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1 Differential geometry of curves
1.1 Notation
Throughout this course, a column vector e.g.

(
𝑎
𝑏
𝑐
)

should be interpreted as the vector

x = 𝑎e𝑥 + 𝑏e𝑦 + 𝑥e𝑧

where {e𝑥, e𝑦, e𝑧} are the basis vectors aligned with the fixed Cartesian 𝑥, 𝑦, 𝑧 axes in ℝ3. We will
be dealing with various kinds of basis vectors through the course, so it is useful to define now that
column vectors written as above always represent the standard basis.

1.2 Parametrised curves and smoothness
A parametrised curve 𝐶 in 𝑅3 is the image of a continuous map x∶ [𝑎, 𝑏] → ℝ3, in which 𝑡 ↦ x(𝑡).
In Cartesian coordinates,

x(𝑡) = (
𝑥1(𝑡)
𝑥2(𝑡)
𝑥3(𝑡)

) = (
𝑥(𝑡)
𝑦(𝑡)
𝑧(𝑡)

)

The resultant curve has a direction, from x(𝑎) to x(𝑏).

Definition. We say that 𝐶 is a differentiable curve if each of the components {𝑥𝑖(𝑡)} are dif-
ferentiable functions. 𝐶 is regular if it is differentiable and |x′(𝑡)| ≠ 0. If 𝐶 is differentiable
and regular, we say that 𝐶 is smooth.

Note. We need this regularity condition because it is quite easy to create ‘bad curves’ with cusps and
spikes using only differentiable functions, for example

x(𝑡) = (𝑡2, 𝑡3)

The components are clearly differentiable, but x(𝑡) has a cusp at 𝑡 = 0. At this point, |x′(0)| = 0.

Definition. Recall that 𝑥𝑖(𝑡) is called ‘differentiable’ at 𝑡 if

𝑥𝑖(𝑡 + ℎ) = 𝑥𝑖(𝑡) + 𝑥′𝑖(𝑡)ℎ + 𝑜(ℎ)

where 𝑜(ℎ) represents a function that obeys

lim
ℎ→0

𝑜(ℎ)
ℎ = 0

In terms of vectors,
x(𝑡 + ℎ) = x(𝑡) + x′(𝑡)ℎ + 𝑜(ℎ)
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where here 𝑜(ℎ) is a vector for which

lim
ℎ→0

|𝑜(ℎ)|
ℎ = 0

1.3 Arc length
We can approximate the length of a curve 𝐶 by splitting it into small straight lines and summing the
lengths of such lines. We will introduce a partition 𝑃 of [𝑎, 𝑏] with 𝑡0 = 𝑎, 𝑡𝑁 = 𝑏 and

𝑡0 < 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑁

Let us now set Δ𝑡𝑖 = 𝑡𝑖+1 − 𝑡𝑖 and Δ𝑡 = max𝑖 Δ𝑡𝑖. The length of the curve relative to 𝑃 is defined
as

ℓ(𝐶, 𝑃) =
𝑁−1
∑
𝑖=0

|x(𝑡𝑖+1) − x(𝑡𝑖)|

As Δ𝑡 gets smaller, we would expect ℓ(𝐶, 𝑃) to give a better approximation to the true length of 𝐶,
which we will call ℓ(𝐶). Therefore we can define the length of 𝐶 by

ℓ(𝐶) = lim
Δ𝑡→0

𝑁−1
∑
𝑖=0

|x(𝑡𝑖+1) − x(𝑡𝑖)| = lim
Δ𝑡→0

ℓ(𝐶, 𝑃)

If this limit doesn’t exist, we say that the curve isnon-rectifiable. Suppose𝐶 is differentiable. Then

x(𝑡𝑖+1) = x(𝑡𝑖 + 𝑡𝑖+1 − 𝑡𝑖)
= x(𝑡𝑖 + Δ𝑡𝑖)
= x(𝑡𝑖) + x′(𝑡𝑖)Δ𝑡𝑖 + 𝑜(Δ𝑡𝑖)

It follows then that
|x(𝑡𝑖+1) − x(𝑡𝑖)| = |x′(𝑡𝑖)|Δ𝑡𝑖 + 𝑜(Δ𝑡𝑖)

So if 𝐶 is differentiable,

ℓ(𝐶, 𝑃) = lim
Δ𝑡→0

𝑁−1
∑
𝑖=0

(|x′(𝑡𝑖)|Δ𝑡𝑖 + 𝑜(Δ𝑡𝑖))

Recall that this 𝑜(Δ𝑡𝑖) term represents a function for which 𝑜(Δ𝑡𝑖)/Δ𝑡𝑖 → 0. So for any 𝜀 > 0, if
Δ𝑡 = max𝑖 Δ𝑡𝑖 is sufficiently small, we have |𝑜(Δ𝑡𝑖)| <

𝜀
𝑏−𝑎

Δ𝑡𝑖, for 𝑖 = 0,… ,𝑁 −1. So by the Triangle
Inequality, choosing Δ𝑡 sufficiently small,

||||
ℓ(𝐶, 𝑃) −

𝑁−1
∑
𝑖=0

|x′(𝑡𝑖)|Δ𝑡𝑖
||||
=
||||

𝑁−1
∑
𝑖=0

𝑜(Δ𝑡𝑖)
||||
< 𝜀
𝑏 − 𝑎

𝑁−1
∑
𝑖=0

Δ𝑡𝑖
⏟⎵⏟⎵⏟

𝑏−𝑎

= 𝜀
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So the left hand side tends to zero as Δ𝑡 → 0. We then get

ℓ(𝐶) = lim
Δ𝑡→0

ℓ(𝐶, 𝑃)

= lim
Δ𝑡→0

𝑁−1
∑
𝑖=0

|x′(𝑡𝑖)|Δ𝑡𝑖

= ∫
𝑏

𝑎
|x′(𝑡)| d𝑡

according to Analysis I, and the definition of the Riemann Integral. So in summary, if 𝐶∶ [𝑎, 𝑏] ∋
𝑡 ↦ x(𝑡), then

ℓ(𝐶) = ∫
𝑏

𝑎
|x′(𝑡)| d𝑡

= ∫
𝐶
d𝑠

where d𝑠 is the ‘arc length element’, i.e. d𝑠 = |x′(𝑡)| d𝑡. Similarly, we define

∫
𝐶
𝑓(x) d𝑠 = ∫

𝑏

𝑎
𝑓(x(𝑡)) |x′(𝑡)| d𝑡

If 𝐶 is made up of 𝑀 smooth curves 𝐶1,… , 𝐶𝑀 , we say that 𝐶 is ‘piecewise smooth’. We write 𝐶 =
𝐶1 +⋯+ 𝐶𝑀 and define

∫
𝐶
𝑓(x) d𝑠 =

𝑀
∑
𝑖=1

∫
𝐶𝑖

𝑓(x) d𝑠

Now note (informally) that

d𝑠 = |x′(𝑡)| d𝑡 = √(d𝑥d𝑡 )
2
+ (d𝑦d𝑡 )

2
+ (d𝑧d𝑡 )

2
d𝑡

i.e. (now very informally)
d𝑠2 = d𝑥2 + d𝑦2 + d𝑧2

which is Pythagoras’ Theorem.

Example. Let 𝐶 be the circle of radius 𝑟 > 0 in ℝ3

x(𝑡) = (
𝑟 cos 𝑡
𝑟 sin 𝑡
0

) ; 𝑡 ∈ [0, 2𝜋]

So

x′(𝑡) = (
−𝑟 sin 𝑡
𝑟 cos 𝑡
0

)

Therefore

∫
𝐶
d𝑠 = ∫

2𝜋

0
|x′(𝑡)| d𝑡 = ∫

2𝜋

0
√𝑟2 sin2 𝑡 + 𝑟2 cos2 𝑡 d𝑡 = ∫

2𝜋

0
𝑟 d𝑡 = 2𝜋𝑟
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Also, for example,

∫
𝐶
𝑥2𝑦 d𝑠 = ∫

2𝜋

0
(𝑟 cos 𝑡)2(𝑟 sin 𝑡)√𝑟2 sin2 𝑡 + 𝑟2 cos2 𝑡 d𝑡 = ∫

2𝜋

0
𝑟3 cos2 𝑡 sin 𝑡 d𝑡 = 0

1.4 Choice of parametrisation of curves
Does ℓ(𝐶) depend on the choice of parametrisation of x(𝑡)? For example,

x(𝑡) = (
𝑟 cos 𝑡
𝑟 sin 𝑡
0

) ; 𝑡 ∈ [0, 2𝜋]

and

x̃(𝑡) = (
𝑟 cos 2𝑡
𝑟 sin 2𝑡
0

) ; 𝑡 ∈ [0, 𝜋]

both give rise to a circle, but have different forms. Suppose that 𝐶 has two different parametrisa-
tions,

x = x1(𝑡); 𝑎 ≤ 𝑡 ≤ 𝑏
x = x2(𝜏); 𝛼 ≤ 𝜏 ≤ 𝛽

There must be some relationship x2(𝜏) = x1(𝑡(𝜏)) for some function 𝑡(𝜏), since they represent the
same curve. We can assume d𝑡

d𝜏
≠ 0, so the map between 𝑡 and 𝜏 is invertible and differentiable (see

IB Analysis and Topology). Note that

x′2(𝜏) =
d
d𝜏x2(𝜏)

= d
d𝜏x1(𝑡(𝜏))

By the Chain Rule,

= d𝑡
d𝜏x

′
1(𝑡(𝜏))

And now from the above definitions,

∫
𝐶
𝑓(x) d𝑠 = ∫

𝑏

𝑎
𝑓(x1(𝑡)) ||x′1(𝑡)|| d𝑡

Making the substitution 𝑡 = 𝑡(𝜏), and assuming d𝑡
d𝜏
> 0, the latter integral becomes

∫
𝛽

𝛼
𝑓(x2(𝜏)) ||x′1(𝑡(𝜏))||

d𝑡
d𝜏d𝜏⏟⎵⎵⎵⏟⎵⎵⎵⏟

||x′2(𝜏)|| d𝜏

= ∫
𝛽

𝛼
𝑓(x2(𝜏)) ||x′2(𝜏)|| d𝜏

which is precisely the same as ∫𝐶 𝑓(x) d𝑠 using the x2(𝜏) parametrisation. When d𝑡
d𝜏

< 0, you get
the same result. So the definition of ∫𝐶 𝑓(x) d𝑠 does not depend on the choice of parametrisation of
𝐶.
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1.5 Parametrisation according to arc length
We know that for any curve 𝐶 there exist multiple unique parametrisations. We will define the arc-
length function for a curve [𝑎, 𝑏] ∋ 𝑡 ↦ x(𝑡) by

𝑠(𝑡) = ∫
𝑡

𝑎
|x′(𝜏)| d𝜏

So 𝑠(𝑎) = 0, 𝑠(𝑏) = ℓ(𝐶). Using the Fundamental Theorem of Calculus, we have

𝑠′(𝑡) = |x′(𝑡)| ≥ 0

For regular curves, we have that
𝑠′(𝑡) > 0

So we can invert the relationship between 𝑠 and 𝑡; i.e. we can find 𝑡 as a function of 𝑠. Hence, we can
parametrise curves with respect to arc length. If we write

r(𝑠) = x(𝑡(𝑠))

where 0 ≤ 𝑠 ≤ ℓ(𝐶), then by the chain rule we have

d𝑡
d𝑠 =

1
d𝑠
d𝑡

= 1
|x′(𝑡(𝑠))|

So
r′(𝑠) = d

d𝑠x(𝑡(𝑠)) =
d𝑡
d𝑠x

′(𝑡(𝑠)) = x′(𝑡(𝑠))
|x′(𝑡(𝑠))|

In other words, r′(𝑠) is a unit vector tangential to the curve. This (consistently) gives

ℓ(𝐶) = ∫
ℓ(𝐶)

0
|r′(𝑠)| d𝑠 = ∫

ℓ(𝐶)

0
d𝑠

as previously found above.

1.6 Curvature
Throughout this section, wewill be talking about a generic regular curve𝐶, parametrisedwith respect
to arc length, where a position vector on 𝐶 is given by r(𝑠). We will define the tangent vector

t(𝑠) = r′(𝑠)

We already know that |t(𝑠)| = 1. Therefore the only part of t that changes with respect to 𝑠 is its
direction. So t′(𝑠) = r″(𝑠) only measures the change in the direction of the tangent as wemove along
the curve. So intuitively, if |r″(𝑠)| is large then the curve is rapidly changing direction. If |r″(𝑠)| is
small, the curve is approximately flat; there is little change in direction. Using this intuition, we will
define curvature as

𝜅(𝑠) = |r″(𝑠)| = |t′(𝑠)|
In other words 𝜅 is the magnitude of the acceleration a particle experiences while moving along the
curve at unit speed.
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1.7 Torsion
Since t = r′(𝑠) is a unit vector, differentiating t ⋅ t = 1 gives t ⋅ t′ = 0. We will define the principal
normal n by the formula

t′ = 𝜅n
Note thatn is everywhere normal to the curve𝐶, since it is always perpendicular to the tangent vector
t, since t ⋅ n = 0. We can extend the vectors {t,n} into an orthonormal basis by computing the cross
product:

b = t × n
We call b the binormal. It is a unit vector, since it is the cross product of two orthogonal unit vectors
in ℝ3. We also have that b ⋅ b′ = 0; also since t ⋅ b = 0 and n ⋅ b = 0, we must have

0 = (t ⋅ b)′ = t′ ⋅ b + t ⋅ b′ = 𝜅n ⋅ b + t ⋅ b′ = t ⋅ b′

So b′ is orthogonal to both t and b, i.e. it is parallel to n. We will define the torsion 𝜏 of a curve
by

b′ = −𝜏n
A physical interpretation of torsion is a kind of ‘corkscrew’ rotation in three dimensions.

Proposition (Fundamental Theorem of Differential Geometry of Curves). The curvature
𝜅(𝑠) and torsion 𝜏(𝑠) uniquely define a curve in ℝ3, up to translation and orientation.

Proof. Since n = b× t, we have t′ = 𝜅(b× t) and b′ = −𝜏(b× t). This gives six equations (written in
component form) for six unknowns. Given 𝜅(𝑠) and 𝜏(𝑠), and given t(0) and b(0), we can construct
the functions t(𝑠),b(𝑠),n(𝑠) = b(𝑠) × t(𝑠).

1.8 Radius of curvature
A generic curve 𝑠 ↦ r(𝑠) can be Taylor expanded around 𝑠 = 0. Writing t = t(0),n = n(0) and so on,
we have

r(𝑠) = r + 𝑠r′ + 1
2𝑠

2r″ + 𝑜(𝑠2)

= r + 𝑠t + 1
2𝑠

2𝜅n + 𝑜(𝑠2)

What circle that touches the curve at 𝑠 = 0 would be the best approximation for the curve at this
point? Since the circle touches the curve, we know the position vectors (of the curve and the circle)
match, and their first derivatives match. So we want to unify the second derivatives. The equation
of such a circle of radius 𝑅 is

x(𝜃) = r + 𝑅(1 − cos 𝜃)n + 𝑅(sin 𝜃)t

Expanding this for small 𝜃 gives

x(𝜃) = r + 𝑅𝜃t + 1
2𝑅𝜃

2n + 𝑜(𝜃2)

But the arc length on a circle is simply 𝑅𝜃. So in terms of arc length,

x(𝜃) = r + 𝑠t + 1
2𝑠

2 1
𝑅n + 𝑜(𝑠2)
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Hence by comparing coefficients,
𝑅 = 1

𝜅
We name this 𝑅(𝑠) the radius of curvature.

1.9 Gaussian curvature (non-examinable)
This subsection is non-examinable. How can we find the curvature of a surface? At any point r on a
surface, we have a normal vector n. We can construct a plane containing this normal; such a plane
will then intersect the surface near r. This intersection is a curve 𝐶, which has a curvature 𝜅. The
choice of plane is arbitrary, however. To unify all of these different possible results for 𝜅, we can
compute the Gaussian curvature 𝜅𝐺 by

𝜅𝐺 = 𝜅min𝜅max

• The Gaussian curvature of a flat plane is zero, since the minimum and maximum curvatures
are both zero.

• On any point on a sphere of radius 𝑅, the Gaussian curvature is 1
𝑅2
, since any plane containing

the normal produces a great circle of radius 𝑅, i.e. of curvature 1
𝜅
.

Theorem (Gauss’s Remarkable Theorem). TheGaussian curvature of a surface 𝑆 is invariant
under local isometries; i.e. if you bend the surface without stretching it.

2 Coordinates, differentials and gradients
2.1 Differentials and first order changes
Recall that for a function 𝑓(𝑢1,… , 𝑢𝑛), we define the differential of 𝑓, written d𝑓, by

d𝑓 = 𝜕𝑓
𝜕𝑢𝑖

d𝑢𝑖

noting that the summation convention applies. The d𝑢𝑖 are called differential forms, which can be
thought of as linearly independent objects (if the coordinates 𝑢1,… , 𝑢𝑛 are independent), i.e.𝛼𝑖 d𝑢𝑖 =
0 ⟹ 𝛼𝑖 = 0 for all 𝑖. Similarly, if we have a vector x(𝑢1,… , 𝑢𝑛), we define

dx = 𝜕x
𝜕𝑢𝑖

d𝑢𝑖

As an example, let 𝑓(𝑢, 𝑣, 𝑤) = 𝑢2 + 𝑤 sin(𝑣). Then

d𝑓 = 2𝑢 d𝑢 + 𝑤 cos(𝑣) d𝑣 + sin(𝑣) d𝑤

Similarly, given

x(𝑢, 𝑣, 𝑤) = (
𝑢2 − 𝑣2
𝑤
𝑒𝑣

)
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we can compute

dx = (
2𝑢
0
0
) d𝑢 + (

−2𝑣
0
𝑒𝑣

) d𝑣 + (
0
1
0
) d𝑤

Differentials encode information about how a function (or vector field) changes when we change the
coordinates by a small amount. By calculus,

𝑓(𝑢 + 𝛿𝑢1,… , 𝑢𝑛 + 𝛿𝑢𝑛) − 𝑓(𝑢1,… , 𝑢𝑛) =
𝜕𝑓
𝜕𝑢𝑖

𝛿𝑢𝑖 + 𝑜(𝛿u)

So if 𝛿𝑓 denotes the change in 𝑓(𝑢1,… , 𝑢𝑛) under this small change in coordinates, we have, to first
order,

𝛿𝑓 ≈ 𝜕𝑓
𝜕𝑢𝑖

𝛿𝑢𝑖

The analogous result holds for vector fields:

𝛿x ≈ 𝜕x
𝜕𝑢𝑖

𝛿𝑢𝑖

2.2 Coordinates and line elements in ℝ2

We can create multiple different consistent coordinate systems by defining a relationship between
them. For example, polar coordinates (𝑟, 𝜃) and Cartesian coordinates (𝑥, 𝑦) can be related by

𝑥 = 𝑟 cos 𝜃; 𝑦 = 𝑟 sin 𝜃

Even though this relationship is not bijective (there are multiple polar coordinates mapping to the
origin), it’s still a useful coordinate system because the vast majority of points work well. Even co-
ordinate systems with a countable amount of badly-behaved points are still useful.

A general set of coordinates (𝑢, 𝑣) onℝ2 canbe specified by their relationship to the standardCartesian
coordinates (𝑥, 𝑦). Wemust specify smooth, invertible functions 𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣). Wewould also like to
have a small change in one coordinate system to be equivalent to a small change in the other coordin-
ate system (i.e. the inverse is also smooth). The same principle applies in ℝ3 for three coordinates,
for example.

Consider the standard Cartesian coordinates in ℝ2.

x(𝑥, 𝑦) = (𝑥𝑦) = 𝑥e𝑥 + 𝑦e𝑦

Note that {e𝑥, e𝑦} are orthonormal, and point in the same direction regardless of the value of x: e𝑥
points in the direction of changing 𝑥 with 𝑦 held constant, for example. Equivalently,

e𝑥 =
𝜕
𝜕𝑥
x(𝑥, 𝑦)

||
𝜕
𝜕𝑥
x(𝑥, 𝑦)||

; e𝑦 =
𝜕
𝜕𝑦
x(𝑥, 𝑦)

|||
𝜕
𝜕𝑦
x(𝑥, 𝑦)|||

Note that
dx = 𝜕x

𝜕𝑥 d𝑥 +
𝜕x
𝜕𝑦 d𝑦 = d𝑥 e𝑥 + d𝑦 e𝑦
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In other words, when applying the change in coordinate 𝑥 ↦ 𝑥 + 𝛿𝑥, the vector changes (to first
order) to x↦ x + 𝛿𝑥e𝑥. In fact, in the case of Cartesian coordinates, this change is precisely correct
for any size of 𝛿, since the coordinate basis vectors are the same everywhere. We call dx the line
element; it tells us how small changes in coordinates produce changes in position vectors.

Now, let us consider polar coordinates in two-dimensional space. We can use the same idea as before,
giving

e𝑟 =
𝜕
𝜕𝑟
x(𝑟, 𝜃)

||
𝜕
𝜕𝑟
x(𝑟, 𝜃)||

= (cos 𝜃sin 𝜃) ; e𝜃 =
𝜕
𝜕𝜃
x(𝑟, 𝜃)

||
𝜕
𝜕𝜃
x(𝑟, 𝜃)||

= (− sin 𝜃cos 𝜃 )

Therefore, we have
x(𝑟, 𝜃) = (𝑟 cos 𝜃𝑟 sin 𝜃) = 𝑟e𝑟

Note that {e𝑟, e𝜃} are also orthonormal at each (𝑟, 𝜃), but their exact values are not the same every-
where. Since the basis vectors are orthogonal, we can call 𝑟 and 𝜃 orthogonal curvilinear coordinates.
Also, we can compute the line element dx as

dx = 𝜕x
𝜕𝑟 d𝑟 +

𝜕x
𝜕𝜃 d𝜃 = (cos 𝜃sin 𝜃) d𝑟 + (−𝑟 sin 𝜃𝑟 cos 𝜃 ) d𝜃 = d𝑟 e𝑟 + 𝑟 d𝜃 e𝜃

We see that a change in 𝜃 produces (up to first order) a change x↦ x+𝑟 𝛿𝜃 e𝜃, a change proportional
to 𝑟. So a small change in 𝜃 could cause quite a large change in Cartesian coordinates.

2.3 Orthogonal curvilinear coordinates
We say that (𝑢, 𝑣, 𝑤) are a set of orthogonal curvilinear coordinates if the vectors

e𝑢 =
𝜕x
𝜕𝑢
||
𝜕x
𝜕𝑢
||
; e𝑣 =

𝜕x
𝜕𝑣
||
𝜕x
𝜕𝑣
||
; e𝑤 =

𝜕x
𝜕𝑤
||
𝜕x
𝜕𝑤
||

form a right-handed, orthonormal basis for each (𝑢, 𝑣, 𝑤); but not necessarily the same basis over the
entire vector field. It is standard to write

ℎ𝑢 = |||
𝜕x
𝜕𝑢
|||; ℎ𝑣 = |||

𝜕x
𝜕𝑣
|||; ℎ𝑤 = |||

𝜕x
𝜕𝑤

|||

We call ℎ𝑢, ℎ𝑣, ℎ𝑤 the scale factors. Note that the line element is

dx = 𝜕x
𝜕𝑢 d𝑢 +

𝜕x
𝜕𝑣 d𝑣 +

𝜕x
𝜕𝑤 d𝑤

= ℎ𝑢e𝑢 d𝑢 + ℎ𝑣e𝑣 d𝑣 + ℎ𝑤e𝑤 d𝑤

So the scale factors showhow first-order changes in the coordinates are scaled into changes inx.

