show (i) implies (ii). Suppose 𝑥𝑛 → 𝑎 in𝑀. Then fix 𝜀 > 0, and seek𝑁 ∈ ℕ such that
∀𝑛 ≥ 𝑁, 𝑑′(𝑓(𝑥𝑛), 𝑓(𝑎)) < 𝜀. By continuity, there exists 𝛿 > 0 such that ∀𝑥 ∈ 𝑀, 𝑑(𝑥, 𝑎) < 𝛿 ⟹
𝑑′(𝑓(𝑥𝑛), 𝑓(𝑎)) < 𝜀 as required. So we want 𝑁 such that ∀𝑛 ≥ 𝑁, 𝑑(𝑥, 𝑎) < 𝛿, which must exist since
𝑥𝑛 → 𝑎.
Now, we show (ii) implies (i). Suppose that 𝑓 is not continuous at 𝑎. Then,

∃𝜀 > 0, ∀𝛿 > 0, ∃𝑥 ∈ 𝑀, 𝑑(𝑥, 𝑎) < 𝛿, 𝑑′(𝑓(𝑥), 𝑓(𝑎)) ≥ 𝜀

So fix such an 𝜀 for which no suitable 𝛿 exists. Choose the sequence 𝛿𝑛 =
1
𝑛
, so

𝑑(𝑥𝑛, 𝑎) <
1
𝑛 ; 𝑑′(𝑓(𝑥𝑛), 𝑓(𝑎)) ≥ 𝜀

Then 𝑥𝑛 → 𝑎 in𝑀 but 𝑓(𝑥𝑛) ↛ 𝑓(𝑎) in𝑀, which is a contradiction.

Proposition. Let 𝑓, 𝑔 be scalar functions on a metric space 𝑀. Let 𝑎 ∈ 𝑀. Then if 𝑓, 𝑔 are
continuous at 𝑎, so are 𝑓+𝑔 and 𝑓⋅𝑔. Moreover, letting𝑁 = {𝑥 ∈ 𝑀∶ 𝑔(𝑥) ≠ 0} and assuming
𝑎 ∈ 𝑁, 𝑓

𝑔
is continuous at 𝑎. Hence if 𝑓, 𝑔 are continuous, then so are 𝑓 + 𝑔, 𝑓 ⋅ 𝑔, 𝑓

𝑔
where

they are defined.

Proof. Suppose 𝑥𝑛 → 𝑎. Then by the above proposition, (𝑓 ⋅ 𝑔)(𝑥𝑛) = 𝑓(𝑥𝑛) ⋅ 𝑔(𝑥𝑛) → 𝑓(𝑎) ⋅ 𝑔(𝑎) =
(𝑓 ⋅ 𝑔)(𝑎), and similar results hold for the other operators.

Remark. If 𝑓∶ 𝑀 → 𝑀′ is continuous everywhere,

lim
𝑛→∞

𝑓(𝑥𝑛) = 𝑓( lim
𝑛→∞

𝑥𝑛)

by the second proposition.

Proposition. Let 𝑓∶ 𝑀 → 𝑀′, 𝑔∶ 𝑀′ → 𝑀″ be functions between metric spaces. If 𝑓 is
continuous at 𝑎 and 𝑔 is continuous at𝑓(𝑎), then 𝑔∘𝑓 is continuous at 𝑎. If𝑓, 𝑔 are continuous,
𝑔 ∘ 𝑓 is continuous.

Proof. Let 𝜀 > 0. We want to find 𝛿 > 0 such that ∀𝑥 ∈ 𝑀,

𝑑(𝑥, 𝑎) < 𝛿 ⟹ 𝑑″(𝑔(𝑓(𝑥)), 𝑔(𝑓(𝑎))) < 𝜀

Since 𝑔 is continuous at 𝑓(𝑎), there exists 𝜂 > 0 such that ∀𝑦 ∈ 𝑀′,

𝑑′(𝑦, 𝑓(𝑎)) < 𝜂 ⟹ 𝑑″(𝑔(𝑦), 𝑔(𝑓(𝑎))) < 𝜀

Now, since 𝑓 is continuous at 𝑎, for this 𝜂 there exists 𝛿 such that for all 𝑥 ∈ 𝑀,

𝑑(𝑥, 𝑎) < 𝛿 ⟹ 𝑑′(𝑓(𝑥) − 𝑓(𝑎)) < 𝜂
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Then
𝑑(𝑥, 𝑎) < 𝛿 ⟹ 𝑑″(𝑔(𝑓(𝑥)), 𝑔(𝑓(𝑎))) < 𝜀

as required.

Example. Constant functions are continuous. For instance, let 𝑏 ∈ 𝑀 and let 𝑓(𝑥) = 𝑏. Then this
is continuous since 𝑑′(𝑓(𝑥) − 𝑓(𝑎)) = 𝑑′(𝑏, 𝑏) = 0 so any 𝛿 > 0 will satisfy the condition.
Example. The identity function 𝑓∶ 𝑀 → 𝑀 defined by 𝑥 ↦ 𝑥 is continuous. Consider 𝑑(𝑓(𝑥) −
𝑓(𝑎)) = 𝑑(𝑥 − 𝑎). So 𝛿 = 𝜀 will suffice.
Example. All real and complex polynomials and rational functions are continuous wherever they
are defined by the propositions and examples above. In fact, using uniform convergence, the uniform
limits of such functions are also continuous. For example, exponential and trigonometric functions
are continuous.

Example. Let (𝑀, 𝑑) be a metric space. Then 𝑑∶ 𝑀 ⊕𝑝 𝑀 → ℝ, which can be viewed as a function
between metric spaces𝑀 ⊕𝑝 𝑀 and ℝ. Then, given 𝑣 = (𝑥, 𝑥′), 𝑤 = (𝑦, 𝑦′) ∈ 𝑀 ⊕𝑝 𝑀,

|𝑑(𝑣) − 𝑑(𝑤)| = |𝑑(𝑥, 𝑥′) − 𝑑(𝑦, 𝑦′)| ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑥′, 𝑦′) = 𝑑1(𝑣, 𝑤) ≤ 2𝑑𝑝(𝑣, 𝑤)

Hence 𝛿 = 𝜀
2
will suffice.

3.6 Isometric, Lipschitz, and uniformly continuous functions

Definition. Let 𝑓∶ 𝑀 → 𝑀′ be a function between metric spaces. Then, 𝑓 is
(i) isometric, if

∀𝑥, 𝑦 ∈ 𝑀, 𝑑′(𝑓(𝑥), 𝑓(𝑦)) = 𝑑(𝑥, 𝑦)
(ii) Lipschitz, or 𝑐-Lipschitz, if

∃𝑐 ∈ ℝ+, ∀𝑥, 𝑦 ∈ 𝑀, 𝑑′(𝑓(𝑥), 𝑓(𝑦)) ≤ 𝑐 ⋅ 𝑑(𝑥, 𝑦)

(iii) uniformly continuous, if

∀𝜀 > 0, ∃𝛿 > 0, ∀𝑥, 𝑦 ∈ 𝑀, 𝑑(𝑥, 𝑦) < 𝛿 ⟹ 𝑑′(𝑓(𝑥), 𝑓(𝑦)) < 𝜀

Remark. Any isometric function is 1-Lipschitz. Any Lipschitz function is uniformly continuous. Any
uniformly continuous function is continuous.

Remark. If a function is isometric, it is injective, since 𝑓(𝑥) = 𝑓(𝑦) ⟹ 𝑥 = 𝑦. For example,
if 𝑁 ⊂ 𝑀, the inclusion map 𝑖 ∶ 𝑁 → 𝑀 defined by 𝑖(𝑥) = 𝑥 is isometric but not surjective. An
isometric and surjective map is called an isometry. If there exists an isometry𝑀 → 𝑀′, we say that
𝑀 and𝑀′ are isometric metric spaces, or𝑀′ is an isometric copy of𝑀.

Example. Suppose (𝑀, 𝑑), (𝑀′, 𝑑′) be metric spaces. Let 𝑦 ∈ 𝑀′. We define 𝑓∶ 𝑀 → 𝑀 ⊕𝑝 𝑀′

by 𝑥 ↦ (𝑥, 𝑦). Then 𝑑𝑝(𝑓(𝑥), 𝑓(𝑧)) = 𝑑𝑝((𝑥, 𝑦), (𝑧, 𝑦)) = 𝑑(𝑥, 𝑧). So the function 𝑓 is isometric.
Therefore,𝑀 × {𝑦} is an isometric copy of𝑀 in𝑀 ⊕𝑝 𝑀′.

Example. Consider the projections 𝑞∶ 𝑀⊕𝑝𝑀′ → 𝑀 defined by 𝑞(𝑥, 𝑦) = 𝑥 and 𝑞′ ∶ 𝑀⊕𝑝𝑀′ → 𝑀′

defined by 𝑞′(𝑥, 𝑦) = 𝑦. These projections are both 1-Lipschitz. Indeed,

𝑑(𝑞(𝑥, 𝑦), 𝑞(𝑥′, 𝑦′)) = 𝑑(𝑥, 𝑥′) ≤ 𝑑𝑝((𝑥, 𝑦), (𝑥′, 𝑦′))
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In particular, polynomials in any finite number of variables are continuous since we can multiply
continuous functions together.

3.7 Generalised triangle inequality
Suppose 𝑢, 𝑥, 𝑦, 𝑧 ∈ 𝑀. Then, |𝑑(𝑢, 𝑥) − 𝑑(𝑦, 𝑧)| ≤ 𝑑(𝑢, 𝑦) + 𝑑(𝑥, 𝑧). First,

𝑑(𝑢, 𝑥) ≤ 𝑑(𝑢, 𝑦) + 𝑑(𝑦, 𝑥) ≤ 𝑑(𝑢, 𝑦) + 𝑑(𝑦, 𝑧) + 𝑑(𝑧, 𝑥)
Rearranging,

𝑑(𝑢, 𝑥) − 𝑑(𝑦, 𝑧) ≤ 𝑑(𝑢, 𝑦) + 𝑑(𝑥, 𝑧)
To achieve the negative, satisfying both conditions in the absolute value term,

𝑑(𝑦, 𝑧) ≤ 𝑑(𝑦, 𝑢) + 𝑑(𝑢, 𝑥) + 𝑑(𝑥, 𝑧)
which gives

𝑑(𝑦, 𝑧) − 𝑑(𝑢, 𝑥) ≤ 𝑑(𝑢, 𝑦) + 𝑑(𝑥, 𝑧)
as required.

4 Topology of metric spaces
4.1 Open balls

Definition. Let𝑀 be a metric space, 𝑥 ∈ 𝑀, 𝑟 > 0. Then the open ball in𝑀 of centre 𝑥 and
radius 𝑟 is the set

𝒟𝑟(𝑥) = {𝑦 ∈ 𝑀∶ 𝑑(𝑦, 𝑥) < 𝑟}

The open ball notation is a convenient syntax for denoting closeness in somemetric space. Note that,
for example, 𝑥𝑛 → 𝑛 in𝑀 is equivalent to saying

∀𝜀 > 0, ∃𝑁 ∈ ℕ, ∀𝑛 ≥ 𝑁, 𝑥𝑛 ∈ 𝒟𝜀(𝑥)
We can also say that 𝑓∶ 𝑀 → 𝑀′ is continuous at 𝑥 if

∀𝜀 > 0, ∃𝛿 > 0, 𝑓(𝒟𝛿(𝑥)) ⊂ 𝒟𝜀(𝑓(𝑥))

Definition. The closed ball of centre 𝑥 and radius 𝑟 ≥ 0 is the set

ℬ𝑟(𝑥) = {𝑦 ∈ 𝑀∶ 𝑑(𝑦, 𝑥) ≤ 𝑟}

Example. In ℝ,𝒟𝑟(𝑥) = (𝑥 − 𝑟, 𝑥 + 𝑟). Further, ℬ𝑟(𝑥) = [𝑥 − 𝑟, 𝑥 + 𝑟]. In the plane (ℝ2, 𝑑𝑝),

ℬ1(0) = {𝑥 ∈ ℝ2 ∶ ‖𝑥‖𝑝 ≤ 1}

Note. 𝒟𝑟(𝑥) ⊂ ℬ𝑟(𝑥) ⊂ 𝒟𝑠(𝑥) for all 𝑟 < 𝑠.
Example. Let𝑀 be a discrete metric space. Then for 𝑥 ∈ 𝑀,

𝒟1(𝑥) = {𝑥}; ℬ1(𝑥) = 𝑀

4.2 Neighbourhoods and openness
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Definition. Let 𝑀 be a metric space, and 𝑈 ⊂ 𝑀. Then for 𝑥 ∈ 𝑀, we say that 𝑈 is a
neighbourhood of 𝑥 (in𝑀) if

∃𝑟 > 0,𝒟𝑟(𝑥) ⊂ 𝑈 ⟺ ∃𝑟 > 0,ℬ𝑟(𝑥) ⊂ 𝑈

Definition. We say 𝑈 ⊂ 𝑀 is open in𝑀, or that 𝑈 is an open subset of𝑀, if

∀𝑥 ∈ 𝑈, ∃𝑟 > 0,𝒟𝑟(𝑥) ⊂ 𝑈

So 𝑈 is a neighbourhood of all points in 𝑈 .

Example. 𝒟𝑟(𝑥), ℬ𝑟(𝑥) are neighbourhoods of 𝑥.
Example. Let 𝐻 = {𝑧 ∈ ℂ∶ Im 𝑧 ≥ 0}. Let 𝑤 ∈ 𝐻 and 𝛿 = Im𝑤. If 𝛿 > 0, then 𝒟𝛿(𝑤) ⊂ 𝐻. If
𝛿 = 0, then for any 𝑟,𝒟𝛿(𝑤) ⊄ 𝐻. So 𝐻 is not open.

Lemma. Open balls are open.

Proof. Let𝒟𝑟(𝑥) be an open ball in a metric space𝑀. We need to show that

∀𝑦 ∈ 𝒟𝑟(𝑥), ∃𝛿 > 0,𝒟𝛿(𝑦) ⊂ 𝒟𝑟(𝑥)

So let 𝑦 ∈ 𝒟𝑟(𝑥) and set 𝛿 = 𝑟 − 𝑑(𝑥, 𝑦). Note that 𝑑(𝑥, 𝑦) > 0, and by the triangle inequality,

𝑑(𝑧, 𝑥) ≤ 𝑑(𝑧, 𝑦) + 𝑑(𝑦, 𝑥) < 𝛿 + (𝑟 − 𝛿) = 𝑟

as required.

Corollary. Let𝑀 be a metric space, 𝑈 ⊂ 𝑀, 𝑥 ∈ 𝑀. Then 𝑈 is a neighbourhood of 𝑥 if and
only if there exists an open subset 𝑉 of𝑀 such that 𝑥 ∈ 𝑉 ⊂ 𝑈 .

Proof. In the forward direction, there exists 𝑟 > 0 such that𝒟𝑟(𝑥) ⊂ 𝑈 , so let𝑉 = 𝒟𝑟(𝑥). Conversely,
if 𝑉 is open we can construct 𝑟 > 0 such that𝒟𝑟(𝑥) ⊂ 𝑉 ⊂ 𝑈 . So 𝑈 is a neighbourhood of 𝑥.

4.3 Continuity and convergence using topology

Proposition. In a metric space𝑀, the following are equivalent.
(i) 𝑥𝑛 → 𝑥;
(ii) for all neighbourhoods 𝑈 of 𝑥 in𝑀, ∃𝑁 ∈ ℕ, ∀𝑛 ≥ 𝑁, 𝑥𝑛 ∈ 𝑈 ;
(iii) for all open neighbourhoods 𝑈 of 𝑥 in𝑀, ∃𝑁 ∈ ℕ, ∀𝑛 ≥ 𝑁, 𝑥𝑛 ∈ 𝑈 .

Proof. First, (i) implies (ii). Let 𝑈 be a neighbourhood of 𝑥. Then by definition ∃𝜀 > 0,𝒟𝜀(𝑥) ⊂ 𝑈 .
Since 𝑥𝑛 → 𝑥,

∃𝑁 ∈ ℕ, ∀𝑛 ≥ 𝑁, 𝑥𝑛 ∈ 𝒟𝜀(𝑥)
hence ∀𝑛 ≥ 𝑁, 𝑥𝑛 ∈ 𝑈 .
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Now we show (ii) implies (iii). This is clear since any open set 𝑈 with 𝑥 ∈ 𝑈 is a neighbourhood of
𝑥.
Finally, (iii) implies (i). Fix 𝜀 > 0. By the above lemma, 𝑈 = 𝒟𝜀(𝑥) is open, and 𝑥 ∈ 𝑈 . Then by (iii),

∃𝑁 ∈ ℕ, ∀𝑛 ≥ 𝑛, 𝑥𝑛 ∈ 𝑈

hence 𝑑(𝑥𝑛, 𝑥) < 𝜀.

Proposition. Let 𝑓∶ 𝑀 → 𝑀′ be a function between metric spaces.
(a) The following are equivalent for all 𝑥 ∈ 𝑀.

(i) 𝑓 is continuous at 𝑥;
(ii) for all neighbourhoods 𝑉 of 𝑓(𝑥) in𝑀′, there exists a neighbourhood 𝑈 of 𝑥 in𝑀

such that 𝑓(𝑈) ⊂ 𝑉 ;
(iii) for all neighbourhoods 𝑉 of 𝑓(𝑥) in𝑀′, 𝑓−1(𝑉) is a neighbourhood of 𝑥 in𝑀.

(b) The following are equivalent.
(i) 𝑓 is continuous;
(ii) 𝑓−1(𝑉) is open in𝑀 for all open subsets 𝑉 of𝑀′.

Proof. First, we show (a)(i) implies (a)(ii). Let 𝑉 be a neighbourhood of 𝑓(𝑥) in 𝑀′. By definition,
∃𝜀 > 0 such that𝒟𝜀(𝑓(𝑥)) ⊂ 𝑉 . Since 𝑓 is continuous at 𝑥, there exists 𝛿 > 0 such that 𝑓(𝒟𝛿(𝑥)) ⊂
𝒟𝜀(𝑓(𝑥)). Then, 𝑈 = 𝒟𝛿(𝑥) is a neighbourhood of 𝑥 in M, and 𝑓(𝑈) ⊂ 𝑉 .
Now, (a)(ii) implies (a)(iii). Let 𝑉 be a neighbourhood of 𝑓(𝑥) in𝑀′. By (ii), there exists a neighbour-
hood of 𝑥 in 𝑀 such that 𝑓(𝑈) ⊂ 𝑉 . Then 𝑈 ⊂ 𝑓−1(𝑉) and since 𝑈 is a neighbourhood of 𝑥 in 𝑀,
ther exists 𝑟 > 0 such that𝒟𝑟(𝑥) ⊂ 𝑈 ⊂ 𝑓−1(𝑉) Thus, 𝑓−1(𝑉) is a neighbourhood of 𝑥 in𝑀.

Finally, (a)(iii) implies (a)(i). Given 𝜀 > 0, 𝑉 = 𝒟𝜀(𝑓(𝑥)) is a neighbourhood of 𝑓(𝑥) in 𝑉 . By (iii),
𝑓−1(𝑉) is a neighbourhood of 𝑥 in𝑀. So ∃𝛿 > 0 such that𝒟𝛿(𝑥) ⊂ 𝑓−1(𝑉). Thus, 𝑓(𝒟𝛿(𝑥)) ⊂ 𝑉 =
𝒟𝜀(𝑓(𝑥)).
Now, (b)(i) implies (b)(ii). Let 𝑉 be open in 𝑀′. So pick 𝑥 ∈ 𝑓−1(𝑉). Then, 𝑓(𝑥) ∈ 𝑉 . Since 𝑉
is open, ∃𝜀 > 0,𝒟𝜀(𝑓(𝑥)) ⊂ 𝑉 . Since 𝑓 is continuous at 𝑥, ∃𝛿 > 0, 𝑓(𝒟𝛿(𝑥)) ⊂ 𝒟𝜀(𝑓(𝑥)). Then,
𝒟𝛿(𝑥) ⊂ 𝑓−1(𝒟𝜀(𝑓(𝑥))) ⊂ 𝑓−1(𝑉).
Finally, (b)(ii) implies (b)(i). Consider 𝑥 ∈ 𝑀. We must show 𝑓 is continuous at 𝑥. Let 𝜀 > 0.
Consider the ball 𝑉 = 𝒟𝜀(𝑓(𝑥)). This is open in 𝑀′ by the above lemma. By (ii), 𝑓−1(𝑉) is open
in 𝑀. Further, 𝑥 ∈ 𝑓−1(𝑉). So by definition, ∃𝛿 > 0,𝒟𝛿(𝑥) ⊂ 𝑉 , which is exactly continuity as
required.

Definition. The topology of a metric space𝑀 is the family of all open subsets of𝑀.

Proposition. The topology of a metric space satisfies
(i) ∅ and𝑀 are open;
(ii) if𝑈 𝑖 are open in𝑀 for 𝑖 ∈ 𝐼 (𝐼may be countable or uncountable), then⋃𝑖∈𝐼 𝑈 𝑖 is open

in𝑀;
(iii) if 𝑈,𝑉 are open then 𝑈 ∩ 𝑉 is open.
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Proof. (ii): Let 𝑥 ∈ ⋃𝑖∈𝐼 𝑈 𝑖, then ∃𝑖𝑎 ∈ 𝐼, 𝑥 ∈ 𝑈 𝑖𝑎 . Then since 𝑈 𝑖𝑎 is open, ∃𝛿 > 0,𝒟𝑟(𝑥) ⊂ 𝑈 𝑖𝑎 ⊂
⋃𝑖∈𝐼 𝑈 𝑖

(iii) Given 𝑥 ∈ 𝑈 ∩ 𝑉 , since 𝑈 is open then ∃𝑟 > 0, 𝒟𝑟(𝑥) ⊂ 𝑈 and ∃𝑠 > 0, 𝒟𝑠(𝑥) ⊂ 𝑉 . Then let
𝑡 = min(𝑟, 𝑠), and𝒟𝑡(𝑥) = 𝒟𝑟(𝑥) ∩ 𝒟𝑠(𝑥) ⊂ 𝑈 ∩ 𝑉 .

4.4 Properties of topology of metric space

Definition. A subspace 𝐴 of a metric space𝑀 is closed in𝑀 if for every sequence (𝑥𝑛) ∈ 𝐴
that is convergent in𝑀,

lim
𝑛→∞

𝑥𝑛 ∈ 𝐴

Lemma. Closed balls are closed.

Proof. Consider ℬ𝑟(𝑥) in𝑀. Consider further (𝑥𝑛) ∈ ℬ𝑟(𝑥) such that 𝑥𝑛 → 𝑧 in𝑀.

𝑑(𝑧, 𝑥) ≤ 𝑑(𝑧, 𝑥𝑛) + 𝑑(𝑥𝑛, 𝑥) ≤ 𝑑(𝑧, 𝑥𝑛) + 𝑟 → 𝑟

Hence 𝑑(𝑧, 𝑥) ≤ 𝑟, so 𝑧 ∈ ℬ𝑟(𝑥).

Example. [0, 1] = ℬ1/2(1/2) is closed in ℝ. This is not open, for instance consider 𝐷𝑟(0) ⊄ [0, 1].

Example. (0, 1) = 𝒟1/2(1/2) is open in ℝ. This is not closed, for instance the sequence
1

𝑛+1
tends to

zero in ℝ.
Example. ℝ and ∅ are open and closed in ℝ.

Example. (0, 1] in ℝ is neither open nor closed. Consider𝒟𝑟(1) ⊄ (0, 1] and 1
𝑛
→ 0 ∉ (0, 1].

Lemma. Let 𝐴 ⊂ 𝑀. Then 𝐴 is closed in𝑀 if and only if𝑀 ∖ 𝐴 is open in𝑀.

Proof. Let 𝐴 be closed. Suppose 𝑀 ∖ 𝐴 is not open. Then ∃𝑥 ∈ 𝑀 ∖ 𝐴, ∀𝑟 > 0,𝒟𝑟(𝑥) ⊄ 𝑀 ∖ 𝐴, so
𝒟𝑟(𝑥)∩𝐴 ≠ ∅. In particular, for every𝑛we can choose a point in𝒟1/𝑛(𝑥)∩𝐴. Then, 𝑑(𝑥𝑛, 𝑥) <

1
𝑛
→ 0

and 𝑥𝑛 ∈ 𝐴 which contradicts the fact that 𝐴 is closed.

Conversely, let us assume 𝑀 ∖ 𝐴 is open, but suppose 𝐴 is not closed. Then there exists a sequence
(𝑥𝑛) ∈ 𝐴 such that 𝑥𝑛 → 𝑥 in 𝑀 but 𝑥 ∉ 𝐴. Since 𝑥 ∈ 𝑀 ∖ 𝐴 and 𝑀 ∖ 𝐴 is open, there exists
𝜀 > 0,𝒟𝜀(𝑥) ⊂ 𝑀 ∖ 𝐴. Since 𝑥𝑛 → 𝑥, we must have ∃𝑁 ∈ ℕ, ∀𝑛 ≥ 𝑁, 𝑥𝑛 ∈ 𝒟𝜀(𝑥) and hence
𝑥𝑛 ∈ 𝑀 ∖ 𝐴, which is a contradiction.

Example. Let𝑀 be a discrete metric space. Let𝐴 ⊂ 𝑀. Then for all 𝑥 ∈ 𝐴,𝒟1(𝑥) = {𝑥} ⊂ 𝐴. Hence
𝐴 is open. So in a discrete metric space, all subsets are open. Hence every subset is closed.
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4.5 Homeomorphisms

Definition. A map 𝑓∶ 𝑀 → 𝑀′ between metric spaces is called a homeomorphism if 𝑓 is a
bijection and 𝑓, 𝑓−1 are continuous. Equivalently, 𝑓 is a bijection, and for all open sets 𝑉 in
𝑀′, 𝑓−1(𝑉) is open in 𝑀, and for all open sets 𝑈 in 𝑀, 𝑓(𝑈) is open in 𝑀′. If there exists a
homeomorphism between𝑀,𝑀′, we say that𝑀,𝑀′ are homeomorphic.

Example. Consider (0,∞) and (0, 1). Consider the map 𝑥 ↦ 1
𝑥+1

with inverse 𝑥 ↦ 1
𝑥
− 1. These

are continuous, so the metric spaces are homeomorphic.

Remark. Every isometry is a homeomorphism, since it is bijective by definition. It is not true that
every homeomorphism is an isometry.

Consider the identity onℝwith the discrete metric toℝwith the Euclideanmetric. This is a continu-
ous bijection whose inverse is not continuous. So it is not true that a continuous bijection always has
a continuous inverse.

4.6 Equivalence of metrics

Definition. Let 𝑑, 𝑑′ be metrics on a set𝑀. We say that 𝑑, 𝑑′ are equivalent, written 𝑑 ∼ 𝑑′,
if they define the same topology. In particular, 𝑈 ⊂ 𝑀 is open in (𝑀, 𝑑) if and only if 𝑈 is
open in (𝑀, 𝑑′). So 𝑑 ∼ 𝑑′ if and only if id∶ (𝑀, 𝑑) → (𝑀, 𝑑′) is a homeomorphism.

Remark. If 𝑑 ∼ 𝑑′, then (𝑀, 𝑑) and (𝑀, 𝑑′) have the same convergent sequences and continuous
maps.

Definition. Let 𝑑, 𝑑′ be metrics on 𝑀. Then we say 𝑑, 𝑑′ are uniformly equivalent, written
𝑑 ∼𝑢 𝑑′ if

id∶ (𝑀, 𝑑) → (𝑀, 𝑑′); id∶ (𝑀, 𝑑′) → (𝑀, 𝑑)
are uniformly continuous. We say 𝑑, 𝑑′ are Lipschitz equivalent, written 𝑑 ∼Lip 𝑑′, if the
identity maps above are Lipschitz. Equivalently, 𝑑 ∼Lip 𝑑′ if ∃𝑎 > 0, 𝑏 > 0, 𝑎𝑑(𝑥, 𝑦) ≤
𝑑′(𝑥, 𝑦) ≤ 𝑏𝑑(𝑥, 𝑦). Note, 𝑑 ∼Lip 𝑑′ ⟹ 𝑑 ∼𝑢 𝑑′ ⟹ 𝑑 ∼ 𝑑′.

