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1 Proofs
1.1 Motivation for proof

Definition (Proof). A proof is a logical argument that establishes a conclusion.

Clearly there are some things missing from this definition; we have not yet defined a ‘logical argu-
ment’ or a ‘conclusion’; however we have to start somewhere, and assuming understanding of logic
is a good place to start. There is a 3rd year course called ‘Logic and Set Theory’ that rigorously defines
this.

There are two main reasons to want to prove things.

(i) To be sure that they are true; and

(ii) to understand why they are true.

For the first point, it is easy tomake a contrived example that showswhywe need to prove statements
even though they appear to be true for small 𝑛, for example: ‘all positive integers 𝑛 are not equal to
100 trillion’. Understanding the reasoning behind why a statement is true is also very important; an
example of this is at the end of this lecture.

1.2 Proofs and non-proofs

Claim. For any positive integer 𝑛, 𝑛3 − 𝑛 is a multiple of 3.

Proof. Given some positive integer 𝑛, we have

𝑛3 − 𝑛 = (𝑛 − 1)𝑛(𝑛 + 1)

One of 𝑛 − 1, 𝑛, 𝑛 + 1must be a multiple of 3 as they are 3 consecutive integers.
Therefore, (𝑛 − 1)𝑛(𝑛 + 1)must be a multiple of 3.

There are a couple of things to note about this proof.

• The phrase ‘given a positive integer’ is important; we need to know where this variable 𝑛 came
from.

• We used the fact that three consecutive numbers contain a multiple of 3 here, but this was not
proven. We must prove this fact elsewhere, or we cannot use it in this course!

• It is important to write proofs legibly and linearly down the page; don’t just write a long line of
symbols.

Claim. For any positive integer 𝑛, if 𝑛2 is even then 𝑛 is even.
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Proof. Given a positive integer 𝑛 that is even, we have 𝑛 = 2𝑘 for some integer 𝑘.
Thus 𝑛2 = (2𝑘)2 = 4𝑘2 = 2(2𝑘2),
so 𝑛2 is even.

Note. This is a false proof. We proved that 𝐵 ⟹ 𝐴, but we want 𝐴 ⟹ 𝐵. Our result wasn’t false,
but it didn’t show what we set out to prove. The words ‘for some integer 𝑘’ are important: we must
specify which set 𝑘 belongs to. Our proof would be incorrect if we did not state this, as it would be
unclear that 2(2𝑘2) is an even number.

Claim. For any positive integer 𝑛, if 𝑛2 is a multiple of 9 then 𝑛 is a multiple of 9.

Proof. Given a positive integer 𝑛 that is a multiple of 9, we have 𝑛 = 9𝑘 for some integer 𝑘.
Therefore, 𝑛2 = (9𝑘)2 = 81𝑘2 = 9(9𝑘2),
so 𝑛2 is a multiple of 9.

Note. Not only does this fall for the same trap as the previous proof, but the original claim is false
(e.g. 𝑛 = 6)! It’s entirely irrelevant that the claim is true for some positive integers, because even one
counterexample disproves the claim.

Let’s return now to the previous incorrect example: ‘if 𝑛2 even then 𝑛 even for all positive integers
𝑛’.

Proof. Suppose that 𝑛 is odd.
We have 𝑛 = 2𝑘 + 1 for some integer 𝑘.
Therefore, 𝑛2 = (2𝑘 + 1)2 = 4𝑘2 + 4𝑘 + 1 = 2(2𝑘2 + 2𝑘) + 1
𝑛2 is odd #
Therefore 𝑛 is even.

• We prove things to show why something is true. We can see why this claim was true here—it’s
really a statement about the properties of odd numbers, not the properties of even numbers.

• We started by saying that we need something tangible to work with: just stating that ‘𝑛2 is even’
is really hard to work with because square roots just get messy and don’t yield any result. So
we had to choose a clever first step.

• The symbol # shows that we have a contradiction.

This was a kind of proof by contradiction. Essentially, 𝐴 ⟹ 𝐵 is the same as saying ¬𝐵 ⟹ ¬𝐴.
This is because:

• 𝐴 ⟹ 𝐵 means that there is no case such that 𝐴 is false and 𝐵 is true.
• ¬𝐵 ⟹ ¬𝐴means that there is no case such that ¬𝐵 is false and ¬𝐴 is true. In other words,
there is no case such that 𝐵 is true and 𝐴 is false. This is equivalent to the case with 𝐴 ⟹ 𝐵.

Claim. The solution to the real equation 𝑥2 − 5𝑥 + 6 = 0 is 𝑥 = 2 or 𝑥 = 3.
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Note. This is really two assertions:

(i) 𝑥 = 2 ∨ 𝑥 = 3 ⟹ 𝑥2 − 5𝑥 + 6 = 0, and
(ii) 𝑥2 − 5𝑥 + 6 = 0 ⟹ 𝑥 = 2 ∨ 𝑥 = 3

We can denote this using a two-way implication symbol ⟺ :

𝑥 = 2 ∨ 𝑥 = 3 ⟺ 𝑥2 − 5𝑥 + 6 = 0

Proof. We prove case i by expressing the left hand side as a product of factors: (𝑥−3)(𝑥−2) = 0. The
other case may be proven using factorisation.

We can do another kind of proof using ⟺ symbols a lot. However, we need to be absolutely sure
that each step really is a bi-implication.

Alternative Proof. For any real 𝑥:

𝑥2 − 5𝑥 + 6 = 0 ⟺ (𝑥 − 2)(𝑥 − 3) = 0
⟺ 𝑥 − 2 = 0 ∨ 𝑥 − 3 = 0
⟺ 𝑥 = 2 ∨ 𝑥 = 3

Claim. Every positive real is at least 1.

Proof. Let 𝑥 be the smallest positive real. We want to prove 𝑥 = 1, so we prove this by contradiction.
Case 1: if 𝑥 < 1 then 𝑥2 < 𝑥 #
Case 2: if 𝑥 > 1 then√𝑥 < 𝑥 #
Therefore 𝑥 = 1

Note. The assertion that there exists a smallest positive real is not justified. This means that the proof
is invalid in its entirety. It is important that every line in a proof must be justified.

2 Elementary number theory
2.1 The natural numbers
Each line in a proof must be justified. So, in number theory, what are you allowed to assume? We
must beginwith a set of axioms. Wedefine that the natural numbers are a set denotedℕ, that contains
an element denoted 1, with an operation +1 satisfying:
(i) ∀𝑛 ∈ ℕ, 𝑛 + 1 ≠ 1
(ii) ∀𝑚, 𝑛 ∈ ℕ,𝑚 ≠ 𝑛 ⟹ 𝑚+ 1 ≠ 𝑛 + 1 (together with the previous rule, this captures the idea

that all numbers in ℕ are distinct)

(iii) For any property 𝑝(𝑛), if 𝑝(1) is true and 𝑝(𝑛) ⟹ 𝑝(𝑛 + 1) ∀𝑛 ∈ ℕ, then 𝑝(𝑛) ∀𝑛 ∈ ℕ
(induction axiom).
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This list of rules is known as the Peano axioms. Note that we did not include 0 in this set. You can
show that the list of natural numbers is complete and has no extras (like the rational number 3.5) by
specifying 𝑝(𝑛) = ‘𝑛 is on the list of natural numbers’.
Note that while numbers are defined as, for example, 1+1+1+1, we are free to use whatever names
we like, e.g. 4 or 3735928559.

We may also define our own operations, such as +2, which is defined to be +1 + 1. In fact, we can
define the operation +𝑘 for any 𝑘 ∈ ℕ by stating:

(𝑛 + 𝑘) + 1 = 𝑛 + (𝑘 + 1) (∀𝑛, 𝑘 ∈ ℕ)

and using induction to construct the+𝑘 operator for all 𝑘. We can similarly construct multiplication
and exponentiation operators for all natural numbers, although this is omitted here. We can also
prove properties on these operators such as associativity, commutativity and distributivity.

We can also define the < operator as follows: 𝑎 < 𝑏 ⟺ ∃𝑘 ∈ ℕ s.t. 𝑎 + 𝑘 = 𝑏. Of course, we can
also prove several properties using this rule, such as transitivity, and the fact that 𝑎 ≮ 𝑎, which are
omitted here.

2.2 Strong induction
The induction axiom states that if we know

• 𝑝(1) is true, and
• 𝑝(𝑛) ⟹ 𝑝(𝑛 + 1) for any 𝑛 ∈ ℕ

then we can conclude that 𝑝(𝑛) is true for all 𝑛 ∈ ℕ. We can in fact prove a stronger statement using
this axiom, known as ‘strong induction’.

Claim. If we know that
• 𝑝(1) is true, and
• the fact that 𝑝(𝑘) is true for all 𝑘 < 𝑛 implies that 𝑝(𝑛) is true

then 𝑝(𝑛) is true for all 𝑛 ∈ ℕ.

Proof. Consider the predicate 𝑞(𝑛) defined as: ‘𝑝(𝑘) is true for all 𝑘 < 𝑛’. Given that 𝑝(1) is true, 𝑞(1)
is trivially true since there are no 𝑘 below 1. Since 𝑞(𝑛) ⟹ 𝑞(𝑛 + 1), we can use the induction
axiom, showing that 𝑞(𝑛) is true for all 𝑛, so 𝑝(𝑛) is true for all 𝑛.

This provides a very useful alternative way of looking at induction. Instead of just considering a
process from 𝑛 to 𝑛+1, we can inject an inductive viewpoint into any proof. When proving something
on the natural numbers, we can always assume that the hypothesis is true for smaller 𝑛 than what
we are currently using. This allows us to write very powerful proofs because in the general case we
are allowed to refer back to other smaller cases—but not just 𝑛 − 1, any 𝑘 less than 𝑛.
We may rewrite the principle of strong induction in the following ways:

(i) If 𝑝(𝑛) is false for some 𝑛, there must be some 𝑚 where 𝑝(𝑚) is false and 𝑝(𝑘) is true for all
𝑘 < 𝑚. In other words, if a counterexample exists, there must exist a minimal counterexample.

(ii) If 𝑝(𝑛) is true for some 𝑛, then there is a smallest 𝑛 where 𝑝(𝑛). In other words, if an example
exists, there must exist a minimal example. This is known as the ‘well-ordering principle’.
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2.3 The integers and rationals
The integersℤ consist of the set of natural numbersℕ, their additive inverses, and an identity element
denoted 0. In other words, (ℤ, +) is the group generated by ℕ and the addition operator: ℤ = ⟨ℕ⟩.
We define operations in a familiar way, for example 𝑎 < 𝑏 ⟺ ∃𝑐 ∈ ℕ s.t. 𝑎 + 𝑐 = 𝑏.
The rational numbers ℚ consist of all expressions denoted 𝑎

𝑏
where 𝑎, 𝑏 ∈ ℤ with 𝑏 ≠ 0; with 𝑎

𝑏
regarded as the same as 𝑐

𝑑
if and only if 𝑎𝑑 = 𝑏𝑐. We define, for example,

𝑎
𝑏 +

𝑐
𝑑 = 𝑎𝑑 + 𝑏𝑐

𝑏𝑑
Note that is important to verify with each operation that it does not matter how you write a given
rational number. For example, 1

2
+ 1

2
= 2

4
+ 3

6
. This means that operations such as 𝑎

𝑏
↦ 𝑎3

𝑏2
cannot

exist because then it would depend on how you write the rational number.

2.4 Primes

Proposition. Every 𝑛 ≥ 2 is expressible as a product of primes.

Proof. We use induction on an integer 𝑛, starting at 2, a trivial case. Given 𝑛 > 2, we have two cases:
• 𝑛 is prime. Therefore, 𝑛 is a product of primes as required.
• 𝑛 is composite. We know that 𝑛 can be split into two factors, denoted here as 𝑎, 𝑏. Using
(strong) induction, we know that because both 𝑎 and 𝑏 are smaller than 𝑛, they are expressible
as a product of primes. We simply multiply these products together to express 𝑛 as a product
of primes.

Proposition. There are infinitely many primes.

Proof. Assume there exists a largest prime. Then, the list of primes is𝑝1, 𝑝2⋯𝑝𝑘. Let𝑛 = 𝑝1𝑝2⋯𝑝𝑘+
1. Then 𝑛 has no prime factor. This is a contradiction immediately because we know that every num-
ber greater than two has a factorisation, but this doesn’t.

We want to prove that prime factorisation is unique (up to the ordering). We need that 𝑝 ∣ 𝑎𝑏 ⟹
𝑝 ∣ 𝑎 ∨ 𝑝 ∣ 𝑏. However, this is hard to answer—𝑝 is defined in terms of what divides it, not what it
divides. This is the reverse of its definition, so we need to prove it in a more round-about way.

2.5 Highest common factors
For 𝑎, 𝑏 ∈ ℕ, a number 𝑐 ∈ ℕ is defined to be the highest common factor if:

• 𝑐 ∣ 𝑎 and 𝑐 ∣ 𝑏, and
• For all other factors 𝑑 (𝑑 ∣ 𝑎 and 𝑑 ∣ 𝑏), we have that 𝑑 ∣ 𝑐.
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The second point implies that it is the highest common factor, but it is actually slightly stronger. Note
that, for example, if a pair’s common factors were 1, 2, 3, 4, 6 then the numbers would not have a
highest common factor, because 4 does not divide 6.

2.6 The division algorithm
The division algorithm allows us to write any number 𝑛 ∈ ℕ as a multiple 𝑞 ∈ ℕ of 𝑘 ∈ ℕwith some
remainder 𝑟 ∈ ℕ such that 0 ≤ 𝑟 < 𝑘; this can be shortened to 𝑛 = 𝑞𝑘 + 𝑟. We begin by writing 1 in
this form: 1 = 0𝑘 + 1. Inductively, 𝑛 can be written as:

𝑛 = (𝑛 − 1) + 1 = 𝑞0𝑘 + 𝑟0 + 1

where 𝑞0 and 𝑟0 are the results of 𝑞 and 𝑟 for 𝑛 − 1. Note that we have two cases:
• If 𝑟0 + 1 < 𝑘: the result is simply 𝑛 = 𝑞0𝑘 + (𝑟0 + 1)
• Else (𝑟0 + 1 = 𝑘): the result is 𝑛 = (𝑞0 + 1)𝑘 + 0

2.7 Euclid’s algorithm
We can find the highest common factor of two natural numbers 𝑎 and 𝑏 (without loss of generality,
we assume that 𝑎 ≤ 𝑏). This process is known as Euclid’s algorithm.

• Write 𝑎 as some multiple 𝑞1 of 𝑏, with remainder 𝑟1.
• Write 𝑏 as some multiple 𝑞2 of 𝑟1, with remainder 𝑟2.
• Write 𝑟1 as some multiple 𝑞3 of 𝑟2, with remainder 𝑟3.
• Continue until 𝑟𝑛+1 = 0. Then, 𝑟𝑛 is the highest common factor of 𝑎 and 𝑏. We know that the
algorithm terminates because 𝑟𝑘 < 𝑟𝑘−1 so it will terminate in at most 𝑏 steps.