2.4 Cylindrical polar coordinates
We define (𝜌, 𝜙, 𝑧) by

x(𝜌, 𝜙, 𝑧) = (
𝜌 cos𝜙
𝜌 sin𝜙
𝑧

)
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where 0 ≤ 𝜌; 0 ≤ 𝜙 < 2𝜋; 𝑧 ∈ ℝ. So we can find

e𝜌 = (
cos𝜙
sin𝜙
0

) ; e𝜙 = (
− sin𝜙
cos𝜙
0

) ; e𝑧 = (
0
0
1
)

The scale factors are
ℎ𝜌 = 1; ℎ𝜙 = 𝜌; ℎ𝑧 = 1

The line element is
dx = d𝜌 e𝜌 + 𝜌 d𝜙 e𝜙 + d𝑧 e𝑧

Note that

x = 𝜌(
cos𝜙
sin𝜙
0

) + 𝑧 (
0
0
1
) = 𝜌e𝜌 + 𝑧e𝑧

2.5 Spherical polar coordinates
We define (𝑟, 𝜃, 𝜙) by

x(𝑟, 𝜃, 𝜙) = (
𝑟 cos𝜙 sin 𝜃
𝑟 sin𝜙 sin 𝜃
𝑟 cos 𝜃

)

where 0 ≤ 𝑟; 0 ≤ 𝜃 < 𝜋; 0 ≤ 𝜙 < 2𝜋. So we can find

e𝑟 = (
cos𝜙 sin 𝜃
sin𝜙 sin 𝜃
cos 𝜃

) ; e𝜃 = (
cos𝜙 cos 𝜃
sin𝜙 cos 𝜃
− sin 𝜃

) ; e𝜙 = (
− sin𝜙
cos𝜙
0

)

The scale factors are
ℎ𝑟 = 1; ℎ𝜃 = 𝑟; ℎ𝜙 = 𝑟 sin 𝜃

The line element is
dx = d𝑟 e𝑟 + 𝑟 d𝜃 e𝜃 + 𝑟 sin 𝜃 d𝜙 e𝜙

Note that

x = 𝑟(
cos𝜙 sin 𝜃
sin𝜙 sin 𝜃
cos 𝜃

) = 𝑟e𝑟

2.6 Gradient operator
For 𝑓∶ ℝ3 → ℝ, we define the gradient of 𝑓, written ∇𝑓, by

𝑓(x + h) = 𝑓(x) + ∇𝑓(x) ⋅ h + 𝑜(h) (∗)

as |h| → 0. The directional derivative of 𝑓 in the direction v, denoted by 𝐷v𝑓 or 𝜕𝑓
𝜕v
, is defined

by
𝐷v𝑓(x) = lim

𝑡→0

𝑓(x + 𝑡v) − 𝑓(x)
𝑡

Alternatively,
𝑓(x + 𝑡v) = 𝑓(x) + 𝑡𝐷v𝑓(x) + 𝑜(𝑡) (†)
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as 𝑡 → 0. Setting h = 𝑡v in (∗), we have

𝑓(x + 𝑡v) = 𝑓(x) + 𝑡∇𝑓(x) ⋅ v + 𝑜(𝑡)

This gives another way to interpret the gradient of 𝑓. Comparing this result to (†), we see that

𝐷v𝑓 = v ⋅ ∇𝑓

By the Cauchy–Schwarz inequality, the dot product is maximised when the two vectors are parallel.
Hence, the directional derivative is maximised when v points in the direction of∇𝑓. So∇𝑓 points in
the direction of greatest increase of 𝑓. Similarly, −∇𝑓 points in the direction of greatest decrease of
𝑓. For example, suppose 𝑓(𝑥) = 1

2
|x|2. Then

𝑓(x + h) = 1
2(x + h) ⋅ (x + h) = 1

2 |x|
2 + 1

2(2x ⋅ h) +
1
2 |h|

2 = 𝑓(x) + x ⋅ h + 𝑜(h)

Hence ∇𝑓(x) = x.

2.7 Gradient on curves
Suppose we have a curve 𝑡 ↦ x(𝑡). How does some function 𝑓 change whenmoving along the curve?
We will write 𝐹(𝑡) = 𝑓(x(𝑡)), 𝛿x = x(𝑡 + 𝛿𝑡) − x(𝑡).

𝐹(𝑡 + 𝛿𝑡) = 𝑓(x(𝑡 + 𝛿𝑡))
= 𝑓(x(𝑡) + 𝛿x)
= 𝑓(x(𝑡)) + ∇𝑓(x(𝑡)) ⋅ 𝛿x + 𝑜(𝛿x)

Since 𝛿x = x′(𝑡) 𝛿𝑡 + 𝑜(𝛿𝑡), we have

𝐹(𝑡 + 𝛿𝑡) = 𝐹(𝑡) + x′(𝑡) ⋅ ∇𝑓(x(𝑡)) 𝛿𝑡 + 𝑜(𝛿𝑡)

In other words,
d𝐹
d𝑡 =

d
d𝑡𝑓(x(𝑡)) =

dx
d𝑡 ⋅ ∇𝑓(x(𝑡))

2.8 Gradient on surfaces
Suppose we have a surface 𝑆 in ℝ3 defined implicitly by

𝑆 = {x ∈ ℝ3 ∶ 𝑓(x) = 0}

If 𝑡 ↦ x(𝑡) is any curve in 𝑆, then 𝑓(x(𝑡)) = 0 everywhere. So

0 = d
d𝑡𝑓(x(𝑡)) = ∇𝑓(x(𝑡)) ⋅ dxd𝑡

So∇𝑓(x(𝑡)), the gradient, is orthogonal to dx
d𝑡
, the tangent vector of any chosen curve in 𝑆. So∇𝑓(x(𝑡))

is normal to the surface.
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2.9 Coordinate-independent representation
If we are working in an orthogonal curvilinear coordinate system (𝑢, 𝑣, 𝑤), it is not immediately
clear how to compute∇𝑓, since we need to represent this arbitrary perturbation h using (𝑢, 𝑣, 𝑤). In
Cartesian coordinates it is simple; to represent the change x↦ x+hwe simply add the components
of x and h.

𝑓(x + h) = 𝑓((𝑥 + ℎ1, 𝑦 + ℎ2, 𝑧 + ℎ3))

= 𝑓(x) + 𝜕𝑓
𝜕𝑥ℎ1 +

𝜕𝑓
𝜕𝑦 ℎ2 +

𝜕𝑓
𝜕𝑧 ℎ3 + 𝑜(h)

= 𝑓(x) + (
𝜕𝑓/𝜕𝑥
𝜕𝑓/𝜕𝑦
𝜕𝑓/𝜕𝑧

) ⋅ ℎ + 𝑜(h)

So we have

⟹ ∇𝑓 = (
𝜕𝑓/𝜕𝑥
𝜕𝑓/𝜕𝑦
𝜕𝑓/𝜕𝑧

)

Or, using suffix notation,
∇𝑓 = e𝑖

𝜕𝑓
𝜕𝑥𝑖

; [∇𝑓]𝑖 =
𝜕𝑓
𝜕𝑥𝑖

We see that this ∇ is a kind of vector differential operator. In Cartesian coordinates,

∇ = e𝑥
𝜕
𝜕𝑥 + e𝑦

𝜕
𝜕𝑦 + e𝑧

𝜕
𝜕𝑧 ≡ e𝑖

𝜕
𝜕𝑥𝑖

From our previous example,
𝑓(x) = 1

2(𝑥
2 + 𝑦2 + 𝑧2) = 1

2 |x|
2

[∇𝑓]𝑖 =
𝜕
𝜕𝑥𝑖

[12𝑥𝑗𝑥𝑗]

= 1
2 [𝛿𝑖𝑗𝑥𝑗 + 𝑥𝑗𝛿𝑖𝑗]

= 𝑥𝑖
∇𝑓 = e𝑖𝑥𝑖

Let us return back to computing the gradient in the general case. Recall that in Cartesian coordinates,
the line element is simple:

dx = d𝑥𝑖 e𝑖
And also, if we have a function on ℝ3 such as 𝑓(𝑥, 𝑦, 𝑧), it has the differential

d𝑓 = 𝜕𝑓
𝜕𝑥𝑖

d𝑥𝑖

15



Then,

∇𝑓 ⋅ dx = (e𝑖
𝜕𝑓
𝜕𝑥𝑖

) ⋅ (e𝑗 d𝑥𝑗)

= 𝜕𝑓
𝜕𝑥𝑖

(e𝑖 ⋅ e𝑗) d𝑥𝑗

= 𝜕𝑓
𝜕𝑥𝑖

𝛿𝑖𝑗 d𝑥𝑗

= 𝜕𝑓
𝜕𝑥𝑖

d𝑥𝑖
= d𝑓

In other words, in any set of coordinates,

∇𝑓 ⋅ dx = d𝑓

2.10 Computing the gradient vector

Proposition. If (𝑢, 𝑣, 𝑤) are orthogonal curvilinear coordinates, and 𝑓 is a function of the
position vector (𝑢, 𝑣, 𝑤), then

∇𝑓 = 1
ℎ𝑢

𝜕𝑓
𝜕𝑢e𝑢 +

1
ℎ𝑣

𝜕𝑓
𝜕𝑣 e𝑣 +

1
ℎ𝑤

𝜕𝑓
𝜕𝑤e𝑤

Proof. If 𝑓 = 𝑓(𝑢, 𝑣, 𝑤) and x = x(𝑢, 𝑣, 𝑤), then

d𝑓 = 𝜕𝑓
𝜕𝑢 d𝑢 +

𝜕𝑓
𝜕𝑣 d𝑣 +

𝜕𝑓
𝜕𝑤 d𝑤

d𝑥 = ℎ𝑢 d𝑢 e𝑢 + ℎ𝑣 d𝑣 e𝑣 + ℎ𝑤 d𝑤 e𝑤
Using the above result, we have

∇𝑓 ⋅ dx = d𝑓

((∇𝑓)𝑢e𝑢 + (∇𝑓)𝑣e𝑣 + (∇𝑓)𝑤e𝑤) ⋅ (ℎ𝑢 d𝑢 e𝑢 + ℎ𝑣 d𝑣 e𝑣 + ℎ𝑤 d𝑤 e𝑤) =
𝜕𝑓
𝜕𝑢 d𝑢 +

𝜕𝑓
𝜕𝑣 d𝑣 +

𝜕𝑓
𝜕𝑤 d𝑤

(∇𝑓)𝑢ℎ𝑢 d𝑢 + (∇𝑓)𝑣ℎ𝑣 d𝑣 + (∇𝑓)𝑤ℎ𝑤 d𝑤 = 𝜕𝑓
𝜕𝑢 d𝑢 +

𝜕𝑓
𝜕𝑣 d𝑣 +

𝜕𝑓
𝜕𝑤 d𝑤

Since 𝑢, 𝑣, 𝑤 are independent coordinates, d𝑢 , d𝑣 , d𝑤 are linearly independent. So we can simply
compare coefficients, getting

∇𝑓 = 1
ℎ𝑢

𝜕𝑓
𝜕𝑢e𝑢 +

1
ℎ𝑣

𝜕𝑓
𝜕𝑣 e𝑣 +

1
ℎ𝑤

𝜕𝑓
𝜕𝑤e𝑤

as required.

In cylindrical polar coordinates, we have

∇𝑓 = 𝜕𝑓
𝜕𝜌e𝜌 +

1
𝜌
𝜕𝑓
𝜕𝜙e𝜙 +

𝜕𝑓
𝜕𝑧 e𝑧
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In spherical polar coordinates, we have

∇𝑓 = 𝜕𝑓
𝜕𝑟 e𝑟 +

1
𝑟
𝜕𝑓
𝜕𝜃 e𝜃 +

1
𝑟 sin 𝜃

𝜕𝑓
𝜕𝜙e𝜙

Then using the familiar example 𝑓(x) = 1
2
|x|2, we have

𝑓 =
⎧⎪
⎨⎪
⎩

1
2
(𝑥2 + 𝑦2 + 𝑧2) in Cartesian coordinates

1
2
(𝜌2 + 𝑧2) in cylindrical polar coordinates

1
2
𝑟2 in spherical polar coordinates

Then we can check the value of ∇𝑓 in these different coordinate systems.

∇𝑓 =
⎧
⎨
⎩

𝑥e𝑥 + 𝑦e𝑦 + 𝑧e𝑧 in Cartesian coordinates
𝜌e𝜌 + 𝑧e𝑧 in cylindrical polar coordinates
𝑟e𝑟 in spherical polar coordinates

= x

3 Integration over lines
3.1 Line integrals
For a vector field F(x) and a piecewise smooth parametrised curve 𝐶 defined by [𝑎, 𝑏] ∋ 𝑡 ↦ x(𝑡), we
define the line integral of 𝐹 along 𝐶

∫
𝐶
F ⋅ dx = ∫

𝑏

𝑎
F(x(𝑡)) ⋅ dxd𝑡⏟

tangent vector

d𝑡

Note that this tangent vector is not necessarily normalised, and note further that the curve direction
matters. If we want to integrate in the other direction, it is common to write ∫−𝐶 instead. We can
think of this line integral as the work done by a particle moving along 𝐶 in the presence of a force 𝐹.
As an example, consider the vector field given by

F = (
𝑥2𝑦
𝑦𝑧
2𝑥𝑧

)

Consider two curves connecting the origin to the position vector (
1
1
1
).

𝐶1 ∶ [0, 1] ∋ 𝑡 ↦ (
𝑡
𝑡
𝑡
) ; 𝐶2 ∶ [0, 1] ∋ 𝑡 ↦ (

𝑡
𝑡
𝑡2
)

∫
𝐶1

F ⋅ dx = ∫
1

0
(
𝑡3
𝑡2
2𝑡2

) ⋅ (
1
1
1
) d𝑡 = 5

4
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∫
𝐶2

F ⋅ dx = ∫
1

0
(
𝑡3
𝑡3
2𝑡3

) ⋅ (
1
1
2𝑡
) d𝑡 = 13

10

In general, the result of the line integral depends on the path taken between the two points. In the
force analogy, there might be a path between 𝐴 and 𝐵 that is very easy to traverse, and another path
that is very difficult (i.e. uses a lot of energy).

Now, consider a particle at x experiencing a force F, represented in cylindrical polar coordinates
as

F(x) = 𝑧𝜌e𝜙
Consider the path 𝐶 given by

𝐶∶ [0, 2𝜋] ∋ 𝑡 ↦ (
𝑎 cos 𝑡
𝑎 sin 𝑡
𝑡

)

What is the work done by the particle travelling along 𝐶? Using the definition of the line element dx
in cylindrical polar coordinates, we can compute that Fdx = 𝑧𝜌2 d𝜙. Note that in cylindrical polar
coordinates, the path can be represented simply as (𝜌, 𝜙, 𝑧) = (𝑎, 𝑡, 𝑡). Hence,

(d𝜌 , d𝜙 , d𝑧) = (0, d𝑡 , d𝑡)

Therefore, F ⋅ dx = 𝑧𝜌2 d𝑡. We can now compute the integral:

∫
𝐶
F ⋅ dx = 𝑎2∫

2𝜋

0
𝑡 d𝑡 = 2𝜋2𝑎2

3.2 Closed curves
A curve [𝑎, 𝑏] ∋ 𝑡 ↦ x(𝑡) might be such that x(𝑎) = x(𝑏). This is called a closed curve. The line
integral around a closed loop is written

∮
𝐶
F ⋅ dx

Sometimes, this is called the ‘circulation’ of F about 𝐶. Consider the first example from this lecture,
with curves 𝐶1 and 𝐶2. Let 𝐶 = 𝐶1 − 𝐶2. Then

∮
𝐶
F ⋅ dx = ∫

𝐶1

F ⋅ dx −∫
𝐶2

F ⋅ dx = −2
15

3.3 Conservative forces and exact differentials
We have seen how to interpret things like F ⋅ dx when inside an integral. This is an example of a
differential form; in orthogonal curvilinear coordinates (𝑢, 𝑣, 𝑤) we have

F ⋅ dx = 𝑎 d𝑢 + 𝑏 d𝑣 + 𝑐 d𝑤

for some 𝑎, 𝑏, 𝑐 dependent on 𝑢, 𝑣, 𝑤. We say that F ⋅ dx is exact if

F ⋅ dx = d𝑓

for some scalar function 𝑓. Recall that d𝑓 = ∇𝑓 ⋅ dx. So equivalently, F ⋅ dx is exact if and only
if

F = ∇𝑓

18



Such a vector field is called conservative. F ⋅ dx is exact if and only if F is conservative. Using the
properties that d(𝛼𝑓 + 𝛽𝑔) = 𝛼 d𝑓 + 𝛽 d𝑔, d(𝑓𝑔) = 𝑔 d𝑓 + 𝑓 d𝑔 and so on, it is usually easy to see if a
differential form is exact.

Proposition. If 𝜃 is an exact differential form, then

∮
𝐶
𝜃 = 0

for any closed curve 𝐶.

Proof. If 𝜃 is exact, then 𝜃 = ∇𝑓 ⋅ dx for some scalar function 𝑓. Given a curve 𝐶∶ [𝑎, 𝑏] ∋ 𝑡 ↦ x(𝑡),

∮
𝐶
𝜃 = ∮

𝐶
∇𝑓 ⋅ dx

= ∫
𝑏

𝑎
∇𝑓(x(𝑡)) ⋅ dxd𝑡 d𝑡

By the previous lecture,

= ∫
𝑏

𝑎

d
d𝑡 [𝑓(x(𝑡))] d𝑡

= 𝑓(x(𝑎)) − 𝑓(x(𝑏))
= 0

since x(𝑎) = x(𝑏).

Note, for example in cylindrical polar coordinates, that 𝑓(𝜌, 𝜙, 𝑧) = 𝜙 is not a function on ℝ3, since
there are many possible values of 𝜙 for any given position vector. These are called multi-valued
functions; for example the contour integral of this function over a circle where 𝜙 ∈ [0, 2𝜋] is not
well-defined, since 𝑓(𝜌, 0, 𝑧) ≠ 𝑓(𝜌, 2𝜋, 𝑧).
Note that if F is conservative, then the circulation of F around any closed curve 𝐶 vanishes. This
means that the line integral between 𝐴 and 𝐵 is not dependent on the path chosen between the two
points; simply choose the most convenient curve for the problem.

Let (𝑢, 𝑣, 𝑤) = (𝑢1, 𝑢2, 𝑢3) be a set of orthogonal curvilinear coordinates. Let

F ⋅ dx = 𝜃 = 𝐴(𝑢, 𝑣, 𝑤) d𝑢⏟⎵⎵⎵⏟⎵⎵⎵⏟
𝜃1

+𝐵(𝑢, 𝑣, 𝑤) d𝑣⏟⎵⎵⏟⎵⎵⏟
𝜃2

+𝐶(𝑢, 𝑣, 𝑤) d𝑤⏟⎵⎵⎵⏟⎵⎵⎵⏟
𝜃3

= 𝜃𝑖 d𝑢𝑖

A necessary condition for 𝜃 to be exact is

𝜕𝜃𝑖
𝜕𝑢𝑗

=
𝜕𝜃𝑗
𝜕𝑢𝑖

(†)

Indeed, if 𝜃 is exact, then 𝜃 = d𝑓, so

𝜃 = 𝜕𝑓
𝜕𝑢𝑖

d𝑢𝑖 ⟺ 𝜃𝑖 =
𝜕𝑓
𝜕𝑢𝑖
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and therefore,
𝜕𝜃𝑖
𝜕𝑢𝑗

= 𝜕2𝑓
𝜕𝑢𝑗𝜕𝑢𝑖

=
𝜕𝜃𝑗
𝜕𝑢𝑖

A differential form 𝜃 = 𝜃𝑖 d𝑢𝑖 that obeys (†) is called a closed differential form. Certainly any exact
differential form is closed. A differential form is exact if it is closed and the domainΩ ⊂ ℝ3 onwhich
𝜃 is defined is simply connected, i.e. all closed loops in Ω can be continuously ‘shrunk’ to any point
inside Ω without leaving it. This is notable, since one direction of implication is related to calculus,
but the other direction is related to topology.

Now, let us consider an example. Let
𝜃 = 𝑦 d𝑥 − 𝑥 d𝑦

Is this differential form exact? First, we will check if it is closed.
𝜕
𝜕𝑦𝑦 = 1; 𝜕

𝜕𝑥(−𝑥) = −1

It is not closed, so it is not exact. As another example, let us compute the line integral

∫
𝐶
3𝑥2𝑦 d𝑥 + 𝑥3 d𝑦

where

𝐶∶ [𝛼1, 𝛼100] ∋ 𝑡 ↦
⎛
⎜⎜
⎝

cos (Im (𝜁 ( 1
2
+ 𝑖𝑡)))

sin (Re (𝜁 ( 1
2
+ 𝑖𝑡)))

0

⎞
⎟⎟
⎠

where 𝛼1 and 𝛼100 are the 1st and 100th zeroes of 𝜁 (
1
2
+ 𝑖𝑡). The loop is closed and exact; d(𝑥3𝑦) =

3𝑥2𝑦 d𝑥 + 𝑥3 d𝑦. So the result is zero. As a final example, consider a particle travelling along a curve
𝐶∶ [𝑎, 𝑏] ∋ 𝑡 ↦ x(𝑡). Then the work done is

𝑊 = ∫
𝐶
F ⋅ dx

= 𝑚∫
𝑏

𝑎
ẍ + ẋ d𝑡

= 1
2𝑚 |ẋ|2|||

𝑏

𝑎

which is the change in kinetic energy. If F = −∇𝑉 , i.e. F is conservative,

∫
𝐶
F ⋅ dx = −∫

𝐶
∇𝑉 ⋅ dx = 𝑉(x(𝑎)) − 𝑉(x(𝑏))

So the change in kinetic energy is equal to the change in potential energy; energy is conserved.