Example. Given a metric space (𝑀, 𝑑), we define 𝑑′(𝑥, 𝑦) = min(1, 𝑑(𝑥, 𝑦)). This defines a metric
on𝑀, and 𝑑′ ∼𝑢 𝑑.
Example. On𝑀 ×𝑀′, 𝑑1, 𝑑2, 𝑑∞ are pairwise Lipschitz equivalent.

Example. Consider 𝐶[0, 1]. The 𝐿1 metric and the uniform metric are not equivalent. Consider
𝑓𝑛(𝑥) = 𝑥𝑛. This is convergent to zero in the 𝐿1 metric but is not convergent in the uniform metric.

Example. The discrete metric and Euclidean metric on ℝ are not equivalent. This is because in the
discrete metric all sets are open, but in the Euclidean metric there are some non-open sets.
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5 Completeness
5.1 Cauchy sequences
In ℝ,ℂ, every Cauchy sequence is convergent. We wish to generalise this notion to an arbitrary
metric space. Recall that a sequence (𝑥𝑛) in ℝ or ℂ is bounded if there exists 𝑐 ∈ ℝ+ such that
∀𝑛 ∈ ℕ, |𝑥𝑛| ≤ 𝑐.

Definition. A sequence (𝑥𝑛) in a metric space𝑀 is said to be Cauchy if

∀𝜀 > 0, ∃𝑁 ∈ ℕ, ∀𝑚, 𝑛 ≥ 𝑁, 𝑑(𝑥𝑚, 𝑥𝑛) < 𝜀

The sequence is bounded if

∃𝑧 ∈ 𝑀, ∃𝑟 > 0, ∀𝑛 ∈ ℕ, 𝑥𝑛 ∈ ℬ𝑟(𝑧)

This is equivalent to
∀𝑧 ∈ 𝑀, ∃𝑟 > 0, ∀𝑛 ∈ ℕ, 𝑥𝑛 ∈ ℬ𝑟(𝑧)

by considering the triangle inequality around the given 𝑧 point. In particular, if the metric
arises from a norm, (𝑥𝑛) is bounded if and only if ‖𝑥𝑛‖ is bounded.

Lemma. If a sequence is convergent, it is Cauchy. If a sequence is Cauchy, it is bounded.

Proof. Let (𝑥𝑛) be a sequence in 𝑀. First, we assume that (𝑥𝑛) is convergent in 𝑀, so let 𝑥 be the
limit. Given 𝜀 > 0, there exists 𝑁 ∈ ℕ such that ∀𝑛 ≥ 𝑁, 𝑑(𝑥𝑛, 𝑥) < 𝜀. Then, for all 𝑚, 𝑛 ≥ 𝑁, we
have 𝑑(𝑥𝑚, 𝑥𝑛) ≤ 𝑑(𝑥𝑚, 𝑥) + 𝑑(𝑥, 𝑥𝑛) ≤ 2𝜀 as required. So (𝑥𝑛) is Cauchy.
Now conversely, we assume (𝑥𝑛) is Cauchy. There exists 𝑛 ∈ ℕ such that ∀𝑚, 𝑛 ≥ 𝑁, we have
𝑑(𝑥𝑚, 𝑥𝑛) < 1. In particular, 𝑑(𝑥𝑛, 𝑥𝑁) < 1 for 𝑛 ≥ 𝑁. In other words, 𝑥𝑛 ∈ ℬ1(𝑥𝑁). Now, let
𝑟 = max {𝑑(𝑥1, 𝑥𝑁),… , 𝑑(𝑥𝑁−1, 𝑥𝑁), 1}. This 𝑟 is a bound for all elements of the sequence; for all
𝑛 ∈ ℕ, 𝑥𝑛 ∈ ℬ𝑟(𝑥𝑁).

Remark. Boundedness does not imply the sequence is Cauchy. For instance, consider the sequence
0, 1, 0, 1,… inℝ. If a sequence is Cauchy, it is not necessarily convergent in an arbitrary metric space
(not ℝ,ℂ). For instance, consider 𝑥𝑛 =

1
𝑛
in (0,∞). This is certainly not convergent, since the limit

cannot be zero.

5.2 Definition of completeness

Definition. A metric space 𝑀 is called complete if every Cauchy sequence in 𝑀 converges
in𝑀.

Example. ℝ,ℂ are complete.
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5.3 Completeness of product spaces

Proposition. Product spaces of complete spaces are complete. More precisely, if𝑀,𝑀′ are
complete, then so is𝑀 ⊕𝑝 𝑀′.

Proof. Let (𝑎𝑛) be a Cauchy sequence in the product space𝑀⊕𝑝𝑀′. We will write 𝑎𝑛 = (𝑥𝑛, 𝑥′𝑛) for
all 𝑛. Then, since (𝑎𝑛) is Cauchy,

∀𝜀 > 0, ∃𝑁 ∈ ℕ, ∀𝑚, 𝑛 ∈ 𝑁, 𝑑𝑝(𝑎𝑚, 𝑎𝑛) < 𝜀

Then, for all𝑚, 𝑛 ≥ 𝑁,

𝑑(𝑥𝑚, 𝑥𝑛) ≤ max {𝑑(𝑥𝑚, 𝑥𝑛), 𝑑(𝑥′𝑚, 𝑥′𝑛)} ≤ 𝑑𝑝(𝑎𝑚, 𝑎𝑛) < 𝜀

Hence (𝑥𝑛) is Cauchy in𝑀, and similarly (𝑥′𝑚) is Cauchy in𝑀′. Since𝑀,𝑀′ are complete, (𝑥𝑛), (𝑥′𝑛)
are convergent in𝑀,𝑀′ to 𝑥, 𝑥′. Now, let 𝑎 = (𝑥, 𝑥′). Then,

𝑑𝑝(𝑎𝑛, 𝑎) ≤ 𝑑1(𝑎𝑛, 𝑎) = 𝑑(𝑥𝑛, 𝑥) + 𝑑(𝑥′𝑛, 𝑥′) → 0

So the product space is complete.

Remark. (𝑎𝑛) is Cauchy in𝑀 ⊕𝑝 𝑀′ if and only if (𝑥𝑛) is Cauchy in𝑀 and (𝑥′𝑛) is Cauchy in𝑀′.

Corollary. ℝ𝑛, ℂ𝑛 are complete in the ℓ𝑝metric. In particular, 𝑛-dimensional real or complex
Euclidean space is complete.

5.4 Completeness of subspaces and function spaces

Theorem. Let 𝑆 be any set. Then, ℓ∞(𝑆), the set of bounded scalar functions on 𝑆, is com-
plete in the uniform metric 𝐷.

Proof. Let (𝑓𝑛) be a Cauchy sequence in ℓ∞(𝑆). Then,

∀𝜀 > 0, ∃𝑁 ∈ ℕ, ∀𝑚, 𝑛 ≥ 𝑁,𝐷(𝑥𝑚, 𝑥𝑛) = sup
𝑥∈𝑆

|𝑓𝑚(𝑥) − 𝑓𝑛(𝑥)| < 𝜀

In other words, ∀𝑚, 𝑛 ≥ 𝑁, ∀𝑥 ∈ 𝑆, |𝑓𝑚(𝑥) − 𝑓𝑛(𝑥)| < 𝜀. So (𝑓𝑛) is uniformly Cauchy as defined
previously. As shown previously, (𝑓𝑛) is uniformly convergent. Hence, there is a scalar function 𝑓
on 𝑆 such that 𝑓𝑛 → 𝑓 uniformly on 𝑆. We have also shown previously that the uniform limit 𝑓 of
bounded functions (𝑓𝑛) is bounded. In other words, 𝑓 ∈ ℓ∞(𝑆). Now it remains to show that 𝑓𝑛 → 𝑓
in the uniform metric.

∀𝜀 > 0, ∃𝑁 ∈ ℕ, ∀𝑛 ≥ 𝑀, ∀𝑥 ∈ 𝑆, |𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜀

Hence,
∀𝑛 ≥ 𝑁, sup

𝑥∈𝑆
|𝑓𝑛(𝑥) − 𝑓(𝑥)| = 𝐷(𝑓𝑛, 𝑓) ≤ 𝜀

which is convergence in the metric as required.
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Proposition. Let 𝑁 be a subspace of a metric space𝑀. Then,
(i) If 𝑁 is complete, 𝑁 is closed in𝑀.
(ii) If𝑀 is complete and 𝑁 is closed in𝑀, then 𝑁 is complete.

In other words, in a complete metric space, a subspace is complete if and only if it is closed.

Proof. To prove (i), we let (𝑥𝑛) be a sequence in 𝑁 and assume that 𝑥𝑛 → 𝑥 in𝑀. We want to show
that 𝑥 ∈ 𝑁. We know (𝑥𝑛) is convergent in𝑀, so it is Cauchy in𝑀. So (𝑥𝑛) is Cauchy in 𝑁. Since 𝑁
is complete, 𝑥𝑛 → 𝑦 in 𝑁. So 𝑥𝑛 → 𝑦 in𝑀. By uniqueness of limits, 𝑥 = 𝑦 as required.
Now we want to prove (ii) is complete. Let (𝑥𝑛) be a Cauchy sequence in 𝑁. Then (𝑥𝑛) is Cauchy in
𝑀. Since𝑀 is complete, 𝑥𝑛 → 𝑥 in𝑀 for some 𝑥 ∈ 𝑀. Since 𝑁 is closed in𝑀, 𝑥 ∈ 𝑁. So 𝑥𝑛 → 𝑥 in
𝑁.

Theorem. Let (𝑀, 𝑑) be a metric space, and define 𝐶𝑏(𝑀) to be the set of functions 𝑓 in
ℓ∞(𝑀) such that𝑓 is continuous. This is a subspace of ℓ∞(𝑀) in the uniformmetric𝐷. 𝐶𝑏(𝑀)
is complete in the uniform metric.

Proof. By the above proposition, it is sufficient to show that 𝐶𝑏(𝑀) is closed in ℓ∞(𝑀). Let (𝑓𝑛) be
a sequence in 𝐶𝑏(𝑀) and we assume that 𝑓𝑛 → 𝑓 in ℓ∞(𝑀). We want to show that 𝑓𝑛 ∈ 𝐶𝑏(𝑀). It
is now sufficient to show that 𝑓 is continuous, or equivalently, continuous at every point in 𝑀. Let
𝑎 ∈ 𝑀, and let 𝜀 > 0. Since 𝑓𝑛 → 𝑓 in ℓ∞(𝑀), we can fix 𝑛 ∈ ℕ such that 𝐹(𝑓𝑛, 𝑓) < 𝜀. Since 𝑓𝑛 is
continuous (at 𝑎),

∃𝛿 > 0, ∀𝑥 ∈ 𝑀, 𝑑(𝑥, 𝑎) < 𝛿 ⟹ |𝑓𝑛(𝑥) − 𝑓𝑛(𝑎)| < 𝜀
Hence, ∀𝑥 ∈ 𝑀, if 𝑑(𝑥, 𝑎) < 𝛿 we have

|𝑓(𝑥) − 𝑓(𝑎)| ≤ |𝑓(𝑥) − 𝑓𝑛(𝑥)| + |𝑓𝑛(𝑥) − 𝑓𝑛(𝑎)| + |𝑓𝑛(𝑎) − 𝑓(𝑎)|
≤ 2𝐷(𝑓𝑛, 𝑓) + |𝑓𝑛(𝑥) − 𝑓𝑛(𝑎)|
< 3𝜀

Corollary. Consider 𝐶[𝑎, 𝑏], the space of continuous functions on [𝑎, 𝑏]. This space is com-
plete in the uniform metric, since 𝐶[𝑎, 𝑏] = 𝐶𝑏[𝑎, 𝑏].

Definition. Let 𝑆 be a set, and (𝑁, 𝑒) be a metric space. Then we generalise ℓ∞(𝑆) to the
following definition.

ℓ∞(𝑆, 𝑁) = {𝑓∶ 𝑆 → 𝑁∶ 𝑓 is bounded}
where 𝑓 is bounded if there exists 𝑦 ∈ 𝑁, 𝑟 > 0 such that ∀𝑥 ∈ 𝑆, 𝑓(𝑥) ∈ ℬ𝑟(𝑦). If 𝑔∶ 𝑆 → 𝑁
is a bounded function, ∀𝑥 ∈ 𝑆, 𝑔(𝑥) ∈ ℬ𝑠(𝑧), then

∀𝑥 ∈ 𝑆, 𝑒(𝑓(𝑥), 𝑔(𝑥)) ≤ 𝑒(𝑓(𝑥), 𝑦) + 𝑒(𝑦, 𝑧) + 𝑒(𝑧, 𝑔(𝑥)) ≤ 𝑟 + 𝑒(𝑦, 𝑧) + 𝑠
This is a uniform bound for all 𝑥, so we may take the supremum. So sup𝑥∈𝑆 𝑒(𝑓(𝑥), 𝑔(𝑥))
exists and we denote this by

𝒟(𝑓, 𝑔) = sup
𝑥∈𝑆

𝑒(𝑓(𝑥), 𝑔(𝑥))
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This can be shown to be a metric, called the uniform metric on ℓ∞(𝑆, 𝑁). Now, let 𝑆 = 𝑀,
where (𝑀, 𝑑) is a metric space. We define

𝐶𝑏(𝑀,𝑁) = {𝑓∶ 𝑀 → 𝑁∶ 𝑓 continuous and bounded}

Note that 𝐶𝑏(𝑀,𝑁) is a subspace of ℓ∞(𝑀,𝑁) with the uniform metric.

Theorem. Let 𝑆 be a set, let (𝑀, 𝑑) be a metric space, and let (𝑁, 𝑒) be a complete metric
space. Then
(i) ℓ∞(𝑆, 𝑁) is complete in the uniform metric 𝐷;
(ii) 𝐶𝑏(𝑀,𝑁) is complete in the uniform metric 𝐷.

Proof. We first prove part (i). Let (𝑓𝑛) be a Cauchy sequence in ℓ∞(𝑆, 𝑁). We first show that (𝑓𝑛) is
pointwise Cauchy. Let 𝑥 ∈ 𝑆.

∀𝜀 > 0, ∃𝐾 ∈ ℕ, ∀𝑖, 𝑗 ≥ 𝐾,𝐷(𝑓𝑖, 𝑓𝑗) < 𝜀

In particular, 𝑒(𝑓𝑖(𝑥), 𝑓𝑗(𝑥)) ≤ 𝐷(𝑓𝑖, 𝑓𝑗) < 𝜀 for 𝑖, 𝑗 ≥ 𝐾. So the sequence (𝑓𝑘(𝑥))𝑘 is Cauchy in 𝑁.
Since 𝑁 is complete, (𝑓𝑘(𝑥))𝑘 converges. This holds for all 𝑥 ∈ 𝑆, hence we can define 𝑓∶ 𝑆 → 𝑁 by
𝑓(𝑥) = lim𝑘→∞ 𝑓𝑘(𝑥).
Now, we must show that 𝑓 is bounded, such that 𝑓 ∈ ℓ∞(𝑆, 𝑁). Since 𝑓𝑘 is Cauchy in the uniform
metric𝐷, there exists𝐾 ∈ ℕ such that ∀𝑖, 𝑗 ≥ 𝐾,𝐷(𝑓𝑖, 𝑓𝑗) < 1. In particular, for all 𝑖 ≥ 𝐾,𝐷(𝑓𝑖, 𝑓𝐾) <
1. Since 𝑓𝐾 is bounded, there exists 𝑦 ∈ 𝑁, 𝑟 > 0 such that ∀𝑥 ∈ 𝑆, 𝑓𝐾(𝑥) ∈ ℬ𝑟(𝑦). Then, by the
triangle inequality, for a fixed 𝑥 ∈ 𝑆, ∀𝑖 ≥ 𝐾, 𝑒(𝑓𝑖(𝑥), 𝑓𝐾(𝑥)) ≤ 𝐷(𝑓𝑖(𝑥), 𝑓𝐾(𝑥)) < 1. Let 𝑖 → ∞, then
𝑒(𝑓𝑖(𝑥), 𝑓𝐾(𝑥)) ≤ 1. Hence 𝑒(𝑓(𝑥), 𝑦) ≤ 𝑒(𝑓(𝑥), 𝑓𝐾(𝑥)) + 𝑒(𝑓𝐾(𝑥), 𝑦) ≤ 1 + 𝑟. But since this is true for
all 𝑥, 1 + 𝑟 is a uniform bound; ∀𝑥 ∈ 𝑆, 𝑓(𝑥) ∈ ℬ𝑟+1(𝑦).
Now we will show that 𝑓𝑘 → 𝑓 uniformly in 𝐷. Again, we use

∀𝜀 > 0, ∃𝐾 ∈ ℕ, ∀𝑖, 𝑗 ≥ 𝐾,𝐷(𝑓𝑖, 𝑓𝑗) < 𝜀

So choose 𝑖 ≥ 𝐾, and 𝑥 ∈ 𝑆. Then for all 𝑗 ≥ 𝐾, 𝑒(𝑓𝑖(𝑥), 𝑓𝑗(𝑥)) ≤ 𝐷(𝑓𝑖, 𝑓𝑗) < 𝜀. As 𝑗 → ∞,
𝑒(𝑓(𝑥), 𝑓𝑖(𝑥)) ≤ 𝜀, because metrics are continuous. But since 𝑥 was arbitrary, we have a uniform
distance 𝐷(𝑓, 𝑓𝑖) < 𝜀. This holds for all 𝑖 ≥ 𝐾, so we have uniform convergence.

Now we prove part (ii). By part (i) and an above proposition, it is enough to show that 𝐶𝑏(𝑀,𝑁)
is closed in ℓ∞(𝑀,𝑁). Let (𝑓𝑘) be a sequence in 𝐶𝑏(𝑀,𝑁) and 𝑓𝑘 → 𝑓 in ℓ∞(𝑀,𝑁). We require
𝑓 ∈ 𝐶𝑏(𝑀,𝑁), so it is enough to show that 𝑓 is continuous. This is exactly the proof that the uniform
limit of continuous functions is continuous. Let 𝑎 ∈ 𝑀, 𝜀 > 0. Then, since 𝑓𝑘 → 𝑓 in ℓ∞(𝑀,𝑁),
we can fix 𝑘 ∈ ℕ such that 𝐷(𝑓𝑘, 𝑓) < 𝜀. Since 𝑓𝑘 is continuous, ∃𝛿 > 0, ∀𝑥 ∈ 𝑀, 𝑑(𝑥, 𝑎) < 𝛿 ⟹
𝑒(𝑓𝑘(𝑥), 𝑓𝑘(𝑎)) < 𝜀.

∀𝑥 ∈ 𝑀, 𝑓(𝑥, 𝑎) < 𝛿 ⟹ 𝑒(𝑓(𝑥), 𝑓(𝑎)) ≤ 𝑒(𝑓(𝑥), 𝑓𝑘(𝑥)) + 𝑒(𝑓𝑘(𝑥), 𝑓𝑘(𝑎)) + 𝑒(𝑓𝑘(𝑎), 𝑓(𝑎))
≤ 3𝜀
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6 Contraction mapping theorem
6.1 Contraction mappings

Definition. A function 𝑓∶ 𝑀 → 𝑀′ is called a contraction mapping if ∃𝜆, 0 ≤ 𝜆 < 1 such
that

∀𝑥, 𝑦 ∈ 𝑀, 𝑑′(𝑓(𝑥), 𝑓(𝑦)) ≤ 𝜆𝑑(𝑥, 𝑦)
so 𝑓 is 𝜆-Lipschitz.

6.2 Contraction mapping theorem
This theorem is also called Banach’s fixed point theorem.

Theorem. Let 𝑀 be a non-empty complete metric space. Let 𝑓∶ 𝑀 → 𝑀 be a contraction
mapping. Then 𝑓 has a unique fixed point:

∃!𝑧 ∈ 𝑀, 𝑓(𝑧) = 𝑧

Proof. Let 𝜆 such that 0 ≤ 𝜆 < 1 and ∀𝑥, 𝑦 ∈ 𝑀, 𝑑′(𝑓(𝑥), 𝑓(𝑦)) ≤ 𝜆𝑑(𝑥, 𝑦). First we show uniqueness.
Suppose there were two fixed points 𝑓(𝑧) = 𝑧, 𝑓(𝑤) = 𝑤. Then 𝑑(𝑧, 𝑤) = 𝑑(𝑓(𝑧), 𝑓(𝑤)) ≤ 𝜆𝑑(𝑧, 𝑤) <
𝑑(𝑧, 𝑤). Hence 𝑑(𝑧, 𝑤) = 0 so 𝑧 = 𝑤.
Now we show existence. Fix a starting point 𝑥0 ∈ 𝑀. Let 𝑥𝑛 = 𝑓(𝑥𝑛−1) for all 𝑛 ∈ ℕ, so 𝑥𝑛 = 𝑓𝑛(𝑥0).
First, observe that for all 𝑛 ∈ ℕ,

𝑑(𝑥𝑛, 𝑥𝑛+1) = 𝑑(𝑓(𝑥𝑛−1), 𝑓(𝑥𝑛)) ≤ 𝜆𝑑(𝑥𝑛−1, 𝑥𝑛) ≤ ⋯ ≤ 𝜆𝑛𝑑(𝑥0, 𝑥1)
For𝑚 ≥ 𝑛, we have

𝑑(𝑥𝑛, 𝑥𝑚) ≤
𝑚−1
∑
𝑘=𝑛

𝑑(𝑥𝑘, 𝑥𝑘+1) ≤
𝑚−1
∑
𝑘=𝑛

𝜆𝑘𝑑(𝑥0, 𝑥1) ≤
𝜆𝑛

1 − 𝜆𝑑(𝑥0, 𝑥1)

Since 𝜆𝑛

1−𝜆
𝑑(𝑥0, 𝑥1) → 0,

∀𝜀 > 0, ∃𝑁 ∈ ℕ, ∀𝑛 ≥ 𝑁, 𝜆𝑛
1 − 𝜆𝑑(𝑥0, 𝑥1) < 𝜀

Hence, ∀𝑚 ≥ 𝑛 ≥ 𝑁, 𝑑(𝑥𝑛, 𝑥𝑚) < 𝜀. So the sequence (𝑥𝑛) is Cauchy. Since 𝑀 is complete, (𝑥𝑛) is
convergent to some point 𝑧 ∈ 𝑀. 𝑓 is continuous since it is a contraction, so 𝑓(𝑥𝑛) → 𝑧 so 𝑓(𝑧) = 𝑧.
So the fixed point exists.

Remark. Letting 𝑚 → ∞ in the inequality for 𝑑(𝑥𝑛, 𝑥𝑚), 𝑑(𝑥𝑛, 𝑧) ≤
𝜆𝑛

1−𝜆
𝑑(𝑥0, 𝑥1). So 𝑥𝑛 → 𝑧 expo-

nentially fast. Consider 𝑓∶ ℝ ∖ {0} → ℝ ∖ {0}, and 𝑥 ↦ 𝑥
2
. This is a contraction, but there is no fixed

point. This is because ℝ ∖ {0} is not complete. Consider instead 𝑓∶ ℝ → ℝ, 𝑥 ↦ 𝑥 + 1. This has no
fixed point, since 𝑓 is an isometry (𝜆 = 1) and not a contraction. Consider further 𝑓∶ [1,∞) → [1,∞)
mapping 𝑥 ↦ 𝑥 + 1

𝑥
. Certainly |𝑓(𝑥) − 𝑓(𝑦)| < |𝑥 − 𝑦|. [1,∞) is closed in ℝ so it is complete. How-

ever this is not a contraction; even though |𝑓(𝑥) − 𝑓(𝑦)| < |𝑥 − 𝑦|, there is no upper bound 𝜆. There
are no fixed points.
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6.3 Application of contraction mapping theorem
Let 𝑦0 ∈ ℝ. Then the initial value problem 𝑓′(𝑡) = 𝑓(𝑡2) and 𝑓(0) = 𝑦0 has a unique solution on
[0, 1

2
]. In other words, there exists a unique differentiable function 𝑓∶ [0, 1

2
] → [0, 1

2
] such that

𝑓(0) = 𝑦0 and 𝑓′(𝑡) = 𝑓(𝑡2) for all 𝑡 in the domain.

First, observe that if 𝑓 is a solution then certainly it is continuous, so 𝑓 ∈ 𝐶[0, 1
2
]. Further, by the

fundamental theorem of calculus, it satisfies

𝑓(𝑡) = 𝑦0 +∫
𝑡

0
𝑓(𝑠2) d𝑠

Note that 𝑓′(𝑠) = 𝑓(𝑠2) is continuous. Conversely, if 𝑓 ∈ 𝐶[0, 1
2
] and 𝑓(𝑡) = 𝑦0 + ∫𝑡

0 𝑓(𝑠2) d𝑠 then 𝑓
is a solution to the initial value problem.

Let𝑀 = 𝐶[0, 1
2
]with the uniformmetric. This is non-empty and complete. Then we define the map

𝑇 ∶ 𝑀 → 𝑀 by

(𝑇𝑔)(𝑡) = 𝑦0 +∫
𝑡

0
𝑔(𝑠2) d𝑠

Note that 𝑇𝑔 is well-defined since 𝑔(𝑠2) is continuous. Moreover, by the fundamental theorem of
calculus, 𝑇𝑔 is differentiable and (𝑇𝑔)′(𝑡) = 𝑔(𝑡2). Thus, 𝑓 is a solution to the initial value problem if
and only if 𝑓 ∈ 𝑀 and 𝑇𝑓 = 𝑓.
Now, if 𝑇 is a contraction, we can use the contraction mapping theorem to assert that there is exactly
one fixed point. For 𝑔, ℎ ∈ 𝑀, 𝑡 ∈ [0, 1

2
], consider

|(𝑇𝑔)(𝑡) − (𝑇ℎ)(𝑡)| =
||||
∫

𝑡

0
[𝑔(𝑠2) − ℎ(𝑠2)] d𝑠

||||
≤ 𝑡 sup

𝑠∈[0, 12 ]
||𝑔(𝑠2) − ℎ(𝑠2)|| ≤ 1

2𝐷(𝑔, ℎ)

Taking the supremumover 𝑡 gives𝐷(𝑇𝑔, 𝑇ℎ) ≤ 1
2
𝐷(𝑔, ℎ), and so there is exactly one fixed point.

Remark. The above shows that for any 𝛿 ∈ (0, 1) there is a unique solution to the initial value problem
on [0, 𝛿], called 𝑓𝛿, since 𝛿 < 1 is required for the map to be a contraction. For 0 < 𝛿 < 𝜇 < 1,
𝑓𝜇||[0,𝛿] = 𝑓𝛿 by uniqueness. So we can combine the solutions together to yield a unique solution on
[0, 1).