We now prove that the algorithm works.

Proof. We need to prove that it is a common factor and then that it divides all other common factors.

• On the last line of the algorithm, we have 𝑟𝑛−1 = 𝑞𝑛+1𝑟𝑛 + 0, so we know that 𝑟𝑛 ∣ 𝑟𝑛−1. On the
second last line, we have 𝑟𝑛−2 = 𝑞𝑛𝑟𝑛−1 + 𝑟𝑛, but 𝑟𝑛 divides 𝑟𝑛−1, so 𝑟𝑛 must divide 𝑟𝑛−2. We can
continue this logic up to the start of the algorithm, where we can see that 𝑟𝑛 ∣ 𝑎 and 𝑟𝑛 ∣ 𝑏. So
𝑟𝑛 is a common factor of 𝑎 and 𝑏.

• Given some other common factor 𝑑 ≠ 𝑟𝑛, we can look at the first line of the algorithm to see
that 𝑑 ∣ 𝑟1. Using this, we can use the next line to see that 𝑑 ∣ 𝑟2. Continuing to the last line, we
have 𝑑 ∣ 𝑟𝑛.

So 𝑟𝑛 is the highest common factor of 𝑎 and 𝑏. Therefore, the highest common factor exists and is
unique for any natural numbers 𝑎 and 𝑏.

Consider running Euclid’s algorithm on the numbers 87 and 52.

87 = 1 ⋅ 52 + 35
52 = 1 ⋅ 35 + 17
35 = 2 ⋅ 17 + 1
17 = 17 ⋅ 1 + 0
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1 is the highest common factor of 87 and 52. Now, we can write 1 as a linear combination of 87 and
52 by looking at each line of this algorithm in the reverse direction (ignoring the bottom line).

1 = 35 − 2 ⋅ 17
= 35 − 2 ⋅ (52 − 1 ⋅ 35)
= −2 ⋅ 52 + 3 ⋅ 35
= −2 ⋅ 52 + 3 ⋅ (87 − 1 ⋅ 52)
= 3 ⋅ 87 − 5 ⋅ 52

Each two lines of this equation represents one line on Euclid’s algorithm. We end up with a linear
combination of the two input numbers. We can prove that this linear combination exists in the
general case.

Theorem. Let 𝑎, 𝑏 ∈ ℕ. Then there exist some 𝑥, 𝑦 ∈ ℤ such that 𝑥𝑎 + 𝑦𝑏 = HCF(𝑎, 𝑏).

Proof. Run Euclid’s algorithm on 𝑎 and 𝑏, and let the output be 𝑟𝑛. Then we have 𝑟𝑛 = 𝑥𝑟𝑛−1 + 𝑦𝑟𝑛−2
for some 𝑥, 𝑦 ∈ ℤ. So, 𝑟𝑛 can be written as a linear combination of 𝑟𝑛−1 and 𝑟𝑛−2. Also, from the
previous line we know that 𝑟𝑛−1 = 𝑥𝑟𝑛−2 + 𝑦𝑟𝑛−3 for some other 𝑥 and 𝑦. So we can rewrite 𝑟𝑛 as a
linear combination of 𝑟𝑛−2 and 𝑟𝑛−3. Inductively, we can rewrite 𝑟𝑛 as a linear combination of 𝑎 and
𝑏 by moving up the lines of the algorithm.

We can also make an alternate proof without using Euclid’s algorithm. Note that this algorithm does
not show how to generate this linear combination, it just shows that one exists.

Alternate Proof. Let ℎ be the least positive linear combination of 𝑎 and 𝑏. We want to prove that
ℎ = HCF(𝑎, 𝑏).

• Assume that there exists some common factor 𝑑 of 𝑎 and 𝑏, so that 𝑑 ∣ 𝑎 and 𝑑 ∣ 𝑏. Then for
some 𝑥 and 𝑦, 𝑑 ∣ (𝑥𝑎 + 𝑦𝑏). So 𝑑 ∣ ℎ.

• Suppose ℎ does not divide 𝑎. Then 𝑎 = 𝑞ℎ + 𝑟 where 𝑞 is the quotient and 𝑟 is the remainder
(𝑟 ≠ 0). Then 𝑟 = 𝑎−𝑞ℎ = 𝑎−𝑞(𝑥𝑎+𝑦𝑏) for some integers 𝑥 and 𝑦. So 𝑟 is a linear combination
of 𝑎 and 𝑏. But this is a contradiction because we said that ℎwas the smallest one. So ℎ divides
𝑎.

Therefore ℎ is the highest common factor.

2.8 Linear Diophantine equations
Suppose 𝑎, 𝑏 and 𝑐 are natural numbers. When canwe solve 𝑎𝑥+𝑏𝑦 = 𝑐 for 𝑥, 𝑦 ∈ ℤ? Well, by looking
at the previous theorem, we might guess that 𝑐must be some multiple of the highest common factor
of 𝑎 and 𝑏. This can be proven in the general case.

Corollary (Bézout’s Theorem). Let 𝑎, 𝑏, 𝑐 ∈ ℕ. Then 𝑎𝑥 + 𝑏𝑦 = 𝑐 where 𝑥, 𝑦 ∈ ℤ has a
solution if and only if HCF(𝑎, 𝑏) ∣ 𝑐.

Proof. Let ℎ = HCF(𝑎, 𝑏). We must prove this bi-implication in both directions.
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• First, let us assume that 𝑎𝑥 + 𝑏𝑦 = 𝑐 has a solution for some integers 𝑥 and 𝑦. Since ℎ ∣ 𝑎 and
ℎ ∣ 𝑏 then ℎ ∣ (𝑎𝑥 + 𝑏𝑦) so ℎ ∣ 𝑐.

• Conversely, we know that ℎ = 𝑎𝑥+𝑏𝑦 for some 𝑥 and 𝑦 by the above theorem. We canmultiply
both sides by the integer 𝑐/ℎ (this is an integer because ℎ ∣ 𝑐). Then we have an expression for
𝑐 as a linear combination of 𝑎 and 𝑏 as required.

2.9 The fundamental theorem of arithmetic

Lemma. Let 𝑝 be a prime, let 𝑎, 𝑏 ∈ ℕ. Then 𝑝 ∣ 𝑎𝑏 implies 𝑝 ∣ 𝑎 or 𝑝 ∣ 𝑏.

Proof. Let 𝑝 ∣ 𝑎𝑏. Then we have two cases, either 𝑝 divides 𝑎 or it does not divide 𝑎. If it does, our
statement is trivially true. Otherwise, we want to prove that 𝑝 divides 𝑏.
Now HCF(𝑝, 𝑎) = 1 as 𝑝 is a prime, and it does not divide 𝑎. So 1 can be written as some linear
combination of 𝑝 and 𝑎: 𝑝𝑥 + 𝑎𝑦 = 1 for some 𝑥, 𝑦 ∈ ℤ.
Now we can multiply both sides by 𝑏, giving 𝑝𝑏𝑥 + 𝑎𝑏𝑦 = 𝑏. Since 𝑝 divides 𝑎𝑏, 𝑝 must divide the
left hand side. So 𝑝 divides 𝑏.

Note that we started with a kind of ‘negative’ statement: ‘𝑝 does not divide 𝑎’; this told us that we
cannot do something (namely, factorise it). We turned it into a ‘positive’ statement: ‘𝑝𝑥+𝑎𝑦 = 1’; this
allows us to rearrange to find out information about these variables. Converting ‘negative’ statements
to ‘positive’ statements is a useful tool in making proofs.

Theorem (the fundamental theorem of arithmetic). Every 𝑛 ∈ ℕ is uniquely expressible as
a product of primes.

Proof. Note that we have already proven that a prime factorisation is possible in Section 3.4; we just
need to prove uniqueness of a factorisation (at least, down to its order). We will use induction on
some integer 𝑛 that we wish to factorise. Clearly the theorem is true for 𝑛 = 1 (assuming empty
products are valid) and 𝑛 = 2.
So given that 𝑛 > 2 we suppose that there exist two possible factorisations:

𝑛 = 𝑝1𝑝2⋯𝑝𝑘 = 𝑞1𝑞2⋯𝑞𝑙

We want to prove that 𝑘 = 𝑙 and that (after reordering) 𝑝𝑖 = 𝑞𝑖 for all valid 𝑖.
We know that 𝑝1 ∣ 𝑛, so 𝑝1 ∣ (𝑞1⋯𝑞𝑙). So there must exist some 𝑖 where 𝑝1 ∣ 𝑞𝑖. But since 𝑞𝑖 is prime,
𝑝1 = 𝑞𝑖. Let us reorder the list such that 𝑞𝑖 is moved to the front, so that 𝑝1 = 𝑞1.

𝑛 = 𝑝1𝑝2⋯𝑝𝑘 = 𝑝1𝑞2⋯𝑞𝑙

Now, we divide the entire equation by 𝑝1 to give
𝑛
𝑝1

= 𝑝2⋯𝑝𝑘 = 𝑞2⋯𝑞𝑙
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The integer 𝑛
𝑝1
is smaller than 𝑛, so we can use induction to assume that its factorisation is unique.

Therefore
[𝑝2, 𝑝3⋯𝑝𝑘] = [𝑞2, 𝑞3⋯𝑞𝑙]

So the prime factorisation of 𝑛 is unique.

The common factors of two numbers 𝑚 = 𝑝𝑎11 ⋯𝑝𝑎𝑘𝑘 and 𝑛 = 𝑝𝑏11 ⋯𝑝𝑏𝑘𝑘 where 𝑎 and 𝑏 are zero
or above is given by 𝑝𝑐11 ⋯𝑝𝑐𝑘𝑘 where 𝑐𝑖 ≤ min(𝑎𝑖, 𝑏𝑖) So the highest common factor is given by
𝑐𝑖 = min(𝑎𝑖, 𝑏𝑖).
The commonmultiples of those two numbers is given by 𝑑𝑖 ≥ max(𝑎𝑖, 𝑏𝑖). So analogously the lowest
common multiple is given by 𝑑𝑖 = max(𝑎𝑖, 𝑏𝑖).
We have the interesting property that HCF(𝑚, 𝑛)LCM(𝑚, 𝑛) = 𝑚𝑛. This is true because any term 𝑝𝑖
is given by 𝑝min(𝑎𝑖 ,𝑏𝑖)𝑖 𝑝max(𝑎𝑖 ,𝑏𝑖)𝑖 = 𝑝𝑎𝑖+𝑏𝑖𝑖 .

3 Modular arithmetic
3.1 Introduction
In modular arithmetic, we need to prove that things like addition and multiplication are valid. In
order to do this, we need to show that if 𝑎 ≡ 𝑎′ mod 𝑛 and 𝑏 ≡ 𝑏′ mod 𝑛 then, for example,
𝑎𝑏 ≡ 𝑎′𝑏′. We can prove these statements trivially by writing 𝑎′ = 𝑎 + 𝑘𝑛 where 𝑘 is some integer,
then evaluating the left and right hand sides in ℤ.
Many rules of arithmetic are inherited from ℤ; for example, addition is commutative. This is easy to
realise: to prove that 𝑎+ 𝑏 = 𝑏 + 𝑎 in ℤ𝑛 it is sufficient to prove the statement is true in the whole of
ℤ.
As another example, we can transform the unique prime factorisation lemma into ℤ𝑝. In ℤ𝑝 where
𝑝 is prime,

𝑎𝑏 = 0 ⟹ (𝑎 = 0) ∨ (𝑏 = 0)
In general, ℤ𝑝 where 𝑝 is prime is a very well behaved and convenient-to-use subset of ℤ.

3.2 Inverses
For any 𝑎, 𝑏 ∈ ℤ𝑛, 𝑏 is an inverse of 𝑎 if 𝑎𝑏 = 1. Note that unlike in group theory, it is not necessarily
the case that all elements will have inverses. For example, in ℤ10, the elements 3 and 7 are inverses,
but 4 has no inverse. Note that:

• Invertible integers are cancellable. For example, 𝑎𝑏 = 𝑎𝑐 ⟹ 𝑏 = 𝑐 if 𝑎 is invertible (by
left-multiplying by its inverse).

• In general, you cannot simply cancel an integer multiple in the realm of modular arithmetic.
For example 4 ⋅ 5 = 2 ⋅ 5 does not imply 4 = 2.

• Invertible numbers are also called ‘units’.
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3.3 Invertibility

Proposition. Let 𝑛 ≥ 2. Then every 𝑎 ≢ 0 (𝑛) is invertible modulo 𝑛 if and only if (𝑎, 𝑛) = 1.
Note that the parenthesis notation means the highest common factor of the parameters. In
particular, if 𝑛 is prime, then all 1 ≤ 𝑎 < 𝑛 are invertible.

Proof. This first proof uses Euclid’s algorithm. If 𝑎 and 𝑛 satisfy (𝑎, 𝑛) = 1 then 𝑎𝑥+𝑛𝑦 = 1 for some
𝑥, 𝑦 ∈ ℤ. So 𝑎𝑥 = 1 − 𝑛𝑦, so 𝑎𝑥 ≡ 1 (𝑛). So 𝑥 is the inverse of 𝑎.

Proof. This alternate proof only works for 𝑛 = 𝑝 where 𝑝 is a prime; our whole proof lies entirely
withinℤ𝑝. Consider 0𝑎, 1𝑎, 2𝑎,⋯ , (𝑝−1)𝑎. Take two numbers 𝑖, 𝑗 between 0 and 𝑝−1, then consider
the condition 𝑖𝑎 = 𝑗𝑎. This implies that (𝑖−𝑗)𝑎 = 0, but 𝑎 ≠ 0, so 𝑖 = 𝑗. So this list 0𝑎, 1𝑎,⋯ contains
all distinct elements, all of whichmust be between 0 and𝑝−1. Therefore, by the pigeonhole principle,
one of these elements must be equal to 1. Therefore there exists an inverse for 𝑎.

3.4 Euler’s totient function

Definition. Let 𝜑(𝑛) be the amount of natural numbers less than or equal to 𝑛 that are
coprime to 𝑛.

Here are some examples.

• If 𝑝 is prime, then 𝜑(𝑝) = 𝑝 − 1 since all naturals less than 𝑝 are coprime to it.
• 𝜑(𝑝2) = 𝑝2 − 𝑝 because there are 𝑝 numbers in this range who shares the common factor 𝑝
with 𝑝2, specifically the numbers 𝑝, 2𝑝, 3𝑝,⋯ , (𝑝 − 1)𝑝, 𝑝2.

• If 𝑎, 𝑏 are coprime, 𝜑(𝑎𝑏) = 𝑎𝑏 − 𝑎 − 𝑏 + 1. There are 𝑎𝑏 numbers in total to pick from. There
are 𝑎 multiples of 𝑏 and 𝑏 multiples of 𝑎, and since we discounted 𝑎𝑏 itself twice we need to
count it again. Note that 𝜑(𝑎𝑏) = 𝜑(𝑎)𝜑(𝑏).

3.5 Fermat’s little theorem and Fermat–Euler theorem

Theorem. Let 𝑝 be a prime. Then in ℤ𝑝, 𝑎 ≠ 0 ⟹ 𝑎𝑝−1 = 1.