4 Integration in Euclidean space
4.1 Definition of integral in two dimensions
We can integrate over a bounded region 𝐷 ⊂ ℝ2. To do this, we can cover 𝐷 with small, disjoint sets
𝐴𝑖𝑗 each with area 𝛿𝐴𝑖𝑗 . Each of these sets 𝐴𝑖𝑗 are contained in a disc of radius 𝜀 > 0. Let (𝑥𝑖, 𝑦𝑗) be
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points contained in each 𝐴𝑖𝑗 . We now define

∫
𝐷
𝑓(x) d𝐴 = lim

𝜀→0
∑
𝑖,𝑗
𝑓(𝑥𝑖, 𝑦𝑗) 𝛿𝐴𝑖𝑗

The integral exists if it is independent of the choice of partitions 𝐴𝑖𝑗 and the points (𝑥𝑖, 𝑦𝑗). The
obvious choice of partitioning𝐷 is to use rectangles where the area of each rectangle is 𝛿𝐴𝑖𝑗 = 𝛿𝑥𝑖𝛿𝑦𝑗 .
We can create horizontal ‘strips’ of height 𝛿𝑦whichwe can integrate over. The possible 𝑥 coordinates
for this strip are 𝑥𝑦 = {𝑥∶ (𝑥, 𝑦) ∈ 𝐷}. We can take the limit as 𝛿𝑥 → 0, giving

𝛿𝑦∫
𝑥𝑦
𝑓(𝑥, 𝑦) d𝑥

Summing over each such strip, taking the limit as 𝛿𝑦 → 0, we have

∫
𝐷
𝑓(𝑥, 𝑦) d𝐴 = ∫

𝑌
(∫

𝑥𝑦
𝑓(𝑥, 𝑦) d𝑥) d𝑦

where 𝑌 is the set of all possible 𝑦 coordinates, i.e. 𝑌 = {𝑦∶ ∃𝑥, (𝑥, 𝑦) ∈ 𝐷}. We can equivalently sum
over all vertical strips, and get

∫
𝐷
𝑓(𝑥, 𝑦) d𝐴 = ∫

𝑋
(∫

𝑦𝑥
𝑓(𝑥, 𝑦) d𝑦) d𝑥

More concisely, we can write the following (Fubini’s Theorem):

d𝐴 = d𝑥 d𝑦 = d𝑦 d𝑥
Let us consider an example; let 𝐷 be the triangle with vertices (0, 0), (1, 0), (0, 1). If 𝑓(𝑥, 𝑦) = 𝑥𝑦2,
then by integrating over horizontal strips, we have

∫
𝐷
𝑓(𝑥, 𝑦) d𝐴 = ∫

1

0
(∫

1−𝑦

0
𝑥𝑦2 d𝑥) d𝑦

= ∫
1

0
[12𝑥

2𝑦2]
1−𝑦

0
d𝑦

= ∫
1

0

1
2(1 − 𝑦)2𝑦2 d𝑦

= 1
60

Instead, integrating over vertical strips, we have

∫
𝐷
𝑓(𝑥, 𝑦) d𝐴 = ∫

1

0
(∫

1−𝑥

0
𝑥𝑦2 d𝑦) d𝑥

= ∫
1

0
[13𝑥𝑦

3]
1−𝑥

0
d𝑥

= ∫
1

0

1
3𝑥(1 − 𝑥)3 d𝑥

= 1
60
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Note that if 𝑓(𝑥, 𝑦) = 𝑔(𝑥) ⋅ ℎ(𝑦), and 𝐷 is a rectangle {(𝑥, 𝑦)∶ 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑐 ≤ 𝑦 ≤ 𝑑}, then

∫
𝐴
𝑓(𝑥, 𝑦) d𝐴 = (∫

𝑏

𝑎
𝑔(𝑥) d𝑥) (∫

𝑑

𝑐
ℎ(𝑦) d𝑦)

4.2 Change of variables
It can be useful to introduce a change of variables in order to compute the one-dimensional integral.
For example, if 𝑥 is represented as a function of 𝑢,

∫
𝑏

𝑎
𝑓(𝑥) d𝑥 = ∫

𝑥−1(𝑏)

𝑥−1(𝑎)
𝑓(𝑥(𝑢))d𝑥d𝑢 d𝑢

Note that if d𝑥
d𝑢

> 0, then the right hand side integral is taken over a limit from a smaller value to a
larger one, but if d𝑥

d𝑢
< 0, then the integral is the ‘wrong way round’. If 𝐼 = [𝑎, 𝑏] and 𝐼′ = 𝑥−1𝐼, we

have
∫
𝐼
𝑓(𝑥) d𝑥 = ∫

𝐼′
𝑓(𝑥(𝑢))|||

d𝑥
d𝑢

||| d𝑢

where the absolute value is used since 𝐼′ is defined as going from the lower limit to the upper limit.
There is a similar formula in 2D.

Proposition. Let x(𝑢, 𝑣) = (𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣)) be a smooth, invertible transformation with a
smooth inverse that maps the region 𝐷′ in the (𝑢, 𝑣) plane to the region 𝐷 in the (𝑥, 𝑦) plane.
(This map must be a bijection; every point must have a unique inverse.) Then

∬
𝐷
𝑓(𝑥, 𝑦) d𝑥 d𝑦 =∬

𝐷′
𝑓(𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣))|||

𝜕(𝑥, 𝑦)
𝜕(𝑢, 𝑣)

||| d𝑢 d𝑣

where
𝜕(𝑥, 𝑦)
𝜕(𝑢, 𝑣) = 𝐽 = det (𝜕𝑥/𝜕𝑢 𝜕𝑥/𝜕𝑣

𝜕𝑦/𝜕𝑢 𝜕𝑦/𝜕𝑣) = det (𝜕x𝜕𝑢
|||
𝜕x
𝜕𝑣)

is the Jacobian determinant. More concisely,

d𝑥 d𝑦 = |𝐽| d𝑢 d𝑣

It doesn’t matter if the Jacobian vanishes at a single point, since the area of a single point is
zero and hence will have no contribution to the result. The Jacobian being zero means that
something non-smooth is happening at this point, so it is important to considerwhy this point
is special.

Proof. We can form a partition of 𝐷 by using the image of a rectangular partition of 𝐷′. Let the
rectangular partition be characterised by a horizontal step 𝛿𝑥 and a vertical step of 𝛿𝑦. Then each
small rectangle in𝐷′ ismapped to some small (not necessarily rectangular) region in𝐷′, with vertices

x(𝑢𝑖, 𝑣𝑗), x(𝑢𝑖+1, 𝑣𝑗), x(𝑢𝑖+1, 𝑣𝑗+1), x(𝑢𝑖, 𝑣𝑗+1)
To first order, the area of this region is the area of the parallelogram with the same vertices. Two of
the sides of the parallelogram are

x(𝑢𝑖+1, 𝑣𝑗) − x(𝑢𝑖, 𝑣𝑗) ≈
𝜕x
𝜕𝑢(𝑢𝑖, 𝑣𝑗)𝛿𝑢
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x(𝑢𝑖, 𝑣𝑗+1) − x(𝑢𝑖, 𝑣𝑗) ≈
𝜕x
𝜕𝑣 (𝑢𝑖, 𝑣𝑗)𝛿𝑣

So the area of the parallelogram is approximately

|||
𝜕x
𝜕𝑢(𝑢𝑖, 𝑣𝑗)𝛿𝑢 ⋅

𝜕x
𝜕𝑣 (𝑢𝑖, 𝑣𝑗)𝛿𝑣

||| =
|||det (

𝜕x
𝜕𝑢(𝑢𝑖, 𝑣𝑗)

|||
𝜕x
𝜕𝑣 (𝑢𝑖, 𝑣𝑗))

|||
= ||𝐽(𝑢𝑖, 𝑣𝑗)|| 𝛿𝑢 𝛿𝑣
= 𝛿𝐴𝑖𝑗

Hence,

∫
𝐷
𝑓 d𝐴 = lim

𝜀→0
∑
𝑖𝑗
𝑓(𝑥𝑖, 𝑦𝑗) 𝛿𝐴𝑖𝑗

= lim
𝜀→0

∑
𝑖𝑗
𝑓(𝑥(𝑢𝑖, 𝑣𝑗), 𝑦(𝑢𝑖, 𝑣𝑗)) ||𝐽(𝑢𝑖, 𝑣𝑗)|| 𝛿𝑢 𝛿𝑣

=∬
𝐷′
𝑓(𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣)) ||𝐽(𝑢𝑖, 𝑣𝑗)|| d𝑢 d𝑣

As an example, let us consider polar coordinates (𝜌, 𝜙), where

𝑥(𝜌, 𝜙) = 𝜌 cos𝜙; 𝑦(𝜌, 𝜙) = 𝜌 sin𝜙

Hence,
|𝐽| = |||det (

cos𝜙 −𝜌 sin𝜙
sin𝜙 𝜌 cos𝜙 )

||| = |𝜌| = 𝜌

If 𝐷 = {(𝑥, 𝑦)∶ 𝑥 > 0, 𝑦 > 0, 𝑥2 + 𝑦2 < 𝑟2}, which is a quarter-circle of radius 𝑟 in the first quadrant,
then 𝐷′ = {(𝜌, 𝜙)∶ 0 < 𝜌 < 𝑟, 0 < 𝜙 < 𝜋

2
}. This is notably a rectangle in polar coordinates.

∬
𝐷
𝑓(𝑥, 𝑦) d𝑥 d𝑦 =∬

𝐷′
𝑓(𝜌 cos𝜙, 𝜌 sin𝜙) 𝜌 d𝜌 d𝜙

So, for example, if we let 𝑟 → ∞, then

∫
∞

𝑥=0
∫

∞

𝑦=0
𝑓(𝑥, 𝑦) d𝑦 d𝑥 = ∫

𝜋
2

𝜙=0
∫

∞

𝜌=0
𝑓(𝜌 cos𝜙, 𝜌 sin𝜙) 𝜌 d𝜌 d𝜙

Consider
𝐼 = ∫

∞

0
𝑒−𝑥2 d𝑥
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Then,

𝐼2 = ∫
∞

0
𝑒−𝑥2 d𝑥 ⋅ ∫

∞

0
𝑒−𝑦2 d𝑦

= ∫
∞

𝑥=0
∫

∞

𝑦=0
𝑒−𝑥2−𝑦2 d𝑦 d𝑥

= ∫
𝜋
2

𝜙=0
∫

∞

𝜌=0
𝑒−𝜌2 𝜌 d𝜌 d𝜙

= 𝜋
2 ∫

∞

0

d
d𝜌 (−

1
2𝑒

−𝜌2) d𝜌

= 𝜋
4

⟹ 𝐼 = √𝜋
2

4.3 Definition of integral in three dimensions
To integrate over regions 𝑉 in ℝ3, we can use similar ideas to those discussed in the previous lec-
ture.

∫
𝑉
𝑓(x) d𝑉 = lim

𝜀→0
∑
𝑖,𝑗,𝑘

𝑓(𝑥𝑖, 𝑦𝑗 , 𝑧𝑘) 𝛿𝑉 𝑖𝑗𝑘

where the 𝛿𝑉 𝑖𝑗𝑘 partition 𝑉 , and each contain the point (𝑥𝑖, 𝑦𝑗 , 𝑧𝑘). In this case, the volume element
satisfies

d𝑉 = d𝑥 d𝑦 d𝑧
The integrals may be computed in any order. As an example, consider the simplex defined by

𝑉 = {𝑥 > 0, 𝑦 > 0, 𝑧 > 0, 𝑥 + 𝑦 + 𝑧 < 1}

We can compute the volume using the integral

𝐼 = ∫
1

𝑧=0
∫

1−𝑧

𝑦=0
∫

1−𝑦−𝑧

𝑥=0
1 d𝑥 d𝑦 d𝑧

= ∫
1

𝑧=0
∫

1−𝑧

𝑦=0
(1 − 𝑦 − 𝑧) d𝑦 d𝑧

= ∫
1

𝑧=0
((1 − 𝑧) − 1

2(1 − 𝑧)2 − (1 − 𝑧)𝑧) d𝑧

= [𝑧 − 1
2𝑧

2 − 1
2𝑧 +

1
2𝑧

2 − 1
6𝑧

3 − 1
2𝑧

2 + 1
3𝑧

3]
1

𝑧=0

= 1
6

We can compute things like the centre of mass, assuming it has constant density 𝜌 = 1. Then

X = 1
𝑚 ∫

𝑉
𝜌x d𝑉 = 1

4 (
1
1
1
)
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Proposition. Let 𝑥(𝑢, 𝑣, 𝑤), 𝑦(𝑢, 𝑣, 𝑤), 𝑧(𝑢, 𝑣, 𝑤) be a continuously differentiable bijection
with a continuously differentiable inverse, that maps the volume 𝑉 ′ to 𝑉 . The integral

∭
𝑉
𝑓(𝑥, 𝑦, 𝑧) d𝑥 d𝑦 d𝑧 =∭

𝑉 ′
𝑓(𝑥(𝑢, 𝑣, 𝑤), 𝑦(𝑢, 𝑣, 𝑤), 𝑧(𝑢, 𝑣, 𝑤)) |𝐽| d𝑢 d𝑣 d𝑤

where
𝐽 = det (𝜕x𝜕𝑢

|||
𝜕x
𝜕𝑣

|||
𝜕x
𝜕𝑤)

More concisely,
d𝑥 d𝑦 d𝑧 = |𝐽| d𝑢 d𝑣 d𝑤

The Jacobian comes from the fact that the volume of a parallepiped generated by the vectors

𝜕x
𝜕𝑢𝛿𝑢,

𝜕x
𝜕𝑣𝛿𝑣,

𝜕x
𝜕𝑤𝛿𝑤

is precisely the determinant of the Jacobian matrix multiplied by 𝛿𝑢 𝛿𝑣 𝛿𝑤. The rest of this proof
follows from the two-dimensional case. As an example, let us consider cylindrical polar coordinates
(𝑢, 𝑣, 𝑤) = (𝜌, 𝜙, 𝑧).

d𝑉 = 𝜌 d𝜌 d𝜙 d𝑧 ; |𝐽| = 𝜌
In spherical polar coordinates (𝑢, 𝑣, 𝑤) = (𝑟, 𝜃, 𝜙),

d𝑉 = 𝑟2 sin 𝜃 d𝑟 d𝜃 d𝜙 ; |𝐽| = 𝑟2 sin 𝜃

4.4 Calculating volumes
We can use the volume element to calculate, for example, the volume of a ball of radius 𝑅. To begin,
let us use Cartesian coordinates.

∫
𝑉
d𝑉 = ∫

𝑅

𝑧=−𝑅
d𝑧∫

√𝑅2−𝑧2

𝑦=−√𝑅2−𝑧2
d𝑦∫

√𝑅2−𝑧2−𝑦2

𝑥=−√𝑅2−𝑧2−𝑦2
d𝑥

= ∫
𝑅

𝑧=−𝑅
d𝑧∫

√𝑅2−𝑧2

𝑦=−√𝑅2−𝑧2
d𝑦 [2√𝑅2 − 𝑧2 − 𝑦2]

= ∫
𝑅

𝑧=−𝑅
d𝑧 [𝑦√𝑅2 − 𝑧2 − 𝑦2 + (𝑅2 − 𝑧2) arctan ( 𝑦

√𝑅2 − 𝑧2 − 𝑦2
)
√𝑅2−𝑧2

𝑦=−√𝑅2−𝑧2
]

= ∫
𝑅

𝑧=−𝑅
d𝑧 [𝜋(𝑅2 − 𝑧2)]

= 4
3𝜋𝑅

3
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We can alternatively use spherical polar coordinates.

∫
𝑉
d𝑉 = ∫

𝑅

𝑟=0
d𝑟∫

𝜋

𝜃=0
d𝜃∫

2𝜋

𝜙=0
d𝜙 ⋅ 𝑟2 sin 𝜃

= ∫
𝑅

𝑟=0
𝑟2 d𝑟∫

𝜋

𝜃=0
sin 𝜃 d𝜃∫

2𝜋

𝜙=0
d𝜙

= ∫
𝑅

𝑟=0
𝑟2 d𝑟 ⋅ ∫

𝜋

𝜃=0
sin 𝜃 d𝜃 ⋅ ∫

2𝜋

𝜙=0
d𝜙

= 1
3𝑅

3 ⋅ 2 ⋅ 2𝜋

= 4
3𝜋𝑅

3

This is clearly a much cleaner computation. Now, consider the a ball of radius 𝑎 with cylinder of
radius 𝑏 < 𝑎 removed from the centre alignedwith the 𝑧 axis. To calculate this volume, the symmetry
of the problem suggests we might want to use cylindrical polar coordinates.

𝑉 = {(𝜌, 𝜙, 𝑧)∶ 0 < 𝜌2 + 𝑧2 < 𝑎2, 𝑏 < 𝜌 < 𝑎}

∫
𝑉
d𝑉 = ∫

𝑎

𝜌=𝑏
𝜌 d𝜌∫

2𝜋

𝜙=0
d𝜙∫

√𝑎2−𝜌2

𝑧=−√𝑎2−𝜌2
d𝑧

= 2𝜋∫
𝑎

𝑏
2𝜌√𝑎2 − 𝜌2 d𝜌

= 4
3𝜋(𝑎

2 − 𝑏2)
3
2

5 Integration over surfaces
5.1 Two-dimensional surfaces
A two-dimensional surface inℝ3 can be defined implicitly using a function 𝑓∶ ℝ3 → ℝ, with

𝑆 = {x ∈ ℝ3 ∶ 𝑓(x) = 0}

The normal to 𝑆 at x is parallel to∇𝑓(x). We call the surface regular if ∇𝑓(x) ≠ 0 everywhere on the
surface. For example, consider

𝑆 = {(𝑥, 𝑦, 𝑧)∶ 𝑥2 + 𝑦2 + 𝑧2 − 1 = 0}

Then

∇𝑓(x) = (
2𝑥
2𝑦
2𝑧
) = 2x

which is clearly normal to 𝑆 at x. Some surfaces have a boundary, for instance a hemisphere.

𝑆 = {(𝑥, 𝑦, 𝑧)∶ 𝑥2 + 𝑦2 + 𝑧2 − 1 = 0, 𝑧 ≥ 0}
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We label the boundary 𝜕𝑆, so

𝜕𝑆 = {(𝑥, 𝑦, 𝑧)∶ 𝑥2 + 𝑦2 = 1, 𝑧 = 0}

In this course, a surface will either have no boundary or its boundary will be made of piecewise
smooth curves. If 𝑆 has no boundary, we say that 𝑆 is a closed surface. It is often useful to parametrise
a surface using some coordinates (𝑢, 𝑣).

𝑆 = {x = x(𝑢, 𝑣)∶ (𝑢, 𝑣) ∈ 𝐷}

where 𝐷 is some region in the 𝑢-𝑣 plane. For a hemisphere, we can use spherical polar coordin-
ates:

𝑆 = {x = x(𝜃, 𝜙) = (
sin 𝜃 cos𝜙
sin 𝜃 sin𝜙
cos 𝜃

) ∶ 0 ≤ 𝜃 ≤ 𝜋
2 , 0 ≤ 𝜙 ≤ 2𝜋}

We call a parametrisation of 𝑆 regular if

𝜕x
𝜕𝑢 ×

𝜕x
𝜕𝑣 ≠ 0

everywhere on the surface. Note that 𝜕x
𝜕𝑢

is the tangent in one direction, and 𝜕x
𝜕𝑣

is the tangent in
another direction, so their cross product should be normal to the surface.

n̂ =
𝜕x
𝜕𝑢

× 𝜕x
𝜕𝑣

||
𝜕x
𝜕𝑢

× 𝜕x
𝜕𝑣
||

This normal will vary smoothly with respect to 𝑢 and 𝑣, if we are moving across a smooth part of the
curve. Choosing a consistent normal over 𝑆 gives a way to give an orientation to the boundary 𝜕𝑆. We
make the convention that normal vectors near you should be on your left as you traverse 𝜕𝑆.

5.2 Areas and integrals over surfaces
Consider a parametrised surface

𝑆 = {x = x(𝑢, 𝑣)∶ (𝑢, 𝑣) ∈ 𝐷}

The integral over 𝑆 cannot be of the form

∬
𝐷
d𝑢 d𝑣

since a patch of area 𝛿𝑢 𝛿𝑣 in𝐷 will not in general correspond to a patch of area 𝛿𝑢 𝛿𝑣 in 𝑆. Note that
the small change 𝑢 ↦ 𝑢 + 𝛿𝑢 produces a change

x(𝑢 + 𝛿𝑢, 𝑣) − x(𝑢, 𝑣) ≈ 𝜕x
𝜕𝑢𝛿𝑢

Similarly, changing 𝑣, we have

x(𝑢, 𝑣 + 𝛿𝑣) − x(𝑢, 𝑣) ≈ 𝜕x
𝜕𝑣𝛿𝑣
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So the patch of area 𝛿𝑢 𝛿𝑣 in 𝐷 corresponds (to first order) to a parallelogram of area

|||
𝜕x
𝜕𝑢 × 𝜕x

𝜕𝑣
||| 𝛿𝑢 𝛿𝑣

This leads us to define the scalar area element and the vector area element as follows:

d𝑆 = |||
𝜕x
𝜕𝑢 × 𝜕x

𝜕𝑣
||| d𝑢 d𝑣

dS = 𝜕x
𝜕𝑢 × 𝜕x

𝜕𝑣 d𝑢 d𝑣 = n̂ d𝑆

So for instance the area of 𝑆 is given by

∫
𝑆
d𝑆 =∬

𝐷

|||
𝜕x
𝜕𝑢 ×

𝜕x
𝜕𝑣
||| d𝑢 d𝑣

As an example, consider the hemisphere of radius 𝑅.

𝑆 = {x = x(𝜃, 𝜙) = (
𝑅 sin 𝜃 cos𝜙
𝑅 sin 𝜃 sin𝜙
𝑅 cos 𝜃

) = 𝑅e𝑟 ∶ 0 ≤ 𝜃 ≤ 𝜋
2 , 0 ≤ 𝜙 ≤ 2𝜋}

So

𝜕x
𝜕𝜃 = (

𝑅 cos 𝜃 cos𝜙
𝑅 cos 𝜃 sin𝜙
−𝑅 sin 𝜃

) = 𝑅e𝜃

𝜕x
𝜕𝜙 = (

−𝑅 sin 𝜃 sin𝜙
𝑅 sin 𝜃 cos𝜙

0
) = 𝑅 sin 𝜃e𝜙

Hence
d𝑆 = 𝑅2 sin 𝜃 ||e𝜃 × e𝜙|| d𝜃 d𝜙 = 𝑅2 sin 𝜃 d𝜃 d𝜙

So the surface area of the hemisphere is

∫
𝜋
2

𝜃=0
d𝜃∫

2𝜋

𝜙=0
d𝜙 𝑅2 sin 𝜃 = 2𝜋𝑅2

Here is another example. Suppose the velocity of a fluid is u(x). Given a surface 𝑆, we might like to
calculate howmuch fluid passes through it per unit time. On a small patch 𝛿𝑆 on 𝑆, the fluid passing
through the small patch would be (𝑢 ⋅ 𝛿S) 𝛿𝑡 in time 𝛿𝑡, where 𝛿S is the normal direction to the area
𝛿𝑆. Over the whole surface, the amount that passes over 𝑆 in 𝛿𝑡 is

𝛿𝑡∫
𝑆
u ⋅ dS

This kind of integral is called a ‘flux integral’.