6.4 Lindelöf–Picard theorem

Theorem. Let 𝑛 ∈ ℕ, 𝑦0 ∈ ℝ𝑛, and 𝑎, 𝑏, 𝑅 ∈ ℝ, such that 𝑎 < 𝑏 and 𝑅 > 0. Let
𝜙∶ [𝑎, 𝑏] × ℬ𝑅(𝑦0) → ℝ𝑛 be a continuous function. Given that there exists 𝐾 > 0 such
that ∀𝑡 ∈ [𝑎, 𝑏], ∀𝑥, 𝑦 ∈ ℬ𝑅(𝑦0), such that

‖𝜙(𝑡, 𝑥) − 𝜙(𝑡, 𝑦)‖ ≤ 𝐾‖𝑥 − 𝑦‖

Then, ∃𝜀 > 0 such that ∀𝑡, 𝑡0 ∈ [𝑎, 𝑏], the initial value problem

𝑓′(𝑡) = 𝜙(𝑡, 𝑓(𝑡)); 𝑓(𝑡0) = 𝑦0
has a unique solution on [𝑐, 𝑑] = [𝑡0 − 𝜀, 𝑡0 + 𝜀] ∩ [𝑎, 𝑏].
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Remark. If 𝑓 is a solution of the initial value problem, implicitly this includes the assumption that
𝑓(𝑡) ∈ 𝐵𝑟(𝑦0) for all 𝑡 ∈ [𝑐, 𝑑]. Note that if 𝑓∶ [𝑐, 𝑑] → ℝ𝑛, we let 𝑓𝑘 ∶ [𝑐, 𝑑] → ℝ be the 𝑘th com-
ponent of 𝑓, and 𝑓𝑘 = 𝑞𝑘 ∘ 𝑓 where 𝑞𝑘 is the 𝑘th coordinate projection. Then, 𝑓(𝑡) = (𝑓1(𝑡),… , 𝑓𝑛(𝑡))
and we define 𝑓 to be differentiable if and only if all of the components are differentiable, with
𝑓′(𝑡) = (𝑓′1 (𝑡),… , 𝑓′𝑛(𝑡)). Note further, if 𝑓 is continuous, then so are 𝑓𝑘, hence 𝑓𝑘 are integrable.
So we define

∫
𝑑

𝑐
𝑓(𝑡) d𝑡 = 𝑣 = (∫

𝑑

𝑐
𝑓1(𝑡) d𝑡 ,… ,∫

𝑑

𝑐
𝑓𝑛(𝑡) d𝑡)

Note that we can use the Cauchy–Schwarz inequality to give

‖𝑣‖2 =
𝑛
∑
𝑘=1

𝑣2𝑘

=
𝑛
∑
𝑘=1

𝑣𝑘∫
𝑑

𝑐
𝑓𝑘(𝑡) d𝑡

= ∫
𝑑

𝑐

𝑛
∑
𝑘=1

𝑣𝑘𝑓𝑘(𝑡) d𝑡

= ∫
𝑑

𝑐
𝑣 ⋅ 𝑓(𝑡) d𝑡

≤ ∫
𝑑

𝑐
‖𝑣‖ ⋅ ‖𝑓(𝑡)‖ d𝑡

= ‖𝑣‖∫
𝑑

𝑐
‖𝑓(𝑡)‖ d𝑡

Hence,
‖
‖‖‖
∫

𝑑

𝑐
𝑓(𝑡) d𝑡

‖
‖‖‖
≤ ∫

𝑑

𝑐
‖𝑓(𝑡)‖ d𝑡 ≤ (𝑑 − 𝑐) sup

𝑡∈[𝑐,𝑑]
‖𝑓(𝑡)‖

Proof. Recall that closed balls are closed, henceℬ𝑅(𝑦0) is a closed subset ofℝ𝑛. So 𝜙 is a continuous
function on the closed and bounded set [𝑎, 𝑏] × ℬ𝑅(𝑦0). It follows that 𝜙 is bounded. Now, let
𝑐 = sup {‖𝜙(𝑡, 𝑥)‖∶ 𝑡 ∈ [𝑎, 𝑏], 𝑥 ∈ ℬ𝑅(𝑦0)}. Let 𝜀 = min(𝑅

𝑐
, 1
2𝐾
). Let 𝑡0 ∈ [𝑎, 𝑏] and let [𝑐, 𝑑] =

[𝑡0−𝜀, 𝑡0+𝜀]∩[𝑎, 𝑏]. Weneed to show that there exists a unique differentiable function𝑓∶ [𝑐, 𝑑] → ℝ𝑛

such that 𝑓(𝑡0) = 𝑦0 and 𝑓′(𝑡) = 𝜙(𝑡, 𝑓(𝑡)) for all 𝑡 ∈ [𝑐, 𝑑]. Sinceℬ𝑅(𝑦0) is closed inℝ𝑛, and sinceℝ𝑛

is complete, ℬ𝑅(𝑦0) is complete. Then, 𝑀 = 𝐶([𝑐, 𝑑], ℬ𝑅(𝑦0)) is complete in the uniform metric 𝐷.
This is certainly non-empty; consider the constant function yielding 𝑦0. 𝑓 is a solution to the initial
value problem if 𝑓 ∈ 𝑀 and 𝑓′(𝑡) = 𝑦0 +∫𝑡

𝑡0 𝜙(𝑠, 𝑓(𝑠)) d𝑠, from the fundamental theorem of calculus
applied coordinatewise. We define 𝑇 ∶ 𝑀 → 𝑀 mapping 𝑔 ↦ 𝑇𝑔 where 𝑇𝑔 is given by

(𝑇𝑔)(𝑡) = 𝑦0 +∫
𝑡

𝑡0
𝜙(𝑠, 𝑔(𝑠)) d𝑠

Wemust show 𝑇 is well defined. First, note that the integral is well defined; 𝑠 ↦ 𝜙(𝑠, 𝑔(𝑠)) is continu-
ous so integrable. By the fundamental theorem of calculus, 𝑇𝑔 is differentiable and the derivative is
(𝑇𝑔)′(𝑡) = 𝜙(𝑡, 𝑔(𝑡)). In particular, 𝑇𝑔∶ [𝑐, 𝑑] → ℝ𝑛 is continuous. Finally, for 𝑡 ∈ [𝑐, 𝑑],

‖(𝑇𝑔)(𝑡) − 𝑦0‖ =
‖
‖‖‖
∫

𝑡

𝑡0
𝜙(𝑠, 𝑔(𝑠)) d𝑠

‖
‖‖‖
≤ |𝑡 − 𝑡0| sup

𝑠∈[𝑐,𝑑]
‖𝜙(𝑠, 𝑔(𝑠))‖ ≤ 𝜀𝑐 ≤ 𝑅
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So 𝑇𝑔 ∈ 𝑀. Recall that 𝑓 is a solution of the initial value problem if and only if 𝑓 ∈ 𝑀 and 𝑇𝑓 = 𝑓.
Now we must show that 𝑇 has a unique fixed point, so we will show that 𝑇 is a contraction. Let
𝑡 ∈ [𝑐, 𝑑] and 𝑔, ℎ ∈ 𝑀.

‖(𝑇𝑔)(𝑡) − (𝑇ℎ)(𝑡)‖ =
‖
‖‖‖
∫

𝑡

𝑡0
[𝜙(𝑠, 𝑔(𝑠)) − 𝜙(𝑠, ℎ(𝑠))] d𝑠

‖
‖‖‖

Note that ‖𝜙(𝑠, 𝑔(𝑠)) − 𝜙(𝑠, ℎ(𝑠))‖ ≤ 𝐾‖𝑔(𝑠) − ℎ(𝑠)‖ ≤ 𝐾 ⋅ 𝐷(𝑔, ℎ).
‖(𝑇𝑔)(𝑡) − (𝑇ℎ)(𝑡)‖ = |𝑡 − 𝑡0| ⋅ 𝐾 ⋅ 𝐾(𝑔, ℎ) ≤ 𝜀𝐾𝐷(𝑔, ℎ)

Taking the supremum over 𝑡 ∈ (𝑐, 𝑑),

𝐷(𝑇𝑔, 𝑇ℎ) ≤ 𝜀𝐾𝐷(𝑔, ℎ) ≤ 1
2𝐷(𝑔, ℎ)

So 𝑇 is a contraction. By the contraction mapping theorem, 𝑇 has a unique fixed point in𝑀.

Remark. For any 𝛿 ∈ (0, 1), taking 𝜀 = min(𝑅
𝑐
, 𝛿
𝐾
) works. But by the uniqueness of the solution,

the choice does not matter for constructing the solution. So we can construct the solution for 𝜀 =
min(𝑅

𝑐
, 1
𝐾
), on (𝑡0 − 𝜀, 𝑡0 + 𝜀) ∩ [𝑎, 𝑏]. In general, there is no solution on [𝑎, 𝑏]. Finally, note that the

above theorem can handle any 𝑛th order ODE for any 𝑛 ∈ ℕ.

7 Topology
7.1 Definitions

Definition. Let 𝑋 be a set. A topology on 𝑋 is a family 𝜏 of subsets of 𝑋 (so 𝜏 ⊂ 𝒫(𝑋)) such
that
(i) ∅,𝑋 ∈ 𝜏;
(ii) if 𝑈 𝑖 ∈ 𝜏 for all 𝑖 ∈ 𝐼 where 𝐼 is some index set, then⋃𝑖∈𝐼 𝑈 𝑖 ∈ 𝜏; and
(iii) if 𝑈,𝑉 ∈ 𝜏 then 𝑈 ∩ 𝑉 ∈ 𝜏.
A topological space is a pair (𝑋, 𝜏)where 𝑋 is a set and 𝜏 is a topology on 𝑋 . Members of 𝜏 are
called open sets in the topology. So we say that 𝑈 ⊂ 𝑋 is open in 𝑋 , or 𝑈 is 𝜏-open, if 𝑈 ∈ 𝜏.

Remark. If 𝑈 𝑖 ∈ 𝜏 for 𝑖 = 1,… , 𝑛, then⋂𝑛
𝑖=1𝑈 𝑖 ∈ 𝜏.

Example. Let (𝑀, 𝑑) be ametric space. Recall that𝑈 ⊂ 𝑀 is open in themetric sense if ∀𝑥 ∈ 𝑈, ∃𝑟 >
0,ℬ𝑟(𝑥) ⊂ 𝑈 . We may say that 𝑈 is 𝑑-open. We have already proven that the family of 𝑑-open sets is
a topology on𝑀. This is a metric topology.

Definition. Let (𝑋, 𝜏) be a topological space. Then we say that 𝑋 ismetrisable (or sometimes
we say 𝜏 is metrisable) if there exists a metric 𝑑 on 𝑋 such that 𝜏 is the metric topology on 𝑋
induced by 𝑑. In other words, 𝑈 ⊂ 𝑋 is 𝜏-open if and only if 𝑈 is 𝑑-open. If 𝑑′ ∼ 𝑑, then 𝑑′
also induces the same topology 𝜏 on 𝑋 .

Example. The indiscrete topology on a set 𝑋 is a topology 𝜏 = {∅, 𝑋}. If |𝑋| ≥ 2, then this is not
metrisable. Let 𝑑 be a metric on 𝑋 . Then let 𝑥 ≠ 𝑦 ∈ 𝑋 , let 𝑟 = 𝑑(𝑥, 𝑦), and finally let 𝑈 = 𝒟𝑟(𝑥).
We know that 𝑈 is 𝑑-open. But since 𝑥 ∈ 𝑈, 𝑦 ∉ 𝑈 , 𝑈 ∉ 𝜏.
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Definition. If 𝜏1, 𝜏2 are topologies on 𝑋 , we say that 𝜏1 is coarser than 𝜏2, or that 𝜏2 is finer
than 𝜏1, if 𝜏1 ⊂ 𝜏2. For example, the indiscrete topology on 𝑋 is the coarsest topology on 𝑋 .

Example. The discrete topology on a set 𝑋 is 𝜏 = 𝒫(𝑋). This is the finest topology on 𝑋 . This is
metrisable by the discrete metric.

Definition. A topological space 𝑋 is Hausdorff if ∀𝑥 ≠ 𝑦 in 𝑋 , there exist open sets 𝑈,𝑉 in
𝑋 such that 𝑥 ∈ 𝑈, 𝑦 ∈ 𝑉,𝑈 ∩ 𝑉 = ∅. Informally, 𝑥, 𝑦 are ‘separated by open sets’.

Proposition. Metric spaces are Hausdorff.

Proof. Let 𝑥 ≠ 𝑦 be points in a metric space (𝑀, 𝑑). Let 𝑟 > 0 such that 2𝑟 < 𝑑(𝑥, 𝑦). Then let
𝑈 = 𝒟𝑟(𝑥), let 𝑉 = 𝒟𝑟(𝑦). Certainly 𝑈,𝑉 are open since they are open balls, and they have no
intersection by the triangle inequality, so the metric space is Hausdorff as required.

Example. The cofinite topology on a set 𝑋 is

𝜏 = {∅} ∪ {𝑈 ∈ 𝑋 ∶ 𝑈 is cofinite in 𝑋}

where 𝑈 is cofinite in 𝑋 if 𝑋 ∖ 𝑈 is finite. When 𝑋 is finite, this topology 𝜏 is simply 𝒫(𝑋). When 𝑋
is infinite, 𝜏 is not metrisable. Let 𝑥 ≠ 𝑦 in 𝑋 , and let 𝑥 ∈ 𝑈, 𝑦 ∈ 𝑉 where 𝑈,𝑉 are open in 𝑋 . Then
𝑈 and 𝑉 are cofinite, and hence 𝑈 ∩ 𝑉 ≠ ∅. So this topology on an infinite set is not Hausdorff and
hence not metrisable.

7.2 Closed subsets

Definition. A subset 𝐴 of a topological space (𝑋, 𝜏) is said to be closed in 𝑋 if 𝑋 ∖ 𝐴 is open
in 𝑋 .

Remark. In a metric space, this agrees with the earlier definition of a closed subset, as proven before.

Proposition. The collection of closed sets in a topological space 𝑋 satisfy
(i) ∅,𝑋 are closed;
(ii) If 𝐴𝑖 are closed in 𝑋 for 𝑖 in some non-empty index set 𝐼, then⋂𝑖∈𝐼 𝐴𝑖 is closed;
(iii) If 𝐴1, 𝐴2 are closed in 𝑋 then 𝐴1 ∪ 𝐴2 is closed.

Example. In a discrete topological space, every set is closed.
Example. In the cofinite topology, a subset is closed if and only if it is finite or the full set.

7.3 Neighbourhoods

Definition. Let 𝑋 be a topological space, and let 𝑈 ⊂ 𝑋 and 𝑥 ∈ 𝑋 . We say that 𝑈 is a
neighbourhood of 𝑥 in 𝑋 if there exists an open set 𝑉 in 𝑋 such that 𝑋 ∈ 𝑉 ⊂ 𝑈 .

32



Remark. In a metric space, we defined this in terms of open balls not open sets. However, we have
already proven that the definitions agree.

Proposition. Let 𝑈 be a subset of a topological space 𝑋 . Then 𝑈 is open if and only if 𝑈 is a
neighbourhood of 𝑥 for every 𝑥 ∈ 𝑈 .

Proof. If 𝑈 is open, and 𝑥 ∈ 𝑈 , then by letting 𝑉 = 𝑈 , 𝑉 is open and 𝑥 ∈ 𝑉 ⊂ 𝑈 . Conversely, if
𝑥 ∈ 𝑈 , there exists 𝑉𝑥 in 𝑋 such that 𝑥 ∈ 𝑉𝑥 ⊂ 𝑈 . Then, 𝑈 = ⋃𝑥∈𝑈 𝑥 = ⋃𝑥∈𝑈 𝑉𝑥 is open, since each
𝑉𝑥 is open.

7.4 Convergence

Definition. Let (𝑥𝑛) be a sequence in a topological space 𝑋 . Let 𝑥 ∈ 𝑋 . We say that (𝑥𝑛)
converges to 𝑥 if for all neighbourhoods 𝑈 of 𝑥 in 𝑋 , there exists 𝑁 ∈ ℕ such that ∀𝑛 ≥
𝑁, 𝑥𝑛 ∈ 𝑈 . Equivalently, for all open sets 𝑈 which contain 𝑥, there exists 𝑁 ∈ ℕ such that
∀𝑛 ≥ 𝑁, 𝑥𝑛 ∈ 𝑈 .

Remark. Again, the definition in a metric space agrees with this definition.

Example. Eventually constant sequences converge. If ∃𝑧 ∈ 𝑋, ∃𝑁 ∈ ℕ, ∀𝑛 ≥ 𝑁, 𝑥𝑛 = 𝑧, then
𝑥𝑛 → 𝑧.
Example. In an indiscrete topological space, every sequence converges to every point.
Example. In the cofinite topology on a set 𝑋 , let 𝑥𝑛 → 𝑋 . Suppose that 𝑥𝑛 → 𝑥 in 𝑋 . Then if 𝑦 ≠ 𝑥,
𝑋 ∖ {𝑦} is a neighbourhood of 𝑥. Then 𝑁𝑦 = {𝑛 ∈ 𝑁∶ 𝑥𝑛 = 𝑦} is finite.
Conversely, suppose (𝑥𝑛) is a sequence such that for some 𝑥 ∈ 𝑋 and for all 𝑦 ≠ 𝑥, 𝑁𝑦 is finite. Then
𝑥𝑛 → 𝑥.
In particular, if 𝑁𝑦 is finite for all 𝑦 ∈ 𝑋 , the sequence converges to every point.

Proposition. If 𝑥𝑛 → 𝑥 and 𝑥𝑛 → 𝑦 in a Hausdorff space, then 𝑥 = 𝑦.

Proof. Suppose 𝑥 ≠ 𝑦, then we can choose open sets 𝑈,𝑉 such that 𝑥 ∈ 𝑈, 𝑦 ∈ 𝑉,𝑈 ∩ 𝑉 = ∅. Since
𝑥𝑛 → 𝑥, there exists 𝑁1 ∈ ℕ such that ∀𝑛 ≥ 𝑁1, 𝑥𝑛 ∈ 𝑈 . Similarly there exists an analogous 𝑁2.
Hence ∀𝑛 ≥ max(𝑁1, 𝑁2), 𝑥𝑛 ∈ 𝑈, 𝑥𝑛 ∈ 𝑉 which is a contradiction since 𝑈 ∩ 𝑉 = ∅.

Remark. If 𝑥𝑛 → 𝑥 in a Hausdorff space, we write 𝑥 = lim𝑛→∞ 𝑥𝑛 since the limit is unique.
Remark. In a metric space, for a subset 𝐴, we say that 𝐴 is closed if and only if 𝑥𝑛 → 𝑥 in 𝐴 implies
𝑥 ∈ 𝐴. In a general topological space, any closed set is closed under limits, but not every subset that
is closed under limits is closed.
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7.5 Interiors and closures

Definition. Let 𝑋 be a topological space, and 𝐴 ⊂ 𝑋 . We define the interior of 𝐴 in 𝑋 ,
denoted 𝐴∘ or int(𝐴), by

𝐴∘ =⋃{𝑈 ⊂ 𝑋 ∶ 𝑈 is open in 𝑋,𝑈 ⊂ 𝐴}

Similarly we define the closure of 𝐴 in 𝑋 , denoted 𝐴 or cl(𝐴), by

𝐴 =⋂{𝐹 ⊂ 𝑋 ∶ 𝐹 is closed in 𝑋, 𝐹 ⊃ 𝐴}

Remark. Note that 𝐴∘ is open in 𝑋 , and 𝐴∘ ⊂ 𝐴. In particular, if 𝑈 is open in 𝑋 and 𝑈 ⊂ 𝐴, then
𝑈 ⊂ 𝐴∘. Hence, 𝐴∘ is the largest open subset of 𝐴.

Similarly, 𝐴 is closed in 𝑋 , and 𝐴 ⊃ 𝐴. The intersection is not empty since 𝑋 is closed and 𝑋 ⊃ 𝐴, so
it is well-defined. We have that 𝐴 is the smallest closed superset of 𝐴.

Proposition. Let 𝑋 be a topological space and let 𝐴 ⊂ 𝑋 . Then the interior is exactly those
𝑥 ∈ 𝑋 for which 𝐴 is a neighbourhood of 𝑥. Similarly, the closure is those 𝑥 ∈ 𝑋 such that
for all neighbourhoods 𝑈 of 𝑥, 𝑈 ∩ 𝐴 ≠ ∅.

Proof. If𝐴 is a neighbourhood of𝑋 , then by definition there exists an open set𝑈 such that𝑥 ∈ 𝑈 ⊂ 𝐴,
which is true if and only if 𝑥 ∈ 𝐴∘.

For the other part, suppose 𝑥 ∉ 𝐴. Then there exists a closed set 𝐹 ⊃ 𝐴 such that 𝑥 ∉ 𝐹. Let
𝑈 = 𝑋 ∖ 𝐹. Then 𝑈 is open and 𝑥 ∈ 𝑈 . So 𝑈 is a neighbourhood of 𝑥, and 𝑈 ∩ 𝐴 = ∅.
Conversely, suppose there exists a neighbourhood 𝑈 of 𝑥 such that 𝑈 ∩ 𝐴 = ∅. Then there exists an
open set 𝑉 such that 𝑥 ∈ 𝑉 ⊂ 𝑈 . Since 𝑉 ⊂ 𝑈 , 𝑉 ∩ 𝐴 = ∅. Let 𝐹 = 𝑋 ∖ 𝑉 . Then 𝐹 is closed, and
𝐴 ⊂ 𝐹. Hence 𝐴 ⊂ 𝐹. So 𝑥 ∉ 𝐴.

Example. In ℝ, let 𝐴 = [0, 1) ∪ {2}. Then 𝐴∘ = (0, 1), and 𝐴 = [0, 1] ∪ {2}. Further, ℚ∘ = ∅ and
ℚ = ℝ. Finally, ℤ∘ = ∅ and ℤ = ℤ.

Remark. In a metric space, for a subset 𝐴 we have that 𝑥 ∈ 𝐴 if and only if there exists a sequence
(𝑥𝑛) in 𝐴 such that 𝑥𝑛 → 𝑥. In a general topological space, the existence of a sequence implies 𝑥 ∈ 𝐴
but the converse is not true.

7.6 Dense subsets

Definition. Asubset𝐴 of a topological space𝑋 is said to be dense in𝑋 if𝐴 = 𝑋 . 𝑋 is separable
if there exists a countable subset 𝐴 ⊂ 𝑋 such that 𝐴 is dense in 𝑋 .

Example. ℝ is separable as ℚ is dense in ℝ. ℝ𝑛 is separable in the same way as ℚ𝑛 is dense in ℝ𝑛.

Example. An uncountable discrete topological space is not separable, since the closure of any set is
itself.
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7.7 Subspaces

Definition. Let (𝑋, 𝜏) be a topological space. Let 𝑌 ⊂ 𝑋 . Then the subspace topology, or
relative topology on 𝑌 induced by 𝜏 is the topology

{𝑉 ∩ 𝑌 ∶ 𝑉 ∈ 𝜏}

on 𝑌 . This is the intersection of 𝑌 with all open sets in 𝑋 . We can denote this 𝜏|𝑌 . So, for
𝑈 ⊂ 𝑌 , 𝑈 is open in 𝑌 if and only if there exists an open set 𝑉 in 𝑋 with 𝑈 = 𝑉 ∩ 𝑌 .

Example. Let 𝑋 = ℝ, 𝑌 = [0, 2], and 𝑈 = (1, 2]. Then certainly 𝑈 ⊂ 𝑌 ⊂ 𝑋 . 𝑈 is open in 𝑌 , since
𝑉 = (1, 3) is open in 𝑋 and 𝑈 = 𝑉 ∩ 𝑌 . However, 𝑈 is not open in 𝑋 , since no neighbourhood (or
ball) around 2 can be constructed in 𝑋 that is contained within 𝑈 .
Remark. On a subset of a topological space, this is considered the standard topology. Suppose that
(𝑋, 𝜏) is a topological space, and 𝑍 ⊂ 𝑌 ⊂ 𝑋 . There are two natural topologies on 𝑍: 𝜏|𝑍 and 𝜏|𝑌 ||𝑍 .
One can easily check that these two topologies are equal.

Let (𝑀, 𝑑) be a metric space, and 𝑁 ⊂ 𝑀. Again, there are two natural topologies on 𝑁: 𝜏(𝑑)|𝑁 and
𝜏(𝑑|𝑁), where 𝜏(𝑒) is the metric topology induced by the metric 𝑒. These two constructions coincide;
indeed, for any 𝑥 ∈ 𝑁, 𝑟 > 0,

{𝑦 ∈ 𝑁 ∶ 𝑑(𝑦, 𝑥) < 𝑟} = {𝑦 ∈ 𝑀∶ 𝑑(𝑦, 𝑥) < 𝑟} ∩ 𝑁

Proposition. Let 𝑋 be a topological space, and let 𝐴 ⊂ 𝑌 ⊂ 𝑋 . 𝐴 is closed in 𝑌 if and only if
there exists a closed subset 𝐵 ⊂ 𝑋 such that 𝐴 = 𝐵 ∩ 𝑌 . Further,

cl𝑌 (𝐴) = cl𝑋(𝐴) ∩ 𝑌

This is not true for the interior of a subset in general. For instance, consider 𝑋 = ℝ,𝐴 = 𝑌 =
{0}. In this case, int𝑌 (𝐴) = 𝐴, int𝑋(𝐴) = ∅.

Proof. The first part is true by taking complements: 𝑌 ∖𝐴 is open in 𝑌 . By definition, 𝑌 ∖𝐴 = 𝑉 ∩𝑌
for some open 𝑉 in 𝑋 . So 𝐵 = 𝑋 ∖𝑉 is closed in 𝑋 and 𝐴 = 𝐵∩𝑌 . If 𝐴 = 𝐵∩𝑌 , 𝐵 is closed in 𝑋 , then
𝑋 ∖ 𝐵 is open in 𝑋 , and hence 𝑌 ∖ 𝐴 = (𝑋 ∖ 𝐵) ∩ 𝑌 is open in 𝑌 .
For the second part, we know cl𝑋(𝐴) is closed in𝑋 , so by the first part, cl𝑋(𝐴)∩𝑌 is closed in 𝑌 . Then
𝐴 ⊂ cl𝑋(𝐴) ∩ 𝑌 . So by definition, cl𝑌 (𝐴) ⊂ cl𝑋(𝐴) ∩ 𝑌 . Similarly, since cl𝑌 (𝐴) is closed in 𝑌 , we can
write cl𝑌 (𝐴) = 𝐵 ∩ 𝑌 for some closed set 𝐵 in 𝑋 . But 𝐴 ⊂ 𝐵, and 𝐵 is closed in 𝑋 , so cl𝑋(𝐴) ⊂ 𝐵 and
hence cl𝑌 (𝐴) = 𝐵 ∩ 𝑌 ⊃ cl𝑋(𝐴) ∩ 𝑌 .

Remark. If 𝑈 ⊂ 𝑌 ⊂ 𝑋 , and 𝑌 is open in 𝑋 , then 𝑈 is open in 𝑌 if and only if 𝑈 is open in 𝑋 .

7.8 Continuity

Definition. A function 𝑓∶ 𝑋 → 𝑌 between topological spaces is said to be continuous if for
all open sets 𝑉 in 𝑌 , the preimage 𝑓−1(𝑉) is open in 𝑋 .
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Remark. Wehave already proven that this agreeswith the definition of continuity of functions between
metric spaces.

Example. Constant functions are always continuous. Consider 𝑓∶ 𝑋 → 𝑌 defined by 𝑓(𝑥) = 𝑦0 for
a fixed 𝑦0 ∈ 𝑌 . For any 𝑉 ⊂ 𝑌 , 𝑓−1(𝑉) = ∅ if 𝑦0 ∉ 𝑉 , and 𝑓−1(𝑉) = 𝑋 if 𝑦0 ∈ 𝑉 . So 𝑓 is continuous.
Example. The identity map is always continuous. If 𝑓∶ 𝑋 → 𝑋 is defined by 𝑥 ↦ 𝑥, 𝑓−1(𝑉) = 𝑉
so if 𝑉 is open, 𝑓−1(𝑉) is trivially open.
Example. Let 𝑌 ⊂ 𝑋 . Let 𝑖 ∶ 𝑌 → 𝑋 be the inclusion map. Then for an open set 𝑉 in 𝑋 , 𝑖−1(𝑉) =
𝑉 ∩𝑌 which by definition is open in 𝑌 . Hence, if 𝑔∶ 𝑋 → 𝑍 is continuous, then 𝑔|𝑌 = 𝑔 ∘ 𝑖∶ 𝑋 → 𝑌
is continuous, as we will see below.

Proposition. Let 𝑓∶ 𝑋 → 𝑌 be a function between topological spaces. Then,
(i) 𝑓 is continuous if and only if for all closed sets 𝐵 in 𝑌 , 𝑓−1(𝐵) is closed in 𝑋 ;
(ii) if 𝑓 is continuous and 𝑔∶ 𝑌 → 𝑍 is continuous, then 𝑔 ∘ 𝑓 is continuous.

Proof. To prove (i), note that for any subset 𝐷 ⊂ 𝑌 , 𝑓−1(𝑌 ∖ 𝐷) = 𝑋 ∖ 𝑓−1(𝐷). We can now use the
fact that 𝐴 ⊂ 𝑋 is open in 𝑋 if and only if 𝑋 ∖ 𝐴 is closed in 𝑋 , and vice versa for 𝑌 .
To prove (ii), note that if𝑊 is an open subset of 𝑍, then 𝑔−1(𝑊) is open in 𝑌 since 𝑔 is continuous.
Hence 𝑓−1𝑔−1(𝑊) is open in 𝑋 since 𝑓 is continuous. But then 𝑓−1𝑔−1 = (𝑔 ∘ 𝑓)−1, so 𝑔 ∘ 𝑓 is
continuous.

Remark. There exists a notion of ‘continuity at a point’ for topological spaces, but it is not as useful
in this course as the global continuity definition.

7.9 Homeomorphisms and topological invariance

Definition. A function 𝑓∶ 𝑋 → 𝑌 between topological spaces is a homeomorphism if 𝑓
is a bijection, and both 𝑓, 𝑓−1 are continuous. If such an 𝑓 exists, we say that 𝑋 and 𝑌 are
homeomorphic. This is exactly the definition from metric spaces.