This is actually a special case of the following theorem:

Theorem (Fermat–Euler Theorem). Let 𝑛 ≥ 2. Then in ℤ𝑛, any unit 𝑎 satisfies 𝑎𝜑(𝑛) = 1.

Proof. Let the set of unitsℤ𝑛 ⊃ 𝑋 = {𝑥1, 𝑥2,⋯ , 𝑥𝜑(𝑛)}. Considermultiplying each unit by 𝑎. We have
𝑌 = {𝑎𝑥1, 𝑎𝑥2,⋯ , 𝑎𝑥𝜑(𝑛)}. Since 𝑎 is invertible, this set is comprised of distinct elements. Further,
since they are all products of units, they are all units. So 𝑌 is a list of 𝜑(𝑛) distinct units, so this list
must be equal to 𝑋 . Now, since the lists are the same, the product of all their elements must be the
same. So ∏𝑋 = ∏𝑌 = 𝑎𝜑(𝑛)∏𝑋 . We can cancel the factor of ∏𝑋 because it is a product of
invertibles, leaving 1 = 𝑎𝜑(𝑛) as required.
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If alternatively we wanted to prove this just for 𝑝 prime, then we could replace 𝜑(𝑛) with 𝑝 − 1, and
∏𝑋 with (𝑝 − 1)!.

3.6 Square roots of one

Lemma. Let 𝑝 be prime. Then in ℤ𝑝, 𝑥2 = 1 has solutions 1 and −1 only.

Note. In ℤ8, for example, we have 12 = 32 = 52 = 72 = 1, so obviously this does not hold in the
general case.

Proof. 𝑥2 = 1 implies that (𝑥 − 1)(𝑥 + 1) = 0. Because of the 𝑝 ∣ 𝑎𝑏 ⟹ (𝑝 ∣ 𝑎) ∨ (𝑝 ∣ 𝑏) lemma, we
know that (𝑥 − 1) = 0 or (𝑥 + 1) = 0, so −1 and 1 are the only solutions.

3.7 Square roots of negative one

Theorem (Wilson’s Theorem). Let 𝑝 be prime. Then (𝑝 − 1)! ≡ −1 (𝑝).

Proof. Since this is obviously true for 𝑝 = 2, we will suppose that 𝑝 > 2. In ℤ𝑝, let us consider the list
1, 2, 3⋯ (𝑝−1). We can pair each𝑎with its inverse𝑎−1 for all𝑎 ≠ 𝑎−1. Note that𝑎 = 𝑎−1 ⟺ 𝑎2 = 1
so in this case 𝑎 = 1 or 𝑎 = −1. So let us now multiply each element together, to get

(𝑝 − 1)! = (𝑎𝑎−1)(𝑏𝑏−1)⋯1 ⋅ −1 = (1) ⋅ (1)⋯1 ⋅ −1 = −1

Proposition. Let 𝑝 > 2 be prime. Then −1 is a square number modulo 𝑝 if and only if
𝑝 ≡ 1 (4).

Proof. If 𝑝 > 2 then 𝑝 is odd. There are therefore two cases, either 𝑝 ≡ 1 or 𝑝 ≡ 3 modulo 4. Each
case is proven individually.

• (𝑝 = 4𝑘 + 3) Suppose that 𝑥2 = −1 in ℤ𝑝. The only thing we know about powers in modular
arithmetic is Fermat’s Little Theorem, so we will have to use this. So, 𝑥𝑝−1 = 𝑥4𝑘+2 = 1.
Therefore, (𝑥2)2𝑘+1 = 1. But we know that 𝑥2 = −1, and we raise this −1 to an odd power,
which is −1. So this is a contradiction.

• (𝑝 = 4𝑘 + 1) By Wilson’s Theorem, we know that (4𝑘)! = −1. We intend to show that this
is a square number in the world of ℤ𝑝. We will compare the termwise expansion of (4𝑘)! and
[(2𝑘)!]2 on consecutive lines.

(4𝑘)! = 1 ⋅ 2 ⋅ 3⋯ (2𝑘) ⋅ (2𝑘 + 1) ⋅ (2𝑘 + 2) ⋯ (4𝑘 − 1) ⋅ (4𝑘)
[(2𝑘)!]2 = 1 ⋅ 2 ⋅ 3⋯ (2𝑘) ⋅ 1 ⋅ 2 ⋯ (2𝑘 − 1) ⋅ (2𝑘)

By writing each term as an equivalent negative:

= 1 ⋅ 2 ⋅ 3⋯ (2𝑘) ⋅ (−4𝑘) ⋅ (−4𝑘 + 1)⋯ (−2𝑘 − 2) ⋅ (−2𝑘 − 1)
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Extracting out the negatives:

= 1 ⋅ 2 ⋅ 3⋯ (2𝑘) ⋅ (4𝑘) ⋅ (4𝑘 − 1) ⋯ (2𝑘 + 2) ⋅ (2𝑘 + 1) ⋅ (−1)2𝑘

which is equal to the first line by rearranging. So [(2𝑘)!]2 = (4𝑘)! = −1. So −1 is a square
number modulo 𝑝.

3.8 Solving congruence equations
Let us try to solve the equation 7𝑥 ≡ 4 (30). We take a two-phase approach: first, we will find a single
solution, and then we will find all of the other solutions.

Since 7 and 30 are coprime, we can use Euclid’s algorithm to find a way of expressing 1 in terms of 7
and 30, in particular 13 ⋅ 7 − 3 ⋅ 30 = 1. This allows us to solve 7𝑦 ≡ 1 (30), by setting 𝑦 = 13. Then,
of course, we can multiply both sides by 4: 7𝑦 ⋅ 4 ≡ 4 (30), so 𝑥 = 𝑦 ⋅ 4 = 13 ⋅ 4 = 22.
We can now find other solutions (apart from trivially adding 30𝑘). Suppose that there exists some
other solution 𝑥′, i.e. 7𝑥′ ≡ 4 (30). Then 7𝑥 ≡ 7𝑥′ (30). As 7 is invertible modulo 30, we can simply
multiply by the inverse of 7 to give 𝑥 ≡ 𝑥′ (30). So 𝑥 is unique modulo 30. Alternatively, we could
solve the equation without any of this working out by noticing that 7 is invertible! However, this is
not very likely to happen in the general case, since it requires that the coefficient of 𝑥 is coprime to
the modulus.

Now, let’s try a different equation, 10𝑥 = 12 (34). Since 10 is not invertible, we can’t do quite the
same thing as above. We can’t also just divide the whole thing by 2, there isn’t a rule for that in
general. We can, however, move into ℤ and manipulate the expression there. 10𝑥 = 12 + 34𝑦 for
some 𝑦 ∈ ℤ, so we can divide the equation by 2 to get 5𝑥 = 6 + 17𝑦, so 5𝑥 = 6 (17) and we can solve
from there.

3.9 Chinese remainder theorem
Is there a solution for the simultaneous congruences

𝑥 ≡ 6 (17); 𝑥 ≡ 2 (19)

17 and 19 are coprime, so congruence mod 17 and congruence mod 19 are independent of each other.
How about

𝑥 ≡ 6 (34); 𝑥 ≡ 11 (36)
In this instance, there is obviously no solution; should 𝑥 be even or odd? We can see that, the smallest
amount we can adjust 𝑥 by in one equation while retaining congruence in the other equation is
HCF(34, 36), which is 2.

Theorem. Let 𝑢, 𝑣 be coprime. Then for any 𝑎, 𝑏, there exists a value 𝑥 such that

𝑥 ≡ 𝑎 (𝑢); 𝑥 ≡ 𝑏 (𝑣)

and that this value is unique modulo 𝑢𝑣.
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Proof. We first prove existence of such an 𝑥. By Euclid’s Algorithm, we have 𝑠𝑢 + 𝑡𝑣 = 1 for some
integers 𝑠, 𝑡. Note that therefore:

𝑠𝑢 ≡ 0 (𝑢); 𝑡𝑣 ≡ 0 (𝑣); 𝑠𝑢 ≡ 1 (𝑣); 𝑡𝑣 ≡ 1 (𝑢);

Therefore we canmake a linear combination of 𝑠𝑢 and 𝑡𝑣 that is the required size in each congruence,
specifically

𝑥 = (𝑠𝑢)𝑏 + (𝑡𝑣)𝑎
Nowwe prove that this value 𝑥 is uniquemodulo 𝑢𝑣. Suppose there was some other solution 𝑥′. Also,
𝑥′ ≡ 𝑥 (𝑢) and 𝑥′ ≡ 𝑥 (𝑣). So we have 𝑢 ∣ (𝑥′−𝑥) and 𝑣 ∣ (𝑥′−𝑥) but as 𝑢 and 𝑏 are coprime we have
𝑢𝑣 ∣ (𝑥′ − 𝑥). So 𝑥 is unique modulo 𝑢𝑣.

3.10 RSA encryption
Apractical use of number theory is RSA encryption, which is an asymmetric encryption protocol that
allows encryption by using a public and private key pair. We will begin by first choosing two large
distinct primes 𝑝 and 𝑞. By large, we mean primes that are hundreds of digits long; in practice, these
primes are between around 512 bits and 2048 bits long when represented in binary. Let 𝑛 = 𝑝𝑞, and
pick a ‘coding exponent’ 𝑒. Our message that we want to sendmust be an element of ℤ𝑛, so if it is not
representable in this form we must break it apart into several smaller messages, or perhaps use RSA
to share some kind of small symmetric key for another encryption algorithm. Let this message be 𝑥,
so 𝑥 < 𝑛.
To encode 𝑥, we raise it to the power 𝑒 in ℤ𝑛. To efficiently compute large powers of 𝑥, we can use a
repeated squaring technique. For example, we can find 𝑥, 𝑥2, 𝑥4, 𝑥8, 𝑥16 through repeated squaring,
and then for example we can calculate 𝑥19 = 𝑥16𝑥2𝑥1.
To decode 𝑥𝑒, we ideally want some number 𝑑 such that (𝑥𝑒)𝑑 = 𝑥. By the Fermat–Euler Theorem,
we have 𝑥𝜑(𝑛) = 1, so clearly 𝑥𝑘𝜑(𝑛)+1 = 𝑥. In other words, we want 𝑒𝑑 ≡ 1 mod 𝜑(𝑛). By running
Euclid’s algorithm on 𝑒 and 𝜑(𝑛), we can find such a 𝑑. Note that this requires 𝑒 and 𝜑(𝑛) to be
coprime; in practice we would choose 𝑒 after we have chosen 𝑛 such that this is the case.
Now, we can see that to encode a message, all you need is 𝑛 and 𝑒. However, to decode, you need to
also know 𝑑, which means you need to know 𝜑(𝑛) = 𝜑(𝑝𝑞) = 𝑝𝑞−𝑝−𝑞+1which requires that you
know the original 𝑝 and 𝑞. If we pick sufficiently large 𝑝 and 𝑞, our 𝑛 will be so big as to be almost
impossible to factorise in any decent length of time. So we can publish 𝑛 and 𝑒 as our public key, and
anyone may use these numbers to encrypt a message that then only we can decode.

4 The reals
4.1 Motivation for the reals
Why do we need the real numbers in the first place? Well, we introduce new sets of numbers when
there are equations thatwe cannot solve using our current number system. For example, the equation
𝑥 + 2 = 0 is not solvable in ℕ, so we constructed ℤ. Then we could not solve equations like 2𝑥 = 3,
so we created the rationals, ℚ. Now, we cannot solve equations such as 𝑥2 = 2, so we must create a
new set of numbers that contains this solution.
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Proposition. There does not exist a 𝑞 ∈ ℚ such that 𝑞2 = 2. Note that in this proposition we
make no assumption that 𝑞2 = 2 is solvable, or that a solution if one exists does not lie within
ℚ; we simply state that confined to the realm of ℚ the equation is unsolvable.

Proof 1. Suppose that such a 𝑞 ∈ ℚ exists, such that 𝑞2 = 2. Without loss of generality, we will
assume that 𝑞 > 0 because (−𝑞)2 = 𝑞2. So let 𝑞 be written as 𝑎/𝑏 where 𝑎, 𝑏 ∈ ℕ. Then 𝑎2/𝑏2 = 2,
so 𝑎2 = 2𝑏2. If we factorise each side as a product of primes, the exponent of the prime 2 on the
left hand side must be even, but on the right hand side it must be odd. This contradicts the unique
factorisation of natural numbers. So such a 𝑞 does not exist.

Proof 2. Suppose that there exists some 𝑞 ∈ ℚ written similarly to above as 𝑎/𝑏. Note that for any
𝑐, 𝑑 ∈ ℤ, 𝑐𝑞 + 𝑑 is of the form 𝑒/𝑏 for some integer 𝑒. Therefore, if 𝑐𝑞 + 𝑑 > 0 then 𝑐𝑞 + 𝑑 ≥ 1/𝑏.
Now, note that 0 < (𝑞−1) < 1, so for a suitably large 𝑛, we have 0 < (𝑞−1)𝑛 < 1/𝑏. However, (𝑞−1)𝑛
is of the form 𝑐𝑞 + 𝑑 because 𝑞2 = 1 so we can eliminate all exponents. This is a contradiction so
such a 𝑞 does not exist.

We can see from the proofs above that ℚ has a ‘gap’ at √2. How can we express this fact without
mentioning ℝ? We can’t just say plainly that √2 ∉ ℚ because as far as we know from ℚ, there is no
reason to assume that such a number called √2 even exists! We need to find a way to express the
concept of √2 in the language of ℚ. One way to do this is by creating sone set 𝑆 = {𝑞 ∈ ℚ ∶ 𝑞2 < 2}.
Then we can write down some upper bounds for this set. For example, 2 is a trivial upper bound, as
is 1.5, and as is 1.42. In fact, we can continue making smaller and smaller upper bounds. We can see
therefore that there exists no least upper bound in ℚ.

4.2 Axioms of the reals
We define the reals as follows: the reals are a set written ℝ with elements 0 and 1 with 0 ≠ 1; with
operations + and ⋅; and an ordering <; such that:
(i) + is commutative, associative, has identity 0, and there are inverses for all elements;

(ii) ⋅ is commutative, associative, has identity 1, and there are inverses for all nonzero elements;
(iii) ⋅ is distributive over +;
(iv) for all 𝑎 and 𝑏 in ℝ, exactly one of 𝑎 < 𝑏, 𝑎 = 𝑏 and 𝑎 > 𝑏 are true, and that 𝑎 < 𝑏 and 𝑏 < 𝑐

implies 𝑎 < 𝑐;
(v) for all 𝑎, 𝑏, 𝑐 ∈ ℝ, 𝑎 < 𝑏 implies 𝑎 + 𝑐 < 𝑏 + 𝑐, and 𝑎 < 𝑏 implies 𝑎𝑐 < 𝑏𝑐 when 𝑐 > 0; and
(vi) for any set 𝑆 of reals that is non-empty and bounded above, 𝑆 has a least upper bound.
There are some notable immediate remarks about the definitions of the reals.