28



5.3 Choice of parametrisation of surfaces
Let x = x(𝑢, 𝑣) and x = x̃(�̃�, ̃𝑣) be two different parametrisations of 𝑆 with (𝑢, 𝑣) ∈ 𝐷 and (�̃�, ̃𝑣) ∈ 𝐷′.
Since every coordinate in 𝑆 has a pre-image in both 𝐷 and 𝐷′, there must be a relationship

x(𝑢, 𝑣) = x̃(�̃�(𝑢, 𝑣), ̃𝑣(𝑢, 𝑣))

By the chain rule,

𝜕x
𝜕𝑢 × 𝜕x

𝜕𝑣 = (𝜕x̃𝜕�̃�
𝜕�̃�
𝜕𝑢 + 𝜕x̃

𝜕 ̃𝑣
𝜕 ̃𝑣
𝜕𝑢) × (𝜕x̃𝜕�̃�

𝜕�̃�
𝜕𝑣 +

𝜕x̃
𝜕 ̃𝑣

𝜕 ̃𝑣
𝜕𝑣)

= (𝜕�̃�𝜕𝑢
𝜕 ̃𝑣
𝜕𝑣 −

𝜕�̃�
𝜕𝑣

𝜕 ̃𝑣
𝜕𝑢) (

𝜕x̃
𝜕�̃� ×

𝜕x̃
𝜕 ̃𝑣 )

= 𝜕(�̃�, ̃𝑣)
𝜕(𝑢, 𝑣) (

𝜕x̃
𝜕�̃� ×

𝜕x̃
𝜕 ̃𝑣 )

Hence,

∫
𝑆
𝑓 d𝑆 =∬

�̃�
𝑓(x̃(�̃�, ̃𝑣)) |||

𝜕x̃
𝜕�̃� ×

𝜕x̃
𝜕 ̃𝑣
||| d ̃𝑢 d ̃𝑣

=∬
𝐷
𝑓(x(𝑢, 𝑣)) |||

𝜕x̃
𝜕�̃� ×

𝜕x̃
𝜕 ̃𝑣
|||
|||
𝜕(�̃�, ̃𝑣)
𝜕(𝑢, 𝑣)

||| d𝑢 d𝑣

=∬
𝐷
𝑓(x(𝑢, 𝑣)) |||

𝜕x
𝜕𝑢 × 𝜕x

𝜕𝑣
||| d𝑢 d𝑣

So the result of the integral over the surface is independent of the choice of parametrisation.

6 Differential operators
6.1 Divergence, curl, and Laplacian
Recall the gradient operator ∇, which is defined in Cartesian coordinates as

∇ = e𝑖
𝜕
𝜕𝑥𝑖

For a vector field F∶ ℝ3 → ℝ3, we define the divergence of F by

∇ ⋅ F

In Cartesian coordinates,
∇ ⋅ F = (e𝑖

𝜕
𝜕𝑥𝑖

) ⋅ (𝐹𝑗e𝑗) =
𝜕𝐹𝑖
𝜕𝑥𝑖

Note that the divergence of a vector field is a scalar field. We define the curl of F to be

∇ × F

In Cartesian coordinates,

∇ × F = (e𝑗
𝜕
𝜕𝑥𝑗

) × (𝐹𝑘e𝑘) = 𝑒𝑗 × [ 𝜕
𝜕𝑥𝑗

(𝐹𝑘e𝑘)] = (e𝑗 × e𝑘)
𝜕𝐹𝑘
𝜕𝑥𝑗

= 𝜀𝑖𝑗𝑘
𝜕𝐹𝑘
𝜕𝑥𝑗

e𝑖
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Hence (just in Cartesian coordinates):

[∇ × F]𝑖 = 𝜀𝑖𝑗𝑘
𝜕𝐹𝑘
𝜕𝑥𝑗

The curl of a vector field is another vector field. In terms of a ‘formal’ determinant, we canwrite

∇ × F = det(
e1 e2 e3

𝜕/𝜕𝑥1 𝜕/𝜕𝑥2 𝜕/𝜕𝑥2
𝐹1 𝐹2 𝐹3

)

We cannot trivially generalise the curl operator to spaces that do not have three spatial dimensions.
Finally, we define the Laplacian of a scalar field 𝑓∶ ℝ3 → ℝ as

∇2𝑓 ≔ ∇ ⋅ ∇𝑓

In Cartesian coordinates, [∇𝑓]𝑖 = 𝜕𝑓/𝜕𝑥𝑖 , so

∇2𝑓 = 𝜕2𝑓
𝜕𝑥𝑖𝜕𝑥𝑖

6.2 Explanation of divergence and curl
Consider

F(x) = x
Using Cartesian coordinates,

∇ ⋅ F = 𝜕
𝜕𝑥𝑖

𝑥𝑖 = 𝛿𝑖𝑖 = 3

[∇ × F]𝑖 = 𝜀𝑖𝑗𝑘
𝜕
𝜕𝑥𝑗

𝑥𝑘 = 𝜀𝑖𝑗𝑘𝛿𝑘𝑗 = 𝜀𝑖𝑗𝑗 = 0

A positive divergence at a point indicates that the vector field is generally pointing away from that
point. If thought of as a fluid, the point acts as a ‘source’ of fluid. A negative divergence indicates
that the vector field is pointing towards that point, so it acts like a ‘sink’. If a vector field has zero
divergence, it can be thought of as representing the velocity of an incompressible fluid. The curl
measures the local rotation of the vector field (or the related ‘fluid’) in a given direction. If the vector
field was going anticlockwise in the e1-e2 plane, then the component of the curl in the e3 direction
would be positive. If there is no local rotation, then the component is zero.

6.3 Identities

Proposition. For 𝑓, 𝑔 scalar fields, F,G vector fields, the following identities hold.
• ∇(𝑓𝑔) = (∇𝑓)𝑔 + (∇𝑔)𝑓
• ∇ ⋅ (𝑓F) = (∇𝑓) ⋅ F + (∇ ⋅ F)𝑓
• ∇ × (𝑓F) = (∇𝑓) × F + (∇ × F)𝑓
• ∇(F ⋅ G) = F × (∇ × G) + G × (∇ × F) + (F ⋅ ∇)G + (G ⋅ ∇)F
• ∇ × (F × G) = F(∇ ⋅ G) − G(∇ ⋅ F) + (G ⋅ ∇)F − (F ⋅ ∇)G
• ∇ ⋅ (F × G) = (∇ × F) ⋅ G − F ⋅ (∇ × G)
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Note, for example, that we can compute the dot product between vector fields and operators:

[(F ⋅ ∇)G]𝑖 = (𝐹𝑗
𝜕
𝜕𝑥𝑗

)𝐺𝑖 = 𝐹𝑗
𝜕𝐺𝑖
𝜕𝑥𝑗

Specifically, F⋅∇ is a differential operator, and∇⋅F is a scalar field; they are not the same thing.

Proof. We will only prove the fifth one for now, as all the proofs are similar. The identities hold in
any coordinate system, so we will choose the Cartesian coordinate system since the basis vectors are
the same everywhere.

[∇ × (F × G)]𝑖 = 𝜀𝑖𝑗𝑘
𝜕
𝜕𝑥𝑗

(F × G)𝑘

= 𝜀𝑖𝑗𝑘
𝜕
𝜕𝑥𝑗

𝜀𝑘𝑙𝑚𝐹 𝑙𝐺𝑚

= 𝜀𝑖𝑗𝑘𝜀𝑘𝑙𝑚
𝜕
𝜕𝑥𝑗

𝐹 𝑙𝐺𝑚

= 𝜀𝑖𝑗𝑘𝜀𝑘𝑙𝑚 (𝐹 𝑙
𝜕𝐺𝑚
𝜕𝑥𝑗

+ 𝐺𝑙
𝜕𝐹 𝑙
𝜕𝑥𝑗

)

= (𝛿𝑖𝑙𝛿𝑗𝑚 − 𝛿𝑖𝑚𝛿𝑗𝑙) (𝐹 𝑙
𝜕𝐺𝑚
𝜕𝑥𝑗

+ 𝐺𝑙
𝜕𝐹 𝑙
𝜕𝑥𝑗

)

= 𝐹𝑖
𝜕𝐺𝑗
𝜕𝑥𝑗

− 𝐹𝑗
𝜕𝐺𝑖
𝜕𝑥𝑗

+ 𝐺𝑗
𝜕𝐹𝑖
𝜕𝑥𝑗

− 𝐺𝑖
𝜕𝐹𝑗
𝜕𝑥𝑗

= [F(∇ ⋅ G)]𝑖 − [(F ⋅ ∇)G]𝑖 + [(G ⋅ ∇)F]𝑖 − [(∇ ⋅ F)G]𝑖

6.4 Definitions in orthogonal curvilinear coordinate systems
For a general set of orthogonal curvilinear coordinates, divergence is defined by

∇ ⋅ F = (e𝑢
1
ℎ𝑢

𝜕
𝜕𝑢 + e𝑣

1
ℎ𝑣

𝜕
𝜕𝑣 + e𝑤

1
ℎ𝑤

𝜕
𝜕𝑤) ⋅ (𝐹𝑢e𝑢 + 𝐹𝑣e𝑣 + 𝐹𝑤e𝑤)

We would get terms like

(e𝑢
1
ℎ𝑢

𝜕
𝜕𝑢) ⋅ (𝐹𝑣e𝑣) =

1
ℎ𝑢
e𝑢 ⋅ [

𝜕
𝜕𝑢(𝐹𝑣e𝑣)]

= 1
ℎ𝑢
e𝑢 ⋅ [

𝜕𝐹𝑣
𝜕𝑢 e𝑣 +

𝜕e𝑣
𝜕𝑢 𝐹𝑣]

= 𝐹𝑣
ℎ𝑢

(e𝑢 ⋅
𝜕e𝑣
𝜕𝑢 )

We can combine all such terms and then derive that

∇ ⋅ F = 1
ℎ𝑢ℎ𝑣ℎ𝑤

[ 𝜕𝜕𝑢(ℎ𝑣ℎ𝑤𝐹𝑢) +
𝜕
𝜕𝑣 (ℎ𝑢ℎ𝑤𝐹𝑣) +

𝜕
𝜕𝑤(ℎ𝑢ℎ𝑣𝐹𝑤)]

∇ × F = 1
ℎ𝑢ℎ𝑣ℎ𝑤

|
|
|
|

ℎ𝑢e𝑢 ℎ𝑣e𝑣 ℎ𝑤e𝑤
𝜕/𝜕𝑢 𝜕/𝜕𝑣 𝜕/𝜕𝑤
ℎ𝑢𝐹𝑢 ℎ𝑣𝐹𝑣 ℎ𝑤𝐹𝑤

|
|
|
|
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∇2𝑓 = 1
ℎ𝑢ℎ𝑣ℎ𝑤

[ 𝜕𝜕𝑢 (
ℎ𝑣ℎ𝑤
ℎ𝑢

𝜕𝑓
𝜕𝑢) +

𝜕
𝜕𝑣 (

ℎ𝑢ℎ𝑤
ℎ𝑣

𝜕𝑓
𝜕𝑣 ) +

𝜕
𝜕𝑤 (ℎ𝑢ℎ𝑣ℎ𝑤

𝜕𝑓
𝜕𝑤)]

For cylindrical polar coordinates (𝜌, 𝜙, 𝑧), we have (ℎ𝜌, ℎ𝜙, ℎ𝑧) = (1, 𝜌, 1) and hence

∇ ⋅ F = 1
𝜌
𝜕
𝜕𝜌(𝜌𝐹𝜌) +

1
𝜌
𝜕𝐹𝜙
𝜕𝜙 + 𝜕𝐹𝑧

𝜕𝑧

∇ × F = 1
𝜌
|
|
|
|

e𝜌 𝜌e𝜙 e𝑧
𝜕/𝜕𝜌 𝜕/𝜕𝜙 𝜕/𝜕𝑧
𝐹𝜌 𝜌𝐹𝜙 𝐹𝑧

|
|
|
|

∇2𝑓 = 1
𝜌
𝜕
𝜕𝜌 (𝜌

𝜕𝑓
𝜕𝜌) +

1
𝜌2
𝜕2𝑓
𝜕𝜙2 +

𝜕2𝑓
𝜕𝑧2

For spherical polar coordinates (𝑟, 𝜃, 𝜙), we have (ℎ𝑟, ℎ𝜃, ℎ𝜙) = (1, 𝑟, 𝑟 sin 𝜃) and hence

∇ ⋅ F = 1
𝑟2

𝜕
𝜕𝑟(𝑟

2𝐹𝑟) +
1

𝑟 sin 𝜃
𝜕
𝜕𝜃 (sin 𝜃 𝐹𝜃) +

1
𝑟 sin 𝜃

𝜕𝐹𝜙
𝜕𝜙

∇ × F = 1
𝑟2 sin 𝜃

|
|
|
|

e𝑟 𝑟e𝜃 𝑟 sin 𝜃 e𝜙
𝜕/𝜕𝑟 𝜕/𝜕𝜃 𝜕/𝜕𝜙
𝐹𝑟 𝑟𝐹𝜃 𝑟 sin 𝜃 𝐹𝜙

|
|
|
|

∇2𝑓 = 1
𝑟2

𝜕
𝜕𝑟 (𝑟

2 𝜕𝑓
𝜕𝑟 ) +

1
𝑟2 sin 𝜃

𝜕
𝜕𝜃 (sin 𝜃

𝜕𝑓
𝜕𝜃 ) +

1
𝑟2 sin2 𝜃

𝜕2𝑓
𝜕𝜙2

6.5 Laplacian of a vector field
The Laplacian of a vector field might be expected to be something like ∇ ⋅ (∇F). However, we have
not defined the gradient of a vector field. In Cartesian coordinates, it would make sense that

∇2F = ∇2(𝐹𝑖e𝑖) = (∇2𝐹𝑖)e𝑖 (†)

If this is the case, we can show then that, in Cartesian coordinates,

∇2F = ∇(∇ ⋅ F) − ∇ × (∇ × F)

In other words, in Cartesian coordinates,

[∇2F]𝑖 =
𝜕2𝐹𝑖
𝜕𝑥𝑗𝜕𝑥𝑗

= ∇2(𝐹𝑖)

Since the right hand side of (†) is well-defined in any orthogonal curvilinear coordinate system, we
will use it as a definition.

6.6 Relations between differential operators

Proposition. For a scalar field 𝑓 and a vector field F,

∇ ×∇𝑓 = 0
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and
∇ ⋅ ∇ × F = 0

In other words, curl ∘ grad gives zero, and div ∘ curl gives zero.

Proof. We will use Cartesian coordinates for simplicity.

[∇ × ∇𝑓]𝑖 = 𝜀𝑖𝑗𝑘
𝜕
𝜕𝑥𝑗

( 𝜕𝑓𝜕𝑥𝑘
)

= 𝜀𝑖𝑗𝑘
𝜕2𝑓

𝜕𝑥𝑗𝜕𝑥𝑘

𝜀𝑖𝑗𝑘 is antisymmetric in 𝑗 and 𝑘, but
𝜕2𝑓

𝜕𝑥𝑗𝜕𝑥𝑘
is symmetric in 𝑗 and 𝑘. Hence the result is zero. Further,

∇ ⋅ ∇ × F = 𝜕
𝜕𝑥𝑖

𝜀𝑖𝑗𝑘
𝜕
𝜕𝑥𝑗

𝐹𝑘

= 𝜀𝑖𝑗𝑘
𝜕2𝐹𝑘
𝜕𝑥𝑖𝜕𝑥𝑗

Once again the 𝜀 term is antisymmetric and the partial derivative is symmetric, so the result follows.

6.7 Irrotational and solenoidal forces
As a short aside, ‘simply connected’means that any loop in a space can be ‘shrunk’ to any pointwithin
that space. It can also be referred to as ‘1-connected’ since the loop is a one-dimensional manifold.
For example, ℝ3 is 1-connected, but ℝ3 with the 𝑧-axis removed is not 1-connected; a loop around
this axis cannot be shrunk to a point away from the axis.

We can write that a space is ‘2-connected’ if it is 1-connected and any 2-manifold (surface) can be
shrunk to any point within the space. Certainly ℝ3 is 2-connected, but for example ℝ3 without the
origin is not 2-connected. The space is certainly 1-connected, but it is not 2-connected because a
surface around the origin cannot be shrunk to a point away from the origin.

Recall that F is conservative if we can write F = ∇𝑓. We say that F is irrotational if∇×F = 0. Hence,
any conservative function is irrotational. The converse is true if the domain of F is 1-connected. We
say that F is solenoidal if ∇ ⋅ F = 0. If there exists a vector potential A for F, i.e. F = ∇ × A, then F
is solenoidal. The converse is true if the domain of F is 2-connected.

7 Integral theorems
7.1 Green’s theorem

Proposition. If 𝑃 = 𝑃(𝑥, 𝑦) and 𝑄 = 𝑄(𝑥, 𝑦) are continuously differentiable on a planar
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domain 𝐴 ∪ 𝜕𝐴 (𝐴 and its boundary), and 𝜕𝐴 is piecewise smooth, then

∮
𝜕𝐴

𝑃 d𝑥 + 𝑄 d𝑦 =∬
𝐴
(𝜕𝑄𝜕𝑥 − 𝜕𝑃

𝜕𝑦 ) d𝑥 d𝑦

where the orientation of 𝜕𝐴 is such that 𝐴 lies to the left while traversing 𝜕𝐴.

Note that it is easy to arrive at this result for a rectangle. In this case,

∬
𝐴
(𝜕𝑄𝜕𝑥 − 𝜕𝑃

𝜕𝑦 ) d𝑥 d𝑦 = ∫
𝑑

𝑐
d𝑦∫

𝑏

𝑎
d𝑥 𝜕𝑄𝜕𝑥 −∫

𝑏

𝑎
d𝑥∫

𝑑

𝑥
d𝑦 𝜕𝑃𝜕𝑦

= ∫
𝑑

𝑐
[𝑄(𝑏, 𝑦) − 𝑄(𝑎, 𝑦)] d𝑦 +∫

𝑏

𝑎
[𝑃(𝑥, 𝑐) − 𝑃(𝑥, 𝑑)] d𝑥

= ∮
𝜕𝐴

𝑃 d𝑥 + 𝑄 d𝑦

It then intuitively follows that we can approximate a surface with a set of small rectangles, and then
the theorem should hold. As an example, let

𝑃 = −12𝑦; 𝑄 = 1
2𝑥

Then the area of some region is given by

∬
𝐴
d𝑥 d𝑦 =∬

𝐴
(12 +

1
2) d𝑥 d𝑦

=∬
𝐴
(𝜕𝑄𝜕𝑥 − 𝜕𝑃

𝜕𝑦 ) d𝑥 d𝑦

= 1
2 ∮𝜕𝐴

𝑥 d𝑦 − 𝑦 d𝑥

So letting 𝐴 be the ellipse 𝑥2

𝑎2
+ 𝑦2

𝑏2
≤ 1, we can parametrise 𝜕𝐴 by

[0, 2𝜋] ∋ 𝑡 ↦ (𝑎 cos 𝑡𝑏 sin 𝑡)

Hence the area is
1
2 ∫

2𝜋

0
(𝑎𝑏 cos2 𝑡 + 𝑎𝑏 sin2 𝑡) d𝑡 = 𝜋𝑎𝑏

7.2 Stokes’ theorem

Proposition. IfF(x) is a continuously differentiable vector field, and 𝑆 is an orientable, piece-
wise regular surface with a piecewise smooth boundary 𝜕𝑆, then

∫
𝑆
(∇ × F) ⋅ dS = ∮

𝜕𝑆
F ⋅ dx
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This can be thought of as a generalisation to the fundamental theorem of calculus. From the funda-
mental theorem, we know that the integral of a differentiated function over an interval 𝐼 is just the
original function evaluated at the boundary 𝜕𝐼. Likewise, Stokes’ theorem states that the integral of
the curl of a function (just another differential operator) over a surface 𝑆 is just the original function
evaluated at the boundary of the surface 𝜕𝑆. In the one-dimensional fundamental theorem of cal-
culus, we say that the function ‘evaluated over the boundary’ is simply the function applied to the
final point, minus the function applied to the initial point; we are in some sense considering every
point on the boundary 𝜕𝐼. But in the case of 𝜕𝑆 being a curve, we must integrate around the curve
boundary, since without an integral we can’t consider infinitely many boundary points.

Note that for a surface to be ‘orientable’, it simplymeans that it has two sides, an inside and an outside.
There must be a consistent choice of normal at each point. For example, a sphere is orientable, but a
Möbius strip is not orientable.

Example. Let 𝑆 be a cap of a sphere:

𝑆 = {x(𝜃, 𝜙) = (
sin 𝜃 cos𝜙
sin 𝜃 sin𝜙
cos 𝜃

) ≡ e𝑟; 0 ≤ 𝜃 ≤ 𝛼; 0 ≤ 𝜙 < 2𝜋}

Now, let

F(x) = (
−𝑥2𝑦
0
0

) ⟹ ∇× F = (
0
0
𝑥2
)

On 𝑆,
dS = dx

d𝜃 ×
dx
d𝜙 d𝜃 d𝜙 = e𝑟 sin 𝜃 d𝜃 d𝜙

Note that since
𝑥2e𝑧 ⋅ e𝑟 = (sin 𝜃 cos𝜙)2 cos 𝜃

on 𝑆, we can compute

∫
𝑆
(∇ × F) ⋅ dS = ∫

2𝜋

𝜙=0
(∫

𝛼

𝜃=0
(sin 𝜃 cos𝜙)2 cos 𝜃 sin 𝜃 d𝜃) d𝜙 = 𝜋

4 sin
4 𝛼

Wecan instead compute the integral over the boundary. By Stokes’ theorem, the results shouldmatch.
𝜕𝑆 is described by

[0, 2𝜋] ∋ 𝑡 ↦ (
sin𝛼 cos 𝑡
sin𝛼 sin 𝑡
cos𝛼

)

Then

dx = dx
d𝑡 d𝑡 = sin𝛼(

− sin 𝑡
cos 𝑡
0

) d𝑡

We can show that

∮
𝜕𝑆
F ⋅ dS = sin4 𝛼∫

2𝜋

0
(− cos2 𝑡 sin 𝑡) (− sin 𝑡) d𝑡 = 𝜋

4 sin
4 𝛼
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7.3 Stokes’ theorem on closed surfaces
If 𝑆 is an orientable, closed surface, and F is continuously differentiable, then

∫
𝑆
(∇ × F) ⋅ dS = 0

This is clear since 𝜕𝑆 = ∅.

7.4 Zero circulation and irrotationality

Proposition. If F is continuously differentiable, and for every loop 𝐶 we have that

∮
𝐶
F ⋅ dx = 0

then ∇ × F = 0. In other words, F is irrotational if and only if F has zero circulation around
all closed loops.

Note that the backward implication is trivial. If F has zero circulation around all loops, we can define
that loop to be the boundary of some surface, and so the integral of the curl vanishes.

Proof. Suppose that the result is false; there exists a unit vector k̂ such that k̂ ⋅ (∇ × F(x0)) = 𝜀 > 0
for some x0. By continuity, for a sufficiently small 𝛿 > 0,

k̂ ⋅ (∇ × F(x0)) >
1
2𝜀; for |x − x0| < 𝛿

Now, we can take a loop in this ball {x∶ |x − x0| < 𝛿} that lies entirely in a plane with normal k̂. Let
this small loop’s enclosed surface be 𝑆, with boundary 𝜕𝑆. Then

0 = ∮
𝜕𝑆
F ⋅ dx = ∫

𝑆
∇ × F ⋅ k̂ d𝑆 > 1

2𝜀∫ d𝑆 > 0

which is a contradiction.

7.5 Intuition for curl as infinitesimal circulation
Let 𝑆𝜀 denote a region contained inside a disc of radius 𝜀 > 0, centred at x0 with normal k̂.