Definition. A property 𝒫 of topological spaces is said to be a topological property or topo-
logical invariant if, for all pairs 𝑋, 𝑌 of homeomorphic spaces, 𝑋 satisfies 𝒫 if and only if 𝑌
satisfies 𝒫.

Example. Metrisability is a topological invariant. Being Hausdorff is a topological invariant. Being
completely metrisable (metrisable into a complete metric space) is not a topological invariant. For
example, consider metrics 𝑑, 𝑑′ on ℝ such that 𝑑 ∼ 𝑑′ but 𝑑 is complete and 𝑑′ is not.
Remark. If 𝑓∶ 𝑋 → 𝑌 is a homeomorphism, for an open set 𝑈 in 𝑋 , 𝑓(𝑈) = (𝑓−1)−1(𝑈) is open in
𝑌 since 𝑓−1 ∶ 𝑌 → 𝑋 is continuous.

Definition. A function 𝑓∶ 𝑋 → 𝑌 between topological spaces is an open map if for all open
sets 𝑈 in 𝑋 , 𝑓(𝑈) is open in 𝑌 .

Remark. 𝑓∶ 𝑋 → 𝑌 is a homeomorphism if and only if 𝑓 is a continuous and open bijection.

36



7.10 Products
Let 𝑋, 𝑌 be topological spaces. We want to define the topology on 𝑋 × 𝑌 . If 𝑈 is open in 𝑋 and 𝑉 is
open in 𝑌 , then we would like 𝑈 × 𝑉 to be open in 𝑋 × 𝑌 . Certainly ∅ = ∅ × ∅ and 𝑋 × 𝑌 should
be open. Further (𝑈 × 𝑉) ∩ (𝑈 ′ × 𝑉 ′) = (𝑈 ∩ 𝑈 ′) × (𝑉 ∩ 𝑉 ′), so intersections work. ⋃𝑖∈𝐼 𝑈 𝑖 × 𝑉 𝑖
must be open for open sets 𝑈 𝑖, 𝑉 𝑖, but this is not obvious from what we have shown so far, so we
must include this in our definition.

Definition. The product topology on 𝑋 × 𝑌 is the topology such that a subset 𝑈 of 𝑋 × 𝑌 is
open if there exists a set 𝐼 and open sets 𝑈 𝑖, 𝑉 𝑖 in 𝑋, 𝑌 for all 𝑖 ∈ 𝐼 such that

𝑈 =⋃
𝑖∈𝐼

𝑈 𝑖 × 𝑉 𝑖

Remark. For𝑊 ⊂ 𝑋 × 𝑌 , we know that𝑊 is open if and only if for all 𝑧 ∈ 𝑊 , there exist open sets
𝑈 ⊂ 𝑋, 𝑉 ⊂ 𝑌 , such that 𝑧 ∈ 𝑈 × 𝑉 ⊂ 𝑊 . So, thinking of the product as a product of real lines, we
might say that𝑊 is open if for every point 𝑧 ∈ 𝑊 , we can construct a ‘box set’ (the Cartesian product
of open intervals) contained in𝑊 that has 𝑧 as an element. More formally,𝑊 is a neighbourhood of
𝑧 if and only if there exist neighbourhoods 𝑈 of 𝑥 in 𝑋 and 𝑉 of 𝑦 in 𝑌 such that 𝑈 × 𝑉 ⊂ 𝑊 .

7.11 Continuity in product topology
Example. Let (𝑀, 𝑑), (𝑀′, 𝑑′) be metric spaces. Then, the metric 𝑑∞ on𝑀 ×𝑀′ is

𝑑∞((𝑥, 𝑥′), (𝑦, 𝑦′)) = max(𝑑(𝑥, 𝑦), 𝑑′(𝑥′, 𝑦′))

This metric is chosen since all 𝑑𝑝 metrics induce the same metric topology, but this is easier to work
with. Also, 𝑀,𝑀′ are topological spaces with their metric topologies, which induce the product
topology on the product space 𝑀 × 𝑀′. These two constructions create the same topology. For a
point 𝑧 = (𝑥, 𝑥′) ∈ 𝑀 ×𝑀′ and 𝑟 > 0, the open ball𝒟𝑟(𝑧) is exactly

𝒟𝑟(𝑧) = {(𝑦, 𝑦′) ∈ 𝑀 ×𝑀′ ∶ 𝑑∞((𝑦, 𝑦′), (𝑥, 𝑥′)) < 𝑟}
= {(𝑦, 𝑦′) ∈ 𝑀 ×𝑀′ ∶ 𝑑(𝑥, 𝑦) < 𝑟, 𝑑(𝑥′, 𝑦′) < 𝑟}
= 𝒟𝑟(𝑥) × 𝒟𝑟(𝑥′)

Now, let𝑊 ⊂ 𝑀 ×𝑀′. Then𝑊 is open in the product topology if and only if for all 𝑧 = (𝑥, 𝑥′) ∈ 𝑊 ,
there exist open sets 𝑈 in 𝑀 and 𝑈 ′ in 𝑀′ such that (𝑥, 𝑥′) ∈ 𝑈 × 𝑈 ′ ⊂ 𝑊 . Equivalently, for all
𝑧 = (𝑥, 𝑥′) ∈ 𝑊 , there exists 𝑟 > 0 such that𝒟𝑟(𝑥) × 𝒟𝑟(𝑥′) ⊂ 𝑊 . But𝒟𝑟(𝑥) × 𝒟𝑟(𝑥′) = 𝒟𝑟(𝑧), so
𝑊 is 𝑑∞-open, as required. For instance, the product topology on ℝ × ℝ is the Euclidean topology
on ℝ2.

Proposition. Let 𝑋, 𝑌 be topological spaces. Let 𝑋 ×𝑌 be given the product topology. Then,
the coordinate projections 𝑞𝑋 ∶ 𝑋 × 𝑌 → 𝑋 and 𝑞𝑌 ∶ 𝑋 × 𝑌 → 𝑌 satisfy
(i) 𝑞𝑋 , 𝑞𝑌 are continuous;
(ii) if 𝑍 is any topological space, and 𝑔∶ 𝑍 → 𝑋 × 𝑌 is a function, then 𝑔 is continuous if

and only if 𝑞𝑋 ∘ 𝑔, 𝑞𝑌 ∘ 𝑔 are continuous.

Proof. If𝑈 is open in 𝑋 , then 𝑞−1𝑋 (𝑈) = 𝑈 ×𝑌 , which is the product of an open set in 𝑋 and an open
set in 𝑌 , so is open in 𝑋 × 𝑌 . Hence 𝑞𝑋 is continuous. Similarly, 𝑞𝑌 is continuous.
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If 𝑔 is continuous then certainly 𝑞𝑋 ∘ 𝑔, 𝑞𝑌 ∘ 𝑔 are continuous since the composition of continuous
functions are continuous. Conversely, let ℎ∶ 𝑍 → 𝑋 and 𝑘∶ 𝑍 → 𝑌 be continuous functions with
ℎ = 𝑞𝑋 ∘ 𝑔 and 𝑘 = 𝑞𝑌 ∘ 𝑔. Then 𝑔(𝑥) = (ℎ(𝑥), 𝑘(𝑥)) for 𝑥 ∈ 𝑍. Now, for open sets 𝑈 in 𝑋 and 𝑉 in
𝑌 , we have

𝑧 ∈ 𝑔−1(𝑈 × 𝑉) ⟺ 𝑔(𝑧) ∈ 𝑈 × 𝑉 ⟺ ℎ(𝑧) ∈ 𝑈, 𝑘(𝑧) ∈ 𝑉 ⟺ 𝑧 ∈ ℎ−1(𝑈) ∩ 𝑘−1(𝑉)

So 𝑔−1(𝑈 ×𝑉) = ℎ−1(𝑈)∩𝑘−1(𝑉)which is open in 𝑍 as ℎ, 𝑘 are continuous. Given an arbitrary open
set𝑊 in 𝑋 ×𝑌 , we can write𝑊 = ⋃𝑖∈𝐼 𝑈 𝑖×𝑉 𝑖, where𝑈 𝑖 are open in 𝑋 and 𝑉 𝑖 are open in 𝑌 . Thus,
𝑔−1(𝑊) = ⋃𝑖∈𝐼 𝑔−1(𝑈 𝑖 × 𝑉 𝑖) which is open.

Remark. The product topology may be extended to a finite product 𝑋1 × ⋯ × 𝑋𝑛, consisting of all
unions of sets of the form𝑈1×⋯×𝑈𝑛 where𝑈𝑗 is open in𝑋𝑗 . Properties of the product topology hold
in this more general case. For example, if 𝑋𝑗 is metrisable with metric 𝑒𝑗 for all 𝑗, then the product
topology is metrisable with, for instance, the 𝑑∞ metric.

7.12 Quotients
Let 𝑋 be a set and 𝑅 an equivalence relation on 𝑋 . So 𝑅 ⊂ 𝑋 × 𝑋 , but we will write 𝑥 ∼ 𝑦 to mean
(𝑥, 𝑦) ∈ 𝑅. For 𝑥 ∈ 𝑋 , we define 𝑞(𝑥) = {𝑦 ∈ 𝑋 ∶ 𝑦 ∼ 𝑥} to be the equivalence class of 𝑥, the set of
which partition 𝑋 . Let 𝑋/𝑅 denote the set of all equivalence classes. The map 𝑞∶ 𝑋 → 𝑋/𝑅 is called
the quotient map.

Definition. Let 𝑋 be a topological space, and 𝑅 an equivalence relation on 𝑋 . The quotient
topology on 𝑋/𝑅 is given by

𝜏 = {𝑉 ⊂ 𝑋/𝑅∶ 𝑞−1(𝑉) open in 𝑋}

This is a topology:
(i) 𝑞−1(∅) = ∅ which is open, and 𝑞−1(𝑋/𝑅) = 𝑋 which is open.
(ii) If 𝑉 𝑖 are open, then 𝑞−1(⋃𝑖∈𝐼 𝑉 𝑖) = ⋃𝑖∈𝐼 𝑞−1(𝑉 𝑖)which is a union of open sets which

is open.
(iii) If 𝑈,𝑉 are open, then 𝑞−1(𝑈 ∩ 𝑉) = 𝑞−1(𝑈) ∩ 𝑞−1(𝑉) which is open.

Remark. The quotient map 𝑞∶ 𝑋 → 𝑋/𝑅 is continuous. In particular, it is the largest possible topo-
logy on 𝑋 such that 𝑞 is continuous.
Let 𝑥 ∈ 𝑋, 𝑡 ∈ 𝑋/𝑅. Then 𝑥 ∈ 𝑡 if and only if 𝑡 = 𝑞(𝑥). For 𝑉 ⊂ 𝑋/𝑅,

𝑞−1(𝑉) = {𝑥 ∈ 𝑋 ∶ 𝑞(𝑥) ∈ 𝑉}
= {𝑥 ∈ 𝑋 ∶ ∃𝑡 ∈ 𝑉, 𝑡 = 𝑞(𝑥)}
= {𝑥 ∈ 𝑋 ∶ ∃𝑡 ∈ 𝑉, 𝑥 ∈ 𝑡}
= ⋃

𝑡∈𝑉
𝑡

Example. Consider ℝ, an abelian group under addition, and the subgroup ℤ. We can form the
quotient group ℝ/ℤ, which is the set of equivalence classes where 𝑥 ∼ 𝑦 ⟺ 𝑥 − 𝑦 ∈ ℤ. For all
𝑥 ∈ ℝ, there exists 𝑦 ∈ [0, 1] such that 𝑥 ∼ 𝑦, and for all 𝑥, 𝑦 ∈ [0, 1] we have 𝑥 ∼ 𝑦 if and only if
𝑥 = 𝑦 or {𝑥, 𝑦} = {0, 1}. So we can think of the quotient topology of ℝ/ℤ as a circle. We can say that
ℝ/ℤ is homeomorphic to 𝑆1 = {(𝑥, 𝑦) ∈ ℝ2 ∶ ‖(𝑥, 𝑦)‖ = 1}, which we will prove later.

38



Example. Consider the subgroup ℚ of ℝ. Let 𝑉 ⊂ ℝ/ℚ, such that 𝑉 ≠ ∅ and 𝑉 is open. Then
𝑞−1(𝑉) is open and not empty. Therefore, there exist 𝑎 < 𝑏 ∈ ℝ such that (𝑎, 𝑏) ⊂ 𝑞−1(𝑉). Given
𝑥 ∈ ℝ, we can choose a rational 𝑟 in the interval (𝑎 − 𝑥, 𝑏 − 𝑥). Then 𝑟 + 𝑥 ∈ (𝑎, 𝑏) ⊂ 𝑞−1(𝑉),
so 𝑞(𝑥) = 𝑞(𝑟 + 𝑥) ∈ 𝑉 . So 𝑉 = ℝ/ℚ. This is the indiscrete topology, which is not metrisable or
Hausdorff. So we cannot (in general) take quotients of metric spaces.

Example. Let 𝑄 = [0, 1] × [0, 1] ⊂ ℝ2. We define the equivalence relation 𝑅 given by

(𝑥1, 𝑥2) ∼ (𝑦1, 𝑦2) ⟺
⎧⎪
⎨⎪
⎩

(𝑥1, 𝑥2) = (𝑦1, 𝑦2) or
𝑥1 = 𝑦1, {𝑥2, 𝑦2} = {0, 1} or
𝑥2 = 𝑦2, {𝑥1, 𝑦1} = {0, 1} or
𝑥1, 𝑥2, 𝑦1, 𝑦2 ∈ {0, 1}

The space𝑄/𝑅 is homeomorphic toℝ2/ℤ2. This is a squarewhere the top and bottom edges are identi-
fied as the same, and the left and right edges are also identified as the same. This is homeomorphic to
the surface of a torus with the Euclidean topology embedded in Euclidean three-dimensional space.

Proposition. Let 𝑋 be a set, and let 𝑅 be an equivalence relation on 𝑋 . Let 𝑞∶ 𝑋 → 𝑋/𝑅 be
the quotient map. Let 𝑌 be a set, and 𝑓∶ 𝑋 → 𝑌 be a function. Suppose that 𝑓 ‘respects’ 𝑅;
that is, 𝑥 ∼ 𝑦 ⟹ 𝑓(𝑥) = 𝑓(𝑦). Then there exists a unique map 𝑓∶ 𝑋/𝑅 → 𝑌 such that
𝑓 = 𝑓 ∘ 𝑞. For 𝑧 ∈ 𝑋/𝑅, we write 𝑧 = 𝑞(𝑥) for some 𝑥 ∈ 𝑋 , and then define 𝑓(𝑧) = 𝑓(𝑥).

Remark. Note that Im𝑓 = Im𝑓 since 𝑞 is surjective. 𝑓 is injective if for all 𝑥, 𝑦 ∈ 𝑋 , 𝑓(𝑞(𝑥)) = 𝑓(𝑞(𝑦))
implies 𝑞(𝑥) = 𝑞(𝑦). In other words, for all 𝑥, 𝑦 ∈ 𝑋 , 𝑓(𝑥) = 𝑓(𝑦) ⟹ 𝑥 ∼ 𝑦. We say that 𝑓 fully
respects 𝑅 if, for all 𝑥, 𝑦 ∈ 𝑋 ,

𝑥 ∼ 𝑦 ⟺ 𝑓(𝑥) = 𝑓(𝑦)
In this case, 𝑓 is injective.

7.13 Continuity of functions in quotient spaces

Proposition. Let 𝑋 be a topological space and let 𝑅 be an equivalence relation on 𝑋 . Let
𝑞∶ 𝑋 → 𝑋/𝑅 be a quotient map, where 𝑋/𝑅 has the quotient topology. Let 𝑌 be another
topological space and 𝑓∶ 𝑋 → 𝑌 be a function that respects 𝑅. Let 𝑓∶ 𝑋/𝑅 → 𝑌 be the
unique map such that 𝑓 = 𝑓 ∘ 𝑞. Then
(i) if 𝑓 is continuous then 𝑓 is continuous; and
(ii) if 𝑓 is an open map (the image of an open set is open) then 𝑓 is an open map.

In particular, if 𝑓 is a continuous surjective map that fully respects 𝑅, then 𝑓 is a continuous
bijection. If in addition 𝑓 is an open map, then 𝑓 is a continuous bijective open map, so is a
homeomorphism.

Proof. We prove part (i). Let 𝑉 be an open set in 𝑌 .

𝑞−1(𝑓−1(𝑉)) = (𝑓 ∘ 𝑞)−1(𝑉) = 𝑓−1(𝑉) is open

So by definition, 𝑓−1(𝑉) is open in 𝑋/𝑅. Hence 𝑓 is continuous. Now, we prove part (ii). Let 𝑉 be an
open set in 𝑋/𝑅. Let 𝑈 = 𝑞−1(𝑉). Then 𝑈 is open in 𝑋 by definition of the quotient topology. Since
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𝑞 is surjective, 𝑞(𝑈) = 𝑞(𝑞−1(𝑉)) = 𝑉 . Hence,

𝑓(𝑉) = 𝑓(𝑞(𝑈)) = (𝑓 ∘ 𝑞)(𝑈) = 𝑓(𝑈) is open

since 𝑓 is an open map.

Example. ℝ/ℤ is homeomorphic to a circle 𝑆1 = {𝑥 ∈ ℝ2 ∶ ‖𝑥‖ = 1}. We define

𝑓(𝑡) = (cos 2𝜋𝑡, sin 2𝜋𝑡)

Then, 𝑠 − 𝑡 ∈ ℤ if and only if 𝑓(𝑠) = 𝑓(𝑡) so 𝑓 fully respects the relation, and 𝑓 is surjective. 𝑓 is
also continuous since each component is continuous. Hence, there exists 𝑓∶ ℝ/ℤ → 𝑆1 such that
𝑓 = 𝑓 ∘ 𝑞 and 𝑓 is a continuous bijection. Now we must show 𝑓 is an open map, and then 𝑓 will
be a homeomorphism. Suppose 𝑓 is not an open map, so there exists an open set 𝑈 in ℝ such that
𝑓(𝑈) is not open in 𝑆1. So 𝑆1 ∖ 𝑓(𝑈) is not closed, so there exists a sequence (𝑧𝑛) in this complement
and 𝑧 ∈ 𝑓(𝑈) such that 𝑧𝑛 → 𝑧. 𝑓 is surjective so for all 𝑛 ∈ 𝑁 we can choose 𝑥𝑛 ∈ [0, 1] such
that 𝑓(𝑥𝑛) = 𝑧𝑛. This is a bounded sequence, so by the Bolzano–Weierstrass theorem, without loss
of generality we can let 𝑥𝑛 → 𝑥 ∈ [0, 1]. Since 𝑓 is continuous, 𝑓(𝑥𝑛) → 𝑓(𝑥), so 𝑧𝑛 → 𝑧. But since
𝑧𝑛 ∉ 𝑓(𝑈), we have 𝑥𝑛 ∈ ℝ ∖ 𝑈 . Since the complement is closed and 𝑥𝑛 → 𝑥, we have 𝑥 ∈ ℝ ∖ 𝑈
so 𝑥 ∉ 𝑈 . Since 𝑧 ∈ 𝑓(𝑈), there exists 𝑦 ∈ 𝑈 such that 𝑧 = 𝑓(𝑦). Hence 𝑘 = 𝑦 − 𝑥 ∈ ℤ. Now,
𝑓(𝑥𝑛+𝑘) = 𝑓(𝑥𝑛) = 𝑧𝑛 → 𝑧, but also 𝑥𝑛+𝑘 → 𝑥+𝑘 = 𝑦 ∈ 𝑈 . Since 𝑧𝑛 ∉ 𝑓(𝑈), we have 𝑥𝑛+𝑘 ∉ 𝑈 .
Since ℝ ∖ 𝑈 is closed and 𝑥𝑛 + 𝑘 → 𝑦, we have 𝑦 ∈ ℝ ∖ 𝑈 which is a contradiction.

Proposition. Let 𝑋 be a topological space, and 𝑅 an equivalence relation on 𝑋 . Then,
(a) If 𝑋/𝑅 is Hausdorff, then 𝑅 is closed in 𝑋 × 𝑋 .
(b) If 𝑅 is closed in 𝑋 × 𝑋 and the quotient map 𝑞∶ 𝑋 → 𝑋/𝑅 is an open map, then 𝑋/𝑅 is

Hausdorff.

Proof. Let𝑊 = 𝑋 × 𝑋 ∖ 𝑅. For part (a), we want to show𝑊 is open, so is a neighbourhood of all of
its points. Given (𝑥, 𝑦) ∈ 𝑊 , we have 𝑥 ≁ 𝑦, so 𝑞(𝑥) ≠ 𝑞(𝑦). Since the quotient is Hausdorff, there
exist open sets 𝑆, 𝑇 in 𝑋/𝑅 such that 𝑆 ∩ 𝑇 = ∅ and 𝑞(𝑥) ∈ 𝑆, 𝑞(𝑦) ∈ 𝑇. Let 𝑈 = 𝑞−1(𝑆), 𝑉 = 𝑞−1(𝑇)
which are open in 𝑋 , and 𝑥 ∈ 𝑈, 𝑦 ∈ 𝑉 . For all (𝑎, 𝑏) ∈ 𝑈 × 𝑉 , we have 𝑞(𝑎) ∈ 𝑆, 𝑞(𝑏) ∈ 𝑇 hence
𝑎 ≁ 𝑏. So (𝑥, 𝑦) ∈ 𝑈 × 𝑉 ⊂ 𝑊 . Hence 𝑅 is closed.
For part (b), let 𝑧 ≠ 𝑤 be elements of 𝑋/𝑅, and we want to separate these points by open sets. Let
𝑥, 𝑦 ∈ 𝑋 such that 𝑞(𝑥) = 𝑧, 𝑞(𝑦) = 𝑤. Then (𝑥, 𝑦) ∈ 𝑊 since 𝑥 ≁ 𝑤. Since 𝑅 is closed,𝑊 is open, so
there exist open sets𝑈,𝑉 in 𝑋 such that (𝑥, 𝑦) ∈ 𝑈 ×𝑉 ⊂ 𝑊 . Since 𝑞 is an open map, 𝑞(𝑈) and 𝑞(𝑉)
are open in 𝑋/𝑅, and 𝑧 = 𝑞(𝑥) ∈ 𝑞(𝑈), 𝑤 = 𝑞(𝑦) ∈ 𝑞(𝑉). Now it suffices to show 𝑞(𝑈) ∩ 𝑞(𝑉) = ∅.
For (𝑎, 𝑏) ∈ 𝑈 × 𝑉 ⊂ 𝑊 , (𝑎, 𝑏) ∉ 𝑅 hence 𝑞(𝑎) ≠ 𝑞(𝑏) so 𝑞(𝑈) ∩ 𝑞(𝑉) = ∅.

8 Connectedness
8.1 Definition
Recall the intermediate value theorem from IA Analysis. If 𝑓∶ 𝐼 → ℝ is continuous, where 𝐼 is
an interval, and 𝑥 < 𝑦 in 𝐼 and 𝑐 ∈ (𝑓(𝑥), 𝑓(𝑦)), then there exists 𝑧 ∈ (𝑥, 𝑦) such that 𝑓(𝑧) = 𝑐.
An interval in this context is a set 𝐼 such that for all 𝑥 < 𝑦 < 𝑧 ∈ ℝ, 𝑥, 𝑧 ∈ 𝐼 ⟹ 𝑦 ∈ 𝐼.
So the intermediate value theorem essentially states that the continuous image of an interval is an
interval.

40



Example. Consider [0, 1) ∪ (1, 2]. Let 𝑓 be a function from this space to ℝ, defined by

𝑓(𝑥) = {0 𝑥 ∈ [0, 1)
1 𝑥 ∈ (1, 2]

This is continuous, but the image of 𝑓 is not an interval.

Definition. A topological space 𝑋 is disconnected if there exist open subsets 𝑈,𝑉 of 𝑋 such
that 𝑈 ∩ 𝑉 = ∅,𝑈 ∪ 𝑉 = 𝑋 and 𝑈,𝑉 ≠ ∅. We say that 𝑈 and 𝑉 disconnect 𝑋 . We say 𝑋 is
connected if 𝑋 is not disconnected.

Theorem. Let 𝑋 be a topological space. Then the following are equivalent.
(i) 𝑋 is connected;
(ii) if 𝑓∶ 𝑋 → ℝ is continuous, then 𝑓(𝑋) is an interval;
(iii) if 𝑓∶ 𝑋 → ℤ is continuous, 𝑓 is constant.

Proof. First we show (i) implies (ii). Suppose 𝑋 is connected, and 𝑓∶ 𝑋 → ℝ is continuous, but
𝑓(𝑋) is not an interval. Then there exist 𝑎 < 𝑏 < 𝑐 ∈ ℝ such that 𝑎, 𝑐 ∈ 𝑓(𝑋) and 𝑏 ∉ 𝑓(𝑋). Let
𝑥, 𝑦 ∈ 𝑋 such that 𝑓(𝑥) = 𝑎, 𝑓(𝑦) = 𝑐. Let 𝑈 = 𝑓−1(−∞, 𝑏), 𝑉 = 𝑓−1(𝑏,∞). 𝑈,𝑉 are open since 𝑓 is
continuous. 𝑈,𝑉 are non-empty since 𝑥 ∈ 𝑈, 𝑦 ∈ 𝑉 . Their intersection is empty since we are taking
the preimage of disjoint sets. Finally, 𝑈 ∪ 𝑉 = 𝑓−1(ℝ ∖ 𝑏) = 𝑋 since 𝑏 is not in the image. So 𝑈,𝑉
disconnect 𝑋 , which is a contradiction.
Now (ii) implies (iii). This is immediate since an interval containing an integer must only contain
one integer.

Finally, (iii) implies (i). Suppose 𝑈,𝑉 disconnect 𝑋 . Let 𝑓∶ 𝑋 → ℤ by

𝑓(𝑥) = {0 𝑥 ∈ 𝑈
1 𝑥 ∈ 𝑉

For any 𝑌 ⊂ ℝ,

𝑓−1(𝑌) =
⎧⎪
⎨⎪
⎩

∅ 0, 1 ∉ 𝑌
𝑈 0 ∈ 𝑌, 1 ∉ 𝑌
𝑉 0 ∉ 𝑌, 1 ∈ 𝑌
𝑋 0, 1 ∈ 𝑌

which is open. But 𝑓 is not constant, so this is a contradiction.

Corollary. Let 𝑋 ⊂ ℝ. Then 𝑋 is connected if and only if 𝑋 is an interval.

Proof. Suppose 𝑋 is connected. Then the inclusion map 𝑖 ∶ 𝑋 → ℝ is continuous. By the theorem
above, 𝑖(𝑋) = 𝑋 is an interval. Conversely, suppose𝑋 is an interval. Then, for all continuous 𝑓∶ 𝑋 →
ℝ, 𝑓(𝑋) is an interval by the intermediate value theorem. Then 𝑋 is connected.

Proof. This is an alternative, direct proof that intervals are connected. Suppose 𝑈,𝑉 disconnect 𝑋 .
Then let 𝑥 ∈ 𝑈, 𝑦 ∈ 𝑉 such that 𝑥 < 𝑦. Let 𝑧 = sup𝑈∩[𝑥, 𝑦]. This set is non-empty since it contains
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𝑥 and is bounded above by 𝑦. So 𝑧 = [𝑥, 𝑦] ⊂ 𝑋 . We will show 𝑧 ∈ 𝑈 ∩ 𝑉 , which is a contradiction.
For all 𝑛 ∈ ℕ, we have 𝑧 − 1

𝑛
< 𝑛 so there exists 𝑥𝑛 ∈ 𝑈 ∩ [𝑥, 𝑦] which satisfies 𝑧 − 1

𝑛
< 𝑥𝑛 ≤ 𝑧.

Hence 𝑥𝑛 → 𝑧. Also, 𝑈 = 𝑋 ∖ 𝑉 is closed, so 𝑧 ∈ 𝑈 . In particular, 𝑧 < 𝑦. Now, choose 𝑁 ∈ ℕ such
that 𝑧 + 1

𝑁
< 𝑦. Then for all 𝑛 ≥ 𝑁 we have 𝑧 < 𝑧 + 1

𝑛
< 𝑦. Hence 𝑧 + 1

𝑛
∈ 𝑉 . However, 𝑧 + 1

𝑛
→ 𝑧,

and 𝑉 is closed, so 𝑧 ∈ 𝑉 , which is a contradiction.

8.2 Consequences of definition
Example. Any indiscrete topological space is connected. Any cofinite topological space on an infin-
ite set is connected. The discrete topological space on a set of size at least two is disconnected.