• We can contain the rationals inside the reals: ℚ ⊂ ℝ
• The least upper bound axiom is false in ℚ, which is why it’s so important in ℝ.
• Why did we specify ‘non-empty’ and ‘bounded above’ in the least upper bound axiom? Of
course, if a set is not bounded above, then it has no upper bound, so clearly it can have no least
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upper bound. If a set is empty, then every real is an upper bound for this set, and as there is no
least real number, there is no least upper bound.

• It is possible to construct ℝ out of ℚ, and check that the above axioms hold. However, this is
a rare example where the construction of ℝ is complicated and irrelevant, so it is not covered
here.

The reals do not contain infinitely big or infinitesimally small elements.

Proposition (the axiom of Archimedes). ℕ is not bounded above in ℝ.

Proof. If there were some upper bound 𝑐 = supℕ, then 𝑐 − 1 is clearly not an upper bound for ℕ. So
there exists some natural number 𝑛 such that 𝑛 > 𝑐−1. But then clearly 𝑛+1 ∈ ℕ > 𝑐 contradicting
the existence of this upper bound.

Corollary. For each 𝑡 ∈ ℝ > 0, ∃𝑛 ∈ ℕ such that 1
𝑛
< 𝑡.

Proof. We have some 𝑛 ∈ ℕ with 𝑛 > 1
𝑡
by the above proposition. So 1

𝑛
< 𝑡.

4.3 Examples of sets and least upper bounds
Note that a common way to write ‘least upper bound’ is the word supremum, denoted sup 𝑆.
(i) Let 𝑆 = {𝑥 ∈ ℝ ∶ 0 ≤ 𝑥 ≤ 1} = [0, 1]. The least upper bound of 𝑆 is 1, because:

• 1 is an upper bound for 𝑆; ∀𝑥 ∈ 𝑆, 𝑥 ≤ 1; and
• Every upper bound 𝑦must have 𝑦 ≥ 1 because 1 ∈ 𝑆.

(ii) Let 𝑆 = {𝑥 ∈ ℝ ∶ 0 < 𝑥 < 1} = (0, 1). sup 𝑆 = 1 because:
• 1 is an upper bound for 𝑆; ∀𝑥 ∈ 𝑆, 𝑥 ≤ 1; and

• No upper bound 𝑐 has 𝑐 < 1. Indeed, certainly 𝑐 > 0 (𝑐 > 1
2
since 1

2
∈ 𝑆). So if 𝑐 < 1, then

0 < 𝑐 < 1, so the number 1+𝑐
2
∈ 𝑆 and is larger than 𝑐, so it is not an upper bound.

(iii) Let 𝑆 = {1 − 1
𝑛
∶ 𝑛 ∈ ℕ}. sup 𝑆 = 1 because:

• 1 is clearly an upper bound.

• Let us suppose 𝑐 < 1 is an upper bound. Then ∀𝑛 ∈ ℕ, 1 − 1
𝑛
< 𝑐 so 1 − 𝑐 < 1

𝑛
. From the

corollary of the Axiom of Archimedes above, this is a contradiction.

Remark. If 𝑆 has a greatest element, then this element is the supremum of the set: sup 𝑆 ∈ 𝑆. But
if 𝑆 does not have a greatest element, then sup 𝑆 ∉ 𝑆. Also, we do not need any kind of ‘greatest
lower bound’ axiom—if 𝑆 is a non-empty, bounded below set of reals, then the set {−𝑥 ∶ 𝑥 ∈ 𝑆}
is non-empty and bounded above, and so has a least upper bound, so 𝑆 has a greatest lower bound
equivalent to its additive inverse. This is commonly called the ‘infimum’, or inf 𝑆.
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Theorem. ∃𝑥 ∈ ℝ with 𝑥2 = 2.

Proof. Let 𝑆 be the set of all real numbers such that 𝑥2 < 2. Of course, it is non-empty (try 𝑥 = 0)
and bounded above (try 𝑥 = 2). So let 𝑐 = sup 𝑆; we want to show that 𝑐2 = 2. We prove this by
eliminating all alternatives; clearly either 𝑐2 < 2, 𝑐2 = 2 or 𝑐2 > 2.

• (𝑐2 < 2) We want to prove that (𝑐 + 𝑡)2 < 2 for some small 𝑡. For 0 < 𝑡 < 1, we have (𝑐 + 𝑡)2 =
𝑐2+2𝑐𝑡+𝑡2 ≤ 𝑐2+5𝑡, since 𝑐 is at most 2, and 𝑡2 is at most 𝑡. So this value is less than 2 for some
suitably small 𝑡, contradicting the least upper bound—we have just shown that (𝑐 + 𝑡) ∈ 𝑆.

• (𝑐2 > 2) We want to prove that (𝑐 − 𝑡)2 > 2 for some small 𝑡. For 0 < 𝑡 < 1, we have (𝑐 − 𝑡)2 =
𝑐2 − 2𝑐𝑡 + 𝑡2 ≥ 𝑐2 − 4𝑡, since 𝑐 is at most 2, and 𝑡2 is at least zero. So this value is greater than
2 for some suitably small 𝑡, contradicting the least upper bound—we have just created a lower
upper bound.

So 𝑐2 = 2.

This same kind of proof works for a lot of real values, for example 𝑛√𝑥 for 𝑛 ∈ ℕ, 𝑥 ∈ ℝ, 𝑥 < 0. Reals
that are not rational are called irrational. This is a negative statement however, so it is better in proofs
to suppose that something is rational, and then show a contradiction.

Also, the rationals are ‘dense’; for any 𝑎, 𝑏 ∈ ℝ, there is another rational between them. We may
assume without loss of generality that they are both non-negative and that 𝑎 < 𝑏. Then pick some
𝑛 ∈ ℕ with 1

𝑛
< 𝑏 − 𝑎. Among the list 0

𝑛
, 1
𝑛
, 2
𝑛
,…, there is a final one that is less than or equal to

𝑎, which we will denote 𝑞
𝑛
(otherwise 𝑎 is an upper bound to this list, contradicting the axiom of

Archimedes). So 𝑎 < 𝑞+1
𝑛

< 𝑏 as required.

The irrationals are also dense; for any reals 𝑎 and 𝑏 with the same conditions above, these exists
some irrational 𝑐 with 𝑎 < 𝑐 < 𝑏. We know that there exists a rational 𝑐 with 𝑎√2 < 𝑐 < 𝑏√2, so
𝑎 < 𝑐

√2
< 𝑏.

4.4 Sequences and limits
How can we ascribe meaning to expressions like this?

1 + 1
2 +

1
4 +

1
8 +…

Certainly, we have a concept of addition, and we can keep adding as many terms as we like, but there
is no implicit definition of an infinite sum from the aforementioned axioms.

A definition thatmakes sensewould involve partial sums 𝑥𝑛 of this infinite series. However, we could
not just say that the partial sums get progressively closer to a value, because then trivially something
like 1

2
, 2
3
, 3
4
, 4
5
,… tends to 107, even though they’re clearly getting closer.

A more accurate definition would be to state that we can get arbitrarily close (within some given 𝜀)
to a ‘limit value’ 𝑐 by taking some amount of terms 𝑛 of this series: 𝑐 − 𝜀 < 𝑥𝑛 < 𝑐+ 𝜀. But this is still
wrong: the sequence 1

2
, 10, 2

3
, 10, 3

4
, 10, 4

5
, 10,… could then tend to 1 even though every other term is

10.
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The best definition would state that the sequence of partial sums would stay within 𝜀 of 𝑐 for all 𝑥𝑘
where 𝑘 ≥ 𝑛 for some 𝑛 ∈ ℕ. In less formal words, for any 𝜀 > 0, 𝑥𝑛 will eventually stay within 𝜀 of
𝑐. Equivalently, ∀𝜀 > 0, ∃𝑁 ∈ ℕ such that ∀𝑛 > 𝑁 we have |𝑥𝑛 − 𝑐| < 𝜀.

(i) Consider the sequence 1
2
, 1

2
+ 1

4
, 1

2
+ 1

4
+ 1

8
,…. This is 𝑥1, 𝑥2, 𝑥3,… where 𝑥𝑛 = 1 − 1

2𝑛
(inductively on 𝑛). We want to show that 𝑥𝑛 tends to 1. Given some 𝜀 > 0, we choose some
𝑁 ∈ ℕ with 𝑁 > 1

𝜀
. Then, for every 𝑛 ≥ 𝑁, |𝑥𝑛 − 1| = 1

2𝑛
≤ 1

𝑛
≤ 1

𝑁
< 𝜀.

(ii) Consider the constant sequence 𝑐, 𝑐, 𝑐, 𝑐,…. We want to show that 𝑥𝑛 → 𝑐. Given some 𝜀 > 0,
we have |𝑥𝑛 − 𝑐| < 𝜀 for all 𝑛; 𝑁 = 1 is the time after which the sequence stays within 𝜀 of 𝑐.

(iii) Consider now 𝑥𝑛 = (−1)𝑛, i.e. −1, 1, −1, 1,…. We want to show that this does not tend to a
limit. Suppose 𝑥𝑛 → 𝑐 as 𝑛 → ∞. We may choose some 𝜀 that acts as a counterexample—for
example, 𝜀 = 1. So ∃𝑁 ∈ ℕ such that ∀𝑛 ≥ 𝑛 we have |𝑥𝑛 − 𝑐| < 1. In particular, |1 − 𝑐| < 1
and |−1 − 𝑐| < 1 so |1 − (−1)| < 2, by the triangle inequality. This is a contradiction.

(iv) The sequence 𝑥𝑛 given by

𝑥𝑛 = {
1
𝑛

𝑛 odd
0 𝑛 even

should tend to zero. Given some 𝜀 > 0, we will choose 𝑁 ∈ ℕ with 1
𝑁
< 𝜀. Then for all 𝑛 ≥ 𝑁,

either 𝑥𝑛 =
1
𝑛
or 0. In either case, |𝑥𝑛 − 0| ≤ 1

𝑛
≤ 1

𝑁
< 𝜀.

We can denote the entirety of a sequence 𝑥1, 𝑥2,… as

(𝑥𝑛) or (𝑥𝑛)∞𝑛=1
For example, ((−1)𝑛)∞𝑛=1 is divergent. This isn’t saying that it goes to infinity, just that it doesn’t
converge. Note also that if 𝑥𝑛 → 𝑐 and 𝑥𝑛 → 𝑑, then 𝑐 = 𝑑. Suppose that 𝑐 ≠ 𝑑. Then pick 𝜀 = |𝑐−𝑑|

2
.

Then ∃𝑁 ∈ ℕ with |𝑥𝑛 − 𝑐| < 𝜀, and ∃𝑀 ∈ ℕ with |𝑥𝑛 − 𝑑| < 𝜀. After the point max(𝑁,𝑀), the
points must be within 𝜀 of both 𝑐 and 𝑑, but as 𝑐 and 𝑑 are 2𝜀 apart this is a contradiction (by the
triangle inequality).

4.5 Series
A sequence given in the form 𝑥1, 𝑥1 + 𝑥2, 𝑥1 + 𝑥2 + 𝑥3,… is called a series. They are often written
∑∞

𝑛=1 𝑥𝑛. The 𝑘th term of the sequence, given by∑𝑘
𝑛=1 𝑥𝑛, is called the 𝑘th partial sum. If the series

converges to some value 𝑐, then we can write∑∞
𝑛=1 𝑥𝑛 = 𝑐. Note that we cannot use this notation to

denote the limit until we know that the limit actually exists. This is just the same as with sequences,
where we cannot write lim𝑛→∞ 𝑥𝑛 until we know that the limit exists.

Limits behave as we would expect. For example, if 𝑥𝑛 ≤ 𝑑 for all 𝑛, and 𝑥𝑛 → 𝑐, then 𝑐 ≤ 𝑑. Suppose
𝑐 > 𝑑. Then we will choose 𝜀 = |𝑐−𝑑|

2
. Then there are no points 𝑥𝑛 within this bound of 𝑐 #.

Proposition. If 𝑥𝑛 → 𝑐 and 𝑦𝑛 → 𝑑, then 𝑥𝑛 + 𝑦𝑛 → 𝑐 + 𝑑.

Proof. Given some 𝜀 > 0, let 𝜁 = 1
2
𝜀. Then, after some term 𝑥𝑁 , |𝑥𝑛 − 𝑐| < 𝜁, and after some term 𝑦𝑀 ,

|𝑦𝑚 − 𝑑| < 𝜁. So for every 𝑛 ≥ max(𝑀,𝑁), by the triangle inequality, |(𝑥𝑛 + 𝑦𝑛) − (𝑐 + 𝑑)| < 2𝜁 = 𝜀
as required.
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This is commonly known as an 𝜀/2 argument. Also, if we had instead not taken any 𝜁 value and just
stuck with 𝜀, it would still be a good proof because we could just have divided 𝜀 at the beginning—it’s
not expected that you completely rewrite the proof to add in this division.

4.6 Testing convergence of a sequence
A sequence 𝑥1, 𝑥2,… is called ‘increasing’ if 𝑥𝑛+1 ≥ 𝑥𝑛 for all 𝑛.

Theorem. If 𝑥1, 𝑥2,… is increasing and bounded above, it converges to a limit.

This is a very important theorem that we will refer back to time and time again.

Note. If we were inℚ, this would not necessarily hold. For example, consider the decimal expansion
of√2.

1, 1.4, 1.41, 1.414, 1.4142,…
They don’t converge to a limit inℚ. So our proof will have to be more rigorous than just ‘they have to
tend to somewhere below the upper bound’; we must use a property thatℝ has thatℚ does not have,
i.e. the least upper bound axiom.

Proof. Let 𝑐 = sup{𝑥1, 𝑥2,… }. We want to prove that 𝑥𝑛 → 𝑐. Given some 𝜀 > 0, there exists some 𝑛
such that 𝑥𝑛 > 𝑐 − 𝜀 (else, 𝑐 − 𝜀 would be a smaller upper bound #). As the sequence is increasing,
all 𝑥𝑘 where 𝑘 > 𝑛 are at least 𝑥𝑛. So |𝑥𝑘 − 𝑐| < 𝜀 as required.

Of course, a decreasing sequence works in an identical way; if it is bounded below then it converges.
More compactly, a bounded monotone sequence is convergent (where monotone means either in-
creasing or decreasing).

Proposition. The harmonic series
∞
∑
𝑛=1

1
𝑛

diverges; the solution to the Basel problem

∞
∑
𝑛=1

1
𝑛2

converges.

There is no closed form for the 𝑛th term of either of these sequences, which is one reason that series
are often more challenging to work with than regular sequences.

Proof. Since the harmonic series is difficult to deal with, we will compare it to a sequence that we
understand easier. Therefore, we show that the first sequence diverges using a comparison test with
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powers of 2, one of the simplest series.