∫
𝑆𝜀
∇ × F ⋅ dS = ∫

𝑆𝜀
(∇ × F(x) − ∇ × F(x0)) ⋅ dS +∫

𝑆𝜀
∇ × F(x0) ⋅ k̂ d𝑆

= ∫
𝑆𝜀
(∇ × F(x) − ∇ × F(x0)) ⋅ dS

⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟
𝑜(area(𝑆𝜀))

+∇ × F(x0) ⋅ k̂ ∫
𝑆𝜀
d𝑆

⏟⎵⏟⎵⏟
area(𝑆𝜀)

As 𝜀 shrinks, the first integral tends to zero faster than the second term. Hence,

∫
𝑆𝜀
∇ × F ⋅ dS = ∇ × F(x0) ⋅ k̂ ⋅ area(𝑆𝜀) + 𝑜(area(𝑆𝜀))
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We can then see, by Stokes’ theorem, that

∇ × F(x0) ⋅ k̂ = lim
𝜀→0

1
area(𝑆𝜀)

∮
𝜕𝑆𝜀

F ⋅ dx

So the curl of F at x0 in the direction k̂ is the infinitesimal circulation around x0, per unit area.

7.6 Gauss’ divergence theorem

Proposition. If F(x) is a continuously differentiable vector field, and 𝑉 is a volume with a
piecewise regular boundary 𝜕𝑉 , then

∫
𝑉
∇ ⋅ F d𝑉 = ∫

𝜕𝑉
F ⋅ dS

where the normal of 𝜕𝑉 points out of 𝑉 .

There is also a two-dimensional version. If 𝐷 is a planar region with a piecewise smooth boundary
𝜕𝐷,

∫
𝐷
∇ ⋅ F d𝐴 = ∮

𝜕𝐷
F ⋅ n d𝑠

where the d𝑠 represents arc length, and where n points out of 𝐷.
Example. Let 𝑉 be a cylinder, defined in cylindrical polar coordinates (𝜌, 𝜙, 𝑧) as

𝑉 = {(𝜌, 𝜙, 𝑧)∶ 0 ≤ 𝜌 ≤ 𝑅,−ℎ ≤ 𝑧 ≤ ℎ, 0 ≤ 𝜙 < 2𝜋}

Let us label the boundary on the top 𝑆+, the boundary on the bottom 𝑆−, and the rest of the boundary
𝑆𝑅:

𝑆± = {(𝜌, 𝜙, 𝑧)∶ 0 ≤ 𝜌 ≤ 𝑅, 𝑧 = ±ℎ, 0 ≤ 𝜙 < 2𝜋}
𝑆𝑅 = {(𝜌, 𝜙, 𝑧)∶ 𝜌 = 𝑅,−ℎ ≤ 𝑧 ≤ ℎ, 0 ≤ 𝜙 < 2𝜋}

Consider F(x) = x, hence ∇ ⋅ F = 3.

∫
𝑉
∇ ⋅ F d𝑉 = 3∫

𝑉
d𝑉 = 6𝜋𝑅2ℎ

Using instead the divergence theorem,

∫
𝑉
∇ ⋅ F d𝑉 = ∫

𝜕𝑉
F ⋅ dS

On 𝑆𝑅, dS = e𝜌𝑅 d𝜙 d𝑧, and x ⋅ e𝜌 = 𝑅. So we have the flux integral

∫
𝑆𝑅
F ⋅ dS = ∫

ℎ

𝑧=−ℎ
∫

2𝜋

𝜙=0
𝑅2 d𝜙 d𝑧 = 4𝜋𝑅2ℎ
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On 𝑆±, dS = ±e𝑧𝜌 d𝜌 d𝜙, and x ⋅ e𝑧 = ±ℎ. Hence

∫
𝑆±
F ⋅ dS = ∫

2𝜋

𝜙=0
∫

𝑅

𝜌=0
ℎ𝜌 d𝜌 d𝜙 = 𝜋𝑅2ℎ

The total is 6𝜋𝑅2ℎ as expected.

Proposition. If F is continuously differentiable, and for every closed surface 𝑆 we have

∫
𝑆
F ⋅ dS = 0

then ∇ ⋅ F = 0.

Proof. Suppose that the result is false; ∇ ⋅ F(x0) = 𝜀 > 0. By continuity, for some sufficiently small
𝛿 > 0 we have

∇ ⋅ F(x) > 1
2𝜀 for |x0 − x| < 𝛿

Now, we can choose a volume 𝑉 inside the ball |x0 − x| < 𝛿, and then by assumption, applying the
divergence theorem,

0 = ∫
𝜕𝑉

F ⋅ dS = ∫
𝑉
∇ ⋅ F d𝑉 > 0

which is a contradiction. We then conclude that if the vector field has zero net flux through any
closed surface, it is solenoidal.

7.7 Intuition for divergence as infinitesimal flux
Let 𝑉𝜀 be a volume in ℝ3, contained inside a ball of radius 𝜀 > 0, centred at a point x0. Then

∫
𝑉𝜀
∇ ⋅ F d𝑉 = vol(𝑉𝜀)∇ ⋅ F(x0) + ∫

𝑉𝜀
[∇ ⋅ F(x) − ∇ ⋅ F(x0)] d𝑉

⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟
𝑜(vol(𝑉𝜀))

Dividing both sides by the volume of 𝑉𝜀, and taking 𝜀 → 0, we can apply the divergence theorem to
get

∇ ⋅ F(x0) = lim
𝜀→0

1
vol(𝑉𝜀)

∫
𝜕𝑉𝜀

F ⋅ dS

The divergence of Fmeasures the infinitesimal flux per unit volume. If the flux is moving ‘outward’
at this point, ∇ ⋅ F > 0, and vice versa.

7.8 Conservation laws
Many equations in mathematical physics can be represented using density 𝜌(x, 𝑡) and a vector field
J(x, 𝑡), as follows.

𝜕𝜌
𝜕𝑡 + ∇ ⋅ J = 0 (†)
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This kind of equation is called a ‘conservation law’. Suppose both 𝜌 and |J| decrease rapidly as |x| →
∞. We will define the charge 𝑄 by

𝑄 = ∫
ℝ3
𝜌(x, 𝑡) d𝑉

We have conservation of charge;

d𝑄
d𝑡 = ∫

ℝ3

𝜕𝜌
𝜕𝑡 d𝑉

= −∫
ℝ3
∇ ⋅ J d𝑉

= − lim
𝑅→∞

∫
|x|≤𝑅

∇ ⋅ J d𝑉

= − lim
𝑅→∞

∫
|x|=𝑅

J ⋅ dS

= 0

as J decreases rapidly to zero as |x| → ∞. So (†) gives conservation of charge.

7.9 Proof of divergence theorem
Proof. Suppose first that

F = 𝐹𝑧(𝑥, 𝑦, 𝑧)e𝑧
The divergence theorem states that

∫
𝑉

𝜕𝐹𝑧
𝜕𝑧⏟
∇⋅F

d𝑉 = ∫
𝜕𝑉

𝐹𝑧e𝑧 ⋅ dS (†)

Wewould like to show that these two are really the same. First, let us simplify the problem to a convex
volume 𝑉 , such that we can split the boundary into two halves, one with normals in the positive 𝑧
direction (𝑆+) and one with normals in the negative 𝑧 direction (𝑆−). Then 𝜕𝑉 = 𝑆+ ∪ 𝑆−. Project
the volume into the 𝑥-𝑦 plane, and call this region 𝐴. This planar region is then the shape of the ‘cut’
between the 𝑆+ and 𝑆− halves. We can write

𝑆± = {x(𝑥, 𝑦) = (
𝑥
𝑦

𝑔±(𝑥, 𝑦)
) ∶ (𝑥, 𝑦) ∈ 𝐴}

We can then say

∫
𝑉

𝜕𝐹𝑧
𝜕𝑧 d𝑉 =∬

𝐴
[∫

𝑔+(𝑥,𝑦)

𝑧=𝑔−(𝑥,𝑦)

𝜕𝐹𝑧
𝜕𝑧 d𝑧] d𝑥 d𝑦

=∬
𝐴
[𝐹𝑧(𝑥, 𝑦, 𝑔+(𝑥, 𝑦)) − 𝐹𝑧(𝑥, 𝑦, 𝑔−(𝑥, 𝑦))] d𝑥 d𝑦
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To calculate right hand side of (†), we need dS:

dS = 𝜕x
𝜕𝑥 × 𝜕x

𝜕𝑦 d𝑥 d𝑦

= (
− 𝜕𝑔±/𝜕𝑥
− 𝜕𝑔±/𝜕𝑦

1
) d𝑥 d𝑦

Since we want the normal to point ‘out’ of 𝑉 , on 𝑆± we have

dS |||𝑆±
= ±(

− 𝜕𝑔±/𝜕𝑥
− 𝜕𝑔±/𝜕𝑦

1
) d𝑥 d𝑦

Therefore,

∫
𝜕𝑉

F ⋅ dS = [∫
𝑆+
+∫

𝑆−
] 𝐹𝑧e𝑧 ⋅ dS

=∬
𝐴
𝐹𝑧(𝑥, 𝑦, 𝑔+(𝑥, 𝑦)) d𝑥 d𝑦 −∬

𝐴
𝐹𝑧(𝑥, 𝑦, 𝑔−(𝑥, 𝑦)) d𝑥 d𝑦

which matches the expression we found for the left hand side of (†) above. In the same way, we can
show that

∫
𝑉

𝜕𝐹𝑥
𝜕𝑥 d𝑉 = ∫

𝜕𝑉
𝐹𝑥e𝑥 ⋅ dS

∫
𝑉

𝜕𝐹𝑦
𝜕𝑦 d𝑉 = ∫

𝜕𝑉
𝐹𝑦e𝑦 ⋅ dS

and because the integrals are linear, we can compute their sum to find

∫
𝑉
∇ ⋅ F d𝑉 = ∫

𝜕𝑉
F ⋅ dS

which is exactly the divergence theorem.

7.10 Proof of Green’s theorem
We can use the two-dimensional divergence theorem to prove Green’s theorem.

Proof. Let

F = ( 𝑄(𝑥, 𝑦)−𝑃(𝑥, 𝑦))

Then
∬

𝐴
(𝜕𝑄𝜕𝑥 − 𝜕𝑃

𝜕𝑦 ) d𝑥 d𝑦 = ∫
𝐴
∇ ⋅ F d𝐴 = ∮

𝜕𝐴
F ⋅ n d𝑠

If 𝜕𝐴 is parametrised with respect to arc length, this means that the unit tangent vector is

t = (𝑥
′(𝑠)
𝑦′(𝑠))
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then the normal vector is
n = ( 𝑦

′(𝑠)
−𝑥′(𝑠))

Therefore,

∮
𝜕𝐴

F ⋅ n d𝑠 = ∮
𝜕𝐴

( 𝑄−𝑃) ⋅ (
𝑦′(𝑠)
−𝑥′(𝑠)) d𝑠 = ∮

𝜕𝐴
𝑃d𝑥d𝑠 d𝑠 + 𝑄d𝑦d𝑠 d𝑠 = ∮

𝜕𝐴
𝑃 d𝑥 + 𝑄 d𝑦

7.11 Proof of Stokes’ theorem
We can now use Green’s theorem to derive Stokes’ theorem.

Proof. Consider a regular surface

𝑆 = {x = x(𝑢, 𝑣)∶ (𝑢, 𝑣) ∈ 𝐴}

Then the boundary is
𝜕𝑆 = {x = x(𝑢, 𝑣)∶ (𝑢, 𝑣) ∈ 𝜕𝐴}

Green’s theorem gives
∮
𝜕𝐴

𝑃 d𝑢 + 𝑄 d𝑣 =∬
𝐴
(𝜕𝑄𝜕𝑢 − 𝜕𝑃

𝜕𝑣 ) d𝑢 d𝑣 (†)

We will now set
𝑃(𝑢, 𝑣) = F(x(𝑢, 𝑣)) ⋅ 𝜕x𝜕𝑢 ; 𝑄(𝑢, 𝑣) = F(x(𝑢, 𝑣)) ⋅ 𝜕x𝜕𝑣

Then
𝑃 d𝑢 + 𝑄 d𝑣 = F(x(𝑢, 𝑣)) ⋅ ( 𝜕x𝜕𝑢 d𝑢 +

𝜕
𝜕v d𝑣) = F(x(𝑢, 𝑣)) ⋅ dx(𝑢, 𝑣)

And so we can compute the left hand side of (†):

∮
𝜕𝐴

𝑃 d𝑢 + 𝑄 d𝑣 = ∮
𝜕𝑆
F ⋅ dx

For the right hand side, we must first compute some derivatives.

𝑄 = 𝐹𝑖(x(𝑢, 𝑣))
𝜕𝑥𝑖
𝜕𝑣 ⟹ 𝜕𝑄

𝜕𝑢 =
𝜕𝑥𝑗
𝜕𝑢

𝜕𝐹𝑖
𝜕𝑥𝑗

𝜕𝑥𝑖
𝜕𝑣 + 𝐹𝑖

𝜕2𝑥𝑖
𝜕𝑢𝜕𝑣

𝑃 = 𝐹𝑖(x(𝑢, 𝑣))
𝜕𝑥𝑖
𝜕𝑢 ⟹ 𝜕𝑄

𝜕𝑣 =
𝜕𝑥𝑗
𝜕𝑣

𝜕𝐹𝑖
𝜕𝑥𝑗

𝜕𝑥𝑖
𝜕𝑢 + 𝐹𝑖

𝜕2𝑥𝑖
𝜕𝑣𝜕𝑢
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Hence
𝜕𝑄
𝜕𝑢 − 𝜕𝑃

𝜕𝑣 = (𝜕𝑥𝑖𝜕𝑣
𝜕𝑥𝑗
𝜕𝑢 − 𝜕𝑥𝑖

𝜕𝑢
𝜕𝑥𝑗
𝜕𝑣 )

𝜕𝐹𝑖
𝜕𝑥𝑗

= (𝛿𝑖𝑝𝛿𝑗𝑞 − 𝛿𝑖𝑞𝛿𝑗𝑝)
𝜕𝐹𝑖
𝜕𝑥𝑗

𝜕𝑥𝑝
𝜕𝑣

𝜕𝑥𝑞
𝜕𝑢

= 𝜀𝑖𝑗𝑘𝜀𝑝𝑞𝑘
𝜕𝐹𝑖
𝜕𝑥𝑗

𝜕𝑥𝑝
𝜕𝑣

𝜕𝑥𝑞
𝜕𝑢

= [−∇ × F]𝑘 (−
𝜕x
𝜕𝑢 × 𝜕x

𝜕𝑣)𝑘
= (∇ × F) ⋅ ( 𝜕x𝜕𝑢 × 𝜕x

𝜕𝑣)

Therefore,
∬

𝐴
(𝜕𝑄𝜕𝑢 − 𝜕𝑃

𝜕𝑣 ) d𝑢 d𝑣 =∬
𝐴
(∇ × F) ⋅ ( 𝜕x𝜕𝑢 ×

𝜕x
𝜕𝑣) =∬

𝑆
(∇ × F) ⋅ dS

which gives Stokes’ theorem as required.

8 Maxwell’s equations
8.1 Introduction and the equations
Wewill denote the magnetic field by B(x, 𝑡), and the electric field by E(x, 𝑡). These fields will depend
on the current density J(x, 𝑡), the electric current per unit area, and the charge density 𝜌(x, 𝑡), the
electric charge per unit volume.

∇ ⋅ E = 𝜌
𝜀0

(1)

∇ ⋅ B = 0 (2)

∇ × E + 𝜕B
𝜕𝑡 = 0 (3)

∇ × B − 𝜇0𝜀0
𝜕E
𝜕𝑡 = 𝜇0J (4)

The constants 𝜀0 and 𝜇0 denote the permittivity and permeability of free space, which obey
1

𝜇0𝜀0
= 𝑐2

where 𝑐 is the speed of light, 299 792 458ms−1. Note that if we take the divergence of equation (4),
we find

𝜇0𝜀0
𝜕
𝜕𝑡 (∇ ⋅ E) + 𝜇0∇ ⋅ J = 0

(1) ⟹ 𝜇0𝜀0
𝜕
𝜕𝑡

𝜌
𝜀0
+ 𝜇0∇ ⋅ J = 0

𝜕𝜌
𝜕𝑡 + ∇ ⋅ J = 0

which is a conservation law for charge.
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8.2 Integral formulations of Maxwell’s equations
Integrating (1) over some volume 𝑉 , and applying the divergence theorem, gives

∇ ⋅ E = 𝜌
𝜀0

∫
𝑉
∇ ⋅ E d𝑉 = 1

𝜀0
∫
𝑉
𝜌 d𝑉

∫
𝜕𝑉

E ⋅ dS = 𝑄
𝜀0

where 𝑄 is the total charge in 𝑉 . This is known as Gauss’ law. For magnetic fields, we can integrate
(2):

∫
𝑉
∇ ⋅ B d𝑉 = ∫

𝜕𝑉
B ⋅ dS = 0

Hence there is no net magnetic flux over any closed surface 𝜕𝑉 . This implies that we cannot have a
magnetic fieldwith only a north pole or only a south pole. Integrating (3) over a surface, and applying
Stokes’ theorem, gives

∇ × E + 𝜕B
𝜕𝑡 = 0

∫
𝑆
(∇ × E + 𝜕B

𝜕𝑡 ) ⋅ dS = 0

∮
𝜕𝑆
E ⋅ dx +∫

𝑆

𝜕B
𝜕𝑡 ⋅ dS = 0

∮
𝜕𝑆
E ⋅ dx = − d

d𝑡 ∫𝑆
B ⋅ dS

So a change in the magnetic flux through a surface 𝑆 induces a circulation in E about the boundary.
Integrating (4) over a surface, again using Stokes’ theorem, we have

∫
𝑆
(∇ × B − 𝜇0𝜀0

𝜕E
𝜕𝑡 ) ⋅ dS = ∫

𝑆
𝜇0J ⋅ dS

∮
𝜕𝑆
B ⋅ dx = ∫

𝑆
𝜇0J ⋅ dS +∫

𝑆
𝜇0𝜀0

𝜕E
𝜕𝑡 ⋅ dS

∮
𝜕𝑆
B ⋅ dx = 𝜇0∫

𝑆
J ⋅ dS + 𝜇0𝜀0

d
d𝑡 ∫𝑆

E ⋅ dS

So if an electric current flows through awire, this generates a circulation of themagnetic field around
the wire.
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8.3 Electromagnetic waves
In empty space, 𝜌 = 0 and J = 0. Maxwell’s equations show that

∇ ⋅ E = 0 (1)
∇ ⋅ B = 0 (2)

∇ × E + 𝜕B
𝜕𝑡 = 0 (3)

∇ × B − 𝜇0𝜀0
𝜕E
𝜕𝑡 = 0 (4)

Recall that the Laplacian of a vector field F is

∇2F = ∇(∇ ⋅ F) − ∇ × (∇ × F)

We can deduce that

∇2E = ∇(∇ ⋅ E) − ∇ × (∇ × E)

= ∇(0) − ∇ × (−𝜕B𝜕𝑡 )

= ∇ × (𝜕B𝜕𝑡 )

= d
d𝑡∇ × B

= d
d𝑡𝜇0𝜀0

𝜕E
𝜕𝑡

= 1
𝑐2
𝜕2E
𝜕𝑡2

∴ ∇2E − 1
𝑐2
𝜕2E
𝜕𝑡2 = 0

which is the wave equation for waves travelling at speed 𝑐. Hence, in a vacuum, the electric field
propagates at speed 𝑐. Similarly, for the magnetic field,

∇2B = ∇(∇ ⋅ B) − ∇ × (∇ × B)

= ∇(0) − ∇ × (𝜇0𝜀0
𝜕E
𝜕𝑡 )

= −𝜇0𝜀0
d
d𝑡∇ × E

= 𝜇0𝜀0
d
d𝑡
𝜕B
𝜕𝑡

= 1
𝑐2
𝜕2B
𝜕𝑡2

∴ ∇2B − 1
𝑐2
𝜕2B
𝜕𝑡2 = 0

Hence the magnetic field also propagates at speed 𝑐. So in general, we can say that electromagnetic
waves always travel at speed 𝑐 in a vacuum.
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8.4 Electrostatics and magnetostatics
Suppose that all fields and source terms are independent of 𝑡. Then Maxwell’s equations decouple
into

∇ ⋅ E = 𝜌
𝜀0

(1)

∇ ⋅ B = 0 (2)
∇ × E = 0 (3)
∇ × B = 𝜇0J (4)

which gives one system of equations for E, and one for B. When considering the whole of ℝ3, which
is 2-connected, then equations (2) and (3) imply

E = −∇𝜙; B = ∇ ×A

where 𝜙 is the electric potential, and A is the magnetic potential. Substituting into the other two
equations, we have

(1) ⟹ −∇ ⋅ ∇𝜙 = 𝜌
𝜀0

−∇2𝜙 = 𝜌
𝜀0

and
(4) ⟹ ∇× (∇ ×A) = 𝜇0J

9 Poisson’s and Laplace’s equations
9.1 The boundary value problem
Many problems in mathematical physics can be reduced to the form

∇2𝜙 = 𝐹

This is called Poisson’s equation. In the case that 𝐹 ≡ 0, this is called Laplace’s equation. We are
interested in solving this equation onΩ ⊆ ℝ𝑛 for 𝑛 = 2, 3. This is too general to solve at the moment,
so we will need to supply boundary conditions, which are very common in physical problems. In
other words, 𝜙 will be known on 𝜕Ω, or as |x| → ∞ if Ω = ℝ𝑛. For instance, the Dirichlet problem
is

∇2𝜙 = 𝐹 inside Ω; 𝜙 = 𝑓 on 𝜕Ω
The Neumann problem is

∇2𝜙 = 𝐹 inside Ω; 𝜕𝜙
𝜕n = 𝑔 on 𝜕Ω

where n is the normal to the surface, and 𝜕𝜙
𝜕n

≔ n ⋅∇𝜙. As a further restriction, wemust interpret the
boundary conditions in an ‘appropriate’ manner; we assume that 𝜙 (or 𝜕𝜙

𝜕n
) approaches the behaviour

at the boundary continuously as x→ 𝜕Ω. More precisely, 𝜙 and∇𝜙 are continuous onΩ∪ 𝜕Ω. Note
that if we are solving some equation∇2𝜙 = 0 inΩ, we must be certain that 𝜙 is actually well-defined
on the entire set. As a worked example, consider

∇2𝜙 = 𝑟 inside {𝑟 < 𝑎} ; 𝜙 = 1 on {𝑟 = 𝑎}

45



We might guess that the solution is of the form 𝜙(𝑟). We can use the formula

∇2𝜙 = 1
𝑟2

d
d𝑟 (𝑟

2 d𝜙
d𝑟 )

to get
𝑟3 = d

d𝑟 (𝑟
2 d𝜙
d𝑟 ) inside {𝑟 < 𝑎} ; 𝜙(𝑎) = 1

The general solution to the first part is

𝜙(𝑟) = 𝐴 + 𝐵
𝑟 +

1
12𝑟

3

The 𝐵
𝑟
term is not well-defined inside {𝑟 < 𝑎}, therefore 𝐵 = 0 to eliminate the problematic term. By

the second part, we can solve for 𝐴:

1 = 𝜙(𝑎) = 𝐴 + 1
12𝑎

3 ⟹ 𝐴= 1 − 1
12𝑎

3

Hence the solution is
𝜙(𝑟) = 1 + 1

12 (𝑟
3 − 𝑎3)

9.2 Uniqueness of solutions
When solving Poisson’s or Laplace’s equation, we want to ensure that the solution we find is unique.
If it is unique, then we can apply similar logic to solving differential equations, where we can guess
the form of an equation and then derive the solution from that, and we don’t need to worry about
solutions that do not have this form. Consider a generic linear problem

𝐿𝜙 = 𝐹 in Ω; 𝐵𝜙 = 𝑓 on 𝜕Ω (†)

where 𝐿 and 𝐵 are linear differential operators. If 𝜙1 and 𝜙2 are both solutions to (†), then consider
𝜓 = 𝜙1 − 𝜙2. By linearity,

𝐿𝜓 = 𝐿𝜙1 − 𝐿𝜙2 = 𝐹 − 𝐹 = 0 in Ω
and

𝐵𝜓 = 𝐵𝜙1 − 𝐵𝜙2 = 𝑓 − 𝑓 = 0 on 𝜕Ω
If we can show that the only solution to these new equations is𝜓 = 0, wemust conclude that 𝜙1 = 𝜙2,
which means that there is only one solution to (†). Hence the solution to a linear problem is unique
if and only if the only solution to the homogeneous problem is zero.