Lemma. Let 𝑌 be a subspace of a topological space 𝑋 . Then, 𝑌 is disconnected if and only
if there exist open subsets 𝑈,𝑉 of 𝑋 such that 𝑈 ∩ 𝑉 ∩ 𝑌 = ∅ and 𝑈 ∪ 𝑉 ⊃ 𝑌 , and 𝑈 ∩ 𝑌 ≠
∅,𝑉 ∩ 𝑌 ≠ ∅.

Proof. Suppose 𝑌 is disconnected. Then there exist open subsets𝑈 ′, 𝑉 ′ of 𝑌 that disconnect 𝑌 . Then
there exist open sets 𝑈,𝑉 in 𝑋 such that 𝑈 ′ = 𝑈 ∩ 𝑌 and 𝑉 ′ = 𝑉 ∩ 𝑌 . Then 𝑈,𝑉 satisfy the
requirements from the lemma.

Conversely, suppose 𝑈,𝑉 are as given. Then, let 𝑈 ′ = 𝑈 ∩𝑌, 𝑉 ′ = 𝑉 ∩𝑌 . They are open in 𝑌 by the
definition of the subspace topology, and they disconnect 𝑌 .

Remark. In the above lemma, we say subsets 𝑈,𝑉 of 𝑋 disconnect 𝑌 .

Proposition. Let 𝑌 be a subspace of a topological space 𝑋 . If 𝑌 is connected, then so is 𝑌 .

Proof. Suppose 𝑌 is disconnected. Then there exist open sets 𝑈,𝑉 in 𝑋 which disconnect 𝑌 . Then
𝑈 ∩ 𝑉 ∩ 𝑌 ⊂ 𝑈 ∩ 𝑉 ∩ 𝑌 = ∅ by definition. Hence 𝑈 ∩ 𝑉 ∩ 𝑌 = ∅. Also, 𝑈 ∪ 𝑉 ⊃ 𝑌 ⊃ 𝑌 . So
𝑈,𝑉 disconnect 𝑌 unless 𝑈 ∩𝑌 = ∅ or 𝑉 ∩𝑌 = ∅. But 𝑌 is connected, so without loss of generality
let 𝑉 ∩ 𝑌 = ∅. Then 𝑌 ⊂ 𝑋 ∖ 𝑉 and 𝑋 ∖ 𝑉 is closed, so 𝑌 ⊂ 𝑋 ∖ 𝑉 . Hence 𝑉 ∩ 𝑌 = ∅. This is a
contradiction since 𝑈,𝑉 disconnect 𝑌 .

Remark. More generally, if 𝑌 ⊂ 𝑍 ⊂ 𝑌 , and 𝑌 is connected, then 𝑍 is connected. This is since
cl𝑍(𝑌) = cl𝑋(𝑌) ∩ 𝑍 = 𝑍.

Theorem. Let 𝑓∶ 𝑋 → 𝑌 be a continuous function between topological spaces. If 𝑋 is
connected, then so is 𝑓(𝑋).

Proof. Let 𝑈,𝑉 be open subsets of 𝑌 which disconnect 𝑓(𝑋). For 𝑥 ∈ 𝑋 , 𝑓(𝑥) ∈ 𝑓(𝑋) ⊂ 𝑈 ∪ 𝑉 .
Hence, 𝑓−1(𝑈)∪𝑓−1(𝑉) = 𝑋 . Also, if 𝑥 ∈ 𝑓−1(𝑈)∩𝑓−1(𝑉) then 𝑓(𝑥) ∈ 𝑈 ∩𝑉 ∩𝑓(𝑋) = ∅. This is a
contradiction, so 𝑓−1(𝑈) ∩ 𝑓−1(𝑉) = ∅. Since 𝑓 is continuous, 𝑓−1(𝑈), 𝑓−1(𝑉) are open in 𝑋 . Since
𝑈 ∩𝑓(𝑋) ≠ ∅ and 𝑉 ∩𝑓(𝑋) ≠ ∅, 𝑓−1(𝑈) ≠ ∅ and 𝑓−1(𝑉) ≠ ∅ So 𝑓−1(𝑈), 𝑓−1(𝑉) disconnect 𝑋 .

Remark. This shows that connectedness is a topological property. If 𝑋, 𝑌 are homeomorphic spaces,
then 𝑋 is connected if and only if 𝑌 is connected. Further, note that if 𝑓∶ 𝑋 → 𝑌 is continuous and
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𝐴 ⊂ 𝑋 and 𝐴 is connected, then 𝑓(𝐴) is connected. This can be shown by restricting 𝑓 to the domain
𝐴.

Corollary. Any quotient of a connected topological space is connected.

Example. Let
𝑌 = {(𝑥, sin 1𝑥)∶ 𝑥 > 0} ⊂ ℝ2

This space is connected; the function 𝑓∶ (0,∞) → ℝ2 defined by 𝑓(𝑥) = (𝑥, sin 1
𝑥
) is continuous. So

we have that 𝑌 = Im𝑓 is connected. Hence, 𝑌 is connected. We claim that

𝑍 ≡ 𝑌 ∪ {(0, 𝑦)∶ 𝑦 ∈ [−1, 1]} = 𝑌

Indeed, given 𝑦 ∈ [−1, 1], for all 𝑛 ∈ ℕ we have that (0, 1
𝑛
) is mapped to (𝑛,∞) by 𝑥 → 1

𝑥
, so by the

intermediate value theorem there exists 𝑥𝑛 ∈ (0, 1
𝑛
) such that sin 1

𝑥𝑛
= 𝑦. Hence,

(𝑥𝑛, sin
1
𝑥𝑛
) = (𝑥𝑛, 𝑦) → (0, 𝑦) ∈ 𝑌

So𝑌 ⊂ 𝑍 ⊂ 𝑌 . If we can show𝑍 is closed, 𝑍 = 𝑌 since𝑌 is the smallest closed superset of𝑌 . Suppose
(𝑥𝑛, 𝑦𝑛) ∈ 𝑍 for all 𝑛 ∈ ℕ, and (𝑥𝑛, 𝑦𝑛) → (𝑥, 𝑦) in ℝ2. Since 𝑦𝑛 ∈ [−1, 1] and 𝑦𝑛 → 𝑦, we have
𝑦 ∈ [−1, 1]. If 𝑥 = 0, we have (𝑥, 𝑦) ∈ 𝑍. If 𝑥 ≠ 0, then 𝑥𝑛 → 𝑥 implies 𝑥𝑛 ≠ 0 for all sufficiently
large 𝑛. Hence 𝑦𝑛 = sin 1

𝑥𝑛
for all sufficiently large 𝑛. Thus

(𝑥𝑛, 𝑦𝑛) → (𝑥, sin 1𝑥) ∈ 𝑍

Lemma. Let 𝑋 be a topological space and𝒜 be a family of connected subsets of 𝑋 . Suppose
that 𝐴 ∩ 𝐵 ≠ ∅ for all 𝐴, 𝐵 ∈ 𝒜. Then⋃𝐴∈𝒜 𝐴 is connected.

Proof. Let 𝑌 = ⋃𝐴∈𝒜 𝐴, and let 𝑓∶ 𝑌 → ℤ be a continuous function. We must show that 𝑓 is
constant. For all 𝐴 ∈ 𝒜, 𝑓|𝐴 ∶ 𝐴 → ℤ is continuous and hence constant, since 𝐴 is connected. For
all 𝐴, 𝐵 ∈ 𝒜, 𝐴 ∩ 𝐵 ≠ ∅ hence 𝑓|𝐴 and 𝑓|𝐵 are both constant and have the same value. So 𝑓 must
be constant, and hence 𝑌 is connected.

Theorem. Let𝑋, 𝑌 be connected topological spaces. Then𝑋×𝑌 is connected (in the product
topology).

Proof. Without loss of generality, let𝑋 ≠ ∅, 𝑌 ≠ ∅. Let𝑥0 ∈ 𝑋 . Consider the function𝑓∶ 𝑌 → 𝑋×𝑌
defined by 𝑓(𝑦) = (𝑥0, 𝑦). The components of 𝑓 are the functions 𝑦 ↦ 𝑥0 which is continuous as
it is constant, and 𝑦 ↦ 𝑦 which is continuous as it is the identity. So 𝑓 is continuous. Then, the
image of 𝑓, which is {𝑥0} × 𝑌 , is connected. Similarly, for all 𝑦 ∈ 𝑌 , 𝑋 × {𝑦} is connected. For 𝑦 ∈ 𝑌 ,
{𝑥0} × 𝑌 ∩ 𝑋 × {𝑦} = {(𝑥0, 𝑦)} ≠ ∅. Hence, 𝐴𝑦 = {𝑥0} × 𝑌 ∪ 𝑋 × {𝑦} is connected. For all 𝑦, 𝑧 ∈ 𝑌 ,
𝐴𝑦 ∩ 𝐴𝑧 ⊃ {𝑥0} × 𝑌 hence 𝐴𝑦 ∩ 𝐴𝑧 ≠ ∅. Hence,⋃𝑦∈𝑌 𝐴𝑦 = 𝑋 × 𝑌 is connected.

Example. ℝ𝑛 is connected for all 𝑛 ∈ ℕ.
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8.3 Partitioning into connected components

Definition. Let 𝑋 be a topological space. We define a relation ∼ on 𝑋 by 𝑥 ∼ 𝑦 if and only
if there exists a connected subset 𝐴 of 𝑋 such that 𝑥, 𝑦 ∈ 𝐴. For all 𝑥 ∈ 𝑋 , 𝑥 ∼ 𝑥 since {𝑥}
is connected. Symmetry is clear from the definition. If 𝑥 ∼ 𝑦 and 𝑦 ∼ 𝑧 then by definition
there exist connected subsets 𝐴, 𝐵 in 𝑋 such that 𝑥, 𝑦 ∈ 𝐴 and 𝑦, 𝑧 ∈ 𝐵. In particular, 𝐴 ∩ 𝐵
is not empty since 𝑦 ∈ 𝐴 ∩ 𝐵. Hence 𝐴 ∪ 𝐵 is connected. Since 𝐴 ∪ 𝐵 contains 𝑥, 𝑧, we have
𝑥 ∼ 𝑧 as required for transitivity. Hence ∼ is an equivalence relation. For 𝑥 ∈ 𝑋 , we write 𝐶𝑥
for the equivalence class containing 𝑥, called the connected component of 𝑥. The equivalence
classes are called connected components of 𝑋 .

Proposition. The connected components of a topological space 𝑋 are non-empty, maximal
connected subsets of 𝑋 , they are closed, and they partition 𝑋 .

Proof. Let 𝐶 be a connected component of 𝑋 . So 𝐶 = 𝐶𝑥 for some 𝑥 ∈ 𝑋 . Then 𝑥 ∈ 𝐶 hence 𝐶 ≠ ∅.
Suppose 𝐶 ⊂ 𝐴 ⊂ 𝑋 and 𝐴 is connected. Then for all 𝑦 ∈ 𝐴, since 𝑥, 𝑦 ∈ 𝐴 we must have 𝑥 ∼ 𝑦.
So 𝑦 ∈ 𝐶. Hence 𝐴 ⊂ 𝐶, giving 𝐴 = 𝐶. For all 𝑦 ∈ 𝐶, we have 𝑦 ∼ 𝑥, so there exists a connected
subset 𝐴𝑦 ⊂ 𝑋 such that 𝑥, 𝑦 ∈ 𝐴𝑦. Let 𝐴 = ⋃𝑦∈𝐶 𝐴𝑦. 𝐴 is connected since the union of pairwise
intersecting connected sets are connected. Further 𝐴 ⊃ 𝐶 so 𝐴 = 𝐶 and 𝐶 is connected. Since the
closure of a connected set is connected, 𝐶 is connected. But 𝐶 ⊃ 𝐶, so 𝐶 = 𝐶 is closed.

8.4 Path-connectedness

Definition. Let 𝑋 be a topological space. For points 𝑥, 𝑦 ∈ 𝑋 , a path from 𝑥 to 𝑦 in 𝑋 is
a continuous function 𝛾∶ [0, 1] → 𝑋 such that 𝛾(0) = 𝑥, 𝛾(1) = 𝑦. We say that 𝑋 is path-
connected if for all 𝑥, 𝑦 ∈ 𝑋 , there exists a path from 𝑥 to 𝑦 in 𝑋 .

Example. In ℝ𝑛,𝒟𝑟(𝑥) is path-connected by a straight line segment between any two points in the
ball. In particular, let 𝛾(𝑡) = (1 − 𝑡)𝑦 + 𝑡𝑧. This is continuous and lies entirely inside𝒟𝑟(𝑥), since

‖𝛾(𝑡) = 𝑥‖ = ‖(1 − 𝑡)𝑡 + 𝑡𝑧 − 𝑥‖
= ‖((1 − 𝑡)𝑦 + 𝑡𝑧) − ((1 − 𝑡)𝑥 + 𝑡𝑥)‖
≤ (1 − 𝑡)‖𝑦 − 𝑥‖ + 𝑡‖𝑧 − 𝑥‖
< 𝑟

In a similar way, any convex subset of ℝ𝑛 is path-connected.

Theorem. If 𝑋 is path-connected, 𝑋 is connected.

Proof. Suppose𝑋 is not connected. Let𝑈,𝑉 disconnect𝑋 . Let𝑥 ∈ 𝑈, 𝑦 ∈ 𝑉 , and suppose 𝛾∶ [0, 1] →
𝑋 is continuous with 𝛾(0) = 𝑥 and 𝛾(1) = 𝑦. Then 𝛾−1(𝑈) and 𝛾−1(𝑉) disconnect [0, 1], which con-
tradicts the connectedness of [0, 1].
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Example. The converse is false in general. Recall that the space

𝑋 = {(𝑥, sin 1𝑥)∶ 𝑥 > 0} ∪ {(0, 𝑦)∶ − 1 ≤ 𝑦 ≤ 1}

is connected. We will show 𝑋 is not path-connected. Suppose 𝛾∶ [0, 1] → 𝑋 is continuous, and
𝛾(0) = (0, 0) and 𝛾(1) = (1, sin 1). Let 𝛾 = (𝛾1, 𝛾2), so 𝛾1, 𝛾2 are continuous functions. Suppose 𝑡 ∈
[0, 1] such that 𝛾1(𝑡) > 0. Then 𝛾1((0, 𝑡)) ⊃ (0, 𝛾1(𝑡)) by the intermediate value theorem. In particular,
there exists 𝑛 ∈ ℕ such that 1

2𝜋𝑛
∈ (0, 𝛾1(𝑡)). Hence, there exists 𝑠 < 𝑡 such that 𝛾1(𝑠) =

1
2𝜋𝑛

so
𝛾1(𝑠) = 0. Similarly, 1

2𝜋𝑛+𝜋
2
∈ (0, 𝛾1(𝑡)) so there exists a different 𝑠 < 𝑡 such that 𝛾1(𝑠) =

1
2𝜋𝑛+𝜋

2
hence

𝛾2(𝑠) = 1. In both cases, 𝛾1(𝑠) > 0. We can inductively find a sequence 1 > 𝑡1 > 𝑡2 > ⋯ > 0 such
that 𝛾2(𝑡𝑛) alternates between zero and one. But then 𝑡𝑛 → 𝑡 since it is a decreasing bounded-below
sequence, and 𝛾2 is continuous, so 𝛾2(𝑡𝑛) → 𝛾2(𝑡) which is a contradiction.

8.5 Gluing lemma

Lemma. Let 𝑋 be a topological space. Suppose 𝑋 = 𝐴 ∪ 𝐵 where 𝐴, 𝐵 are closed in 𝑋 . Let
𝑔∶ 𝐴 → 𝑌 and ℎ∶ 𝐵 → 𝑌 be continuous where 𝑌 is a topological space, such that for 𝐴 ∩ 𝐵,
we have 𝑔 = ℎ. Then 𝑓∶ 𝑋 → 𝑌 defined by

𝑓(𝑥) = {𝑔(𝑥) 𝑥 ∈ 𝐴
ℎ(𝑥) 𝑥 ∈ 𝐵

is well defined and continuous.

Proof. First, observe that if 𝐹 ⊂ 𝐴 and 𝐹 is closed in 𝐴, then there exists a closed set 𝐺 in 𝑋 such that
𝐹 = 𝐴 ∩ 𝐺. Since 𝐴 is closed in 𝑋 , we must have 𝐹 is closed in 𝑋 . The same holds for 𝐹 ⊂ 𝐵. Now,
let 𝑉 be a closed set in 𝑌 . Then the inverse image of 𝑉 under 𝑓 is

𝑓−1(𝑉) = (𝑓−1(𝑉) ∩ 𝐴) ∪ (𝑓−1(𝑉) ∩ 𝐵) = 𝑔−1(𝑉)⏟⎵⏟⎵⏟
closed in𝐴

∪ ℎ−1(𝑉)⏟⎵⏟⎵⏟
closed in 𝐵

So 𝑓−1(𝑉) is closed in 𝑋 . To prove continuity it suffices to show that the preimage of a closed set is
closed, since that implies that the preimage of an open set is open.

Definition. Let 𝑋 be a topological space. For 𝑥, 𝑦 ∈ 𝑋 , we write 𝑥 ∼ 𝑦 if there exists a path
from 𝑥 to 𝑦 in 𝑋 . This is an equivalence relation:
(i) The constant function shows that 𝑥 ∼ 𝑥 for all 𝑥.
(ii) If 𝛾∶ [0, 1] → 𝑋 is continuous and 𝛾(0) = 𝑥, 𝛾(1) = 𝑦, we define 𝑡 ↦ 𝛾(1 − 𝑡), which is

a path from 𝑦 to 𝑥.
(iii) Finally, if 𝑥 ∼ 𝑦 and 𝑦 ∼ 𝑧, we have continuous functions 𝛾, 𝛿 such that 𝛾(0) = 𝑥, 𝛾(1) =

𝑦 = 𝛿(0), 𝛿(1) = 𝑧. Then let

𝜂(𝑡) = {
𝛾(2𝑡) 𝑡 ∈ [0, 1

2
]

𝛿(2𝑡 − 1) 𝑡 ∈ [ 1
2
, 1]

These intervals are closed on [0, 1] and their union is [0, 1]. On the intersection, they
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are equal. By the gluing lemma, 𝜂 is continuous, and now since 𝜂(0) = 𝑥, 𝜂(1) = 𝑧 we
have 𝑥 ∼ 𝑧.

We call the equivalence classes path-connected components of 𝑋 .

Theorem. Let 𝑈 be an open subset of ℝ𝑛. Then 𝑈 is connected if and only if 𝑈 is path-
connected.

Proof. The converse is trivial. Suppose 𝑈 is connected. Without loss of generality, suppose 𝑈 ≠ ∅.
Let 𝑥0 ∈ 𝑈 . Let 𝑃 = {𝑥 ∈ 𝑈 ∶ 𝑥 ∼ 𝑥0} be the equivalence class of 𝑥0. We want to show 𝑃 = 𝑈 . To do
this, we will show that 𝑃 is open and closed in 𝑈 . Then, 𝑃,𝑈 ∖ 𝑃 will disconnect 𝑈 unless 𝑃 = ∅ or
𝑃 = 𝑈 . But we know 𝑥0 ∈ 𝑃, hence 𝑃 = 𝑈 will be the only possibility.

To show 𝑃 is open, let 𝑥 ∈ 𝑈 . Since 𝑈 is open, there exists 𝑟 > 0 such that 𝒟𝑟(𝑥) ⊂ 𝑈 . Recall that
for all 𝑦 ∈ 𝒟𝑟(𝑥), we have 𝑦 ∼ 𝑥. Now, if 𝑥 ∈ 𝑃, then we have 𝑦 ∼ 𝑥 and 𝑥 ∼ 𝑥0 so 𝑦 ∼ 𝑥0. So
𝒟𝑟(𝑥) ⊂ 𝑃. So 𝑃 is open.
Now, if 𝑥 ∈ 𝑈 ∖ 𝑃 and 𝑦 ∈ 𝒟𝑟(𝑥) has 𝑦 ∼ 𝑥0, then by transitivity 𝑥 ∼ 𝑥0. But this is a contradiction
since 𝑥 ∉ 𝑃. Hence 𝑈 ∖ 𝑃 is open. So 𝑃 is open and closed, so 𝑃 = 𝑈 .

Theorem. For 𝑛 ≥ 2, ℝ and ℝ𝑛 are not homeomorphic.

The generalisation ℝ𝑚 ≄ ℝ𝑛 is true, but significantly harder to prove and outside the scope of this
course.

Proof. Suppose 𝑓∶ ℝ → ℝ𝑛 is a homeomorphism. Let 𝑔 = 𝑓−1. Then 𝑔 is continuous. Then, 𝑓|ℝ∖{0}
is a homeomorphism fromℝ∖ {0} toℝ𝑛 ∖ {𝑓(0)}, with inverse 𝑔|ℝ𝑛∖{𝑓(0)}. Butℝ∖ {0} is disconnected,
but ℝ𝑛 ∖ {𝑓(0)} is connected since it is path-connected. This is a contradiction.

9 Compactness
9.1 Motivation and definition
Recall from IA Analysis that a continuous function on a closed bounded interval is bounded and
attains its bounds. We wish to generalise this result to more general topological spaces.

Example. (i) If 𝑋 is finite, any function 𝑋 → ℝ is finite.

(ii) If, for all continuous functions 𝑓∶ 𝑋 → ℝ there exists 𝑛 ∈ ℕ and subsets 𝐴1,… , 𝐴𝑛 of 𝑋 such
that 𝑋 = ⋃𝑛

𝑗=1 𝐴𝑗 and 𝑓 is bounded on 𝐴𝑗 for all 𝑗, then the property holds.

(iii) Note that continuous functions are ‘locally bounded’; if 𝑓∶ 𝑋 → ℝ is continuous, then for all
𝑥 ∈ 𝑋 we have𝑈𝑥 = 𝑓−1((𝑓(𝑥)−1, 𝑓(𝑥)+1)) is an open set containing 𝑋 , and 𝑓 is bounded on
𝑈𝑥. So each point has an open neighbourhood on which 𝑓 is bounded. Further, 𝑋 = ⋃𝑥∈𝑋 𝑈𝑥.
If there exists a finite subset 𝐹 ⊂ 𝑋 such that⋃𝑥∈𝐹 𝑈𝑥 = 𝑋 , then 𝑓 is bounded on 𝑋 . This is
exactly the definition we will use for compactness.
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Definition. Let 𝑋 be a topological space. An open cover for 𝑋 is a family 𝒰 of open subsets
of 𝑋 that cover 𝑋 ; that is, ⋃𝑈∈𝒰 𝑈 = 𝑋 . A subcover of 𝒰 is a subset 𝒱 ⊂ 𝒰 that covers 𝑈 .
This is called a finite subcover if 𝒱 is finite. We say that 𝑋 is compact if every open cover has
a finite subcover.

Remark. Compactness can be thought of as the next best thing to finiteness.

Theorem. Let 𝑋 be a compact topological space and 𝑓∶ 𝑋 → ℝ be continuous. Then 𝑓 is
bounded, and if 𝑋 is not empty 𝑓 attains its bounds.

Proof. For 𝑛 ∈ ℕ, let 𝑈𝑛 = {𝑥 ∈ 𝑋 ∶ |𝑓(𝑥)| < 𝑛}. 𝑈𝑛 is open since 𝑥 ↦ |𝑓(𝑥)| is continuous and
(−𝑛, 𝑛) is open. It is clear that 𝑋 = ⋃𝑛∈ℕ𝑈𝑛. This is an open cover of 𝑋 . Hence there exists a finite
subcover 𝐹 ⊂ ℕ such that 𝑋 = ⋃𝑛∈𝐹 𝑈𝑛 = 𝑈𝑁 where 𝑁 = max𝐹. Hence, for all 𝑥 ∈ 𝑋 , we have
|𝑓(𝑥)| < 𝑁 so 𝑓 is bounded.
Let 𝛼 = inf𝑋 𝑓; this exists since 𝑓 is bounded. Suppose there exists no 𝑥 ∈ 𝑋 such that 𝑓(𝑥) = 𝛼.
Then, for all 𝑥 ∈ 𝑋 , 𝑓(𝑥) > 𝛼. Then there exists 𝑛 ∈ ℕ such that 𝑓(𝑥) > 𝛼 + 1

𝑛
. So let

𝑉𝑛 = {𝑥 ∈ 𝑋 ∶ 𝑓(𝑥) > 𝛼 + 1
𝑛} = 𝑓−1((𝛼 + 1

𝑛,∞))

We can see that 𝑉𝑛 is open. Now, since⋃𝑛∈ℕ 𝑉𝑛 = 𝑋 , there exists a finite subcover 𝐹 ⊂ ℕ such that
⋃𝑛∈𝐹 𝑉𝑛 = 𝑋 = 𝑉 𝑁 where 𝑁 is the maximal 𝐹. Then for all 𝑥 ∈ 𝑋 , we have 𝑓(𝑥) > 𝛼 + 1

𝑁
. Hence

inf𝑋 𝑓 ≥ 𝛼 + 1
𝑁
, which is a contradiction. The same argument applies for the supremum.

Lemma. Let 𝑌 be a subspace of a topological space 𝑋 . Then 𝑌 is compact if and only if
whenever 𝒰 is a family of open sets in 𝑋 such that ⋃𝑈∈𝒰 ⊃ 𝑌 , there is a finite subfamily
𝒱 ⊂ 𝒰 with⋃𝑈∈𝒱 𝑈 ⊃ 𝑌 .

Theorem. [0, 1] is compact.

Proof. Let 𝒰 be a family of open sets in ℝ that cover [0, 1]. For a subset 𝐴 ⊂ [0, 1], we say that 𝒰
finitely covers𝐴 if there exists a finite subcover𝒱 ⊂ 𝒰 of𝐴. Note that if𝐴 = 𝐵∪𝐶 and𝐴, 𝐵, 𝐶 ⊂ [0, 1]
and𝒰 finitely covers 𝐵 and𝐶, we can take the union of the finite subcovers to find a finite subcover of
𝐴, so𝑈 finitely covers𝐴. Suppose that𝒰 does not finitely cover [0, 1]. Then one of the intervals [0, 1

2
]

and [ 1
2
, 1] is not finitely coverable by𝒰. Let this interval be [𝑎1, 𝑏1]. Let 𝑐 =

1
2
(𝑎1 + 𝑏1). Then one of

the intervals [𝑎1, 𝑐], [𝑐, 𝑏1] is not finitely coverable by𝒰. Inductively, we obtain a nested sequence of
intervals [𝑎1, 𝑏1] ⊃ ⋯ ⊃ [𝑎𝑛, 𝑏𝑛] ⊃ ⋯ which are not finitely covered by 𝒰 and 𝑏𝑛 − 𝑎𝑛 = 2−𝑛. Now,
𝑎𝑛 → 𝑥 for some 𝑥 ∈ [0, 1] and 𝑏𝑛 = 𝑎𝑛 + 2−𝑛 → 𝑥. But since 𝒰 covers [0, 1], there exists 𝑈 ∈ 𝒰
such that 𝑥 ∈ 𝑈 . 𝑈 is open in ℝ, so for all 𝜀 > 0, we have (𝑥 − 𝜀, 𝑥 + 𝜀) ⊂ 𝑈 . Since 𝑎𝑛, 𝑏𝑛 → 𝑥, we
can choose 𝑛 such that 𝑎𝑛, 𝑏𝑛 ∈ (𝑥 − 𝜀, 𝑥 + 𝜀). This is covered by one open set 𝑈 in 𝒰, so this is a
finite subcover. This is a contradiction.

Example. Other examples of compact spaces include the following.
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(i) Any finite set is compact.

(ii) On any set 𝑋 , the cofinite topology is compact. Suppose without loss of generality that 𝑋 is not
empty, and let𝒰 be an open cover for 𝑋 . Let𝑈 ∈ 𝒰 such that𝑈 ≠ ∅. Then 𝐹 = 𝑋 ∖𝑈 is finite.
For all 𝑥 ∈ 𝐹, let 𝑈𝑥 ∈ 𝒰 such that 𝑥 ∈ 𝑈𝑥. Then⋃𝑥∈𝐹 𝑈𝑥 ∪ 𝑈 is a finite subcover.