1 + 1
2 +

1
3 +

1
4 +

1
5 +

1
6 +

1
7 +

1
8 +

1
9 +⋯

≥ 1 + 1
2 +

1
4 +

1
4⏟⏟⏟

1
2

+ 1
8 +

1
8 +

1
8 +

1
8⏟⎵⎵⎵⏟⎵⎵⎵⏟

1
2

+ 1
16 +⋯

By inspection, we can see that the harmonic series is larger than the sum of an infinite amount of 1
2
,

so surely it must diverge. More rigorously:

1
3 +

1
4 ≥

1
2

1
5 +

1
6 +

1
7 +

1
8 ≥

1
2

1
2𝑛 + 1 +

1
2𝑛 + 2 +⋯+ 1

2𝑛+1 ≥
2𝑛
2𝑛+1 =

1
2

So the partial sums of the series are unbounded, so the series diverges. For the sum of reciprocals of
squares, we want to do a similar thing because again the only simple sequence we have to work with
is the powers of 2.

1 + 1
22 +

1
32 +

1
42 +

1
52 +

1
62 +

1
72 +

1
82 +

1
92 +⋯

≤ 1 + 1
22 +

1
22⏟⎵⏟⎵⏟

2
22

+ 1
42 +

1
42 +

1
42 +

1
42⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟

4
42

+ 1
82 +

1
82 +⋯

The bottom sequence simplifies to just the sequence 1+ 1
2
+ 1

4
+ 1

8
+⋯ → 2, and the upper sequence

is bounded above by the lower sequence. More rigorously:

1
22 +

1
32 ≤

2
22 =

1
2

1
42 +

1
52 +

1
62 +

1
72 ≤

4
42 =

1
4

1
(2𝑛)2 +

1
(2𝑛 + 1)2 +⋯+ 1

(2𝑛+1 − 1)2 ≤
2𝑛
(2𝑛)2 =

1
2𝑛

So the partial sums are bounded, and hence the series converges by the above theorem.

In fact,∑∞
𝑛=1

1
𝑛2

= 𝜋2

6
. This is proved in the Linear Analysis course in Part II.

4.7 Decimal expansions
What should 0.𝑎1𝑎2𝑎3… mean (where each 𝑎 is a digit from 0 to 9)? It should be the limit of 0.𝑎1,
0.𝑎1𝑎2, 0.𝑎1𝑎2𝑎3 and so on. We will define it by

0.𝑎1𝑎2𝑎3⋯ ≔
∞
∑
𝑛=1

𝑎𝑛
10
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This clearly converges as the partial sums are increasing and bounded above by 1, so infinite decimal
expansions are valid. Conversely, given some 𝑥 ∈ ℝ with 0 < 𝑥 < 1, we can certainly write it as a
(potentially infinite) decimal. We will start by choosing the greatest 𝑎1 from 0 to 9 such that 𝑎1

10
≤ 𝑥.

Thus 0 < 𝑥− 𝑎1
10
< 1

10
. Now, we can pick the greatest 𝑎2 in the set such that

𝑎1
10
+ 𝑎2

100
≤ 𝑥. Therefore,

0 ≤ 𝑥 − 𝑎1
10
− 𝑎2

100
< 1

100
. Continue inductively, and then we obtain a decimal expansion 0.𝑎1𝑎2𝑎3…

such that 0 ≤ 𝑥 − ∑𝑘
𝑛=1

𝑎𝑛
10𝑛

< 1
10𝑘

for any given 𝑘. By the definition of convergence, the sequence
given for 𝑎 tends to 𝑥 as required.
Note, if 0.𝑎1𝑎2… and 0.𝑏1𝑏2… are different decimal expansions of the same number, then there exists
some 𝑁 ∈ ℕ such that 𝑎𝑛 = 𝑏𝑛 for all 𝑛 < 𝑁 and 𝑎𝑁 = 𝑏𝑁 − 1 and 𝑎𝑛 = 9, 𝑏𝑛 = 0 for all 𝑛 > 𝑁 (or
vice versa). For example, 0.99999… is equivalent to 1.00000…

4.8 The number 𝑒
We define

𝑒 = 1 + 1
1! +

1
2! +

1
3! +

1
4! + …

The partial sums are increasing and bounded above by the powers of two after the first term, so it
converges.

4.9 Algebraic and transcendental numbers
A real 𝑥 is called algebraic if it is a root of a nonzero polynomial with integer coefficients. Otherwise,
it is called transcendental. For example, any rational 𝑝

𝑞
is algebraic as it is the root of 𝑞𝑥 − 𝑝 = 0. As

another example,√2 + 1 is algebraic as it is a root of the equation 𝑥2 − 2𝑥 − 1 = 0. The logical next
question to ask is whether all reals are algebraic.

Proposition. 𝑒 is not rational.

Proof. Suppose that 𝑒 is rational, let it be written 𝑝
𝑞
, where 𝑞 > 1 (if 𝑞 = 1, rewrite it as 2𝑝

2𝑞
). Multiply-

ing up by 𝑞! (easier than just 𝑞 because then we can compare factorials) gives
∞
∑
𝑛=0

𝑞!
𝑛! ∈ ℤ

We know that∑𝑞
𝑛=0

𝑞!
𝑛!
∈ ℤ. The next terms are:

𝑞!
(𝑞 + 1)! =

1
𝑞 + 1

𝑞!
(𝑞 + 2)! =

1
(𝑞 + 1)(𝑞 + 2) ≤

1
(𝑞 + 1)2

𝑞!
(𝑞 + 3)! =

1
(𝑞 + 1)(𝑞 + 2)(𝑞 + 3) ≤

1
(𝑞 + 1)3

𝑞!
(𝑞 + 𝑛)! ≤

1
(𝑞 + 1)𝑛
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So the next partial sums are bounded above by the geometric series.
∞
∑

𝑛=𝑞+1

𝑞!
𝑛! ≤

1
𝑞 < 1

So the whole series multiplied by 𝑞! is a whole number plus a fractional part, which is not an integer
#.

Ideally now we’d have a proof that 𝑒 is transcendental. However, even though the terms of 𝑒 tend to
zero quickly, they don’t tend to zero quite quickly enough for us to be able to prove it using what we
knownow. We instead prove that there exists some transcendental number using a different example,
one whose terms tend to zero very quickly indeed.

Theorem. Liouville’s constant 𝑐 = ∑∞
𝑛=1

1
10𝑛!

is transcendental. As a decimal expansion:

𝑐 = 0.1100010000000000000000010…

This is a long proof, the hardest in this course. Wewill cherry-pick some important results about poly-
nomials in order to make this proof, without a proper introduction to features of polynomials.

• For any polynomial 𝑃, ∃𝑘 ∈ ℝ such that |𝑃(𝑥) − 𝑃(𝑦)| ≤ 𝑘|𝑥 − 𝑦| for all 0 ≤ 𝑥, 𝑦 ≤ 1. Indeed,
say 𝑃(𝑥) = 𝑎𝑑𝑥𝑑 +⋯+ 𝑎0, then

𝑃(𝑥) − 𝑃(𝑦) = 𝑎𝑑(𝑥𝑑 − 𝑦𝑑) + 𝑎𝑑−1(𝑥𝑑−1 − 𝑦𝑑−1) +⋯ + 𝑎1(𝑥 − 𝑦)
= (𝑥 − 𝑦)[𝑎𝑑(𝑥𝑑−1 + 𝑥𝑑−2𝑦 +⋯+ 𝑦𝑑−1) +⋯ + 𝑎1]

|𝑃(𝑥) − 𝑃(𝑦)| ≤ |𝑥 − 𝑦|[(|𝑎𝑑| + |𝑎𝑑−1| + ⋯ + |𝑎1|)𝑑]

because 𝑥 and 𝑦 are between 0 and 1.
• A nonzero polynomial of degree 𝑑 has at most 𝑑 roots. Given some polynomial 𝑃 of degree 𝑑:

– If 𝑃 has no roots, we are trivially done.
– If 𝑃 has some root 𝑎, then 𝑃 can be written as (𝑥 − 𝑎)𝑄(𝑥). Inductively, 𝑄(𝑥) has at most
𝑑 − 1 roots, so 𝑃 has at most 𝑑 roots.

Now we can prove the above theorem.

Proof. We will write 𝑐𝑛 = ∑𝑛
𝑘=0

1
10𝑘!

, such that 𝑐𝑛 → 𝑐. Suppose that some polynomial 𝑃 has 𝑐 as a
root. Then ∃𝑘 such that |𝑃(𝑥) − 𝑃(𝑦)| ≤ 𝑘|𝑥 − 𝑦| when 0 ≤ 𝑥, 𝑦 ≤ 1. Let 𝑃 have degree 𝑑, such that

𝑃(𝑥) = 𝑎𝑑𝑥𝑑 +⋯+ 𝑎0

Now, |𝑐 − 𝑐𝑛| = ∑∞
𝑘=𝑛+1

1
10𝑘!

≤ 2
10(𝑛+1)!

. This is a trivial upper bound, of course better upper bounds
exist.

Also, 𝑐𝑛 =
𝑎

10𝑛!
for some 𝑎 ∈ ℤ. So 𝑃(𝑐𝑛) =

𝑏
10𝑑𝑛!

for some 𝑏 ∈ ℤ (since 𝑃( 𝑠
𝑡
) = 𝑞

𝑡𝑑
for some integer 𝑞,

where 𝑠
𝑡
∈ ℚ).

For 𝑛 large enough, 𝑐𝑛 is not a root, because 𝑃 only has finitely many roots. So

|𝑃(𝑐) − 𝑃(𝑐𝑛)| = |𝑃(𝑐𝑛)| ≤
1

10𝑑𝑛!
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Therefore 1
10𝑑𝑛! ≤ 𝑘 2

10(𝑛+1)!
which is a contradiction if 𝑛 is large enough.

Here are some remarks about this proof.

• This same proof shows that any real 𝑥 such that ∀𝑛∃𝑝
𝑞
∈ ℚwith 0 < |||𝑥 −

𝑝
𝑞
||| <

1
𝑞𝑛
is transcend-

ental. Informally, 𝑥 has very good rational approximations.
• Such 𝑥 are often called Liouville numbers; the proof works for all Liouville numbers.
• This proof does not show that 𝑒 is transcendental (even though it is), because the terms do not
go to zero fast enough.

• We now know that there exist some transcendental numbers. Another proof of existence of
transcendental numbers will be seen in a later lecture.

4.10 Complex numbers
Some polynomials have no real roots, for example 𝑥2 + 1. We’ll try to ‘force’ an 𝑥 with the property
𝑥2 = −1. Note that for example we could not force an 𝑥 into existence with the property 𝑥2 = 2, 𝑥3 =
3; how do we know introducing 𝑖 will not lead to a contradiction? We will define ℂ to consist of the
plane ℝ2, i.e. pairs of real numbers, with operations + and ⋅ which satisfy:

• (𝑎, 𝑏) + (𝑐, 𝑑) = (𝑎 + 𝑐, 𝑏 + 𝑑)
• (𝑎, 𝑏) ⋅ (𝑐, 𝑑) = (𝑎𝑐 − 𝑏𝑑, 𝑎𝑑 + 𝑏𝑐)

We can view ℝ as being contained within ℂ by identifying the real number 𝑎 with (𝑎, 0). Note that
the rules of arithmetic of the reals are inherited inside the first element of the complex plane, so there
is no contradiction here. Then let 𝑖 = (0, 1). Trivially then, any point (𝑎, 𝑏) in the complex numbers
may be written as 𝑎 + 𝑏𝑖 where 𝑎, 𝑏 ∈ ℝ. And, of course, 𝑖2 = −1.
All of the basic rules like associativity and distributivity work in the complex plane. There are mul-
tiplicative inverses: given 𝑎 + 𝑏𝑖, we know that (𝑎 + 𝑏𝑖)(𝑎 − 𝑏𝑖) = 𝑎2 + 𝑏2 so 𝑎−𝑏𝑖

𝑎2+𝑏2
is the inverse

(provided the point is nonzero). This kind of structure with familiar properties is known as a field,
for example ℂ, ℝ, ℚ, ℤ𝑝 where 𝑝 is prime. The fundamental theorem of algebra states that any
nonzero polynomial with complex coefficients has a complex root; this is proven in the IB course
Complex Analysis.

5 Sets
5.1 Sets and subsets
A set is any* collection of mathematical objects. (∀𝑥, 𝑥 ∈ 𝐴 ⟺ 𝑥 ∈ 𝐵) ⟺ (𝐴 = 𝐵). In
words, two sets which have the same members are considered to be the same; order of members is
not important in a set. There is no ‘multiple membership’ of a set, {𝑎, 𝑎} = {𝑎}.
Given a set 𝐴 and a property 𝑝(𝑥), we can form {𝑥 ∈ 𝐴 ∶ 𝑝(𝑥)}; the subset of all members of 𝐴 with
property 𝑝. This is sometimes called the ‘subset selection’ rule or axiom. We can say that 𝐵 is a subset
of 𝐴 if ∀𝑥, 𝑥 ∈ 𝐵 ⟹ 𝑥 ∈ 𝐴, written 𝐵 ⊆ 𝐴. Further, 𝐴 = 𝐵 ⟺ 𝐴 ⊆ 𝐵, 𝐵 ⊆ 𝐴.
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5.2 Composing sets
Given sets 𝐴 and 𝐵, we can form their union 𝐴 ∪ 𝐵 = {𝑥 ∶ 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵}. We can also form
their intersection 𝐴 ∩ 𝐵 = {𝑥 ∶ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵}. If 𝐴 ∩ 𝐵 = ∅, we say 𝐴 and 𝐵 are disjoint. Note
that we could consider 𝐴 ∩ 𝐵 as a special case of subset selection; the subset of 𝐴 with the property
that the element is in 𝐵. Therefore, 𝐴 ∩ 𝐵 ⊆ 𝐴, and 𝐴 ∩ 𝐵 ⊆ 𝐵. We define the set difference
𝐴 ∖ 𝐵 = {𝑥 ∈ 𝐴 ∶ 𝑥 ∉ 𝐵}.
Note that∩ and∪ are commutative and associative. Also,∪ is distributive over∩, and∩ is distributive
over ∪. For example, let us prove that 𝐴 ∩ (𝐵 ∪ 𝐶) = (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶).

• (LHS ⊆ RHS) Given 𝑥 ∈ 𝐴 ∩ (𝐵 ∪ 𝐶), we have 𝑥 ∈ 𝐴 and also either 𝑥 ∈ 𝐵 or 𝑥 ∈ 𝐶. If 𝑥 ∈ 𝐵
then 𝑥 ∈ 𝐴 ∩ 𝐵 so 𝑥 ∈ (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶); and vice versa for 𝐶.

• (RHS ⊆ LHS) Given 𝑥 ∈ (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶), either 𝑥 ∈ 𝐴 ∩ 𝐵 or 𝑥 ∈ 𝐴 ∩ 𝐶. If 𝑥 ∈ 𝐴 ∩ 𝐵 then
𝑥 ∈ 𝐴 and 𝑥 ∈ 𝐵 ∪ 𝐶 as required; and vice versa for the other case.