Proposition. The solution to the Dirichlet problem is unique. The solution to the Neumann
problem is unique up to the addition of an arbitrary constant.

Proof. Let 𝜓 = 𝜙1 − 𝜙2 be the difference between two solutions. In the Dirichlet case, we want to
show that 𝜓 = 0, and in the Neumann case, we want to show that 𝜓 is an arbitrary constant. We
know that

∇2𝜓 = 0 in Ω; 𝐵𝜓 = 0 on 𝜕Ω
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where 𝐵𝜓 = 𝜓 in the Dirichlet problem, or 𝐵𝜓 = 𝜕𝜓
𝜕n

in the Neumann problem. Consider the non-
negative functional

𝐼[𝜓] = ∫
Ω
|∇𝜓|2 d𝑉 ≥ 0

Clearly,
𝐼[𝜓] = 0 ⟺ ∇𝜓 = 0 everywhere in Ω

Now, note that we can apply the divergence theorem to get

𝐼[𝜓] = ∫
Ω
|∇𝜓|2 d𝑉

= ∫
Ω
∇𝜓 ⋅ ∇𝜓 d𝑉

= ∫
Ω
(∇ ⋅ (𝜓∇𝜓) − 𝜓∇2𝜓) d𝑉

= ∫
Ω
∇ ⋅ (𝜓∇𝜓) d𝑉

= ∫
𝜕Ω

𝜓∇𝜓 ⋅ dS

= ∫
𝜕Ω

𝜓∇𝜓 ⋅ n d𝑆

= ∫
𝜕Ω

𝜓d𝜓dn d𝑆

In the Dirichlet case, 𝐼[𝜓] = 0 since 𝜓 = 0 on the boundary. In the Neumann case, 𝐼[𝜓] = 0 as well,
since d𝜓

dn
= 0. Hence, in either case, ∇𝜓 = 0 everywhere in Ω. Therefore, 𝜓 is a constant throughout

Ω. In the Dirichlet case, we know that 𝜓 = 0 on the boundary, hence 𝜓 = 0 everywhere as it is
continuous. However, in the Neumann problem, no such deduction can be made.

Example. Here is an example from electrostatics. Consider the charge density 𝜌 defined by

𝜌(x) = {0 𝑟 < 𝑎
𝐹(𝑟) 𝑟 ≥ 𝑎

We can show that there is no electric field in the region 𝑟 < 𝑎. We know that the electric potential 𝜙
will satisfy

∇2𝜙 = −𝜌(x)
𝜀0

= 0 if 𝑟 < 𝑎

By symmetry, we will try a 𝜙 of the form 𝜙(𝑟). Hence, 𝜙(𝑎) is constant on the boundary 𝑟 = 𝑎. Note
that the unique solution to

∇2𝜙 = 0 for 𝑟 < 𝑎; 𝜙 = constant on 𝑟 = 𝑎

is exactly that 𝜙 is constant everywhere. Hence

E = −∇𝜓 = 0 throughout 𝑟 < 𝑎

This can be viewed as a version of Newton’s shell theorem.
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9.3 Gauss’ flux method for spherically symmetric sources
Suppose the source term (the 𝐹 on the right hand side of Poisson’s equation) is spherically symmetric,
so 𝐹 is a function of 𝑟 = |x|. Assuming we are trying to solve the equation forΩ = ℝ3, we can rewrite
the problem as

∇ ⋅ ∇𝜙 = 𝐹 (∗)
Since the right hand side only depends on 𝑟, the same is true of the left hand side. So we might guess
a 𝜙 of the form 𝜙(𝑟). In which case, we can compute

∇𝜙 = 𝜙′(𝑟)e𝑟

Using Gauss’ flux method, we will integrate (∗) over some spherical region |x| < 𝑅, and use the
divergence theorem.

∫
|x|<𝑅

∇ ⋅ ∇𝜙 d𝑉 = ∫
|x|=𝑅

∇𝜙 ⋅ dS = ∫
|x|<𝑅

𝐹(𝑟) d𝑉

Thinking of the source term 𝐹 as some kind of density, for instance charge density or mass density,
the right hand side can be thought of as the total amount of charge or mass inside the ball. We will
call this term 𝑄(𝑅).

∫
|x|=𝑅

∇𝜙 ⋅ dS = 𝑄(𝑅)

Recall that on a sphere of radius 𝑅, dS = e𝑟𝑅2 sin 𝜃 d𝜃 d𝜙. Therefore, on the boundary |x| = 𝑅,

∇𝜙 ⋅ dS = 𝜙′(𝑟)e𝑟 ⋅ e𝑟𝑅2 sin 𝜃 d𝜃 d𝜙 = 𝜙′(𝑟)𝑅2 sin 𝜃 d𝜃 d𝜙 = 𝜙′(𝑟) d𝑆

Hence,
𝑄(𝑅) = ∫

|x|=𝑅
𝜙′(𝑟) d𝑆

But 𝜙′(𝑟) is a constant on the surface we are integrating over. Therefore,

𝑄(𝑅) = 𝜙′(𝑅)∫
|x|=𝑅

d𝑆 = 4𝜋𝑅2𝜙′(𝑅)

In summary,
𝜙′(𝑅) = 𝑄(𝑅)

4𝜋𝑅2 ⟹ ∇𝜙 = 𝑄(𝑅)
4𝜋𝑅2 e𝑟

Example. Recall the first of Maxwell’s equations:

∇ ⋅ E = 𝜌
𝜀0

If we are dealing with electrostatics, the curl of E is zero. Hence E = −∇𝜙, so

∇2𝜙 = − 𝜌
𝜀0

Consider a charge density 𝜌 of the form

𝜌(𝑟) = {𝜌0, 0 ≤ 𝑟 ≤ 𝑎
0, 𝑟 > 𝑎
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By the previous result,
𝜙′(𝑟) = 1

4𝜋𝜀0
𝑄(𝑟)
𝑟2

where
𝑄(𝑟) = ∫

|x|≤𝑅
𝜌(𝑟) d𝑉

Note, if 𝑅 > 𝑎 then 𝑄(𝑅) = 𝑄(𝑎), which we will denote 𝑄 for the total charge. Hence, we have the
following solution:

E(x) = {
1

4𝜋𝜀0
𝑄(𝑟)
𝑟2

e𝑟, 𝑟 ≤ 𝑎
1

4𝜋𝜀0
𝑄
𝑟2
e𝑟, 𝑟 > 𝑎

If we take 𝑎 → 0, but keeping 𝑄 fixed, this represents a point charge. Then

E(x) = 1
4𝜋𝜀0

𝑄
𝑟2 e𝑟

In this case, the charge density 𝜌 is
𝜌(x) = 𝑄𝛿(x)

where 𝛿 is the Dirac delta function.

9.4 Cylindrical symmetry
Suppose instead that the source term 𝐹 is cylindrically symmetric, so 𝐹 is a function of 𝜌, the distance
from the 𝑧 axis. Similarly as before, we can guess that 𝜙 is a function only of 𝜌. We can integrate
∇ ⋅ ∇𝜙 = 𝐹(𝜌) over a cylinder 𝑉 of radius 𝑅 and height 𝑎.

∇𝜙 = 𝜙′(𝜌)e𝜌

Hence,
∫
𝑉
∇ ⋅ ∇𝜙 d𝑉 = ∫

𝑉
𝐹(𝜌) d𝑉

The left hand side becomes
∫
𝜕𝑉

∇𝜙 ⋅ dS

On the top circle, the normal n would be in the e𝑧 direction, and on the bottom circle, n would be
in the −e𝑧 direction. On the curved surface, n would be in the e𝜌 direction. Note that since ∇𝜙 only
has a component in the e𝜌 direction, on both the top and bottom circles will provide no contribution
to the final result for this boundary integral. dS = 𝑅 d𝜙 d𝑧 e𝜌, hence

∫
𝜕𝑉

∇𝜙 ⋅ dS = ∫
2𝜋

𝜙=0
∫

𝑧0+𝑎

𝑧=𝑧0
𝜙′(𝑅)𝑅 d𝜙 d𝑧 = 2𝜋∫

𝑧0+𝑎

𝑧=𝑧0
𝜙′(𝑅)𝑅 d𝑧 = 2𝜋𝑎𝑅𝜙′(𝑅)

Substituting into the above equation gives

𝜙′(𝑅) = 1
2𝜋𝑎𝑅 ∫

𝑉
𝐹(𝜌) d𝑉
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Note that the integral ∫𝑉 𝐹(𝜌) d𝑉 is given by

∫
𝑉
𝐹(𝜌) d𝑉 = ∫

2𝜋

𝜙=0
d𝜙∫

𝑧0+𝑎

𝑧=𝑧0
d𝑧∫

𝑅

𝜌=0
d𝜌𝐹(𝜌)𝜌 = 2𝜋𝑎∫

𝑅

0
𝐹(𝜌)𝜌 d𝜌

In conclusion,

𝜙′(𝜌) = 1
𝜌 ∫

𝜌

0
𝑠𝐹(𝑠) d𝑠

Example. Consider a line of charge density 𝜆 per unit length along an infinitesimally thick wire. We
could proceed analogously to the last example before, by considering a cylinder with positive radius
𝑎, using Gauss’ flux method, and then letting 𝑎 → 0. However, we will use a different method. Let
𝐹(𝜌) be the desired charge density. So if we integrate 𝐹(𝜌) over any cylinder 𝐶 of length 1, we should
retrieve the value 𝜆.

𝜆 = ∫
𝐶
𝐹(𝜌) d𝑉 = ∫

𝑧0+1

𝑧=𝑧0
d𝑧∫

2𝜋

𝜙=0
d𝜙∫

𝑅

𝜌=0
d𝜌 𝜌𝐹(𝜌)

= 2𝜋∫
𝑅

0
d𝜌 𝜌𝐹(𝜌)

By inspection, 𝐹 must have the form of a delta function, so 𝐹(𝜌) = 𝜆𝛿(𝜌) 1
2𝜋𝜌

. Hence the correspond-
ing electric potential 𝜙 is given by

𝜙′(𝜌) = − 1
𝜀0𝜌

∫
𝜌

0
𝜆𝛿(𝑠) 12𝜋 d𝑠 = −𝜆

2𝜋𝜀0𝜌

Hence,
𝐸(x) = 1

2𝜋𝜀0
e𝜌
𝜌

9.5 Superposition principle
Consider a linear operator 𝐿. If we have solutions 𝐿𝜓𝑛 = 𝐹𝑛 for 𝑛 = 1, 2,…, thenwe have 𝐿(∑𝑛 𝜓𝑛) =
∑𝑛 𝐹𝑛 by linearity. In other words, we can superimpose solutions. We can often break up a forcing
term into several smaller, simpler components, and if 𝐿 is a linear differential operator we can solve
for these components separately. For example, we can consider the electric potential due to a pair of
point charges 𝑄𝑎 at x = a, and 𝑄𝑏 at x = b. The charge density would be

𝜌(x) = 𝑄𝑎𝛿(x − a) + 𝑄𝑏𝛿(x − b)

For one point charge, we know that the electric potential obeys

−∇2𝜙 = 𝑄𝑎
𝜀0
𝛿(x − a)

Hence,
𝜙(x) = 𝑄𝑎

4𝜋𝜀0
1

|x − a|
Then by the superposition principle, for two particles,

𝜙(x) = 𝑄𝑎
4𝜋𝜀0

1
|x − a| +

𝑄𝑏
4𝜋𝜀0

1
|x − b|
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Now, consider the electric potential outside a ball of radius |x| < 𝑅 of uniform charge density 𝜌0.
Suppose that the ball has several balls removed from its interior. These ‘subtracted’ balls have the
form

|x − a𝑖| < 𝑅𝑖; 𝑖 = 1,… ,𝑁
We further require that the balls lay inside the main ball, and do not intersect:

|a𝑖| + 𝑅𝑖 < 𝑅; ||a𝑖 − a𝑗 || > 𝑅𝑖 + 𝑅𝑗
We can use the superposition principle to represent each hole as a ball of uniform charge density−𝜌0.
So the effective potential in |x| > 𝑅 (outside the ball) from each hole is

𝜙(𝑥) = − 𝑄𝑖
4𝜋𝜀0

1
|x − a𝑖|

; 𝑄𝑖 =
4
3𝜋𝑅

3
𝑖 𝜌0

Hence, the total potential from the ball and its holes is

𝜙(𝑥) = 𝑄
4𝜋𝜀0

1
|x| −∑

𝑖

𝑄𝑖
4𝜋𝜀0

1
|x − a𝑖|

9.6 Integral solutions
We know that the electric potential due to a point charge at a is proportional to the inverse of the dis-
tance to the particle. We can think of a generic distribution of charge density as an infinite collection
of superimposed particles, which leads us to consider an integral form for a superposition.

∫
ℝ3

𝐹(y)
|x − y| d𝑉(y)

where 𝐹 is the forcing term.

Proposition. Suppose 𝐹 → 0 ‘rapidly’ as |x| → ∞. The unique solution to the Dirichlet
problem

{∇
2𝜙 = 𝐹 x ∈ ℝ3

|𝜙| → 0 |x| → ∞
is given by

𝜙(x) = − 1
4𝜋 ∫

ℝ3

𝐹(y)
|x − y| d𝑉(y)

This result is another way of saying that

∇2( −1
4𝜋|x| ) = 𝛿(x)

since by differentiating with respect to 𝑥 under the integral sign,

∇2(−14𝜋 ∫
ℝ3

𝐹(y)
|x − y| d𝑉(y)) =

−1
4𝜋 ∫

ℝ3
𝐹(y)∇2( 1

|x − y| ) d𝑉(y)

= ∫
ℝ3
𝐹(y)𝛿(x − y) d𝑉(y)

= 𝐹(x)
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so it is sufficient to prove that this Laplacian identity holds. A full proof will not be given here, but
here is some intuition to guide the idea. Note that for 𝑟 ≠ 0,

∇2(1𝑟 ) =
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑖
(1𝑟 )

= 𝜕
𝜕𝑥𝑖

(−𝑥𝑖𝑟3 )

= −𝛿𝑖𝑖
𝑟3 + 3𝑥𝑖𝑥𝑖

𝑟5

= −3
𝑟3 + 3𝑟2

𝑟5
= 0

So certainly ∇2(− 1
4𝜋|x|

) = 𝛿(x) for x ≠ 0. Assuming that the divergence theorem holds for delta
functions, for any ball |x| < 𝑅 we would also have

∫
|x|<𝑅

∇2( 1|x| ) d𝑉 = ∫
|x|=𝑅

∇( 1|x| ) ⋅ dS

= ∫
𝜋

𝜃=0
d𝜃∫

2𝜋

𝜙=0
d𝜙 (−e𝑟𝑅2 ) ⋅ e𝑟𝑅

2 sin 𝜃

= ∫
𝜋

𝜃=0
d𝜃∫

2𝜋

𝜙=0
d𝜙 (−1𝑅2 )𝑅

2 sin 𝜃

= −4𝜋

So for any 𝑅 > 0,
∫
|x|<𝑅

∇2( −1
4𝜋|x| ) d𝑉 = 1 = ∫

|x|<𝑅
𝛿(x) d𝑉

So we might conclude that this Laplacian operator really does give the Dirac delta function.

9.7 Harmonic functions
Harmonic functions are solutions to Laplace’s equation,

∇2𝜙 = 0

Proposition. If 𝜙 is harmonic on Ω ⊂ ℝ3, then

𝜙(a) = 1
4𝜋𝑟2 ∫|x−a|=𝑟

𝜙(x) d𝑆 (∗)

for a ∈ Ω, and 𝑟 sufficiently small such that all x are in Ω.

This is known as the ‘mean value’ property; it essentially shows that the value of 𝜙 at any given point
a is the average of 𝜙 on the surface of any ball around a.
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Proof. Let 𝐹(𝑟) denote the right hand side of (∗), 1
4𝜋𝑟2

∫|x−a|=𝑟 𝜙(x) d𝑆. Then,

𝐹(𝑟) = 1
4𝜋𝑟2 ∫|x|=𝑟

𝜙(a + x) d𝑆

We can parametrise this sphere using spherical polar coordinates, giving

𝐹(𝑟) = 1
4𝜋𝑟2 ∫

2𝜋

𝜙=0
[∫

𝜋

𝜃=0
𝜙(a + 𝑟e𝑟)𝑟2 sin 𝜃 d𝜃] d𝜙

= 1
4𝜋 ∫

2𝜋

𝜙=0
[∫

𝜋

𝜃=0
𝜙(a + 𝑟e𝑟) sin 𝜃 d𝜃] d𝜙 (†)

Differentiating with respect to 𝑟, using d
d𝑟
𝜙(a + 𝑟e𝑟) = e𝑟 ⋅ ∇𝜙(a + 𝑟e𝑟),

𝐹′(𝑟) = 1
4𝜋 ∫

2𝜋

𝜙=0
∫

𝜋

𝜃=0
e𝑟 ⋅ ∇𝜙(a + 𝑟e𝑟) sin 𝜃 d𝜃 d𝜙

= 1
4𝜋𝑟2 ∫

2𝜋

𝜙=0
∫

𝜋

𝜃=0
e𝑟 ⋅ ∇𝜙(a + 𝑟e𝑟)𝑟2 sin 𝜃 d𝜃 d𝜙

= 1
4𝜋𝑟2 ∫|x|=𝑟

e𝑟 ⋅ ∇𝜙(a + 𝑟e𝑟) d𝑆

= 1
4𝜋𝑟2 ∫|x|=𝑟

∇𝜙(a + x) ⋅ dS

= 1
4𝜋𝑟2 ∫|x−a|=𝑟

∇𝜙 ⋅ dS

= 1
4𝜋𝑟2 ∫|x−a|<𝑟

∇ ⋅ ∇𝜙 d𝑉

= 1
4𝜋𝑟2 ∫|x−a|<𝑟

∇2𝜙 d𝑉

= 1
4𝜋𝑟2 ∫|x−a|<𝑟

0 d𝑉

= 0

Now, note from (†) that if 𝑟 → 0, then 𝐹(𝑟) → 𝜙(a), and the result follows.

9.8 Intuitive explanation of Laplacian
We can use the central idea of the above proof to examine what the Laplacian operator is really do-
ing.

Proposition. For any smooth function 𝜙∶ ℝ3 → ℝ,

∇2𝜙(a) = lim
𝑟→0

6
𝑟2 [

1
4𝜋𝑟2 ∫|x−a|=𝑟

𝜙(x) d𝑆] − 𝜙(a)
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In particular, if 𝜙 satisfies the mean value property, then it is harmonic.

In some sense, the Laplacian is measuring how the value of 𝜙 at a point differs from its average over
a small sphere centred at this point.

Proof. Consider a function 𝐺(𝑟) defined by

𝐺(𝑟) = 1
4𝜋𝑟2 ∫|x−a|=𝑟

𝜙(x) d𝑆 − 𝜙(a)

𝐺 measures the extent to which 𝜙 differs from its average. From the previous proof,

𝐺(𝑟) = 𝐹(𝑎) − 𝜙(a) ⟹ 𝐺′(𝑟) = 𝐹′(𝑟)

So,
𝐺′(𝑟) = 1

4𝜋𝑟2 ∫|x−a|<𝑟
∇2𝜙 d𝑉

Now, note that as 𝑟 → 0,

∫
|x−a|<𝑟

∇2𝜙(x) d𝑉 = ∇2𝜙(a)∫
|x−a|<𝑟

d𝑉 +∫
|x−a|<𝑟

(∇2𝜙(x) − ∇2𝜙(a)) d𝑉

= 4𝜋
3𝑟3∇

2𝜙(a) + 𝑜(𝑟3)

Now, as 𝑟 → 0,
𝐺′(𝑟) = 1

4𝜋𝑟2 [
4𝜋
3𝑟3∇

2𝜙(a) + 𝑜(𝑟3)] = 𝑟
3∇

2𝜙(a) + 𝑜(𝑟)

Comparing this to the Taylor expansion,

𝐺′(𝑟) = 𝐺′(0) + 𝑟𝐺″(0) + 𝑜(𝑟)

So certainly, 𝐺′(0) = 0 since there is no constant term in 𝐺′(𝑟). Further, 𝐺″(0) = 1
3
∇2𝜙(a). Now,

𝐺(𝑟) = 𝐺(0) + 𝑟𝐺′(0) + 𝑟2
2 𝐺

″(0) + 𝑜(𝑟2)

We know that 𝐺(0) = 𝐹(0) − 𝜙(a) = 0, hence

𝐺(𝑟) = 1
6∇

2𝜙(a)𝑟2 + 𝑜(𝑟2) ⟹ ∇2𝜙(a) = lim
𝑟→0

6
𝑟2𝐺(𝑟)

which gives the result as required.

9.9 Non-existence of maximum points

Proposition. If 𝜙 is harmonic on some volume Ω ⊂ ℝ3, then 𝜙 cannot have a maximum
point at any interior point on Ω, unless 𝜙 is constant.
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Proof. Suppose that there exists a maximum point at a ∈ Ω. Then 𝜙(a) ≥ 𝜙(x) for all x ∈ Ω. Then,

𝜙(a) ≥ 𝜙(x) on |x − a| ≤ 𝜀

for some 𝜀 small enough such that the ball is inside Ω. By the mean value property,

𝜙(a) = 1
4𝜋𝜀2 ∫|x−a|=𝜀

𝜙(x) d𝑆

Hence,
0 = 1

4𝜋𝜀2 ∫|x−a|=𝜀
(𝜙(a) − 𝜙(x)) d𝑆

Note that the integrand is always non-negative, so in order for the integral to equal zero, the integrand
must be zero everywhere on the ball. So 𝜙(a) = 𝜙(x). Since 𝜀 was arbitrary, we can shrink the ball
to a smaller ball around the same point, so 𝜙(a) = 𝜙(x) for all x such that |x − a| ≤ 𝜀. Hence, 𝜙 is
locally constant.