(iii) Let 𝑥𝑛 → 𝑥 in a topological space 𝑋 . Let 𝑌 = {𝑥𝑛 ∶ 𝑛 ∈ ℕ} ∪ {𝑥}. Then 𝑌 is compact. Indeed,
let 𝒰 be a family of open sets in 𝑋 such that⋃𝑈∈𝒰 𝑈 ⊃ 𝑌 . In particular, let 𝑈 ∈ 𝒰 such that
𝑥 ∈ 𝑈 . Since 𝑈 is open and 𝑥𝑛 → 𝑥, there exists 𝑁 ∈ ℕ such that for all 𝑛 ≥ 𝑁 we have
𝑥𝑛 ∈ 𝑈 . So we can cover the remaining finitely many elements analogously to the previous
example, and this yields a finite subcover.

(iv) The indiscrete topology on any set is compact, since there are only two open sets.

Counterexamples include the following.

(i) An infinite set 𝑋 in the discrete topology is not compact. Let

𝒰 = {{𝑥}∶ 𝑥 ∈ 𝑋}

This has no finite subcover.

(ii) ℝ is not compact. Consider the intervals (−𝑛, 𝑛) for all 𝑛 ∈ ℕ. This is an open cover with no
finite subcover.

9.2 Subspaces

Theorem. Let 𝑌 be a subspace of a topological space 𝑋 . Then,
(i) Let 𝑋 be compact and 𝑌 be closed in 𝑋 . Then 𝑌 is compact.
(ii) Let 𝑋 be Hausdorff and 𝑌 be compact. Then 𝑌 is closed in 𝑋 .

Proof. Let𝒰 be a family of open sets in 𝑋 such that their union covers 𝑌 . Then𝒰∪(𝑋 ∖𝑌) is an open
cover for 𝑋 since 𝑌 is closed. This has a finite subcover 𝒱 ⊂ 𝒰 such that⋃𝑈∈𝒱 𝑈 ∪ (𝑋 ∖ 𝑌) = 𝑋 .
Then⋃𝑈∈𝒱 𝑈 ⊃ 𝑌 .
For part (ii), let 𝑥 ∈ 𝑋 ∖ 𝑌 . For 𝑦 ∈ 𝑌 , since 𝑥 ≠ 𝑦 there exist open sets 𝑈𝑦, 𝑉𝑦 in 𝑋 such that
𝑥 ∈ 𝑈𝑦, 𝑦 ∈ 𝑉𝑦, 𝑈𝑦 ∩𝑉𝑦 = ∅. Now, {𝑉𝑦 ∶ 𝑦 ∈ 𝑌} is an open cover of 𝑌 . Hence there exists 𝐹 ⊂ 𝑌 finite
such that⋃𝑦∈𝐹 𝑉𝑦 ⊃ 𝑌 . Now, 𝑈 = ⋂𝑦∈𝐹 𝑈𝑦 is open, further 𝑥 ∈ 𝑈 and

𝑈 ∩ 𝑌 ⊂ (⋂
𝑦∈𝐹

𝑈𝑦) ∩ (⋃
𝑦∈𝐹

𝑉𝑦) = ∅

Hence 𝑋 ∖ 𝑌 is a neighbourhood of all of its points, so it is open and 𝑌 is closed.

9.3 Continuous images of compact spaces

Theorem. Let 𝑓∶ 𝑋 → 𝑌 be a continuous function between topological spaces such that 𝑋
is compact. Then 𝑓(𝑋) is compact.
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Proof. Let 𝒰 be a family of open sets in 𝑌 such that ⋃𝑈∈𝒰 𝑈 ⊃ 𝑓(𝑋). Then ⋃𝑈∈𝒰 𝑓−1(𝑈) = 𝑋
and 𝑓−1(𝑈) is open in 𝑋 for all 𝑈 ∈ 𝒰 since 𝑓 is continuous. Since 𝑋 is compact, we have a finite
subcover 𝒱 ⊂ 𝒰 such that 𝑋 = ⋃𝑈∈𝒱 𝑓−1(𝑉). Hence 𝑓(𝑋) ⊂ ⋃𝑈∈𝒱 𝑈 .

Remark. Compactness is a topological property. If 𝑓∶ 𝑋 → 𝑌 is continuous and 𝐴 ⊂ 𝑋 is compact,
then 𝑓(𝐴) is compact.

Corollary. Any quotient of a compact space is compact.

Example. Let 𝑎 < 𝑏 ∈ ℝ. Then [𝑎, 𝑏] ≃ [0, 1] so is compact.

9.4 Topological inverse function theorem

Theorem. Let 𝑓∶ 𝑋 → 𝑌 be a continuous bijection from a compact space 𝑋 to a Hausdorff
space 𝑌 . Then 𝑓−1 is continuous, so 𝑓 is an open map. Hence 𝑓 is a homeomorphism.

Proof. Let 𝑈 be an open subset of 𝑋 . Then 𝐾 = 𝑋 ∖ 𝑈 is closed. Since 𝑋 is compact, 𝐾 is compact.
Further, 𝑓(𝐾) is compact. Hence 𝑓(𝐾) is closed in 𝑌 . So 𝑓(𝑈) = 𝑌 ∖ 𝑓(𝐾) is open in 𝑌 .

Example. ℝ/ℤ is homeomorphic to 𝑆1 = {𝑥 ∈ ℝ2 ∶ ‖𝑥‖ = 1}. Indeed, let 𝑓∶ ℝ → 𝑆1 by 𝑓(𝑡) =
(cos(2𝜋𝑡), sin(2𝜋𝑡)). For all 𝑠, 𝑡, we have 𝑓(𝑠) = 𝑓(𝑡) if and only if 𝑠 ∼ 𝑡 so 𝑓 fully respects ∼. 𝑓 is
continuous and surjective. Let 𝑓∶ ℝ/ℤ → 𝑆1 be the unique map such that 𝑓 ∘ 𝑞 = 𝑓. So 𝑓 is a
continuous bijection. 𝑆1 is Hausdorff, and ℝ/ℤ is the image of [0, 1] under a continuous map, hence
is compact. Hence 𝑓 is a homeomorphism.

9.5 Tychonov’s theorem

Theorem. Let 𝑋, 𝑌 be compact topological spaces. Then 𝑋 × 𝑌 is compact in the product
topology.

Proof. Let𝒰 be an open cover for𝑋×𝑌 . Wewant to show that there exists a finite subcover. Without
loss of generality, everymember of𝒰 can be of the form𝑈×𝑉 where𝑈 is open in𝑋 and𝑉 is open in𝑌 .
Indeed, for 𝑧 ∈ 𝑋×𝑌 we can choose𝑊𝑧 ∈ 𝒰 such that 𝑧 ∈ 𝑊𝑧. By definition of the product topology,
there exist open sets 𝑈𝑧 in 𝑋 and 𝑉𝑧 in 𝑌 such that 𝑧 ∈ 𝑈𝑧 × 𝑉𝑧 ⊂ 𝑊𝑧. So {𝑈𝑧 × 𝑉𝑧 ∶ 𝑧 ∈ 𝑋 × 𝑌} is an
open cover for 𝑋 × 𝑌 . If there exists a finite subset 𝐹 ⊂ 𝑋 × 𝑌 such that⋃𝑧∈𝐹 𝑈𝑧 × 𝑉𝑧 covers 𝑋 × 𝑌 ,
then {𝑊𝑥 ∶ 𝑧 ∈ 𝐹} is a finite subcover of 𝒰.
Let 𝑥 ∈ 𝑋 . Recall that {𝑥} × 𝑌 is the continuous image of 𝑌 under the map 𝑦 ↦ (𝑥, 𝑦). Hence,
{𝑥} × 𝑌 is compact, since the continuous image of a compact space is compact. Since {𝑥} × 𝑌 is
covered by⋃𝑊∈𝒰𝑊 , 𝒰 finitely covers {𝑥} × 𝑌 . So there exists 𝑛𝑥 ∈ ℕ such that we can find open
sets𝑈𝑥,1,… ,𝑈𝑥,𝑛𝑥 in 𝑋 and 𝑉𝑥,1,… , 𝑉𝑥,𝑛𝑥 in 𝑌 such that𝑈𝑥,𝑗×𝑉𝑥,𝑗 ∈ 𝒰 and {𝑥}×𝑌 ⊂ ⋃𝑛𝑥

𝑗=1𝑈𝑥,𝑗×𝑉𝑥,𝑗 .

Without loss of generality, let 𝑥 ∈ 𝑈𝑥,𝑗 for all 𝑗, since any other 𝑈𝑥,𝑗 is not needed in the cover. Now
let 𝑈𝑥 = ⋂𝑛𝑥

𝑗=1𝑈𝑥,𝑗 . We know 𝑥 ∈ 𝑈𝑥 and 𝑈𝑥 is open since it is a finite intersection of open sets. In
particular, 𝑈𝑥 × 𝑌 ⊂ ⋃𝑛𝑥

𝑗=1𝑈𝑥,𝑗 × 𝑉𝑥,𝑗 .
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Now, {𝑈𝑥 ∶ 𝑥 ∈ 𝑋} is an open cover for𝑋 . So there exists a finite subset𝐹 ⊂ 𝑋 such that𝑋 = ⋃𝑥∈𝐹 𝑈𝑥.
Then, 𝑋 × 𝑌 = ⋃𝑥∈𝐹 𝑈𝑥 × 𝑌 ⊂ ⋃𝑥∈𝐹 ⋃

𝑛𝑥
𝑗=1𝑈𝑥,𝑗 × 𝑉𝑥,𝑗 . Hence,

{𝑈𝑥,𝑗 × 𝑉𝑥,𝑗 ∶ 𝑥 ∈ 𝐹, 1 ≤ 𝑗 ≤ 𝑛𝑥}

is a finite subcover of 𝒰.

Remark. More generally, if 𝑋1,… , 𝑋𝑛 are compact spaces, then so is 𝑋1 ×⋯× 𝑋𝑛.

9.6 Heine–Borel theorem

Theorem. A subset 𝐾 of ℝ𝑛 is compact if and only if 𝐾 is closed and bounded.

Proof. Suppose 𝐾 is compact. ℝ𝑛 is a metric space and hence Hausdorff. Hence, 𝐾 is closed in ℝ𝑛.
The function 𝑥 ↦ ‖𝑥‖ is continuous. Therefore, it is bounded on 𝐾. So 𝐾 is bounded.

Conversely, if 𝐾 is bounded, there exists 𝑀 ≥ 0 such that for all 𝑥 ∈ 𝐾 we have ‖𝑥‖ ≤ 𝑀. Hence,
𝐾 ⊂ [−𝑀,𝑀]𝑛. Note that [−𝑀,𝑀] is compact since it is homeomorphic to [0, 1]. By Tychonov’s
theorem, [−𝑀,𝑀]𝑛 is compact in the product topology. Since a closed subset of a compact space is
compact, 𝐾 is compact.

Example. Closed balls ℬ𝑟(𝑥) in ℝ𝑛 are compact. The start of the proof for the Lindelöf–Picard
theorem now makes more sense.

9.7 Sequential compactness

Definition. A topological space𝑋 is sequentially compact if every sequence in𝑋 has a conver-
gent subsequence. Given a sequence (𝑥𝑛) and an infinite set𝑀 ⊂ ℕ, we will write (𝑥𝑚)𝑚∈𝑀
for the subsequence (𝑥𝑚𝑛)∞𝑛=1 where 𝑚1 < 𝑚2 < … are the elements of 𝑀. Note that if
𝐿 ⊂ 𝑀 ⊂ ℕ, then (𝑥𝑛)𝑛∈𝐿 is a subsequence of (𝑥𝑛)𝑛∈𝑀 .

Example. Any closed and bounded subset ofℝ is sequentially compact by the Bolzano–Weierstrass
theorem. Similarly, any closed and bounded subset 𝐾 of ℝ𝑛 is sequentially compact. Indeed, let
(𝑥𝑚) be a sequence in 𝐾. Then, writing 𝑥𝑚 = (𝑥𝑚,1,… , 𝑥𝑚,𝑛), since 𝐾 is bounded we have that
(𝑥𝑚,𝑗) is bounded for all 𝑗. Applying the Bolzano–Weierstrass theorem to the first coordinate, we
find 𝑀1 ⊂ ℕ such that (𝑥𝑚,1)𝑚∈𝑀1 converges in ℝ. Now, (𝑥𝑚,2)𝑚∈𝑀1 is bounded in ℝ, so again
applying the Bolzano–Weierstrass theorem, we can find 𝑀2 ⊂ ℕ such that (𝑥𝑚,2)𝑚∈𝑀2 converges.
Note that (𝑥𝑚,1)𝑚∈𝑀2 converges. So inductively we can find 𝑀1 ⊃ ⋯ ⊃ 𝑀𝑛 such that (𝑥𝑚,𝑗)𝑚∈𝑀𝑛
converges for all 𝑗. Hence (𝑥𝑚)𝑚∈𝑀𝑛 converges in ℝ𝑛. The limit is contained in 𝐾 since 𝐾 is closed.

Remark. In ℝ𝑛, any compact space is sequentially compact. The converse is also true; any sequen-
tially compact subspace must be closed and bounded. We aim to show that compactness and sequen-
tial compactness are identical in metric spaces.

9.8 Compactness and sequential compactness in metric spaces
Let (𝑀, 𝑑) be a metric space.
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Definition. For 𝜀 > 0 and 𝐹 ⊂ 𝑀, we say that 𝐹 is an 𝜀-net for𝑀 if for all 𝑥 ∈ 𝑀, there exists
𝑦 ∈ 𝐹 such that 𝑑(𝑦, 𝑥) ≤ 𝜀. Equivalently,𝑀 = ⋃𝑦∈𝑀 ℬ𝜀(𝑦). This is called a finite 𝜀-net if 𝐹
is finite. We say that𝑀 is totally bounded if for all 𝜀 > 0, there exists a finite 𝜀-net for𝑀.

Example. For 𝜀 > 0, let 𝑛 such that 1
𝑛
< 𝜀. Then { 1

𝑛
, 2
𝑛
,… , 𝑛−1

𝑛
} is an 𝜀-net for (0, 1).

Definition. For a non-empty 𝐴 ⊂ 𝑀, the diameter of 𝐴 is diam𝐴 = sup {𝑑(𝑥, 𝑦)∶ 𝑥, 𝑦 ∈ 𝐴}.
This is finite if and only if 𝐴 is a bounded set.

Example. diamℬ𝑟(𝑥) ≤ 2𝑟.

Lemma. Suppose𝑀 is totally bounded. Let 𝐴 be a non-empty closed subset of𝑀. Let 𝜀 > 0.
Then there exists 𝐾 ∈ ℕ and non-empty closed sets 𝐵1,… , 𝐵𝐾 such that 𝐴 = ⋃𝐾

𝑘=1 𝐵𝑘 and
diam𝐵𝑘 ≤ 𝜀 for all 𝑘.

Proof. Let 𝐹 be a finite 𝜀
2
-net for 𝑀. So 𝑀 = ⋃𝑥∈𝐹 𝐵𝜀/2(𝑥) and hence 𝐴 = ⋃𝑥∈𝐹(𝐴 ∩ 𝐵𝜀/2(𝑥)). Let

𝐺 = {𝑥 ∈ 𝐹 ∶ 𝐴 ∩ 𝐵𝜀/2(𝑥) ≠ 0}. Then for 𝑥 ∈ 𝐺 let 𝐵𝑥 = 𝐴 ∩ 𝐵𝜀/2(𝑥). So for 𝑥 ∈ 𝐺, we have 𝐵𝑥 ≠ ∅,
𝐵𝑥 ⊂ 𝐵𝜀/2(𝑥) and so diam𝐵𝑥 ≤ 𝜀, and 𝐵𝑥 is closed. Then 𝐴 = ⋃𝑥∈𝐺 𝐵𝑥.

Theorem. For a metric space (𝑀, 𝑑), the following are equivalent.
(i) 𝑀 is compact;
(ii) 𝑀 is sequentially compact;
(iii) 𝑀 is complete and totally bounded.

Proof. We first show (i) implies (ii). Let (𝑥𝑛) be a sequence in𝑀. Then for𝑛 ∈ ℕ, let𝑇𝑛 = {𝑥𝑘 ∶ 𝑘 > 𝑛}
be the tail of the sequence. Note that the limit of any convergent subsequence (if it exists) is in the
intersection of ⋂𝑛∈ℕ 𝑇𝑛. So first, we prove that this intersection is non-empty. Suppose that it is
empty. Then, ⋃𝑛∈ℕ (𝑀 ∖ 𝑇𝑛) = 𝑀. But the 𝑀 ∖ 𝑇𝑛 are open, and 𝑀 is compact, there is a finite
subcover. So 𝑀 ∖ 𝑇𝑁 = 𝑀 for some 𝑁, since the 𝑇𝑛 are a decreasing sequence of sets. This is
a contradiction since 𝑇𝑁 ≠ ∅. Now, let 𝑥 ∈ ⋂𝑛∈ℕ 𝑇𝑛, and we want to show the existence of a
subsequence converging to 𝑥. First, 𝑥 ∈ 𝑇1, so𝒟1(𝑥) ∩ 𝑇1 ≠ ∅. Hence there exists 𝑘1 > 1 such that
𝑑(𝑥𝑘1 , 𝑥) < 1. Now since 𝑥 ∈ 𝑇𝑘1 , 𝒟1/2(𝑥) ∩ 𝑇𝑘1 ≠ ∅. There exists 𝑘2 > 𝑘1 such that 𝑑(𝑥𝑘2 , 𝑥) <

1
2
.

Inductively, we can find a strictly increasing sequence 𝑘1 < 𝑘2 < … such that 𝑑(𝑥𝑘𝑛 , 𝑥) <
1
𝑛
for all 𝑛,

so 𝑥𝑘𝑛 → 𝑥.
Now, we show (ii) implies (iii). To show 𝑀 is complete, let (𝑥𝑛) be a Cauchy sequence in 𝑀. Let
𝑘1 < 𝑘2 < … such that 𝑥𝑘𝑛 converges in𝑀, and let 𝑥 be the limit. We show 𝑥𝑛 → 𝑥. Indeed, for 𝜀 > 0,
there exists𝑁 ∈ ℕ such that ∀𝑚, 𝑛 ≥ 𝑁, we have 𝑑(𝑥𝑚, 𝑥𝑛) < 𝜀. Then ∀𝑚 ≥ 𝑁, we have 𝑘𝑛 ≥ 𝑚 ≥ 𝑁,
so for a fixed 𝑛 ≥ 𝑁 and ∀𝑚 ≥ 𝑁, we have 𝑑(𝑥𝑛, 𝑥) ≤ 𝑑(𝑥𝑛, 𝑥𝑘𝑚) + 𝑑(𝑥𝑘𝑚 , 𝑥) ≤ 𝜀 + 𝑑(𝑥𝑘𝑚 , 𝑥). Let
𝑚 → ∞, so 𝑑(𝑥𝑛, 𝑥) ≤ 𝜀. So 𝑥𝑛 → 𝑥. To show 𝑀 is totally bounded, suppose it is not. There
exists 𝜀 > 0 such that𝑀 has no finite 𝜀-net. Let 𝑥1 ∈ 𝑀, and suppose we can find 𝑥1,… , 𝑥𝑛−1 in𝑀.
Then⋃𝑛−1

𝑗=1 ℬ𝜀(𝑥𝑗) ≠ 𝑀. So we can pick 𝑥𝑛 ∈ 𝑀∖⋃𝑛−1
𝑗−1 ℬ𝜀(𝑥𝑗). Inductively we obtain (𝑥𝑛) such that
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𝑑(𝑥𝑚, 𝑥𝑛) > 𝜀 for all 𝑛,𝑚 ∈ ℕ. So (𝑥𝑛) has no Cauchy subsequence. There is therefore no convergent
subsequence, which is a contradiction.

Finally, we show (iii) implies (i). Let 𝒰 be an open cover for 𝑀. We must show there exists a finite
subcover. Suppose that is not true, so 𝒰 does not finitely cover 𝑀. We construct non-empty closed
subsets 𝐴0 ⊃ 𝐴1 ⊃ … of𝑀 such that for all 𝑛 ≥ 0, 𝒰 does not finitely cover 𝐴𝑛, and for all 𝑛 ≥ 1 we
have diam𝐴𝑛 < 1

𝑛
. Let 𝐴0 = 𝑀. Suppose that for some 𝑛 ≥ 1 we have already found 𝐴𝑛−1. Since

𝑀 is totally bounded, we can write 𝐴𝑛−1 = ⋃𝐾
𝑘=1 𝐵𝑘 where 𝐾 ∈ ℕ and the 𝐵𝑘 are non-empty, closed,

and diam𝐵𝑘 < 1
𝑛
. Since 𝒰 does not finitely cover 𝐴𝑛−1, there exists 𝑘 ≤ 𝐾 such that 𝒰 does not

finitely cover 𝐵𝑘. Let 𝐴𝑛 be this 𝐵𝑘. Now, for all 𝑛, pick some 𝑥𝑛 ∈ 𝐴𝑛. For all 𝑁, ∀𝑚, 𝑛 ≥ 𝑁 we
have 𝑥𝑚, 𝑥𝑛 ∈ 𝐴𝑁 hence 𝑑(𝑥𝑚, 𝑥𝑛) ≤ diam𝐴𝑁 ≤ 1

𝑛
so the sequence is Cauchy. 𝑀 is complete, so

𝑥𝑛 → 𝑥 for some 𝑥 ∈ 𝑀. Let 𝑈 ∈ 𝒰 such that 𝑥 ∈ 𝑈 . 𝑈 is open, so there exists 𝑟 > 0 such that
𝒟𝑟(𝑥) ⊂ 𝑈 . But 𝑥𝑛 → 𝑥 hence there exists 𝑛 such that 𝑑(𝑥𝑛, 𝑥) <

𝑟
2
and diam𝐴𝑛 < 𝑟

2
. For every

𝑦 ∈ 𝐴𝑛, 𝑑(𝑦, 𝑥) ≤ 𝑑(𝑦, 𝑥𝑛)+𝑑(𝑥𝑛, 𝑥) ≤ diam𝐴𝑛+
𝑟
2
< 𝑟. Hence every point in𝐴𝑛 is contained within

𝒟𝑟(𝑥) ⊂ 𝑈 . But this contradicts the fact that 𝒰 does not finitely cover 𝐴𝑛, but we have constructed
a cover using just one open set.

Remark. We can now deduce the one direction of the Heine–Borel theorem from the Bolzano–
Weierstrass theorem; closed and bounded subsets ofℝ𝑛 are compact. Similarly, we can check that the
product of sequentially compact topological spaces is sequentially compact in the product topology.
This yields a new proof for Tychonov’s theorem for metric spaces. In general, there exist topological
spaces that are compact but not sequentially compact, and conversely there exist topological spaces
which are sequentially compact but not compact.

10 Differentiation
10.1 Linear maps
Let 𝑚, 𝑛 ∈ ℕ. Recall that 𝐿(ℝ𝑚, ℝ𝑛) is the vector space of linear maps from ℝ𝑚 to ℝ𝑛. This is
isomorphic to 𝑀𝑛,𝑚, the space of 𝑛 × 𝑚 real matrices. There is also an isomorphism to ℝ𝑚𝑛. Let
𝑒1,… , 𝑒𝑚 be the standard basis of ℝ𝑚, and similarly let 𝑒′1,… , 𝑒′𝑛 be the standard basis of ℝ𝑛. Then
𝑇 ∈ 𝐿(ℝ𝑚, ℝ𝑛) is identified with the 𝑛 × 𝑚 matrix (𝑇𝑗𝑖) where 1 ≤ 𝑗 ≤ 𝑛 and 1 ≤ 𝑖 ≤ 𝑚, such that
𝑇𝑗𝑖 = ⟨𝑇𝑒𝑖, 𝑒′𝑗⟩. We can therefore view 𝐿(ℝ𝑚, ℝ𝑛) as the 𝑚𝑛-dimensional vector space ℝ𝑚𝑛 with the
Euclidean norm. So the norm of a linear map 𝑇 is given by

‖𝑇‖ =
√√√
√

𝑚
∑
𝑖=1

𝑛
∑
𝑗=1

𝑇2𝑗𝑖 =
√√√
√

𝑚
∑
𝑖=1

‖𝑇𝑒𝑖‖
2

where 𝑇𝑒𝑖 is the 𝑖th column of 𝑇. Thus, 𝐿(ℝ𝑚, ℝ𝑛) becomes a metric space together with the Euc-
lidean distance 𝑑(𝑆, 𝑇) = ‖𝑆 − 𝑇‖.

Lemma. For 𝑇 ∈ 𝐿(ℝ𝑚, ℝ𝑛) and 𝑥 ∈ ℝ𝑚,
‖𝑇𝑥‖ ≤ ‖𝑇‖ ⋅ ‖𝑥‖

So 𝑇 is a Lipschitz map and hence continuous. Further, if 𝑆 ∈ 𝐿(ℝ𝑛, ℝ𝑝) then
‖𝑆𝑇‖ ≤ ‖𝑆‖ ⋅ ‖𝑇‖
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Proof. We can write

𝑥 =
𝑚
∑
𝑖=1

𝑥𝑖𝑒𝑖

Hence,

𝑇𝑥 =
𝑚
∑
𝑖=1

𝑥𝑖𝑇𝑒𝑖

Thus,

‖𝑇𝑥‖ ≤
𝑚
∑
𝑖=1

|𝑥𝑖|‖𝑇𝑒𝑖‖ ≤ (
𝑚
∑
𝑖=1

𝑥2𝑖 )
1/2

⋅ (
𝑚
∑
𝑖=1

‖𝑇𝑒𝑖‖
2)

1/2

= ‖𝑇‖ ⋅ ‖𝑥‖

Further, for 𝑥, 𝑦 ∈ ℝ𝑚 we have

𝑑(𝑇𝑥, 𝑇𝑦) = ‖𝑇𝑥 − 𝑇𝑦‖ = ‖𝑇(𝑥 − 𝑦)‖ ≤ ‖𝑇‖ ⋅ ‖𝑥 − 𝑦‖ = ‖𝑇‖𝑑(𝑥, 𝑦)

So 𝑇 is Lipschitz, and any Lipschitz function is continuous. Now,

‖𝑆𝑇‖ = (
𝑚
∑
𝑖=1

‖𝑆𝑇𝑒𝑖‖
2)

1/2

≤ (
𝑚
∑
𝑖=1

‖𝑆‖‖𝑇𝑒𝑖‖
2)

1/2

= ‖𝑆‖(
𝑚
∑
𝑖=1

‖𝑇𝑒𝑖‖
2)

1/2

= ‖𝑆‖ ⋅ ‖𝑇‖

10.2 Differentiation
Recall from IA Analysis that a function 𝑓∶ ℝ → ℝ is differentiable at a point 𝑎 ∈ ℝ if

lim
ℎ→0

𝑓(𝑎 + ℎ) − 𝑓(𝑎)
ℎ

exists. The value of this limit is called the derivative of 𝑓 at 𝑎, and denoted 𝑓′(𝑎). Note that 𝑓 is
differentiable at 𝑎 if and only if there exists 𝜆 ∈ ℝ and 𝜀∶ ℝ → ℝ such that 𝜀(0) = 0 and 𝜀 is
continuous at 0, and

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + 𝜆ℎ + ℎ𝜀(ℎ)
This is because we can define

𝜀(ℎ) = {
0 ℎ = 0
𝑓(𝑎+ℎ)−𝑓(𝑎)

ℎ
− 𝜆 ℎ ≠ 0

Informally, this 𝜀 definition states that 𝑓 is approximated very well (the error ℎ𝜀(ℎ) shrinks rapidly
since 𝜀 → 0) by a linear function in a small neighbourhood of 𝑎. Recall that if 𝑓 is 𝑛 times differenti-
able at 𝑎, then

𝑓(𝑎 + ℎ) = 𝑓(𝑎) +
𝑛
∑
𝑘=1

𝑓(𝑘)(𝑎)
𝑘! ℎ𝑘 + 𝑜(ℎ𝑛)

Definition. Let𝑚, 𝑛 ∈ ℕ. Then 𝑓∶ ℝ𝑚 → ℝ𝑛 and 𝑎 ∈ ℝ𝑚. We say that 𝑓 is differentiable at
𝑎 if there exists a linear map 𝑇 ∈ 𝐿(ℝ𝑚, ℝ𝑛) and a function 𝜀∶ ℝ𝑚 → ℝ𝑛 such that 𝜀(0) = 0
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and 𝜀 is continuous at 0, and

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + 𝑇(ℎ) + ‖ℎ‖𝜀(ℎ)

Note that

𝜀(ℎ) = {
0 ℎ = 0
𝑓(𝑎+ℎ)−𝑓(𝑎)−𝑇(ℎ)

‖ℎ‖
ℎ ≠ 0

So 𝑓 is differentiable at 𝑎 if and only if there exists 𝑇 ∈ 𝐿(ℝ𝑚, ℝ𝑛) such that

𝑓(𝑎 + ℎ) − 𝑓(𝑎) − 𝑇(ℎ)
‖ℎ‖ → 0

as ℎ → 0. Such a 𝑇 is unique. Indeed, suppose 𝑆, 𝑇 satisfy the above limit. Then, by subtract-
ing,

𝑆(ℎ) − 𝑇(ℎ)
‖ℎ‖ → 0

For a fixed 𝑥 ∈ ℝ𝑚, 𝑥 ≠ 0, we have 𝑥
𝑘
→ 0 as 𝑘 → ∞ so

𝑆(𝑥
𝑘
) − 𝑇(𝑥

𝑘
)

‖
‖
𝑥
𝑘
‖
‖

→ 0 ⟹ 𝑆(𝑥) − 𝑇(𝑥)
‖𝑥‖ = 0

So 𝑆𝑥 = 𝑇𝑥. It follows that 𝑆 = 𝑇. We say that if a function 𝑓 is differentiable at a point 𝑎,
𝑇 is the unique derivative of 𝑓 at 𝑎. This is denoted 𝑓′(𝑎) = 𝐷𝑓(𝑎) = 𝐷𝑓|𝑎. If 𝑓∶ ℝ𝑚 → ℝ𝑛

is differentiable at 𝑎 ∈ ℝ𝑚 for every 𝑎, we say that 𝑓 is differentiable on ℝ𝑚. The function
𝑓′ = 𝐷∶ ℝ𝑚 → 𝐿(ℝ𝑚, ℝ𝑛)mapping 𝑎 ↦ 𝑓′(𝑎) is the derivative of 𝑓.