As the union is associative, we can have bigger unions of more sets. For example, if we let 𝐴𝑛 =
{𝑛2, 𝑛3} for each 𝑛 ∈ ℕ, the infinite union

𝐴1 ∪ 𝐴2 ∪ 𝐴3 ∪⋯ =
∞

⋃
𝑛=1

𝐴𝑛 = ⋃
𝑛∈ℕ

𝐴𝑛 = {𝑥 ∈ 𝑁 ∶ 𝑥 is a square or a cube}

When we use the 𝑛 ∈ ℕ on the large union symbol, we call ℕ the ‘index set’. Note that the infinite
union is not defined as a limit of finite unions; it is simply defined using set comprehension. In
general, given a set 𝐼, and sets 𝐴𝑖, 𝑖 ∈ 𝐼, we can form

⋃
𝑖∈𝐼

𝐴𝑖 = {𝑥 ∶ ∃𝑖 ∈ 𝐼, 𝑥 ∈ 𝐴𝑖}

and
⋂
𝑖∈𝐼

𝐴𝑖 = {𝑥 ∶ ∀𝑖 ∈ 𝐼, 𝑥 ∈ 𝐴𝑖}

Note that we cannot form an intersection when 𝐼 = ∅, as will be explained later.
For any 𝑎, 𝑏, we can form the ordered pair (𝑎, 𝑏), where equality is checked component-wise. For sets
𝐴, 𝐵, we can form their product 𝐴 × 𝐵 = {(𝑎, 𝑏) ∶ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}. For example, ℝ2 = ℝ × ℝ can be
viewed as a plane. We can form other sizes of tuples similarly.

For any set 𝑋 , we can form the power set 𝒫(𝑋) consisting of all subsets of 𝑋 .
𝒫(𝑋) = {𝑌 ∶ 𝑌 ⊆ 𝑋}

For example:
𝒫({1, 2}) = {∅, {1}, {2}, {1, 2}}

5.3 Russell’s paradox
For a set 𝐴, we can always form the set {𝑥 ∈ 𝐴 ∶ 𝑝(𝑥)} for any property 𝑝. We cannot, however, form
the set {𝑥 ∶ 𝑝(𝑥)}. Suppose we could form such a set, then we could form the set 𝑋 = {𝑥 ∶ 𝑥 ∉ 𝑥}.
Now, is 𝑋 ∈ 𝑋? If this is true, then it fails the defining property 𝑥 ∉ 𝑥. If this is false, then the
defining property is true, so it must be in the set. This is a contradiction in both cases.

Similarly, there is no ‘universal’ set ℰ, meaning ∀𝑥, 𝑥 ∈ ℰ. Otherwise we could form the 𝑋 above by
{𝑥 ∈ ℰ ∶ 𝑝(𝑥)}. To guarantee that a given set exists, we need to obtain it in some way from known
sets.
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5.4 Finite sets
We will write ℕ0 = ℕ ∪ {0}. For 𝑛 ∈ ℕ0, we can say that a set 𝐴 has size 𝑛 if we can write 𝐴 =
{𝑎1, 𝑎2,⋯ , 𝑎𝑛} where the 𝑎𝑖 are distinct. A set is called finite if it has a size 𝑛 ∈ ℕ0.

Note that a set cannot have size 𝑛 and size 𝑚 for 𝑛 ≠ 𝑚. Suppose that 𝐴 has size 𝑛 and size 𝑚
where 𝑛,𝑚 > 0. Then, removing an element, we obtain a set that has size 𝑛 − 1 and 𝑚 − 1. By
induction on the larger of 𝑛 and 𝑚, we will eventually reach a size of both zero and nonzero which
is a contradiction.

Proposition. A set of size 𝑛 has exactly 2𝑛 subsets.

Proof 1. Wemay assume that our set is simply {1, 2,⋯ , 𝑛} by relabelling. When constructing a subset
𝑆 from this set, there are 𝑛 independent binary choices for whether a given element should be within
this subset, since for example either 1 ∈ 𝑆 or 1 ∉ 𝑆 must be true. So there are 2𝑛 distinct choices of
subset you can make.

Proof 2. We will prove this inductively on 𝑛, noting that 𝑛 = 0 is trivial. For any subset 𝑇 ⊆
{1, 2,⋯𝑛 − 1}, how many 𝑆 ⊆ {1,⋯ , 𝑛} have 𝑆 ∩ {1, 2,⋯𝑛 − 1} = 𝑇? Exactly two: 𝑇 and 𝑇 ∪ {𝑛}. So
there are two choices for how to extend this subset to the new element 𝑛. So the number of subsets
is 2 ⋅ 2𝑛−1 = 2𝑛.

In some sense Proof 2 is a more ‘formal’ version of Proof 1, using induction rather than intuition. We
sometimes say that if 𝐴 has size 𝑛, then |𝐴| = 𝑛, and that 𝐴 is an 𝑛-set.

5.5 Binomial coefficients
For 𝑛 ∈ ℕ0 and 0 ≤ 𝑘 ≤ 𝑛, we can write (𝑛

𝑘
) for the number of subsets of an 𝑛-set that are of size

𝑘.
(𝑛𝑘) = |{𝑆 ⊆ {1, 2,… , 𝑛} ∶ |𝑆| = 𝑘}|

For example, there are six 2-sets in a 4-set. There is a formula for this, but generally this definition is
a lot easier to use. Note that (𝑛

0
) = 1, (𝑛

𝑛
) = 1, and (𝑛

1
) = 𝑛 where 𝑛 > 0.

Note that (𝑛
0
)+ (𝑛

1
)+⋯+(𝑛

𝑛
) = 2𝑛 as each side counts the number of subsets in an 𝑛-set. Also:

(i) (𝑛
𝑘
) = ( 𝑛

𝑛−𝑘
) (∀𝑛 ∈ 𝑁0, 0 ≤ 𝑘 ≤ 𝑛). Indeed, specifying which 𝑘members to pick for a subset is

equivalent to specifying which 𝑛 − 𝑘members not to pick.
(ii) (𝑛

𝑘
) = (𝑛−1

𝑘−1
)+(𝑛−1

𝑘
) (∀𝑛 ∈ ℕ, 0 < 𝑘 < 𝑛). Indeed, the number of 𝑘-subsets of {1, 2,… , 𝑛}without

𝑛 is (𝑛−1
𝑘
). The number of 𝑘-subsets of {1, 2,… , 𝑛} that do contain 𝑛 is (𝑛−1

𝑘−1
) as we must pick

the remaining 𝑘 − 1 elements of this new subset. So in total, (𝑛−1
𝑘−1

) + (𝑛−1
𝑘
) encapsulates both

possibilities.

This last point illustrates that Pascal’s Triangle will give all the binomial coefficients since it per-
fectly encapsulates the relationship between a given element of the triangle with two elements from
the previous row. The exact proof follows from the other known properties of the binomial coeffi-
cients.
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5.6 Computing binomial coefficients

Proposition.

(𝑛𝑘) =
𝑛(𝑛 − 1)(𝑛 − 2)⋯ (𝑛 − 𝑘 + 1)

𝑘(𝑘 − 1)(𝑘 − 2)⋯ (1)

Proof. The number of ways to name a 𝑘-set is 𝑛(𝑛− 1)(𝑛 − 2)⋯ (𝑛− 𝑘+ 1) because there are 𝑛ways
to choose a first element, 𝑛 − 1 ways to choose a second element, and so on. We have overcounted
the 𝑘-sets, though—there are 𝑘(𝑘 − 1)(𝑘 − 2)⋯ (1) ways to name a given 𝑘-set because you have 𝑘
choices for the first element, 𝑘 − 1 choices for the second element, and so on. Hence the number of
𝑘-sets in {1, 2,… , 𝑛} is the required result.

Note that we can also write
(𝑛𝑘) =

𝑛!
𝑘!(𝑛 − 𝑘)!

but this is a very unwieldy formula to use especially by hand, so will be rarely used. Further, we can
make asymptotic approximations using this formula, for example (𝑛

3
) ∼ 𝑛3

6
for large 𝑛.

5.7 Binomial theorem

Theorem. For all 𝑎, 𝑏 ∈ ℝ, 𝑛 ∈ ℕ, we have

(𝑎 + 𝑏)𝑛 = (𝑛0)𝑎
𝑛 + (𝑛1)𝑎

𝑛−1𝑏 + (𝑛2)𝑎
𝑛−2𝑏2 +⋯+ (𝑛𝑛)𝑏

𝑛

Proof. Whenwe expand (𝑎+𝑏)𝑛 = (𝑎+𝑏)(𝑎+𝑏)… (𝑎+𝑏), we obtain terms of the form 𝑎𝑘𝑏𝑛−𝑘. To get
a single term of this form, we must choose 𝑘 brackets for which to take the 𝑎 value in the expansion,
and the other 𝑛−𝑘 brackets will take the 𝑏 value. The number of terms of the form 𝑎𝑘𝑏𝑛−𝑘 for a fixed
𝑘 is therefore the amount of ways of choosing 𝑘 brackets out of a total of 𝑛, which is (𝑛

𝑘
). So

(𝑎 + 𝑏)𝑛 =
𝑛
∑
𝑘=0

(𝑛𝑘)𝑎
𝑘𝑏𝑛−𝑘 =

𝑛
∑
𝑘=0

( 𝑛
𝑛 − 𝑘)𝑎

𝑘𝑏𝑛−𝑘

For example, we can tell that (1 + 𝑥)𝑛 reduces to

1 + 𝑛𝑥 + 1
2𝑛(𝑛 − 1)𝑥2 + 1

3!𝑛(𝑛 − 1)(𝑛 − 2)𝑥3 +⋯+ 𝑛𝑥𝑛−1 + 𝑥𝑛

So when 𝑥 is small, a good approximation to (1 + 𝑥)𝑛 is 1 + 𝑛𝑥.
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5.8 Inclusion-exclusion theorem
Given two finite sets 𝐴, 𝐵, we have

|𝐴 ∪ 𝐵| = |𝐴| + |𝐵| − |𝐴 ∩ 𝐵|

For three sets, we have

|𝐴 ∪ 𝐵 ∪ 𝐶| = |𝐴| + |𝐵| + |𝐶| − |𝐴 ∩ 𝐵| − |𝐵 ∩ 𝐶| − |𝐶 ∩ 𝐴| + |𝐴 ∩ 𝐵 ∩ 𝐶|

Theorem. Let 𝑆1,… , 𝑆𝑛 be finite sets. Then,

|||| ⋃𝑆∈𝑆𝑛
𝑆
||||
= ∑

|𝐴|=1
|𝑆𝐴| − ∑

|𝐴|=2
|𝑆𝐴| + ∑

|𝐴|=3
|𝑆𝐴| − ⋯

where
𝑆𝐴 =⋂

𝑖∈𝐴
𝑆 𝑖

and
∑
|𝐴|=𝑘

is a sum taken over all 𝐴 ⊆ {1, 2,… , 𝑛} of size 𝑘.

Proof. Let𝑥 be an element of the left hand side. Wewish to prove that𝑥 is counted exactly once on the
right hand side. Without loss of generality, let us rename the sets that 𝑥 belongs to as 𝑆1, 𝑆2,… , 𝑆𝑘.
Then the number of sets 𝐴 with |𝐴| = 1 such that 𝑥 ∈ 𝑆𝐴 is 𝑘. The number of sets 𝐴 with |𝐴| = 2
such that 𝑥 ∈ 𝑆𝑎 is (𝑘2), since we must choose two of the sets 𝑆1,… , 𝑆𝑘, so there are (𝑘2) ways to do
this. So in general, the amount of 𝐴 with |𝐴| = 𝑟 with 𝑥 ∈ 𝑆𝐴 is just (𝑘𝑟).

So the number of times 𝑥 is counted on the right hand side is

𝑘 − (𝑘2) + (𝑘3) −⋯+ (−1)𝑘+1(𝑘𝑘)

But (1 + (−1))𝑘 by the binomial expansion is

1 − (𝑘1) + (𝑘2) − (𝑘3) +⋯+ (−1)𝑘(𝑘𝑘)

So the number of times 𝑥 is counted on the right hand side is 1 − (1 + (−1))𝑘 = 1 − 0 = 1.

6 Functions
6.1 Definition
For sets𝐴 and 𝐵, a function 𝑓 from𝐴 to 𝐵 is a rule that assigns to each 𝑥 ∈ 𝐴 a unique value 𝑓(𝑥) ∈ 𝐵.
More precisely, a function from 𝐴 to 𝐵 is a set 𝑓 ⊆ 𝐴× 𝐵 such that for every 𝑥 ∈ 𝐴, there is a unique
𝑦 ∈ 𝐵 with (𝑥, 𝑦) ∈ 𝑓. Of course therefore, if (𝑥, 𝑦) ∈ 𝑓 then we can write 𝑓(𝑥) = 𝑦. Here are some
examples.
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(i) 𝑓∶ ℝ → ℝ given by 𝑓(𝑥) = 𝑥2, or using an alternative notation, 𝑥 ↦ 𝑥2 is a function.

(ii) A non-example is 𝑓∶ ℝ → ℝ given by 𝑓(𝑥) = 1
𝑥
since it is undefined at 𝑥 = 0.

(iii) Another non-example is 𝑓∶ ℝ → ℝ given by 𝑓(𝑥) = ±√|𝑥| since it does not define a unique
value in the output space for a given input, such as 𝑥 = 2.

(iv) 𝑓∶ ℝ → ℝ given by

𝑓(𝑥) = {1 𝑥 ∈ ℚ
0 otherwise

is a function since it clearly satisfies the second definition. Note that even though we don’t
know if 𝑒 + 𝜋 is rational or not, the function is still well defined since it produces a unique
solution for 𝑓(𝑒 + 𝜋), we just don’t know which output value it gives.

(v) 𝐴 = {1, 2, 3, 4, 5}, 𝐵 = {1, 2, 3, 4}, and 𝑓∶ 𝐴 → 𝐵 is given by

𝑓(1) = 1
𝑓(2) = 4
𝑓(3) = 3
𝑓(4) = 3
𝑓(5) = 4

(vi) 𝐴 = {1, 2, 3}, 𝑓∶ 𝐴 → 𝐴 is given by

𝑓(1) = 1
𝑓(2) = 3
𝑓(3) = 2

(vii) 𝐴 = {1, 2, 3, 4}, 𝑓∶ 𝐴 → 𝐴 is given by

𝑓(1) = 1
𝑓(2) = 3
𝑓(3) = 3
𝑓(4) = 4

(viii) 𝐴 = {1, 2, 3, 4}, 𝐵 = {1, 2, 3}, 𝑓∶ 𝐴 → 𝐵 is given by

𝑓(1) = 3
𝑓(2) = 3
𝑓(3) = 2
𝑓(4) = 1

6.2 Injection, surjection and bijection
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Definition. A function 𝑓∶ 𝐴 → 𝐵 is
• injective, if ∀𝑎, 𝑎′ ∈ 𝐴, we have 𝑎 ≠ 𝑎′ ⟹ 𝑓(𝑎) ≠ 𝑓(𝑎′), or equivalently, 𝑓(𝑎) =
𝑓(𝑎′) ⟹ 𝑎 = 𝑎′, or in words, ‘different points stay different’ (e.g. example 6 above).