Now, given any other point y, we can introduce a finite sequence of overlapping balls such that the
centre of the (𝑛 + 1)th ball is contained inside the 𝑛th ball, and where the first ball is centred at a
and the last ball is centred at y. Inductively, the function is constant on each such ball. Hence 𝜙 is
actually constant everywhere, since y was arbitrarily chosen.

Corollary. If 𝜙 is harmonic on Ω, then for x ∈ Ω,

𝜙(x) ≤ max
y∈𝜕Ω

𝜙(y)

This is called the maximum principle.

10 Cartesian tensors
Throughout this section on tensors, we deal exclusively with Cartesian coordinate systems.

10.1 Intuitive description of vectors and changes of basis
Consider a right-handed orthonormal basis {e𝑖} forℝ3, with respect to some fixed Cartesian coordin-
ate axes. We can write a vector using this basis as

x = 𝑥𝑖e𝑖

Note that the vector x and the components 𝑥𝑖 are not the same; the components only give the vector
when in combination with the given basis vectors {e𝑖}. If we instead use {e′𝑖}, then the same position
vector x would be written as a linear combination 𝑥′𝑖e′𝑖. Hence,

𝑥𝑗e𝑗 = 𝑥′𝑗e′𝑗 (∗)

Since the {e𝑗} and {e′𝑗} are orthonormal,

e𝑖 ⋅ e𝑗 = 𝛿𝑖𝑗 ; e′𝑖 ⋅ e
′
𝑗 = 𝛿𝑖𝑗
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From (∗),
𝑥′𝑖 = 𝛿𝑖𝑗𝑥′𝑗 = (e′𝑖 ⋅ e

′
𝑗)𝑥

′
𝑗 = e′𝑖 ⋅ (e

′
𝑗𝑥

′
𝑗) = e′𝑖 ⋅ (e𝑗𝑥𝑗) = (e′𝑖 ⋅ e𝑗)𝑥𝑗

So let
𝑅𝑖𝑗 = e′𝑖 ⋅ e𝑗

Then
𝑥′𝑖 = 𝑅𝑖𝑗𝑥𝑗

Alternatively,
𝑥𝑖 = 𝛿𝑖𝑗𝑥𝑗 = (e𝑖 ⋅ e𝑗)𝑥𝑗 = e𝑖 ⋅ (e𝑗𝑥𝑗) = e𝑖 ⋅ (e′𝑗𝑥

′
𝑗) = (e𝑖 ⋅ e′𝑗)𝑥

′
𝑗

And therefore, we get
𝑥𝑖 = 𝑅𝑗𝑖𝑥′𝑗 = 𝑅𝑘𝑖𝑥′𝑘 ⟹ 𝑥𝑗 = 𝑅𝑘𝑗𝑥′𝑘

Combining the two results, we have
𝑥′𝑖𝑅𝑖𝑗𝑥𝑗 = 𝑅𝑖𝑗𝑅𝑘𝑗𝑥′𝑘

Therefore,
(𝛿𝑖𝑘 − 𝑅𝑖𝑗𝑅𝑘𝑗)𝑥′𝑘 = 0

Since this is true for all vectors x, we get
𝑅𝑖𝑗𝑅𝑘𝑗 = 𝛿𝑖𝑘

So if 𝑅 is a matrix with entries 𝑅𝑖𝑗 , then
𝑅𝑅⊺ = 𝐼

So the 𝑅𝑖𝑗 are the components of an orthogonal matrix. Further, since
𝑥𝑗e𝑗 = 𝑥′𝑖e′𝑖 = 𝑅𝑖𝑗𝑥𝑗e′𝑖

holds for all 𝑥𝑗 , we also have
e𝑗 = 𝑅𝑖𝑗e′𝑖

and since both {e𝑖} and {e′𝑖} are right handed, we have
1 = e1 ⋅ (e2 × e3) = 𝑅𝑖1𝑅𝑗2𝑅𝑘3e′𝑖 ⋅ (e

′
𝑗 × e′𝑘) = 𝑅𝑖1𝑅𝑗2𝑅𝑘3𝜀𝑖𝑗𝑘 = det𝑅

Hence 𝑅 is orthogonal, and has determinant 1. Hence 𝑅 is a rotation matrix. If we transform from
a right-handed orthonormal set of basis vectors {e𝑖} to another basis {e′𝑖}, then the components of a
vector v transform according to 𝑣′𝑖 = 𝑅𝑖𝑗𝑣𝑗 . We call objects whose components transform in this way
‘rank 1 tensors’, or more commonly, ‘vectors’. The basis vectors themselves transform according to
e′𝑗 = 𝑅𝑖𝑗e𝑖.

10.2 Intuitive description of scalars and scalar products
Consider the dot product between two vectors, 𝜎 = a ⋅ b. This should ideally be independent of the
set of basis vectors chosen to describe a and b. So with a basis {e𝑖}, we have

𝜎 = 𝑎𝑖𝑏𝑗𝛿𝑖𝑗 = 𝑎𝑖𝑏𝑖
If instead we use a different set of basis vectors {e𝑗}, we define

𝜎′ = 𝑎′𝑖𝑏′𝑖
We can use 𝑎′𝑖 = 𝑅𝑖𝑝𝑎𝑝 and 𝑏′𝑖 = 𝑅𝑖𝑞𝑏𝑞 to give

𝜎′ = 𝑅𝑖𝑝𝑅𝑖𝑞𝑎𝑝𝑏𝑞 = 𝛿𝑝𝑞𝑎𝑝𝑏𝑞 = 𝑎𝑖𝑏𝑖 = 𝜎
Since the sets of basis vectors are related by 𝑅, 𝜎 is unchanged under changes of coordinates. We call
objects which are invariant under transformations like this ‘rank 0 tensors’, or ‘scalars’.
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10.3 Intuitive description of linear maps
Let n ∈ ℝ3 be a fixed unit vector, and we define a linear map

𝑇 ∶ x→ y = 𝑇(x) = x − (x ⋅ n)n

This 𝑇 is the orthogonal projection into the plane normal to n. Using a set of basis vectors {e𝑖}, we
get

𝑦𝑖e𝑖 = 𝑇(𝑥𝑗e𝑗) = 𝑥𝑗𝑇(e𝑗) = 𝑥𝑗(e𝑗 − 𝑛𝑖𝑛𝑗e𝑖) = (𝛿𝑖𝑗 − 𝑛𝑖𝑛𝑗)𝑥𝑗e𝑖
Hence,

𝑦𝑖 = (𝛿𝑖𝑗 − 𝑛𝑖𝑛𝑗)𝑥𝑗
So we will set

𝑇𝑖𝑗 = 𝛿𝑖𝑗 − 𝑛𝑖𝑛𝑗 ⟹ 𝑦𝑖 = 𝑇𝑖𝑗𝑥𝑗
We call the 𝑇𝑖𝑗 the components of the linear map 𝑇 with respect to the basis vectors e𝑖. Consider a
different set of basis vectors {e′𝑖}.

𝑦′𝑖 = (𝛿𝑖𝑗 − 𝑛′𝑖𝑛′𝑗)𝑥′𝑗 ; 𝑇′𝑖𝑗 = 𝛿𝑖𝑗 − 𝑛′𝑖𝑛′𝑗

Using 𝑛′𝑖 = 𝑅𝑖𝑗𝑛𝑗 , noting that 𝑅 is orthogonal, we have

𝑇′𝑖𝑗 = 𝛿𝑖𝑗 − 𝑅𝑖𝑝𝑛𝑗𝑅𝑗𝑞𝑛𝑞 = 𝑅𝑖𝑝𝑅𝑗𝑞(𝛿𝑝𝑞 − 𝑛𝑝𝑛𝑞) = 𝑅𝑖𝑝𝑅𝑗𝑞𝑇𝑝𝑞

So the components of a linear map transform according to two multiplications:

𝑇′𝑖𝑗 = 𝑅𝑖𝑝𝑅𝑗𝑞𝑇𝑝𝑞

We call such objects ‘rank 2 tensors’.

10.4 Definition

Definition. An object whose components 𝑇𝑖𝑗…𝑘 transform according to

𝑇′𝑖𝑗…𝑘 = 𝑅𝑖𝑝𝑅𝑗𝑞…𝑅𝑘𝑟𝑇𝑝𝑞…𝑟

is called a (Cartesian) tensor of rank𝑛 if𝑇 has𝑛 indices, where𝑅𝑖𝑗 = e′𝑖⋅e𝑗 are the components
of an orthogonal matrix, so 𝑅𝑖𝑝𝑅𝑗𝑝 = 𝛿𝑖𝑗 .

For example, if 𝑢𝑖, 𝑣𝑗 , 𝑤𝑘 are the components of 𝑛 vectors, then

𝑇𝑖𝑗…𝑘 = 𝑢𝑖𝑣𝑗…𝑤𝑘

define the components of a tensor of rank 𝑛.

Proof. We can transform each vector individually.

𝑇′𝑖𝑗…𝑘 = 𝑢′𝑖𝑣′𝑗…𝑤′
𝑘 = 𝑅𝑖𝑝𝑢𝑝𝑅𝑗𝑞𝑣𝑞…𝑅𝑘𝑟𝑤𝑟 = 𝑅𝑖𝑝𝑅𝑗𝑞𝑅𝑘𝑟𝑇𝑖𝑗…𝑘

as expected.
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10.5 Kronecker 𝛿 and Levi-Civita 𝜀
As another example, consider the Kronecker 𝛿. It was previously defined without reference to any
basis by

𝛿𝑖𝑗 = {1 𝑖 = 𝑗
0 𝑖 ≠ 𝑗

So 𝛿′𝑖𝑗 = 𝛿𝑖𝑗 by definition. Note that

𝑅𝑖𝑝𝑅𝑗𝑞𝛿𝑝𝑞 = 𝑅𝑖𝑞𝑅𝑗𝑞 = 𝛿𝑖𝑗 = 𝛿′𝑖𝑗

hence 𝛿 transforms like a rank 2 tensor, so it is indeed a rank 2 tensor. Now, consider the Levi-Civita
symbol 𝜀. It is defined without reference to any basis as

𝜀𝑖𝑗𝑘 =
⎧
⎨
⎩

+1 (𝑖 𝑗 𝑘) even
−1 (𝑖 𝑗 𝑘) odd
0 otherwise

Note that 𝜀′𝑖𝑗𝑘 = 𝜀𝑖𝑗𝑘, and
𝑅𝑖𝑝𝑅𝑗𝑞𝑅𝑘𝑟𝜀𝑝𝑞𝑟 = det𝑅 ⋅ 𝜀𝑖𝑗𝑘 = 𝜀𝑖𝑗𝑘

Hence 𝜀 is a rank 3 tensor.

10.6 Electrical conductivity tensor
Experiments suggest that there is a linear relationship between the current J produced in a conduct-
ive medium and the electric field E that it is exposed to. Hence J = 𝜎E, or 𝐽𝑖 = 𝜎𝑖𝑗𝐸𝑗 . 𝜎𝑖𝑗 is called
the ‘electrical conductivity tensor’. It really is a rank 2 tensor, indeed

𝐽′𝑖 = 𝜎′𝑖𝑗𝐸′𝑗
𝑅𝑖𝑝𝐽𝑝 = 𝜎′𝑖𝑗𝐸′𝑗

𝑅𝑖𝑝𝜎𝑝𝑞𝐸𝑞 = 𝜎′𝑖𝑗𝐸′𝑗

Since 𝑅 is orthogonal,
𝐸′𝑗 = 𝑅𝑗𝑞𝐸𝑞 ⟺ 𝐸𝑞 = 𝑅𝑗𝑞𝐸′𝑗

Hence,
𝑅𝑖𝑝𝑅𝑗𝑞𝜎𝑝𝑞𝐸′𝑗 = 𝜎′𝑖𝑗𝐸′𝑗

Since this is true for all choices of 𝐸𝑗 ,
𝑅𝑖𝑝𝑅𝑗𝑞𝜎𝑝𝑞 = 𝜎′𝑖𝑗

So it really is a rank 2 tensor.

10.7 Indexed objects without tensor transformation properties
It is possible to construct objects with indices that do not transform as tensors. For example, given
a Cartesian right handed basis {e𝑖}, we can define an arbitrary array of numbers with components
𝐴𝑖𝑗 , and set 𝐴′

𝑖𝑗 = 0 in all other bases {e′𝑖}. Clearly this array of numbers does not transform like a
tensor.
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10.8 Operations on tensors
Let 𝐴𝑖𝑗…𝑘, 𝐵𝑖𝑗…𝑘 be rank 𝑛 tensors, we define

(𝐴 + 𝐵)𝑖𝑗…𝑘 = 𝐴𝑖𝑗…𝑘 + 𝐵𝑖𝑗…𝑘

𝐴 + 𝐵 is also a rank 𝑛 tensor, by linearity. Further,

(𝛼𝐴)𝑖𝑗…𝑘 = 𝛼𝐴𝑖𝑗…𝑘

𝛼𝐴 is also a rank 𝑛 tensor. We also define the tensor product between a rank 𝑚 tensor 𝑈 𝑖𝑗…𝑘 and a
rank 𝑛 tensor 𝑉𝑝𝑞…𝑟 as

(𝑈 ⊗ 𝑉)𝑖𝑗…𝑘𝑝𝑞…𝑟 = 𝑈 𝑖𝑗…𝑘𝑉𝑝𝑞…𝑟

Now, 𝑈 ⊗ 𝑉 is a rank𝑚+ 𝑛 tensor. Indeed,

(𝑈 ⊗𝑉)𝑖…𝑗𝑝…𝑞 = 𝑈 ′
𝑖…𝑗𝑉 ′

𝑝…𝑞 = 𝑅𝑖𝑎…𝑅𝑗𝑏𝑈𝑎…𝑏𝑅𝑝𝑐…𝑅𝑞𝑑𝑉𝑐…𝑑 = 𝑅𝑖𝑎…𝑅𝑗𝑏𝑅𝑝𝑐…𝑅𝑞𝑑(𝑈 ⊗𝑉)𝑎…𝑏𝑐…𝑑

Further, given a rank 𝑛 ≥ 2 tensor 𝑇𝑖𝑗𝑘…ℓ, we can define a tensor of rank 𝑛 − 2 by contracting on a
pair of indices. For instance, contracting on 𝑖 and 𝑗 is defined by

𝛿𝑖𝑗𝑇𝑖𝑗𝑘…ℓ = 𝑇𝑖𝑖𝑘…ℓ

This is really a tensor of rank 𝑛 − 2:

𝑇′𝑖𝑖𝑘…ℓ = 𝑅𝑖𝑝𝑅𝑖𝑞𝑅𝑘𝑟…𝑅ℓ𝑠𝑇𝑝𝑞𝑟…𝑠 = 𝛿𝑝𝑞𝑅𝑘𝑟…𝑅ℓ𝑠𝑇𝑝𝑞𝑟…𝑠 = 𝑅𝑘𝑟…𝑅ℓ𝑠𝑇𝑝𝑝𝑟…𝑠

10.9 Symmetric and antisymmetric tensors
We say that 𝑇𝑖𝑗…𝑘 is symmetric in (𝑖, 𝑗) if

𝑇𝑖𝑗…𝑘 = 𝑇𝑗𝑖…𝑘

This really is a well-defined property of the tensor, not its coordinates. In a different coordinate
frame,

𝑇′𝑖𝑗…𝑘 = 𝑅𝑖𝑝𝑅𝑗𝑞…𝑅𝑘𝑟𝑇𝑝𝑞…𝑟 = 𝑅𝑖𝑝𝑅𝑗𝑞…𝑅𝑘𝑟𝑇𝑞𝑝…𝑟 = 𝑇′𝑗𝑖…𝑘

Similarly, we say that 𝐴𝑖𝑗…𝑘 is antisymmetric in (𝑖, 𝑗) if

𝐴𝑖𝑗…𝑘 = −𝐴𝑗𝑖…𝑘

which similarly is invariant of the choice of basis. We say that a tensor is totally (anti-) symmetric
if it is (anti-) symmetric in all pairs of indices. For example, the 𝛿𝑖𝑗 rank 2 tensor and 𝑎𝑖𝑎𝑗𝑎𝑘 rank
3 tensor (where a is a vector) are totally symmetric tensors. The Levi-Civita alternating tensor 𝜀 is
totally antisymmetric.

In fact, in three dimensions, 𝜀 is the only totally antisymmetric tensor (up to scaling), and there are
no nonzero higher-rank antisymmetric tensors. Indeed, if 𝑇𝑖𝑗…𝑘 is totally antisymmetric and has
rank 𝑛, then 𝑇𝑖𝑗…𝑘 = 0 if any two indices are the same. But if we have more than three indices,
by the pigeonhole principle we must have two matching indices (provided we are working in three
dimensions). If 𝑛 = 3, then there are only 3! = 6 choices of components that give a nonzero value
of 𝑇𝑖𝑗𝑘, and by antisymmetry, 𝑇123 = 𝑇231 = 𝑇312 = 𝜆 and by antisymmetry 𝑇213 = 𝑇132 = 𝑇321 = −𝜆
which defines the 𝜀 symbol.
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11 Tensor calculus
11.1 Introduction
A vector field assigns a vector v to every position x ∈ ℝ3. A scalar field assigns a scalar 𝜙 to every
position. We generalise this notion to a tensor field of rank 𝑛, written 𝑇𝑖𝑗…𝑘(x), which assigns a rank
𝑛 tensor to every point x. Recall that

𝑥′𝑖 = 𝑅𝑖𝑗𝑥𝑗 ⟺ 𝑥𝑗 = 𝑅𝑖𝑗𝑥′𝑖

Differentiating both sides with respect to 𝑥′𝑘, we get

𝜕𝑥𝑗
𝜕𝑥′𝑘

= 𝑅𝑖𝑗
𝜕𝑥′𝑖
𝜕𝑥′𝑘

= 𝑅𝑖𝑗𝛿𝑖𝑘 = 𝑅𝑘𝑗

By the chain rule, we then have
𝜕
𝜕𝑥′𝑖

=
𝜕𝑥𝑗
𝜕𝑥′𝑖

𝜕
𝜕𝑥𝑗

= 𝑅𝑖𝑗
𝜕
𝜕𝑥𝑗

Informally, we can say that 𝜕
𝜕𝑥′𝑖

transforms like a rank 1 tensor.

Proposition. If 𝑇𝑖…𝑗 is a tensor field of rank 𝑛, then

𝜕
𝜕𝑥𝑝

⋯ 𝜕
𝜕𝑥𝑞⏟⎵⎵⏟⎵⎵⏟

𝑚 terms

𝑇𝑖…𝑗(x)

is a tensor field of rank 𝑛 + 𝑚.

Proof. We check the transformation under a change of basis. Let the above expression be 𝐴𝑝…𝑞𝑖…𝑗 .
Then

𝐴′
𝑝…𝑞𝑖…𝑗 =

𝜕
𝜕𝑥′𝑝

⋯ 𝜕
𝜕𝑥′𝑞

𝑇′𝑖…𝑗(x)

= 𝑅𝑝𝑎
𝜕
𝜕𝑥𝑎

⋯𝑅𝑞𝑏
𝜕
𝜕𝑥𝑏

𝑅𝑖𝑐…𝑅𝑗𝑑𝑇𝑐…𝑑(x)

= 𝑅𝑝𝑎…𝑅𝑞𝑏𝑅𝑖𝑐…𝑅𝑗𝑑𝐴𝑎…𝑏𝑐…𝑑

Note that this only works in Cartesian coordinates, since the 𝑅 matrices are constant here. In a
general coordinate system, this is not the case, and we cannot move the change of basis matrices
outside the derivatives in this case.

11.2 Differential operators producing tensor fields
If 𝜙 is a scalar field, then

[∇𝜙]𝑖 =
𝜕𝜙
𝜕𝑥𝑖
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Hence ∇𝜙 is a rank 1 tensor field, which is a vector field. If v is a vector field,

∇ ⋅ v = 𝜕𝑣𝑖
𝜕𝑥𝑖

which is a rank 0 tensor field since it is a contraction of 𝜕v𝑖
𝜕𝑥𝑗

. Alternatively, from first principles,

𝜕𝑣′𝑖
𝜕𝑥′𝑖

= 𝑅𝑖𝑝
𝜕
𝜕𝑥𝑝

𝑅𝑖𝑞𝑣𝑞 = 𝑅𝑖𝑝𝑅𝑖𝑞
𝜕𝑣𝑞
𝜕𝑥𝑝

= 𝛿𝑝𝑞
𝜕𝑣𝑞
𝜕𝑥𝑝

= 𝜕𝑣𝑖
𝜕𝑥𝑖

hence the divergence of a vector field really is a scalar field.

[∇ × v]𝑖 = 𝜀𝑖𝑗𝑘
𝜕𝑣𝑘
𝜕𝑥𝑗

From first principles we can show that

𝜀′𝑖𝑗𝑘
𝜕𝑣′𝑘
𝜕𝑥′𝑗

= 𝑅𝑖𝑎𝑅𝑗𝑏𝑅𝑘𝑐𝜀𝑎𝑏𝑐𝑅𝑗𝑝
𝜕
𝜕𝑥𝑝

𝑅𝑘𝑞𝑣𝑞

= 𝑅𝑖𝑎𝜀𝑎𝑏𝑐𝑅𝑗𝑏𝑅𝑗𝑝𝑅𝑘𝑐𝑅𝑘𝑞
𝜕𝑣𝑞
𝜕𝑥𝑝

= 𝑅𝑖𝑎𝜀𝑎𝑏𝑐𝛿𝑏𝑝𝛿𝑐𝑞
𝜕𝑣𝑞
𝜕𝑥𝑝

= 𝑅𝑖𝑎𝜀𝑎𝑏𝑐
𝜕𝑣𝑐
𝜕𝑥𝑏

which is the transformation law for a rank 1 tensor, so the curl of a vector field is a vector field.

11.3 Divergence theoremwith tensor fields

Proposition. For a tensor field 𝑇𝑖𝑗…𝑘…ℓ(x), we have

∫
𝑉

𝜕
𝜕𝑥𝑘

𝑇𝑖𝑗…𝑘…ℓ d𝑉 = ∫
𝜕𝑉

𝑇𝑖𝑗…𝑘…ℓ𝑛𝑘 d𝑆

Proof. Consider the vector field
𝑣𝑘 = 𝑎𝑖𝑏𝑗…𝑐ℓ𝑇𝑖𝑗…𝑘…ℓ

where the 𝑎𝑖, 𝑏𝑗 ,… , 𝑐ℓ are the components of some constant vectors. Applying the divergence the-
orem to this vector field, we have

∫
𝑉

𝜕𝑣𝑘
𝜕𝑥𝑘

d𝑉 = ∫
𝜕𝑉

𝑣𝑘𝑛𝑘 d𝑆

𝑎𝑖𝑏𝑗…𝑐ℓ∫
𝑉

𝜕
𝜕𝑥𝑘

𝑇𝑖𝑗…𝑘…ℓ d𝑉 = 𝑎𝑖𝑏𝑗…𝑐ℓ∫
𝜕𝑉

𝑇𝑖𝑗…𝑘…ℓ𝑛𝑘 d𝑆

Since this is true for any choice of vectors 𝑎𝑖, 𝑏𝑖,… , 𝑐𝑖, the result follows.
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12 Properties of tensors
12.1 Symmetry and antisymmetry
Observe for a rank 2 tensor that

𝑇𝑖𝑗 =
1
2 (𝑇𝑖𝑗 + 𝑇𝑗𝑖) +

1
2 (𝑇𝑖𝑗 − 𝑇𝑗𝑖) ≡ 𝑆 𝑖𝑗 + 𝐴𝑖𝑗

where the 𝑆 𝑖𝑗 are the symmetric components, and the 𝐴𝑖𝑗 are the antisymmetric components of the
tensor. Note that the symmetric part 𝑆 𝑖𝑗 has six independent components (the main diagonal and
everything above it), and the antisymmetric part 𝐴𝑖𝑗 has three independent components (everything
above themain diagonal) since themain diagonal is zero. So the number of independent components
of the symmetric part and the antisymmetric part add up to the number of independent components
of a general rank 2 tensor in ℝ3 (nine). Intuitively, we might think that the information contained
in 𝐴𝑖𝑗 could be represented as some vector, since it has the same amount of independent compon-
ents.