Example. Constant functions are differentiable. Let 𝑓∶ ℝ𝑚 → ℝ𝑛 such that 𝑓(𝑥) = 𝑏 for 𝑏 ∈ ℝ𝑛.
Then for all 𝑎 ∈ ℝ𝑚, we have

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + 0ℎ + 0
so 𝑓 is differentiable at 𝑎 and the derivative is zero.
Example. Linear maps are differentiable. Let 𝑓∶ ℝ𝑚 → ℝ𝑛 be defined by 𝑓(𝑥) = 𝑇𝑥 for a linear
map 𝑇 ∈ 𝐿(ℝ𝑚, ℝ𝑛). Then

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + 𝑓(ℎ) + 0
so 𝑓 is differentiable at 𝑎 with derivative 𝑇 = 𝑓. So 𝑓′ is a constant function.
Example. Consider

𝑓(𝑥) = ‖𝑥‖2

For 𝑎 ∈ ℝ𝑚, we can find

𝑓(𝑎 + ℎ) = ‖𝑎 + ℎ‖2 = ‖𝑎‖2 + 2 ⟨𝑎, ℎ⟩ + ‖ℎ‖2 = 𝑓(𝑎) + 2 ⟨𝑎, ℎ⟩ + ‖ℎ‖𝜀(ℎ)

Hence, 𝑓 is differentiable with derivative

𝑓′(𝑎)(ℎ) = 2 ⟨𝑎, ℎ⟩

Note that 𝑓′ ∶ ℝ𝑚 → 𝐿(ℝ𝑚 → ℝ) is linear.
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Example. Note𝑀𝑛 ≃ ℝ𝑛2 . The function 𝑓∶ 𝑀𝑛 → 𝑀𝑛 given by 𝑓(𝐴) = 𝐴2. For a fixed 𝐴 ∈ 𝑀𝑛,

𝑓(𝐴 + 𝐻) = (𝐴 + 𝐻)2 = 𝐴2 + 𝐴𝐻 +𝐻𝐴 + 𝐻2

It suffices to show 𝐻2 is 𝑜(‖𝐻‖). We have ‖‖𝐻2‖‖ ≤ ‖𝐻‖2, hence

‖
‖𝐻2‖‖
‖𝐻‖ ≤ ‖𝐻‖ → 0

So 𝑓 is differentiable at 𝐴 and the derivative is given by

𝑓′(𝐴)(𝐻) = 𝐴𝐻 + 𝐻𝐴

Example. Suppose 𝑓∶ ℝ𝑚 × ℝ𝑛 → ℝ𝑝 is bilinear. Let (𝑎, 𝑏) ∈ ℝ𝑚 × ℝ𝑛. Then,

𝑓((𝑎, 𝑏) + (ℎ, 𝑘)) = 𝑓((𝑎 + ℎ, 𝑏 + 𝑘)) = 𝑓(𝑎, 𝑏) + 𝑓(𝑎, 𝑘) + 𝑓(ℎ, 𝑏) + 𝑓(ℎ, 𝑘)

The map ℝ𝑚 × ℝ𝑛 → ℝ𝑝 given by (ℎ, 𝑘) ↦ 𝑓(𝑎, 𝑘) + 𝑓(ℎ, 𝑏) is linear as the sum of two linear maps.
So it suffices to show 𝑓(ℎ, 𝑘) is 𝑜(‖(ℎ, 𝑘)‖).

ℎ =
𝑚
∑
𝑖=1

ℎ𝑖𝑒𝑖; 𝑘 =
𝑛
∑
𝑗=1

𝑘𝑗𝑒′𝑗

Hence,

𝑓(ℎ, 𝑘) =
𝑚
∑
𝑖=1

𝑛
∑
𝑗=1

ℎ𝑖𝑘𝑗𝑓(𝑒𝑖, 𝑒′𝑗) ⟹ ‖𝑓(ℎ, 𝑘)‖ ≤
𝑚
∑
𝑖=1

𝑛
∑
𝑗=1

|ℎ𝑖| ⋅ ||𝑘𝑗 || ⋅ ‖‖𝑓(𝑒𝑖, 𝑒
′
𝑗)‖‖ ≤ 𝐶‖(ℎ, 𝑘)‖2

for some constant 𝐶, since |ℎ𝑖| ≤ ‖(ℎ, 𝑘)‖2 and similarly for ||𝑘𝑗 ||. So

‖𝑓(ℎ, 𝑘)‖
‖(ℎ, 𝑘)‖ ≤ 𝐶‖(ℎ, 𝑘)‖ → 0

Hence 𝑓 is differentiable with

𝑓′(𝑎, 𝑏)(ℎ, 𝑘) = 𝑓(𝑎, 𝑘) + 𝑓(ℎ, 𝑏)

10.3 Derivatives on open subsets
Wemay define the derivative on a subset of ℝ𝑚. We will use the notion of open subsets since we are
typically interested in neigbourhoods of points.

Definition. Let𝑈 be an open subset ofℝ𝑚. Let 𝑓∶ 𝑈 → ℝ𝑛 be a function, and 𝑎 ∈ 𝑈 . Then
we say 𝑓 is differentiable at 𝑎 if there exists a linear map 𝑇 ∈ 𝐿(ℝ𝑚, ℝ𝑛) such that

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + 𝑇(ℎ) + ‖ℎ‖𝜀(ℎ)

where 𝜀(0) = 0 and 𝜀 is continuous at zero. Note that 𝜀 need only be defined on the set of ℎ
such that 𝑎+ℎ ∈ 𝑈 , or more precisely the open set𝑈 −𝑎. Hence there exists 𝑟 > 0 such that
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𝒟𝑟(0) ⊂ 𝑈𝑎. Then

𝜀(ℎ) = {
0 ℎ = 0
𝑓(𝑎+ℎ)−𝑓(𝑎)−𝑇(ℎ)

‖ℎ‖
ℎ ≠ 0, 𝑎 + ℎ ∈ 𝑈

So 𝑓 is differentiable at 𝑎 if and only if there exists a linear map 𝑇 ∈ 𝐿(ℝ𝑚, ℝ𝑛) such that

𝑓(𝑎 + ℎ) − 𝑓(𝑎) − 𝑇(ℎ)
‖ℎ‖ → 0

Remark. The linearmap𝑇 is unique, and is called the derivative of𝑓 at 𝑎, denoted𝑓′(𝑎). In particular,

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + 𝑓′(𝑎)(ℎ) + 𝑜(‖ℎ‖)

Remark. If𝑚 = 1, the space 𝐿(ℝ,ℝ𝑛) is isomorphic to ℝ𝑛. The linear map is defined uniquely by a
vector in ℝ𝑛 which multiplies by the scalar ℎ. Hence, if 𝑈 ⊂ ℝ is open and 𝑓∶ 𝑈 → ℝ be a function
and 𝑎 ∈ 𝑈 , then 𝑓 is differentiable at 𝑎 if there exists a vector 𝑣 ∈ ℝ𝑛 such that

𝑓(𝑎 + ℎ) − 𝑓(𝑎) − ℎ𝑣
|𝑣| → 0

Equivalently, there exists 𝑣 ∈ ℝ𝑛 such that

𝑓(𝑎 + ℎ) − 𝑓(𝑎)
ℎ → 𝑣

10.4 Properties of derivative

Proposition. Let 𝑈 ⊂ ℝ𝑚 be open, 𝑓∶ 𝑈 → ℝ𝑛 be a function, and 𝑎 ∈ 𝑈 . If 𝑓 is differenti-
able at 𝑎, 𝑓 is continuous at 𝑎.

Proof. We have
𝑓(𝑎 + ℎ) = 𝑓(𝑎) + 𝑓′(𝑎)(ℎ) + ‖ℎ‖𝜀(ℎ)

Hence,
𝑓(𝑥) = 𝑓(𝑎) + 𝑓′(𝑎)(𝑥 − 𝑎) + ‖𝑥 − 𝑎‖𝜀(𝑥 − 𝑎)

The functions 𝑥 ↦ 𝑓(𝑎), 𝑥 ↦ 𝑓′(𝑎)(𝑥 − 𝑎) and 𝑥 ↦ ‖𝑥 − 𝑎‖𝜀(𝑥 − 𝑎) are all continuous at 𝑎. Hence
their sum is continuous.

Proposition (chain rule). Let𝑈 ⊂ ℝ𝑚 and𝑉 ⊂ ℝ𝑛 be open, 𝑓∶ 𝑈 → ℝ𝑛 and 𝑔∶ 𝑉 → ℝ𝑝 be
functions, and 𝑎 ∈ 𝑈, 𝑏 ≡ 𝑓(𝑎) ∈ 𝑉 . Suppose 𝑓 is differentiable at 𝑎, and 𝑔 is differentiable
at 𝑏. Then 𝑔 ∘ 𝑓 is differentiable at 𝑎 and

(𝑔 ∘ 𝑓)′(𝑎) = 𝑔′(𝑏) ∘ 𝑓′(𝑎)

Proof. Let 𝑆 = 𝑓′(𝑎) and 𝑇 = 𝑔′(𝑏). Then by assumption

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + 𝑆(ℎ) + ‖ℎ‖𝜀(ℎ); 𝑔(𝑏 + 𝑘) + 𝑔(𝑏) + 𝑇(𝑘) + ‖𝑘‖𝜁(𝑘)
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for suitable 𝜀, 𝜁. Then,

(𝑔 ∘ 𝑓)(𝑎 + ℎ) = 𝑔(𝑓(𝑎) + 𝑆(ℎ) + ‖ℎ‖𝜀(ℎ))

= 𝑔(𝑏 + 𝑆(ℎ) + ‖ℎ‖𝜀(ℎ)⏟⎵⎵⎵⏟⎵⎵⎵⏟
𝑘

)

= 𝑔(𝑏) + 𝑇(𝑆(ℎ) + ‖ℎ‖𝜀(ℎ)) + ‖𝑆(ℎ) + ‖ℎ‖𝜀(ℎ)‖𝜁(𝑆(ℎ) + ‖ℎ‖𝜀(ℎ))
= (𝑔 ∘ 𝑓)(𝑎) + (𝑇 ∘ 𝑆)(ℎ) + ‖ℎ‖𝑇(𝜀(ℎ)) + ‖𝑘‖𝜁(𝑘)

It suffices to show that
𝜂(ℎ) ≡ ‖ℎ‖𝑇(𝜀(ℎ)) + ‖𝑘‖𝜁(𝑘)

satisfies 𝜂
‖ℎ‖

→ 0. Then the result follows. First,

‖ℎ‖𝑇(𝜀(ℎ))
‖ℎ‖ = 𝑇(𝜀(ℎ)) → 0

as ‖𝑇(𝜀(ℎ))‖ ≤ ‖𝑇‖ ⋅ ‖𝜀(ℎ)‖ → 0. Then,
‖𝑘‖
‖ℎ‖ =

‖𝑆(ℎ)‖ + ‖ℎ‖ ⋅ ‖𝜀(ℎ)‖
‖ℎ‖ ≤ ‖𝑆‖ + ‖𝜀(ℎ)‖

Hence, 𝑘 = 𝑆(ℎ) + ‖ℎ‖ ⋅ 𝜀(ℎ) → 0 as ℎ → 0. Thus 𝜁(𝑘) → 0 as 𝑘 → 0. So

𝜂(ℎ)
‖ℎ‖ = 𝑇(𝜀(ℎ)) + ‖𝑘‖

‖ℎ‖𝜁(𝑘) → 0

as required.

Proposition. Let 𝑈 ⊂ ℝ𝑚 be open, 𝑓∶ 𝑈 → ℝ𝑛 be a function, and 𝑎 ∈ 𝑈 . Let 𝑓𝑗 be the
𝑗th component of 𝑓, so 𝑓𝑗 = 𝜋𝑗 ∘ 𝑓. Then 𝑓 is differentiable at 𝑎 if and only if each 𝑓𝑗 is
differentiable at 𝑎. If this holds,

𝑓′(𝑎)(ℎ) =
𝑛
∑
𝑗=1

𝑓′𝑗 (𝑎)(ℎ)𝑒′𝑗

Equivalently,
𝜋𝑗[𝑓′(𝑎)(ℎ)] = 𝑓′𝑗 (𝑎)(ℎ)

Proof. If 𝑓 is differentiable at 𝑎, by the chain rule the composite 𝜋𝑗 ∘ 𝑓 is differentiable at 𝑎. Since
the derivative of a linear map is itself, the derivative is given by

𝑓′𝑗 (𝑎) = 𝜋′𝑗(𝑓(𝑎)) ∘ 𝑓′(𝑎) = 𝜋𝑗 ∘ 𝑓′(𝑎)

Hence

𝑓′(𝑎)(ℎ) =
𝑛
∑
𝑗=1

𝜋𝑗[𝑓′(𝑎)(ℎ)𝑒′𝑗] =
𝑛
∑
𝑗=1

𝑓′𝑗 (𝑎)(ℎ)𝑒′𝑗

Conversely suppose each 𝑓𝑗 is differentiable. Then

𝑓𝑗(𝑎 + ℎ) = 𝑓𝑗(𝑎) + 𝑓′𝑗 (𝑎)(ℎ) + ‖ℎ‖𝜀𝑗(ℎ)
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for suitable 𝜀(𝑗). Now,

𝑓(𝑎 + ℎ) =
𝑛
∑
𝑗=1

𝑓𝑗(𝑎 + ℎ)𝑒′𝑗

=
𝑛
∑
𝑗=1

[𝑓𝑗(𝑎) + 𝑓′𝑗 (𝑎)(ℎ) + ‖ℎ‖𝜀𝑗(ℎ)]𝑒′𝑗

=
𝑛
∑
𝑗=1

𝑓𝑗(𝑎)𝑒′𝑗 +
𝑛
∑
𝑗=1

𝑓′𝑗 (𝑎)(ℎ)𝑒′𝑗 + ‖ℎ‖
𝑛
∑
𝑗=1

𝜀𝑗(ℎ)𝑒′𝑗

Since each 𝜀𝑗 tends to zero as ℎ → 0, so does their sum.

Remark. This proposition shows that we can prove things for an image ℝ𝑛 = ℝ without loss of
generality.

10.5 Linearity and product rule

Proposition. Let 𝑈 ⊂ ℝ𝑚 be open and functions 𝑓, 𝑔∶ 𝑈 → ℝ𝑛, 𝜙∶ 𝑈 → ℝ which are dif-
ferentiable at 𝑎. Then the functions 𝑓+𝑔 and 𝜙⋅𝑓 are also differentiable and their derivatives
are

(𝑓 + 𝑔)′(𝑎) = 𝑓′(𝑎) + 𝑔′(𝑎); (𝜙𝑓)′(𝑎)(ℎ) = 𝜙(𝑎)[𝑓′(𝑎)(ℎ)] + [𝜙′(𝑎)(ℎ)]𝑓(𝑎)
For𝑚 = 𝑛 = 1 this is the usual product rule.

Proof. We have

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + 𝑓′(𝑎)(ℎ) + ‖ℎ‖𝜀(ℎ)
𝑔(𝑎 + ℎ) = 𝑔(𝑎) + 𝑔′(𝑎)(ℎ) + ‖ℎ‖𝜁(ℎ)
𝜙(𝑎 + ℎ) = 𝜙(𝑎) + 𝜙′(𝑎)(ℎ) + ‖ℎ‖𝜂(ℎ)

for suitable 𝜀, 𝜁, 𝜂. The sum gives

(𝑓 + 𝑔)(𝑎 + ℎ) = (𝑓 + 𝑔)(𝑎 + ℎ) + (𝑓′(𝑎) + 𝑔′(𝑎))(ℎ) + ‖ℎ‖(𝜀(ℎ) + 𝜁(ℎ))

It follows that 𝑓 + 𝑔 is differentiable at 𝑎 and its derivative is the sum of the derivatives of its com-
ponents.

(𝜙 ⋅ 𝑓)(𝑎 + ℎ) = 𝜙(𝑎 + ℎ)𝑓(𝑎 + ℎ)
= (𝜙 ⋅ 𝑓)(𝑎) + [𝜙(𝑎)𝑓′(𝑎)(ℎ) + 𝜙′(𝑎)(ℎ)𝑓(𝑎)] + 𝑓′(𝑎)(ℎ)𝜙′(𝑎)(ℎ)
+ ‖ℎ‖ (𝑓′(𝑎)(ℎ)𝜂(ℎ) + 𝜙′(𝑎)(ℎ)𝜀(ℎ) + 𝜂(ℎ)𝑓(𝑎) + 𝜙(𝑎)𝜀(ℎ) + ‖ℎ‖𝜂(ℎ)𝜀(ℎ))⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟

𝛿(ℎ)

Now,

‖𝜙′(𝑎)(ℎ) ⋅ 𝑓′(𝑎)(ℎ)‖
‖ℎ‖ = |𝜙′(𝑎)(ℎ)| ⋅ ‖𝑓′(𝑎)(ℎ)‖

‖ℎ‖ ≤ ‖𝜙′(𝑎)‖ ⋅ ‖ℎ‖ ⋅ ‖𝑓′(𝑎)‖ ⋅ ‖ℎ‖
‖ℎ‖ → 0

Clearly 𝛿 → 0 since the same is true for all of its components.
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11 Partial derivatives
11.1 Directional and partial derivatives

Definition. Let 𝑈 , 𝑓, 𝑎 as before. Fix a direction 𝑢 ∈ ℝ𝑚 where 𝑢 ≠ 0. If the limit

lim
𝑡→0

𝑓(𝑎 + 𝑡𝑢) − 𝑓(𝑎)
𝑡

exists, then the value of this limit is the directional derivative of 𝑓 at 𝑎 in direction 𝑢, denoted
𝐷𝑢𝑓(𝑎).

Remark. Note that 𝐷𝑢𝑓(𝑎) ∈ ℝ𝑛. Further, 𝑓(𝑎 + 𝑡𝑢) = 𝑓(𝑎) + 𝑡𝐷𝑢𝑓(𝑎) + 𝑜(𝑡). Define 𝛾∶ ℝ → ℝ𝑚

by 𝛾(𝑡) = 𝑎 + 𝑡𝑢. Then 𝑓 ∘ 𝛾 is defined on 𝛾−1(𝑈) which is open as 𝛾 is continuous, and 0 ∈ 𝛾−1(𝑈).
Then,

𝑓(𝑎 + 𝑡𝑢) − 𝑓(𝑎)
𝑡 = (𝑓 ∘ 𝛾)(𝑡) − (𝑓 ∘ 𝛾)(0)

𝑡
Hence 𝐷𝑢𝑓(𝑎) exists if and only if 𝑓 ∘ 𝛾 is differentiable at zero, and its value is the derivative of 𝑓 ∘ 𝛾.
When 𝑢 = 𝑒𝑖 for a standard basis vector 𝑒𝑖, if 𝐷𝑒𝑖𝑓(𝑎) exists we call it the 𝑖th partial derivative of 𝑓 at
𝑎, denoted 𝐷𝑖𝑓(𝑎).

Proposition. Let 𝑈 , 𝑓, 𝑎 as before. If 𝑓 is differentiable at 𝑎, then all directional derivatives
𝐷𝑢𝑓(𝑎) exist. Further,

𝐷𝑢𝑓(𝑎) = 𝑓′(𝑎)(𝑢)
Further,

𝑓′(𝑎)(ℎ) =
𝑚
∑
𝑖=1

ℎ𝑖𝐷𝑖𝑓(𝑎)

for all ℎ = ∑𝑚
𝑖=1 ℎ𝑖𝑒𝑖.

Proof. Since 𝑓 is differentiable,

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + 𝑓′(𝑎)(ℎ) + ‖ℎ‖𝜀(ℎ)

Let ℎ = 𝑡𝑢. Then,
𝑓(𝑎 + 𝑡𝑢) = 𝑓(𝑎) + 𝑡𝑓′(𝑎)(𝑢) + |𝑡| ⋅ ‖𝑢‖𝜀(𝑡𝑢)

Hence,
𝑓(𝑎 + 𝑡𝑢) − 𝑓(𝑎)

𝑡 = 𝑓′(𝑎)(𝑢) + |𝑡|
𝑡 ‖𝑢‖𝜀(𝑡𝑢)

The error term converges to zero, hence the limit becomes 𝑓′(𝑎)(𝑢). Moreover, for all ℎ defined as
above,

𝑓′(𝑎)(ℎ) =
𝑚
∑
𝑖=1

ℎ𝑖𝑓′(𝑎)(𝑒𝑖) =
𝑚
∑
𝑖=1

ℎ𝑖𝐷𝑖𝑓(𝑎)
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alternative proof. Let 𝛾(𝑡) = 𝑎 + 𝑡𝑢. Then 𝑓 ∘ 𝛾 is defined on the open set 𝛾−1(𝑈). Note that 𝛾 is
differentiable and 𝛾′(𝑡) = 𝑢 for all 𝑡. By the chain rule, 𝑓 ∘ 𝛾 is differentiable at zero, and

𝐷𝑢𝑓(𝑎) = (𝑓 ∘ 𝛾)′(0) = 𝑓′(𝛾(0))(𝛾′(0)) = 𝑓′(𝑎)(𝑢)

Remark. If𝐷𝑢𝑓(𝑎) exists, then so does𝐷𝑢𝑓𝑗(𝑎)where 𝑓𝑗 = 𝜋𝑗 ∘𝑓. Indeed, by linearity and continuity
of 𝜋,

𝑓𝑗(𝑎 + 𝑡𝑢) − 𝑓𝑗(𝑎)
𝑡 = 𝜋𝑗(

𝑓(𝑎 + 𝑡𝑢) − 𝑓(𝑡)
𝑡 ) → 𝜋𝑗(𝐷𝑢𝑓(𝑎))

The converse of the proposition is false in general.

11.2 Jacobian matrix

Definition. Suppose 𝑓 is differentiable at 𝑎. Then the Jacobian matrix of 𝑓 at 𝑎, denoted
𝐽𝑓(𝑎), is the matrix of 𝑓′(𝑎)with respect to the standard bases. For 1 ≤ 𝑖 ≤ 𝑚, the 𝑖th column
is

𝑓′(𝑎)(𝑒𝑖) = 𝐷𝑖𝑓(𝑎)
In particular, for the 𝑗, 𝑖 entry,

(𝐽𝑓(𝑎))𝑗𝑖 = ⟨𝐷𝑖𝑓(𝑎), 𝑒′𝑗⟩ = 𝜋𝑗(𝐷𝑖𝑓(𝑎)) = 𝐷𝑖𝑓𝑗(𝑎) =
𝜕𝑓𝑗
𝜕𝑥𝑖

11.3 Constructing total derivative from partial derivatives

Theorem. Suppose there exists an open neighbourhood 𝑉 of 𝑎with 𝑉 ⊂ 𝑈 such that𝐷𝑖𝑓(𝑥)
exists for all 𝑥 ∈ 𝑉 and for all 1 ≤ 𝑖 ≤ 𝑚, and themap 𝑥 ↦ 𝐷𝑖𝑓(𝑥) from𝑉 toℝ𝑛 is continuous
at 𝑎 for all 𝑖. Then 𝑓 is differentiable at 𝑎.

Proof. By considering components, without loss of generality let 𝑛 = 1. Let 𝑚 = 2 for convenience
of notation; this does not change the proof. Let 𝑎 = (𝑝, 𝑞). Let

𝜓(ℎ, 𝑘) = 𝑓(𝑝 + ℎ, 𝑞 + 𝑘) − 𝑓(𝑝, 𝑞) − ℎ𝐷1𝑓(𝑝, 𝑞) − 𝑘𝐷2𝑓(𝑝, 𝑞)
We need to show 𝜓(ℎ, 𝑘) = 𝑜(‖(ℎ, 𝑘)‖), then the derivative of 𝑓 can be read off from the definition of
𝜓. Note,

𝜓(ℎ, 𝑘) = [𝑓(𝑝 + ℎ, 𝑞 + 𝑘) − 𝑓(𝑝 + ℎ, 𝑞) − 𝑘𝐷2𝑓(𝑝, 𝑞)] + [𝑓(𝑝 + ℎ, 𝑞) − 𝑓(𝑝, 𝑞) − ℎ𝐷1(𝑝, 𝑞)]
We will show separately that each part is small enough to be an error term. The second term is 𝑜(ℎ)
and hence 𝑜(‖(ℎ, 𝑘)‖) by the definition of𝐷1𝑓(𝑝, 𝑞). For the first term, let 𝜙(𝑡) = 𝑓(𝑝+ℎ, 𝑞+ 𝑡𝑘) for a
given fixed ℎ, 𝑘. Then 𝜙 is differentiable and by the chain rule we have 𝜙′(𝑡) = 𝐷2𝑓(𝑝 + ℎ, 𝑞 + 𝑡𝑘) ⋅ 𝑘.
By the mean value theorem, there exists a point 𝑡(ℎ, 𝑘) ∈ (0, 1) such that 𝜙(1) − 𝜙(0) = 𝜙′(𝑡). Hence,
the first term becomes

𝜙(1) − 𝜙(0) − 𝑘𝐷2𝑓(𝑝, 𝑞) = 𝑘[𝐷2𝑓(𝑝 + ℎ, 𝑞 + 𝑡𝑘) − 𝐷2𝑓(𝑝, 𝑞)]
As (ℎ, 𝑘) → (0, 0), we have (𝑝 + ℎ, 𝑞 + 𝑡𝑘) → (𝑝, 𝑞). By continuity of 𝐷2𝑓 at 𝑎, the term is 𝑜(𝑘) and
hence 𝑜(‖(ℎ, 𝑘)‖).
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11.4 Mean value inequality
Themean value theorem cannot be extended verbatim to higher dimensional spaces, since there can
be multiple paths between points.