• surjective, if ∀𝑏 ∈ 𝐵, ∃𝑎 ∈ 𝐴 such that 𝑓(𝑎) = 𝑏, or in words, ‘everything in 𝐵 is hit’
(e.g. examples 6 and 8).

• bijective, if it is injective and surjective, or in words, ‘everything in 𝐵 is hit exactly once’,
or ‘𝑓 pairs up elements of 𝐴 and elements of 𝐵’ (e.g. example 6, or 𝑓∶ ℝ → ℝ given by
𝑓(𝑥) = 𝑥3).

Definition. For a function 𝑓∶ 𝐴 → 𝐵, 𝐴 is the domain, 𝐵 is the range, and {𝑏 ∈ 𝐵 ∶ ∃𝑎 ∈
𝐴 s.t. 𝑓(𝑎) = 𝑏} is the image.

We must always provide the domain and range of a function; a function’s properties depend on this.
For example, is the function 𝑓 defined by 𝑓(𝑥) = 𝑓2 injective? If 𝑓∶ ℕ → ℕ, then it is injective, but
if 𝑓∶ ℤ → ℤ, then it is not.
There are a number of properties that hold specifically for finite sets 𝐴, 𝐵:
(i) There is no surjection 𝐴 → 𝐵 if |𝐵| > |𝐴|.
(ii) There is no injection 𝐴 → 𝐵 if |𝐴| > |𝐵|.
(iii) For a function 𝑓∶ 𝐴 → 𝐴, 𝑓 injective ⟺ 𝑓 surjective. Hence, if 𝑓 is either injective or

surjective, it is bijective.

(iv) There is no bijection from 𝐴 to any proper subset of 𝐴.
As counterexamples for infinite sets:

(i) We define 𝑓0 ∶ ℕ → ℕ by 𝑓0(𝑥) = 𝑥 + 1. Then, 𝑓0 is injective but not surjective.
(ii) We define 𝑓1 ∶ ℕ → ℕ by 𝑓0(𝑥) = 𝑥 − 1, or 1 if 𝑥 = 1. Then, 𝑓0 is surjective but not injective.
(iii) We define 𝑔∶ ℕ → ℕ ∖ {1} by 𝑔(𝑥) = 𝑥 + 1. Then, 𝑔 is bijective between ℕ and a proper subset

of ℕ.
We provide some more examples of functions.

(i) For any set𝑋 we have 1𝑋 ∶ 𝑋 → 𝑋 defined by 1𝑋(𝑥) = 𝑥. This is known as the identity function
on 𝑋 .

(ii) For any set 𝑋 , and 𝐴 ⊂ 𝑋 , we have an indicator function (or characteristic function) 𝜒𝐴 ∶ 𝑋 →
{0, 1} defined by

𝜒𝐴(𝑥) = {0 𝑥 ∉ 𝐴
1 𝑥 ∈ 𝐴

(iii) A sequence of reals 𝑥1, 𝑥2,… is a function 𝑓∶ ℕ → ℝ defined by 𝑓(𝑛) = 𝑥𝑛.
(iv) The operation + on ℕ is a function ℕ2 → ℕ.
(v) A set 𝑋 has size 𝑛 ⟺ there is a bijection between 𝑋 and {1, 2,… , 𝑛}.
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6.3 Composition of functions
Given 𝑓∶ 𝐴 → 𝐵 and 𝑔∶ 𝐵 → 𝐶, we define the composition 𝑔 ∘ 𝑓∶ 𝐴 → 𝐶, given by (𝑔 ∘ 𝑓)(𝑎) =
𝑔(𝑓(𝑎)). For example, if 𝑓∶ ℝ → ℝ, 𝑓(𝑥) = 2𝑥, 𝑔∶ ℝ → ℝ, 𝑔(𝑥) = 𝑥 + 1, then (𝑓 ∘ 𝑔)(𝑥) = 2(𝑥 + 1),
and (𝑔 ∘ 𝑓)(𝑥) = 2𝑥 + 1.
In general, the operation ∘ is not commutative, as we can see from this example. However, ∘ is
associative. Given 𝑓∶ 𝐴 → 𝐵, 𝑔∶ 𝐵 → 𝐶, ℎ∶ 𝐶 → 𝐷, we have ℎ ∘ (𝑔 ∘ 𝑓) = (ℎ ∘ 𝑔) ∘ 𝑓. Indeed, for
any input 𝑥 ∈ 𝐴,

(ℎ ∘ (𝑔 ∘ 𝑓))(𝑥) = ℎ((𝑔 ∘ 𝑓)(𝑥)) = ℎ(𝑔(𝑓(𝑥))) = (ℎ ∘ 𝑔)(𝑓(𝑥)) = ((ℎ ∘ 𝑔) ∘ 𝑓)(𝑥)

Thus (ℎ ∘ (𝑔 ∘ 𝑓))(𝑥) = ((ℎ ∘ 𝑔) ∘ 𝑓)(𝑥) for every 𝑥 ∈ 𝐴, so ℎ ∘ (𝑔 ∘ 𝑓) = (ℎ ∘ 𝑔) ∘ 𝑓.

6.4 Invertibility
We say that a function 𝑓∶ 𝐴 → 𝐵 is invertible if there exists some 𝑔∶ 𝐵 → 𝐴 such that 𝑔 ∘ 𝑓 = 1𝐴
and 𝑓 ∘ 𝑔 = 1𝐵. For example 𝑓∶ ℝ → ℝ given by 𝑓(𝑥) = 2𝑥 + 1 has inverse 𝑔∶ ℝ → ℝ given by
𝑔(𝑥) = 𝑥−1

2
. We can prove that this is correct by showing for all real numbers that (𝑔 ∘ 𝑓)(𝑥) = 𝑥 and

vice versa as required.

As an example, consider 𝑓0 ∶ ℕ → ℕ given by 𝑓0(𝑥) = 𝑥 + 1, and 𝑓1 ∶ ℕ → ℕ given by 𝑓1(𝑥) = 𝑥 − 1
if 𝑥 ≠ 1 and 1 if 𝑥 = 1. 𝑓1 ∘ 𝑓0 = 1ℕ but 𝑓0 ∘ 𝑓1 ≠ 1ℕ because they disagree at 1. So we must check
inverses both ways.

In fact, 𝑓∶ 𝐴 → 𝐵 is invertible if and only if it is a bijection.
• (forward implication) Let 𝑔 be the inverse of 𝑓. It is surjective because ∀𝑏 ∈ 𝐵, we have
𝑏 = 𝑓(𝑔(𝑏)). It is injective because given two elements 𝑎, 𝑎′ such that 𝑓(𝑎) = 𝑓(𝑎′), we have
𝑔(𝑓(𝑎)) = 𝑔(𝑓(𝑎′)) = 𝑎 = 𝑎′ as required. So it is bijective.

• (backward implication) Suppose𝑓 is bijective. Let 𝑔(𝑏) be the unique point𝑎 ∈ 𝐴with𝑓(𝑎) = 𝑏
for all 𝑏 ∈ 𝐵. Then this 𝑔 is the inverse of 𝑓.

6.5 Relations
A relation on a set 𝑋 is a subset of 𝑅 ⊆ 𝑋 × 𝑋 . We usually write 𝑎𝑅𝑏 to denote (𝑎, 𝑏) ∈ 𝑅. Here are
some examples.

(i) On ℕ, 𝑎𝑅𝑏 if 𝑎 ≡ 𝑏 (5). For example, 2𝑅12 but not 2𝑅11.
(ii) On ℕ, 𝑎𝑅𝑏 if 𝑎 ∣ 𝑏.
(iii) On ℕ, 𝑎𝑅𝑏 if 𝑎 ≠ 𝑏.
(iv) On ℕ, 𝑎𝑅𝑏 if 𝑎 = 𝑏 ± 1.
(v) On ℕ, 𝑎𝑅𝑏 if |𝑎 − 𝑏| ≤ 2.
(vi) On ℕ, 𝑎𝑅𝑏 if either 𝑎, 𝑏 ≤ 6 or 𝑎, 𝑏 > 6.
A relation may have a number of important properties:

• (reflexive) If ∀𝑥 ∈ 𝑋 , 𝑥𝑅𝑥, e.g. examples 1, 2, 5, 6.
• (symmetric) If ∀𝑥, 𝑦 ∈ 𝑋 , 𝑥𝑅𝑦 ⟹ 𝑦𝑅𝑥, e.g. examples 1, 3, 4, 5, 6.
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• (transitive) If ∀𝑥, 𝑦, 𝑧 ∈ 𝑋 , 𝑥𝑅𝑦, 𝑦𝑅𝑧 ⟹ 𝑥𝑅𝑧, e.g. examples 1, 2, 6.
An equivalence relation is a relation that is reflexive, symmetric and transitive. Examples 1, 6 above
are equivalence relations. Here are some more examples.

(i) On ℕ, 𝑥𝑅𝑦 if 𝑥 = 𝑦.
(ii) Considering a partition of set 𝑋 into subsets 𝐶1, 𝐶2,… , 𝑖 ∈ 𝐼 where the 𝐶𝑖 are non-empty and

disjoint, and their union is 𝑋 . Then consider the relation 𝑎𝑅𝑏 if ∃𝑖 such that 𝑎 ∈ 𝐶𝑖 and 𝑏 ∈ 𝐶𝑖.
𝑎𝑅𝑏 is an equivalence relation. In fact, all equivalence relations can be considered to be in this
form; we will prove this shortly.

For an equivalence relation 𝑅 on a set 𝑋 , and 𝑥 ∈ 𝑋 , we define the equivalence class [𝑥] = {𝑦 ∈ 𝑋 ∶
𝑦𝑅𝑥}. In the first example 1 above, [2] = {𝑦 ∈ ℕ ∶ 𝑦 ≡ 2 (5)}.

6.6 Equivalence classes as partitions

Proposition. Let 𝑅 be an equivalence relation on a set 𝑋 . Then the equivalence classes of 𝑅
partition 𝑋 .

Proof. Each equivalence class [𝑥] is non-empty, since 𝑥 = 𝑥. Further,

⋃
𝑥∈𝑋

= 𝑋

since 𝑥 ∈ [𝑥] for all 𝑥 ∈ 𝑋 . Now we must show that the classes are disjoint, or are equal. Given 𝑥, 𝑦
with [𝑥] ∩ [𝑦] ≠ ∅, we need to show that [𝑥] = [𝑦]. Choose some 𝑧 such that 𝑧 ∈ [𝑥] ∩ [𝑦]. Then,
𝑧𝑅𝑥 and 𝑧𝑅𝑦, so 𝑥𝑅𝑦. Thus for any 𝑡, 𝑡𝑅𝑥 ⟹ 𝑡𝑅𝑦 due to transitivity, and 𝑡𝑅𝑦 ⟹ 𝑡𝑅𝑥 for the
same reason. So [𝑥] = [𝑦].

As an example, does there exist an equivalence relation on ℕ with three equivalence classes, two of
which are infinite, and one of which is finite? Yes—we can break up ℕ into three parts, for example
positive numbers, negative numbers and zero. This defines an equivalence relation.

6.7 Quotients
Given an equivalence relation 𝑅 on a set 𝑋 , the quotient of 𝑋 by 𝑅 is

𝑋/𝑅 = {[𝑥] ∶ 𝑥 ∈ 𝑋}

The map 𝑞∶ 𝑋 → 𝑋/𝑅 given by 𝑥 ↦ [𝑥] is called the ‘quotient map’ or ‘projection map’. As an ex-
ample, on ℤ × ℕ, let us define (𝑎, 𝑏)𝑅(𝑐, 𝑑) to be true if 𝑎𝑑 = 𝑏𝑐. This is an equivalence relation that
demonstrates equivalence of rational numbers, where 𝑎, 𝑐 are the numerators and 𝑏, 𝑑 are denomin-
ators. Here, ℤ × ℕ/𝑅 is a copy of ℚ, associating [(𝑎, 𝑏)] with 𝑎/𝑏. Then, 𝑞∶ ℤ × ℕ → ℚ would map
(𝑎, 𝑏) to 𝑎/𝑏.
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7 Countability
7.1 Basic properties
We have a notion of ‘size’ for finite sets. Is there such an analogous notion for infinite sets? We will
say that a set𝑋 is countable if𝑋 is finite, or it bijects withℕ. Equivalently, we can list out the elements
of the set, and each element will appear in the list. Here are some examples.

(i) Clearly any finite set is countable.

(ii) ℕ is countable.

(iii) ℤ is countable, let us construct the list of numbers

0, 1, −1, 2, −2, 3, −3, 4, −4,…

It makes sense now to consider two sets to have the same size if they biject with each other.

Proposition. A set 𝑋 is countable if and only if it injects into ℕ.

Proof. The forward implication is trivial: if 𝑋 is finite, then there must be an injection in to ℕ, and
if it bijects with ℕ then that bijection is a valid injection. This encompasses both cases of countable
sets.

Now let us consider the reverse implication. We may assume 𝑋 is infinite, since if 𝑋 is finite then
by definition 𝑋 is countable. We know that 𝑋 injects onto ℕ under some injective function 𝑓, so 𝑋
bijects with Im𝑓. So it is enough to show that the image Im𝑓 is countable. We will now set 𝑎1 to
be the least element of Im𝑓, and 𝑎2 to be the least element not equal to 𝑎1, and so on. In general,
𝑎𝑛 = min(Im𝑓 ∖ {𝑎𝑖 ∶ 0 ≤ 𝑖 < 𝑛}). Then Im𝑓 is the set {𝑎1, 𝑎2,… }. There are no extra elements that
we have not covered, since each 𝑎 ∈ 𝑋 is 𝑎𝑛 for some 𝑛, because 𝑎 = 𝑎𝑛, 𝑛 ≤ 𝑎. So we have listed
elements of Im𝑓, so Im𝑓 is countable, so 𝑋 is countable.

Thus, we can view countability as being ‘atmost as large asℕ’. For instance, any subset of a countable
set is also countable.

Remark. In ℝ, let
𝑋 = {12 ,

2
3 ,
3
4 ,… } ∪ {1}

Then 𝑋 is countable, as we can list it as

1, 12 ,
2
3 ,
3
4 ,…

But if we counted from ‘least element’ to ‘most element’, we would never reach the element 1 in
countable time. Note further that if we find it difficult to construct a list for a set, it does not mean it
is uncountable, it could just mean that we haven’t found the right list yet.

7.2 Products of countable sets

Theorem. ℕ × ℕ is countable.
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Proof 1. We will define 𝑎1 = (1, 1), and inductively define

𝑎𝑛 = {(𝑝 − 1, 𝑞 + 1) if 𝑝 > 1
(𝑞 + 1, 1) if 𝑝 = 1

where 𝑎𝑛−1 = (𝑝, 𝑞). Therefore, we are essentially moving across antidiagonals of the plane. This
does hit every point (𝑥, 𝑦) ∈ ℕ×ℕ, for example by induction on 𝑥+𝑦, so we have listed all elements
of ℕ × ℕ.