Proposition. Every rank 2 tensor 𝑇𝑖𝑗 can be decomposed uniquely into

𝑇𝑖𝑗 = 𝑆 𝑖𝑗 + 𝜀𝑖𝑗𝑘𝜔𝑘

where
𝜔𝑖 =

1
2𝜀𝑖𝑗𝑘𝑇𝑗𝑘

and 𝑆 𝑖𝑗 is symmetric.

Proof. From above, we can find 𝑆 𝑖𝑗 =
1
2
(𝑇𝑖𝑗 + 𝑇𝑗𝑖). We now just need to show that

𝜀𝑖𝑗𝑘𝜔𝑘 =
1
2 (𝑇𝑖𝑗 − 𝑇𝑗𝑖)

We can see that

𝜀𝑖𝑗𝑘𝜔𝑘 =
1
2𝜀𝑖𝑗𝑘𝜀𝑘ℓ𝑚𝑇ℓ𝑚

= 1
2(𝛿𝑖ℓ𝛿𝑗𝑚 − 𝛿𝑖𝑚𝛿𝑗ℓ)𝑇ℓ𝑚

= 1
2(𝑇𝑖𝑗 − 𝑇𝑗𝑖)

To show uniqueness, we now suppose that

𝑇𝑖𝑗 = 𝑆 𝑖𝑗 + 𝐴𝑖𝑗 = ̃𝑆 𝑖𝑗 + 𝐴𝑖𝑗 = 𝑇𝑖𝑗

If we take the symmetric part of both sides (i.e. 𝑇𝑖𝑗 + 𝑇𝑗𝑖 = 𝑇𝑖𝑗 + 𝑇𝑗𝑖), we get 𝑆 𝑖𝑗 = ̃𝑆 𝑖𝑗 . Likewise, we
have 𝐴𝑖𝑗 = 𝐴𝑖𝑗 by eliminating the equal symmetric parts.

As an example, consider an elastic body. Each point x in such a body will undergo a small displace-
ment u(x) when applied to some force. Consider nearby points x + 𝛿x and x that were initially
separated by 𝛿𝑥. They will become separated by

(x + 𝛿x + u(x + 𝛿x)) − (x + u(x)) = 𝛿x + u(x + 𝛿x) − u(x)
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So the change in displacement is
u(x + 𝛿x) − u(x)

This value gives us an idea of how much deformation the body is subjected to. Assuming this is a
smooth deformation, we have

𝑢𝑖(x + 𝛿x) − 𝑢𝑖(x) =
𝜕𝑢𝑖
𝜕𝑥𝑗

𝛿𝑥𝑗 + 𝑜(𝛿x)

We then decompose 𝜕𝑢𝑖
𝜕𝑥𝑗

as follows.
𝜕𝑢𝑖
𝜕𝑥𝑗

= 𝑒𝑖𝑗 + 𝜀𝑖𝑗𝑘𝜔𝑘

where the 𝑒𝑖𝑗 is the symmetric part, and the 𝜀𝑖𝑗𝑘𝜔𝑘 is the antisymmetric part. In particular,

𝑒𝑖𝑗 =
1
2(

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

)

is called the linear strain tensor. Considering the other tensor,

𝜔𝑘 =
1
2𝜀𝑖𝑗𝑘

𝜕𝑢𝑗
𝜕𝑥𝑘

= −1
2 (∇ × u)𝑖

Then,
𝑢𝑖(x + 𝛿x) − 𝑢𝑖(x) = 𝑒𝑖𝑗𝛿𝑥𝑗 + [𝛿x × 𝛚]𝑖 + 𝑜(𝛿x)

So the antisymmetric part corresponds to a rotation, and is irrelevant for describing the deformation
of the internals of the body. So by separating the symmetric and antisymmetric parts, we can in fact
remove the antisymmetric part from the equation in order to study just the linear strain.

Example. As another example, let us consider the inertia tensor, which is a common rank 2 tensor.
Suppose a bodywith density 𝜌(x) occupies a volume𝑉 ⊂ ℝ3, where each point in the body is rotating
with constant angular velocity 𝛚 about an axis through the origin. The velocity of a point x ∈ 𝑉 is
given by v = 𝛚 × x. Hence, the total angular momentum is

L = ∫
𝑉
𝜌(x)(x × v) d𝑉

= ∫
𝑉
𝜌(x)(x × (𝛚 × x)) d𝑉

𝐿𝑖 = ∫
𝒱
𝜌(x)(𝑥𝑘𝑥𝑘𝜔𝑖 − 𝑥𝑖𝑥𝑗𝜔𝑗) d𝑉

= ∫
𝒱
𝜌(x)(𝑥𝑘𝑥𝑘𝛿𝑖𝑗𝜔𝑗 − 𝑥𝑖𝑥𝑗𝜔𝑗) d𝑉

= 𝐼𝑖𝑗𝜔𝑗
where 𝐼𝑖𝑗 is the inertia tensor defined by

𝐼𝑖𝑗 = ∫
𝒱
𝜌(x)(𝑥𝑘𝑥𝑘𝛿𝑖𝑗 − 𝑥𝑖𝑥𝑗) d𝑉

and where
𝒱 = {𝑥𝑖 ∶ 𝑥𝑖e𝑖 ∈ 𝑉}
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If we had used a different basis, we would have found

𝐼′𝑖𝑗 = ∫
𝒱′
𝜌(x)(𝑥′𝑘𝑥′𝑘𝛿𝑖𝑗 − 𝑥′𝑖𝑥′𝑗) d𝑉

= 𝑅𝑖𝑝𝑅𝑗𝑞∫
𝒱
𝜌(x)(𝑥𝑘𝑥𝑘𝛿𝑝𝑞 − 𝑥𝑝𝑥𝑞) d𝑉

= 𝑅𝑖𝑝𝑅𝑗𝑞𝐼𝑝𝑞
So it really is a rank 2 tensor. As an example, consider the ellipsoid

𝑉 = {x∶ 𝑥21
𝑎2 +

𝑥22
𝑏2 +

𝑥23
𝑐2 ≤ 1}

with uniform density 𝜌0. Then the mass is given by

𝑀 = 4
3𝜋𝜌0𝑎𝑏𝑐

Then the inertia tensor with respect to this set of basis vectors is given by

𝐼𝑖𝑗 = ∫
𝒱
𝜌(x)(𝑥𝑘𝑥𝑘𝛿𝑖𝑗 − 𝑥𝑖𝑥𝑗) d𝑉

To help with these integrals, we make the following parametrisation into scaled spherical coordin-
ates:

{
𝑥1 = 𝑎𝑟 cos𝜙 sin 𝜃
𝑥2 = 𝑏𝑟 sin𝜙 sin 𝜃
𝑥3 = 𝑐𝑟 cos 𝜃

𝜙 ∈ [0, 2𝜋), 𝜃 ∈ [0, 𝜋], 𝑟 ∈ [0, 1]

Note that if 𝑖 ≠ 𝑗, then by symmetry we have

∫
𝑉
𝜌0𝑥𝑖𝑥𝑗 d𝑉 = 0

Further,

𝐼11 = 𝜌0∫
𝑉
𝑥22 + 𝑥23 d𝑉

= 𝜌0𝑎𝑏𝑐∫
2𝜋

𝜙=0
d𝜙∫

𝜋

𝜃=0
d𝜃∫

1

𝑟=0
d𝑟 𝑟2(𝑏2 sin2 𝜙 sin2 𝜃 + 𝑐2 cos2 𝜃)𝑟2 sin 𝜃

= 𝜌0
𝑎𝑏𝑐
5 ∫

𝜋

0
(𝜋𝑏2 sin2 𝜃 + 2𝜋𝑐2 cos2 𝜃) sin 𝜃 d𝜃

= 3𝑀
20 ∫

𝜋

0
(𝑏2 sin2 𝜃 + (2𝑐2 − 𝑏2) cos2 𝜃 sin 𝜃) d𝜃

= 3𝑀
20 (2𝑏

2 + 2
3(2𝑐

2 − 𝑏2))

= 𝑀
5 (𝑏

2 + 𝑐2)

So by symmetry,
𝐼22 =

𝑀
5 (𝑎

2 + 𝑐2); 𝐼33 =
𝑀
5 (𝑎

2 + 𝑏2)
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Hence,

𝐼𝑖𝑗 =
𝑀
5 (

𝑏2 + 𝑐2 0 0
0 𝑎2 + 𝑐2 0
0 0 𝑎2 + 𝑏2

)

In particular, if 𝑎 = 𝑏 = 𝑐,
𝐼𝑖𝑗 =

2𝑀
5 𝛿𝑖𝑗

Proposition. If 𝑇𝑖𝑗 is symmetric, then there exists a basis {e𝑖} for which 𝑇𝑖𝑗 only has nonzero
entries on the diagonal. The coordinate axes of this basis are called the principal axes of the
tensor.

Proof. Recall that for a real symmetric matrix 𝑀, we can diagonalise it using an orthogonal trans-
formation with determinant 1. The change of basis formula for a matrix is exactly that for a rank 2
tensor, so we can always choose such a change of basis to give a diagonal matrix.

12.2 Isotropic tensors

Definition. A tensor is isotropic if it is invariant under changes with respect to the choice of
Cartesian coordinate axes.

𝑇′𝑖𝑗…𝑘 = 𝑅𝑖𝑝𝑅𝑗𝑞…𝑅𝑘𝑟𝑇𝑝𝑞…𝑟 = 𝑇𝑖𝑗…𝑘

for any choice of rotation 𝑅.

Note that by definition, every scalar is isotropic. The Kronecker and Levi-Civita tensors are also
isotropic, as we saw above.

12.3 Classifying isotropic tensors in three dimensions

Proposition. The isotropic tensors on ℝ3, ordered by rank, are exactly (up to the multiplic-
ation of a multiplicative scalar)
Rank 0: all tensors
Rank 1: no nonzero tensors
Rank 2: the Kronecker 𝛿
Rank 3: the Levi-Civita 𝜀
Rank 4: 𝛼𝛿𝑖𝑗𝛿𝑘ℓ + 𝛽𝛿𝑖𝑘𝛿𝑗ℓ + 𝛾𝛿𝑖ℓ𝛿𝑗𝑘 where 𝛼, 𝛽, 𝛾 are scalars
and for ranks higher than 4, they are a linear combination of products of 𝛿 and 𝜀 terms, for
instance 𝛿𝑖𝑗𝜀𝑘ℓ𝑚.

Proof. This is a non-rigorous sketch proof.

Rank 0: By definition, such tensors do not transform components under a change of basis.

Rank 1: Let 𝑣𝑖 be the components of an isotropic vector of rank 1. Then, for any 𝑅, we must have

𝑣𝑖 = 𝑅𝑖𝑗𝑣𝑗

65



Let 𝑅 be a rotation by 𝜋 about the 𝑧 axis, so

𝑅 = (
−1 0 0
0 −1 0
0 0 1

)

Hence,
𝑣1 = −𝑣1; 𝑣2 = −𝑣2; 𝑣3 = 𝑣3

Hence, 𝑣1 = 0, 𝑣2 = 0. Alternatively, let

𝑅 = (
1 0 0
0 −1 0
0 0 −1

)

Then clearly 𝑣3 = −𝑣3 = 0. Hence the only tensor with this property is the zero tensor.
Rank 2: If 𝑇𝑖𝑗 are the components of an isotropic tensor of rank 2, then for all choices of 𝑅, we have

𝑇𝑖𝑗 = 𝑅𝑖𝑝𝑅𝑗𝑞𝑇𝑝𝑞

Let 𝑅 be a rotation by 𝜋
2
about each axis, so for example in the 𝑧 direction,

𝑅 = (
0 1 0
−1 0 0
0 0 1

)

So 𝑇13 = 𝑅1𝑝𝑅3𝑞𝑇𝑝𝑞 = 𝑅12𝑅33𝑇23 = 𝑇23. Analogously we find, 𝑇23 = −𝑇13. Hence, 𝑇13 =
𝑇23 = 0. Further, 𝑇11 = 𝑅1𝑝𝑅1𝑞𝑇𝑝𝑞 = 𝑅12𝑅12𝑇22 = 𝑇22. So by symmetry,

𝑇11 = 𝑇22 = 𝑇33; 𝑇13 = 𝑇23 = 𝑇12 = 𝑇31 = 𝑇32 = 𝑇21 = 0

which is exactly the 𝛿 tensor, up to a scale factor.
Rank 3: For rank 3 tensors, we can use the same idea, but with more indices.

12.4 Integrals with isotropic tensors
Consider an integral of the form

𝑇𝑖𝑗…𝑘 = ∫
|x|<𝑅

𝑓(𝑟)𝑥𝑖𝑥𝑗…𝑥𝑘 d𝑉

where 𝑥𝑘𝑥𝑘 = 𝑟2, and d𝑉(𝑥) = d𝑥1 d𝑥2 d𝑥3. Note that 𝑓(𝑟) and {x∶ |x| < 𝑅} are invariant under
rotation. Since |𝐽| under a rotation is 1, we have

𝑇′𝑖𝑗…𝑘 = ∫
|x|<𝑅

𝑓(𝑟)𝑥′𝑖𝑥′𝑗…𝑥′𝑘 d𝑥′1 d𝑥′2 d𝑥′3

= ∫
|x|<𝑅

𝑓(𝑟)𝑅𝑖𝑝𝑥𝑝𝑅𝑗𝑞𝑥𝑞…𝑅𝑘𝑟𝑥𝑟 d𝑥1 d𝑥2 d𝑥3
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We will now make the substitution

𝑦𝑖 = 𝑅𝑖𝑗𝑥𝑗 ; d𝑉 = d𝑦1 d𝑦2 d𝑦3

Hence,

𝑇′𝑖𝑗…𝑘 = ∫
|x|<𝑅

𝑓(𝑟)𝑦𝑖𝑦𝑗…𝑦𝑘 d𝑉(y)

= ∫
|x|<𝑅

𝑓(𝑟)𝑥𝑖𝑥𝑗…𝑥𝑘 d𝑉(x)

= 𝑇𝑖𝑗…𝑘

Hence such an integral always yields an isotropic tensor. If we take 𝑅 → ∞, this corresponds to an
integral over ℝ3. As an example, consider

𝑇𝑖𝑗 = ∫
ℝ3
𝑒−𝑟5𝑥𝑖𝑥𝑗 d𝑉

Then 𝑇𝑖𝑗 is isotropic, hence 𝑇𝑖𝑗 = 𝛼𝛿𝑖𝑗 . Contracting on (𝑖, 𝑗) to find 𝛼, we get

𝛼𝛿𝑖𝑖 = 3𝛼

= ∫
ℝ3
𝑒−𝑟5𝑟2 d𝑉

= 4𝜋∫
∞

0
𝑒−𝑟5𝑟2𝑟2 d𝑟

= 4𝜋∫
∞

0
𝑒−𝑟5𝑟4 d𝑟

= 4
5𝜋

Hence,
𝑇𝑖𝑗 =

4
15𝜋𝛿𝑖𝑗

As another example, consider the inertia tensor 𝐼𝑖𝑗 of a ball of radius 𝑅, uniform density 𝜌0, andmass
𝑀 = 4𝜋

3
𝑅3𝜌0. Recall that

𝐼𝑖𝑗 = ∫
|x|<𝑅

𝜌0(𝑥𝑘𝑥𝑘𝛿𝑖𝑗 − 𝑥𝑖𝑥𝑗) d𝑉
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Both terms give an isotropic result, so the sum 𝐼𝑖𝑗 is isotropic. Contracting on (𝑖, 𝑗), we have

𝛼𝛿𝑖𝑖 = 3𝛼

= ∫
|x|<𝑅

𝜌0(𝑟2𝛿𝑖𝑖 − 𝑥𝑖𝑥𝑖) d𝑉

= ∫
|x|<𝑅

𝜌0(3𝑟2 − 𝑟2) d𝑉

= ∫
|x|<𝑅

𝜌02𝑟2 d𝑉

= 4𝜋∫
𝑅

0
𝜌02𝑟4 d𝑟

= 4𝜋
3 𝜌0𝑅3(

3
𝑅3 ⋅ 2 ⋅

𝑅5
5 )

= 6𝑀𝑅2
5

Hence,
𝐼𝑖𝑗 =

2𝑀𝑅2
5 𝛿𝑖𝑗

12.5 Bilinear and multilinear maps as tensors
For a tensor 𝑇𝑖𝑗 , consider the bilinear map 𝑡∶ ℝ3 × ℝ3 → ℝ defined by

𝑡(a,b) = 𝑇𝑖𝑗𝑎𝑖𝑏𝑗

The left hand side really is well defined, since the right hand side does not depend on the choice of
basis vectors. Conversely, suppose we have a bilinear map 𝑡. Then, for a given basis {e𝑖}, this defines
an array 𝑇𝑖𝑗 by

𝑡(a,b) = 𝑡(𝑎𝑖e𝑖, 𝑏𝑗e𝑗) = 𝑎𝑖𝑏𝑗𝑡(e𝑖, e𝑗) = 𝑎𝑖𝑏𝑗𝑇𝑖𝑗
Changing basis with e′𝑖 = 𝑅𝑖𝑝e𝑝, we find

𝑇′𝑖𝑗 = 𝑡(e′𝑖, e
′
𝑗) = 𝑡(𝑅𝑖𝑝e𝑝, 𝑅𝑗𝑞e𝑞) = 𝑅𝑖𝑝𝑅𝑗𝑞𝑡(e𝑝, e𝑞)

hence this 𝑇𝑖𝑗 really is a rank 2 tensor. So there is a bijection between bilinear maps and rank 2
tensors. In particular, if the map

(a,b) ↦ 𝑇𝑖𝑗𝑎𝑖𝑏𝑗
is a bilinear map, and independent of basis, then 𝑇𝑖𝑗 must be the components of a rank 2 tensor. The
same proof applies for higher-rank tensors.

12.6 Quotient theorem
Recall from earlier that the conductivity tensor 𝜎𝑖𝑗 satisfying 𝐽𝑖 = 𝜎𝑖𝑗𝐸𝑗 was really a tensor, by using
the definitions. The quotient theorem allows us to deduce similar results more generally. The name
originates from the apparent ‘quotient’ of 𝐽𝑖 by 𝐸𝑗 to give 𝜎𝑖𝑗 .
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Proposition. Let 𝑇𝑖…𝑗𝑝…𝑞 be an array of numbers defined in each Cartesian coordinate sys-
tem, such that

𝑣𝑖…𝑗 = 𝑇𝑖…𝑗𝑝…𝑞𝑢𝑝…𝑞

and that 𝑣𝑖…𝑗 is a tensor for all tensors 𝑢𝑝…𝑞. Then 𝑇𝑖…𝑗𝑝…𝑞 is a tensor.

Proof. Wewill first consider the special case 𝑢𝑝…𝑞 = 𝑐𝑝…𝑑𝑞 for vectors c,… ,d. Then by assumption,

𝑣𝑖…𝑗 = 𝑇𝑖…𝑗𝑝…𝑞𝑐𝑝…𝑑𝑞
is a tensor. In particular,

𝑣𝑖…𝑗𝑎𝑖…𝑏𝑗 = 𝑇𝑖…𝑗𝑝…𝑞𝑎𝑖…𝑏𝑗𝑐𝑝…𝑑𝑞
is a scalar, since the left hand side is just a contraction over all indices. Since the right hand side is
invariant under a change in basis, this leads us to define the multilinear map

𝑡(a,… ,b, c,… ,d) = 𝑇𝑖…𝑗𝑝…𝑞𝑎𝑖…𝑏𝑗𝑐𝑝…𝑑𝑞
Hence 𝑇𝑖…𝑗𝑝…𝑞 really is a tensor.

As an example, consider the linear strain tensor

𝑒𝑖𝑗 =
1
2(

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

)

where u(x) measures the change in displacement at x. Experiments suggest that the internal stress
tensor 𝜎𝑖𝑗 experienced by a body under a deformation u(x) depends linearly on the strain 𝑒𝑖𝑗 at each
point. Hence we might assume that there exists some array 𝑐𝑖𝑗𝑘ℓ such that

𝜎𝑖𝑗 = 𝑐𝑖𝑗𝑘ℓ𝑒𝑘ℓ
However, we can’t actually apply the quotient theorem here, since 𝑒𝑘ℓ cannot be any tensor, it can
only be any symmetric tensor. See example sheet 4 for the resolution of this apparent problem: if
𝑐𝑖𝑗𝑘ℓ = 𝑐𝑖𝑗ℓ𝑘, then we can apply the quotient theorem. We call 𝑐𝑖𝑗𝑘ℓ the stiffness tensor, which is a
property of the material being subjected to the force. Suppose that the material is isotropic, then we
might guess that 𝑐𝑖𝑗𝑘ℓ should be isotropic. Hence,

𝑐𝑖𝑗𝑘ℓ = 𝛼𝛿𝑖𝑗𝛿𝑘ℓ + 𝛽𝛿𝑖𝑘𝛿𝑗ℓ + 𝛾𝛿𝑖ℓ𝛿𝑗𝑘
where 𝛼, 𝛽, 𝛾 are scalars. Putting this into the relationship between 𝜎 and 𝑒, we find

𝜎𝑖𝑗 = 𝛼𝛿𝑖𝑗𝑒𝑘𝑘 + 𝛽𝑒𝑖𝑗 + 𝛾𝑒𝑗𝑖 = 𝜆𝛿𝑖𝑗𝑒𝑘𝑘 + 2𝜇𝑒𝑖𝑗
which is a higher-dimensional analogue of Hooke’s Law. We can in fact invert this. By contracting
on (𝑖, 𝑗) we find

𝜎𝑖𝑖 = 3𝜆𝑒𝑖𝑖 + 2𝜇𝑒𝑖𝑖
Hence,

𝑒𝑘𝑘 =
𝜎𝑘𝑘

3𝜆 + 2𝜇
We then have

𝜎𝑖𝑗 = 𝜆𝛿𝑖𝑗
𝜎𝑘𝑘

3𝜆 + 2𝜇 + 2𝜇𝑒𝑖𝑗 ⟹ 2𝜇𝑒𝑖𝑗 = 𝜎𝑖𝑗 − 𝜎𝑘𝑘𝛿𝑖𝑗
𝜆

3𝜆 + 2𝜇
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