Theorem. Let 𝑈 ⊂ ℝ𝑚 be open, and 𝑓∶ 𝑈 → ℝ𝑛 be differentiable at every 𝑧 ∈ 𝑈 . Let
𝑎, 𝑏 ∈ 𝑈 such that the line segment connecting 𝑎, 𝑏 given by

[𝑎, 𝑏] = {(1 − 𝑡)𝑎 + 𝑡𝑏∶ 0 ≤ 𝑡 ≤ 1}

is contained inside 𝑈 . Suppose there exists 𝑀 ≥ 0 such that for all 𝑧 ∈ [𝑎, 𝑏], we have
‖𝑓′(𝑧)‖ ≤ 𝑀. Then

‖𝑓(𝑏) − 𝑓(𝑎)‖ ≤ 𝑀‖𝑏 − 𝑎‖

Proof. Let 𝑢 = 𝑏 − 𝑎 and 𝑣 = 𝑓(𝑏) − 𝑓(𝑎). Without loss of generality, let 𝑢 ≠ 0. Let 𝛾(𝑡) = 𝑎 + 𝑡𝑢, so
𝑓 ∘ 𝛾 is defined on the open set 𝛾−1(𝑈), and is differentiable with derivative

(𝑓 ∘ 𝛾)′(𝑡) = 𝑓′(𝛾(𝑡))(𝛾′(𝑡)) = 𝑓′(𝑎 + 𝑡𝑢)(𝑢)

Now,
‖𝑓(𝑏) − 𝑓(𝑎)‖2 = ⟨𝑓(𝑏) − 𝑓(𝑎), 𝑣⟩ = ⟨(𝑓 ∘ 𝛾)(1) − (𝑓 ∘ 𝛾)(0), 𝑣⟩

Let 𝜙(𝑡) = ⟨(𝑓 ∘ 𝛾)(𝑡), 𝑣⟩. Note that 𝜙 is differentiable since the inner product is linear. The derivative
is

𝜙′(𝑡) = ⟨(𝑓 ∘ 𝛾)′(𝑡), 𝑣⟩ = ⟨𝑓′(𝑎 + 𝑡𝑢)(𝑢), 𝑣⟩
By the mean value theorem, there exists 𝜃 ∈ (0, 1) such that 𝜙(1) − 𝜙(0) = 𝜙′(𝜃). Then, by the
Cauchy–Schwarz inequality,

‖𝑓(𝑏) − 𝑓(𝑎)‖2 = 𝜙′(𝜃)
= ⟨𝑓′(𝑎 + 𝜃𝑢)(𝑢), 𝑣⟩
≤ ‖𝑓′(𝑎 + 𝜃𝑢)(𝑢)‖ ⋅ ‖𝑣‖
≤ ‖𝑓′(𝑎 + 𝜃𝑢)‖ ⋅ ‖𝑢‖ ⋅ ‖𝑣‖
≤ 𝑀‖𝑏 − 𝑎‖ ⋅ ‖𝑣‖

Hence,
‖𝑓(𝑏) − 𝑓(𝑎)‖ ≤ 𝑀‖𝑏 − 𝑎‖

as required.

11.5 Zero derivatives

Corollary. Let 𝑈 be an open, connected subset of ℝ𝑚, and 𝑓∶ 𝑈 → ℝ𝑛 be differentiable at
every 𝑈 . If 𝑓′(𝑎) = 0 for all 𝑎 ∈ 𝑈 , then 𝑓 is constant.

Proof. If 𝑎, 𝑏 ∈ 𝑈 satisfy [𝑎, 𝑏] ⊂ 𝑈 , then by the mean value inequality we have

‖𝑓(𝑏) − 𝑓(𝑎)‖ ≤ ‖𝑏 − 𝑎‖ sup
𝑧∈[𝑎,𝑏]

‖𝑓′(𝑧)‖ = 0
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Hence 𝑓(𝑎) = 𝑓(𝑏). For an arbitrary 𝑥 ∈ 𝑈 , there exists 𝑟 > 0 such that 𝒟𝑟(𝑥) ⊂ 𝑈 . This open ball
is convex, so for all 𝑦 ∈ 𝒟𝑟(𝑥) we have 𝑓(𝑦) = 𝑓(𝑥). Hence 𝑓 is locally constant; every point has a
neighbourhood on which 𝑓 is constant. Since 𝑈 is connected, 𝑓 is constant (refer to the derivation
from the example sheet).

11.6 Inverse function theorem
Remark. Let 𝑉 ⊂ ℝ𝑚 and 𝑊 ⊂ ℝ𝑛 be open sets. Let 𝑓∶ 𝑉 → 𝑊 be a bijection. Let 𝑎 ∈ 𝑉 ,
and let 𝑓 be differentiable at 𝑎, and the inverse 𝑓−1 ∶ 𝑊 → 𝑉 is differentiable at 𝑓(𝑎). Denoting
𝑆 = 𝑓′(𝑎), 𝑇 = (𝑓−1)′(𝑓(𝑎)), we can use the chain rule to find

𝑇𝑆 = (𝑓−1 ∘ 𝑓)′(𝑎); 𝑆𝑇 = (𝑓 ∘ 𝑓−1)′(𝑓(𝑎))

The identity function is linear so its derivative is the identity. Hence 𝑇𝑆 is the identity on ℝ𝑚 and
𝑆𝑇 is the identity on ℝ𝑛. Hence, 𝑚 = tr(𝑇𝑆) = tr(𝑆𝑇) = 𝑛. So in order for 𝑓 to be a bijection, the
dimensions of the spaces must match. Hence 𝑓′(𝑎) is an invertible matrix. This proves that ℝ𝑚, ℝ𝑛

are not homeomorphic in such a way that the maps between them are differentiable. We aim now
to prove an inverse; if 𝑓 is differentiable and 𝑓′ is invertible, then 𝑓 is locally a bijection between
neighbourhoods.

Definition. Let 𝑈 ⊂ ℝ𝑚 be open, and 𝑓∶ 𝑈 → ℝ𝑛 be a function. We say that 𝑓 is differenti-
able on𝑈 if 𝑓 is differentiable at 𝑎 for all 𝑎 ∈ 𝑈 . Then, the derivative of 𝑓 on𝑈 is the function
𝑓′ ∶ 𝑈 → 𝐿(ℝ𝑚, ℝ𝑛)mapping points to their derivatives. We say that 𝑓 is a 𝐶1-function on 𝑈
if 𝑓 is continuously differentiable on 𝑈 ; 𝑓 is differentiable on 𝑈 and 𝑓′ ∶ 𝑈 → 𝐿(ℝ𝑚, ℝ𝑛) is a
continuous function.

Theorem. Let 𝑈 ⊂ ℝ𝑛 be open. Let 𝑓∶ 𝑈 → ℝ𝑛 be a 𝐶1-function. Let 𝑎 ∈ 𝑈 , and let
𝑓′(𝑎) be an invertible linear map 𝑓′(𝑎)∶ 𝐿(ℝ𝑛). Then there exist open sets 𝑉,𝑊 such that
𝑎 ∈ 𝑉, 𝑓(𝑎) ∈ 𝑊,𝑉 ⊂ 𝑈 and 𝑓|𝑉 ∶ 𝑉 → 𝑊 is a bijection with inverse function 𝑔∶ 𝑊 → 𝑉 .
Further, 𝑔 is a 𝐶1-function, and

𝑔′(𝑦) = [𝑓′(𝑔(𝑦))]−1

Proof. We first show that without loss of generality we can let 𝑎 = 𝑓(𝑎) = 0 and 𝑓′(𝑎) = 𝐼. To see
this, let 𝑇 = 𝑓′(𝑎) and define ℎ(𝑥) = 𝑇−1(𝑓(𝑥 + 𝑎) − 𝑓(𝑎)). Then, ℎ is defined on 𝑈 − 𝑎, which is
open. In particular, 𝑈 − 𝑎 is an open neighbourhood of zero. By the chain rule, ℎ is differentiable
with ℎ′(𝑥) = 𝑇−1 ∘ 𝑓′(𝑥 + 𝑎). For 𝑥, 𝑦 ∈ 𝑈 − 𝑎, we then have

‖ℎ′(𝑥) − ℎ′(𝑦)‖ = ‖
‖𝑇−1 ∘ (𝑓′(𝑎 + 𝑥) − 𝑓′(𝑎 + 𝑦))‖‖ ≤

‖
‖𝑇−1‖‖ ⋅ ‖𝑓′(𝑎 + 𝑥) − 𝑓′(𝑎 + 𝑦)‖

It then follows that ℎ is a 𝐶1-function, and that ℎ(0) = 0, ℎ′(0) = 𝑇−1 ∘ 𝑇 = 𝐼. We have transformed
into a coordinate system where 𝑎 = 𝑓(𝑎) = 0 and 𝑓′(𝑎) = 𝐼. If we can prove the result for this
coordinate system, we can translate back using 𝑓(𝑥) = 𝑇(ℎ(𝑥 − 𝑎)) + 𝑓(𝑎).
Now, let 𝑓(0) = 0 and 𝑓′(0) = 𝐼. Since 𝑓′ is continuous, there exists 𝑟 > 0 such that ℬ𝑟(0) ⊂ 𝑈 and
for all 𝑥 ∈ 𝑈 , we have

‖𝑓′(𝑥) − 𝑓′(0)‖ = ‖𝑓′(𝑥) − 𝐼‖ ≤ 1
2
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We intend to show that for all 𝑥, 𝑦 ∈ ℬ𝑟(0), we have ‖𝑓(𝑥) − 𝑓(𝑦)‖ ≥ 1
2
‖𝑥 − 𝑦‖. Indeed, define

𝑝∶ 𝑈 → ℝ𝑛 by 𝑝(𝑥) = 𝑓(𝑥) − 𝑥. Then 𝑝′(𝑥) = 𝑓′(𝑥) − 𝐼. Then, ‖𝑝′(𝑥)‖ ≤ 1
2
for all 𝑥 ∈ ℬ𝑟(0). By the

mean value inequality, ‖𝑝(𝑥) − 𝑝(𝑦)‖ ≤ 1
2
‖𝑥 − 𝑦‖ for all 𝑥, 𝑦 ∈ ℬ𝑟(0). Hence,

‖𝑓(𝑥) − 𝑓(𝑦)‖ = ‖(𝑝(𝑥) + 𝑥) − (𝑝(𝑦) + 𝑦)‖ ≥ ‖𝑥 − 𝑦‖ − ‖𝑝(𝑥) − 𝑝(𝑦)‖ ≥ 1
2‖𝑥 − 𝑦‖

So we have proven the bound as claimed. Now, let 𝑠 = 𝑟
2
. We will show that 𝑓(𝒟𝑟(0)) ⊂ 𝒟𝑠(0). More

precisely, wewill show that for all𝑤 ∈ 𝒟𝑠(0) there exists a unique 𝑥 ∈ 𝒟𝑟(0) such that 𝑓(𝑥) = 𝑤. Let
𝑤 ∈ 𝒟𝑠(0) be fixed. We now define, for all 𝑥 ∈ ℬ𝑟(0), the function 𝑞(𝑥) = 𝑤 − 𝑓(𝑥) + 𝑥 = 𝑤 − 𝑝(𝑥).
Note that 𝑓(𝑥) = 𝑤 if and only if 𝑞(𝑥) = 𝑥. We will show that 𝑞 is a contraction mapping, and that
there exists a fixed point. Since 𝑝(0) = 𝑓(0) − 0 = 0, we have for all 𝑥 ∈ ℬ𝑟(0) that

‖𝑞(𝑥)‖ ≤ ‖𝑤‖ + ‖𝑝(𝑥)‖ = ‖𝑤‖ + ‖𝑝(𝑥) − 𝑝(0)‖ ≤ ‖𝑤‖ + 1
2‖𝑥 − 0‖ = 1

2‖𝑥‖ < 𝑠 + 1
2𝑟

Hence, 𝑞(ℬ𝑟(0)) ⊂ 𝒟𝑟(0) ⊂ ℬ𝑟(0). We now show 𝑞 is a contraction mapping. For 𝑥, 𝑦 ∈ ℬ𝑟(0), we
have

‖𝑞(𝑥) − 𝑞(𝑦)‖ = ‖𝑝(𝑥) − 𝑝(𝑦)‖ ≤ 1
2‖𝑥 − 𝑦‖

Hence 𝑞∶ ℬ𝑟(0) → ℬ𝑟(0) really is a contraction mapping on the non-empty, complete metric space
ℬ𝑟(0). By the contraction mapping theorem, there exists a unique 𝑥 ∈ ℬ𝑟(0) such that 𝑞(𝑥) = 𝑥. But
since 𝑞(ℬ𝑟(0)) ⊂ 𝒟𝑟(0), we must have 𝑥 ∈ 𝒟𝑟(0). In particular, there exists a unique 𝑥 ∈ 𝒟𝑟(0) such
that 𝑓(𝑥) = 𝑤.
Now, let𝑊 = 𝒟𝑠(0), 𝑉 = 𝒟𝑟(0) ∩ 𝑓−1(𝑊). Then, we will now show that 𝑓|𝑉 ∶ 𝑉 → 𝑊 is a bijection
with inverse 𝑔∶ 𝑊 → 𝑉 which is continuous. First, 𝑊 is open and 𝑓(0) = 0 ∈ 𝑊 . Since 𝑓 is
continuous, 𝑓−1(𝑊) is open. Hence 𝑉 is open, as the intersection of two open sets. We have 0 ∈ 𝑉 .
By the previous paragraph, 𝑓|𝑉 ∶ 𝑉 → 𝑊 is a bijection since for every point in 𝑊 there exists a
unique point in 𝑉 mapping to it. Finally, let 𝑢, 𝑣 ∈ 𝑊 . Let 𝑥 = 𝑔(𝑢), 𝑦 = 𝑔(𝑣). Then,

‖𝑔(𝑢) − 𝑔(𝑣)‖ = ‖𝑥 − 𝑦‖ ≤ 2‖𝑓(𝑥) − 𝑓(𝑦)‖ = 2‖𝑢 − 𝑣‖

Hence 𝑔 is 2-Lipschitz and hence continuous. Now it suffices to show 𝑔 is 𝐶1, and for all 𝑦 ∈ 𝑊 we
have 𝑔′(𝑦) = [𝑓′(𝑔(𝑦))]−1. This part of the proof is non-examinable.

12 Second derivatives
12.1 Definition

Definition. Let 𝑈 ⊂ ℝ𝑚 be an open set, and 𝑓∶ 𝑈 → ℝ𝑛. Let 𝑎 ∈ 𝑈 . Suppose that
there exists an open neighbourhood 𝑉 of 𝑎 contained within 𝑈 , and 𝑓 is differentiable on
𝑉 . We say that 𝑓 is twice differentiable at 𝑎 if 𝑓′ ∶ 𝑉 → 𝐿(ℝ𝑚 → ℝ𝑛) is differentiable at 𝑎.
We write 𝑓″(𝑎) for the derivative of 𝑓′ at 𝑎, called the second derivative of 𝑓 at 𝑎. Note that
𝑓″(𝑎) ∈ 𝐿(ℝ𝑚, 𝐿(ℝ𝑚, ℝ𝑛)).

Remark. We can visualise the second derivative as a bilinear map instead of a nested sequence of
linear maps. Note,

𝐿(ℝ𝑚, 𝐿(ℝ𝑚, ℝ𝑛)) ∼ Bil(ℝ𝑚 × ℝ𝑚, ℝ𝑛)
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where Bil(𝑋 × 𝑌, 𝑍) is the vector space of bilinear maps from 𝑋 × 𝑌 to 𝑍. For ℎ, 𝑘 ∈ ℝ𝑚, and 𝑇 is
the second derivative, we can say 𝑇(ℎ)(𝑘) = 𝑇(ℎ, 𝑘) where 𝑇 is a bilinear map. From now on, this
bilinear map notation will be used, and 𝑇 and 𝑇 will be identified as the same.

Proposition. Let 𝑈 ⊂ ℝ𝑚 be open, 𝑓∶ 𝑈 → ℝ𝑛 be a function, and 𝑎 ∈ 𝑈 . Let 𝑓 be
differentiable on an openneighbourhood𝑉 of𝐴 contained in𝑈 . Then𝑓 is twice differentiable
at 𝑎 if and only if there exists a bilinearmap𝑇 ∈ Bil(ℝ𝑚×ℝ𝑚, ℝ𝑛) such that for every 𝑘 ∈ ℝ𝑚,
we have

𝑓′(𝑎 + ℎ)(𝑘) = 𝑓′(𝑎)(𝑘) + 𝑇(ℎ, 𝑘) + 𝑜(‖ℎ‖)
Then 𝑇 = 𝑓″(𝑎).

Proof. Suppose 𝑓 is twice differentiable at 𝑎. Then 𝑓′ is differentiable at 𝑎. So,

𝑓′(𝑎 + ℎ) = 𝑓′(𝑎) + 𝑓″(𝑎)(ℎ) + ‖ℎ‖ ⋅ 𝜀(ℎ)

All terms are linear maps 𝐿(ℝ𝑚, ℝ𝑛). In particular, 𝜀 is defined on 𝑉 − 𝑎 → 𝐿(ℝ𝑚, ℝ𝑛) such that
𝜀(0) = 0 and 𝜀 is continuous at zero. If we evaluate this equation at a fixed 𝑘 ∈ ℝ𝑚,

𝑓′(𝑎 + ℎ)(𝑘) = 𝑓′(𝑎)(𝑘) + 𝑓″(𝑎)(ℎ, 𝑘) + ‖ℎ‖ ⋅ 𝜀(ℎ)(𝑘)

Here, 𝑓″(𝑎) is a bilinear map. Further,

‖𝜀(ℎ)(𝑘)‖ ≤ ‖𝜀(ℎ)‖ ⋅ ‖𝑘‖ → 0

Hence, ‖ℎ‖ ⋅ 𝜀(ℎ)(𝑘) = 𝑜(‖ℎ‖). Conversely, suppose 𝑇 is a bilinear map and

𝑓′(𝑎 + ℎ)(𝑘) − 𝑓′(𝑎)(𝑘) − 𝑇(ℎ, 𝑘)
‖ℎ‖ → 0

for any fixed 𝑘, as ℎ → 0. We need to show that

𝜀(ℎ) = 𝑓′(𝑎 + ℎ) − 𝑓′(𝑎) − 𝑇(ℎ)
‖ℎ‖ → 0

in the space 𝐿(ℝ𝑚, ℝ𝑛). We know that for a fixed 𝑘 ∈ ℝ𝑚, 𝜀(ℎ)(𝑘) → 0 inℝ𝑛 as ℎ → 0. It then follows
that

‖𝜀(ℎ)‖ =
√√√
√

𝑚
∑
𝑖=1

‖𝜀(ℎ)(𝑒𝑖)‖
2 → 0

since we are in a finite-dimensional vector space.

Example. Let 𝑓∶ ℝ𝑚 → ℝ𝑛 be linear. Then 𝑓 is differentiable on ℝ𝑚 with 𝑓′(𝑎) = 𝑓 for all 𝑎.
Hence 𝑓′ ∶ ℝ𝑚 → 𝐿(ℝ𝑚, ℝ𝑛) sends 𝑎 to 𝑓 for all 𝑎. So this is a constant function, so has derivative
𝑓″(𝑎) = 0.
Example. Let 𝑓∶ ℝ𝑚 × ℝ𝑛 → ℝ𝑝 be bilinear. Then 𝑓 is differentiable on ℝ𝑚 × ℝ𝑛 and for all
(𝑎, 𝑏) ∈ ℝ𝑚 × ℝ𝑛, we have

𝑓′(𝑎, 𝑏)(ℎ, 𝑘) = 𝑓(𝑎, 𝑘) + 𝑓(ℎ, 𝑏)
Note that this is linear in (𝑎, 𝑏) for a fixed (ℎ, 𝑘). Hence, 𝑓′ ∶ ℝ𝑚 × ℝ𝑛 → 𝐿(ℝ𝑚, ℝ𝑛, ℝ𝑝) is linear.
Hence this is differentiable, and its derivative is

𝑓″(𝑎, 𝑏) = 𝑓′ ∈ 𝐿(ℝ𝑚, ℝ𝑛, 𝐿(ℝ𝑚 × ℝ𝑛, ℝ𝑝)) ≃ Bil((ℝ𝑚 × ℝ𝑛) × (ℝ𝑚 × ℝ𝑛), ℝ𝑝)
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Example. Let 𝑓∶ 𝑀𝑛 → 𝑀𝑛 be defined by 𝑓(𝐴) = 𝐴3. Let 𝐴 be fixed. Then,

𝑓(𝐴 + 𝐻) = (𝐴 + 𝐻)3 = 𝐴3 + 𝐴2𝐻 + 𝐴𝐻𝐴 + 𝐻𝐴2 + 𝐴𝐻2 + 𝐻𝐴𝐻 +𝐻2𝐴 + 𝐻3

= 𝑓(𝐴) + (𝐴2𝐻 + 𝐴𝐻𝐴 + 𝐻𝐴2) + 𝑜(‖𝐻‖)

Hence 𝑓 is differentiable at 𝐴 and

𝑓′(𝐴)(𝐻) = 𝐴2𝐻 + 𝐴𝐻𝐴 + 𝐻𝐴2

Thus, if 𝑛 = 1, we have commutativity and hence 𝑓′(𝐴) = 3𝐴2. So 𝑓 is differentiable on 𝑀𝑛. For a
fixed 𝐴 and fixed 𝐾, the second derivative is given by

𝑓′(𝐴 + 𝐻)(𝐾) = (𝐴 + 𝐻)2𝐾 + (𝐴 + 𝐻)𝐾(𝐴 + 𝐻) + 𝐾(𝐴 + 𝐻)2
= (𝐴2𝐾 + 𝐴𝐾𝐴 + 𝐾𝐴2)⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟

𝑓′(𝐴)(𝐾)

+ (𝐴𝐻𝐾 + 𝐻𝐴𝐾 + 𝐴𝐾𝐻 + 𝐻𝐾𝐴 + 𝐾𝐴𝐻 + 𝐾𝐻𝐴) + (𝐻2𝐾 + 𝐻𝐾𝐻 + 𝐾𝐻2)

The term 𝑇(𝐻, 𝐾) = (𝐴𝐻𝐾 +𝐻𝐴𝐾 +𝐴𝐾𝐻+𝐻𝐾𝐴+𝐾𝐴𝐻+𝐾𝐻𝐴) is bilinear in𝐻 and 𝐾 as required.
So the second derivative is 𝑇. In one dimension, this is equivalent to saying 𝑓″(𝐴) = 6𝐴.

12.2 Second derivatives and partial derivatives
Let 𝑈 be open in ℝ𝑛, let 𝑓∶ 𝑈 → ℝ𝑛, and let 𝑎 ∈ 𝑈 . Let 𝑓 be twice differentiable at 𝑎, so 𝑓 is
differentiable on some open neighbourhood 𝑉 of 𝑎 contained within 𝑈 , and 𝑓′ ∶ 𝑉 → 𝐿(ℝ𝑚, ℝ𝑛) is
differentiable at 𝑎. Recall that

𝑓′(𝑎 + ℎ) = 𝑓′(𝑎) + 𝑓″(𝑎)(ℎ) + 𝑜(‖ℎ‖)

Evaluating at a fixed 𝑘,

𝑓′(𝑎 + ℎ)(𝑘) = 𝑓′(𝑎)(𝑘) + 𝑓″(𝑎)(ℎ, 𝑘) + 𝑜(‖ℎ‖)

Let 𝑢, 𝑣 ∈ ℝ𝑚 ∖ {0} be directions. Let 𝑘 = 𝑣. Then,

𝑓′(𝑎 + ℎ)(𝑣) = 𝐷𝑣𝑓(𝑎 + ℎ) = 𝐷𝑣𝑓(𝑎) + 𝑓″(𝑎)(ℎ, 𝑣) + 𝑜(‖ℎ‖)

Hence, the map 𝐷𝑣𝑓∶ 𝑉 → ℝ𝑛 maps 𝑥 ↦ 𝐷𝑣𝑓(𝑥) = 𝑓′(𝑥)(𝑣). Then this map is differentiable at 𝑎
and

(𝐷𝑣𝑓)′(𝑎)(ℎ) = 𝑓″(𝑎)(ℎ, 𝑣)
Hence there exist directional derivatives.

𝐷𝑢𝐷𝑣𝑓(𝑎)
def= 𝐷𝑢(𝐷𝑣𝑓)(𝑎) = (𝐷𝑣𝑓)′(𝑎)(𝑢) = 𝑓″(𝑎)(𝑢, 𝑣)

In particular, we have
𝐷𝑖𝐷𝑗𝑓(𝑎) = 𝑓″(𝑎)(𝑒𝑖, 𝑒𝑗)

for 1 ≤ 𝑖, 𝑗 ≤ 𝑚.

12.3 Symmetry of mixed directional derivatives

65



Theorem. Let𝑈 be open inℝ𝑛, let 𝑓∶ 𝑈 → ℝ𝑛, and let 𝑎 ∈ 𝑈 . Let 𝑓 be twice differentiable
on an open set 𝑉 with 𝑎 ∈ 𝑉 ⊂ 𝑈 . Let 𝑓″ ∶ 𝑉 → Bil(ℝ𝑚×ℝ𝑚, ℝ𝑛) be continuous at 𝑎. Then,
for all directions 𝑢, 𝑣 ∈ ℝ𝑚 ∖ {0}, we have

𝐷𝑢𝐷𝑣𝑓(𝑎) = 𝐷𝑣𝐷𝑢𝑓(𝑎)

Equivalently,
𝑓″(𝑎)(𝑢, 𝑣) = 𝑓″(𝑎)(𝑣, 𝑢)

In other words, 𝑓″ is a symmetric bilinear map.

Proof. Without loss of generality we can let 𝑛 = 1. Indeed, we have
(𝐷𝑢𝑓)𝑗(𝑥) = [𝐷𝑢𝑓(𝑥)]𝑗 = [𝑓′(𝑥)(𝑢)]𝑗 = 𝑓′𝑗 (𝑥)(𝑢) = 𝐷𝑢𝑓𝑗(𝑥)

Hence, (𝐷𝑢𝑓)𝑗 = 𝐷𝑢𝑓𝑗 . For 𝑣:
(𝐷𝑣𝐷𝑢𝑓)𝑗 = 𝐷𝑣(𝐷𝑢𝑓)𝑗 = 𝐷𝑣𝐷𝑢𝑓𝑗

So it is sufficient to show that 𝐷𝑣𝐷𝑢𝑓𝑗(𝑎) = 𝐷𝑢𝐷𝑣𝑓𝑗(𝑎). Now, consider
𝜙(𝑠, 𝑡) = 𝑓(𝑎 + 𝑠𝑢 + 𝑡𝑣) − 𝑓(𝑎 + 𝑡𝑣) − 𝑓(𝑎 + 𝑠𝑢) + 𝑓(𝑎)

for 𝑠, 𝑡 ∈ ℝ. Let 𝑠, 𝑡 be fixed, and consider
𝜓(𝑦) = 𝑓(𝑎 + 𝑦𝑢 + 𝑡𝑣) − 𝑓(𝑎 + 𝑦𝑢)

Note that 𝜙(𝑠, 𝑡) can be written as
𝜙(𝑠, 𝑡) = 𝜓(𝑠) − 𝜓(0)

The term 𝜓(𝑠) −𝜓(0) can be interpreted as (𝑓(𝑎+ 𝑠𝑢+ 𝑡𝑣) −𝑓(𝑎+ 𝑡𝑣)) − (𝑓(𝑎+ 𝑠𝑢)−𝑓(𝑎)), which is
the second difference given by the function when traversing the parallelogram with sides 𝑠𝑢, 𝑡𝑣. By
the mean value theorem, there exists 𝛼(𝑠, 𝑡) ∈ (0, 1) such that

𝜙(𝑠, 𝑡) = 𝜓(𝑠) − 𝜓(0) = 𝑠𝜓′(𝛼𝑠) = 𝑠[𝐷𝑢𝑓(𝑎 + 𝛼𝑠𝑢 + 𝑡𝑣) − 𝐷𝑢𝑓(𝑎 + 𝛼𝑠𝑢)]
Now, applying the mean value theorem to the function 𝑦 ↦ 𝐷𝑢𝑓(𝑎 + 𝛼𝑠𝑢 + 𝑦𝑣), we have

𝜙(𝑠, 𝑡) = 𝑠𝑡𝐷𝑣𝐷𝑢𝑓(𝑎 + 𝛼𝑠𝑢 + 𝛽𝑡𝑣)
for 𝛽(𝑠, 𝑡) ∈ (0, 1). Now,

𝜙(𝑠, 𝑡)
𝑠𝑡 = 𝐷𝑣𝐷𝑢𝑓(𝑎 + 𝛼𝑠𝑢 + 𝛽𝑡𝑣) = 𝑓″(𝑎 + 𝛼𝑠𝑢 + 𝛽𝑡𝑣)(𝑢, 𝑣)

Since 𝑓″ is continuous at 𝑎, we can let 𝑠, 𝑡 → 0 and find
𝜙(𝑠, 𝑡)
𝑠𝑡 → 𝑓″(𝑎)(𝑢, 𝑣)

Now, we can repeat the above using

𝜓(𝑦) = 𝑓(𝑎 + 𝑠𝑢 + 𝑦𝑣) − 𝑓(𝑎 + 𝑦𝑣)
This calculates the second difference from above, but using the other path. We can find

𝜙(𝑠, 𝑡)
𝑠𝑡 → 𝑓″(𝑎)(𝑣, 𝑢)

as required.
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