Proof 2. If we can define an injective function ℕ × ℕ → ℕ, then it is countable. For example, let
𝑓 = 2𝑥3𝑦. 𝑓 is injective, so ℕ × ℕ is countable.

7.3 Countable unions of countable sets
Proof 2 is also a way to show the following theorem:

Theorem. Let 𝐴1, 𝐴2, 𝐴3,… be countable sets. Then 𝐴1 ∪ 𝐴2 ∪ 𝐴3 ∪ … is countable. Less
formally, ‘a countable union of countable sets is countable’.

Proof. For each 𝑖, 𝐴𝑖 is countable, so we can list𝐴𝑖 as 𝑎𝑖1, 𝑎𝑖2, 𝑎𝑖3,…whichmay or may not terminate.
We can then define

𝑓∶ ⋃
𝑛∈ℕ

𝐴𝑛 → ℕ; 𝑓(𝑥) = 2𝑖3𝑗

where 𝑥 = 𝑎𝑖𝑗 . If 𝑥 is in more than one set, just take the least 𝑖 that is valid. Then 𝑓 is an injection so
the union is countable.

Here are some examples of using this theorem by partitioning sets as a countable union of countable
subsets.

(i) ℚ is countable, since it is a countable union of countable sets:

ℚ = ℤ ∪ 1
2ℤ ∪

1
3ℤ ∪…

Each 1
𝑛
ℤ is countable, since they biject with ℤ which is a countable set. It doesn’t matter if

we’ve counted an element in ℚ twice; the above theorem works even with intersecting sets.

(ii) The set 𝔸 of all algebraic numbers is countable. It is enough to show that the set of integer
polynomials is countable, since each polynomial has a finite amount of roots and then 𝔸 is a
countable union of finite sets. Now, to show that the set of integer polynomials is countable, it
is enough to show that for each degree 𝑑 it is countable, since it is a countable union of all poly-
nomials of degree 𝑑 (again using the above theorem). To specify a polynomial of degree 𝑑 you
must name its coefficients, so this set injects intoℤ𝑑+1, so wemust just show thatℤ𝑑+1 is count-
able (not a bijection since the first term of the polynomial must be nonzero). We know that ℤ𝑛
is countable because we can inductively show that ℤ2, ℤ3, ℤ4,… are countable inductively.
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7.4 Uncountable sets

Definition. A set is uncountable if there is no way to count the set.

Theorem. ℝ is uncountable.

Proof (Cantor’s Diagonal Argument). We will show that (0, 1) is uncountable, then clearly ℝ is un-
countable. Suppose (0, 1) is countable. Then given a sequence 𝑟1, 𝑟2,… in (0, 1), we just need to find
somenumber 𝑠 ∈ (0, 1)not containedwithin this sequence. For each 𝑟𝑛, we have a decimal expansion
𝑟𝑛 = 0.𝑟𝑛1𝑟𝑛2𝑟𝑛3…. Let us now write all of these numbers in a matrix-style form:

𝑟1 = 0.𝑟11𝑟12𝑟13…
𝑟2 = 0.𝑟21𝑟22𝑟23…
𝑟3 = 0.𝑟31𝑟32𝑟33…
⋮

We just need to construct some number 𝑠 that is not in this list. So, let us simply make sure that for
any given 𝑟 value, there is at least one digit that does not match. The easiest way to construct such a
number is

𝑠 = 0.𝑠1𝑠2𝑠3…
where 𝑠1 ≠ 𝑟11, 𝑠2 ≠ 𝑟22, 𝑠3 ≠ 𝑟33 and so on. We can pick any numbers we like according to these
constraints, butwe should avoid picking digits 0 and 9 since 0.1000⋯ = 0.0999… for example, which
could cause unnecessary ambiguity. Then 𝑠 ≠ 𝑟1, 𝑠 ≠ 𝑟2,… since there is at least one mismatched
digit in the expansion for each 𝑟𝑖; they differ in decimal digit 𝑖. So ℝ is uncountable.

This is another proof that transcendental numbers exist. ℝ is uncountable and𝔸 is countable, so there
exists a transcendental number. Indeed, ‘most’ numbers are transcendental, i.e.ℝ∖𝔸 is uncountable
(because if ℝ ∖ 𝔸 were countable, then ℝ would be (ℝ ∖ 𝔸) ∪ 𝔸 which is a finite union of countable
sets #).

Theorem. The power set 𝒫(ℕ) is uncountable.

Proof. Suppose the subsets of ℕ are listed as 𝑆1, 𝑆2, 𝑆3,… then we want to construct another set 𝑆
that is not equal to any of the other sets 𝑆 𝑖. So for each set 𝑆 𝑖, we must ensure that 𝑆 and 𝑆 𝑖 differ
for at least one value. An easy way to do this is to include the number 𝑖 in the subset if 𝑆 𝑖 does not
contain the number, and to exclude 𝑖 if 𝑖 ∈ 𝑆 𝑖. Then 𝑆 differs from 𝑆 𝑖 at position 𝑖. This is the same
logic as the diagonal argument above. We have:

𝑆 = {𝑛 ∈ ℕ ∶ 𝑛 ∉ 𝑆𝑛}

So 𝑆 is not on the list 𝑆1, 𝑆2, 𝑆3,… no matter what way we choose to list the elements, so 𝒫(ℕ) is
uncountable.

Remark. Alternatively, we could just inject (0, 1) into 𝒫(ℕ). For example, consider 𝑥 ∈ (0, 1) rep-
resented as 0.𝑥1𝑥2𝑥3𝑥4… in binary where the 𝑥1, 𝑥2,… are zero or one (not ending with an infinite
amount of 1s). We can convert this 𝑥 into a subset of ℕ by considering the set {𝑛 ∈ ℕ ∶ 𝑥𝑛 = 1}.
Then the uncountability follows.
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In fact, our proof of this theorem shows the following.

Theorem. For any set 𝑋 , there is no bijection from 𝑋 to the power set 𝒫(𝑋).

For example,ℝ does not biject with𝒫(ℝ). The proof in fact will show that there is no surjection from
𝑋 to its power set; i.e. the power set is ‘larger’ than 𝑋 .

Proof. Given any function 𝑓∶ 𝑋 → 𝒫(𝑋), we will show 𝑓 is not surjective. Let 𝑆 = {𝑥 ∈ 𝑋 ∶ 𝑥 ∉
𝑓(𝑥)}. Then 𝑆 does not belong to the image of 𝑓 because they differ at element 𝑥; for all 𝑥 we have
𝑆 ≠ 𝑓(𝑥).

Remark. Note that:

(i) This is similar in some sense to Russell’s paradox.

(ii) This theorem gives another proof that there is no universal set ℰ, since its power set 𝒫(ℰ) ⊆ ℰ.
But of course, there is always a surjection from a set to a subset. This is a contradiction.

Example. Let𝐴𝑖, 𝑖 ∈ 𝐼 be a family of open, pairwise disjoint intervals. Must this family be countable?
Note that it is not as simple as just listing from left to right, for example consider

(12 , 1) , (
1
3 ,
1
2) , (

1
4 ,
1
3) ,… , (−1, 0)

Then the leftmost interval is (−1, 0), but there is no ‘next interval’ just after it. Also consider

(0, 12) , (
1
2 ,
2
3) , (

2
3 ,
3
4) ,… , (1, 2)

Then we can list the first infinitely many intervals, but we will never reach (1, 2). The answer turns
out to be true; the family is countable. Here are two important proofs.

Proof 1. Each interval 𝐴𝑖 contains a rational number 𝑎𝑖. The rationalsℚ are countable. So let us just
list the 𝑎𝑖. The family is therefore countable.

Proof 2. {𝑖 ∈ 𝐼 ∶ 𝐴𝑖 has length ≤ 1} is certainly countable, since it injects into ℤ (here, as all 𝐴𝑖
contain some integer). Further, {𝑖 ∈ 𝐼 ∶ 𝐴𝑖 has length ≤ 1

2
} is countable for the same reason. Es-

sentially, for all 𝑛, {𝑖 ∈ 𝐼 ∶ 𝐴𝑖 has length ≤ 1
𝑛
} is countable. We have written all the intervals as a

countable union (over 𝑛) of countable sets.

To summarise, if we want to show a set 𝑋 is uncountable:

(i) Run a diagonal argument; or

(ii) Inject an uncountable set into 𝑋
To show a set 𝑋 is countable:

(i) List all the elements (usually fiddly); or

(ii) Inject 𝑋 into ℕ (or another countable set); or

(iii) Express 𝑋 as a countable union of countable sets (usually the best); or

(iv) If 𝑋 is ‘in’ or ‘near’ ℝ, consider ℚ (see Proof 2 above).
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7.5 Comparing sizes of sets
Intuitively, we might think that:

• ‘𝐴 bijects with 𝐵’ means ‘𝐴 has the same size as 𝐵’.
• ‘𝐴 injects into 𝐵’ means ‘𝐴 is at most as large as 𝐵’.
• ‘𝐴 surjects onto 𝐵’ means ‘𝐴 is at least as large as 𝐵’.

Of course, these analogies break down where 𝐵 is zero, since there are no functions from 𝐴 to 𝐵 in
this case. For these to make sense, we require (for 𝐴, 𝐵 ≠ ∅) ‘𝐴 injects into 𝐵’ to be true if and only
if ‘𝐵 surjects onto 𝐴’, and vice versa.

• In the forward direction, we are given an injection 𝑓∶ 𝐴 → 𝐵. Pick some point 𝑎0 in 𝐴, and
define a surjective function 𝑔∶ 𝐵 → 𝐴 given by

𝑏 ↦ {𝑎 if ∃! 𝑎 ∈ 𝐴, 𝑓(𝑎) = 𝑏
𝑎0 otherwise

Since the mapping 𝑓 is injective, the first case will always provide a unique value of 𝑎.
• Proving the converse, we are given a surjection 𝑔∶ 𝐵 → 𝐴. For each 𝑎 in 𝐴, we have some
𝑎′ ∈ 𝐵 with 𝑔(𝑎′) = 𝑎 since 𝑔 is a surjection. Let 𝑓(𝑎) = 𝑎′ for each 𝑎 ∈ 𝐴, and 𝑓 is injective.

7.6 Schröder–Bernstein theorem
Further, we must also have that if ‘𝐴 is at most as large as 𝐵’ and ‘𝐵 is at most as large as 𝐴’, then they
must be the same size. Otherwise this size intuition would not make sense.

Theorem (Schröder–Bernstein Theorem). If 𝑓∶ 𝐴 → 𝐵 and 𝑔∶ 𝐵 → 𝐴 are injections, then
there exists a bijection ℎ∶ 𝐴 → 𝐵.

Proof. For 𝑎 ∈ 𝐴, we will write 𝑔−1(𝑎) to denote the unique 𝑏 ∈ 𝐵 such that 𝑔(𝑏) = 𝑎, if such a 𝑏
exists (and similarly for 𝑓−1(𝑏)). The ‘ancestor sequence’ of 𝑎 ∈ 𝐴 is

𝑔−1(𝑎), 𝑓−1𝑔−1(𝑎), 𝑔−1𝑓−1𝑔−1(𝑎),…

which may terminate. So for any ancestor, after undergoing the relevant function 𝑓 or 𝑔 repeatedly,
we will end up at 𝑎. There are three possible behaviours:

• Let𝐴0 be the subset of𝐴 such that the ancestor sequence stops at even time, i.e. the last ancestor
is in 𝐴;

• Let𝐴1 be the subset of𝐴 such that the ancestor sequence stops at odd time, i.e. the last ancestor
is in 𝐵; and

• Let 𝐴∞ be the subset of 𝐴 such that the ancestor sequence does not terminate.

We specify 0 to be even, i.e. if 𝑎 ∈ 𝐴 has no ancestor 𝑔−1(𝑎), then 𝑎 ∈ 𝐴0. We define similar subsets
of 𝐵: 𝐵0, 𝐵1, 𝐵∞. Now:

• 𝑓∶ 𝐴 → 𝐵 is a bijection between 𝐴0 and 𝐵1. Clearly if some element 𝑎 has an even number of
ancestors, the ancestors of 𝑓(𝑎) are exactly 𝑎 and all of its ancestors, i.e. an odd number. It is
surjective because every element in 𝐵1 has an inverse 𝑓−1(𝑏) ∈ 𝐴0 by construction.
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• 𝑔∶ 𝐵 → 𝐴 is a bijection between 𝐵0 and 𝐴1 due to the same argument.

• 𝑓 (or 𝑔, both functions work for this proof) bijects𝐴∞ and 𝐵∞. It is surjective because for every
element 𝑏 ∈ 𝐵, it has some ancestor 𝑓−1(𝑏) ∈ 𝐴∞.

So the function ℎ∶ 𝐴 → 𝐵 is given by

ℎ(𝑎) =
⎧
⎨
⎩

𝑓(𝑎) if 𝑎 ∈ 𝐴0
𝑔−1(𝑎) if 𝑎 ∈ 𝐴1
𝑓(𝑎) if 𝑎 ∈ 𝐴∞

is a bijection.

Let us consider an example of this theorem in action. Do [0, 1] and [0, 1] ∪ [2, 3] biject? All we need
is to find an injection both ways.

• Let 𝑓∶ [0, 1] → [0, 1] ∪ [2, 3] be the identity map 𝑓(𝑥) = 𝑥.
• Let 𝑔∶ [0, 1] ∪ [2, 3] → [0, 1] be given by 𝑔(𝑥) = 𝑥/3.

It would also be nice to have that, for any sets𝐴 and 𝐵, either𝐴 injects into 𝐵 or 𝐵 injects into𝐴. Then
we can create a total ordering, rather than a partial ordering; we can compare any two sets. This is
proven to be true in the Part II course Logic and Set Theory.

7.7 Arbitrarily large sets
We have the sets

ℕ,𝒫(ℕ), 𝒫(𝒫(ℕ)),… ,𝒫𝑘(ℕ),…
Does every set 𝑋 inject into one of those? It seems like this might be true, but the set

𝑋 = ℕ ∪ 𝒫(ℕ) ∪ 𝒫(𝒫(ℕ)) ∪ …

is a counterexample. Let us continue further with this approach.

𝑋 ′ = 𝑋 ∪ 𝒫(𝑋) ∪ 𝒫(𝒫(𝑋)) ∪ …

𝑋″ = 𝑋 ′ ∪ 𝒫(𝑋 ′) ∪ 𝒫(𝒫(𝑋 ′)) ∪ …
and so on. Now, does every set inject into one of these sets? No, consider

𝑌 = 𝑋 ∪ 𝑋 ′ ∪ 𝑋″ ∪ 𝑋‴ ∪…

We can keep going forever. So we can’t construct a set that all sets inject into.

7.8 What happens next?
This is the end of the Numbers and Sets course. Here are a few of the courses that feed from this
course.

• Factorisation is taken further in the IB Groups, Rings and Modules course.

• Fermat’s Little Theorem, squares modulo 𝑝 etc. are taken further in II Number Theory.
• The analysis chapter is extended by IA Analysis.

• Countability and sizes of sets are taken further in the II Logic and Set Theory course.
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